WorldWideScience

Sample records for cholesterol oxidase physiological

  1. Physiological and pathological implications of cholesterol.

    Science.gov (United States)

    Cortes, Victor A; Busso, Dolores; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2014-01-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions. At an organismal level, cholesterol is the precursor for all steroid hormones, including gluco- and mineralo-corticoids, sex hormones and vitamin D, all of which regulate carbohydrate, sodium, reproductive and bone homeostasis, respectively. This sterol is also the precursor for bile acids, which are important for intestinal absorption of dietary lipids as well as energy and glucose metabolic regulation. Importantly, complex mechanisms maintain cholesterol within physiological ranges and the disregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these diseases has been demonstrated by diverse genetic and pharmacologic animal models that are commented in this review. PMID:24389193

  2. Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Sheetal; Rawal, Rachna; Sonia; Ramrati; Pundir, C. S., E-mail: pundircs@rediffmail.com [M. D. University, Department of Biochemistry (India)

    2013-09-15

    The nanoparticle (NP) aggregates of commercial cholesterol oxidase (ChOx) were prepared by desolvation method. The formation and characterization of ChOxNP aggregates were studied by transmission electron microscopy and scanning electron microscopy. NP aggregates were more stable, active and had a higher shelf life than that of free enzyme. An amperometric cholesterol biosensor was constructed by immobilizing ChOxNPs onto Au electrode. The biosensor showed optimum response within 8 s at pH 6.0 and 35 Degree-Sign C, when polarized at +0.27 V versus Ag/AgCl. The biosensor possesses high sensitivity and measures cholesterol concentrations as low as 1.56 mg/dl. The working linear range was 12.5-700 mg/dl for cholesterol. The biosensor was evaluated and employed for measurement of total cholesterol in human serum. The enzyme electrode lost 50 % of its initial activity during its regular use for 180 times over a period of 90 days when stored in 0.1 M sodium phosphate buffer, pH 7.0 at 4 Degree-Sign C.

  3. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suman [Central Mechanical Engineering Research Institute, G. Avenue, Durgapur 713209, West Bengal (India); Singhal, Rahul [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)]. E-mail: bansi.malhotra@gmail.com

    2007-01-23

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 deg. C, response time as 180 s, linearity up to 780 mg dL{sup -1} (12 mM), shelf life of 1 month, detection limit of 12 mg dL{sup -1} and sensitivity as 5.4 x 10{sup -5} Abs. mg{sup -1} dL{sup -1}.

  4. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaorong [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2011-10-30

    We demonstrate herein a newly developed serum total cholesterol biosensor by using the direct electron transfer of cholesterol oxidase (ChOx), which is based on the immobilization of cholesterol oxidase and cholesterol esterase (ChEt) on potassium-doped multi-walled carbon nanotubes (KMWNTs) modified electrodes. The KMWNTs accelerate the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx and maintaining its bioactivity. As a new platform in cholesterol analysis, the resulting electrode (ChOx/KMWNTs/GCE) exhibits a sensitive response to free cholesterol, with a linear range of 0.050-16.0 {mu}mol L{sup -1} and a detection limit of 5.0 nmol L{sup -1} (S/N = 3). Coimmobilization of ChEt and ChOx (ChEt/ChOx/KMWNTs/GCE) allows the determination of both free cholesterol and esterified cholesterol. The resulting biosensor shows the same linear range of 0.050-16.0 {mu}mol L{sup -1} for free cholesterol and cholesteryl oleate, with the detection limit of 10.0 and 12.0 nmol L{sup -1} (S/N = 3), respectively. The concentrations of total (free and esterified) cholesterol in human serum samples, determined by using the techniques developed in the present study, are in good agreement with those determined by the well-established techniques using the spectrophotometry.

  5. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    Science.gov (United States)

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%. PMID:26856529

  6. Evaluation of Several Procedures for Immobilizing Cholesterol Oxidase Based on Cellulose Acetate Membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Immobilized cholesterol oxidase (COD) membrane with higher catalytic activity is important for biosensor. In this paper, several procedures for immobilizing COD based on cellulose acetate (CA) membrane are studied. Reasons causing different catalytic activities are also discussed.

  7. Cholesterol oxidase from Brevibacterium sterolicum : the relationship between covalent flavinylation and redox properties

    OpenAIRE

    Motteran, Laura; Pilone, Mirella S.; Molla, Gianluca; Ghisla, Sandro; Pollegioni, Loredano

    2001-01-01

    Brevibacterium sterolicum possesses two forms of cholesterol oxidase, one containing noncovalently bound FAD, the second containing a FAD covalently linked to His69 of the protein backbone. The functional role of the histidyl-FAD bond in the latter cholesterol oxidase was addressed by studying the properties of the H69A mutant in which the FAD is bound tightly, but not covalently, and by comparison with native enzyme. The mutant retains catalytic activity, but with a turnover rate decreased 3...

  8. Active membrane cholesterol as a physiological effector.

    Science.gov (United States)

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily. PMID:26874289

  9. Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Magdalena Klink

    Full Text Available Despite considerable research effort, the molecular mechanisms of Mycobacterium tuberculosis (Mtb virulence remain unclear. Cholesterol oxidase (ChoD, an extracellular enzyme capable of converting cholesterol to its 3-keto-4-ene derivative, cholestenone, has been proposed to play a role in the virulence of Mtb. Here, we verified the hypothesis that ChoD is capable of modifying the bactericidal and pro-inflammatory activity of human macrophages. We also sought to determine the contribution of complement receptor 3 (CR3- and Toll-like receptor 2 (TLR2-mediated signaling pathways in the development of macrophage responses to Mtb. We found that intracellular replication of an Mtb mutant lacking a functional choD gene (ΔchoD was less efficient in macrophages than that of the wild-type strain. Blocking CR3 and TLR2 with monoclonal antibodies enhanced survival of ΔchoD inside macrophages. We also showed that, in contrast to wild-type Mtb, the ΔchoD strain induced nitric oxide production in macrophages, an action that depended on the TLR2, but not the CR3, signaling pathway. Both wild-type and mutant strains inhibited the production of reactive oxygen species (ROS, but the ΔchoD strain did so to a significantly lesser extent. Blocking TLR2-mediated signaling abolished the inhibitory effect of wild-type Mtb on ROS production by macrophages. Wild-type Mtb, but not the ΔchoD strain, decreased phorbol myristate acetate-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2, which are involved in both TLR2- and CR3-mediated signaling pathways. Our finding also revealed that the production of interleukin 10 by macrophages was significantly lower in ΔchoD-infected macrophages than in wild-type Mtb-infected macrophages. However, tumor necrosis factor-α production by macrophages was the same after infection with mutant or wild-type strains. In summary, we demonstrate here that ChoD is required for Mtb interference with the TLR2

  10. A Novel Cholesterol Oxidase Biosensor Based on Pt-nanoparticle /Carbon Nanotube Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiao Cui SHI; Tu Zhi PENG

    2005-01-01

    A Pt-nanoparticle/carbon nanotube modified graphite electrode immobilized with cholesterol oxidase/sol-gel layer was developed for monitoring cholesterol. Using this electrode,cholesterol concentration (4.0×10-6 to 1.0×10 mol/L) could be determined accurately in the presence of ascorbic or uric acid, and the response time was rapid (< 20 s). This biosensor has high sensitivity and selectivity.

  11. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study

    Directory of Open Access Journals (Sweden)

    Rawand Masoud

    2014-01-01

    Full Text Available The NADPH oxidase Nox2, a multi-subunit enzyme complex comprising membrane and cytosolic proteins, catalyzes a very intense production of superoxide ions O2•−, which are transformed into other reactive oxygen species (ROS. In vitro, it has to be activated by addition of amphiphiles like arachidonic acid (AA. It has been shown that the membrane part of phagocyte NADPH oxidase is present in lipid rafts rich in cholesterol. Cholesterol plays a significant role in the development of cardio-vascular diseases that are always accompanied by oxidative stress. Our aim was to investigate the influence of cholesterol on the activation process of NADPH oxidase. Our results clearly show that, in a cell-free system, cholesterol is not an efficient activator of NADPH oxidase like arachidonic acid (AA, however it triggers a basal low superoxide production at concentrations similar to what found in neutrophile. A higher concentration, if present during the assembly process of the enzyme, has an inhibitory role on the production of O2•−. Added cholesterol acts on both cytosolic and membrane components, leading to imperfect assembly and decreasing the affinity of cytosolic subunits to the membrane ones. Added to the cytosolic proteins, it retains their conformations but still allows some conformational change induced by AA addition, indispensable to activation of NADPH oxidase.

  12. Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Molla Gianluca

    2010-04-01

    Full Text Available Abstract Background Cholesterol oxidase is an alcohol dehydrogenase/oxidase flavoprotein that catalyzes the dehydrogenation of C(3-OH of cholesterol. It has two major biotechnological applications, i.e. in the determination of serum (and food cholesterol levels and as biocatalyst providing valuable intermediates for industrial steroid drug production. Cholesterol oxidases of type I are those containing the FAD cofactor tightly but not covalently bound to the protein moiety, whereas type II members contain covalently bound FAD. This is the first report on the over-expression in Escherichia coli of type II cholesterol oxidase from Brevibacterium sterolicum (BCO. Results Design of the plasmid construct encoding the mature BCO, optimization of medium composition and identification of the best cultivation/induction conditions for growing and expressing the active protein in recombinant E. coli cells, concurred to achieve a valuable improvement: BCO volumetric productivity was increased from ~500 up to ~25000 U/L and its crude extract specific activity from 0.5 up to 7.0 U/mg protein. Interestingly, under optimal expression conditions, nearly 55% of the soluble recombinant BCO is produced as covalently FAD bound form, whereas the protein containing non-covalently bound FAD is preferentially accumulated in insoluble inclusion bodies. Conclusions Comparison of our results with those published on non-covalent (type I COs expressed in recombinant form (either in E. coli or Streptomyces spp., shows that the fully active type II BCO can be produced in E. coli at valuable expression levels. The improved over-production of the FAD-bound cholesterol oxidase will support its development as a novel biotool to be exploited in biotechnological applications.

  13. Retracted: Advances in the physiological and pathological implications of cholesterol.

    Science.gov (United States)

    Cortes, Victor A; Busso, Dolores; Mardones, Pablo; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2013-11-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions. At the organismal level, cholesterol is the precursor of all steroid hormones, including gluco- and mineralo-corticoids, sex hormones, and vitamin D, which regulate carbohydrate, sodium, reproductive, and bone homeostasis, respectively. This sterol is also the immediate precursor of bile acids, which are important for intestinal absorption of dietary lipids as well as energy homeostasis and glucose regulation. Complex mechanisms maintain cholesterol within physiological ranges and the dysregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these conditions has been demonstrated by genetic and pharmacological manipulations in animal models of human disease that are discussed herein. Importantly, the understanding of basic aspects of cholesterol biology has led to the development of high-impact pharmaceutical therapies during the past century. The continuing effort to offer successful treatments for prevalent cholesterol-related diseases, such as atherosclerosis and neurodegenerative disorders, warrants further interdisciplinary research in the coming decades. PMID:23445165

  14. Fabricating an Amperometric Cholesterol Biosensor by a Covalent Linkage between Poly(3-thiopheneacetic acid and Cholesterol Oxidase

    Directory of Open Access Journals (Sweden)

    Kuo-Chuan Ho

    2009-03-01

    Full Text Available In this study, use of the covalent enzyme immobilization method was proposed to attach cholesterol oxidase (ChO on a conducting polymer, poly(3-thiopheneacetic acid, [poly(3-TPAA]. Three red-orange poly(3-TPAA films, named electrodes A, B and C, were electropolymerized on a platinum electrode by applying a constant current of 1.5 mA, for 5, 20 and 100 s, respectively. Further, 1-ethyl-3-(3-dimethylamiopropylcarbodiimide hydrochloride (EDC‧HCl and N-hydroxysuccinimide (NHS were used to activate the free carboxylic groups of the conducting polymer. Afterwards, the amino groups of the cholesterol oxidase were linked on the activated groups to form peptide bonds. The best sensitivity obtained for electrode B is 4.49 mA M-1 cm-2,with a linear concentration ranging from 0 to 8 mM, which is suitable for the analysis of cholesterol in humans. The response time (t95 is between 70 and 90 s and the limit of detection is 0.42 mM, based on the signal to noise ratio equal to 3. The interference of species such as ascorbic acid and uric acid increased to 5.2 and 10.3% of the original current response, respectively, based on the current response of cholesterol (100%. With respect to the long-term stability, the sensing response retains 88% of the original current after 13 days.

  15. Preparation and some properties of cholesterol oxidase from Rhodococcus sp. R14-2

    NARCIS (Netherlands)

    Wang, C.T.; Cao, Y.P.; Sun, B.G.; Ji, B.P.; Nout, M.J.R.; Wang, J.; Zhao, Y.H.

    2008-01-01

    Rhodococcus sp. R14-2, isolated from Chinese Jin-hua ham, produces a novel extracellular cholesterol oxidase (COX). The enzyme was extracted from fermentation broth and purified 53.1-fold based on specific activity. The purified enzyme shows a single polypeptide band on SDS-PAGE with an estimated mo

  16. Hydrophobic ionic liquid immoblizing cholesterol oxidase on the electrodeposited Prussian blue on glassy carbon electrode for detection of cholesterol

    International Nuclear Information System (INIS)

    A novel cholesterol biosensor was fabricated on hydrophobic ionic liquid (IL)/aqueous solution interface. The hydrophobic IL thin film played a signal amplification role because it not only enriched the cholesterol from the aqueous solution, but also immobilized matrix for cholesterol oxidase (ChOx). Prussian blue (PB) as advanced sensing materials was used as effective low-potential electron transfer mediation toward hydrogen peroxide (H2O2). The fabricated IL-ChOx/PB/Glassy carbon electrode (GCE) was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammogram (CV), respectively. And it exhibited a linear response to cholesterol in the range of 0.01–0.40 mM with a detection limit of 4.4 μM. In addition, the kinetics behavior of cholesterol at IL-Chox/PB/GCE electrode was examined, and the electrocatalytic mechanism was proposed as shown in first scheme. ChOx immobilized in hydrophobic IL thin film was used as the first electrocatalyst for the cholesterol into H2O2, and the PB film onto the GCE was used as the second electrocatalyst for the 2e− reduction of the produced H2O2 into H2O

  17. Gold Nanoparticles Like A Matrix For Covalent Immobilization Of Cholesterol Oxidase – Application For Biosensing

    Directory of Open Access Journals (Sweden)

    Wojnarowska R.

    2015-09-01

    Full Text Available Gold nanoparticles are emerging as promising agents for various areas of material science as well as nanotechnology, electronics and medicine. The interest in this material is provided due to its unique optical, electronic and molecular-recognition properties. This paper presents results of preparation, characterization and biofunctionalization of gold nanoparticles. Nanoparticles have been conjugated with the cholesterol oxidase enzyme in order to prepare the active element for biosensors. Cholesterol oxidase is one of the most important analytical enzyme, used for cholesterol assay in clinical diagnostics, and there is still a necessity in improvement of existing analytical techniques, including bio-nanotechnological approaches based on modern nanosystems. The prepared bio-nanosystem was characterized by the enzyme activity test. Obtained results showed a stable binding of the enzyme with nanoparticles and preserved the bioactivity approves which gives possibility to use the prepared bio-nanosystems for analytical purposes.

  18. Preparation of a Polypyrrole-Polyvinylsulphonate Composite Film Biosensor for Determination of Cholesterol Based on Entrapment of Cholesterol Oxidase

    Directory of Open Access Journals (Sweden)

    Ahmet Yaşar

    2009-08-01

    Full Text Available In this paper, a novel amperometric cholesterol biosensor with immobilization of cholesterol oxidase on electrochemically polymerized polypyrrole–polyvinylsulphonate (PPy–PVS films has been accomplished via the entrapment technique on the surface of a platinum electrode. Electropolymerization of pyrrole and polyvinylsulphonate on the Pt surface was carried out by cyclic voltammetry between -1.0 and +2.0 V (vs. Ag/AgCl at a scan rate of 100 mV upon the Pt electrode with an electrochemical cell containing pyrrole and polyvinylsulphonate. The amperometric determination is based on the electrochemical detection of H2O2 generated in the enzymatic reaction of cholesterol. Determination of cholesterol was carried out by the oxidation of enzymatically produced H2O2 at 0.4 V vs. Ag/AgCl. The effects of pH and temperature were investigated and optimum parameters were found to be 7.25 and 35 °C, respectively. The storage stability and operational stability of the enzyme electrode were also studied. The results show that 32% of the response current was retained after 19 activity assays. The prepared cholesterol biosensor retained 43% of initial activity after 45 days when stored in 0.1 M phosphate buffer solution at 4 °C.

  19. Physiological roles of plastid terminal oxidase in plant stress responses

    Indian Academy of Sciences (India)

    Xin Sun; Tao Wen

    2011-12-01

    The plastid terminal oxidase (PTOX) is a plastoquinol oxidase localized in the plastids of plants. It is able to transfer electrons from plastoquinone (PQ) to molecular oxygen with the formation of water. Recent studies have suggested that PTOX is beneficial for plants under environmental stresses, since it is involved in the synthesis of photoprotective carotenoids and chlororespiration, which could potentially protect the chloroplast electron transport chain (ETC) from over-reduction. The absence of PTOX in plants usually results in photo-bleached variegated leaves and impaired adaptation to environment alteration. Although PTOX level and activity has been found to increase under a wide range of stress conditions, the functions of plant PTOX in stress responses are still disputed now. In this paper, the possible physiological roles of PTOX in plant stress responses are discussed based on the recent progress.

  20. Comparison of biosensors based on entrapment of cholesterol oxidase and cholesterol esterase in electropolymerized films of polypyrrole and diaminonaphthalene derivatives for amperometric determination of cholesterol.

    Science.gov (United States)

    Vidal, J C; Garcia-Ruiz, E; Espuelas, J; Aramendia, T; Castillo, J R

    2003-09-01

    Cholesterol amperometric biosensors constructed with enzymes entrapped in electropolymerized layers of polypyrrole and poly-naphthalene derivative polymers are compared. The biosensors are based on entrapment of cholesterol oxidase and/or cholesterol esterase in monolayer or multilayer films electrochemically synthesised from pyrrole, 1,8-diaminonaphthalene (1,8-DAN), and 1,5-diaminonaphthalene (1,5-DAN) monomers. Seven configurations were assayed and compared, and different analytical properties were obtained depending on the kind of polymer and the arrangement of the layers. The selectivity properties were evaluated for the different monolayer and bilayer configurations proposed as a function of the film permeation factor. All the steps involved in the preparation of the biosensors and determination of cholesterol were carried out in a flow system. Sensitivity and selectivity depend greatly on hydrophobicity, permeability, compactness, thickness, and the kind of the polymer used. In some cases a protective outer layer of non-conducting poly( o-phenylenediamine) polymer improves the analytical characteristics of the biosensor. A comparative study was made of the analytical performance of each of the configurations developed. The biosensors were also applied to the flow-injection determination of cholesterol in a synthetic serum. PMID:12923606

  1. A physiologically based in silico kinetic model predicting plasma cholesterol concentrations in humans

    NARCIS (Netherlands)

    Pas, van de N.C.A.; Woutersen, R.A.; Ommen, van B.; Rietjens, I.M.C.M.; Graaf, de A.A.

    2012-01-01

    Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was dire

  2. Purification and Characterization of an Extracellular Cholesterol Oxidase of Bacillus subtilis Isolated from Tiger Excreta.

    Science.gov (United States)

    Kumari, Lata; Kanwar, Shamsher S

    2016-01-01

    A mesophilic Bacillus sp. initially isolated from tiger excreta and later identified as a Bacillus subtilis strain was used to produce an extracellular cholesterol oxidase (COX) in cholesterol-enriched broth. This bacterial isolate was studied for the production of COX by manipulation of various physicochemical parameters. The extracellular COX was successfully purified from the cell-free culture broth of B. subtilis by successive salting out with ammonium sulfate, dialysis, and riboflavin-affinity chromatography. The purified COX was characterized for its molecular mass/structure and stability. The enzyme possessed some interesting properties such as high native Mr (105 kDa), multimeric (pentamer of ∼21 kDa protein) nature, organic solvent compatibility, and a half-life of ∼2 h at 37 °C. The bacterial COX exhibited ∼22 % higher activity in potassium phosphate buffer (pH 7.5) in the presence of a nonionic detergent Triton X-100 at 0.05 % (v/v). The K m and V max value of COX of B. subtilis COX were found to be 3.25 mM and 2.17 μmol min ml(-1), respectively. The purified COX showed very little cytotoxicity associated with it. PMID:26453032

  3. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Science.gov (United States)

    Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  4. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Science.gov (United States)

    Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C. K. M.; Mishra, B. N.

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500. PMID:26368924

  5. Cholesterol Oxidase Binds TLR2 and Modulates Functional Responses of Human Macrophages

    Directory of Open Access Journals (Sweden)

    Katarzyna Bednarska

    2014-01-01

    Full Text Available Cholesterol oxidase (ChoD is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb, but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level, to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2 and complement receptor 3 (CR3 on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by “switching off” TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection.

  6. Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant.

    Science.gov (United States)

    Keating, Eleonora; Rahman, Luna; Francis, James; Petersen, Anne; Possmayer, Fred; Veldhuizen, Ruud; Petersen, Nils O

    2007-08-15

    Pulmonary surfactant is a complex mixture of lipids and proteins that forms a surface-active film at the air-water interface of alveoli capable of reducing surface tension to near 0 mN/m. The role of cholesterol, the major neutral lipid component of pulmonary surfactant, remains uncertain. We studied the physiological effect of cholesterol by monitoring blood oxygenation levels of surfactant-deficient rats treated or not treated with bovine lipid extract surfactant (BLES) containing zero or physiological amounts of cholesterol. Our results indicate no significant difference between BLES and BLES containing cholesterol immediately after treatment; however, during ventilation, BLES-treated animals maintained higher PaO2 values compared to BLES+cholesterol-treated animals. We used a captive bubble tensiometer to show that physiological amounts of cholesterol do not have a detrimental effect on the surface activity of BLES at 37 degrees C. The effect of cholesterol on topography and lateral organization of BLES Langmuir-Blodgett films was also investigated using atomic force microscopy. Our data indicate that cholesterol induces the formation of domains within liquid-ordered domains (Lo). We used time-of-flight-secondary ion mass spectrometry and principal component analysis to show that cholesterol is concentrated in the Lo phase, where it induces structural changes. PMID:17526587

  7. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Directory of Open Access Journals (Sweden)

    Lakshmi Pathak

    Full Text Available Cholesterol oxidase (COD is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM, artificial neural network (ANN and genetic algorithm (GA have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  8. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    International Nuclear Information System (INIS)

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5–2 μm) were ∼2-nm thick, while G formed aggregates. The maximum reaction velocity (Vmax) values and turnover numbers (kcat) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l−1) or ChOx (at 0.03 g l−1) and G (0.012 g l−1) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l−1), bioconjugates of lipases with GO led to Vmax and kcat values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (Km) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared

  9. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens A.; Souza, Michele L.; Bloisi, Georgia D.; Corio, Paolo; Petri, Denise F. S., E-mail: dfsp@iq.usp.br [Universidade de São Paulo, Instituto de Química (Brazil)

    2015-04-15

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5–2 μm) were ∼2-nm thick, while G formed aggregates. The maximum reaction velocity (V{sub max}) values and turnover numbers (k{sub cat}) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l{sup −1}) or ChOx (at 0.03 g l{sup −1}) and G (0.012 g l{sup −1}) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l{sup −1}), bioconjugates of lipases with GO led to V{sub max} and k{sub cat} values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (K{sub m}) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared.

  10. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles.

    Science.gov (United States)

    Huang, Jun; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe3O4@SiO2(F)@meso-SiO2 nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10mg COD (in 15 mg carrier) and solution pH of 7.0. Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles showed maximal catalytic activity at pH7.0 and 50°C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50°C for 5h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4°C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy)3Cl2) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. PMID:26354237

  11. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jun, E-mail: hjun@whut.edu.cn; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2} nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10 mg COD (in 15 mg carrier) and solution pH of 7.0. Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles showed maximal catalytic activity at pH 7.0 and 50 °C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50 °C for 5 h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4 °C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe{sub 3}O{sub 4}@SiO{sub 2}(F)@meso–SiO{sub 2}@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy){sub 3}Cl{sub 2}) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. - Highlights: • COD was immobilized on magnetic fluorescent core-shell structured nanoparticles. • The nanoparticles were optical sensitive to oxygen in water solution. • The nanoparticles have remarkable improved stability compared with free COD. • The nanoparticles can probably be used in multi parameter fiber optic Biosensor.

  12. Effect of Cholesterol on the Biophysical and Physiological Properties of a Clinical Pulmonary Surfactant

    OpenAIRE

    Keating, Eleonora; Rahman, Luna; Francis, James; Petersen, Anne; Possmayer, Fred; Veldhuizen, Ruud; Petersen, Nils O.

    2007-01-01

    Pulmonary surfactant is a complex mixture of lipids and proteins that forms a surface-active film at the air-water interface of alveoli capable of reducing surface tension to near 0 mN/m. The role of cholesterol, the major neutral lipid component of pulmonary surfactant, remains uncertain. We studied the physiological effect of cholesterol by monitoring blood oxygenation levels of surfactant-deficient rats treated or not treated with bovine lipid extract surfactant (BLES) containing zero or p...

  13. Some enzymatic properties of cholesterol oxidase produced by Brevibacterium sp Algumas propriedades enzimáticas da colesterol oxidase produzida por Brevibacterium sp.

    Directory of Open Access Journals (Sweden)

    Terezinha J.G. Salva

    1999-12-01

    Full Text Available In this study we determined some properties of the cholesterol oxidase from a Brevibacterium strain isolated from buffalo's milk and identified the cholesterol degradation products by the bacterial cell. A small fraction of the enzyme synthesized by cells cultured in liquid medium for 7days was released into the medium whereas a larger fraction remained bound to the cell membrane. The extraction of this fraction was efficiently accomplished in 1 mM phosphate buffer, pH 7.0, containing 0.7% Triton X-100. The enzyme stability under freezing and at 45oC was improved by addition of 20% glycerol. The optimum temperature and pH for the enzyme activity were 53°C and 7.5, respectively. The only steroidal product from cholesterol oxidation by the microbial cell and by the crude extract of the membrane-bound enzyme was 4-colesten-3-one. Chromatographic analysis showed that minor no steroidal compounds as well as 4-colesten-3-one found in the reaction media arose during fermentation process and were extracted together with the enzyme in the buffer solution. Cholesterol oxidation by the membrane-bound enzyme was a first order reaction type.Neste trabalho foram definidas algumas propriedades da enzima colesterol oxidase produzida por uma linhagem de Brevibacterium sp. isolada de leite de búfala e foram identificados os compostos resultantes da degradação do colesterol pela bactéria. Uma pequena fração da enzima sintetizada pelas células cultivadas em meio líquido por 7 dias foi liberada no meio de cultura e uma fração maior permaneceu ligada à membrana celular. A extração desta fração foi eficientemente efetuada em tampão fosfato 1mM, pH 7,0, contendo 0,7% de triton X-100. A estabilidade da enzima congelada e a 45oC foi aumentada pela adição de 20% de glicerol. A temperatura ótima para a atividade enzimática esteve ao redor de 53(0C e o pH ótimo esteve ao redor de 7,5. O único produto da degradação do colesterol, causada pela a

  14. Langmuir–Blodgett films of cholesterol oxidase and S-layer proteins onto screen-printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Juliana Aguilar, E-mail: helen@peq.coppe.ufrj.br; Ferraz, Helen Conceição; Alves, Tito Lívio Moitinho

    2014-04-01

    Graphical abstract: - Highlights: • Langmuir and LB monolayers of ChOx and S-layer proteins were obtained. • Mixed ChOx/S-layer proteins films presented an ideal-like behavior. • Modified sensor showed stable peaks with moderate intensity. • The type of LB deposition affects the sensor ability of detecting cholesterol. • Mixed ChOx/S-layer proteins LB films improve sensor properties. - Abstract: Stable Langmuir monolayers of cholesterol oxidase (ChOx) and S-layer proteins were produced at the water–air interface and subsequently transferred onto the surface of screen-printed carbon electrodes by the Langmuir–Blodgett (LB) technique. The modified electrode surface was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). AFM indicated the presence of deposited layers, showing reduction of surface roughness (RMS and Rt parameters). Significant changes in the shape of CVs were observed in modified electrodes compared to bare electrodes. The anodic peaks could be observed in cyclic voltammograms (CV), at a scan rate equal to 25 mV s{sup −1}, using electrodes with Z-type LB deposition. The presence of S-layer proteins in the ChOx LB film increases the oxidation peak intensity and reduces the oxidation potential. Altogether, these results demonstrate the feasibility of producing a cholesterol biosensor based on the immobilization of ChOx and S-layer proteins by LB technique.

  15. Predicting individual responses to pravastatin using a physiologically based kinetic model for plasma cholesterol concentrations

    NARCIS (Netherlands)

    Pas, N.C.A. van de; Rullmann, J.A.C.; Woutersen, R.A.; Ommen, B. van; Rietjens, I.M.C.M.; Graaf, A.A. de

    2014-01-01

    We used a previously developed physiologically based kinetic (PBK) model to analyze the effect of individual variations in metabolism and transport of cholesterol on pravastatin response. The PBK model is based on kinetic expressions for 21 reactions that interconnect eight different body cholestero

  16. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization.

    Science.gov (United States)

    Torabi, Seyed-Fakhreddin; Khajeh, Khosro; Ghasempur, Salehe; Ghaemi, Nasser; Siadat, Seyed-Omid Ranaei

    2007-08-31

    In the present work, co-immobilization of cholesterol oxidase (COD) and horseradish peroxidase (POD) on perlite surface was attempted. The surface of perlite were activated by 3-aminopropyltriethoxysilane and covalently bonded with COD and POD via glutaraldehyde. Enzymes activities have been assayed by spectrophotometric technique. The stabilities of immobilized COD and POD to pH were higher than those of soluble enzymes and immobilization shifted optimum pH of enzymes to the lower pH. Heat inactivation studies showed improved thermostability of the immobilized COD for more than two times, but immobilized POD was less thermostable than soluble POD. Also activity recovery of immobilized COD was about 50% since for immobilized POD was 11%. The K(m) of immobilized enzymes was found slightly lower than that of soluble enzymes. Immobilized COD showed inhibition in its activity at high cholesterol concentration which was not reported for soluble COD before. Co-immobilized enzymes retained 65% of its initial activity after 20 consecutive reactor batch cycles.

  17. A physiological biokinetic model for the [7(N)-{sup 3}H]-cholesterol dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Adriano dos Santos; Martins, Joao Francisco Trencher; Velo, Alexandre Franca; Hamada, Margarida M.; Mesquita, Carlos Henrique de, E-mail: adriano_oliveira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Cardiovascular diseases (CVD) are a major source of deaths worldwide according to WHO (World Health Organization). It is well-known that the change of the level of plasma lipoproteins, which are responsible for the cholesterol transport in the bloodstream, is a main cause of these diseases. For this reason, to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deepen the understanding of associated diseases. The main objective of this work is to provide a biokinetic model in order to estimate the radiometric dose, due to the intake of [7(N){sup -3}H] –Cholesterol in physiological issues, in metabolic studies. The internal dosimetry is important to know the biological effects of radiation. The model was based on Schwartz et al (2004), using parameters for the plasmatic lipoproteins and ICRP 30 (1979) gastrointestinal tract; the dose in the compartments were calculated using the MIRD methodology and the compartmental analysis by Matlab® software. The coefficients were estimated for an adult phantom with a body mass of 73.3 kg. (author)

  18. A physiological biokinetic model for the [7(N)-3H]-cholesterol dosimetry

    International Nuclear Information System (INIS)

    Cardiovascular diseases (CVD) are a major source of deaths worldwide according to WHO (World Health Organization). It is well-known that the change of the level of plasma lipoproteins, which are responsible for the cholesterol transport in the bloodstream, is a main cause of these diseases. For this reason, to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deepen the understanding of associated diseases. The main objective of this work is to provide a biokinetic model in order to estimate the radiometric dose, due to the intake of [7(N)-3H] –Cholesterol in physiological issues, in metabolic studies. The internal dosimetry is important to know the biological effects of radiation. The model was based on Schwartz et al (2004), using parameters for the plasmatic lipoproteins and ICRP 30 (1979) gastrointestinal tract; the dose in the compartments were calculated using the MIRD methodology and the compartmental analysis by Matlab® software. The coefficients were estimated for an adult phantom with a body mass of 73.3 kg. (author)

  19. Physiological test of Lactobacillus sp. Mar 8 probiotic which encapsulated by using spray dryer to reduce cholesterol

    Directory of Open Access Journals (Sweden)

    NOVIK NURHIDAYAT

    2006-04-01

    Full Text Available The research on physiology test of Lactobacillus sp. Mar 8 probiotic which encapsulated by using spray dryer to reduce cholesterol has been conducted. The aim of the research was to know the influence of encapsulation process on the Lactobacillus cells to its activities on binding cholesterol, the ability to grow of the bacteria on lower pH 1-6 and the growth on Na-taurocholate at 17 mM concentration. The Emulator used was skimmed milk with 5% and 10% in concentration. The result showed that the bacteria used skimmed milk with 10% concentration was remain stable in growing ability such as growing on GYP medium in lower pH (1-6, growing on sodium taurocholate in 17 mM concentration, and the ability on binding cholesterol. So, encapsulated Lactobacillus can be used as probiotic agent to reduce cholesterol.

  20. A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer

    International Nuclear Information System (INIS)

    Here we report on the design and study of a biofuel cell consisting of a glucose oxidase-based anode (Aspergillus niger) and a laccase-based cathode (Trametes versicolor) using osmium-based redox polymers as mediators of the biocatalysts' electron transfer at graphite electrode surfaces. The graphite electrodes of the device are modified with the deposition and immobilization of the appropriate enzyme and the osmium redox polymer mediator. A redox polymer [Os(4,4'-diamino-2,2'bipyridine)2(poly{N-vinylimidazole})-(poly{ N-vinylimidazole})9Cl]Cl (E ' = -0.110 V versus Ag/AgCl) of moderately low redox potential is used for the glucose oxidizing anode and a redox polymer [Os(phenanthroline)2(poly{N-vinylimidazole})2-(poly{N-vinylimidazole})8]Cl2 (E ' = 0.49 V versus Ag/AgCl) of moderately high redox potential is used at the dioxygen reducing cathode. The enzyme and redox polymer are cross-linked with polyoxyethylene bis(glycidyl ether). The working biofuel cell was studied under air at 37 deg. C in a 0.1 M phosphate buffer solution of pH range 4.4-7.4, containing 0.1 M sodium chloride and 10 mM glucose. Under physiological conditions (pH 7.4) maximum power density, evaluated from the geometric area of the electrode, reached 16 μW/cm2 at a cell voltage of 0.25 V. At lower pH values maximum power density was 40 μW/cm2 at 0.4 V (pH 5.5) and 10 μW/cm2 at 0.3 V (pH 4.4)

  1. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Simonsen, Adam C;

    2004-01-01

    of this material is naturally designed to be at the "edge" of a lateral structure transition under physiological conditions, likely providing particular structural and dynamic properties for its mechanical function. The observed lateral structure in native pulmonary surfactant membranes is dramatically affected...... by the extraction of cholesterol, an effect not observed upon extraction of the surfactant proteins. Furthermore, the spreading properties of the native surfactant material at the air-liquid interface were also greatly affected by cholesterol extraction, suggesting a connection between the observed lateral...... structure and a physiologically relevant function of the material. We suggest that the particular lipid composition of surfactant could be finely tuned to provide, under physiological conditions, a structural scaffold for surfactant proteins to act at appropriate local densities and lipid composition....

  2. Physiological test of Lactobacillus sp. Mar 8 probiotic which encapsulated by using spray dryer to reduce cholesterol

    OpenAIRE

    NOVIK NURHIDAYAT; EKO YULIANTO; TITIN YULINERY

    2006-01-01

    The research on physiology test of Lactobacillus sp. Mar 8 probiotic which encapsulated by using spray dryer to reduce cholesterol has been conducted. The aim of the research was to know the influence of encapsulation process on the Lactobacillus cells to its activities on binding cholesterol, the ability to grow of the bacteria on lower pH 1-6 and the growth on Na-taurocholate at 17 mM concentration. The Emulator used was skimmed milk with 5% and 10% in concentration. The result showed that ...

  3. Finding New Enzymes from Bacterial Physiology: A Successful Approach Illustrated by the Detection of Novel Oxidases in Marinomonas mediterranea

    Directory of Open Access Journals (Sweden)

    Antonio Sanchez-Amat

    2010-03-01

    Full Text Available The identification and study of marine microorganisms with unique physiological traits can be a very powerful tool discovering novel enzymes of possible biotechnological interest. This approach can complement the enormous amount of data concerning gene diversity in marine environments offered by metagenomic analysis, and can help to place the activities associated with those sequences in the context of microbial cellular metabolism and physiology. Accordingly, the detection and isolation of microorganisms that may be a good source of enzymes is of great importance. Marinomonas mediterranea, for example, has proven to be one such useful microorganism. This Gram-negative marine bacterium was first selected because of the unusually high amounts of melanins synthesized in media containing the amino acid L-tyrosine. The study of its molecular biology has allowed the cloning of several genes encoding oxidases of biotechnological interest, particularly in white and red biotechnology. Characterization of the operon encoding the tyrosinase responsible for melanin synthesis revealed that a second gene in that operon encodes a protein, PpoB2, which is involved in copper transfer to tyrosinase. This finding made PpoB2 the first protein in the COG5486 group to which a physiological role has been assigned. Another enzyme of interest described in M. mediterranea is a multicopper oxidase encoding a membrane-associated enzyme that shows oxidative activity on a wide range of substrates typical of both laccases and tyrosinases. Finally, an enzyme very specific for L-lysine, which oxidises this amino acid in epsilon position and that has received a new EC number (1.4.3.20, has also been described for M. mediterranea. Overall, the studies carried out on this bacterium illustrate the power of exploring the physiology of selected microorganisms to discover novel enzymes of biotechnological relevance.

  4. Cost-effective and highly sensitive cholesterol microsensors with fast response based on the enzyme-induced conductivity change of polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Kuan-Chung; Chu, Chia-Ho; Hsu, Chen-Pin; Kang, Yen-Wen; Fang, Jung-Ying; Chen, Chih-Chen; Li, Sheng-Shian; Andrew Yeh, J.; Yao, Da-Jeng; Wang, Yu-Lin, E-mail: ylwang@mx.nthu.edu.tw [Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan (China); Hsu, Chia-Hsien [Division of Medical Engineering, National Health Research Institutes, MiaoLi, Taiwan (China); Huang, Yu-Fen [Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-09-15

    In this study, a cost-effective and highly sensitive cholesterol microsensor, which is consisted of cholesterol oxidase (ChOx), horseradish peroxidase (HRP), and polyaniline (PANI), was developed based on the enzyme-induced conductivity change of PANI with fast response. Hydrogen peroxide is produced via the reaction between cholesterol and ChOx, which was immobilized in a dialysis membrane. The produced hydrogen peroxide can oxidize HRP, which can be reduced by oxidizing PANI, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be oxidized again by hydrogen peroxide and the cycle of the oxidation/reduction continues until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecules. Cholesterol was detected near the physiological concentrations ranging from 100 mg/dl to 400 mg/dl with the cholesterol microsensors. The results show linear relation between cholesterol concentration and the conductivity change of the PANI. The microsensor showed no response to cholesterol when the PANI was standalone without cholesterol oxidase immobilized, indicating that the enzymatic reaction is required for cholesterol detection. The simple process of the sensor fabrication allows the sensor to be cost-effective and disposable usage. This electronic cholesterol microsensor is promising for point-of-care health monitoring in cholesterol level with low cost and fast response.

  5. 以芳香胺玻璃为载体的固定化的胆固醇脂酶和胆固醇氧化酶%Cholesterol Esterase and Cholesterol Oxidase Immobilized onto Arylamine Glass Beads

    Institute of Scientific and Technical Information of China (English)

    VoMalik; S.Singh; 等

    2002-01-01

    Cholesterol esterase (Cease) from bovine pancreas and cholesterol oxidasc (COD) from Bravibacterium recombinant type have been innobilized individually and co-immobilized onto arylamine glass (pore diameter 55nm) through the process of diazotization. Cease and COD retained 92.65% and 85.54% of the initial activity with conjugation yields of 7.2 mg/g and 8.3mg/g support respectively when imnobilized individually on arylamine glass beads, but retained 89.58% of the initial activity with a conjugation yield of 2.9 mg/g support when co-immobilized on the same support. The effects of pH, temperature, time of incubation, substrate concentration, serum inorganic salts & metabolites, thermal stability, storage stability in cold and reusability on the immobilized enzymes were studied and compared with those of free enzymes. The analytic use of both individually immobilized and co-immobilized enzymes in discrete analysis of total and free cholesterol in serum is demonstrated.

  6. What's Cholesterol?

    Science.gov (United States)

    ... Skiing, Snowboarding, Skating Crushes What's a Booger? What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? Print A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  7. Oral Administration of L-Arginine in Patients With Angina or Following Myocardial Infarction May Be Protective By Increasing Plasma Superoxide Dismutase and Total Thiols With Reduction in Serum Cholesterol and Xanthine Oxidase

    Directory of Open Access Journals (Sweden)

    Pratima Tripathi

    2009-01-01

    Full Text Available Administration of L-arginine has been shown to control ischemic injury by producing nitric oxide which dilates the vessels and thus maintains proper blood flow to the myocardium. In the present study attempt has been made to determine whether oral administration of L-arginine has any effect on oxidant/antioxidant homeostasis in ischemic myocardial patients [represented by the patients of acute angina (AA and acute myocardial infarction (MI]. L-arginine has antioxidant and antiapoptotic properties, decreases endothelin-1 expression and improves endothelial function, thereby controlling oxidative injury caused during myocardial ischemic syndrome. Effect of L-arginine administration on the status of free radical scavenging enzymes, pro-oxidant enzyme and antioxidants viz. total thiols, carbonyl content and plasma ascorbic acid levels in the patients has been evaluated. We have observed that L-arginine administration (three grams per day for 15 days resulted in increased activity of free radical scavenging enzyme superoxide dismutase (SOD and increase in the levels of total thiols (T-SH and ascorbic acid with concomitant decrease in lipid per-oxidation, carbonyl content, serum cholesterol and the activity of proxidant enzyme, xanthine oxidase (XO. These findings suggest that the supplementation of L-arginine along with regular therapy may be beneficial to the patients of ischemic myocardial syndromes.

  8. About Cholesterol

    Science.gov (United States)

    ... High Blood Pressure Tools & Resources Stroke More About Cholesterol Updated:Aug 10,2016 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  9. Intracellular transport of cholesterol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Brasaemle, D.L.

    1989-01-01

    The erythrocyte was selected as a simple cell for the study of transbilayer movement of cholesterol. Cholesterol oxidase was used to measure the distribution of ({sup 3}H)cholesterol across the erythrocyte membrane. Cholesterol oxidase was also used to estimate the rate of transport of low density lipoprotein (LDL) cholesterol to the plasma membrane of cultured Chinese hamster ovary (CHO) fibroblasts; the half-time of this process was 42 minutes. The rate of transport of LDL cholesterol to the plasma membrane was confirmed by a second procedure using amphotericin B. Amphotericin B was also used to estimate the rate of transport of endogenously synthesized cholesterol to the plasma membrane of CHO cells. New methodology was developed including improvements of the previously published cholesterol oxidase assay for plasma membrane cholesterol. A new method for detecting transport of cholesterol to the plasma membrane in cultured cells was developed using amphotericin B. Preliminary studies investigated the use of fluorescent polyenes, pimaricin and etruscomycin, as probes for plasma membrane cholesterol in transport studies. Finally, a modification of a previously published cell staining protocol yielded a simple, quantitative assay for cell growth.

  10. Cholesterol transport in model membranes

    Science.gov (United States)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2010-03-01

    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.

  11. Cholesterol (image)

    Science.gov (United States)

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  12. When cholesterol is not cholesterol: a note on the enzymatic determination of its concentration in model systems containing vegetable extracts

    Directory of Open Access Journals (Sweden)

    Pamplona Reinald

    2010-06-01

    Full Text Available Abstract Background Experimental evidences demonstrate that vegetable derived extracts inhibit cholesterol absorption in the gastrointestinal tract. To further explore the mechanisms behind, we modeled duodenal contents with several vegetable extracts. Results By employing a widely used cholesterol quantification method based on a cholesterol oxidase-peroxidase coupled reaction we analyzed the effects on cholesterol partition. Evidenced interferences were analyzed by studying specific and unspecific inhibitors of cholesterol oxidase-peroxidase coupled reaction. Cholesterol was also quantified by LC/MS. We found a significant interference of diverse (cocoa and tea-derived extracts over this method. The interference was strongly dependent on model matrix: while as in phosphate buffered saline, the development of unspecific fluorescence was inhibitable by catalase (but not by heat denaturation, suggesting vegetable extract derived H2O2 production, in bile-containing model systems, this interference also comprised cholesterol-oxidase inhibition. Several strategies, such as cholesterol standard addition and use of suitable blanks containing vegetable extracts were tested. When those failed, the use of a mass-spectrometry based chromatographic assay allowed quantification of cholesterol in models of duodenal contents in the presence of vegetable extracts. Conclusions We propose that the use of cholesterol-oxidase and/or peroxidase based systems for cholesterol analyses in foodstuffs should be accurately monitored, as important interferences in all the components of the enzymatic chain were evident. The use of adequate controls, standard addition and finally, chromatographic analyses solve these issues.

  13. Good vs. Bad Cholesterol

    Science.gov (United States)

    ... Pressure Tools & Resources Stroke More Good vs. Bad Cholesterol Updated:Mar 23,2016 Cholesterol can't dissolve ... test . View an animation of cholesterol . LDL (Bad) Cholesterol LDL cholesterol is considered the “bad” cholesterol because ...

  14. Cholesterol in unusual places

    Energy Technology Data Exchange (ETDEWEB)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J, E-mail: John.Katsaras@nrc.gc.ca, E-mail: Norbert.Kucerka@nrc.gc.ca

    2010-11-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  15. Epididymis cholesterol homeostasis and sperm fertilizing ability

    Institute of Scientific and Technical Information of China (English)

    Fabrice Saez; Aurélia Ouvrier; Jo(e)l R Drevet

    2011-01-01

    Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.

  16. The ABC of cholesterol transport

    NARCIS (Netherlands)

    Plösch, Torsten

    2004-01-01

    Cholesterol fulfills an indispensable role in mammalian physiology. It is an important constituent of all cell membranes. Furthermore, it is the precursor of steroid hormones, which regulate a variety of physiological functions, and of bile salts, which are necessary for the generation of bile flow

  17. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    Directory of Open Access Journals (Sweden)

    Sonawane Nitin D

    2010-05-01

    Full Text Available Abstract Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age. Results Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility. Conclusions The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content.

  18. Cholesterol Test

    Science.gov (United States)

    ... seen when there is an existing problem like malnutrition , liver disease , or cancer . However there is no ... cholesterol levels include anabolic steroids, beta blockers , epinephrine, oral contraceptives, and vitamin D. ^ Back to top ... Health Professionals Get the Mobile App iTunes | Android | Kindle ...

  19. Cholesterol and Your Child

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth Cholesterol and Your Child KidsHealth > For Parents > Cholesterol and ... child's risk of developing heart disease later. About Cholesterol Cholesterol is a waxy substance produced by the ...

  20. Women and Cholesterol

    Science.gov (United States)

    ... Blood Pressure Tools & Resources Stroke More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... Glossary Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  1. HDL Cholesterol Test

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? HDL Cholesterol Share this page: Was this page helpful? Also ... HDL; HDL-C Formal name: High-density Lipoprotein Cholesterol Related tests: Cholesterol ; LDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  2. LDL Cholesterol Test

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? LDL Cholesterol Share this page: Was this page helpful? Also ... LDL; LDL-C Formal name: Low-Density Lipoprotein Cholesterol Related tests: Cholesterol ; HDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  3. Cholesterol IQ Quiz

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  4. Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction.

    Science.gov (United States)

    Santos Macedo, Elisete; Cardoso, Hélia G; Hernández, Alejandro; Peixe, Augusto A; Polidoros, Alexios; Ferreira, Alexandre; Cordeiro, António; Arnholdt-Schmitt, Birgit

    2009-12-01

    Olive (Olea europaea L.) trees are mainly propagated by adventitious rooting of semi-hardwood cuttings. However, efficient commercial propagation of valuable olive tree cultivars or landraces by semi-hardwood cuttings can often be restricted by a low rooting capacity. We hypothesize that root induction is a plant cell reaction linked to oxidative stress and that activity of stress-induced alternative oxidase (AOX) is importantly involved in adventitious rooting. To identify AOX as a source for potential functional marker sequences that may assist tree breeding, genetic variability has to be demonstrated that can affect gene regulation. The paper presents an applied, multidisciplinary research approach demonstrating first indications of an important relationship between AOX activity and differential adventitious rooting in semi-hardwood cuttings. Root induction in the easy-to-root Portuguese cultivar 'Cobrançosa' could be significantly reduced by treatment with salicyl-hydroxamic acid, an inhibitor of AOX activity. On the contrary, treatment with H2O2 or pyruvate, both known to induce AOX activity, increased the degree of rooting. Recently, identification of several O. europaea (Oe) AOX gene sequences has been reported from our group. Here we present for the first time partial sequences of OeAOX2. To search for polymorphisms inside of OeAOX genes, partial OeAOX2 sequences from the cultivars 'Galega vulgar', 'Cobrançosa' and 'Picual' were cloned from genomic DNA and cDNA, including exon, intron and 3'-untranslated regions (3'-UTRs) sequences. The data revealed polymorphic sites in several regions of OeAOX2. The 3'-UTR was the most important source for polymorphisms showing 5.7% of variability. Variability in the exon region accounted 3.4 and 2% in the intron. Further, analysis performed at the cDNA from microshoots of 'Galega vulgar' revealed transcript length variation for the 3'-UTR of OeAOX2 ranging between 76 and 301 bp. The identified polymorphisms and 3'-UTR

  5. Crosstalk between mitochondria and NADPH oxidases

    OpenAIRE

    Dikalov, Sergey

    2011-01-01

    Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interaction between main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of crosstalk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the...

  6. The Research of Two Affinity Mediums for the Purification of a Cholesterol Oxidase (COD) Expression in Escherichia coli%纯化大肠杆菌表达胆固醇氧化酶的两种亲和分离介质的研究

    Institute of Scientific and Technical Information of China (English)

    辛瑜; 张玲; 张玉然; 陈亦; 仝艳军; 王武

    2012-01-01

    建立了从重组菌中高效亲和制备胆固醇氧化酶的方法,将一种源自Brevibacterium sp.(DQ345780)的胆固醇氧化酶基因转入Escherichia coli BL21 (DE3)表达,,选择核黄素-5' 磷酸(FMN)及7-氯-异咯嗪作为亲和配体,构建胆固醇氧化酶亲和制备介质.通过两种介质的一步亲和吸附,获得纯度较高的胆固醇氧化酶样本,蛋白回收率分别为9.4%与9.9%(质量百分比),活性回收率分别为85.2%与93.4%(活性百分比).使用SDS-PAGE分析,纯化得到蛋白分子量为约50000,纯度分别为98.0%与97.5%(纯度百分比).通过静态吸附分析,胆固醇氧化酶相对两种亲和介质的最大理论吸附值分别为71.0与78.5 mg/g介质;解离常数分别为12.8和7.3 μg/g介质.%In this study, affinity protocols were developed for the preparation of cholesterol oxidase (COD) from recombinant bacteria, a COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), Riboflavin 5'-phosphate and 7-chroroalloxazine were chosen as the affinity ligands, and they were coupled with Sepharose CL 4B through spacers. After one step of affinity binding with the two mediums, the enzyme could be extracted with high purity. The yields of the enzyme purified with the two mediums were 9. 4% and 9. 9%, respectively, and the recoveries of typical cholesterol oxidase activity were 85. 2% and 93. 4%. The purified cholesterol oxidases were 98. 0% and 97. 5% pure with SDS-PAGE analysis. On SDS-PAGE gel, the enzyme was a single polypeptide with the mass of -50 kDa. The theoretical maximum absorption Qmax were 71.0 and 78. 5 mg/g medium; the desorption constant Kd of the two mediums on the mediums were 12. 8 and 7. 3 g/g medium.

  7. Physiological responses and endogenous cytokinin profiles of tissue-cultured 'Williams' bananas in relation to roscovitine and an inhibitor of cytokinin oxidase/dehydrogenase (INCYDE) treatments.

    Science.gov (United States)

    Aremu, Adeyemi O; Bairu, Michael W; Novák, Ondřej; Plačková, Lenka; Zatloukal, Marek; Doležal, Karel; Finnie, Jeffrey F; Strnad, Miroslav; Van Staden, Johannes

    2012-12-01

    The effect of supplementing either meta-topolin (mT) or N(6)-benzyladenine (BA) requiring cultures with roscovitine (6-benzylamino-2-[1(R)-(hydroxymethyl)propyl]amino-9-isopropylpurine), a cyclin-dependent kinase (CDK) and N-glucosylation inhibitor, and INCYDE (2-chloro-6-(3-methoxyphenyl)aminopurine), an inhibitor of cytokinin (CK) degradation, on the endogenous CK profiles and physiology of banana in vitro was investigated. Growth parameters including multiplication rate and biomass were recorded after 42 days. Endogenous CK levels were quantified using UPLC-MS/MS while the photosynthetic pigment and phenolic contents were evaluated spectrophotometrically. The highest regeneration rate (93 %) was observed in BA + roscovitine while mT + INCYDE plantlets produced most shoots. Treatment with BA + roscovitine had the highest shoot length and biomass. Although not significant, there was a higher proanthocyanidin level in BA + roscovitine treatments compared to the control (BA). The levels of total phenolics and flavonoids were significantly higher in mT + roscovitine treatment than in the mT-treated regenerants. The presence of roscovitine and/or INCYDE had no significant effect on the photosynthetic pigments of the banana plantlets. Forty-seven aromatic and isoprenoid CKs categorized into nine CK-types were detected at varying concentrations. The presence of mT + roscovitine and/or INCYDE increased the levels of O-glucosides while 9-glucosides were higher in the presence of BA. Generally, the underground parts had higher CK levels than the aerial parts; however, the presence of INCYDE increased the level of CK quantified in the aerial parts. From a practical perspective, the use of roscovitine and INCYDE in micropropagation could be crucial in the alleviation of commonly observed in vitro-induced physiological abnormalities.

  8. Preterm delivery and low maternal serum cholesterol level: Any correlation?

    Directory of Open Access Journals (Sweden)

    Ayodeji A Oluwole

    2014-01-01

    Full Text Available Background: The study assessed whether low maternal serum cholesterol during early pregnancy is associated with preterm delivery. Patients and Methods: It was a prospective observational cohort study involving pregnant women at gestational age of 14-20 weeks over a period of 12 months. Blood samples were obtained to measure total serum cholesterol concentrations and the sera were then analysed enzymatically by the cholesterol oxidase: p-aminophenazone (CHOD PAP method. Results: The study showed an incidence of 5.0% for preterm delivery in the low risk study patients. Preterm birth was 4.83-times more common with low total maternal cholesterol than with midrange total cholesterol (11.8% versus 2.2%, P = 0.024. Conclusion: Low maternal serum cholesterol (hypocholesterolaemia is associated with preterm delivery. Optimal maternal serum cholesterol during pregnancy may have merit, therefore pregnant women should be encouraged to follow a healthy, balanced diet.

  9. Electron Transfer Pathways in Cholesterol Synthesis.

    Science.gov (United States)

    Porter, Todd D

    2015-10-01

    Cholesterol synthesis in the endoplasmic reticulum requires electron input at multiple steps and utilizes both NADH and NADPH as the electron source. Four enzymes catalyzing five steps in the pathway require electron input: squalene monooxygenase, lanosterol demethylase, sterol 4α-methyl oxidase, and sterol C5-desaturase. The electron-donor proteins for these enzymes include cytochrome P450 reductase and the cytochrome b5 pathway. Here I review the evidence for electron donor protein requirements with these enzymes, the evidence for additional electron donor pathways, and the effect of deletion of these redox enzymes on cholesterol and lipid metabolism. PMID:26344922

  10. What Is Cholesterol?

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Cholesterol KidsHealth > For Teens > Cholesterol Print A A A ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  11. Cholesterol and lifestyle

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000099.htm Cholesterol and lifestyle To use the sharing features on ... Stroke Serious heart or blood vessel disease Your Cholesterol Numbers All men should have their blood cholesterol ...

  12. Cholesterol testing and results

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000386.htm Cholesterol testing and results To use the sharing features ... can tell you what your goal should be. Cholesterol Tests Some cholesterol is considered good and some ...

  13. Cholesterol Facts and Statistics

    Science.gov (United States)

    ... Blood Pressure Salt Million Hearts® WISEWOMAN Program High Cholesterol Facts Recommend on Facebook Tweet Share Compartir As ... the facts about high cholesterol [PDF-281K] . High Cholesterol in the United States 73.5 million adults ( ...

  14. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization.

    Science.gov (United States)

    Hofmann, Kristina; Thiele, Christoph; Schött, Hans-Frieder; Gaebler, Anne; Schoene, Mario; Kiver, Yuriy; Friedrichs, Silvia; Lütjohann, Dieter; Kuerschner, Lars

    2014-03-01

    Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy. PMID:24334219

  15. Accessibility of Cholesterol in Endoplasmic Reticulum Membranes and Activation of SREBP-2 Switch Abruptly at a Common Cholesterol Threshold

    OpenAIRE

    Sokolov, Anna; Radhakrishnan, Arun

    2010-01-01

    Recent studies have shown that cooperative interactions in endoplasmic reticulum (ER) membranes between Scap, cholesterol, and Insig result in switch-like control over activation of SREBP-2 transcription factors. This allows cells to rapidly adjust rates of cholesterol synthesis and uptake in response to even slight deviations from physiological set-point levels, thereby ensuring cholesterol homeostasis. In the present study we directly probe for the accessibility of cholesterol in purified E...

  16. Reverse cholesterol transport revisited

    Institute of Scientific and Technical Information of China (English)

    Astrid; E; van; der; Velde

    2010-01-01

    Reverse cholesterol transport was originally described as the high-density lipoprotein-mediated cholesterol flux from the periphery via the hepatobiliary tract to the intestinal lumen, leading to fecal excretion. Since the introduction of reverse cholesterol transport in the 1970s, this pathway has been intensively investigated. In this topic highlight, the classical reverse cholesterol transport concepts are discussed and the subject reverse cholesterol transport is revisited.

  17. Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases

    OpenAIRE

    Sekretaryova, Alina; Vagin, Mikhail; Beni, Valerio; Turner, Anthony P.F.; Karyakin, Arkady A

    2014-01-01

    The mediation of oxidases glucose oxidase (GOx), lactate oxidase (LOx) and cholesterol oxidase (ChOx) by a new electron shuttling mediator, unsubstituted phenothiazine (PTZ), was studied. Cyclic voltammetry and rotating-disk electrode measurements in nonaqueous media were used to determine the diffusion characteristics of the mediator and the kinetics of its reaction with GOx, giving a second-order rate constant of 7.6×103–2.1×104 M−1 s−1 for water–acetonitrile solutions containing 5–15% wate...

  18. Get Your Cholesterol Checked

    Science.gov (United States)

    ... You also get cholesterol by eating foods like egg yolks, fatty meats, and regular cheese. If you have too much cholesterol in your body, it can build up inside your blood vessels and make it hard for blood to ...

  19. Cholesterol - drug treatment

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000314.htm Cholesterol - drug treatment To use the sharing features on ... treatment; Hardening of the arteries - statin Statins for Cholesterol Statins reduce your risk of heart disease, stroke, ...

  20. Common Misconceptions about Cholesterol

    Science.gov (United States)

    ... your doctor recommends. Learn more about eating a healthy diet. Thin people don't have to worry about high cholesterol. A person with any body type can have high cholesterol. Overweight people are more likely to have ... heart-healthy. Have your cholesterol checked regularly regardless of your ...

  1. Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: Relevance of optimum host membrane cholesterol.

    Science.gov (United States)

    Kumar, G Aditya; Roy, Saptarshi; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha

    2016-09-01

    Leishmania are obligate intracellular protozoan parasites that invade and survive within host macrophages leading to leishmaniasis, a major cause of mortality and morbidity worldwide, particularly among economically weaker sections in tropical and subtropical regions. Visceral leishmaniasis is a potent disease caused by Leishmania donovani. The detailed mechanism of internalization of Leishmania is poorly understood. A basic step in the entry of Leishmania involves interaction of the parasite with the host plasma membrane. In this work, we have explored the effect of chronic metabolic cholesterol depletion using lovastatin on the entry and survival of Leishmania donovani in host macrophages. We show here that chronic cholesterol depletion of host macrophages results in reduction in the attachment of Leishmania promastigotes, along with a concomitant reduction in the intracellular amastigote load. These results assume further relevance since chronic cholesterol depletion is believed to mimic physiological cholesterol modulation. Interestingly, the reduction in the ability of Leishmania to enter host macrophages could be reversed upon metabolic replenishment of cholesterol. Importantly, enrichment of host membrane cholesterol resulted in reduction in the entry and survival of Leishmania in host macrophages. As a control, the binding of Escherichia coli to host macrophages remained invariant under these conditions, thereby implying specificity of cholesterol requirement for effective leishmanial infection. To the best of our knowledge, these results constitute the first comprehensive demonstration that an optimum content of host membrane cholesterol is necessary for leishmanial infection. Our results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated leishmanial infection. PMID:27319380

  2. Home-Use Tests - Cholesterol

    Science.gov (United States)

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  3. Direct regulation of cytochrome c oxidase by calcium ions.

    Directory of Open Access Journals (Sweden)

    Tatiana Vygodina

    Full Text Available Cytochrome c oxidase from bovine heart binds Ca(2+ reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+ shifts the absorption spectrum of heme a, which allowed previously to determine the kinetics and equilibrium characteristics of the binding. However, no effect of Ca(2+ on the functional characteristics of cytochrome oxidase was revealed earlier. Here we report that Ca(2+ inhibits cytochrome oxidase activity of isolated bovine heart enzyme by 50-60% with Ki of ∼1 µM, close to Kd of calcium binding with the oxidase determined spectrophotometrically. The inhibition is observed only at low, but physiologically relevant, turnover rates of the enzyme (∼10 s(-1 or less. No inhibitory effect of Ca(2+ is observed under conventional conditions of cytochrome c oxidase activity assays (turnover number >100 s(-1 at pH 8, which may explain why the effect was not noticed earlier. The inhibition is specific for Ca(2+ and is reversed by EGTA. Na(+ ions that compete with Ca(2+ for binding with the Cation Binding Site, do not affect significantly activity of the enzyme but counteract the inhibitory effect of Ca(2+. The Ca(2+-induced inhibition of cytochrome c oxidase is observed also with the uncoupled mitochondria from several rat tissues. At the same time, calcium ions do not inhibit activity of the homologous bacterial cytochrome oxidases. Possible mechanisms of the inhibition are discussed as well as potential physiological role of Ca(2+ binding with cytochrome oxidase. Ca(2+- binding at the Cation Binding Site is proposed to inhibit proton-transfer through the exit part of the proton conducting pathway H in the mammalian oxidases.

  4. National Cholesterol Education Month

    Centers for Disease Control (CDC) Podcasts

    2009-09-01

    Do you know your cholesterol numbers? Your doctor can do a simple test to check your cholesterol levels and help you make choices that lower your risk for heart disease and stroke.  Created: 9/1/2009 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 9/9/2009.

  5. The cholesterol system of the swine

    International Nuclear Information System (INIS)

    The purpose of this work was to characterize the dynamic system of adult female Large White swine. The content of this system and its relationships with both the external environment and between the different parts of the system were explained. The analysis of these results in terms of compared physiology showed that the structure of the cholesterol system was the same in man and in the swine. Consequently, the swine constitutes a good biological tool to study human cholesterol indirectly and to foresee the changes that might be induced in various physio-pathological cases. (author)

  6. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  7. What Causes High Blood Cholesterol?

    Science.gov (United States)

    ... the NHLBI on Twitter. What Causes High Blood Cholesterol? Many factors can affect the cholesterol levels in your blood. You can control some ... but not others. Factors You Can Control Diet Cholesterol is found in foods that come from animal ...

  8. Helicobacter pylori lipopolysaccharide modification, Lewis antigen expression, and gastric colonization are cholesterol-dependent

    OpenAIRE

    McGee David J; Hildebrandt Ellen

    2009-01-01

    Abstract Background Helicobacter pylori specifically takes up cholesterol and incorporates it into the bacterial membrane, yet little is currently known about cholesterol's physiological roles. We compared phenotypes and in vivo colonization ability of H. pylori grown in a defined, serum-free growth medium, F12 with 1 mg/ml albumin containing 0 to 50 μg/ml cholesterol. Results While doubling times were largely unaffected by cholesterol, other overt phenotypic changes were observed. H. pylori ...

  9. Lifestyle Changes and Cholesterol

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Lifestyle Changes and Cholesterol Updated:Oct 26,2015 As ... disease and stroke, your doctor may suggest some lifestyle changes. Regardless of whether your plan includes drug ...

  10. The Success Story of LDL Cholesterol Lowering.

    Science.gov (United States)

    Pedersen, Terje R

    2016-02-19

    We can look back at >100 years of cholesterol research that has brought medicine to a stage where people at risk of severe or fatal coronary heart disease have a much better prognosis than before. This progress has not come about without resistance. Perhaps one of the most debated topics in medicine, the cholesterol controversy, could only be brought to rest through the development of new clinical research methods that were capable of taking advantage of the amazing achievements in basic and pharmacological science after the second World War. It was only after understanding the biochemistry and physiology of cholesterol synthesis, transport and clearance from the blood that medicine could take advantage of drugs and diets to reduce the risk of atherosclerotic diseases. This review points to the highlights of the history of low-density lipoprotein-cholesterol lowering, with the discovery of the low-density lipoprotein receptor and its physiology and not only the development of statins as the stellar moments but also the development of clinical trial methodology as an effective tool to provide scientifically convincing evidence. PMID:26892969

  11. Enzymatic assay of total cholesterol in serum or plasma by amperometric measurement of rate of oxygen depletion following saponification.

    Science.gov (United States)

    Kumar, A; Christian, G D

    1977-01-17

    A method for serum or plasma cholesterol assay involving amperometric measurement of the rate of oxygen depletion in the cholesterol oxidase-catalyzed oxidation of cholesterol is described. The hydrolysis of the serum cholesterol esters is accomplished by saponification of 50 mul of sample with 0.2 ml of ethanolic KOH (1.0 mol/1) containing 0.5% Triton X-100 for 5 min at 75 degrees C. The rate of oxygen consumption in a 25-mul aliquot of this is measured with a Clark electrode in a Beckman Glucose Analyzer and the assay takes about one minute after incubation; results are read digitally on the instrument. The analyzer cell contains 1 ml of 1 M phosphate buffer, pH 7.4, with 100 mg sodium cholate/100 ml and 0.1-0.2 U cholesterol oxidase.

  12. Europium tetracycline biosensor for the determination of cholesterol

    Science.gov (United States)

    Courrol, Lilia Coronato; Silva, Flávia Rodrigues de Oliveira; Samad, Ricardo Elgul; Mansano, Ronaldo Domingues; Vieira, Nilson Dias, Jr.

    2007-02-01

    Development of cholesterol biosensors is of great importance in clinical analysis because the concentration of cholesterol in blood is a fundamental parameter for the prevention and diagnosis of a number of clinical disorders such as heart disease, hypertension and arteriosclerosis. In general, determination of cholesterol is based on spectrophotometry; but this method involves complicated procedures and the cost is high because expensive enzyme must be used in each assay. We report here the observation, for the first time, of the enhancement of Europium-Tetracycline complex emission in cholesterol solutions. This enhancement was initially observed with the addition of the enzyme cholesterol oxidase, which produces H IIO II, the agent driver of the Europium tetracycline complex, to the solution. However, it was found that the enzyme is not needed to enhance the luminescence. A calibration curve was determined, resulting in an easy-handling immobilization method with a cheap stable material. This method shows that the complex can be used as a sensor to determine cholesterol in biological systems with good selectivity, fast response, miniature size, and reproducible results.

  13. Preterm delivery and low maternal serum cholesterol level: any correlation?

    OpenAIRE

    Oluwole, Ayodeji A.; Maymunah A. Adegbesan-Omilabu; Kehinde S. Okunade

    2014-01-01

    Background: Preterm birth is a major challenge in perinatal health care with prematurity accounting for 40-60% of all perinatal deaths in Nigeria. The physiologic hypercholesterolaemia of later pregnancy suggests an adaptive function for pregnancy maintenance or fetal growth. Decreased levels of maternal total cholesterol and low-density lipoprotein cholesterol have been reported in association with preterm delivery. Methods: This was a prospective observational cohort study designed to a...

  14. An enzyme thermistor-based assay for total and free cholesterol.

    Science.gov (United States)

    Raghavan, V; Ramanathan, K; Sundaram, P V; Danielsson, B

    1999-11-01

    A method to evaluate the free (FC) and total cholesterol (TC) in human serum, bile and gallstone extract using an enzyme thermistor (ET)-based flow injection analysis (FIA) is presented. The cholesterol in high-density (HDL-C) and low density lipoprotein (LDL-C) have also been evaluated. A heparin functionalized Sepharose column was employed for the isolation of HDL and LDL fractions from serum. The estimation of cholesterol and its esters was based on their reaction with cholesterol oxidase (CO), cholesterol esterase (CE) and catalase (CAT). Three different enzyme columns, i.e. co-immobilized CO/CAT (column A), only CE (column B) and co-immobilized CO/CE/CAT (column C) were prepared by cross-linking the enzymes on glass beads using glutaraldehyde. Column A was used for estimating FC and column C was used for estimating total cholesterol (cholesterol plus esterified cholesterol). Column B was used as a pre-column which could be switched 'in' or 'out' in conjunction with column A for the estimation of TC or FC, respectively. A calibration between 1.0 and 8.0 mmol/l for FC and 0. 25 and 4.0 mmol/l for TC was obtained. For more than 2000 assays with the ET device a C.V. of less than 4% was obtained. The assay time was approximately 4 min per assay. The cholesterol estimations on the ET correlated well with similar estimations using a commercially available cholesterol diagnostic kit.

  15. Transfer of cholesterol from macrophages to lymphocytes in culture.

    Science.gov (United States)

    de Bittencourt Júnior, P I; Curi, R

    1998-02-01

    -cultivation with macrophages decreased the basal incorporation of [2-14C]thymidine into lymphocyte DNA and the addition of cholesterol to lymphocyte culture media also impaired the lymphocyte proliferative response to the mitogens concanavalin A (Con A) and bacterial lipopolysaccharide (LPS). The above results suggest that macrophages may transfer cholesterol to lymphocytes (from both lymph nodes and blood), thus regulating lymphocyte function by raising the intracellular cholesterol content and suppressing lymphocyte proliferative activity. If this is so, a modulatory role for the transfer of cholesterol in both physiological (e.g. immune response) and pathological conditions (e.g. atherosclerosis) may be postulated. This hypothesis is currently under investigation in our laboratory.

  16. CHOLESTEROL AND CHOLESTEROL ESTER CONTENT OF BOVINE COLOSTRUM

    Science.gov (United States)

    Shope, Richard E.; Gowen, John W.

    1928-01-01

    The total amount of cholesterol found in colostrum and milk is comparatively low. The amount of cholesterol found in colostrum declines at an ever decreasing rate as milk secretion develops until at 48 hours the cholesterol is nearly the same as that found in milk 3 months or 7 months after parturition. The morning milk differs from the evening milk in that the cholesterol bound as ester is greater in amount. PMID:19869468

  17. Transintestinal cholesterol efflux

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Brufau, Gemma; Groen, Albert K.

    2010-01-01

    Purpose of review Regulation of cholesterol homeostasis is a complex interplay of a multitude of metabolic pathways situated in different organs. The liver plays a central role and has received most attention of the research community. In this review, we discuss recent progress in the understanding

  18. Regulation of cholesterol homeostasis

    NARCIS (Netherlands)

    van der Wulp, Mariette Y. M.; Verkade, Henkjan J.; Groen, Albert K.

    2013-01-01

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-codin

  19. Cholesterol and Sphingomyelin-Containing Model Condensed Lipid Monolayers: Heterogeneities Involving Ordered Microdomains Assessed by Two Cholesterol Derivatives.

    Science.gov (United States)

    Lecompte, Marie-France; Gaibelet, Gérald; Lebrun, Chantal; Tercé, François; Collet, Xavier; Orlowski, Stéphane

    2015-11-01

    Lipid monolayers are often considered as model membranes, but they are also the physiologic lipid part of the peripheral envelope of lipoproteins and cytosolic lipid bodies. However, their structural organization is still rather elusive, in particular when both cholesterol and sphingomyelin are present. To investigate such structural organization of hemimembranes, we measured, using alternative current voltammetry, the differential capacitance of condensed phosphatidylcholine-based monolayers as a function of applied potential, which is sensitive to their lipid composition and molecular arrangement. Especially, monolayers containing both sphingomyelin and cholesterol, at 15% w/w, presented specific characteristics of the differential capacitance versus potential curves recorded, which was indicative of specific interactions between these two lipid components. We then compared the behavior of two cholesterol derivatives (at 15% w/w), 21-methylpyrenyl-cholesterol (Pyr-met-Chol) and 22-nitrobenzoxadiazole-cholesterol (NBD-Chol), with that of cholesterol when present in model monolayers. Indeed, these two probes were chosen because of previous findings reporting opposite behaviors within bilayer membranes regarding their interaction with ordered lipids, with only Pyr-met-Chol mimicking cholesterol well. Remarkably, in monolayers containing sphingomyelin or not, Pyr-met-Chol and NBD-Chol presented contrasting behaviors, and Pyr-met-Chol mimicked cholesterol only in the presence of sphingomyelin. These two observations (i.e., optimal amounts of sphingomyelin and cholesterol, and the ability to discriminate between Pyr-met-Chol and NBD-Chol) can be interpreted by the existence of heterogeneities including ordered patches in sphingomyelin- and cholesterol-containing monolayers. Since such monolayer lipid arrangement shares some properties with the raft-type lipid microdomains well-described in sphingomyelin- and cholesterol-containing bilayer membranes, our data thus

  20. What Your Cholesterol Levels Mean

    Science.gov (United States)

    ... Blood Pressure Tools & Resources Stroke More What Your Cholesterol Levels Mean Updated:Aug 9,2016 How’s your ... the Terms and Conditions and Privacy Policy Interactive Cholesterol Guide Find videos, trackers and more with our ...

  1. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    International Nuclear Information System (INIS)

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases

  2. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  3. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells.

    Science.gov (United States)

    Ma, Guangzhong; Zhou, Junyu; Tian, Chunxiu; Jiang, Dechen; Fang, Danjun; Chen, Hongyuan

    2013-04-16

    A luminol electrochemiluminescence assay was reported to analyze active cholesterol at the plasma membrane in single mammalian cells. The cellular membrane cholesterol was activated by the exposure of the cells to low ionic strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT). The active membrane cholesterol was reacted with cholesterol oxidase in the solution to generate a peak concentration of hydrogen peroxide on the electrode surface, which induced a measurable luminol electrochemiluminescence. Further treatment of the active cells with mevastatin decreased the active membrane cholesterol resulting in a drop in luminance. No change in the intracellular calcium was observed in the presence of luminol and voltage, which indicated that our analysis process might not interrupt the intracellular cholesterol trafficking. Single cell analysis was performed by placing a pinhole below the electrode so that only one cell was exposed to the photomultiplier tube (PMT). Twelve single cells were analyzed individually, and a large deviation on luminance ratio observed exhibited the cell heterogeneity on the active membrane cholesterol. The smaller deviation on ACAT/HMGCoA inhibited cells than ACAT inhibited cells suggested different inhibition efficiency for sandoz 58035 and mevastatin. The new information obtained from single cell analysis might provide a new insight on the study of intracellular cholesterol trafficking. PMID:23527944

  4. Effects of dietary cholesterol on cholesterol and bile acid homeostasis in patients with cholesterol gallstones.

    OpenAIRE

    Kern, F

    1994-01-01

    We examined changes in cholesterol and bile acid metabolism produced by dietary cholesterol in gallstone subjects and matched controls. Healthy women were recruited and, after confirming the presence or absence of radiolucent gallstones, they were studied on regular diets and again on the same diet supplemented with five eggs daily for 15-18 d. Studies included plasma lipids, lipoproteins and apolipoproteins, dietary records, cholesterol absorption, cholesterol synthesis, plasma clearance of ...

  5. Lysyl oxidase in colorectal cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine T

    2013-01-01

    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested...... to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has...... stimulated significant interest in lysyl oxidase as a strong candidate for developing and deploying inhibitors as functional efficacious cancer therapeutics. In this review, we discuss the rapidly expanding body of knowledge concerning lysyl oxidase in solid tumor progression, highlighting recent...

  6. NADPH Oxidases in Vascular Pathology

    OpenAIRE

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta; Tomasz J. Guzik

    2014-01-01

    Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the ...

  7. NADPH oxidase 4 is an oncoprotein localized to mitochondria

    OpenAIRE

    Graham, Kelly A; KULAWIEC, MARIOLA; Owens, Kjerstin M; Li, Xiurong; Desouki, Mohamed Mokhtar; Chandra, Dhyan; Singh, Keshav K.

    2010-01-01

    Reactive oxygen species (ROS) are known to be involved in many physiological and pathological processes. Initially ROS-producing NADPH oxidase (NOX) proteins were thought to be present in phagocytes. However, recent studies have demonstrated that NOX proteins are expressed in many other cell types and tissues. NOX family members' expression and function seems to vary from tissue to tissue. We determined the expression of the NOX family of proteins (NOX1-5) in normal breast tissue and breast t...

  8. Role of Lysyl Oxidase Propeptide in Secretion and Enzyme Activity

    OpenAIRE

    Grimsby, Jessica L.; Lucero, Hector A.; Trackman, Philip C.; Ravid, Katya; Kagan, Herbert M.

    2010-01-01

    Lysyl oxidase (LOX) is secreted as a proenzyme (proLOX) that is proteolytically processed in the extracellular milieu to release the propeptide and mature, active LOX. LOX oxidizes lysyl residues of a number of protein substrates in the extracellular matrix and on the cell surface, which impacts several physiological and disease states. Although the LOX propeptide (LOX-PP) is glycosylated, little is known about the role of this modification in LOX secretion and activity. To gain insight into ...

  9. Importance of macrophage cholesterol content on the flux of cholesterol mass

    OpenAIRE

    Sankaranarayanan, Sandhya; de la Llera-Moya, Margarita; Drazul-Schrader, Denise; Asztalos, Bela F.; Weibel, Ginny L.; Rothblat, George H.

    2010-01-01

    Net flux of cholesterol represents the difference between efflux and influx and can result in net cell-cholesterol accumulation, net cell-cholesterol depletion, or no change in cellular cholesterol content. We measured radiolabeled cell-cholesterol efflux and cell-cholesterol mass using cholesterol-normal and -enriched J774 and elicited mouse peritoneal macrophage cells. Net cell-cholesterol effluxes were observed when cholesterol-enriched J774 cells were incubated with 3.5% apolipoprotein (a...

  10. Polyaniline/Prussian Blue Composite Film Electrochemical Biosensors for Cholesterol Detection

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping(李建平); PENG,Tu-Zhi(彭图治)

    2002-01-01

    An electrochemical biosensor fabricated by immobilization of cholesterol oxidase (ChOx) in a polyaniline (PAN)/prussian blue (PB) conductive layer of glassy carbon electrode has been prepared, based on the detection of hydrogen peroxide produced by ChOx at -0.05 V. The properties of the biosensor were investigated and the measurement conditions for cholesterol were optimized. A linear relationship between electrochemical signal and cholesterol concentration in a range of 1 ×10-6-8 × 10-5 mol/L was observed. It is one of the most sensitive sensors for cholesterol determination, since a low detection limit of 1.8 × 10-7 mol/L was found. Good properties of the biosensor were attributed to high activity of ChOx and effective electro-catalysis of PB modifier in the composite layer on electrode surface.

  11. Polyaniline/Prussian Blue Composite Film Electrochemical Biosensors for Cholesterol Detection

    Institute of Scientific and Technical Information of China (English)

    李建平; 彭图治

    2002-01-01

    An electrochemical biosensor fabricated by immobilization of cholesterol oxidase(ChOx) in a poayaniline (PAN)/prussian blue(PB) conductive layer of glassy carbon electrode has been prepared,based on the detection of hydrogen peroxide produced by ChOx at-0.05v.The properties of the biosensor were investigated and the measurement conditions for cholesterol were optimized.A linear relationship between electrochemical signal and cholesterol concentration in a range of 1×10-6—8×10-5mol/L was observed.It is one of the most sensitive sensors for cholesterol determination,since a low detection limit of 1.8×10-7mol/L was found.Good properties of the biosensor were attributed to high activity of ChOx and effective electro-catalysis of PB modifier in the composite layer on electrode surface.

  12. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction.

    Science.gov (United States)

    Petrov, A M; Kasimov, M R; Zefirov, A L

    2016-01-01

    Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body's total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington's, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer's disease, Parkinson's disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper. PMID:27099785

  13. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  14. Food combinations for cholesterol lowering.

    Science.gov (United States)

    Harland, Janice I

    2012-12-01

    Reducing elevated LDL-cholesterol is a key public health challenge. There is substantial evidence from randomised controlled trials (RCT) that a number of foods and food components can significantly reduce LDL-cholesterol. Data from RCT have been reviewed to determine whether effects are additive when two or more of these components are consumed together. Typically components, such as plant stanols and sterols, soya protein, β-glucans and tree nuts, when consumed individually at their target rate, reduce LDL-cholesterol by 3-9 %. Improved dietary fat quality, achieved by replacing SFA with unsaturated fat, reduces LDL-cholesterol and can increase HDL-cholesterol, further improving blood lipid profile. It appears that the effect of combining these interventions is largely additive; however, compliance with multiple changes may reduce over time. Food combinations used in ten 'portfolio diet' studies have been reviewed. In clinical efficacy studies of about 1 month where all foods were provided, LDL-cholesterol is reduced by 22-30 %, whereas in community-based studies of >6 months' duration, where dietary advice is the basis of the intervention, reduction in LDL-cholesterol is about 15 %. Inclusion of MUFA into 'portfolio diets' increases HDL-cholesterol, in addition to LDL-cholesterol effects. Compliance with some of these dietary changes can be achieved more easily compared with others. By careful food component selection, appropriate to the individual, the effect of including only two components in the diet with good compliance could be a sustainable 10 % reduction in LDL-cholesterol; this is sufficient to make a substantial impact on cholesterol management and reduce the need for pharmaceutical intervention.

  15. Reducing Cholesterol Intake: Are the recommendations valid?

    OpenAIRE

    Chan, Joanna K.; McDonald, Bruce E.

    1991-01-01

    The authors question dietary recommendations for the general public calling for reduced cholesterol intake. Metabolic studies have shown that dietary cholesterol normally induces only small increases in blood cholesterol level. There is evidence that only a portion of the population responds to a change in cholesterol intake; hence lowering dietary cholesterol will be effective for only some.

  16. Inhibition of chickpea seedling copper amine oxidases by tetraethylenepentamine

    Directory of Open Access Journals (Sweden)

    Sona Talaei

    2012-01-01

    Full Text Available Copper amine oxidases are important enzymes, which contribute to the regulation of mono- and polyamine levels. Each monomer contains one Cu(II ion and 2,4,5-trihydroxyphenylalanine (TPQ as cofactors. They catalyze the oxidative deamination of primary amines to aldehydes with a ping-pong mechanism consisting of a transamination. The mechanism is followed by the transfer of two electrons to molecular oxygen which is reduced to hydrogen peroxide. Inhibitors are important tools in the study of catalytic properties of copper amine oxidases and they also have a wide application in physiological research. In this study, purification of the chickpea seedling amine oxidase, was done via salting out by ammonium sulfate and dialysis, followed by DEAE-cellulose column chromatography. By using the Lineweaver - Burk plot, the Km and Vm of the enzyme were found to be 3.3 mM and 0.95 mmol/min/mg, respectively. In this study, the interaction of chickpea diamino oxidase with tetraethylene- pentamine was studied. Analysis of kinetic data indicated that tetraethylenepentamine (with Ki=0.1 mM inhibits the enzyme by linear mixed inhibitory effect.

  17. Electrogenerated chemiluminescence of luminol for oxidase-based fibre-optic biosensors.

    Science.gov (United States)

    Marquette, C A; Leca, B D; Blum, L J

    2001-01-01

    The luminol electrochemiluminescence has been exploited for the development of several fibre-optic biosensors allowing the detection of hydrogen peroxide and of substrates of H(2)O(2)-producing oxidases. Electro-optical flow injection analysis of glucose, lactate, cholesterol and choline are thus described. To perform the experiments, a glassy carbon electrode was polarized at a fixed potential. Luminol was then electrochemically oxidized and could react in the presence of hydrogen peroxide to produce light. Several parameters had to be optimized to obtain reliable optical biosensors. An optimum applied potential of +425 mV between the glassy carbon electrode and the platinum pseudo-reference electrode was determined, allowing the best signal: noise ratio to be obtained. It was also necessary to optimize the experimental conditions for the immobilization of the different oxidases involved (preactivated membranes, chemically activated collagen membranes, photopolymerized matrix). For each biosensor developed, the optimum reaction conditions have been studied: buffer composition, pH, temperature, flow rate and luminol concentration. Under optimal conditions, the detection limits (S/N = 3) were 30 pmol, 60 pmol, 0.6 nmol and 10 pmol for lactate, glucose, cholesterol and choline, respectively. The miniaturization of electrochemiluminescence-based biosensors has been realized using screen-printed electrodes instead of a glassy carbon macroelectrode, with choline oxidase as a model H(2)O(2)-generating oxidase. PMID:11312542

  18. Epigenetic Regulation of Cholesterol Homeostasis

    Directory of Open Access Journals (Sweden)

    Steve eMeaney

    2014-09-01

    Full Text Available Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g. the Hedgehog system. A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more ‘traditional’ regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.

  19. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster

    OpenAIRE

    Heidrich, John E.; Contos, Linda M; Hunsaker, Lucy A; Deck, Lorraine M.; Vander Jagt, David L.

    2004-01-01

    Background Pancreatic cholesterol esterase has three proposed functions in the intestine: 1) to control the bioavailability of cholesterol from dietary cholesterol esters; 2) to contribute to incorporation of cholesterol into mixed micelles; and 3) to aid in transport of free cholesterol to the enterocyte. Inhibitors of cholesterol esterase are anticipated to limit the absorption of dietary cholesterol. Results The selective and potent cholesterol esterase inhibitor 6-chloro-3-(1-ethyl-2-cycl...

  20. Expression of alternative oxidase in tomato

    Energy Technology Data Exchange (ETDEWEB)

    Kakefuda, M.; McIntosh, L. (Michigan State Univ., East Lansing (USA))

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  1. An enzyme thermistor-based assay for total and free cholesterol.

    Science.gov (United States)

    Raghavan, V; Ramanathan, K; Sundaram, P V; Danielsson, B

    1999-11-01

    A method to evaluate the free (FC) and total cholesterol (TC) in human serum, bile and gallstone extract using an enzyme thermistor (ET)-based flow injection analysis (FIA) is presented. The cholesterol in high-density (HDL-C) and low density lipoprotein (LDL-C) have also been evaluated. A heparin functionalized Sepharose column was employed for the isolation of HDL and LDL fractions from serum. The estimation of cholesterol and its esters was based on their reaction with cholesterol oxidase (CO), cholesterol esterase (CE) and catalase (CAT). Three different enzyme columns, i.e. co-immobilized CO/CAT (column A), only CE (column B) and co-immobilized CO/CE/CAT (column C) were prepared by cross-linking the enzymes on glass beads using glutaraldehyde. Column A was used for estimating FC and column C was used for estimating total cholesterol (cholesterol plus esterified cholesterol). Column B was used as a pre-column which could be switched 'in' or 'out' in conjunction with column A for the estimation of TC or FC, respectively. A calibration between 1.0 and 8.0 mmol/l for FC and 0. 25 and 4.0 mmol/l for TC was obtained. For more than 2000 assays with the ET device a C.V. of less than 4% was obtained. The assay time was approximately 4 min per assay. The cholesterol estimations on the ET correlated well with similar estimations using a commercially available cholesterol diagnostic kit. PMID:10556661

  2. Understand Your Risk for High Cholesterol

    Science.gov (United States)

    ... Resources Stroke More Understand Your Risk for High Cholesterol Updated:Apr 1,2016 LDL (bad) cholesterol is ... content was last reviewed on 04/21/2014. Cholesterol Guidelines: Putting the pieces together Myth vs. Truth – ...

  3. Overview of Cholesterol and Lipid Disorders

    Science.gov (United States)

    ... Medical Dictionary Additional Content Medical News Overview of Cholesterol and Lipid Disorders By Anne Carol Goldberg, MD ... Version. DOCTORS: Click here for the Professional Version Cholesterol Disorders Overview of Cholesterol and Lipid Disorders Dyslipidemia ...

  4. Cholesterol - what to ask your doctor

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000211.htm Cholesterol - what to ask your doctor To use the ... this page, please enable JavaScript. Your body needs cholesterol to work properly. When you have extra cholesterol ...

  5. Lysyl oxidase in cancer research

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we will...

  6. Flavoprotein oxidases : classification and applications

    NARCIS (Netherlands)

    Dijkman, Willem P.; de Gonzalo, Gonzalo; Mattevi, Andrea; Fraaije, Marco W.

    2013-01-01

    This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical compoun

  7. NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Gang WANG

    2009-01-01

    Reactive oxygen species (ROS) are small molecule metabolites of oxygen that are prone to participate in redox reactions via their high reactivity. Intracellular ROS could be generated in reduced nicotina-mide-adenine dinucleotidephosphate (NADPH) oxidase-dependent and/or NADPH oxidase-independent manners. Physiologically, ROS are involved in many signaling cascades that contribute to normal processes. One classical example is that ROS derived from the NADPH oxidase and released in neurotrophils are able to digest invading bacteria. Excessive ROS, however, contribute to patho-genesis of various human diseases including cancer, aging, dimentia and hypertension. As signaling messengers, ROS are able to oxidize many targets such as DNA, proteins and lipids, which may be linked with tumor growth, invasion or metastasis. The present review summarizes recent advances in our comprehensive understanding of ROS-linked signaling pathways in regulation of tumor growth, invasion and metastasis, and focuses on the role of the NADPH oxidase-derived ROS in cancer pathogenesis.

  8. Characterization of placental cholesterol transport

    DEFF Research Database (Denmark)

    Lindegaard, Marie L; Wassif, Christopher A; Vaisman, Boris;

    2008-01-01

    circulation might attenuate congenital malformations. The cholesterol transporters Abca1, Abcg1, and Sr-b1 are present in placenta; however, their potential role in placental transport remains undetermined. In mice, expression analyses showed that Abca1 and Abcg1 transcripts increased 2-3-fold between...... embryonic days 13.5 and 18.5 in placental tissue; whereas, Sr-b1 expression decreased. To examine the functional role of Abca1, Abcg1 and Sr-b1 we measured the maternal-fetal transfer of (14)C-cholesterol in corresponding mutant embryos. Disruption of either Abca1 or Sr-b1 decreased cholesterol transfer...

  9. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    Science.gov (United States)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo. PMID:26976571

  10. Imaging appearances of cholesterol pneumonia

    International Nuclear Information System (INIS)

    Objection: To analyze the imaging appearances of cholesterol pneumonia. Methods We retrospectively analyzed the X-ray and CT findings of 3 patients with cholesterol pneumonia confirmed pathologically and reviewed correlative literature. Results: Lesions similar to mass were found in X-ray and CT imaging of three cases. Two of them appeared cavity with fluid-level and one showed multiple ring enhancement after CT contrast. The course of disease was very. long and it had no respond to antibiotic therapy. Amounts of foam cells rich in cholesterol crystal were detected in pathological examination. Conclusions: Cholesterol pneumonia is a rare chronic pulmonary idiopathic disease, and the radiological findings can do some help to its diagnosis. (authors)

  11. Cholesterol testing on a smartphone.

    Science.gov (United States)

    Oncescu, Vlad; Mancuso, Matthew; Erickson, David

    2014-02-21

    Home self-diagnostic tools for blood cholesterol monitoring have been around for over a decade but their widespread adoption has been limited by the relatively high cost of acquiring a quantitative test-strip reader, complicated procedure for operating the device, and inability to easily store and process results. To address this we have developed a smartphone accessory and software application that allows for the quantification of cholesterol levels in blood. Through a series of human trials we demonstrate that the system can accurately quantify total cholesterol levels in blood within 60 s by imaging standard test strips. In addition, we demonstrate how our accessory is optimized to improve measurement sensitivity and reproducibility across different individual smartphones. With the widespread adoption of smartphones and increasingly sophisticated image processing technology, accessories such as the one presented here will allow cholesterol monitoring to become more accurate and widespread, greatly improving preventive care for cardiovascular disease.

  12. Cholesterol's location in lipid bilayers.

    Science.gov (United States)

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R; Harroun, Thad A; Katsaras, John

    2016-09-01

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown - at least in some bilayers - to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid-water interface. In this article we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies. PMID:27056099

  13. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies.

    Science.gov (United States)

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K

    2013-08-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol %. With spin-labeled cholesterol analogues, it was shown that the CBDs begin to form at ~50 mol % cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol % cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that the formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol % is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol % cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals.

  14. Cholesterol Worships a New Idol

    Institute of Scientific and Technical Information of China (English)

    Ira G. Schulman

    2009-01-01

    The growing worldwide epidemic of cardiovascular disease suggests that new therapeutic strategies are needed to complement statins in the lowering of cholesterol levels. In a recent paper in Science, Tontonoz and colleagues have identified Idol as a protein that can control cholesterol levels by regulating the stability of the low-density lipoprotein receptor; inhibiting the activity of Idol could provide novel approaches for the treatment of cardiovascular disease.

  15. A relation between high-density-lipoprotein cholesterol and bile cholesterol saturation.

    OpenAIRE

    Thornton, J R; Heaton, K. W.; Macfarlane, D G

    1981-01-01

    The association of cholesterol gall stones with coronary artery disease is controversial. To investigate this possible relation at the biochemical level, bile cholesterol saturation and the plasma concentrations of triglycerides, total cholesterol, and high-density-lipoprotein cholesterol (HDL cholesterol) were measured in 25 healthy, middle-aged women. Bile cholesterol saturation index was negatively correlated with HDL cholesterol. It was positively correlated with plasma triglycerides and ...

  16. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    Science.gov (United States)

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  17. Formation of Cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Cholesterol/Dimyristoylphosphatidylcholine Membranes: EPR and DSC Studies

    OpenAIRE

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K.

    2013-01-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol%. With spin-labeled cholesterol analogs it was shown that the...

  18. Facts about...Blood Cholesterol. Revised.

    Science.gov (United States)

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  19. Development of the layer-by-layer biosensor using graphene films: application for cholesterol determination

    International Nuclear Information System (INIS)

    The preparation and characterization of graphene films for cholesterol determination are described. The graphene films were synthesized by thermal chemical vapor deposition (CVD) method. Methane gas (CH4) and copper tape were used as carbon source and catalyst in the graphene growth process, respectively. The intergrated array was fabricated by using micro-electro-mechanical systems (MEMS) technology in which Fe3O4-doped polyaniline (PANi) film was electropolymerized on Pt/Gr electrodes. The properties of the Pt/Gr/PANi/Fe3O4 films were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy and electrochemical techniques. Cholesterol oxidase (ChOx) has been immobilized onto the working electrode with glutaraldehyde agent. The cholesterol electrochemical biosensor shows high sensitivity (74 μA mM−1 cm−2) and fast response time (2) of 0.9986. This new layer-by-layer biosensor based on graphene films promises many practical applications. (paper)

  20. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots

    International Nuclear Information System (INIS)

    CdSe/ZnS quantum dot nanocrystals with wurtzite structure were synthesized using trioctylphosphine oxide (TOPO) templates. For biological applications, the capping surfactants, TOPO were replaced with mercaptoacetic acid (MAA). The carboxylic groups in MAA were activated by esterification of n-hydroxysulfo-succinimide (sulfo-NHS) catalyzed by water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), namely through the EDC/NHS coupling reaction. MAA not only provided water solubility to CdSe/ZnS quantum dots but also acted as a linker between cholesterol oxidase (COx) and the quantum dots due to its carboxyl group. The CdSe/ZnS–COx bioconjugates showed sensitive and linear decrease in the photoluminescence (PL) peak intensity with cholesterol concentration up to 9 mM. The PL intensity variation was elucidated based upon collisional quenching by hydrogen peroxide generated from the enzymatic oxidation reaction between COx and cholesterol. This collisional quenching mechanism was confirmed by monitoring the response of bovine serum albumin-modified CdSe/ZnS bioconjugates to cholesterol molecules. Furthermore, the bioconjugates showed specificity to cholesterol molecules due to selective enzymatic oxidation reaction by COx. A simple quantum dot-based optical biosensor is proposed for precision cholesterol detection.

  1. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Eun [Korea University, Department of Materials Science and Engineering (Korea, Republic of); Kim, Tae Geun [Korea University, Department of Electronic Engineering (Korea, Republic of); Sung, Yun-Mo, E-mail: ymsung@korea.ac.kr [Korea University, Department of Materials Science and Engineering (Korea, Republic of)

    2012-10-15

    CdSe/ZnS quantum dot nanocrystals with wurtzite structure were synthesized using trioctylphosphine oxide (TOPO) templates. For biological applications, the capping surfactants, TOPO were replaced with mercaptoacetic acid (MAA). The carboxylic groups in MAA were activated by esterification of n-hydroxysulfo-succinimide (sulfo-NHS) catalyzed by water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), namely through the EDC/NHS coupling reaction. MAA not only provided water solubility to CdSe/ZnS quantum dots but also acted as a linker between cholesterol oxidase (COx) and the quantum dots due to its carboxyl group. The CdSe/ZnS-COx bioconjugates showed sensitive and linear decrease in the photoluminescence (PL) peak intensity with cholesterol concentration up to 9 mM. The PL intensity variation was elucidated based upon collisional quenching by hydrogen peroxide generated from the enzymatic oxidation reaction between COx and cholesterol. This collisional quenching mechanism was confirmed by monitoring the response of bovine serum albumin-modified CdSe/ZnS bioconjugates to cholesterol molecules. Furthermore, the bioconjugates showed specificity to cholesterol molecules due to selective enzymatic oxidation reaction by COx. A simple quantum dot-based optical biosensor is proposed for precision cholesterol detection.

  2. Generation of proton-motive force by an archaeal terminal quinol oxidase from Sulfolobus acidocaldarius

    NARCIS (Netherlands)

    Gleissner, Michael; Elferink, Maria; Driessen, Arnold J.M.; Konings, Wilhelmus; Anemüller, Stefan; Schäfer, Günter

    1994-01-01

    The terminal quinol oxidase of the cytochrome aa3 type was isolated from the extreme thermo-acidophilic archaeon Sulfolobus acidocaldarius. In micellar solution, the enzyme oxidized various quinols and exerted the highest activity with the physiological substrate caldariella quinol. The enzyme was f

  3. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    Science.gov (United States)

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  4. Monitoring of cholesterol oxidation in a lipid bilayer membrane using streptolysin O as a sensing and signal transduction element.

    Science.gov (United States)

    Shoji, Atsushi; Ikeya, Kana; Aoyagi, Miki; Takatsuji, Ryutaro; Yanagida, Akio; Shibusawa, Yoichi; Sugawara, Masao

    2016-09-01

    Streptolysin O (SLO), which recognizes sterols and forms nanopores in lipid membranes, is proposed as a sensing element for monitoring cholesterol oxidation in a lipid bilayer. The structural requirements of eight sterols for forming nanopores by SLO confirmed that a free 3-OH group in the β-configuration of sterols is required for recognition by SLO in a lipid bilayer. The extent of nanopore formation by SLO in lipid bilayers increased in the order of cholestanol<cholesterol<25-OH cholesterol and in a sterol concentration-dependent manner. The immobilization of liposomes consisting of PC, cholesterol and 4-cholesten-3-one exhibited a linear relationship between calcein permeability and the molar ratio of cholesterol and 4-cholesten-3-one. The SLO-based method was successfully applied for monitoring of cholesterol oxidase-mediated oxidation of cholesterol in a lipid bilayer. The potential of the SLO nanopore-based method for monitoring cholesterol oxidation in a lipid bilayer by other oxidative enzymes is also discussed.

  5. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination.

    Science.gov (United States)

    Manjunatha, Revanasiddappa; Shivappa Suresh, Gurukar; Melo, Jose Savio; D'Souza, Stanislaus F; Venkatesha, Thimmappa Venkatarangaiah

    2012-09-15

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto functionalized graphene (FG) modified graphite electrode. Enzymes modified electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FG accelerates the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx. A well defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH(2) of ChOx. The electron transfer coefficient (α) and electron transfer rate constant (K(s)) were calculated and their values are found to be 0.31 and 0.78 s(-1), respectively. For the free cholesterol determination, ChOx-FG/Gr electrode exhibits a sensitive response from 50 to 350 μM (R=-0.9972) with a detection limit of 5 μM. For total cholesterol determination, co-immobilization of ChEt and ChOx on modified electrode, i.e. (ChEt/ChOx)-FG/Gr electrode showed linear range from 50 to 300 μM (R=-0.9982) with a detection limit of 15 μM. Some common interferents like glucose, ascorbic acid and uric acid did not cause any interference, due to the use of a low operating potential. The FG/Gr electrode exhibits good electrocatalytic activity towards hydrogen peroxide (H(2)O(2)). A wide linear response to H(2)O(2) ranging from 0.5 to 7 mM (R=-0.9967) with a sensitivity of 443.25 μA mM(-1) cm(-2) has been obtained. PMID:22967556

  6. Mechanisms for suppressing NADPH oxidase in the vascular wall

    Directory of Open Access Journals (Sweden)

    Gregory J Dusting

    2005-03-01

    Full Text Available Oxidative stress underlies many forms of vascular disease as well as tissue injury following ischemia and reperfusion. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex as expressed in vascular cells differs from that in phagocytic leucocytes both in biochemical structure and functions. The crucial flavin-containing catalytic subunits, Nox1 and Nox4, are not found in leucocytes, but are highly expressed in vascular cells and upregulated with vascular remodeling, such as that found in hypertension and atherosclerosis. The difference in catalytic subunits offers the opportunity to develop "vascular specific" NADPH oxidase inhibitors that do not compromise the essential physiological signaling and phagocytic functions carried out by reactive oxygen and nitrogen species. Nitric oxide and targeted inhibitors of NADPH oxidase that block the source of oxidative stress in the vasculature are more likely to prevent the deterioration of vascular function that leads to stroke and heart attack, than are conventional antioxidants. The roles of Nox isoforms in other inflammatory conditions are yet to be explored.

  7. Ectopic Expression of Pumpkin Gibberellin Oxidases Alters Gibberellin Biosynthesis and Development of Transgenic Arabidopsis Plants1

    Science.gov (United States)

    Radi, Abeer; Lange, Theo; Niki, Tomoya; Koshioka, Masaji; Lange, Maria João Pimenta

    2006-01-01

    Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development. PMID:16384902

  8. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carli L. Roulston

    2013-04-01

    Full Text Available Oxidative stress caused by an excess of reactive oxygen species (ROS is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation.

  9. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives.

    Science.gov (United States)

    McCann, Sarah K; Roulston, Carli L

    2013-01-01

    Oxidative stress caused by an excess of reactive oxygen species (ROS) is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation. PMID:24961415

  10. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade.

    Science.gov (United States)

    Kalachova, Tetiana; Iakovenko, Oksana; Kretinin, Sergii; Kravets, Volodymyr

    2013-05-01

    Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.

  11. Cholesterol confusion and statin controversy

    Institute of Scientific and Technical Information of China (English)

    Robert; Du; Broff; Michel; de; Lorgeril

    2015-01-01

    The role of blood cholesterol levels in coronary heart disease(CHD) and the true effect of cholesterollowering statin drugs are debatable. In particular,whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently,the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes,cancer,and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary,we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD.

  12. Cholesterol Depletion Reduces the Internalization of β-Amyloid Peptide in SH-SY5Y Cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qinghua; HE Li; SUI Senfang

    2006-01-01

    Deposition of amyloid in the brain is a critical step in the pathogenesis of Alzheimer's disease. The endocytosis of β-amyloid peptide (Aβ) is an important factor among the many factors that contribute to the genesis of amyloid deposits. Since cholesterol participates in many important physiological processes, the present work investigated the relationship between the cellular cholesterol content and the endocytosis of the exogenic Aβ, and found that reduction of the cholesterol content by methyl-β-cyclodextrin could reduce the endocytosis of Aβ. The study indicates that the endocytosis of Aβ is partly mediated by cholesterol.

  13. Characterization of Recombinant Lysyl Oxidase Propeptide

    OpenAIRE

    Vora, Siddharth R.; Guo, Ying; Danielle N Stephens; Salih, Erdjan; Vu, Emile D.; Kirsch, Kathrin H.; Sonenshein, Gail E.; Trackman, Philip C.

    2010-01-01

    Lysyl oxidase enzyme activity is critical for the biosynthesis of mature and functional collagens and elastin. In addition, lysyl oxidase has tumor suppressor activity that has been shown to depend on the propeptide region (LOX-PP) derived from pro-lysyl oxidase (Pro-LOX), and not on lysyl oxidase enzyme activity. Pro-LOX is secreted as a 50 kDa proenzyme, and then undergoes biosynthetic proteolytic processing to active ~30 kDa LOX enzyme and LOX-PP. The present study reports the efficient re...

  14. Polarizable multipolar electrostatics for cholesterol

    Science.gov (United States)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  15. Regulation of biliary cholesterol secretion and reverse cholesterol transport

    NARCIS (Netherlands)

    Dikkers, Arne

    2016-01-01

    According to the World Health Organization the number one cause of death throughout the world is cardiovascular disease. Therefore, there is an urgent need for new therapeutic strategies to prevent and treat cardiovascular disease. One possible way is to target the HDL-driven reverse cholesterol tra

  16. Glucose oxidase activity of actinomycetes.

    Science.gov (United States)

    St Vlahov, S

    1978-01-01

    The ability of 311 actiomycete, belonging to 12 species to produce glucose oxidase was studied. It was found that 174 of them formed exoenzymes on solid medium and 133 in liquid medium. The composition of the nutrient medium has an essential effect on the amount of enzyme formed. Strains with considerably higher activity form a greater amount of exoenzymes on soya meal medium and on synthetic medium with KNO2. The highest activity of the culture liquid of some strains was observed between the 6th and 7th day of cultivation. During this phase of growth the highest productivity of the biomas was established. PMID:76424

  17. Nanomaterial-based Electrochemical Sensors for the Detection of Glucose and Cholesterol

    Science.gov (United States)

    Ahmadalinezhad, Asieh

    properties, we fabricated a highly sensitive and mediator-free electrochemical biosensor for the determination of total cholesterol. The developed biosensor possessed high selectivity and sensitivity (29.33 microA mM--1cm --2). The apparent Michaelis--Menten constant, KappM of this biosensor was very low (0.64 mM), which originated from both the effective immobilization process and the nanoporous structure of the substrate. The biosensor exhibited a wide linear range, up to 300 mg dL--1 , in a physiological environment (pH 7.4); making it a promising candidate for the clinical determination of cholesterol. The fabricated biosensor was tested further by utilizing actual food samples (e.g., margarine, butter and fish oil). The results indicated that it has the potential capacity to be employed as a facile cholesterol detection tool in the food industry and for supplement quality control. To enhance the stability of the biosensors in the continuous monitoring of glucose, we designed a novel platform that was based on buckypaper. The fabricated biosensor responded to glucose with a considerable functional lifetime of over 80 days and detected glucose with a dynamic linear range of over 9 mM with a detection limit of 0.01 mM. To investigate the effects of the physical dimensions of nanomaterials on electrochemical biosensing, we synthesized TiO2 nanowires with controllable dimensions via a facile thermal oxidation treatment of a Ti substrate. To improve the conductivity of the TiO2 nanowires and to facilitate the immobilization of enzymes, a thin layer of carbon was deposited onto the TiO2 nanowires via a chemical vapour deposition method. Upon the immobilization of glucose oxidase as a model protein, direct electron transfer was observed in a mediator-free biosensing environment. Our electrochemical studies have revealed that the electron transfer rate of the immobilized glucose oxidase is strongly dependent on the dimensions of the carbonized TiO 2 nanowires, and that the

  18. Cholesterol-mediated surfactant dysfunction is mitigated by surfactant protein A.

    Science.gov (United States)

    Hiansen, Joshua Qua; Keating, Eleonora; Aspros, Alex; Yao, Li-Juan; Bosma, Karen J; Yamashita, Cory M; Lewis, James F; Veldhuizen, Ruud A W

    2015-03-01

    The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-β-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant. PMID:25522687

  19. Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane.

    Science.gov (United States)

    Wüstner, Daniel; Modzel, Maciej; Lund, Frederik W; Lomholt, Michael A

    2016-09-01

    Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM. PMID:27016337

  20. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  1. Membrane Cholesterol Modulates Superwarfarin Toxicity.

    Science.gov (United States)

    Marangoni, M Natalia; Martynowycz, Michael W; Kuzmenko, Ivan; Braun, David; Polak, Paul E; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content. PMID:27119638

  2. Rowing Physiology.

    Science.gov (United States)

    Spinks, W. L.

    This review of the literature discusses and examines the methods used in physiological assessment of rowers, results of such assessments, and future directions emanating from research in the physiology of rowing. The first section discusses the energy demands of rowing, including the contribution of the energy system, anaerobic metabolism, and the…

  3. Efficient detection of total cholesterol using (ChEt–ChOx/ZnO/Pt/Si) bioelectrode based on ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Batra, Neha; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-07-01

    Present study highlights the importance of ZnO matrix prepared by vapour phase transport technique on platinum coated Si platform (ZnO/Pt/Si) as a potential matrix for the realization of highly sensitive and selective bioelectrode for detection of total cholesterol. Bienzymes cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been immobilized onto the surface of ZnO thin film matrix by physical adsorption technique. The prepared bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is utilized for detection of total cholesterol using the cyclic voltammetry technique. The bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is found to exhibit efficient sensing response characteristics with high sensitivity of 190 μA mM{sup −1} cm{sup −2}; good linearity in the range of 0.5–12 mM total cholesterol concentration, and a very low Michaelis–Menten constant of 0.68 mM which indicates high affinity of bienzymes immobilized on ZnO towards the analyte (total cholesterol). The enhanced response is attributed to the development of ZnO thin film based matrix having good electron transport property and nanoporous morphology for effective loading of enzymes with favourable orientation. - Highlights: • Fabrication of a ZnO nanostructured thin film based efficient matrix • Utilizing prepared matrix for detection of total cholesterol (free + esterified) • Cholesterol oxidase and cholesterol esterase are the corresponding selective enzymes. • Vapour phase transport technique, for the fabrication of nanostructured ZnO matrix • The bioelectrode exhibits enhanced response characteristics towards total cholesterol detection.

  4. Do You Know Your Cholesterol Levels?

    Science.gov (United States)

    ... The Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, 6.1 MB) ... Eat Smart Did you know that high blood cholesterol is a serious problem among Latinos? About one ...

  5. Analysis of Cholesterol Trafficking with Fluorescent Probes

    DEFF Research Database (Denmark)

    Maxfield, Frederick R.; Wustner, Daniel

    2012-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport...... that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy...

  6. Cerebral cholesterol granuloma in homozygous familial hypercholesterolemia

    OpenAIRE

    Francis, Gordon A; Johnson, Royce L.; Findlay, J. Max; Wang, Jian; Hegele, Robert A.

    2005-01-01

    Familial hypercholesterolemia (FH) is characterized by the accumulation of excess cholesterol in tissues including the artery wall and tendons. We describe a patient with homozygous FH who presented with asymptomatic cholesterol granuloma of the brain. The patient's plasma low-density lipoprotein cholesterol level was remarkably responsive to combination hypolipidemic therapy with statin plus ezetimibe. This case illustrates another potential complication of whole-body cholesterol excess and ...

  7. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Ibupoto, Z.H., E-mail: zafar.hussin.ibupoto@liu.se [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Khun, K. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Liu, X. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, 58183 Linköping Sweden (Sweden); Willander, M. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden)

    2013-10-15

    In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only Cu-O bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88 ± 0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10 s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. - Highlights: • This study describes the synthesis of bundle of CuO nanowires by hydrothermal method. • CuO nanostructures exhibit good alignment and

  8. Intestinal cholesterol secretion : future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.

    2013-01-01

    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  9. Isolation of Cholesterol from an Egg Yolk

    Science.gov (United States)

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  10. Public health aspects of serum cholesterol

    NARCIS (Netherlands)

    S. Houterman (Saskia)

    2001-01-01

    textabstractIn the beginning of this century Anitschkow and De Langen started pioneering work concerning the relation between cholesterol and coronary heart disease. Both showed that there was a possible relation between cholesterol in the diet, blood cholesterol levels and atherosclerosis. It took

  11. Remnant cholesterol and ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G

    2014-01-01

    PURPOSE OF REVIEW: To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). RECENT FINDINGS: Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride...

  12. High Cholesterol: Medicines to Help You

    Science.gov (United States)

    ... risks of taking these medicines. Talk to your doctor or pharmacist about all of the risks of taking your ... 20 should have their cholesterol checked by a doctor. Most people do not show ... Good vs. Bad Cholesterol Not all cholesterol in your blood ...

  13. Cholesterol Screening: A Practical Guide to Implementation.

    Science.gov (United States)

    Kingery, Paul M.

    1995-01-01

    Dry-chemistry cholesterol analysis has made screening feasible in a variety of settings. The article provides practical tips for the implementation of mass cholesterol screening using a portable dry-chemistry analyzer and discusses issues involved in conducting effective cholesterol screening programs from start to finish. (SM)

  14. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    Science.gov (United States)

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux.

  15. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  16. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S. (Clinical Research Institute of Montreal, Quebec (Canada))

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with ({sup 14}C)sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans.

  17. Biliary cholesterol secretion : More than a simple ABC

    NARCIS (Netherlands)

    Dikkers, Arne; Tietge, Uwe J. F.

    2010-01-01

    Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originat

  18. Physiological parameters

    International Nuclear Information System (INIS)

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  19. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    Science.gov (United States)

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis. PMID:22181072

  20. The effects of apolipoprotein F deficiency on high density lipoprotein cholesterol metabolism in mice.

    Directory of Open Access Journals (Sweden)

    William R Lagor

    Full Text Available Apolipoprotein F (apoF is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP based on its ability to inhibit cholesteryl ester transfer protein (CETP-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown. We previously showed that overexpression of Apolipoprotein F in mice reduced HDL cholesterol levels by 20-25% by accelerating clearance from the circulation. In order to investigate the effect of physiological levels of ApoF expression on HDL cholesterol metabolism, we generated ApoF deficient mice. Unexpectedly, deletion of ApoF had no substantial impact on plasma lipid concentrations, HDL size, lipid or protein composition. Sex-specific differences were observed in hepatic cholesterol content as well as serum cholesterol efflux capacity. Female ApoF KO mice had increased liver cholesteryl ester content relative to wild type controls on a chow diet (KO: 3.4+/-0.9 mg/dl vs. WT: 1.2+/-0.3 mg/dl, p<0.05. No differences were observed in ABCG1-mediated cholesterol efflux capacity in either sex. Interestingly, ApoB-depleted serum from male KO mice was less effective at promoting ABCA1-mediated cholesterol efflux from J774 macrophages relative to WT controls.

  1. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate.

    Science.gov (United States)

    Bonini, Marcelo G; Miyamoto, Sayuri; Di Mascio, Paolo; Augusto, Ohara

    2004-12-10

    Xanthine oxidase is generally recognized as a key enzyme in purine catabolism, but its structural complexity, low substrate specificity, and specialized tissue distribution suggest other functions that remain to be fully identified. The potential of xanthine oxidase to generate superoxide radical anion, hydrogen peroxide, and peroxynitrite has been extensively explored in pathophysiological contexts. Here we demonstrate that xanthine oxidase turnover at physiological pH produces a strong one-electron oxidant, the carbonate radical anion. The radical was shown to be produced from acetaldehyde oxidation by xanthine oxidase in the presence of catalase and bicarbonate on the basis of several lines of evidence such as oxidation of both dihydrorhodamine 123 and 5,5-dimethyl-1-pyrroline-N-oxide and chemiluminescence and isotope labeling/mass spectrometry studies. In the case of xanthine oxidase acting upon xanthine and hypoxanthine as substrates, carbonate radical anion production was also evidenced by the oxidation of 5,5-dimethyl-1-pyrroline-N-oxide and of dihydrorhodamine 123 in the presence of uricase. The results indicated that Fenton chemistry occurring in the bulk solution is not necessary for carbonate radical anion production. Under the conditions employed, the radical was likely to be produced at the enzyme active site by reduction of a peroxymonocarbonate intermediate whose formation and reduction is facilitated by the many xanthine oxidase redox centers. In addition to indicating that the carbonate radical anion may be an important mediator of the pathophysiological effects of xanthine oxidase, the results emphasize the potential of the bicarbonate-carbon dioxide pair as a source of biological oxidants. PMID:15448145

  2. How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids

    OpenAIRE

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2004-01-01

    How do cells sense and control their cholesterol levels? Whereas most of the cell cholesterol is located in the plasma membrane, the effectors of its abundance are regulated by a small pool of cholesterol in the endoplasmic reticulum (ER). The size of the ER compartment responds rapidly and dramatically to small changes in plasma membrane cholesterol around the normal level. Consequently, increasing plasma membrane cholesterol in vivo from just below to just above the basal level evoked an ac...

  3. Peptide mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  4. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    OpenAIRE

    A. C. Beynen; Katan, M B; Gent, van, H.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and bile acids minus cholesterol intake. In addition, we determined serum concentrations of lanosterol, a precursor of cholesterol and a possible indicator of cholesterol biosynthetic activity. The stud...

  5. Liver X Receptor β and Peroxisome Proliferator-Activated Receptor δ regulate cholesterol transport in cholangiocytes

    Science.gov (United States)

    Xia, Xuefeng; Jung, Dongju; Webb, Paul; Zhang, Aijun; Zhang, Bin; Li, Lifei; Ayers, Stephen D.; Gabbi, Chiara; Ueno, Yoshiyuki; Gustafsson, Jan-Åke; Alpini, Gianfranco; Moore, David D.; LeSage, Gene D.

    2012-01-01

    Nuclear receptors (NRs) play crucial roles in regulation of hepatic cholesterol synthesis, metabolism and conversion to bile acids, but their actions in cholangiocytes have not been examined. In this study, we investigated the roles of NRs in cholangiocyte physiology and cholesterol metabolism and flux. We examined the expression of NRs and other genes involved in cholesterol homeostasis in freshly isolated and cultured rodent cholangiocytes and found that these cells express a specific subset of NRs which includes Liver X Receptor β (LXRβ) and Peroxisome Proliferator-Activated Receptor δ (PPARδ). Activation of LXRβ and/or PPARδ in cholangiocytes induces ATP-binding cassette cholesterol transporter A1 (ABCA1) and increases cholesterol export at the basolateral compartment in polarized cultured cholangiocytes. In addition, PPARδ induces Niemann Pick C1 Like L1 (NPC1L1), which imports cholesterol into cholangiocytes and is expressed on the apical cholangiocyte membrane, via specific interaction with a PPRE within the NPC1L1 promoter. Based on these studies, we propose that (i) LXRβ and PPARδ coordinate NPC1L1/ABCA1 dependent vectorial cholesterol flux from bile through cholangiocytes and (ii) manipulation of these processes may influence bile composition with important applications in cholestatic liver disease and gallstone disease, serious health concerns for humans. PMID:22729460

  6. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    Science.gov (United States)

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion.

  7. Insights on cholesterol nutrition: shift to a new paradigm for better cardiovascular health

    Directory of Open Access Journals (Sweden)

    Ghose Bishwajit

    2013-11-01

    Full Text Available Cholesterol is an extremely important biological molecule involved in a multitude of biological processes regarded as vital for our survival. Yet, the function that has attracted more attention is its contribution to the development of atherosclerosis, a chronic inflammatory disease of blood vessels, which constitutes an underlying cause of coronary heart disease. Atherosclerosis is the principal cause of myocardial and cerebral infarction and remains the chief cause of death across many parts of the globe. Shockingly, despite its extreme physiological importance, cholesterol remains the most controversial nutrient ever. Misconception continues to exist not only among the people lacking knowledge in nutrition, but also among many nutrition researchers. The misconceptions surrounding cholesterol have been so pronounced and persistent that its beneficial effects are hardly heard of. Pharmaceutical companies are using this mass (cholesterolphobia to flourish their business. However, recent studies demonstrate that cholesterol plays a minor role in cardiovascular disease. The objectives of this article are twofold. Firstly we review research articles to analyze the existing ideas regarding the link between heart diseases and cholesterol. Then we provide an up-to-date information about some health impacts of cholesterol and highlight the effects of anti-cholesterol drugs based on the researches performed to date.

  8. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Chen, Ming-Luan; Su, Xin; Xiong, Wei; Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology. PMID:23922762

  9. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ming-Luan Chen

    Full Text Available Bioactive gibberellins (GAs play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20. An anion exchange/hydrophobic poly([2-(methacryloyloxyethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate(META-co-DVB-co-EDMA monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3 of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m of recombinant GA3-oxidase in Escherichia coli (E. coli cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.

  10. Deflavination of flavo-oxidases by nucleophilic reagents

    NARCIS (Netherlands)

    Zlateva, Theodora; Boteva, Raina; Filippi, Bruno; Veenhuis, Marten; Klei, Ida J. van der

    2001-01-01

    Using spectroscopic techniques we studied the effect of the nucleophilic reagents cyanide, cyanate and thiocyanate on three flavo-oxidases namely alcohol oxidase (AO), glucose oxidase (GOX) and D-amino acid oxidase (DAOX). All three ions, added at concentrations in the mM range, caused release of th

  11. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas

    OpenAIRE

    Houille-Vernes, Laura; Rappaport, Fabrice; Wollman, Francis-André; Alric, Jean; Johnson, Xenie

    2011-01-01

    By homology with the unique plastid terminal oxidase (PTOX) found in plants, two genes encoding oxidases have been found in the Chlamydomonas genome, PTOX1 and PTOX2. Here we report the identification of a knockout mutant of PTOX2. Its molecular and functional characterization demonstrates that it encodes the oxidase most predominantly involved in chlororespiration in this algal species. In this mutant, the plastoquinone pool is constitutively reduced under dark-aerobic conditions, resulting ...

  12. and white Swiss chard and maintenance of normal blood LDL-cholesterol concentration pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    (Beta vulgaris L. var. cicla) and white Swiss chard (Beta vulgaris L. var. cicla), is sufficiently characterised. The claimed effect, maintenance of normal blood LDL-cholesterol concentration, is a beneficial physiological effect. No human intervention studies from which conclusions could be drawn...... Swiss chard and white Swiss chard and maintenance of normal blood LDL-cholesterol concentration....

  13. Physiological breeding.

    Science.gov (United States)

    Reynolds, Matthew; Langridge, Peter

    2016-06-01

    Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. PMID:27161822

  14. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  15. Plant physiology

    CERN Document Server

    Duca, Maria

    2015-01-01

    This book covers all aspects of plant physiology: plant cell physiology, water regime of plants, photosynthesis, mineral nutrition, plant respiration, plant growth and development, movements in plants, signal perception and transduction etc. It focuses on the fundamental principles of plant physiology and biochemistry from the molecular level to whole plants, on the mechanisms of plant-environment interactions. The book is intended for students (biologists, physiologists, biochemists, biophysicists, ecologists, geneticists), teachers and researchers. Particular emphasis is given to recent research advances made on national and international levels, as well as to personal experimental results of the author that are relevant for a deeper understanding of processes and for practical implementation of gained knowledge. An essential amount of illustrative material (graphics, images, schemes, illustrations) completes the text and supplies additional information in an accessible manner. At the end of each chapter...

  16. Two-phase synthesis of hydrophobic ionic liquid-capped gold nanoparticles and their application for sensing cholesterol

    International Nuclear Information System (INIS)

    Highlights: • A novel cholesterol biosensor was constructed based on ChOx-IL-capped-AuNPs/GCE. • IL-capped-AuNPs was synthesized using two-phase synthesis and employed as a conducting matrix to immobilize ChOx. • Direct electrochemistry of ChOx on the electrode was obtained. • The ChOx-IL-capped-AuNPs/GCE exhibit remarkable performance for cholesterol detection. - Abstract: A novel scheme for fabrication of hydrophobic ionic liquid-capped gold nanoparticles (IL-capped AuNPs) modified electrode is presented and its application potential for cholesterol biosensor is investigated. Highly stable gold nanoparticles were characterized by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated that IL-capped AuNPs nanocomposites showed excellent electrical conductivity. Furthermore, cholesterol oxidase (ChOx) was directly immobilized on the IL-capped AuNPs nanocomposite, and then the direct electrochemistry of ChOx on the modified glass carbon electrode (GCE) was obtained. As a new platform in cholesterol analysis, ChOx-IL-capped AuNPs/GCE exhibited a linear response to cholesterol in the range of 0.1–50 μM with a detection limit of 0.033 μM. Therefore, hydrophobic ionic liquid-capped gold nanoparticles would serve as a good candidate material to construct the related enzyme biosensors

  17. Monitoring of cholesterol oxidation in a lipid bilayer membrane using streptolysin O as a sensing and signal transduction element.

    Science.gov (United States)

    Shoji, Atsushi; Ikeya, Kana; Aoyagi, Miki; Takatsuji, Ryutaro; Yanagida, Akio; Shibusawa, Yoichi; Sugawara, Masao

    2016-09-01

    Streptolysin O (SLO), which recognizes sterols and forms nanopores in lipid membranes, is proposed as a sensing element for monitoring cholesterol oxidation in a lipid bilayer. The structural requirements of eight sterols for forming nanopores by SLO confirmed that a free 3-OH group in the β-configuration of sterols is required for recognition by SLO in a lipid bilayer. The extent of nanopore formation by SLO in lipid bilayers increased in the order of cholestanolcholesterolcholesterol and in a sterol concentration-dependent manner. The immobilization of liposomes consisting of PC, cholesterol and 4-cholesten-3-one exhibited a linear relationship between calcein permeability and the molar ratio of cholesterol and 4-cholesten-3-one. The SLO-based method was successfully applied for monitoring of cholesterol oxidase-mediated oxidation of cholesterol in a lipid bilayer. The potential of the SLO nanopore-based method for monitoring cholesterol oxidation in a lipid bilayer by other oxidative enzymes is also discussed. PMID:27362457

  18. Vanillyl-alcohol oxidase, a tasteful biocatalyst

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Mattevi, A.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    The covalent flavoenzyme vanillyl-alcohol oxidase (VAO) is a versatile biocatalyst. It converts a wide range of phenolic compounds by catalysing oxidation, deamination, demethylation, dehydrogenation and hydroxylation reactions. The production of natural vanillin, 4-hydroxybenzaldehyde, coniferyl al

  19. The Role of Cholesterol in Cancer.

    Science.gov (United States)

    Kuzu, Omer F; Noory, Mohammad A; Robertson, Gavin P

    2016-04-15

    The roles played by cholesterol in cancer development and the potential of therapeutically targeting cholesterol homeostasis is a controversial area in the cancer community. Several epidemiologic studies report an association between cancer and serum cholesterol levels or statin use, while others suggest that there is not one. Furthermore, the Cancer Genome Atlas (TCGA) project using next-generation sequencing has profiled the mutational status and expression levels of all the genes in diverse cancers, including those involved in cholesterol metabolism, providing correlative support for a role of the cholesterol pathway in cancer development. Finally, preclinical studies tend to more consistently support the role of cholesterol in cancer, with several demonstrating that cholesterol homeostasis genes can modulate development. Because of space limitations, this review provides selected examples of the epidemiologic, TCGA, and preclinical data, focusing on alterations in cholesterol homeostasis and its consequent effect on patient survival. In melanoma, this focused analysis demonstrated that enhanced expression of cholesterol synthesis genes was associated with decreased patient survival. Collectively, the studies in melanoma and other cancer types suggested a potential role of disrupted cholesterol homeostasis in cancer development but additional studies are needed to link population-based epidemiological data, the TCGA database results, and preclinical mechanistic evidence to concretely resolve this controversy. Cancer Res; 76(8); 2063-70. ©2016 AACR. PMID:27197250

  20. CHOLESTEROL BIOTRANSFORMATION TO CHOLESTA-4, 6-DIEN-3-OL AND EFFECT OF ASSIMILATION ON ADHESION PROPERTIES OF LACTOBACILLUS HELVETICUS CD6

    Directory of Open Access Journals (Sweden)

    Jayesh J. Ahire

    2014-04-01

    Full Text Available Cholesterol biotransformation by Lactobacillus helveticus CD6 was observed in minimal medium supplemented with 3 mM cholesterol when grown for 120 h at 37 °C. Its gas chromatography-mass spectrometry (GC-MS showed production of cholesta-4, 6-dien-3-ol and cholest-5-en-3-ol (3.beta with 12 U ∕mg cholesterol oxidase-like enzyme activity. The cholesterol assimilation was evaluated at varied concentrations of bile salt in MRS medium. The cell survival and cholesterol assimilation was found to be adversely affected in presence of bile salt. Microscopic studies revealed changed cell morphology when grown with cholesterol. The cell adhesion properties like autoaggregation, microbial adhesion to solvents where found to be affected by cholesterol. The 7.49 % cell adhesion to ethyl acetate indicates the decrease in electron accepting properties of cell surface, while 9 % decrease in xylene adhesion and 13 % decrease in autoaggregation was observed which would be helpful in cholesterol lowering when supplemented in the form of probiotic preparation.

  1. Exercise physiology

    DEFF Research Database (Denmark)

    Kiens, Bente; Richter, Erik; Wojtaszewski, Jørgen

    2014-01-01

    The passing of Professor Bengt Saltin on September 12, 2014 truly marks the end of an era. As editor of the Journal of Applied Physiology and one of Bengt’s many collaborators and colleagues, I wanted the Journal to celebrate his many seminal contributions by means of an Editorial. Professor Bente...

  2. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice

    OpenAIRE

    Cui, Li-li; Lu, Yu-Sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study,...

  3. A broad distribution of the alternative oxidase in microsporidian parasites.

    Directory of Open Access Journals (Sweden)

    Bryony A P Williams

    2010-02-01

    Full Text Available Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX, a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1 as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.

  4. Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Md. Abdul, E-mail: abdulnpl@gmail.com; Dutta, Jiten Ch. [Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 (India)

    2014-08-04

    We have reported fabrication and characterization of polyaniline (PANI)/zinc oxide (ZnO) membrane-based junctionless carbon nanotube field effect transistor deposited on indium tin oxide glass plate for the detection of cholesterol (0.5–22.2 mM). Cholesterol oxidase (ChOx) has been immobilized on the PANI/ZnO membrane by physical adsorption technique. Electrical response has been recorded using digital multimeter (Agilent 3458A) in the presence of phosphate buffer saline of 50 mM, pH 7.0, and 0.9% NaCl contained in a glass pot. The results of response studies for cholesterol reveal linearity as 0.5–16.6 mM and improved sensitivity of 60 mV/decade in good agreement with Nernstian limit ∼59.2 mV/decade. The life time of this sensor has been found up to 5 months and response time of 1 s. The limit of detection with regression coefficient (r) ∼ 0.998 and Michaelis-Menten constant (K{sub m}) were found to be ∼0.25 and 1.4 mM, respectively, indicating high affinity of ChOx to cholesterol. The results obtained in this work show negligible interference with glucose and urea.

  5. The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent.

    Directory of Open Access Journals (Sweden)

    Eric Di Pasquale

    Full Text Available BACKGROUND: Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic transporters. This issue is of major importance since anandamide transport through the plasma membrane is crucial for its biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of cholesterol in membrane uptake and transport of anandamide. METHODOLOGY/PRINCIPAL FINDINGS: Molecular modeling simulations suggested that anandamide can adopt a shape that is remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range, anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was assessed by: i the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM on cholesterol monolayers, and ii the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers. In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidylcholine bilayers dose-dependently stimulated the translocation of anandamide. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that cholesterol stimulates both the insertion of anandamide into synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides putative anandamide protein

  6. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    OpenAIRE

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-01-01

    Catechol oxidases and tyrosinases belong to the family of polyphenol oxidases (PPOs). In contrast to tyrosinases, catechol oxidases were so far defined to lack hydroxylase activity toward monophenols. Aurone synthase (AUS1) is a plant catechol oxidase that specializes in the conversion of chalcones to aurones (flower pigments). We evidence for the first time, to our knowledge, hydroxylase activity for a catechol oxidase (AUS1) toward its natural monophenolic substrate (chalcone). The presente...

  7. Biliary cholesterol secretion: More than a simple ABC

    Institute of Scientific and Technical Information of China (English)

    Arne; Dikkers; Uwe; JF; Tietge

    2010-01-01

    Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the f inal step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the main pathophys...

  8. Raising HDL cholesterol in women

    Directory of Open Access Journals (Sweden)

    Danny J Eapen

    2009-11-01

    Full Text Available Danny J Eapen1, Girish L Kalra1, Luay Rifai1, Christina A Eapen2, Nadya Merchant1, Bobby V Khan11Emory University School of Medicine, Atlanta, GA, USA; 2University of South Florida School of Medicine, Tampa, FL, USAAbstract: High-density lipoprotein cholesterol (HDL-C concentration is essential in the determination of coronary heart disease (CHD risk in women. This is especially true in the postmenopausal state, where lipid profiles and CHD risk mimic that of age-matched men. Thus, interventions designed to reduce CHD risk by raising HDL-C levels may have particular significance during the transition to menopause. This review discusses HDL-C-raising therapies and the role of HDL in the primary prevention of CHD in women. Lifestyle-based interventions such as dietary change, aerobic exercise regimens, and smoking cessation are initial steps that are effective in raising HDL-C, and available data suggest women respond similarly to men with these interventions. When combined with pharmacotherapy, the effects of these lifestyle alterations are further amplified. Though studies demonstrating gender-specific differences in therapy are limited, niacin continues to be the most effective agent in raising HDL-C levels, especially when used in combination with fibrate or statin therapy. Emerging treatments such as HDL mimetic therapy show much promise in further raising HDL-C levels and improving cardiovascular outcomes.Keywords: high-density lipoprotein, HDL, women, cholesterol, heart disease

  9. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the modification of the authorisation of a health claim related to plant sterol esters and lowering blood LDL-cholesterol; high blood LDL-cholesterol is a risk factor in the development

    DEFF Research Database (Denmark)

    Tetens, Inge

    of a health claim related to plant sterol esters and lowering blood LDL-cholesterol (high blood LDL-cholesterol is a risk factor in the development of (coronary) heart disease), pursuant to Article 14 of Regulation (EC) No 1924/2006. The applicant requested an extension of the conditions of use to powder...... supplements to be diluted in water at a dose of 2 g per day, which would lower blood LDL-cholesterol concentrations by “5.4-8.1 %” after six weeks of daily consumption. Plant sterol esters are sufficiently characterised. Lowering blood LDL-cholesterol concentrations is a beneficial physiological effect...... and elevated blood LDL-cholesterol concentration is a risk factor for coronary heart disease. The target population is subjects who need and want to lower their blood cholesterol. In weighing the evidence, the Panel took into account that only one human intervention study showed a reduction in blood LDL-cholesterol...

  10. Structure of Cholesterol in Lipid Rafts

    Science.gov (United States)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  11. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins.

    Science.gov (United States)

    Duangjai, Acharaporn; Ingkaninan, Kornkanok; Praputbut, Sakonwun; Limpeanchob, Nanteetip

    2013-04-01

    Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.

  12. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Lund, Frederik Wendelboe; Röhrl, Clemens;

    2016-01-01

    Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy...... is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol......), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences...

  13. A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: evaluation of the diabetes-accelerated atherosclerosis risk.

    Science.gov (United States)

    Huang, Qilin; An, Yarui; Tang, Linlin; Jiang, Xiaoli; Chen, Hua; Bi, Wenji; Wang, Zhongchuan; Zhang, Wen

    2011-11-30

    In this paper, a novel dual enzymatic-biosensor is described for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the risk of diabetes-accelerated atherosclerosis. The biosensor was constructed by a three-step method. First, a poly-thionine (PTH) film was assembled on the surface of glassy carbon electrode by cyclic voltammetric electropolymerization of thionine, which serves as an electron transfer mediator (ETM). Second, gold nanoparticles (GNPs) were covered on the surface of PTH facilitating the electron transfer between glucose oxidase (GOx), cholesterol oxidase (ChOx) and electrode. Finally, the enzymes, GOx, cholesterol esterase (ChE), and ChOx, were covalently attached to the PTH layer through a chitosan (CH) linker. The PTH coupled with GNPs provides good selectivity, high sensitivity and little crosstalk for the dual enzymatic-biosensor. The developed biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibiting a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 μM, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 μM. The results of the diabetic mice demonstrated that the cholesterol level did not change obviously with the increase of glucose level in serum, while the cholesterol level was induced with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, which is the hallmark of early atherosclerosis. This study provides useful further evidences for the development of diabetes-accelerated atherosclerosis. PMID:22027130

  14. Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing.

    Science.gov (United States)

    Kim, Moon Il; Shim, Jongmin; Li, Taihua; Lee, Jinwoo; Park, Hyun Gyu

    2011-09-12

    A nanostructured multicatalyst system consisting of Fe(3)O(4) magnetic nanoparticles (MNPs) as peroxidase mimetics and an oxidative enzyme entrapped in large-pore-sized mesoporous silica has been developed for convenient colorimetric detection of biologically important target molecules. The construction of the nanocomposites begins with the incorporation of MNPs on the walls of mesocellular silica pores by impregnating Fe(NO(3))(3)·9H(2)O, followed by the immobilization of oxidative enzymes. Glutaraldehyde crosslinking was employed to prevent enzymes leaching from the pores and led to over 20 wt% loading of the enzyme. The oxidase in the nanocomposite generates H(2)O(2) through its catalytic action for target molecules and subsequently activates MNPs to convert selected substrates into colored products. Using this strategy, two different biosensing systems were constructed employing glucose oxidase and cholesterol oxidase and their analytical capabilities were successfully verified by colorimetrically detecting the corresponding target molecules with excellent selectivity, sensitivity, reusability, and stability. Future potential applications of this technology range from biosensors to multicatalyst reactors. PMID:21837719

  15. Environmental physiology

    International Nuclear Information System (INIS)

    Summaries of research projects conducted during 1978 and 1979 are presented. Subject areas include: the effects of environmental pollutants on homeostasis of the hematopoietic system; pollutant effects on steroid metabolism; pollutant effects on pulmonary macrophages; effects of toxic gases on lung cells; the development of immunological methods for assessing lung damage at the cellular level; the response of erythropoietin concentration to various physiological changes; and the study of actinide metabolism in monkey skeletons

  16. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes

    OpenAIRE

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Landrock, Kerstin K.; Martin, Gregory G.; Landrock, Danilo; Payne, H. Ross; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm

    2012-01-01

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-af...

  17. Oxidised LDL, HDL cholesterol, LDL cholesterol levels in patients of coronary artery disease

    OpenAIRE

    Ghosh, Joya; T K Mishra; Rao, Y. N.; Aggarwal, S. K.

    2006-01-01

    Coronary artery disease is a major cause of morbidity and has various risk factors. Lipid profile i.e. low HDL-cholesterol, high LDL cholesterol, high total cholesterol, high triglycerides playing important role in its causation. Recently interest has been shown in the oxidized fraction of LDL as one of the risk factors. In the present study 60 age and sex matched normal healthy individuals were taken as controls and 60 patients of CAD were taken. Cholesterol was measured by enzymatic method,...

  18. Mast Cells and HDL Studies on Cholesterol Efflux and Reverse Cholesterol Transport

    OpenAIRE

    Kareinen, Ilona

    2015-01-01

    Atherosclerosis is an inflammatory disease characterized by the accumulation of cholesterol in the arterial intima and consequently the formation of atherosclerotic plaques. Formation of these plaques is initiated by the appearance of macrophage foam cell in the arterial intima. Foam cells are formed as excessive cholesterol accumulates in the cytosol of macrophages and finally the net influx exceeds the efflux of cholesterol. Excessive accumulation of chemically modified cholesterol in foam ...

  19. Dietary cholesterol and fats at a young age : do they influence cholesterol metabolism in adult life?

    NARCIS (Netherlands)

    Temmerman, A M; Vonk, R J; Niezen-Koning, K; Berger, R.; Fernandes, J

    1989-01-01

    The effects of dietary cholesterol and fats on cholesterol metabolism later in life were studied in Mongolian gerbils. Three groups were given a basic diet with soybean oil, palm kernel oil amounting to 8.75% (w/w), or the basic diet only. In three other groups, cholesterol (0.05%) was added to the

  20. From blood to gut : Direct secretion of cholesterol via transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.

    2010-01-01

    The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol lowering therapies By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body For a long time this removal via

  1. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan Albert; Tietge, Uwe J.F.; Brufau Dones, Gemma; Groen, Albert K

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins we

  2. NADPH oxidases: new actors in thyroid cancer?

    Science.gov (United States)

    Ameziane-El-Hassani, Rabii; Schlumberger, Martin; Dupuy, Corinne

    2016-08-01

    Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes. PMID:27174022

  3. Inherited Cholesterol Disorder Significantly Boosts Heart Risks

    Science.gov (United States)

    ... leaves her cholesterol untreated, her risk of coronary heart disease death or nonfatal heart attack would be comparable to ... Recent Health News Related MedlinePlus Health Topics Cholesterol Heart Diseases--Prevention ... Us Get email updates Subscribe to RSS Follow us ...

  4. Computational model for monitoring cholesterol metabolism.

    Science.gov (United States)

    Selvakumar, R; Rashith Muhammad, M; Poornima Devi, G

    2014-12-01

    A non-deterministic finite automaton is designed to observe the cholesterol metabolism with the states of acceptance and rejection. The acceptance state of the automaton depicts the normal level of metabolism and production of good cholesterol as an end product. The rejection state of this machine shows the inhibition of enzymatic activity in cholesterol synthesis and removal of free fatty acids. The deficiency in human cholesterol metabolism pathway results in abnormal accumulation of cholesterol in plasma, arterial tissues leading to diseases such as hypercholesterolemia, atherosclerosis respectively and formation of gallstones. The designed machine can be used to monitor the cholesterol metabolism at molecular level through regulation of enzymes involved in the biosynthesis and metabolism of cholesterol for the treatment of diseases incident due to the respective metabolic disorder. In addition, an algorithm for this machine has been developed to compare the programmed string with the given string. This study demonstrates the construction of a machine that is used for the development of molecular targeted therapy for the disorders in cholesterol metabolism. PMID:26396654

  5. Cholesterol, the central lipid of mammalian cells

    NARCIS (Netherlands)

    Maxfield, F. R.; van Meer, G.

    2010-01-01

    Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, invo

  6. Cholesterol modulates bitter taste receptor function.

    Science.gov (United States)

    Pydi, Sai Prasad; Jafurulla, Md; Wai, Lisa; Bhullar, Rajinder P; Chelikani, Prashen; Chattopadhyay, Amitabha

    2016-09-01

    Bitter taste perception in humans is believed to act as a defense mechanism against ingestion of potential toxic substances. Bitter taste is perceived by 25 distinct bitter taste receptors (T2Rs) which belong to the family of G protein-coupled receptors (GPCRs). In the overall context of the role of membrane lipids in GPCR function, we show here that T2R4, a representative member of the bitter taste receptor family, displays cholesterol sensitivity in its signaling function. In order to gain further insight into cholesterol sensitivity of T2R4, we mutated two residues Tyr114(3.59) and Lys117(3.62) present in the cholesterol recognition amino acid consensus (CRAC) motif in T2R4 with alanines. We carried out functional characterization of the mutants by calcium mobilization, followed by cholesterol depletion and replenishment. CRAC motifs in GPCRs have previously been implicated in preferential cholesterol association. Our analysis shows that the CRAC motif represents an intrinsic feature of bitter taste receptors and is conserved in 22 out of 25 human T2Rs. We further demonstrate that Lys117, an important CRAC residue, is crucial in the reported cholesterol sensitivity of T2R4. Interestingly, cholesterol sensitivity of T2R4 was observed at quinine concentrations in the lower mM range. To the best of our knowledge, our results represent the first report addressing the molecular basis of cholesterol sensitivity in the function of taste receptors. PMID:27288892

  7. Occupational physiology

    CERN Document Server

    Toomingas, Allan; Tornqvist, Ewa Wigaeus

    2011-01-01

    In a clear and accessible presentation, Occupational Physiology focuses on important issues in the modern working world. Exploring major public health problems-such as musculoskeletal disorders and stress-this book explains connections between work, well-being, and health based on up-to-date research in the field. It provides useful methods for risk assessment and guidelines on arranging a good working life from the perspective of the working individual, the company, and society as a whole.The book focuses on common, stressful situations in different professions. Reviewing bodily demands and r

  8. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus).

    Science.gov (United States)

    Omidi, Arash; Ansari nik, Hossein; Ghazaghi, Mahmood

    2013-02-01

    Ten blue-neck male ostriches (Struthio camelus) were fed Prosopis farcta beans throughout a 30-day experiment. Blood samples were collected from ostriches on days 0 and 30 to measure levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, total serum protein, albumin, globulin, cholesterol, calcium, inorganic phosphorus, the activity of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase (γ-GT). From days 0 to 30, HDL cholesterol, total protein, and globulins levels increased significantly whereas LDL cholesterol, inorganic phosphorus, and γ-GT activity decreased significantly.

  9. Biliary cholesterol excretion: A novel mechanism that regulates dietary cholesterol absorption

    OpenAIRE

    Sehayek, Ephraim; Ono, Jennie G.; Shefer, Sarah; Nguyen, Lien B.; Wang, Nan; Batta, Ashok K.; Salen, Gerald; Smith, Jonathan D.; Tall, Alan R.; Breslow, Jan L.

    1998-01-01

    The regulation of dietary cholesterol absorption was examined in C57BL/6 and transgenic mice with liver overexpression of the scavenger receptor BI (SR-BI Tg). In C57BL/6 animals, feeding 0.02 to 1% (wt/wt) dietary cholesterol resulted in a dose-dependent decrease in the percentage of dietary cholesterol absorbed. A plot of total daily mass of dietary cholesterol absorbed versus the percentage by weight of cholesterol in the diet yielded a curve suggesting a saturable process with a Km of 0.4...

  10. The Structure of Cholesterol in Lipid Rafts

    CERN Document Server

    Toppozini, Laura; Armstrong, Clare L; Yamani, Zahra; Kucerka, Norbert; Schmid, Friederike; Rheinstaedter, Maikel C

    2014-01-01

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules we observe raft-like structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to orderin...

  11. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.;

    2005-01-01

    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers...... in a monoclinic cholesterol . H2O phase, has been monitored and their structures characterized to near atomic resolution. Crystallographic evidence is presented that this multilayer phase is similar to that of a reported metastable cholesterol phase of undetermined structure obtained from bile before...... transformation to the triclinic phase of cholesterol . H2O, the thermodynamically stable macroscopic form. According to grazing incidence x-ray diffraction measurements and crystallographic data, a transformation from the monoclinic film structure to a multilayer of the stable monohydrate phase involves...

  12. Is Xanthine oxidase activity in polycystic ovary syndrome associated with inflammatory and cardiovascular risk factors?

    Science.gov (United States)

    Isık, Hatice; Aynıoglu, Oner; Tımur, Hakan; Sahbaz, Ahmet; Harma, Muge; Can, Murat; Guven, Berrak; Alptekin, Husnu; Kokturk, Furuzan

    2016-08-01

    The aim of this study is to examine women with polycystic ovary syndrome (PCOS) to determine the relationship between xanthine oxidase (XO) and oxidative stress, inflammatory status, and various clinical and biochemical parameters. In this cross-sectional study a total of 83 women including 45 PCOS patients and 38 healthy women were enrolled. We collected blood samples for XO and superoxide dismutase (SOD) activity, hormone levels, cholesterol values, and inflammatory markers. Body mass index (BMI) , waist-to-hip ratio (WHR), and blood pressure were assessed. Blood samples were taken for hormonal levels, cholesterol levels, fasting plasma glucose (FPG), fasting plasma insulin (FPI), homeostatic model assessment-insulin resistance (HOMA-IR) index, quantitative insulin sensitivity check index (QUICKI), C-reactive protein (CRP), white blood cell and neutrophil counts, XO and SOD activities. The basal hormone levels, triglyceride (TG) levels, TG/HDL-C (high density lipoprotein-cholesterol) ratios FPG, FPI and HOMA-IR levels were higher in PCOS patients compared to controls (pPCT) values, CRP, and XO activity were significantly increased, however SOD activity was decreased in PCOS patients (pPCT, FPG, FPI, and HOMA-IR, and negatively correlated with QUICKI levels. In conclusion, XO is a useful marker to assess oxidative stress in PCOS patients. Positive correlations between XO and inflammatory markers and cardiovascular disease risk factors suggest that XO plays an important role in the pathogenesis of PCOS and its metabolic complications. PMID:27295433

  13. Major Risk Factors for Heart Disease: High Blood Cholesterol

    Science.gov (United States)

    ... Major Risk Factors for Heart Disease High Blood Cholesterol High blood cholesterol is another major risk factor for heart disease ... can do something about. The higher your blood cholesterol level, the greater your risk for developing heart ...

  14. High Blood Cholesterol: What You Need to Know

    Science.gov (United States)

    ... Audiences Contact The Health Information Center High Blood Cholesterol: What You Need To Know Table of Contents ... Lifestyle Changes (TLC) Drug Treatment Resources Why Is Cholesterol Important? Your blood cholesterol level has a lot ...

  15. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and b

  16. The Structural Basis of Cholesterol Accessibility in Membranes

    OpenAIRE

    Olsen, Brett N.; Bielska, Agata A.; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-01-01

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes mo...

  17. Perturbed cholesterol homeostasis in aging spinal cord.

    Science.gov (United States)

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  18. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    Directory of Open Access Journals (Sweden)

    Corcos Laurent

    2008-11-01

    Full Text Available Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model of this pathway has been proposed until now. Results We set up a computational framework to dynamically analyze large biological networks. This framework associates a classical and computationally efficient synchronous Boolean analysis with a newly introduced method based on Markov chains, which identifies spurious cycles among the results of the synchronous simulation. Based on this method, we present here the results of the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol Response Element Binding Proteins (SREBPs, as well as the modeling of the action of statins, inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known biochemical features of the pathway. Conclusion We believe that the method described here to identify spurious cycles opens new routes to compute large and biologically relevant models, thanks to the computational efficiency of synchronous simulation. Furthermore, to the best of our knowledge, we present here the first dynamic systems biology model of the human cholesterol pathway and several of its key regulatory control elements, hoping it would provide a good basis to perform in silico

  19. 21 CFR 866.2420 - Oxidase screening test for gonorrhea.

    Science.gov (United States)

    2010-04-01

    ... Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase... ingredient that will react with cytochrome oxidase. When cytochrome oxidase is present, the swab turns a...

  20. Effect of cholesterol on the physical properties of pulmonary surfactant films: Atomic force measurements study

    International Nuclear Information System (INIS)

    Atomic force measurements were performed on supported pulmonary surfactant (PS) films to address the effect of cholesterol on the physical properties of lung surfactant films. We recently found that cholesterol in excess of a physiological proportion abolishes surfactant function, and is the reason that surfactant fails to lower the surface tension upon compression. In this study, we investigated how the loss of mechanical stability observed earlier is related to the local mechanical properties of the film by local force measurements. The presence of 20% of cholesterol in bovine lipid extract surfactant (BLES) resulted in a decrease of the observed adhesive interaction, and an increase in rigidity of the film. We discuss the implication the increased rigidity might have on the functional failure of PS

  1. HDL: More Than Just Cholesterol

    Directory of Open Access Journals (Sweden)

    Anna Meilina

    2010-12-01

    Full Text Available BACKGROUND: Plasma concentration of high density lipoprotein cholesterol (HDL-C are strongly, consistenly, and independently inversely associated with risk of atheroschlerotic cardiovascular disease (CVD. However, the last decade has seen several observations that do not follow this simple script. CONTENT: A proteomic analysis of HDL has given us an intriguing glimpse into novel components of HDL. HDL isolated from normal humans contains several classes of proteins, including not only apolipoproteins, but also complement regulatory proteins, endopeptidase inhibitors, hemopexin, and acute phase response proteins. These observations raise the possibility of unsuspected roles for HDL. HDL delivery of complement proteins would implicate HDL in innate immunity. Serine proteinase inhibitors would enable HDL to modulate proteolysis of the vessel wall. HDL from patients with coronary artery disease was enriched in apoE, apoC-IV, apoA-IV, Paraoxonase (PON, and complement factor C3. Highlighted additional mechanisms through which HDL protects the vessel wall are: HDL improves vascular function, decreases vascular inflammation, detoxifies radicals, and limits thrombosis. SUMMARY: Both inter- and intra-organ desynchrony may be involved in the pathogenesis of cardiometabolic disease attributable to effects in brain and multiple metabolic tissues including heart, liver, fat, muscle, pancreas, and gut. Efforts to dissect the molecular mediators that coordinate circadian, metabolic, and cardiovascular systems may ultimately lead to both improved therapeutics and preventive interventions. KEYWORDS: HDL, Apo–A1, RCT, inflammation, HDL dysfunction, HDL proteome, HDL & Apo-A1 mimetics.

  2. Lysyl oxidase mediates hypoxic control of metastasis

    DEFF Research Database (Denmark)

    Erler, Janine Terra; Giaccia, Amato J

    2006-01-01

    Hypoxic cancer cells pose a great challenge to the oncologist because they are especially aggressive, metastatic, and resistant to therapy. Recently, we showed that elevation of the extracellular matrix protein lysyl oxidase (LOX) correlates with metastatic disease and is essential for hypoxia...

  3. Diet serum cholesterol and coronary diseases

    Directory of Open Access Journals (Sweden)

    Narindar Nath

    1961-07-01

    Full Text Available The probable sequence of events leading to atherosclerotic disease of the coronary artery and heart attack are briefly described. Blood cholesterol as a casual agent in atherosclerosis and how blood cholesterol can be modified are discussed. The effects of various dietary components particularly quality and quantity of fat and protein on the blood cholesterol concentration are discussed and it is emphasized that more work needs to be done to ascertain the role of individual components of the diet and their relative importance in atherogenesis.

  4. The role of cholesterol in membrane fusion.

    Science.gov (United States)

    Yang, Sung-Tae; Kreutzberger, Alex J B; Lee, Jinwoo; Kiessling, Volker; Tamm, Lukas K

    2016-09-01

    Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion. PMID:27179407

  5. Nanostructured zinc oxide thin film for application to surface plasmon resonance based cholesterol biosensor

    Science.gov (United States)

    Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay

    2015-11-01

    ZnO thin film was deposited on gold coated glass prism by RF sputtering technique in glancing angle deposition (GLAD) configuration. The structural, morphological and optical properties of the deposited film were investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Fourier Transform Infrared (FTIR) Spectroscopy. ZnO coated Au prisms (ZnO/Au/prism) were used to excite surface plasmons in Kretschmann configuration at the Au- ZnO interface on a laboratory assembled Surface Plasmon Resonance (SPR) measurement setup. Cholesterol oxidase (ChOx) enzyme was immobilized on the ZnO/Au/prism structure by physical adsorption technique. Polydimethylsiloxane (PDMS) microchannels were fabricated over ChOx/ZnO/Au/prism system and various concentrations of cholesterol were passed over the sensor surface. The concentration of cholesterol was varied from 0.12 to 10.23 mM and the SPR reflectance curves were recorded in both static as well as dynamic modes demonstrating a high sensitivity of 0.36° mM-1.

  6. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  7. A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: Evaluation of the diabetes-accelerated atherosclerosis risk

    International Nuclear Information System (INIS)

    simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the risk of diabetes-accelerated atherosclerosis. The biosensor was constructed by a three-step method. First, a poly-thionine (PTH) film was assembled on the surface of glassy carbon electrode by cyclic voltammetric electropolymerization of thionine, which serves as an electron transfer mediator (ETM). Second, gold nanoparticles (GNPs) were covered on the surface of PTH facilitating the electron transfer between glucose oxidase (GOx), cholesterol oxidase (ChOx) and electrode. Finally, the enzymes, GOx, cholesterol esterase (ChE), and ChOx, were covalently attached to the PTH layer through a chitosan (CH) linker. The PTH coupled with GNPs provides good selectivity, high sensitivity and little crosstalk for the dual enzymatic-biosensor. The developed biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibiting a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 μM, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 μM. The results of the diabetic mice demonstrated that the cholesterol level did not change obviously with the increase of glucose level in serum, while the cholesterol level was induced with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, which is the hallmark of early atherosclerosis. This study provides useful further evidences for the development of diabetes-accelerated atherosclerosis.

  8. A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: Evaluation of the diabetes-accelerated atherosclerosis risk

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qilin; An Yarui; Tang Linlin; Jiang Xiaoli; Chen Hua; Bi Wenji [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Wang Zhongchuan [Department of Anorectal Surgery, Xinhua Hospital, Affiliated to School of Medicine of Shanghai Jiaotong University, Shanghai 200092 (China); Zhang Wen, E-mail: wzhang@chem.ecnu.edu.cn [Department of Chemistry, East China Normal University, Shanghai 200062 (China)

    2011-11-30

    evidences for diabetes-accelerate atherosclerosis. - Abstract: In this paper, a novel dual enzymatic-biosensor is described for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages (PMs) of diabetic mice to evaluate the risk of diabetes-accelerated atherosclerosis. The biosensor was constructed by a three-step method. First, a poly-thionine (PTH) film was assembled on the surface of glassy carbon electrode by cyclic voltammetric electropolymerization of thionine, which serves as an electron transfer mediator (ETM). Second, gold nanoparticles (GNPs) were covered on the surface of PTH facilitating the electron transfer between glucose oxidase (GOx), cholesterol oxidase (ChOx) and electrode. Finally, the enzymes, GOx, cholesterol esterase (ChE), and ChOx, were covalently attached to the PTH layer through a chitosan (CH) linker. The PTH coupled with GNPs provides good selectivity, high sensitivity and little crosstalk for the dual enzymatic-biosensor. The developed biosensor had good electrocatalytic activity toward the oxidations of glucose and cholesterol, exhibiting a linear range from 0.008 mM to 6.0 mM for glucose with a detection limit of 2.0 {mu}M, and a linear range from 0.002 mM to 1.0 mM for cholesterol with a detection limit of 0.6 {mu}M. The results of the diabetic mice demonstrated that the cholesterol level did not change obviously with the increase of glucose level in serum, while the cholesterol level was induced with the increase of the glucose level in PMs. Previous studies have shown that the large accumulation of cholesterol in macrophage could lead to macrophage foam cell formation, which is the hallmark of early atherosclerosis. This study provides useful further evidences for the development of diabetes-accelerated atherosclerosis.

  9. What Do My Cholesterol Levels Mean?

    Science.gov (United States)

    ... goes beyond cholesterol levels alone and considers overall risk assessment and reduction. It's still important to know your numbers, but work with your healthcare provider to treat your risk. What numbers do ...

  10. How to Get Your Cholesterol Tested

    Science.gov (United States)

    ... six years as part of a cardiovascular risk assessment. You may need to have your cholesterol and other risk factors assessed more often if your risk is elevated. Your healthcare provider will talk with you about what your ...

  11. Cholesterol oxidation products and their biological importance.

    Science.gov (United States)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr; Rog, Tomasz; Vattulainen, Ilpo

    2016-09-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have a substantial effect on membrane properties. In this spirit, this review describes the biological importance and the roles of oxysterols in the human body. We focus primarily on the effect of oxysterols on lipid membranes, but we also consider other issues such as enzymatic and nonenzymatic synthesis processes of oxysterols as well as pathological conditions induced by oxysterols. PMID:26956952

  12. A new framework for reverse cholesterol transport: Non-biliary contributions to reverse cholesterol transport

    Institute of Scientific and Technical Information of China (English)

    Ryan; E; Temel; J; Mark; Brown

    2010-01-01

    Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-media...

  13. From blood to gut: Direct secretion of cholesterol via transintestinal cholesterol efflux

    Institute of Scientific and Technical Information of China (English)

    Carlos; LJ; Vrins

    2010-01-01

    The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol-lowering therapies. By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body. For a long time this removal via the hepatobiliary secretion was considered to be the sole route involved in the RCT. However, observations from early studies in animals and humans already pointed towards the possibility of another route. In t...

  14. Assessing possible hazards of reducing serum cholesterol.

    OpenAIRE

    Law, M. R.; Thompson, S. G.; Wald, N J

    1994-01-01

    OBJECTIVE--To assess whether low serum cholesterol concentration increases mortality from any cause. DESIGN--Systematic review of published data on mortality from causes other than ischaemic heart disease derived from the 10 largest cohort studies, two international studies, and 28 randomised trials, supplemented by unpublished data on causes of death obtained when necessary. MAIN OUTCOME MEASURES--Excess cause specific mortality associated with low or lowered serum cholesterol concentration....

  15. Dietary Phospholipids and Intestinal Cholesterol Absorption

    OpenAIRE

    Sally Tandy; Chung, Rosanna W. S.; Elaine Wat; Alvin Kamili; Cohn, Jeffrey S.

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the abili...

  16. Host cell P-glycoprotein is essential for cholesterol uptake and replication of Toxoplasma gondii.

    Science.gov (United States)

    Bottova, Iveta; Hehl, Adrian B; Stefanić, Sasa; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

    2009-06-26

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

  17. Host Cell P-glycoprotein Is Essential for Cholesterol Uptake and Replication of Toxoplasma gondii*

    Science.gov (United States)

    Bottova, Iveta; Hehl, Adrian B.; Štefanić, Saša; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

    2009-01-01

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

  18. The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes

    Directory of Open Access Journals (Sweden)

    Veranič P

    2012-04-01

    Full Text Available Maruša Lokar1,*, Doron Kabaso1,2,*, Nataša Resnik3, Kristina Sepcic5, Veronika Kralj-Iglic4,6, Peter Veranic3, Robert Zorec2, Aleš Iglic1,6 1Laboratory of Biophysics, Faculty of Electrical Engineering, 2Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, 3Institute of Cell Biology, Faculty of Medicine, 4Faculty of Health Sciences, 5Department of Biology, Biotechnical Faculty, 6Laboratory of Clinical Biophysics, Department of Orthopedic Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia*These authors equally share first authorshipAbstract: Intercellular membrane nanotubes (ICNs are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 (malignant urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling between the change from polygonal to spherical shape, cell separation, and the disconnection of ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted to reduce the positive spontaneous curvature of the remaining membrane components, increasing their curvature mismatch with the tube curvature. The mechanisms by which the increased curvature mismatch could contribute to the disconnection of ICNs are

  19. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  20. Cholesterol suppresses antimicrobial effect of statins

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haeri

    2015-12-01

    Full Text Available Objective(s:Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol.

  1. Dietary cholesterol modulates pathogen blocking by Wolbachia.

    Directory of Open Access Journals (Sweden)

    Eric P Caragata

    Full Text Available The bacterial endosymbiont Wolbachia pipientis protects its hosts from a range of pathogens by limiting their ability to form infections inside the insect. This "pathogen blocking" could be explained by innate immune priming by the symbiont, competition for host-derived resources between pathogens and Wolbachia, or the direct modification of the cell or cellular environment by Wolbachia. Recent comparative work in Drosophila and the mosquito Aedes aegypti has shown that an immune response is not required for pathogen blocking, implying that there must be an additional component to the mechanism. Here we have examined the involvement of cholesterol in pathogen blocking using a system of dietary manipulation in Drosophila melanogaster in combination with challenge by Drosophila C virus (DCV, a common fly pathogen. We observed that flies reared on cholesterol-enriched diets infected with the Wolbachia strains wMelPop and wMelCS exhibited reduced pathogen blocking, with viral-induced mortality occurring 2-5 days earlier than flies reared on Standard diet. This shift toward greater virulence in the presence of cholesterol also corresponded to higher viral copy numbers in the host. Interestingly, an increase in dietary cholesterol did not have an effect on Wolbachia density except in one case, but this did not directly affect the strength of pathogen blocking. Our results indicate that host cholesterol levels are involved with the ability of Wolbachia-infected flies to resist DCV infections, suggesting that cholesterol contributes to the underlying mechanism of pathogen blocking.

  2. CHOLESTEROL ASSIMILATION BY COMMERCIAL YOGHURT STARTER CULTURES

    Directory of Open Access Journals (Sweden)

    Małgorzata Ziarno

    2007-03-01

    Full Text Available The ability to in vitro cholesterol level reduction in laboratory media has been shown for numerous strains of lactic acid bacteria, but not for all strains of lactic bacteria used in the dairy industry. The aim of this work was the determination of the ability of selected thermophilic lactic acid bacteria to cholesterol assimilation during 24 h culture in MRS broth. Commercial starter cultures showed various ability to cholesterol assimilation from laboratory medium. In case of starter cultures used for production of traditional yoghurt, consisting of Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, the quantity of assimilated cholesterol did not exceed 27% of its initial contents (0.7 g in 1 dm3. Starter cultures used for bioyoghurt production, containing also probiotic strains (came from Lactobacillus acidophilus species or Bifidobacterium genus assimilated from almost 18% to over 38% of cholesterol. For one monoculture of Lb. acidophilus, cholesterol assimilation ability of 49-55% was observed, despite that the number of bacterial cells in this culture was not different from number of bacteria in other cultures.

  3. The Structural Basis of Cholesterol Activity in Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  4. Hopanoids as functional analogues of cholesterol in bacterial membranes.

    Science.gov (United States)

    Sáenz, James P; Grosser, Daniel; Bradley, Alexander S; Lagny, Thibaut J; Lavrynenko, Oksana; Broda, Martyna; Simons, Kai

    2015-09-22

    The functionality of cellular membranes relies on the molecular order imparted by lipids. In eukaryotes, sterols such as cholesterol modulate membrane order, yet they are not typically found in prokaryotes. The structurally similar bacterial hopanoids exhibit similar ordering properties as sterols in vitro, but their exact physiological role in living bacteria is relatively uncharted. We present evidence that hopanoids interact with glycolipids in bacterial outer membranes to form a highly ordered bilayer in a manner analogous to the interaction of sterols with sphingolipids in eukaryotic plasma membranes. Furthermore, multidrug transport is impaired in a hopanoid-deficient mutant of the gram-negative Methylobacterium extorquens, which introduces a link between membrane order and an energy-dependent, membrane-associated function in prokaryotes. Thus, we reveal a convergence in the architecture of bacterial and eukaryotic membranes and implicate the biosynthetic pathways of hopanoids and other order-modulating lipids as potential targets to fight pathogenic multidrug resistance.

  5. Chromatographic separation of cholesterol in foods.

    Science.gov (United States)

    Fenton, M

    1992-10-30

    Based on the current literature and on experience gained in the laboratory, a simplified procedure using direct saponification (0.4 M potassium hydroxide in ethanol and heating at 60 degrees C for 1 h) is the most appropriate method for the determination of total cholesterol in foods. Extraction of the unsaponifiable matter with hexane is efficient and no extra clean-up is required before quantification. An internal standard, 5 alpha-cholestane or epicoprostanol, should be added to the sample prior to saponification and, together with reference standards, carried through the entire procedure to ensure accurate results. A significant improvement in cholesterol methodology has been achieved by decreasing the sample size and performing all the sample preparation steps in a single tube. The method has the advantages of elimination of an initial solvent extraction for total lipids and errors resulting from multiple extractions, transfers, filtration and wash steps after saponification. The resulting hexane extract, which contains a variety of sterols and fat soluble vitamins, requires an efficient capillary column for complete resolution of cholesterol from the other compounds present. The development of fused-silica capillary columns using cross-linked and bonded liquid phases has provided high thermal stability, inertness and separation efficiency and, together with automated cold on-column gas chromatographic injection systems, has resulted in reproducible cholesterol determinations in either underivatized or derivatized form. If free cholesterol and its esters need to be determined separately, they are initially extracted with other lipids with chloroform-methanol followed by their separation by column or thin-layer chromatography and subsequently analysed by gas or liquid chromatography. Although capillary gas chromatography offers superior efficiency in separation, the inherent benefits of liquid chromatography makes it a potential alternative. Isotope dilution

  6. Dairy products and plasma cholesterol levels

    Directory of Open Access Journals (Sweden)

    Lena Ohlsson

    2010-08-01

    Full Text Available Cholesterol synthesized in the body or ingested is an essential lipid component for human survival from our earliest life. Newborns ingest about 3–4 times the amount per body weight through mother's milk compared to the dietary intake of adults. A birth level of 1.7 mmol/L plasma total cholesterol will increase to 4–4.5 mmol/L during the nursing period and continue to increase from adulthood around 40% throughout life. Coronary artery disease and other metabolic disorders are strongly associated with low-density lipoprotein (LDL and high-density lipoprotein (HDL cholesterol as well as triacylglycerol concentration. Milk fat contains a broad range of fatty acids and some have a negative impact on the cholesterol rich lipoproteins. The saturated fatty acids (SFAs, such as palmitic acid (C16:0, myristic acid (C14:0, and lauric acid (C12:0, increase total plasma cholesterol, especially LDL, and constitute 11.3 g/L of bovine milk, which is 44.8% of total fatty acid in milk fat. Replacement of dairy SFA and trans-fatty acids with polyunsaturated fatty acids decreases plasma cholesterol, especially LDL cholesterol, and is associated with a reduced risk of cardiovascular disease. Available data shows different effects on lipoproteins for different dairy products and there is uncertainty as to the impact a reasonable intake amount of dairy items has on cardiovascular risk. The aim of this review is to elucidate the effect of milk components and dairy products on total cholesterol, LDL, HDL, and the LDL/HDL quotients. Based on eight recent randomized controlled trials of parallel or cross-over design and recent reviews it can be concluded that replacement of saturated fat mainly (but not exclusively derived from high-fat dairy products with low-fat dairy products lowers LDL/HDL cholesterol and total/HDL cholesterol ratios. Whey, dairy fractions enriched in polar lipids, and techniques such as fermentation, or fortification of cows feeding can be used

  7. Cholesterol and ocular pathologies: focus on the role of cholesterol-24S-hydroxylase in cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Fourgeux Cynthia

    2015-03-01

    Full Text Available The retina is responsible for coding the light stimulus into a nervous signal that is transferred to the brain via the optic nerve. The retina is formed by the association of the neurosensory retina and the retinal pigment epithelium that is supported by Bruch’s membrane. Both the physical and metabolic associations between these partners are crucial for the functioning of the retina, by means of nutrient intake and removal of the cell and metabolic debris from the retina. Dysequilibrium are involved in the aging processes and pathologies such as age-related macular degeneration, the leading cause of visual loss after the age of 50 years in Western countries. The retina is composed of several populations of cells including glia that is involved in cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present as free form in cells and as esters in Bruch’s membrane. Accumulation of cholesteryl esters has been associated with aging of the retina and impairment of the retinal function. Under dietary influence and in situ synthesized, the metabolism of cholesterol is regulated by cell interactions, including neurons and glia via cholesterol-24S-hydroxylase. Several pathophysiological associations with cholesterol and its metabolism can be suggested, especially in relation to glaucoma and age-related macular degeneration.

  8. Characterization of polyphenol oxidase from plants

    Institute of Scientific and Technical Information of China (English)

    LEI Dongfeng; FENG Yi; JIANG Dazong

    2004-01-01

    Polyphenol oxidase (PPO) which can mediate browning reaction is a bifunctional copper-containing enzyme encoded by plant nucleolus gene. It usually leads to excessive browning reaction which reduces the coercial profits of fruits and vegetables. In this paper, PPO genes and enzymes in plants are characterized systematically, and the latest progress is reviewed. Some clonings of PPOs genes are reported; the specific temporal and spatial expression pattern of PPOs genes is described; the model of the structure of the precursor form of catechol oxidase is introduced; the possible functions of PPOs in defending against pathogen, wounding, surrounding stress and other inducing factors are demonstrated; the induction and activation of latent PPOs in some plants is elucidated; the scheme of browning inhibition by L-cysteine is clarified; the mechanism of suicide inhibition of latent PPO and kinetic synergism are established. Furthermore, the area for future study is also discussed.

  9. Alcohol oxidase: A complex peroxisomal, oligomeric flavoprotein

    OpenAIRE

    Ozimek, Paulina; Veenhuis, Marten; van der Klei, Ida J.

    2005-01-01

    Alcohol oxidase (AO) is the key enzyme of methanol metabolism in methylotrophic yeast species. It catalyses the first step of methanol catabolism, namely its oxidation to formaldehyde with concomitant production of hydrogen peroxide. In its mature active form, AO is a molecule of high molecular mass (600 kDa) that consists of eight identical subunits, each of which carry one non-covalently bound flavin adenine nucleotide (FAD) molecule as the prosthetic group. In vivo, the protein is compartm...

  10. Role of NADPH Oxidases in Liver Fibrosis

    OpenAIRE

    Paik, Yong-Han; Kim, Jonghwa; Aoyama, Tomonori; De Minicis, Samuele; Bataller, Ramon; Brenner, David A

    2014-01-01

    Significance: Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to...

  11. NADPH OXIDASE IN STROKE AND CEREBROVASCULAR DISEASE

    OpenAIRE

    Tang, Xian Nan; Cairns, Belinda; Kim, Jong Youl; Midori A Yenari

    2012-01-01

    NADPH oxidase (NOX) was originally identified in immune cells as playing an important microbicidal role. In stroke and cerebrovascular disease, inflammation is increasingly being recognized as contributing negatively to neurological outcome, with NOX as an important source of superoxide. Several labs have now shown that blocking or deleting NOX in the experimental stroke models protects from brain ischemic. Recent work has implicated glucose as an important NOX substrate leading to reperfusio...

  12. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  13. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  14. Cholesterol efflux analyses using stable isotopes and mass spectrometry

    OpenAIRE

    Robert J Brown; Shao, Fei; Baldán, Ángel; Albert, Carolyn J.; Ford, David A.

    2012-01-01

    Cholesterol efflux from macrophages and the vascular wall is the initial step of the cardiovascular protective reverse cholesterol transport process. This study demonstrates a mass spectrometry based assay to measure the cellular and media content of [d7]-cholesterol and unlabeled cholesterol that can be used to measure cholesterol efflux from cell lines. Using a triple quadrupole ESI-MS instrument in direct infusion mode, product ion scanning for m/z 83, neutral loss (NL) 375.5 scanning and ...

  15. Graphite-teflon composite bienzyme electrodes for the determination of cholesterol in reversed micelles. Application to food samples.

    Science.gov (United States)

    Peña, N; Ruiz, G; Reviejo, A J; Pingarrón, J M

    2001-03-15

    A bienzyme amperometric composite biosensor for the determination of free and total cholesterol in food samples is reported. Cholesterol oxidase and horseradish peroxidase, together with potassium ferrocyanide as a mediator, are incorporated into a graphite-70% Teflon matrix. The compatibility of this biosensor design with predominantly nonaqueous media allows the use of reversed micelles as working medium. The reversed micelles are formed with ethyl acetate as continuous phase (in which cholesterol is soluble), a 4% final concentration of 0.05 mol L(-1) phosphate buffer solution, pH 7.4, as dispersed phase, and 0.1 mol L(-1) AOT as emulsifying agent. Studies on the repeatability of the amperometric response obtained at +0.10 V, with and without regeneration of the electrode surface by polishing, on the useful lifetime of one single biosensor and on the reproducibility in the fabrication of different pellets illustrate the robustness of the biosensor design. Determination of free and total cholesterol in food samples such as butter, lard, and egg yoke was carried out, and the obtained results were advantageously compared with those provided by using a commercial Boehringer test kit. PMID:11305650

  16. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks.

    Science.gov (United States)

    Komathi, S; Muthuchamy, N; Lee, K-P; Gopalan, A-I

    2016-10-15

    Herein, we fabricated a novel electrochemical-photoelectrochemical (PEC) dual-mode cholesterol biosensor based on graphene (G) sheets interconnected-graphene embedded titanium nanowires (TiO2(G)-NWs) 3D nanostacks (designated as G/Ti(G) 3DNS) by exploiting the beneficial characteristics of G and TiO2-NWs to achieve good selectivity and high sensitivity for cholesterol detection. The G/Ti(G) 3DNS was fabricated by the reaction between functionalized G and TiO2(G)-NWs. Cholesterol oxidase (ChOx) was subsequently immobilized in to G/Ti(G) 3DNS using chitosan (CS) as the binder and the dual mode G/Ti(G) 3DNS/CS/ChOx biosensor was fabricated. The electro-optical properties of the G/Ti(G) 3DNS/CS/ChOx bioelectrode were characterized by cyclic voltammetry and UV-vis diffuse reflection spectroscopy. The cyclic voltammetry of immobilized ChOx showed a pair of well-defined redox peaks indicating direct electron transfer (DET) of ChOx. The amperometric reduction peak current (at -0.05V) linearly increased with increase in cholesterol concentration. The G/Ti(G) 3DNS/CS/ChOx bioelectrode was selective to cholesterol with a remarkable sensitivity (3.82μA/cm(2)mM) and a lower detection limit (6μM). Also, G/Ti(G) 3DNS/CS/ChOx functioned as photoelectrode and exhibited selective detection of cholesterol under a low bias voltage and light irradiation. Kinetic parameters, reproducibility, repeatability, storage stability and effect of temperature and pH were evaluated. We envisage that G/Ti(G) 3DNS with its prospective characteristics, would be a promising material for wide range of biosensing applications. PMID:26611566

  17. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

    Science.gov (United States)

    Rogers, Maximillian A; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  18. Characterization of NADPH oxidase 5 expression in human tumors and tumor cell lines with a novel mouse monoclonal antibody

    OpenAIRE

    Antony, Smitha; Wu, Yongzhong; Hewitt, Stephen M.; Anver, Miriam R.; Butcher, Donna; Jiang, Guojian; MEITZLER, JENNIFER L.; Liu, Han; JUHASZ, AGNES; Lu, Jiamo; Roy, Krishnendu K.; James H Doroshow

    2013-01-01

    Reactive oxygen species generated by NADPH oxidase 5 (Nox5) have been implicated in physiological and pathophysiological signaling pathways, including cancer development and progression. However, because immunological tools are lacking, knowledge of the role of Nox5 in tumor biology has been limited; the expression of Nox5 protein across tumors and normal tissues is essentially unknown. Here, we report the characterization and use of a mouse monoclonal antibody against a recombinant Nox5 prot...

  19. Emerging roles of the intestine in control of cholesterol metabolism

    Institute of Scientific and Technical Information of China (English)

    Janine K Kruit; Albert K Groen; Theo J van Berkel; Folkert Kuipers

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis,clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor to high density lipoprotein (HDL; good cholesterol) formation. The liver has a central position in the classical definition of the reverse cholesterol transport pathway by taking up peripheryderived cholesterol from lipoprotein particles followed by conversion into bile acids or its direct secretion into bile for eventual removal via the feces. During the past couple of years, however, an additional important role of the intestine in maintenance of cholesterol homeostasis and regulation of plasma cholesterol levels has become apparent. Firstly, molecular mechanisms of cholesterol absorption have been elucidated and novel pharmacological compounds have been identified that interfere with the process and positively impact plasma cholesterol levels. Secondly, it is now evident that the intestine itself contributes to fecal neutral sterol loss as a cholesterol-secreting organ. Finally, very recent work has unequivocally demonstrated that the intestine contributes significantly to plasma HDL cholesterol levels.Thus, the intestine is a potential target for novel antiatherosclerotic treatment strategies that, in addition to interference with cholesterol absorption, modulate direct cholesterol excretion and plasma HDL cholesterol levels.

  20. Optical methods for monitoring physiological and biochemical variables

    OpenAIRE

    Crowe, John; Rea, Philip; Dr. Philip Rea

    1986-01-01

    The use of optical methods for performing non-invasive physiological and biochemical monitoring has been investigated, with particular emphasis on the application of near-infrared spectrophotocetry for following changes in the redox state of cytochrome oxidase. Initial studies of the gross optical properties of in vivo tissue were made using an image intensifier. These demonstrated that some light is transmitted through biological tissues and that such material is very hi...

  1. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    Science.gov (United States)

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.

  2. Lipoproteins, cholesterol homeostasis and cardiac health

    Directory of Open Access Journals (Sweden)

    Tyler F. Daniels, Karen M. Killinger, Jennifer J. Michal, Raymond W. Wright Jr., Zhihua Jiang

    2009-01-01

    Full Text Available Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  3. LDL cholesterol: controversies and future therapeutic directions.

    Science.gov (United States)

    Ridker, Paul M

    2014-08-16

    Lifelong exposure to raised concentrations of LDL cholesterol increases cardiovascular event rates, and the use of statin therapy as an adjunct to diet, exercise, and smoking cessation has proven highly effective in reducing the population burden associated with hyperlipidaemia. Yet, despite consistent biological, genetic, and epidemiological data, and evidence from randomised trials, there is controversy among national guidelines and clinical practice with regard to LDL cholesterol, its measurement, the usefulness of population-based screening, the net benefit-to-risk ratio for different LDL-lowering drugs, the benefit of treatment targets, and whether aggressive lowering of LDL is safe. Several novel therapies have been introduced for the treatment of people with genetic defects that result in loss of function within the LDL receptor, a major determinant of inherited hyperlipidaemias. Moreover, the usefulness of monoclonal antibodies that extend the LDL-receptor lifecycle (and thus result in substantial lowering of LDL cholesterol below the levels achieved with statins alone) is being assessed in phase 3 trials that will enrol more than 60,000 at-risk patients worldwide. These trials represent an exceptionally rapid translation of genetic observations into clinical practice and will address core questions of how low LDL cholesterol can be safely reduced, whether the mechanism of LDL-cholesterol lowering matters, and whether ever more aggressive lipid-lowering provides a safe, long-term mechanism to prevent atherothrombotic complications.

  4. Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Doonan, C.J.; Wilson, H.L.; Rajagopalan, K.V.; Garrett, R.M.; Bennett, B.; Prince, R.C.; George, G.N.

    2009-06-02

    The molybdenum site of the Arginine 160 {yields} Glutamine clinical mutant of the physiologically vital enzyme sulfite oxidase has been investigated by a combination of X-ray absorption spectroscopy and density functional theory calculations. We conclude that the mutant enzyme has a six-coordinate pseudo-octahedral active site with coordination of Glutamine O{sup {epsilon}} to molybdenum. This contrasts with the wild-type enzyme which is five-coordinate with approximately square-based pyramidal geometry. This difference in the structure of the molybdenum site explains many of the properties of the mutant enzyme which have previously been reported.

  5. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    OpenAIRE

    Sonawane Nitin D; Previs Stephen F; Jiang Dechen; Ruddy Jennifer; Manson Mary E; West Richard H; Fang Danjun; Burgess James D; Kelley Thomas J

    2010-01-01

    Abstract Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detectio...

  6. Comparison of kinetic properties of amine oxidases from sainfoin and lentil and immunochemical characterization of copper/quinoprotein amine oxidases.

    Science.gov (United States)

    Zajoncová, L; Frébort, I; Luhová, L; Sebela, M; Galuszka, P; Pec, P

    1999-01-01

    Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed. PMID:10092944

  7. Elevated Remnant Cholesterol Causes Both Low-Grade Inflammation and Ischemic Heart Disease, Whereas Elevated Low-Density Lipoprotein Cholesterol Causes Ischemic Heart Disease Without Inflammation

    DEFF Research Database (Denmark)

    Varbo, Anette; Tybjærg-Hansen, Anne; Nordestgaard, Børge G;

    2013-01-01

    Elevated nonfasting remnant cholesterol and low-density lipoprotein (LDL) cholesterol are causally associated with ischemic heart disease (IHD), but whether elevated nonfasting remnant cholesterol and LDL cholesterol both cause low-grade inflammation is currently unknown....

  8. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans : a meta-analysis

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Katan, M.B.

    2001-01-01

    Several epidemiologic studies found no effect of egg consumption on the risk of coronary heart disease. It is possible that the adverse effect of eggs on LDL-cholesterol is offset by their favorable effect on HDL cholesterol. Objective: The objective was to review the effect of dietary cholesterol o

  9. Genetic Analysis of Digestive Physiology Using Fluorescent Phospholipid Reporters

    Science.gov (United States)

    Farber, Steven A.; Pack, Michael; Ho, Shiu-Ying; Johnson, Iain D.; Wagner, Daniel S.; Dosch, Roland; Mullins, Mary C.; Hendrickson, H. Stewart; Hendrickson, Elizabeth K.; Halpern, Marnie E.

    2001-05-01

    Zebrafish are a valuable model for mammalian lipid metabolism; larvae process lipids similarly through the intestine and hepatobiliary system and respond to drugs that block cholesterol synthesis in humans. After ingestion of fluorescently quenched phospholipids, endogenous lipase activity and rapid transport of cleavage products results in intense gall bladder fluorescence. Genetic screening identifies zebrafish mutants, such as fat free, that show normal digestive organ morphology but severely reduced phospholipid and cholesterol processing. Thus, fluorescent lipids provide a sensitive readout of lipid metabolism and are a powerful tool for identifying genes that mediate vertebrate digestive physiology.

  10. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    Directory of Open Access Journals (Sweden)

    Sandip A. Ghuge

    2015-07-01

    Full Text Available Polyamines (PAs are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs, including copper amine oxidases (CuAOs and flavin adenine dinucleotide (FAD-dependent polyamine oxidases (PAOs. The biologically-active hydrogen peroxide (H2O2 is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  11. Pathological changes in platelet histamine oxidases in atopic eczema

    Directory of Open Access Journals (Sweden)

    Reinhold Kiehl

    1993-01-01

    Full Text Available Increased plasma histamine levels were associated with significantly lowered diamine and type B monoamine oxidase activities in platelet-rich plasma of atopic eczema (AE patients. The diamine oxidase has almost normal cofactor levels (pyridoxal phosphate and Cu2+ but the cofactor levels for type B monoamine oxidase (flavin adenine dinucleotide and Fe2+ are lowered. The biogenic amines putrescine, cadaverine, spermidine, spermine, tyramine and serotonin in the sera, as well as dopamine and epinephrine in EDTA-plasma were found to be normal. It is unlikely, therefore, that these amines are responsible for the decreased activities of monoamine and diamine oxidase in these patients. The most likely causative factors for the inhibition of the diamine oxidase are nicotine, alcohol, food additives and other environmental chemicals, or perhaps a genetic defect of the diamine oxidase.

  12. COPPER AMINE OXIDASE1 (CuA01)of Arabidopsis thaliana Contributes to Abscisic Acid-and Polyamine-Induced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction

    Institute of Scientific and Technical Information of China (English)

    Rinukshi Wimalasekera; Corina Villar; Tahmina Begum; Günther F. E. Scherer

    2011-01-01

    Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO)play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement of a copper amine oxidase gene, COPPER AMINE OXIDASE1 (CuA01), of Arabidopsis was tested for its role in stress responses using the knockouts cuaol.1 and cuaol-2. PA-induced and ABA-induced NO production investigated by fluorometry and fluorescence microscopy showed that the cuaol-1 and cuaol-2 are impaired in NO production, suggesting a function of CuAO1 in PA and ABA-mediated NO production. Furthermore, we found a PA-dependent increase in protein S-nitrosylation. The addition of PA and ABA also resulted in HO increases, cuaol-1 and cuaol-2 showed less sensitivity to exogenous ABA supplementation during ger-mination, seedling establishment, and root growth inhibition as compared to wild-type. In response to ABA treatment,expression levels of the stress-responsive genes RD29A and ADH1 were significantly lower in the knockouts. These obser-vations characterize cuaol-1 and cuaol-2 as ABA-insensitive mutants. Taken together, our findings extend the ABA signal transduction network to include CuAO1 as one potential contributor to enhanced NO production by ABA.

  13. CHOBIMALT: A Cholesterol-Based Detergent†

    Science.gov (United States)

    Howell, Stanley C.; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M.; Sanders, Charles R.

    2010-01-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins, but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3–4μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210 ± 30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1. PMID:20919740

  14. CHOBIMALT: a cholesterol-based detergent.

    Science.gov (United States)

    Howell, Stanley C; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M; Sanders, Charles R

    2010-11-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems, a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3−4 μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210±30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1.

  15. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Directory of Open Access Journals (Sweden)

    Genaro eBarrientos

    2015-04-01

    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  16. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    Science.gov (United States)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  17. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues

    Science.gov (United States)

    Jiménez-Quesada, María J.; Traverso, José Á.; Alché, Juan de Dios

    2016-01-01

    In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen–pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed. PMID:27066025

  18. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues.

    Science.gov (United States)

    Jiménez-Quesada, María J; Traverso, José Á; Alché, Juan de Dios

    2016-01-01

    In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen-pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed.

  19. The glycemic index: physiological significance.

    Science.gov (United States)

    Esfahani, Amin; Wong, Julia M W; Mirrahimi, Arash; Srichaikul, Korbua; Jenkins, David J A; Kendall, Cyril W C

    2009-08-01

    The glycemic index (GI) is a physiological assessment of a food's carbohydrate content through its effect on postprandial blood glucose concentrations. Evidence from trials and observational studies suggests that this physiological classification may have relevance to those chronic Western diseases associated with overconsumption and inactivity leading to central obesity and insulin resistance. The glycemic index classification of foods has been used as a tool to assess potential prevention and treatment strategies for diseases where glycemic control is of importance, such as diabetes. Low GI diets have also been reported to improve the serum lipid profile, reduce C-reactive protein (CRP) concentrations, and aid in weight control. In cross-sectional studies, low GI or glycemic load diets (mean GI multiplied by total carbohydrate) have been associated with higher levels of high-density lipoprotein cholesterol (HDL-C), with reduced CRP concentrations, and, in cohort studies, with decreased risk of developing diabetes and cardiovascular disease. In addition, some case-control and cohort studies have found positive associations between dietary GI and risk of various cancers, including those of the colon, breast, and prostate. Although inconsistencies in the current findings still need to be resolved, sufficient positive evidence, especially with respect to renewed interest in postprandial events, suggests that the glycemic index may have a role to play in the treatment and prevention of chronic diseases.

  20. Ordering effects of cholesterol and its analogues

    DEFF Research Database (Denmark)

    Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo;

    2009-01-01

    . In this review, we discuss the biophysical effects of cholesterol on the lipid bilayer, in particular the ordering and condensing effects, concentrating on the molecular level or inter-atomic interactions perspective, starting from two-component systems and proceeding to many-component ones e.g., modeling lipid...... rafts. Particular attention is paid to the roles of the methyl groups in the cholesterol ring system, and their possible biological function. Although our main research methodology is computer modeling, in this review we make extensive comparisons between experiments and different modeling approaches....

  1. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice.

    Science.gov (United States)

    Bura, Kanwardeep S; Lord, Caleb; Marshall, Stephanie; McDaniel, Allison; Thomas, Gwyn; Warrier, Manya; Zhang, Jun; Davis, Matthew A; Sawyer, Janet K; Shah, Ramesh; Wilson, Martha D; Dikkers, Arne; Tietge, Uwe J F; Collet, Xavier; Rudel, Lawrence L; Temel, Ryan E; Brown, J Mark

    2013-06-01

    Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.

  2. Cholesterol homeostasis: How do cells sense sterol excess?

    Science.gov (United States)

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J

    2016-09-01

    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis. PMID:26993747

  3. Remnant cholesterol as a cause of ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Nordestgaard, Børge G

    2014-01-01

    levels of remnant cholesterol may cause atherosclerosis same way as elevated levels of low-density lipoprotein (LDL) cholesterol, by cholesterol accumulation in the arterial wall. Genetic studies of variants associated with elevated remnant cholesterol levels show that an increment of 1mmol/L (39mg....... However, elevated levels of LDL cholesterol are associated with IHD, but not with low-grade inflammation. Such results indicate that elevated LDL cholesterol levels cause atherosclerosis without a major inflammatory component, whereas an inflammatory component of atherosclerosis is driven by elevated...

  4. Serum xanthine oxidase profile in stressed Marwari sheep from arid tracts in India

    Directory of Open Access Journals (Sweden)

    Maan R.

    2012-08-01

    Full Text Available The present investigation was aimed to determine serum xanthine oxidase profile in stressed Marwari breed of sheep belonging to arid tracts in Rajasthan, India. Extreme hot and cold ambiences were considered as stress conditions to the animals. Blood samples were collected to obtain sera during moderate, extreme hot and cold ambiences. The mean value of serum xanthine oxidase during moderate ambience was 93.33±1.11 mU L-1.The mean value of serum xanthine oxidase was significantly (p≤0.05higher during hot and significantly (p≤0.05 lower during cold ambiences as compared to moderate mean value serving as control. The sex and age effects were significant (p≤0.05 in all ambiences. The mean values were significantly (p≤0.05 higher in males than females. In each ambience the age effect showed a significant (p≤0.05 increase in the mean values being highest in the animals of 2.5-4.5 years of age. The effects of extreme ambiences were observed on the male and female animals of all age groups as revealed by various interactions studied viz. ambience X age; ambience X sex and age X sex (p≤0.01. Further sex effect was present in the animals of each age group. It can be concluded that serum xanthine oxidase can be used as an effective marker to assess oxidative stress in these animals. Mean values obtained from large number of animals during moderate ambience will help in providing physiological reference values for future research and clinical interpretations.

  5. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux.

    Directory of Open Access Journals (Sweden)

    Maria João Nunes

    Full Text Available Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi such as trichostatin A (TSA are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.

  6. [THE SPIRIT CHOLESTEROL, BIOLOGICA L ROLE AT STAGES OF PHYLOGENESIS, MECHANISMS OF INHIBITION OF SYNTHESIS OF STEROL BY STATINS, FACTORS OF PHARMACOGENOMICS AND DIAGNOSTIC SIGNIFICANCE OF CHOLESTEROL OF LIPOPROTEINS OF LOW DENSITY].

    Science.gov (United States)

    Titov, V N; Kotlovskii, M Yu; Pokrovskii, A A; Kotlovskaia, O S; Osedko, A V; Titova, N M; Kotlovskii, Yu V; Digaii, A M

    2015-04-01

    The hypolipidemic effect of statins is realized by inhibition of synthesis of local pool of cholesterol spirit in endoplasmic net of hepatocytes. The cholesterol spirit covers all hydrophobic medium of triglycerides with polar mono layer of phosphatidylcholines and cholesterol spirit prior to secretion of lipoproteins of very low density into hydrophilic medium. The lesser mono layer between lipase enzyme and triglycerides substrate contains of cholesterol spirit the higher are the parameters of hydrolysis of palmitic and oleic lipoproteins of very low density. The sequence of effect of statins is as follows: blocking of synthesis in hepatocytes and decreasing of content of unesterified cholesterol spirit in blood plasma; activation of hydrolysis of triglycerides in palmitic and oleic lipoproteins of very low density; formation of ligand lipoproteins of very low density and their absorption by cells by force of apoB-100 endocytosis; decreasing in blood of content of polyenoic fatty acids, equimolar esterified by cholesterol spirit, polyethers of cholesterol spirit and decreasing of level of cholesterol spirit-lipoproteins of very low density. There is no way to eliminate aphysiological effect of disordered biological function of trophology (nutrition) on metabolism of fatty acids in population by means of pharmaceuticals intake. It is necessary to eliminate aphysiological effect of environment. To decrease rate of diseases of cardiovascular system one has to decrease in food content of saturated fatty acids and in the first instance palmitic saturated fatty acid, trans-form fatty acid, palmitoleic fatty acids up to physiological values and increase to the same degree the content of polyenoic fatty acids. The saturated fatty acids block absorption of polyenoic fatty acids by cells. The atherosclerosis is a deficiency of polyenoic fatty acids under surplus of palmitic saturated fatty acid. PMID:26189285

  7. Scavenger receptor BI: a multi-purpose player in cholesterol and steroid metabolism.

    Science.gov (United States)

    Hoekstra, Menno; Van Berkel, Theo-Jc; Van Eck, Miranda

    2010-12-21

    Scavenger receptor class B type I (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepatocytes, which identifies SR-BI as a multi-purpose player in lipid uptake from the blood circulation into hepatocytes in mice. In adrenocortical cells, SR-BI mediates the selective uptake of HDL-cholesteryl esters, which is efficiently coupled to the synthesis of glucocorticoids (i.e. corticosterone). SR-BI knockout mice suffer from adrenal glucocorticoid insufficiency, which suggests that functional SR-BI protein is necessary for optimal adrenal steroidogenesis in mice. SR-BI in macrophages plays a dual role in cholesterol metabolism as it is able to take up cholesterol associated with HDL and apoB-containing lipoproteins and can possibly facilitate cholesterol efflux to HDL. Absence of SR-BI is associated with thrombocytopenia and altered thrombosis susceptibility, which suggests a novel role for SR-BI in regulating platelet number and function in mice. Transgenic expression of cholesteryl ester transfer protein in humanized SR-BI knockout mice normalizes hepatic delivery of HDL-cholesteryl esters. However, other pathologies associated with SR-BI deficiency, i.e. increased atherosclerosis susceptibility, adrenal glucocorticoid insufficiency, and impaired platelet function are not normalized, which suggests an important role for SR-BI in cholesterol and steroid metabolism in man. In conclusion, generation of SR-BI knockout mice has significantly contributed to our knowledge of the physiological role of SR-BI. Studies using these mice have identified SR-BI as a

  8. Mitochondria, cholesterol and cancer cell metabolism.

    Science.gov (United States)

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  9. [Giant cholesterol cysts of the petrous apex].

    Science.gov (United States)

    Pellet, W; Valenzuela, S; Malca, S; Cannoni, M; Perez-Castillo, A M

    1992-01-01

    In connection with their two own cases, the authors deal about the giant cholesterol cysts of the petrous apex. The lesions which are to be differentiated from epidermoid cysts are cholesterol granulomas. Their petrous apex location explains their characteristic large appearance. As each cholesterol granuloma, they occur when a bony cell is obstructed. This chronic obstruction induces mucosal edema then bleedings which lead to the formation and, by the lack of drainage, to the accumulation of cholesterol crystals. These crystals initiate a non specific reaction to foreign bodies, a granuloma, which also can bleed. Thus, a continuous cycle perpetuates the growth of the lesion. This lesion, when it is localized in the petrous apex, can reach a big size before the appearance of some signs. Usually, these are otologic (sensorineural hearing loss, tinnitus, vertigo) and/or cranial nerve palsies (V, VI, VII). C.T. scan (well defined, sharply marginated bony expansible lesion with isodense to the brain central part) and M.R.I. (central region of increased intensity on both T1 and T2 weighted images and peripheral rim of markedly decreased signal intensity in all instances) features are characteristic enough to allow diagnose with other petrous apex lesions (cholesteatoma, mucocele, epithelial cyst, histiocytosis X, ...). Surgical treatment must try to evacuate and to aerate the cavity or perhaps to obliterate it with fatty pieces in order to prevent the recurrence. PMID:1299772

  10. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity.

    Science.gov (United States)

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J

    2015-04-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  11. Compartmental analysis and dosimetric aspects applied to cholesterol with 3H labeled

    International Nuclear Information System (INIS)

    Cardiovascular diseases (CVDs) are one of the major reasons of death around the world according to the World Health Organization (WHO). It is well known that changes in levels of plasma lipoproteins, which are responsible for the transport of cholesterol into the bloodstream, are associated with cardiovascular diseases. For this reason to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deep understanding about the diseases associated with these disorders. The main aim of this study is to provide a biokinetic model and estimate the radiometric doses for 3H-Cholesterol, a radioactive tracer widely used in physiological and metabolic studies. The model was based on [Schwartz et al. 2004] about the distribution of cholesterol by the lipoprotein and gastrointestinal model [ICRP 30, 1979]. The doses distribution in compartments of the model and other organs and tissues of a standard adult described in [ICRP 106, 2008] was calculated using MIRD method (Medical Internal Radiation Dose) and compartmental analysis using the computer program Matlab®. The dose coefficients were estimated for a standard phantom man (73 kg) described in [ICRP 60, 1991]. The estimated doses for both model and for other organs were low and did not exceed the highest dose obtained that was in the upper large intestine, as 44,8 μGy these parameters will assist in ethics committee's opinions on the use of works that use the 3H-cholesterol which radioactive tracer. (author)

  12. Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons.

    Science.gov (United States)

    Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-11-15

    An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters.

  13. Physiological responses to daily light exposure

    Science.gov (United States)

    Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming

    2016-04-01

    Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.

  14. Fluorimetric determination of cholesterol in hypercholesterolemia serum

    Science.gov (United States)

    Lan, Xiufeng; Liu, Jiangang; Liu, Ying; Luo, Xiaosen; Lu, Jian; Ni, Xiaowu

    2005-01-01

    With the increase of people"s living standard and the changes of living form, the number of people who suffer from hypercholesterolemia is increasing. It is not only harmful to heart and blood vessel, but also leading to obstruction of cognition. The conventional blood detection technology has weakness such as complex operation, long detecting period, and bad visibility. In order to develop a new detection method that can checkout hypercholesterolemia conveniently, spectroscopy of cholesterol in hypercholesterolemia serum is obtained by the multifunctional grating spectrograph. The experiment results indicate that, under the excitation of light-emitting diode (LED) with the wavelength at 407 nm, the serum from normal human and the hypercholesterolemia serum emit different fluorescence spectra. The former can emit one fluorescence region with the peak locating at 516 nm while the latter can emit two more regions with peaks locating at 560 nm and 588 nm. Moreover, the fluorescence intensity of serum is non-linear increasing with the concentration of cholesterol increases when the concentration of cholesterol is lower than 13.8 mmol/L, and then, with the concentration of cholesterol increase, the fluorescence intensity decreases. However, the fluorescence intensity is still much higher than that of serum from normal human. Conclusions can be educed from the experiments: the intensity and the shape of fluorescence spectra of hypercholesterolemia serum are different of those of normal serum, from which the cholesterol abnormal in blood can be judged. The consequences in this paper may offer an experimental reference for the diagnosis of the hypercholesterolemia.

  15. Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium

    Science.gov (United States)

    Oakley, Clinton A.; Hopkinson, Brian M.; Schmidt, Gregory W.

    2014-06-01

    A terminal electron acceptor alternative to mitochondrial cytochrome c oxidase (COX), mitochondrial alternative oxidase (AOX), is ubiquitous in higher plants and represented in nearly every algal taxon but is poorly documented in dinoflagellates. AOX competes for electrons with the conventional COX and has been hypothesized to function as a means of reducing oxidative stress in mitochondria, as well as a potential mechanism for ameliorating thermal and other physiological stressors. Here, the presence of an active AOX in cultured Symbiodinium was assayed by the response of oxygen consumption to the AOX inhibitor salicylhydroxamic acid (SHAM) and the COX inhibitor cyanide (CN). CN-insensitive, SHAM-sensitive oxygen consumption was found to account for a large portion (26 %) of Symbiodinium dark respiration and is consistent with high levels of AOX activity. This experimental evidence of the existence of a previously unreported terminal oxidase was further corroborated by analysis of publicly available Symbiodinium transcriptome data. The potential for enhanced AOX expression to play a compensatory role in mediating thermal stress was supported by inhibitor assays of cultured Symbiodinium at low (18 °C), moderate (26 °C), and high (32 °C) temperature conditions. Maximum capacity of the putative AOX pathway as a proportion of total dark oxygen consumption was found to increase from 26 % at 26 °C to 45 % and 53 % at 18 °C and 32 °C, respectively, when cells were acclimated to the treatment temperatures. Cells assayed at 18 and 32 °C without acclimation exhibited either the same or lower AOX capacity as controls, suggesting that the AOX protein is upregulated under temperature stress. The physiological implications for the presence of AOX in the coral/algal symbiosis and its potential role in response to many forms of biotic and abiotic stress, particularly oxidative stress, are discussed.

  16. Enzymatic Quantification of Cholesterol and Cholesterol Esters from Silicone Hydrogel Contact Lenses

    OpenAIRE

    Pucker, Andrew D.; Thangavelu, Mirunalni; Nichols, Jason J.

    2010-01-01

    There is significant interest in lipid deposition associated with current silicone hydrogel contact lens materials. This work describes the application of a cholesterol assay used to examine this question.

  17. Physiological effects in aromatherapy

    OpenAIRE

    Tapanee Hongratanaworakit

    2004-01-01

    The effects of aromas on humans are divided into physiological and psychological effects. The physiological effect acts directly on the physical organism, the psychological effect acts via the sense of smell or olfactory system, which in turn may cause a physiological effect. This paper reviews on the physiological effects which are used for the evaluation of the effects of aromas. Physiological parameters, i.e. heart rate blood pressure, electrodermal activity, electroencephalogram, slow pot...

  18. Hearing Outcomes after Surgical Drainage of Petrous Apex Cholesterol Granuloma

    OpenAIRE

    Rihani, Jordan; Kutz, J. Walter; Isaacson, Brandon

    2014-01-01

    Objective This study aims to assess the hearing outcomes of patients undergoing surgical management of petrous apex cholesterol granuloma and to discuss the role of otic capsule–sparing approaches in drainage of petrous apex cholesterol granulomas.

  19. Plasma Ubiquinone, Alpha-Tocopherol and Cholesterol in Man

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Edlund, Per Olof;

    1992-01-01

    Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle......Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle...

  20. Nonfasting triglycerides, cholesterol, and ischemic stroke in the general population

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne;

    2011-01-01

    Current guidelines on stroke prevention have recommendations on desirable cholesterol levels, but not on nonfasting triglycerides. We compared stepwise increasing levels of nonfasting triglycerides and cholesterol for their association with risk of ischemic stroke in the general population....

  1. Trans Fat Now Listed With Saturated Fat and Cholesterol

    Science.gov (United States)

    ... Trans Fat Now Listed With Saturated Fat and Cholesterol Share Tweet Linkedin Pin it More sharing options ... I Do About Saturated Fat, Trans Fat, and Cholesterol? When comparing foods, look at the Nutrition Facts ...

  2. Talk with Your Health Care Provider about High Cholesterol

    Science.gov (United States)

    ... you do? Always ask your provider what your cholesterol numbers are and write them down. Discuss these ... provider may prescribe medicine to help lower your cholesterol. y y Take your medicine every day, or ...

  3. The process of cholesterol cholelithiasis induced by diet in the prairie dog: a physicochemical characterization.

    Science.gov (United States)

    Holzbach, R T; Corbusier, C; Marsh, M; Naito, H K

    1976-06-01

    The rapid induction of cholesterol cholelithiasis in a new experimental model, the prairie dog, has recently been reported by two groups. In this model they were able to induce gallstones in as brief a period as 2 weeks, using a 1.2 per cent cholesterol diet. This unprecedented time intensity or telescoping of the induction process provided a unique opportunity for observation of physicochemical changes occurring rapidly over a short period of time and to correlate these with degree of biliary cholesterol saturation. To make such observations, 97 adult male and female prairie dogs were used in the present study. Seventy-two were fed the high cholesterol diet and sacrificed at intervals over a 14-day period; the remaining 25 were used as controls. The primary objective of this work was to determine whether or not there was any relationship between the in vivo events induced in prairie dog bile and our recently reported detailed observations of cholesterol precipitation phenomena in synthetic bile analogs. In these studies, solutions of physiologically relevant composition were constructed, which, when plotted according to convention on a tri-linear graph, fell within the zone of metastable or suspended supersaturation. These solutions revealed a consistent and previously undescribed liquid crystal to solid crystal phase transition during their approach to equilibrium at 37 degrees C. The in vivo studies of prairie dog bile following rapid induction of supersaturation revealed identical changes. At first, the supersaturated biles were isotropic followed by a period of turbidity and invariable formation of mesophase. After a few days, the liquid crystals decreased and solid cholesterol crystallites appeared. The most striking aspect of these observations is that the in vitro work has now predicted not only static, but dynamic processes as well, with respect to cholesterol precipitation beginning with the metastably supersaturated state and eventuating in gallstone

  4. Model parameters for simulation of physiological lipids

    Science.gov (United States)

    McGlinchey, Nicholas

    2016-01-01

    Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed‐chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid–protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26864972

  5. Model parameters for simulation of physiological lipids.

    Science.gov (United States)

    Hills, Ronald D; McGlinchey, Nicholas

    2016-05-01

    Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed-chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid-protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26864972

  6. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Berg, van den W.A.M.; Rovida, S.; Berkel, van W.J.H.

    2004-01-01

    The flavoenzyme vanillyl-alcohol oxidase was subjected to random mutagenesis to generate mutants with enhanced reactivity to creosol (2-methoxy-4-methylphenol). The vanillyl-alcohol oxidase-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol

  7. Endothelins and NADPH oxidases in the cardiovascular system.

    Science.gov (United States)

    Dammanahalli, Karigowda J; Sun, Zhongjie

    2008-01-01

    1. The endothelin (ET) system and NADPH oxidase play important roles in the regulation of cardiovascular function, as well as in the pathogenesis of hypertension and other cardiovascular diseases. 2. Endothelins activate NADPH oxidases and thereby increase superoxide production, resulting in oxidative stress and cardiovascular dysfunction. Thus, NADPH oxidases may mediate the role of endothelins in some cardiovascular diseases. However, the role of reactive oxygen species (ROS) in mediating ET-induced vasoconstriction and cardiovascular disease remains under debate, as evidenced by conflicting reports from different research teams. Conversely, activation of NADPH oxidase can stimulate ET secretion via ROS generation, which further enhances the cardiovascular effects of NADPH oxidase. However, little is known about how ROS activate the endothelin system. It seems that the relationship between ET-1 and ROS may vary with cardiovascular disorders. 3. Endothelins activate NADPH oxidase via the ET receptor-proline-rich tyrosine kinase-2 (Pyk2)-Rac1 pathway. Rac1 is an important regulator of NADPH oxidase. There is ample evidence supporting direct stimulation by Rac1 of NADPH oxidase activity. In addition, Rac1-induced cardiomyocyte hypertrophy is mediated by the generation of ROS.

  8. Ezetimibe and Simvastatin Reduce Cholesterol Levels in Zebrafish Larvae Fed a High-Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Ji Sun Baek

    2012-01-01

    Full Text Available Cholesterol-fed zebrafish is an emerging animal model to study metabolic, oxidative, and inflammatory vascular processes relevant to pathogenesis of human atherosclerosis. Zebrafish fed a high-cholesterol diet (HCD develop hypercholesterolemia and are characterized by profound lipoprotein oxidation and vascular lipid accumulation. Using optically translucent zebrafish larvae has the advantage of monitoring vascular pathology and assessing the efficacy of drug candidates in live animals. Thus, we investigated whether simvastatin and ezetimibe, the principal drugs used in management of hypercholesterolemia in humans, would also reduce cholesterol levels in HCD-fed zebrafish larvae. We found that ezetimibe was well tolerated by zebrafish and effectively reduced cholesterol levels in HCD-fed larvae. In contrast, simvastatin added to water was poorly tolerated by zebrafish larvae and, when added to food, had little effect on cholesterol levels in HCD-fed larvae. Combination of low doses of ezetimibe and simvastatin had an additive effect in reducing cholesterol levels in zebrafish. These results suggest that ezetimibe exerts in zebrafish a therapeutic effect similar to that in humans and that the hypercholesterolemic zebrafish can be used as a low-cost and informative model for testing new drug candidates and for investigating mechanisms of action for existing drugs targeting dyslipidemia.

  9. Polymer sorbent with the properties of an artificial cholesterol receptor

    Science.gov (United States)

    Polyakova, I. V.; Ezhova, N. M.; Osipenko, A. A.; Pisarev, O. A.

    2015-02-01

    A cholesterol-imprinted polymer sorbent and the corresponding reticular control copolymer were synthesized from hydroxyethyl methacrylate and ethyleneglycol dimethacrylate. The sorption isotherms of cholesterol were analyzed using the generalized Langmuir and Freundlich equations. In the case of the imprinted reticular polymer, cholesterol sorption occurred on the energetically homogeneous binding centers, forming one monolayer, while the nonspecific sorption of cholesterol on the control copolymer occurred with energetically nonhomogeneous binding of the sorbate and depended on the physicochemical conditions of sorption.

  10. Ascorbic acid and L-gulonolactone oxidase in lagomorphs.

    Science.gov (United States)

    Jenness, R; Birney, E C; Ayaz, K L

    1978-01-01

    1. The activity of L-gulonolactone oxidase (EC 1.1.3.8) in the liver of eastern cottontail rabbits (Sylvilagus floridanus) is about 10-fold greater in winter than in summer. 2. L-gulonolactone oxidase activity is low and tissue ascorbate high during all seasons in snowshoe hares (Lepus americanus). 3. Liver contents of ascorbate fall to low levels in L. americanus fed on rabbit chow in the laboratory. 4. The activity of L-gulonolactone oxidase in liver of Sylvilagus and Oryctolagus is depressed by feeding high levels of L-ascorbic acid. 5. The New Zealand White breed of domestic rabbit (Oryctolagus cuniculus) has considerably higher levels of L-gulonolactone oxidase and liver ascorbate than does the Dutch breed. 6. In a wild population of Oryctolagus sampled in Australia L-gulonolactone oxidase levels were intermediate between those of the two domestic breeds and more variable than either. PMID:318384

  11. A whole-body mathematical model of cholesterol metabolism and its age-associated dysregulation

    Directory of Open Access Journals (Sweden)

    Mc Auley Mark T

    2012-10-01

    Full Text Available Abstract Background Global demographic changes have stimulated marked interest in the process of aging. There has been, and will continue to be, an unrelenting rise in the number of the oldest old ( >85 years of age. Together with an ageing population there comes an increase in the prevalence of age related disease. Of the diseases of ageing, cardiovascular disease (CVD has by far the highest prevalence. It is regarded that a finely tuned lipid profile may help to prevent CVD as there is a long established relationship between alterations to lipid metabolism and CVD risk. In fact elevated plasma cholesterol, particularly Low Density Lipoprotein Cholesterol (LDL-C has consistently stood out as a risk factor for having a cardiovascular event. Moreover it is widely acknowledged that LDL-C may rise with age in both sexes in a wide variety of groups. The aim of this work was to use a whole-body mathematical model to investigate why LDL-C rises with age, and to test the hypothesis that mechanistic changes to cholesterol absorption and LDL-C removal from the plasma are responsible for the rise. The whole-body mechanistic nature of the model differs from previous models of cholesterol metabolism which have either focused on intracellular cholesterol homeostasis or have concentrated on an isolated area of lipoprotein dynamics. The model integrates both current and previously published data relating to molecular biology, physiology, ageing and nutrition in an integrated fashion. Results The model was used to test the hypothesis that alterations to the rate of cholesterol absorption and changes to the rate of removal of LDL-C from the plasma are integral to understanding why LDL-C rises with age. The model demonstrates that increasing the rate of intestinal cholesterol absorption from 50% to 80% by age 65 years can result in an increase of LDL-C by as much as 34 mg/dL in a hypothetical male subject. The model also shows that decreasing the rate of hepatic

  12. Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1

    NARCIS (Netherlands)

    Beulens, J.W.J.; Sierksma, A.; Tol, van A.; Fournier, C.

    2004-01-01

    Moderate alcohol consumption increases HDL cholesterol, which is involved in reverse cholesterol transport (RCT). The aim of this study was to investigate the effect of moderate alcohol consumption on cholesterol efflux, using J774 mouse macrophages and Fu5AH cells, and on other parameters in the RC

  13. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor t

  14. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    Science.gov (United States)

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  15. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    OpenAIRE

    Catherine Tomaro-Duchesneau; Mitchell L. Jones; Divya Shah; Poonam Jain; Shyamali Saha; Satya Prakash

    2014-01-01

    Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and ch...

  16. Hypercholesterolemia: The Role of Schools in Cholesterol Screening.

    Science.gov (United States)

    Price, James H.; Casler, Suzanne M.

    1997-01-01

    Examines the prevalence of cardiovascular disease risk factors among children and adolescents, the pros and cons of cholesterol screening among youth, cholesterol assessments of at-risk youth, and the role of schools in cholesterol education and screening (focusing on comprehensive school health education and services). (SM)

  17. CHROMATOGRAPHIC METHODS IN THE ANALYSIS OF CHOLESTEROL AND RELATED LIPIDS

    NARCIS (Netherlands)

    HOVING, EB

    1995-01-01

    Methods using thin-layer chromatography, solid-phase extraction, gas chromatography, high-performance liquid chromatography and supercritical fluid chromatography are described for the analysis of single cholesterol, esterified and sulfated cholesterol, and for cholesterol in the context of other li

  18. HDL Cholesterol and Risk of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Nordestgaard, Børge G;

    2015-01-01

    Observationally, low levels of HDL cholesterol are consistently associated with increased risk of type 2 diabetes. Therefore, plasma HDL cholesterol increasing has been suggested as a novel therapeutic option to reduce the risk of type 2 diabetes. Whether levels of HDL cholesterol are causally as...

  19. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection.

    Science.gov (United States)

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze

    2015-11-18

    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose.

  20. Porcine artery elastin preparation reduces serum cholesterol level in rats

    OpenAIRE

    Liyanage, Ruvini; Nakamura, Yumi; Shimada, Ken-ichiro; SEKIKAWA, Mitsuo; Jayawardana, Barana Chaminda; HAN, Kyu-Ho; Tomoko, Okada; Ohba, Kiyoshi; Takahata, Yoshihisa; Morimatsu, Fumiki; FUKUSHIMA, Michihiro; 福島, 道広; 島田, 謙一郎; 関川, 三男; 韓, 圭鎬

    2009-01-01

    The effect of porcine artery elastin on serum cholesterol level was investigated in rats fed a cholesterol-free diet. Rats were fed for 4 weeks, with a diet (ED) containing 15% casein and 5% of porcine artery elastin in comparison with a diet (CD) containing 20% casein. The total serum and non-HDL-cholesterol concentrations were lower (P

  1. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  2. On the puzzling distribution of cholesterol in the plasma membrane.

    Science.gov (United States)

    Giang, H; Schick, M

    2016-09-01

    The distribution of cholesterol between the two leaves of the plasma membrane in mammalian cells presents a conundrum; given cholesterol's known affinity for sphingomyelin, which resides predominantly in the exoplasmic leaf, why is it that experiment finds a majority of the cholesterol in the cytoplasmic leaf? This article reviews a recently proposed solution to this puzzle. PMID:26724709

  3. Alcohol consumption stimulates early steps in reverse cholesterol transport

    NARCIS (Netherlands)

    Gaag, M.S. van der; Tol, A. van; Vermunt, S.H.F.; Scheek, L.M.; Schaafsma, G.; Hendriks, H.F.J.

    2001-01-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol pathw

  4. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    Science.gov (United States)

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  5. Effect of testosterone deficiency on cholesterol metabolism in pigs fed a high-fat and high-cholesterol diet

    OpenAIRE

    Cai, Zhaowei; Xi, Haitao; Pan, Yongming; Jiang, Xiaoling; Chen, Liang; Cai, Yueqin; Zhu, Keyan; Chen, Cheng; XU, XIAOPING; Chen, Minli

    2015-01-01

    Background Testosterone deficiency is associated with increased serum cholesterol levels. However, how testosterone deficiency precisely affects cholesterol metabolism remains unclear. Therefore, in the current study, we examined the effect of testosterone deficiency on cholesterol metabolism and liver gene expression in pigs fed a high-fat and high-cholesterol (HFC) diet. Methods Sexually mature male miniature pigs (6–7 months old) were randomly divided into 3 groups as follows: intact male ...

  6. Understanding Cholesterol and Heart Health | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... cholesterol throughout the body: Low-density lipoproteins (LDL): LDL cholesterol sometimes is called "bad" cholesterol. A high LDL ... or even death. The higher the level of LDL cholesterol in your blood, the GREATER your chance is ...

  7. Effects of saturated and unsaturated fats given with and without dietary cholesterol on hepatic cholesterol synthesis and hepatic lipid metabolism.

    Science.gov (United States)

    Bochenek, W; Rodgers, J B

    1978-01-27

    Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.

  8. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine

    NARCIS (Netherlands)

    Bosch, van den H.M.; Wit, de N.J.W.; Hooiveld, G.J.E.J.; Vermeulen, H.; Veen, van der J.N.; Houten, S.M.; Kuipers, F.; Müller, M.R.; Meer, van der R.

    2008-01-01

    Transporters present in the epithelium of the small intestine determine the efficiency by which dietary and biliary cholesterol are taken up into the body and thus control whole-body cholesterol balance. Niemann-Pick C1 Like Protein 1 (Npc1l1) transports cholesterol into the enterocyte, whereas ATP-

  9. Fibroblast cholesterol efflux to plasma from metabolic syndrome subjects is not defective despite low high-density lipoprotein cholesterol

    NARCIS (Netherlands)

    R.P.F. Dullaart (Robin); A. Groen (Albert); G.M. Dallinga-Thie (Geesje); R. de Vries (Rindert); W. Sluiter (Wim); A. van Tol (Arie)

    2008-01-01

    textabstractObjective: We tested whether in metabolic syndrome (MetS) subjects the ability of plasma to stimulate cellular cholesterol efflux, an early step in the anti-atherogenic reverse cholesterol transport pathway, is maintained despite low high-density lipoprotein (HDL) cholesterol. Design: In

  10. Cholesterol efflux capacity: An introduction for clinicians.

    Science.gov (United States)

    Anastasius, Malcolm; Kockx, Maaike; Jessup, Wendy; Sullivan, David; Rye, Kerry-Anne; Kritharides, Leonard

    2016-10-01

    Epidemiologic studies have shown an inverse correlation between high-density lipoprotein (HDL) cholesterol (HDL-C) levels and cardiovascular disease outcomes. However, the hypothesis of a causal relationship between HDL-C and cardiovascular disease has been challenged by genetic and clinical studies. Serum cholesterol efflux capacity (CEC) is an important measure of HDL function in humans. Recent large clinical studies have shown a correlation between in vitro CEC and cardiovascular disease prevalence and incidence, which appears to be independent of HDL-C concentration. The present review summarizes recent large clinical studies and introduces important methodological considerations. Further studies are required to standardize and establish the reproducibility of this measure of HDL function and clarify whether modulating CEC will emerge as a useful therapeutic target. PMID:27659883

  11. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Antoneta Granic

    consumption reduces the risk of developing atherosclerosis or AD. These results suggest a novel, cell cycle mechanism by which aberrant cholesterol homeostasis promotes neurodegeneration and atherosclerosis by disrupting chromosome segregation and potentially other aspects of microtubule physiology.

  12. Cholesterol in serum lipoprotein fractions after spaceflight

    Science.gov (United States)

    Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.

    1988-01-01

    Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.

  13. Structure of cholesterol/ceramide monolayer mixtures

    DEFF Research Database (Denmark)

    Scheffer, L.; Solomonov, I.; Weygand, M.J.;

    2005-01-01

    The structure of monolayers of cholesterol/ ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two....... As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts....

  14. Potent and selective mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  15. Common Force Field Thermodynamics of Cholesterol

    OpenAIRE

    Francesco Giangreco; Eiji Yamamoto; Yoshinori Hirano; Milan Hodoscek; Volker Knecht; Matteo di Giosia; Matteo Calvaresi; Francesco Zerbetto; Kenji Yasuoka; Tetsu Narumi; Masato Yasui; Siegfried Höfinger

    2013-01-01

    Four different force fields are examined for dynamic characteristics using cholesterol as a case study. The extent to which various types of internal degrees of freedom become thermodynamically relevant is evaluated by means of principal component analysis. More complex degrees of freedom (angle bending, dihedral rotations) show a trend towards force field independence. Moreover, charge assignments for membrane-embedded compounds are revealed to be critical with s...

  16. [HDL cholesterol as a sensitive diagnostic parameter in malaria].

    Science.gov (United States)

    Kittl, E M; Diridl, G; Lenhart, V; Neuwald, C; Tomasits, J; Pichler, H; Bauer, K

    1992-01-01

    In patients with malaria the lipid parameters triglycerides, cholesterol, and HDL-cholesterol were determined routinely. At the time of admission hypertriglyceridemia, hypocholesterolemia, and an extreme decrease in HDL-cholesterol were found. This dyslipoproteinemia was present in cases of falciparum malaria, as well as in cases of benign tertian malaria. The extent of HDL-cholesterol decrease showed no correlation to the severity of the clinical course of disease. HDL-cholesterol has proven to be an independent diagnostic laboratory finding in cases of suspected malarial infection. This parameter displays high diagnostic sensitivity, but no specificity for malaria. PMID:1546481

  17. Positive effect of dietary lutein and cholesterol on the undirected song activity of an opportunistic breeder

    Science.gov (United States)

    Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2016-01-01

    Song is a sexually selected trait that is thought to be an honest signal of the health condition of an individual in many bird species. For species that breed opportunistically, the quantity of food may be a determinant of singing activity. However, it is not yet known whether the quality of food plays an important role in this respect. The aim of the present study was to experimentally investigate the role of two calorie-free nutrients (lutein and cholesterol) in determining the expression of a sexually selected behavior (song rate) and other behaviors (locomotor activity, self-maintenance activity, eating and resting) in male zebra finches (Taeniopygia guttata). We predicted that males supplemented with lutein and cholesterol would sing at higher rates than controls because both lutein and cholesterol have important health-related physiological functions in birds and birdsong mirrors individual condition. To control for testosterone secretion that may upregulate birdsong, birds were exposed to a decreasing photoperiod. Our results showed that control males down-regulated testosterone in response to a decreasing photoperiod, while birds treated with lutein or cholesterol maintained a constant singing activity. Both lutein- and cholesterol-supplemented groups sang more than control groups by the end of the experiment, indicating that the quality of food can affect undirected song irrespective of circulating testosterone concentrations. None of the other measured behaviors were affected by the treatment, suggesting that, when individuals have full availability of food, sexually selected song traits are more sensitive to the effect of food quality than other behavioral traits. Overall the results support our prediction that undirected song produced by male zebra finches signals access to high-quality food.

  18. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  19. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  20. ROS signalling, NADPH oxidases and cancer.

    Science.gov (United States)

    Landry, William D; Cotter, Thomas G

    2014-08-01

    ROS (reactive oxygen species) have long been regarded as a series of destructive molecules that have a detrimental effect on cell homoeostasis. In support of this are the myriad antioxidant defence systems nearly all eukaryotic cells have that are designed to keep the levels of ROS in check. However, research data emerging over the last decade have demonstrated that ROS can influence a range of cellular events in a manner similar to that seen for traditional second messenger molecules such as cAMP. Hydrogen peroxide (H2O2) appears to be the main ROS with such signalling properties, and this molecule has been shown to affect a wide range of cellular functions. Its localized synthesis by the Nox (NADPH oxidase) family of enzymes and how these enzymes are regulated is of particular interest to those who work in the field of tumour biology.

  1. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase.

    Science.gov (United States)

    Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo

    2016-10-01

    Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process. PMID:27295021

  2. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins.

    Directory of Open Access Journals (Sweden)

    Yunjiu Cheng

    Full Text Available To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.

  3. Chewing Over Physiology Integration

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  4. Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring.

    Science.gov (United States)

    Lee, Kuan-I; Chiang, Chin-Wei; Lin, Hui-Ching; Zhao, Jin-Feng; Li, Cheng-Ta; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2016-05-01

    Long-term exposure to di-(2-ethylhexyl) phthalate (DEHP) is highly associated with carcinogenicity, fetotoxicity, psychological disorders and metabolic diseases, but the detrimental effects and mechanisms are not fully understood. We investigated the effect of exposing mouse mothers to DEHP, and the underlying mechanism, on blood pressure, obesity and cholesterol metabolism as well as psychological and learning behaviors in offspring. Tail-cuff plethysmography was used for blood pressure measurement; Western blot used was for phosphorylation and expression of protein; hematoxylin and eosin staining, Nissl staining and Golgi staining were used for histological examination. The serum levels of cholesterol, triglycerides and glucose were measured by blood biochemical analysis. Hepatic cholesterol and triglyceride levels were assessed by colorimetric assay kits. Offspring behaviors were evaluated by open-field activity, elevated plus maze, social preference test and Morris water maze. Maternal DEHP exposure deregulated the phosphorylation of endothelial nitric oxide synthase and upregulated angiotensin type 1 receptor in offspring, which led to increased blood pressure. It led to obesity in offspring by increasing the size of adipocytes in white adipose tissue and number of adipocytes in brown adipose tissue. It increased the serum level of cholesterol in offspring by decreasing the hepatic capacity for cholesterol clearance. The impaired social interaction ability induced by maternal DEHP exposure might be due to abnormal neuronal development. Collectively, our findings provide new evidence that maternal exposure to DEHP has a lasting effect on the physiological functions of the vascular system, adipose tissue and nerve system in offspring. PMID:25995009

  5. Impact of a chronic ingestion of radionuclides on cholesterol metabolism in the rat: example of depleted uranium and cesium 137

    International Nuclear Information System (INIS)

    Depleted uranium (DU) and cesium-137 (137Cs) are radionuclides spread in the environment due to industrial activities, incidents or accidents. This pollution sets a risk of human exposure to low levels of radiations through contaminated foodstuff. The impact of a chronic ingestion of DU or 137Cs on cholesterol metabolism in the liver and the brain has been studied. Indeed, cholesterol is crucial in physiology, being a component of cell membranes and a precursor to numerous molecules (bile acids...). Disruption of its metabolism is associated to many pathologies such as atherosclerosis or Alzheimer disease. Rats daily ingested a low level of DU or 137Cs over 9 months. For each radionuclide, a reference model (rats contaminated since adulthood) and a more sensitive model (hypercholesterolemic or contaminated since fetal life) were studied. The effects mainly consist of changes in gene expression or enzymatic activity of various actors of cholesterol metabolism. DU mainly affects one catabolism enzyme in both models, as well as membrane transporters and regulation factors. 137Cs mainly affects the storage enzyme in both models as well as catabolism enzymes, apolipoproteins, and regulation factors. No change in the plasma profile or in the tissue concentration of cholesterol (hepatic/cerebral) is recorded, whatever the model and the radionuclide. Thus, a chronic internal contamination with DU or 137Cs induces molecular modifications in cholesterol metabolism in the rat, without affecting its homeostasis or the general health status in all of our experimental models. (author)

  6. Some properties of active and latent catechol oxidase of mushroom

    OpenAIRE

    Janusz Czapski

    2013-01-01

    Latent form of mushroom catechol oxidase was activated by O,1% sodium dodecyl sulfate (SDS). Catalytic power of the latent form, calculated from the kinetic parameters was 1,8 times higher than that of active one. Salicyl hydroxamic acid (SHAM) appeared as a powerful inhibitor for both active and latent forms of catechol oxidase. However, in the range of 150-250 μM SHAM the inhibitory effect for active catechol oxidase was significantly higher than that for the latent one. Non-competitive an...

  7. Multilayered polyelectrolyte microcapsules: interaction with the enzyme cytochrome C oxidase.

    Directory of Open Access Journals (Sweden)

    Laura Pastorino

    Full Text Available Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.

  8. Functional Analysis of Polyphenol Oxidases by Antisense/Sense Technology

    Directory of Open Access Journals (Sweden)

    Jutharat Attajarusit

    2007-07-01

    Full Text Available Polyphenol oxidases (PPOs catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum plants with modified PPO expression levels (suppressed PPO and overexpressing PPO. These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F., cotton bollworm (Helicoverpa armigera (Hübner and beet army worm (Spodoptera exigua (Hübner, whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants

  9. Physiological effects in aromatherapy

    Directory of Open Access Journals (Sweden)

    Tapanee Hongratanaworakit

    2004-01-01

    Full Text Available The effects of aromas on humans are divided into physiological and psychological effects. The physiological effect acts directly on the physical organism, the psychological effect acts via the sense of smell or olfactory system, which in turn may cause a physiological effect. This paper reviews on the physiological effects which are used for the evaluation of the effects of aromas. Physiological parameters, i.e. heart rate blood pressure, electrodermal activity, electroencephalogram, slow potential brain waves (contingent negativevariation, and eye blink rate or pupil functions, are used as indices for the measurement of the aroma effects

  10. Scavenger receptor BI: A multi-purpose player in cholesterol and steroid metabolism

    Institute of Scientific and Technical Information of China (English)

    Menno; Hoekstra; Theo; JC; Van; Berkel; Miranda; Van; Eck

    2010-01-01

    Scavenger receptor class B type Ⅰ (SR-BI) is an important member of the scavenger receptor family of integral membrane glycoproteins. This review highlights studies in SR-BI knockout mice, which concern the role of SR-BI in cholesterol and steroid metabolism. SR-BI in hepatocytes is the sole molecule involved in selective uptake of cholesteryl esters from high-density lipoprotein (HDL). SR-BI plays a physiological role in binding and uptake of native apolipoprotein B (apoB)-containing lipoproteins by hepato...

  11. Seasonal and biological variation of blood concentrations of total cholesterol, dehydroepiandrosterone sulfate, hemoglobin A(1c), IgA, prolactin, and free testosterone in healthy women

    DEFF Research Database (Denmark)

    Garde, A H; Hansen, Åse Marie; Skovgaard, L T;

    2000-01-01

    Concentrations of physiological response variables fluctuate over time. The present study describes within-day and seasonal fluctuations for total cholesterol, dehydroepiandrosterone sulfate (DHEA-S), hemoglobin A(1c) (HbA(1c)), IgA, prolactin, and free testosterone in blood, and estimates within...

  12. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    Science.gov (United States)

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  13. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Matthias Orth

    2012-01-01

    Full Text Available Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules. We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

  14. Phytosterol ester constituents affect micellar cholesterol solubility in model bile.

    Science.gov (United States)

    Brown, Andrew W; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2010-09-01

    Plant sterols and stanols (phytosterols) and their esters are nutraceuticals that lower LDL cholesterol, but the mechanisms of action are not fully understood. We hypothesized that intact esters and simulated hydrolysis products of esters (phytosterols and fatty acids in equal ratios) would differentially affect the solubility of cholesterol in model bile mixed micelles in vitro. Sodium salts of glycine- and taurine-conjugated bile acids were sonicated with phosphatidylcholine and either sterol esters or combinations of sterols and fatty acids to determine the amount of cholesterol solubilized into micelles. Intact sterol esters did not solubilize into micelles, nor did they alter cholesterol solubility. However, free sterols and fatty acids altered cholesterol solubility independently (no interaction effect). Equal contents of cholesterol and either campesterol, stigmasterol, sitosterol, or stigmastanol (sitostanol) decreased cholesterol solubility in micelles by approximately 50% compared to no phytosterol present, with stigmasterol performing slightly better than sitosterol. Phytosterols competed with cholesterol in a dose-dependent manner, demonstrating a 1:1 M substitution of phytosterol for cholesterol in micelle preparations. Unsaturated fatty acids increased the micelle solubility of sterols as compared with saturated or no fatty acids. No differences were detected in the size of the model micelles. Together, these data indicate that stigmasterol combined with saturated fatty acids may be more effective at lowering cholesterol micelle solubility in vivo.

  15. Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism

    Directory of Open Access Journals (Sweden)

    Michael L Sullivan

    2015-01-01

    Full Text Available Most cloned and/or characterized plant polyphenol oxidases (PPOs have catechol oxidase activity (i.e. they oxidize o-diphenols to o-quinones and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-characterized PPOs appear to have very specific roles in the biosynthesis of specialized metabolites via both tyrosinase (monophenol oxidase and catechol oxidase activities. Here we detail a few examples of these and explore the possibility that there may be many more biosynthetic PPOs.

  16. Multicopper oxidase-3 is a laccase associated with the peritrophic matrix of Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Minglin Lang

    Full Text Available The multicopper oxidase (MCO family of enzymes includes laccases, which oxidize a broad range of substrates including polyphenols and phenylendiamines; ferroxidases, which oxidize ferrous iron; and several other oxidases with specific substrates such as ascorbate, bilirubin or copper. The genome of Anopheles gambiae, a species of mosquito, encodes five putative multicopper oxidases. Of these five, only AgMCO2 has known enzymatic and physiological functions: it is a highly conserved laccase that functions in cuticle pigmentation and tanning by oxidizing dopamine and dopamine derivatives. AgMCO3 is a mosquito-specific gene that is expressed predominantly in adult midguts and Malpighian tubules. To determine its enzymatic function, we purified recombinant AgMCO3 and analyzed its activity. AgMCO3 oxidized hydroquinone (a p-diphenol, the five o-diphenols tested, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS, and p-phenylenediamine, but not ferrous iron. The catalytic efficiencies of AgMCO3 were similar to those of cuticular laccases (MCO2 orthologs, except that AgMCO3 oxidized all of the phenolic substrates with similar efficiencies whereas the MCO2 isoforms were less efficient at oxidizing catechol or dopa. These results demonstrate that AgMCO3 can be classified as a laccase and suggest that AgMCO3 has a somewhat broader substrate specificity than MCO2 orthologs. In addition, we observed AgMCO3 immunoreactivity in the peritrophic matrix, which functions as a selective barrier between the blood meal and midgut epithelial cells, protecting the midgut from mechanical damage, pathogens, and toxic molecules. We propose that AgMCO3 may oxidize toxic molecules in the blood meal leading to detoxification or to cross-linking of the molecules to the peritrophic matrix, thus targeting them for excretion.

  17. Cholesterol Metabolism and Prostate Cancer Lethality.

    Science.gov (United States)

    Stopsack, Konrad H; Gerke, Travis A; Sinnott, Jennifer A; Penney, Kathryn L; Tyekucheva, Svitlana; Sesso, Howard D; Andersson, Swen-Olof; Andrén, Ove; Cerhan, James R; Giovannucci, Edward L; Mucci, Lorelei A; Rider, Jennifer R

    2016-08-15

    Cholesterol metabolism has been implicated in prostate cancer pathogenesis. Here, we assessed the association of intratumoral mRNA expression of cholesterol synthesis enzymes, transporters, and regulators in tumor specimen at diagnosis and lethal prostate cancer, defined as mortality or metastases from prostate cancer in contrast to nonlethal disease without evidence of metastases after at least 8 years of follow-up. We analyzed the prospective prostate cancer cohorts within the Health Professionals Follow-up Study (n = 249) and the Physicians' Health Study (n = 153) as well as expectantly managed patients in the Swedish Watchful Waiting Study (n = 338). The expression of squalene monooxygenase (SQLE) was associated with lethal cancer in all three cohorts. Men with high SQLE expression (>1 standard deviation above the mean) were 8.3 times (95% confidence interval, 3.5 to 19.7) more likely to have lethal cancer despite therapy compared with men with the mean level of SQLE expression. Absolute SQLE expression was associated with lethal cancer independently from Gleason grade and stage, as was a SQLE expression ratio in tumor versus surrounding benign prostate tissue. Higher SQLE expression was tightly associated with increased histologic markers of angiogenesis. Collectively, this study establishes the prognostic value of intratumoral cholesterol synthesis as measured via SQLE, its second rate-limiting enzyme. SQLE expression at cancer diagnosis is prognostic for lethal prostate cancer both after curative-intent prostatectomy and in a watchful waiting setting, possibly by facilitating micrometastatic disease. Cancer Res; 76(16); 4785-90. ©2016 AACR.

  18. Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing.

    Science.gov (United States)

    Nandini, Seetharamaiah; Nalini, Seetharamaiah; Reddy, M B Madhusudana; Suresh, Gurukar Shivappa; Melo, Jose Savio; Niranjana, Pathappa; Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2016-08-01

    This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting β-diphenylalanine (β-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples. PMID:27100467

  19. Fabrication and Optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs Based Silver Electrode for Determining Total Cholesterol in Serum

    Directory of Open Access Journals (Sweden)

    Kusum Lata

    2016-01-01

    Full Text Available The developed method used three enzymes comprised of cholesterol esterase, cholesterol oxidase, and peroxidase for fabrication of amperometric biosensor in order to determine total cholesterol in serum samples. Gold nanoparticles (AuNPs and carboxylated multiwall carbon nanotubes (cMWCNTs were used to design core of working electrode, having covalently immobilized ChO, ChE, and HRP. Polyacrylamide layer was finally coated on working electrode in order to prevent enzyme leaching. Chemically synthesised Au nanoparticles were subjected to transmission electron microscopy (TEM for analysing the shape and size of the particles. Working electrode was subjected to FTIR and XRD. The combined action of AuNP and c-MWCNT showed enhancement in electrocatalytic activity at a very low potential of 0.27 V. The pH 7, temperature 40°C, and response time of 20 seconds, respectively, were observed. The biosensor shows a broad linear range from 0.5 mg/dL to 250 mg/dL (0.01 mM–5.83 mM with minimum detection limit being 0.5 mg/dL (0.01 mM. The biosensor showed reusability of more than 45 times and was stable for 60 days. The biosensor was successfully tested for determining total cholesterol in serum samples amperometrically with no significant interference by serum components.

  20. Cooked rice prevents hyperlipidemia in hamsters fed a high-fat/cholesterol diet by the regulation of the expression of hepatic genes involved in lipid metabolism.

    Science.gov (United States)

    Choi, Won Hee; Gwon, So Young; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl

    2013-07-01

    Rice has many health-beneficial components for ameliorating obesity, diabetes, and dyslipidemia. However, the effect of cooked rice as a useful carbohydrate source has not been investigated yet; so we hypothesized that cooked rice may have hypolipidemic effects. In the present study, we investigated the effect of cooked rice on hyperlipidemia and on the expression of hepatic genes involved in lipid metabolism. Golden Syrian hamsters were divided into 2 groups and fed a high-fat (15%, wt/wt)/cholesterol (0.5%, wt/wt) diet supplemented with either corn starch (HFD, 54.5% wt/wt) or cooked rice (HFD-CR, 54.5% wt/wt) as the main carbohydrate source for 8 weeks. In the HFD-CR group, the triglyceride and total cholesterol levels in the serum and liver were decreased, and the total lipid, total cholesterol, and bile acid levels in the feces were increased, compared with the HFD group. In the cooked-rice group, the messenger RNA and protein levels of 3-hydroxy-3-methylglutaryl CoA reductase were significantly downregulated; and the messenger RNA and protein levels of the low-density lipoprotein receptor and cholesterol-7α-hydroxylase were upregulated. Furthermore, the expressions of lipogenic genes such as sterol response element binding protein-1, fatty acid synthase, acetyl CoA carboxylase, and stearoyl CoA desaturase-1 were downregulated, whereas the β-oxidation related genes (carnitine palmitoyl transferase-1, acyl CoA oxidase, and peroxisome proliferator-activated receptor α) were upregulated, in the cooked-rice group. Our results suggest that the hypolipidemic effect of cooked rice is partially mediated by the regulation of hepatic genes involved in lipid metabolism, which results in the suppression of cholesterol and fatty acid synthesis and the enhancement of cholesterol excretion and fatty acid β-oxidation. PMID:23827132

  1. Influence of infant and juvenile diets on serum cholesterol, lipoprotein cholesterol, and apolipoprotein concentrations in juvenile baboons (Papio sp.).

    Science.gov (United States)

    Mott, G E; McMahan, C A; Kelley, J L; Farley, C M; McGill, H C

    1982-11-01

    The long-term effects of infant diet (breast milk or formula containing 2, 30, or 60 mg/dl cholesterol) and subsequent dietary cholesterol (1 mg/kcal) and fat (saturated or unsaturated) on serum lipid and apolipoprotein concentrations were estimated using 82 juvenile baboons 4-6 years of age. A significant interaction of infant diet (breast vs formula) with type of fat (saturated vs unsaturated) at 4-6 years of age was observed on HDL cholesterol and apolipoprotein A-I (apoA-I) concentrations. That is, animals breast-fed as infants had higher HDL cholesterol and apoA-I concentrations when fed unsaturated fat from weaning to 4-6 years of age than those fed saturated fat (77 vs 68 mg/dl). In contrast, animals fed formulas in infancy followed by a diet containing unsaturated fat had lower HDL cholesterol and apoA-I concentrations at 4-6 years of age than did those fed saturated fat (67 vs 78 mg/dl). However, breast feeding or feeding formulas containing various levels of cholesterol for 3 months during infancy did not result in statistically significant differences in total serum cholesterol, VLDL + LDL cholesterol and apolipoprotein B (apoB) concentrations. Dietary cholesterol after infancy significantly increased serum total cholesterol, VLDL + LDL and HDL cholesterol, apoA-I and apoB concentrations. All of these response variables also were higher in animals fed saturated fat compared to those fed unsaturated fat on the same level of cholesterol. At 4-6 years of age, regardless of diet, females had significantly higher serum VLDL + LDL cholesterol (57 vs 43 mg/dl) and apoB concentrations (39 vs 30 mg/dl) than did males.

  2. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    International Nuclear Information System (INIS)

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with [14C]iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 (± 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked

  3. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies.

  4. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies. PMID:26416797

  5. Cholesterol monohydrate nucleation in ultrathin films on water

    DEFF Research Database (Denmark)

    Rapaport, H.; Kuzmenko, I.; Lafont, S.;

    2001-01-01

    The growth of a cholesterol crystalline phase, three molecular layers thick at the air-water interface, was monitored by grazing incidence x-ray diffraction and x-ray reflectivity. Upon compression, a cholesterol film transforms from a monolayer of trigonal symmetry and low crystallinity to a...... trilayer, composed of a highly crystalline bilayer in a rectangular lattice and a disordered top cholesterol layer. This system undergoes a phase transition into a crystalline trilayer incorporating ordered water between the hydroxyl groups of the top and middle sterol layers in an arrangement akin to the...... triclinic 3-D crystal structure of cholesterol . H(2)O. By comparison, the cholesterol derivative stigmasterol transforms, upon compression, directly into a crystalline trilayer in the rectangular lattice. These results may contribute to an understanding of the onset of cholesterol crystallization in...

  6. A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells

    OpenAIRE

    Gianni, Davide; Taulet, Nicolas; Zhang, Hui; DerMardirossian, Celine; Kister, Jeremy; Martinez, Luis; ROUSH, WILLIAM R.; Brown, Steve J.; Bokoch, Gary M.; Rosen, Hugh

    2010-01-01

    The NADPH oxidase (Nox) proteins catalyze the regulated formation of reactive oxygen species (ROS) which play key roles as signaling molecules in several physiological and pathophysiological processes. ROS generation by the Nox1 member of the Nox family is necessary for the formation of extracellular matrix (ECM)-degrading, actin-rich cellular structures known as invadopodia. Selective inhibition of Nox isoforms can provide reversible, mechanistic insights into these cellular processes in con...

  7. Apoprotein E genotype and the response of serum cholesterol to dietary fat, cholesterol and cafestol

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Ordovas, J.M.; Pedro-Botet, J.; Katan, M.B.

    2001-01-01

    Previous studies on the effect of apoprotein E (APOE) polymorphism on the response of serum lipids to diet showed inconsistent results. We therefore studied the effect of apoprotein E polymorphism on responses of serum cholesterol and lipoproteins to various dietary treatments. We combined data on r

  8. Percentage of Adults with High Cholesterol Whose LDL Cholesterol Levels Are Adequately Controlled

    Science.gov (United States)

    ... non-missing response to cholesterol questionnaire. Exclusion Criteria: Pregnant women. Estimates for 18-39 year olds were not ... for only one type of service, such as dental or vision care. Persons covered by ... and Prevention, National Center for Health Statistics from the National ...

  9. Polyphenol oxidase from yacon roots (Smallanthus sonchifolius).

    Science.gov (United States)

    Neves, Valdir Augusto; da Silva, Maraiza Aparecida

    2007-03-21

    Polyphenol oxidase (E.C. 1.14.18.1) (PPO) extracted from yacon roots (Smallanthus sonchifolius) was partially purified by ammonium sulfate fractionation and separation on Sephadex G-100. The enzyme had a molecular weight of 45 490+/-3500 Da and Km values of 0.23, 1.14, 1.34, and 5.0 mM for the substrates caffeic acid, chlorogenic acid, 4-methylcatechol, and catechol, respectively. When assayed with resorcinol, DL-DOPA, pyrogallol, protocatechuic, p-coumaric, ferulic, and cinnamic acids, catechin, and quercetin, the PPO showed no activity. The optimum pH varied from 5.0 to 6.6, depending on substrate. PPO activity was inhibited by various phenolic and nonphenolic compounds. p-Coumaric and cinnamic acids showed competitive inhibition, with Ki values of 0.017 and 0.011 mM, respectively, using chlorogenic acid as substrate. Heat inactivation from 60 to 90 degrees C showed the enzyme to be relatively stable at 60-70 degrees C, with progressive inactivation when incubated at 80 and 90 degrees C. The Ea (apparent activation energy) for inactivation was 93.69 kJ mol-1. Sucrose, maltose, glucose, fructose, and trehalose at high concentrations appeared to protect yacon PPO against thermal inactivation at 75 and 80 degrees C. PMID:17316020

  10. MONOAMINE OXIDASE: RADIOTRACER DEVELOPMENT AND HUMAN STUDIES.

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER,J.S.; LOGAN,J.; VOLKOW,N.D.; WANG,G.J.; MACGREGOR,R.R.; DING,Y.S.

    2000-09-28

    PET is uniquely capable of providing information on biochemical transformations in the living human body. Although most of the studies of monoamine oxidase (MAO) have focused on measurements in the brain, the role of peripheral MAO as a phase 1 enzyme for the metabolism of drugs and xenobiotics is gaining attention (Strolin Benedetti and Tipton, 1998; Castagnoli et al., 1997.). MAO is well suited for this role because its concentration in organs such as kidneys, liver and digestive organs is high sometimes exceeding that in the brain. Knowledge of the distribution of the MAO subtypes within different organs and different cells is important in determining which substrates (and which drugs and xenobiotics) have access to which MAO subtypes. The highly variable subtype distribution with different species makes human studies even more important. In addition, the deleterious side effects of combining MAO inhibitors with other drugs and with foodstuffs makes it important to know the MAO inhibitory potency of different drugs both in the brain and in peripheral organs (Ulus et al., 2000). Clearly PET can play a role in answering these questions, in drug research and development and in discovering some of the factors which contribute to the highly variable MAO levels in different individuals.

  11. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer.

    Science.gov (United States)

    Michalak, Zuzanna; Muzzio, Michelle; Milianta, Peter J; Giacomini, Rosario; Lee, Sunghee

    2013-12-23

    The process of water permeation across lipid membranes has significant implications for cellular physiology and homeostasis, and its study may lead to a greater understanding of the relationship between the structure of lipid bilayer and the role that lipid structure plays in water permeation. In this study, we formed a droplet interface bilayer (DIB) by contacting two aqueous droplets together in an immiscible solvent (squalane) containing bilayer-forming surfactant (monoglycerides). Using the DIB model, we present our results on osmotic water permeabilities and activation energy for water permeation of an associated series of unsaturated monoglycerides as the principal component of droplet bilayers, each having the same chain length but differing in the position and number of double bonds, in the absence and presence of a varying concentration of cholesterol. Our findings suggest that the tailgroup structure in a series of monoglyceride bilayers is seen to affect the permeability and activation energy for the water permeation process. Moreover, we have also established the insertion of cholesterol into the droplet bilayer, and have detected its presence via its effect on water permeability. The effect of cholesterol differs depending on the type of monoglyceride. We demonstrate that the DIB can be employed as a convenient model membrane to rapidly explore subtle structural effects on bilayer water permeability.

  12. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse

    Institute of Scientific and Technical Information of China (English)

    Juan Enrique Tichauer; Juan Francisco Miquel; Attilio Rigotti; Silvana Zanlungo; Mar(i)a Gabriela Morales; Ludwig Amigo; Leopoldo Galdames; Andrés Kléin; Verónica Quifio(n)es; Carla Ferrada; Alejandra Alvarez R; Marie-Christine Rio

    2007-01-01

    AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression.METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured.RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis.CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions.

  13. The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility.

    Science.gov (United States)

    Khan, Naiman A; Raine, Lauren B; Drollette, Eric S; Scudder, Mark R; Hillman, Charles H

    2015-10-01

    Identification of health behaviors and markers of physiological health associated with childhood cognitive function has important implications for public health policy targeted toward cognitive health throughout the life span. Although previous studies have shown that aerobic fitness and obesity exert contrasting effects on cognitive flexibility among prepubertal children, the extent to which diet plays a role in cognitive flexibility has received little attention. Accordingly, this study examined associations between saturated fats and cholesterol intake and cognitive flexibility, assessed using a task switching paradigm, among prepubertal children between 7 and 10 years (N = 150). Following adjustment of confounding variables (age, sex, socioeconomic status, IQ, VO2max, and BMI), children consuming diets higher in saturated fats exhibited longer reaction time during the task condition requiring greater amounts of cognitive flexibility. Further, increasing saturated fat intake and dietary cholesterol were correlated with greater switch costs, reflecting impaired ability to maintain multiple task sets in working memory and poorer efficiency of cognitive control processes involved in task switching. These data are among the first to indicate that children consuming diets higher in saturated fats and cholesterol exhibit compromised ability to flexibly modulate their cognitive operations, particularly when faced with greater cognitive challenge. Future longitudinal and intervention studies are necessary to comprehensively characterize the interrelationships between diet, aerobic fitness, obesity, and children's cognitive abilities. PMID:25865659

  14. Amperometric biosensors for glucose, lactate, and glycolate based on oxidases and redox-modified siloxane polymers

    Science.gov (United States)

    Hale, Paul D.; Inagaki, Toru; Lee, Hung Sui; Skotheim, Terje A.; Karan, Hiroko I.; Okamoto, Yoshi

    1989-06-01

    Amperometric biosensors based on flavin-containing oxidases undergo several steps which produce a measurable current that is related to the concentration of substrate. In the initial step, the substrate converts the oxidized flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) into the reduced form FADH sub 2 or FMNH sub 2. Because these cofactors are located well within the enzyme molecule, direct electron transfer to the surface of a conventional electrode does not occur to a measurable degree. A common method of facilitating this electron transfer is to introduce oxygen into the system because it is the natural acceptor for the oxidases; the oxygen is reduced by the FADH sub 2 or FMNH sub 2 to hydrogen peroxide, which can then be detected electrochemically. The major drawback to this approach is the fact that oxidation of hydrogen peroxide requires a large overpotential, thus making these sensors susceptible to interference from electroactive species. To lower the necessary applied potential, several non-physiological redox couples have been employed to shuttle electrons between the flavin moieties and the electrode. The present paper describes the development of amperometric biosensors based on flavin-containing enzymes and a family of polymeric mediators.

  15. Activity and functional interaction of alternative oxidase and uncoupling protein in mitochondria from tomato fruit

    Directory of Open Access Journals (Sweden)

    F.E. Sluse

    2000-03-01

    Full Text Available Cyanide-resistant alternative oxidase (AOX is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX and the proton electrochemical gradient energy-dissipating pathway (UCP lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation. Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.

  16. Chewing over physiology integration.

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; Miranda, Manoel de Arcisio; Brunaldi, Kellen

    2005-03-01

    An important challenge for both students and teachers of physiology is to integrate the different areas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it comes to cuts in expenses. With the aim of addressing this kind of problem, the graduate students of our department organized a physiology summer course offered to undergraduate students. The objective was to present the different physiological systems in an integrated fashion. The strategy pursued was to plan laboratory classes whose experimental results were the basis for the relevant theoretical discussions. The subject we developed to illustrate physiology integration was the study of factors influencing salivary secretion. PMID:15718383

  17. Melittin-Lipid Bilayer Interactions and the Role of Cholesterol

    OpenAIRE

    Wessman, Per; Strömstedt, Adam A; Malmsten, Martin; Edwards, Katarina

    2008-01-01

    The membrane-destabilizing effect of the peptide melittin on phosphatidylcholine membranes is modulated by the presence of cholesterol. This investigation shows that inclusion of 40 mol % cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes reduces melittin's affinity for the membrane. It is significant that the presence of cholesterol does not increase the amount of membrane-associated melittin needed to cause maximum leakage f...

  18. Interaction of Melittin with Membrane Cholesterol: A Fluorescence Approach

    OpenAIRE

    Raghuraman, H.; Chattopadhyay, Amitabha

    2004-01-01

    We have monitored the organization and dynamics of the hemolytic peptide melittin in membranes containing cholesterol by utilizing the intrinsic fluorescence properties of its functionally important sole tryptophan residue and circular dichroism spectroscopy. The significance of this study is based on the fact that the natural target for melittin is the erythrocyte membrane, which contains high amounts of cholesterol. Our results show that the presence of cholesterol inhibits melittin-induced...

  19. A review on lecithin:cholesterol acyltransferase deficiency.

    Science.gov (United States)

    Saeedi, Ramesh; Li, Min; Frohlich, Jiri

    2015-05-01

    Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme which esterifies cholesterol, and plays a key role in the metabolism of high-density lipoprotein cholesterol (HDL-C). Genetic disorders of LCAT are associated with lipoprotein abnormalities including low levels of HDL-C and presence of lipoprotein X, and clinical features mainly corneal opacities, changes in erythrocyte morphology and renal failure. Recombinant LCAT is being developed for the treatment of patients with LCAT deficiency. PMID:25172171

  20. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    Science.gov (United States)

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-01-01

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  1. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend cells

    Directory of Open Access Journals (Sweden)

    Maria Franca Mulas

    2011-10-01

    Full Text Available Cholesterol is an essential constituent of all mammalian cell membranes, and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3 and acylCoA:cholesterol acyltransferase (ACAT and cholesterol export (caveolin-1 in Friend virus-induced erythroleukemia cells (MELC, in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA. FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells.

  2. Interaction of G protein coupled receptors and cholesterol.

    Science.gov (United States)

    Gimpl, Gerald

    2016-09-01

    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs. PMID:27108066

  3. CHOLESTEROL OXIDATION PRODUCTS IN MILK AND MILK PRODUCTS

    Directory of Open Access Journals (Sweden)

    A. Kemal SEÇKİN

    2004-02-01

    Full Text Available Cholesterol oxidation products (COPs are occurred by heat and light factors during processing, improper packaging and storage conditions. COPs are mutagenic, carcinogenity, cytotoxic, angiotoxic and damage to cell membrane and effect biosynthesis cholesterol in the metabolism . So, COPs have potential risk for public health. Also, in milk and milk products that have high cholesterol COPs can be also formed during processing and storage. Therefore it is necessary that measurements must be taken and standards must be in dairy about COPs.

  4. Cholesterol granuloma of the paratesticular tissue: A case report

    Science.gov (United States)

    Unal, Dursun; Kilic, Metin; Oner, Sedat; Erkinuresin, Taskın; Demirbas, Murat; Coban, Soner; Aydos, Mustafa Murat

    2015-01-01

    A 38-year-old man was admitted to our clinic with an enlarging right scrotal mass that had been present for 7 years. Right radical inguinal orchiectomy was performed and a histopathological diagnosis confirmed a very rare case of cholesterol granuloma of the paratesticular tissue. It can be very difficult to preoperatively distinguish testicular tumours from cholesterol granulomas of the testis or epididymis. Cholesterol granuloma should be kept in mind in patients with large and non-tender scrotal masses. PMID:26225185

  5. Alterations of serum cholesterol and serum lipoprotein in breast cancer of women

    OpenAIRE

    Hasija, Kiran; Bagga, Hardeep K.

    2005-01-01

    Fasting blood sample of 50 normal subjects (control) and 100 patients of breast cancer were investigated for serum total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, very low density lipoprotein, high density lipoprotein cholesterol:low density lipoprotein cholesterol ratio and total cholesterol:high density lipoprotein cholesterol ratio during breast cancer of women. Five cancer stages, types, age groups, parity and menopausal status were undertaken...

  6. Development of alimentary cholesterol in the plasma and the plasmatic lipoproteins in man, after ingestion of a meal containing octa-deuterated cholesterol; Devenir du cholesterol alimentaire dans le plasma et les lipoproteines plasmatiques chez l`homme, apres ingestion d`un repas contenant du cholesterol octa-deutere

    Energy Technology Data Exchange (ETDEWEB)

    Becue, T.; Ferezou, J.; Simon, G. [Paris-11 Univ., 91 - Orsay (France); Bernard, P.M.; Portugal, H. [Hopital Sainte-Marguerite, 13 - Marseille (France); Dubois, C.; Lairon, D.

    1994-12-31

    Cholesterol absorbed after a test-meal has two origins with man: the biliary cholesterol and the alimentary cholesterol. In order to understand the mechanism of the modification of cholesterol intestinal absorption by oat bran, the alimentary cholesterol has been labelled with octa-deuterated cholesterol, in test-diets. The kinetics of D-cholesterol in plasma and chylomicrons is described. 1 fig., 6 refs.

  7. Crystallogeny fundamentals of the cholesterol gallstone

    Institute of Scientific and Technical Information of China (English)

    Wu Jie; Zhou Jianli; He Lijun; Qu Xingang; Gu Lin; Yang Haimin

    2007-01-01

    The nucleation mechanism and crystal growth process of the cholesterol gallstone are studied and a systematic theory expounded by crystallogeny is proposed. Normal feed and stone-forming feed were used to raise guinea pigs in the control and stone-causing groups respectively. The state and transformation of liquid crystal vesicles, the appearance of crystal nuclei, and the formation of microcrystal grains were observed under a polarizing microscope during the experimental period. It was found that the liquid crystal vesicles in the bile of the control group were small, scattered, and always existed as single forms, and no shaped gallstone crystals were formed.While in the stone-causing group, liquid crystal vesicles grew to larger ones, and then aggregated to form large liquid crystal cells. Solid crystal growth along the edge of these liquid crystal cells formed microcrystal grains. These demonstrated that bile liquid crystal vesicles form the basic nuclei of cholesterol gallstone. Heterogeneous nucleation is the common process in the formation of crystal nuclei and crystal growth.

  8. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  9. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  10. Retraction statement: Advances in the physiological and pathological implications of cholesterol.

    Science.gov (United States)

    2015-08-01

    The above article, published online on 28 February 2013 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, William Foster, and John Wiley and Sons Ltd. The retraction has been agreed due to the publication of a similar paper by the same authors (with the exclusion of P Mardones) in Frontiers in Bioscience in January 2014. The authors believed that they had taken the necessary steps to withdraw their paper from Frontiers in Bioscience before they submitted to Biological Reviews in June 2012.

  11. Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation.

    Science.gov (United States)

    Tomaro-Duchesneau, Catherine; Jones, Mitchell L; Shah, Divya; Jain, Poonam; Saha, Shyamali; Prakash, Satya

    2014-01-01

    Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18±0.55 mg/10(10) cfu) in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70±63.33 mg/10(10) cfu) of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic. PMID:25295259

  12. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    Directory of Open Access Journals (Sweden)

    Catherine Tomaro-Duchesneau

    2014-01-01

    Full Text Available Excess cholesterol is associated with cardiovascular diseases (CVD, an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55 mg/1010 cfu in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33 mg/1010 cfu of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic.

  13. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.

    Science.gov (United States)

    Alsop, Richard J; Toppozini, Laura; Marquardt, Drew; Kučerka, Norbert; Harroun, Thad A; Rheinstädter, Maikel C

    2015-03-01

    Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin and cholesterol in lipid membranes. We have studied the effect of aspirin on the organization of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membranes containing cholesterol. Through Langmuir-Blodgett experiments we show that aspirin increases the area per lipid and decreases compressibility at 32.5 mol% cholesterol, leading to a significant increase of fluidity of the membranes. Differential scanning calorimetry provides evidence for the formation of meta-stable structures in the presence of aspirin. The molecular organization of lipids, cholesterol and aspirin was studied using neutron diffraction. While the formation of rafts has been reported in binary DPPC/cholesterol membranes, aspirin was found to locally disrupt membrane organization and lead to the frustration of raft formation. Our results suggest that aspirin is able to directly oppose the formation of cholesterol structures through non-specific interactions with lipid membranes.

  14. Determination of cholesterol in human biliary calculus by TLC scanning

    Institute of Scientific and Technical Information of China (English)

    Yin Kang Yang; Kai Xiong Qiu; Yu Zhu Zhan; Er Yi Zhan; Hai Ming Yang; Ping Zheng

    2000-01-01

    AIM To study the physico-chemical properties of biliary calculus and the relationship between the calculusformation and the phase change of liquid crystal, providing the best evidence for the biliary calculusprevention and treatment.METHODS The cholesterol contents in thirty one cases of biliary calculus in Kunming were determined bydouble-wave-length TLC scanning with high efficiency silica gel films.RESULTS Under magnifiers, the granular biliary calculus from 31 patients were classified according totheir section structures and colours, as cholesterol cholelith, 25 cases; bilirubin cholelith, 4 cases andcompound cholelith, 2 cases. By TLC scanning, it was found that the content of cholesterol in human biliarycalculus was 71%- 100%, about 80% cholesterol bilestones whose cholesterol content was more than 90%being pure cholesterol bilestones.CONCLUSION Cholesterol bilestone is the main human biliary calculus in Kunming, which was inaccordance with X-ray analysis. Compared with the related reports, it is proved that the proportion ofcholesterol bilestones to biliary calculus is increasing because of the improved life standard and the decreaseof bilirubin bilestones resulted from bile duct ascariasis or bacteria infection in China since 90s, and that theincrease of cholesterol in-take leads to the increase of cholesterol metabolism disorder

  15. Cholesterol granuloma of the petrous apex: CT diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.

    1984-12-01

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  16. Cholesterol and Copper Affect Learning and Memory in the Rabbit

    Directory of Open Access Journals (Sweden)

    Bernard G. Schreurs

    2013-01-01

    Full Text Available A rabbit model of Alzheimer’s disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease including beta amyloid accumulation and learning and memory changes. Although we have shown that feeding 2% cholesterol and adding copper to the drinking water can retard learning, other studies have shown that feeding dietary cholesterol before learning can improve acquisition and feeding cholesterol after learning can degrade long-term memory. We explore the development of this model, the issues surrounding the role of copper, and the particular contributions of the late D. Larry Sparks.

  17. New horizons for cholesterol ester transfer protein inhibitors.

    Science.gov (United States)

    Schwartz, Gregory G

    2012-02-01

    High-density lipoprotein (HDL) cholesterol levels bear an inverse relationship to cardiovascular risk. To date, however, no intervention specifically targeting HDL has been demonstrated to reduce cardiovascular risk. Cholesterol ester transfer protein (CETP) mediates transfer of cholesterol ester from HDL to apolipoprotein B-containing particles. Most, but not all observational cohort studies indicate that genetic polymorphisms of CETP associated with reduced activity and higher HDL cholesterol levels are also associated with reduced cardiovascular risk. Some, but not all studies indicate that CETP inhibition in rabbits retards atherosclerosis, whereas transgenic CETP expression in mice promotes atherosclerosis. Torcetrapib, the first CETP inhibitor to reach phase III clinical development, was abandoned due to excess mortality associated with increases in aldosterone and blood pressure. Two other CETP inhibitors have entered phase III clinical development. Anacetrapib is a potent inhibitor of CETP that produces very large increases in HDL cholesterol and large reductions in low-density lipoprotein (LDL) cholesterol, beyond those achieved with statins. Dalcetrapib is a less potent CETP inhibitor that produces smaller increases in HDL cholesterol with minimal effect on LDL cholesterol. Both agents appear to allow efflux of cholesterol from macrophages to HDL in vitro, and neither agent affects blood pressure or aldosterone in vivo. Two large cardiovascular outcomes trials, one with anacetrapib and one with dalcetrapib, should provide a conclusive test of the hypothesis that inhibition of CETP decreases cardiovascular risk. PMID:22083134

  18. Reconstitution of Cholesterol-Dependent Vaginolysin into Tethered Phospholipid Bilayers

    DEFF Research Database (Denmark)

    Budvytyte, Rima; Pleckaityte, M.; Zvirbliene, A.;

    2013-01-01

    Functional reconstitution of the cholesterol-dependent cytolysin vaginolysin (VLY) from Gardnerella vaginalis into artificial tethered bilayer membranes (tBLMs) has been accomplished. The reconstitution of VLY was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the...... EIS parameters of the tBLMs upon exposure to VLY solutions were consistent with the formation of water-filled pores in the membranes. It was found that reconstitution of VLY is a strictly cholesterol-dependent, irreversible process. At a constant cholesterol concentration reconstitution of VLY...... platform for the detection of the activity of VLY and possibly other cholesterol-dependent cytolysins....

  19. Effect of doxazosin on cholesterol synthesis in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    D' Eletto, R.D.; Javitt, N.B.

    1989-01-01

    The effect of doxazosin on cholesterol synthesis was determined by measuring the content of deuterium-enriched cholesterol in rabbit fibroblasts with and without receptors for low-density lipoproteins (LDL) and in hepatoma (Hep G2 cells). Doxazosin, at concentrations of 5-20 mumol/L, increased LDL binding to hepatic cells in a dose-related manner. Also, in these hepatic cells, doxazosin produced dose-related decreases in both newly synthesized cholesterol and cholesterol ester. In rabbit fibroblasts that were LDL receptor negative, de novo cholesterol synthesis was markedly reduced by increasing concentrations of doxazosin. Taken together, these results suggest that doxazosin may have a direct inhibitory effect on cholesterol synthesis independent of the LDL receptor. The inhibition of cholesterol synthesis by doxazosin may cause cells to compensate by upregulating the LDL receptor, thereby increasing the importation of lipoprotein cholesterol and reducing LDL cholesterol in the medium. This hypothesis supports findings in the clinical setting whereby doxazosin has a beneficial effect on the lipid profile, and suggests a useful additional property for this antihypertensive agent.

  20. Covalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: A reevaluation

    International Nuclear Information System (INIS)

    The reported presence of covalently bound phosphate residues in flavoproteins has significant implications with regard to the catalytic mechanisms and structural stability of the specific enzymes themselves and in terms of general cellular metabolic regulation. These considerations have led to a reevaluation of the presence of covalently bound phosphorus in the flavoproteins xanthine oxidase and glucose oxidase. Milk xanthine oxidase purified by a procedure that includes anion-exchange chromatography is shown to contain three phosphate residues. All three are noncovalently associated with the protein, two with the FAD cofactor, and one with the molybdenum cofactor. Results of chemical analysis and 31P NMR spectroscopy indicate that enzyme purified by this method contains no phosphoserine residues. Xanthine oxidase preparations purified by chromatography on calcium phosphate gel in place of DEAE-Sephadex yielded higher phosphate-to-protein ratios, which could be reduced to the expected values by additional purification on a folate affinity column. Highly active, highly purified preparations of glucose oxidase are shown to contain only the two phosphate residues of the FAD cofactor. The covalently bound bridging phosphate reported by others may arise in aged or degraded preparations of the enzyme but appears not to be a constituent of functional glucose oxidase. These results suggest that the presence of covalent phosphate residues in other flavoproteins should be rigorously reevaluated as well

  1. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori

    2006-07-01

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

  2. Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Fulcher R Gary

    2007-03-01

    Full Text Available Abstract Background Soluble fibers lower serum lipids, but are difficult to incorporate into products acceptable to consumers. We investigated the physiological effects of a concentrated oat β-glucan on cardiovascular disease (CVD endpoints in human subjects. We also compared the fermentability of concentrated oat β-glucan with inulin and guar gum in a model intestinal fermentation system. Methods Seventy-five hypercholesterolemic men and women were randomly assigned to one of two treatments: 6 grams/day concentrated oat β-glucan or 6 grams/day dextrose (control. Fasting blood samples were collected at baseline, week 3, and week 6 and analyzed for total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, glucose, insulin, homocysteine and C-reactive protein (CRP. To estimate colonic fermentability, 0.5 g concentrated oat β-glucan was incubated in a batch model intestinal fermentation system, using human fecal inoculum to provide representative microflora. Fecal donors were not involved with the β-glucan feeding trial. Inulin and guar gum were also incubated in separate serum bottles for comparison. Results Oat β-glucan produced significant reduction from baseline in total cholesterol (-0.3 ± 0.1 mmol/L and LDL cholesterol (-0.3 ± 0.1 mmol/L, and the reduction in LDL cholesterol were significantly greater than in the control group (p = 0.03. Concentrated oat β-glucan was a fermentable fiber and produced total SCFA and acetate concentrations similar to inulin and guar gum. Concentrated oat β-glucan produced the highest concentrations of butyrate at 4, 8, and 12 hours. Conclusion Six grams concentrated oat β-glucan per day for six weeks significantly reduced total and LDL cholesterol in subjects with elevated cholesterol, and the LDL cholesterol reduction was greater than the change in the control group. Based on a model intestinal fermentation, this oat β-glucan was fermentable, producing higher amounts of butyrate than other

  3. The Relationship of Paper-and-Pencil Wellness Measures to Objective Physiological Indexes.

    Science.gov (United States)

    DeStefano, Thomas J.; Richardson, Peter

    1992-01-01

    First-year college students (n=214) completed wellness instrument and were given number of physical tests including measures of body composition, cholesterol, blood pressure, and pulse rate. Found no significant relationships between specific paper-and-pencil physical scores and specific objective physiological indicators. When several wellness…

  4. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to monacolin K in SYLVAN BIO red yeast rice and maintenance of normal blood LDL - cholesterol concentrations pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    on the scientific substantiation of a health claim related to monacolin K in SYLVAN BIO red yeast rice and maintenance of normal blood LDL-cholesterol concentrations. The food, monacolin K in SYLVAN BIO red yeast rice, that is the subject of the health claim is sufficiently characterised. The claimed effect......, maintenance of normal blood LDL-cholesterol concentrations, is a beneficial physiological effect. A claim on monacolin K from red yeast rice and maintenance of normal blood LDL-cholesterol concentrations has already been assessed with a favourable outcome at daily intakes of 10 mg monacolin K from any red...... on blood LDL-cholesterol concentrations. © European Food Safety Authority, 2013...

  5. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    Science.gov (United States)

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  6. Apoprotein E phenotype determines serum cholesterol in infants during both high-cholesterol breast feeding and low-cholesterol formula feeding.

    Science.gov (United States)

    Kallio, M J; Salmenperä, L; Siimes, M A; Perheentupa, J; Gylling, H; Miettinen, T A

    1997-04-01

    Our objective was to establish the role of the apoprotein (apo) E phenotype in determining serum cholesterol levels in infants fed exclusively on high-fat, high-cholesterol human milk and in those fed a low-cholesterol, high-unsaturated fat formula. The total and lipoprotein cholesterol, apoB, and triglyceride concentrations in serum were quantified and related to the apoE phenotype in 151 infants at birth and at 2, 6, 9, and 12 months of age. Forty-four had the E3/4 or 4/4 phenotype (E4 group), 94 had the E3/3 phenotype (E3 group), and 13 had the E2/3 or 2/4 phenotype (E2 group). In cord blood, cholesterol concentrations tended to be higher in the E4 than in the E2 group. With exclusive breast-feeding, the concentrations rose significantly faster and higher in the E4 group than in the E3 group or, especially, the E2 group. The values (mmol/L, mean +/- SEM) were 1.6 +/- 0.15, 1.5 +/- 0.05, 1.4 +/- 0.1 (P = n.s.) at birth; 4.2 +/- 0.1, 3.8 +/- 0.08, 3.4 +/- 0.2 (P HDL, HDL2, and HDL3 cholesterol concentrations did not depend on the apoE phenotype. Among infants fed high-fat, high-cholesterol human milk, the total and LDL-cholesterol concentrations and the LDL apoB concentration of those with the apoE phenotype 4/4 or 3/4 rose faster and to higher levels than in other infants. Among formula-fed infants, receiving a low-cholesterol, high-unsaturated fat diet, the differences between the apoE groups were smaller.

  7. Saturated fatty acid (SFA) status and SFA intake exhibit different relations with serum total cholesterol and lipoprotein cholesterol : a mechanistic explanation centered around lifestyle-induced low-grade inflammation

    NARCIS (Netherlands)

    Ruiz Nunez, Begona; Kuipers, Remko S.; Luxwolda, Martine F.; De Graaf, Deti J.; Breeuwsma, Benjamin B.; Dijck-Brouwer, Janneke; Muskiet, Frits A. J.

    2014-01-01

    We investigated the relations between fatty acid status and serum total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol and total cholesterol/HDL cholesterol ratio in five Tanzanian ethnic groups and one Dutch group. Total cholesterol/HDL cholesterol rati

  8. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Soufi Muhidien

    2008-11-01

    Full Text Available Abstract Background Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH with those from healthy individuals. Methods Cholesterol and oxidized cholesterol metabolite serum levels of FH and of healthy, gender/age matched control subjects were measured by combined gas chromatography – mass spectroscopy. Monocytes from patients with FH and from healthy subjects were isolated by antibody-assisted density centrifugation. Gene expression profiles of isolated monocytes were measured using Affymetrix HG-U 133 Plus 2.0 microarrays. We compared monocyte gene expression profiles from FH patients with healthy controls using a Welch T-test with correction for multiple testing (p Results Using microarray analysis we found in FH patients a significant up-regulation of 1,617 genes and a down-regulation of 701 genes compared to monocytes from healthy individuals. These include genes of proteins that are involved in the uptake, biosynthesis, disposition, and cellular efflux of cholesterol. In addition, plasma from FH patients contains elevated amounts of sterols and oxysterols. An increased uptake of oxidized as well as of native LDL by FH monocytes combined with a down-regulation of NPC1 and ABCA1 explains the lipid accumulation observed in these cells. Conclusion Our data demonstrate that circulating FH monocytes show differences in cell physiology that may contribute to the early onset of atherosclerosis in this disease.

  9. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice

    NARCIS (Netherlands)

    Kruit, J. K.; Kremer, P. H. C.; Dai, L.; Tang, R.; Ruddle, P.; de Haan, W.; Brunham, L. R.; Verchere, C. B.; Hayden, M. R.

    2010-01-01

    Cellular cholesterol accumulation is an emerging mechanism for beta cell dysfunction in type 2 diabetes. Absence of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) results in increased islet cholesterol and impaired insulin secretion, indicating that impaired cholesterol effl

  10. Assessment of modes of action and efficacy of plasma cholesterol-lowering drugs : measurement of cholesterol absorption, cholesterol synthesis and bile acid synthesis and turnover using novel stable isotope techniques

    NARCIS (Netherlands)

    Stellaard, Frans; Kuipers, Folkert

    2005-01-01

    Several processes are involved in control of plasma cholesterol levels, e.g., intestinal cholesterol absorption, endogenous cholesterol synthesis and transport and bile acid synthesis. Adaptation of either of these processes allows the body to adapt to changes in dietary cholesterol intake. Disturba

  11. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    Energy Technology Data Exchange (ETDEWEB)

    Gaibelet, Gérald [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France); Tercé, François [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Bertrand-Michel, Justine [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Lipidomic Platform Metatoul, Toulouse (France); Allart, Sophie [Plateau Technique d’Imagerie Cellulaire, INSERM U1043, Toulouse (France); Azalbert, Vincent [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Lecompte, Marie-France [INSERM U563, Faculté de Médecine de Rangueil, Toulouse (France); Collet, Xavier [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Orlowski, Stéphane, E-mail: stephane.orlowski@cea.fr [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France)

    2013-11-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  12. Cytochemical localization of catalase and several hydrogen peroxide-producing oxidases in the nucleoids and matrix of rat liver peroxisomes

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.E.

    1979-01-01

    The distribution of catalase, amino acid oxidase, α-hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based

  13. Aldehyde oxidase activity in fresh human skin.

    Science.gov (United States)

    Manevski, Nenad; Balavenkatraman, Kamal Kumar; Bertschi, Barbara; Swart, Piet; Walles, Markus; Camenisch, Gian; Schiller, Hilmar; Kretz, Olivier; Ling, Barbara; Wettstein, Reto; Schaefer, Dirk J; Pognan, Francois; Wolf, Armin; Litherland, Karine

    2014-12-01

    Human aldehyde oxidase (AO) is a molybdoflavoenzyme that commonly oxidizes azaheterocycles in therapeutic drugs. Although high metabolic clearance by AO resulted in several drug failures, existing in vitro-in vivo correlations are often poor and the extrahepatic role of AO practically unknown. This study investigated enzymatic activity of AO in fresh human skin, the largest organ of the body, frequently exposed to therapeutic drugs and xenobiotics. Fresh, full-thickness human skin was obtained from 13 individual donors and assayed with two specific AO substrates: carbazeran and zoniporide. Human skin explants from all donors metabolized carbazeran to 4-hydroxycarbazeran and zoniporide to 2-oxo-zoniporide. Average rates of carbazeran and zoniporide hydroxylations were 1.301 and 0.164 pmol⋅mg skin(-1)⋅h(-1), resulting in 13 and 2% substrate turnover, respectively, after 24 hours of incubation with 10 μM substrate. Hydroxylation activities for the two substrates were significantly correlated (r(2) = 0.769), with interindividual variability ranging from 3-fold (zoniporide) to 6-fold (carbazeran). Inclusion of hydralazine, an irreversible inhibitor of AO, resulted in concentration-dependent decrease of hydroxylation activities, exceeding 90% inhibition of carbazeran 4-hydroxylation at 100 μM inhibitor. Reaction rates were linear up to 4 hours and well described by Michaelis-Menten enzyme kinetics. Comparison of carbazeran and zoniporide hydroxylation with rates of triclosan glucuronidation and sulfation and p-toluidine N-acetylation showed that cutaneous AO activity is comparable to tested phase II metabolic reactions, indicating a significant role of AO in cutaneous drug metabolism. To our best knowledge, this is the first report of AO enzymatic activity in human skin. PMID:25249692

  14. Monoamine oxidase and agitation in psychiatric patients.

    Science.gov (United States)

    Nikolac Perkovic, Matea; Svob Strac, Dubravka; Nedic Erjavec, Gordana; Uzun, Suzana; Podobnik, Josip; Kozumplik, Oliver; Vlatkovic, Suzana; Pivac, Nela

    2016-08-01

    Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses. PMID:26851573

  15. Forage Polyphenol Oxidase and Ruminant Livestock Nutrition

    Directory of Open Access Journals (Sweden)

    Michael Richard F. Lee

    2014-12-01

    Full Text Available Polyphenol oxidase (PPO is associated with the detrimental effect of browning fruit and vegetables, however interest within PPO containing forage crops has grown since the brownng reaction was associated with reduced nitrogen (N losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage increased the quality of protein, improving N-use efficiency (NUE when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalysing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP. If the protein is an enzyme the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase un-degraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of red clover.

  16. Advances in physiological computing

    CERN Document Server

    Fairclough, Stephen H

    2014-01-01

    This edited collection will provide an overview of the field of physiological computing, i.e. the use of physiological signals as input for computer control. It will cover a breadth of current research, from brain-computer interfaces to telemedicine.

  17. Reproduction, Physiology and Biochemistry

    Science.gov (United States)

    This chapter focuses on the reproduction, physiology, and biochemistry of the root-knot nematodes. The extensive amount of information on the reproduction and cytogenetics of species of Meloidogyne contrasts with the limited information on physiology, biochemistry, and biochemical pathways. In commo...

  18. Phun Week: Understanding Physiology

    Science.gov (United States)

    Limson, Mel; Matyas, Marsha Lakes

    2009-01-01

    Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…

  19. LDL Cholesterol, Statins And PCSK 9 Inhibitors

    Science.gov (United States)

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  20. Cholesterol interactions with ceramide and sphingomyelin.

    Science.gov (United States)

    García-Arribas, Aritz B; Alonso, Alicia; Goñi, Felix M

    2016-09-01

    Sphingolipids contain in their polar heads chemical groups allowing them to establish a complex network of H-bonds (through different OH and NHgroups) with other lipids in the bilayer. In the recent years the specific interaction of sphingomyelin (SM) with cholesterol (Chol) has been examined, largely in the context of the "lipid raft" hypothesis. Formation of SM-Ceramide (Cer) complexes, proposed to exist in cell membranes in response to stress, has also been described. More recently, a delicate balance of phase formation and transformation in ternary mixtures of SM, Chol and Cer, with mutual displacement of Chol and Cer from their interaction with SM is considered to exist. In addition, data demonstrating direct Chol-Cer interaction are becoming available. PMID:27132117

  1. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-07-22

    Plant NADPH oxidases (NOXs) encompass a group of membrane-bound enzymes participating in formation of reactive oxygen species (ROS) under physiological conditions as well as in response to environmental stressors. The purpose of the survey was to unveil the role of NADPH oxidase in pro-oxidative responses of maize (Zea mays L.) seedling leaves exposed to cereal aphids' infestation. The impact of apteral females of bird cherry-oat aphid (Rhopalosiphum padi L.) and grain aphid (Sitobion avenae F.) feeding on expression levels of all four NADPH oxidase genes (rbohA, rbohB, rbohC, rbohD) and total activity of NOX enzyme in maize plants were investigated. In addition, inhibitory effect of diphenylene iodonium (DPI) pre-treatment on NOX activity and hydrogen peroxide content in aphid-stressed maize seedlings was studied. Leaf infestation biotests were accomplished on 14-day-old seedlings representing two aphid-resistant varieties (Ambrozja and Waza) and two aphid-susceptible ones (Tasty Sweet and Złota Karłowa). Insects' attack led to profound upregulation of rbohA and rbohD genes in tested host plants, lower elevations were noted in level of rbohB mRNA, whereas abundance of rbohC transcript was not significantly altered. It was uncovered aphid-induced enhancement of NOX activity in examined plants. Higher increases in expression of all investigated rboh genes and activity of NADPH oxidase occurred in tissues of more resistant maize cultivars than in susceptible ones. Furthermore, DPI treatment resulted in strong reduction of NOX activity and H2O2 accumulation in aphid-infested Z. mays plants, thus evidencing circumstantial role of the enzyme in insect-elicited ROS generation. PMID:27178208

  2. Serum cholesterol decline and depression in the postpartum period

    NARCIS (Netherlands)

    Dam, van R.M.; Schuit, A.J.; Schouten, E.G.; Vader, H.L.; Pop, V.J.M.

    1999-01-01

    We examined the relation between total serum cholesterol decline and depression in the postpartum period in a prospective study of 266 Dutch women, who were followed until 34 weeks after delivery. The decline in serum cholesterol between week 32 of pregnancy and week 10 postpartum was similar for wo

  3. The ins and outs of reverse cholesterol transport

    NARCIS (Netherlands)

    Groen, AK; Elferink, RPJO; Verkade, HJ; Kuipers, F

    2004-01-01

    It is generally assumed that HDL is the obligate transport vehicle for 'reverse cholesterol transport'. the pathway for removal of excess cholesterol from peripheral tissues via the liver into bile and subsequent excretion via the feces. During the last few years, intensive research has generated ex

  4. CDC Vital Signs: High Blood Pressure and Cholesterol

    Science.gov (United States)

    ... 1.36 MB] Read the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook ... by County http://apps.nccd.cdc.gov/GISCVH2/ High Blood Pressure and High Cholesterol Among US Adults SOURCES: National ...

  5. Low serum cholesterol, serotonin metabolism, and violent death

    NARCIS (Netherlands)

    P.H.A. Steegmans

    1995-01-01

    textabstractA high serum cholesterol level is a well documented risk factor for atherosclerotic cardiovascular disease. Consequently, a low serum cholesterol has in general been viewed as beneficial. However, since the early 70s, results from several cohort studies and randomized trials have suggest

  6. Cholesterol Check (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-09-10

    High blood cholesterol is a risk factor for cardiovascular disease. This podcast discusses the importance of a healthy diet and regular cholesterol screening.  Created: 9/10/2015 by MMWR.   Date Released: 9/10/2015.

  7. Composition of and cholesterol in Araucana and commercial eggs.

    Science.gov (United States)

    Peterson, D W; Lilyblade, A; Clifford, C K; Ernst, R; Clifford, A J; Dunn, P

    1978-01-01

    Araucana eggs from six sources and commercial-type white eggs of two major supermarket brands and from the University of California flock were collected and analyzed for cholesterol content of the yolk. The yolks of Araucana eggs were significantly higher in cholesterol than those of commercial white eggs. PMID:563887

  8. Transport of cholesterol autoxidation products in rabbit lipoproteins

    International Nuclear Information System (INIS)

    Radiolabeled pure [4-14C] cholesterol was kept at 600C under air to autoxidize for 5 weeks, after which approximately 12% cholesterol oxidation products were formed. The mixture, suspended in gelatin, was given to rabbits by gastric gavage. Rabbits were killed 4, 24 and 48 h after treatment. Cholesterol and its autoxidation products were separated by thin-layer chromatography into 5 fractions and radioactivities of each fraction were measured. Percentages of each fraction of cholesterol oxidation products and cholesterol in the original mixture before administration and in the rabbit sera after administration were similar, suggesting that the rates of absorption of cholesterol oxidation products are not significantly different from that of cholesterol. Lipoproteins were fractioned by ultracentrifugation into VLDL, LDL and HDL. Radioactivities of each fraction in lipoproteins separated by thin layer chromatography showed that fractions containing cholestane-3β, 5α, 6β-triol, 7α- and 7β-hydroxycholesterol and 7-ketocholesterol were more selectively transported in VLDL, whereas most of the 25-hydroxycholesterol was present in LDL. HDL contained only minute amounts of cholesterol oxidation products. 22 refs

  9. LDL cholesterol still a problem in old age?

    DEFF Research Database (Denmark)

    Postmus, Iris; Deelen, Joris; Sedaghat, Sanaz;

    2015-01-01

    BACKGROUND: Observational studies in older subjects have shown no or inverse associations between cholesterol levels and mortality. However, in old age plasma low-density lipoprotein cholesterol (LDL-C) may not reflect the lifetime level due to reverse causality, and hence the risk may be underes...

  10. Calcium transport in vesicles energized by cytochrome oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Rosier, Randy N.

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K/sup +/ selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K/sup +/ flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interaction with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.

  11. Some properties of active and latent catechol oxidase of mushroom

    Directory of Open Access Journals (Sweden)

    Janusz Czapski

    2013-12-01

    Full Text Available Latent form of mushroom catechol oxidase was activated by O,1% sodium dodecyl sulfate (SDS. Catalytic power of the latent form, calculated from the kinetic parameters was 1,8 times higher than that of active one. Salicyl hydroxamic acid (SHAM appeared as a powerful inhibitor for both active and latent forms of catechol oxidase. However, in the range of 150-250 μM SHAM the inhibitory effect for active catechol oxidase was significantly higher than that for the latent one. Non-competitive and irreversible characteristics of inhibition of latent and active catechol oxidase was calculated from kinetic data. Electrophoretic analysis followed by scanning of the gels was used. The spots' absorbance was determined from a computer image of the isoenzyme band patterns. It allowed us to estimate gels quantitatively. Presence of one additional clearly defined slow moving isoform of SDS-activated catechol oxidase, differed in the respect of 3 bands for the active and 4 bands for the total.

  12. Crystal Structure of Alcohol Oxidase from Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Christian Koch

    Full Text Available FAD-dependent alcohol oxidases (AOX are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring.

  13. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion

    OpenAIRE

    Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Storey, Stephen M.; HOWLES, PHILIP N.; Kier, Ann B.; Schroeder, Friedhelm

    2014-01-01

    On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In cont...

  14. Ursodeoxycholic Acid for the Treatment of Cholesterol Gallstones

    International Nuclear Information System (INIS)

    Cholesterol is the principal constituent of more than three quarters of gallstones. Pure cholesterol crystals are quite soft, and protein contributes importantly to the strength of cholesterol stones. The risk of gallstones does not correlate with total serum cholesterol levels, but it does correlate with decreased high-density lipoprotein cholesterol and increased triglyceride levels. At least 10 percent of adults have gallstones where female: male ratio of about 2:1 in the younger age groups with increasing prevalence with age. Nine patients with gallstones (6 females and 3 males) were included in the study. Patients were treated with ursodeoxycholic acids tablets in two oral doses, one after breakfast, and the other after dinner for 9 months. Ultrasound examination was repeated every 3 months. Re-examination by abdominal ultrasonography revealed that gallstone 1 cm or less in diameter disappeared within 6 months, and the largest stone 3.06 cm in diameter disappeared within 9 months.

  15. Enzymatic-fluorometric quantification of cholesterol in bovine milk

    DEFF Research Database (Denmark)

    Larsen, Torben

    2012-01-01

    The present paper describes an enzymatic–fluorometric method for the determination of cholesterol in milk and other opaque matrices. The initial step of the method is to liberate chemically and physically bound cholesterol from the milk fat globule membrane by enzymatic action. The method is able...... to discriminate between esterified and free cholesterol in milk. The analysis is cost effective and is developed to work directly on whole, fresh milk thereby eliminating time consuming and tedious pre-treatment procedures of the sample. More than 1000 milk samples were analysed on the day of sampling. The total...... concentration of milk cholesterol ranged from 80 to 756 μM (n = 1068; mean 351 μM). Milk cholesterol was significantly correlated to milk fat concentration as analysed by mid-infra red spectrometry (r = 0.630; n = 853) and by an enzymatic–fluorometric method (triacylglycerol) (r = 0.611; n = 842)....

  16. Bad cholesterol and good mood: exploring the link

    Directory of Open Access Journals (Sweden)

    Yashaswi Gupta

    2016-01-01

    Full Text Available It is a well-known fact that high cholesterol increases the risks of heart disease. Hence, physicians actively encourage cholesterol-lowering interventions using medications and lifestyle modifications. However, there is considerable evidence that aggressive lowering of cholesterol is associated with depression, bipolar disorders, violent behaviour, and suicidal ideation. It has been hypothesised that low cholesterol leads to low levels of serotonin, a chemical that is responsible for maintaining mood balance. South Korea and India have highest number of suicides in Asia. It is a significant challenge for physicians to search an alternative that will not only maintain healthy level of cholesterol, but also contribute to psychological well-being of the patient. Generally, the role of diet and physical activity is considered secondary to medications. However, dietary supplements like coenzyme Q10 (CoQ10, omega-3 fatty acids, niacin, and physical activity like Yoga are extremely beneficial for improving lipid profile and symptoms of depression.

  17. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    Science.gov (United States)

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  18. Probing the effect of elevated cholesterol on the mechanical properties of membrane-cytoskeleton by optical tweezers

    Science.gov (United States)

    Rajkumar, Arun S.; Muley, Ajit; Chatterjee, Suvro; Jaffar Ali, B. M.

    2010-08-01

    The composition of the cell membrane and the surrounding physiological factors determine the nature and dynamics of membrane-cytoskeleton coupling. Mechanical strength of a cell is mainly derived from such coupling. In this article, we investigate the effect of extra cellular cholesterol on the membrane-cytoskelaton connectivity of single cell endothelium and consequent remodeling of its mechanical properties. Using optical tweezers as a force probe, we have measured membrane stiffness (km), membrane microviscosity (ηeff ) and the two-dimensional shear modulus (G'(f)) as a function of extracellular cholesterol in the range of 0.1mM to 6mM. We find that membrane stiffness and shear modulus are dependent on cholesterol-induced membrane-cytoskeletal organization. Further, by disrupting the membranecytoskeletal connectivity with Cytochalasin D, an actin delpolymerizing molecule, we recover pure membrane behaviour devoid of any cytoskeleton attachment. However, behaviour of ηeff was found to be unaffected by disruption of membrane-cytoskeleton organization. We infer that cholesterol is playing a distinct role in modulating membrane organization and membrane-cytoskeleton connectivity independently. We further discuss implications of our approach in characterizing cellular mechanics.

  19. Effect of serum, cholesterol and low density lipoprotein on the functionality and structure of lung surfactant films.

    Science.gov (United States)

    Nahak, Prasant; Nag, Kaushik; Hillier, Ashley; Devraj, Ravi; Thompson, David W; Manna, Kausik; Makino, Kimiko; Ohshima, Hiroyuki; Nakahara, Hiromichi; Shibata, Osamu; Panda, Amiya Kumar

    2014-01-01

    Lung surfactant is a complex mixture of lipid and protein, responsible for alveolar stability, becomes dysfunctional due to alteration of its structure and function by leaked serum materials in disease. Serum proteins, cholesterol and low density lipoprotein (LDL) were studied with bovine lipid extract surfactant (BLES) using Langmuir films, and bilayer dispersions using Raman spectroscopy. While small amount of cholesterol (10 wt%) and LDL did not significantly affect the adsorption and surface tension lowering properties of BLES. However serum lipids, whole serum as well as higher amounts of cholesterol, and LDL dramatically altered the surface properties of BLES films, as well as gel-fluid structures formed in such films observed using atomic force microscopy (AFM). Raman-spectroscopic studies revealed that serum proteins, LDL and excess cholesterol had fluidizing effects on BLES bilayers dispersion, monitored from the changes in hydrocarbon vibrational modes during gel-fluid thermal phase transitions. This study clearly suggests that patho-physiological amounts of serum lipids (and not proteins) significantly alter the molecular arrangement of surfactant in films and bilayers, and can be used to model lung disease. PMID:25409691

  20. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: a new labelling tool.

    Science.gov (United States)

    Gaibelet, Gérald; Tercé, François; Bertrand-Michel, Justine; Allart, Sophie; Azalbert, Vincent; Lecompte, Marie-France; Collet, Xavier; Orlowski, Stéphane

    2013-11-01

    Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described "lipid rafts" in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD-Chol non-specifically delivered to the cells. PMID:24103760

  1. Effects of rapeseed and soybean oil dietary supplementation on bovine fat metabolism, fatty acid composition and cholesterol levels in milk.

    Science.gov (United States)

    Altenhofer, Christian; Spornraft, Melanie; Kienberger, Hermine; Rychlik, Michael; Herrmann, Julia; Meyer, Heinrich H D; Viturro, Enrique

    2014-02-01

    The main goal of this experiment was to study the effect of milk fat depression, induced by supplementing diet with plant oils, on the bovine fat metabolism, with special interest in cholesterol levels. For this purpose 39 cows were divided in three groups and fed different rations: a control group (C) without any oil supplementation and two groups with soybean oil (SO) or rapeseed oil (RO) added to the partial mixed ration (PMR). A decrease in milk fat percentage was observed in both oil feedings with a higher decrease of -1·14 % with SO than RO with -0·98 % compared with the physiological (-0·15 %) decline in the C group. There was no significant change in protein and lactose yield. The daily milk cholesterol yield was lower in both oil rations than in control ration, while the blood cholesterol level showed an opposite variation. The milk fatty acid pattern showed a highly significant decrease of over 10 % in the amount of saturated fatty acids (SFA) in both oil feedings and a highly significant increase in mono (MUFA) and poly (PUFA) unsaturated fatty acids, conjugated linoleic acids (CLA) included. The results of this experiment suggest that the feeding of oil supplements has a high impact on milk fat composition and its significance for human health, by decreasing fats with a potentially negative effect (SFA and cholesterol) while simultaneously increasing others with positive (MUFA, PUFA, CLA).

  2. Exposure to polymers reverses inhibition of pulmonary surfactant by serum, meconium, or cholesterol in the captive bubble surfactometer.

    Science.gov (United States)

    López-Rodríguez, Elena; Ospina, Olga Lucía; Echaide, Mercedes; Taeusch, H William; Pérez-Gil, Jesús

    2012-10-01

    Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant's interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories. PMID:23062337

  3. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    Science.gov (United States)

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies. PMID:24447914

  4. Bacterial colonization of host cells in the absence of cholesterol.

    Directory of Open Access Journals (Sweden)

    Stacey D Gilk

    2013-01-01

    Full Text Available Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24(-/- mouse embryonic fibroblasts (MEFs. DHCR24(-/- MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24(-/- MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24(-/- MEFs. In contrast, C. burnetii entry was significantly decreased in -cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated α(Vβ(3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24(-/- MEFs lacked the CD63-positive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions.

  5. Fetal cardiovascular physiology.

    Science.gov (United States)

    Rychik, J

    2004-01-01

    The cardiovascular system of the fetus is physiologically different than the adult, mature system. Unique characteristics of the myocardium and specific channels of blood flow differentitate the physiology of the fetus from the newborn. Conditions of increased preload and afterload in the fetus, such as sacrococcygeal teratoma and twin-twin transfusion syndrome, result in unique and complex pathophysiological states. Echocardiography has improved our understanding of human fetal cadiovasvular physiology in the normal and diseased states, and has expanded our capability to more effectively treat these disease processes.

  6. Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice

    NARCIS (Netherlands)

    Haan, W. de; Hoogt, C.C. van der; Westerterp, M.; Hoekstra, M.; Dallinga-Thie, G.M.; Princen, H.M.G.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Rensen, P.C.N.

    2008-01-01

    Objective: In addition to lowering low-density lipoprotein (LDL)-cholesterol, statins modestly increase high-density lipoprotein (HDL)-cholesterol in humans and decrease cholesteryl ester transfer protein (CETP) mass and activity. Our aim was to determine whether the increase in HDL depends on CETP

  7. Function of MRP1/ABCC1 is not dependent on cholesterol or cholesterol-stabilized lipid rafts

    NARCIS (Netherlands)

    Meszaros, Peter; Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2011-01-01

    MRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly comple

  8. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine

    NARCIS (Netherlands)

    den Bosch, Heleen M. de Vogel-van; de Wit, Nicole J. W.; Hooiveld, Guido J. E. J.; Vermeulen, Hanneke; van der Veen, Jelske N.; Houten, Sander M.; Kuipers, Folkert; Mueller, Michael; van der Meer, Roelof

    2008-01-01

    A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. Am J Physiol Gastrointest Liver Physiol 294: G1171-G1180, 2008. First published March 20, 2008; doi:10.1152/ajpgi.00360.2007.-Transporters present in the epithelium of the small intest

  9. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC and tilted domains

    Directory of Open Access Journals (Sweden)

    Jacques eFantini

    2013-02-01

    Full Text Available The plasma membrane of eukaryotic cells contains several types of lipids displaying high biochemical variability in both their apolar moiety (e.g. the acyl chain of glycerolipids and their polar head (e.g. the sugar structure of glycosphingolipids. Among these lipids, cholesterol is unique because its biochemical variability is almost exclusively restricted to the oxidation of its polar -OH group. Although generally considered the most rigid membrane lipid, cholesterol can adopt a broad range of conformations due to the flexibility of its isooctyl chain linked to the polycyclic sterane backbone. Moreover, cholesterol is an asymmetric molecule displaying a planar face and a rough  face. Overall, these structural features open up a number of possible interactions between cholesterol and membrane lipids and proteins, consistent with the prominent regulatory functions that this unique lipid exerts on membrane components. The aim of this review is to describe how cholesterol interacts with membrane lipids and proteins at the molecular/atomic scale, with special emphasis on transmembrane domains of proteins containing either the consensus cholesterol-binding motifs CRAC and CARC or a tilted peptide. Despite their broad structural diversity, all these domains bind cholesterol through common molecular mechanisms, leading to the identification of a subset of amino acid residues that are overrepresented in both linear and three-dimensional membrane cholesterol-binding sites.

  10. The influence of cholesterol and biomass concentration on the uptake of cholesterol by Lactobacillus from MRS broth

    Directory of Open Access Journals (Sweden)

    Małgorzata Ziarno

    2007-06-01

    Full Text Available The aim of this study was the determination of some factors influence (i.e. the vitality of bacteria cells and the cholesterol concentration on the ability of selected Lactobacillus sp. to cholesterol uptake during culture in MRS broth. Three Lactobacillus strains (Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus, Lb. casei isolated from commercial single species lyophilized dairy starter cultures and three Lactobacillus strains (Lb. plantarum, Lb. delbrueckii subsp. bulgaricus, Lb. acidophilus originated from commercial pharmaceuticals were used in this study. The uptake of cholesterol from MRS broth during the growth of Lactobacillus sp., expressed as the difference between the final and the initial concentrations of cholesterol, ranged from 0.053 to 0.153 g/dm³, apart from the initial cholesterol content and the origin of Lactobacillus sp. The results confirmed that biomass concentration have a statistically significant effect on uptake of cholesterol. The ten-fold increase of the amount of intact cells biomass caused about 1.5-2-fold increase of the amount of cholesterol removed. The influence of the concentration of biomass of alive cells on the removal of cholesterol was bigger than in case of the heat-sterilized cells.

  11. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris

    International Nuclear Information System (INIS)

    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4 x 104 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions

  12. Composition of partially purified NADPH oxidase from pig neutrophils.

    Science.gov (United States)

    Bellavite, P; Jones, O T; Cross, A R; Papini, E; Rossi, F

    1984-01-01

    The superoxide (O2.-)-forming enzyme NADPH oxidase from pig neutrophils was solubilized and partially purified by gel-filtration chromatography. The purification procedure allowed the separation of NADPH oxidase activity from NADH-dependent cytochrome c reductase and 2,6-dichlorophenol-indophenol reductase activities. O2.-forming activity was co-purified with cytochrome b-245 and was associated with phospholipids. However, active fractions endowed with cytochrome b were devoid of ubiquinone and contained only little FAD. The cytochrome b/FAD ratio was 1.13:1 in the crude solubilized extract and increased to 18.95:1 in the partially purified preparations. Most of FAD was associated with fractions containing NADH-dependent oxidoreductases. These results are consistent with the postulated role of cytochrome b in O2.-formation by neutrophil NADPH oxidase, but raise doubts about the participation of flavoproteins in this enzyme activity. PMID:6439185

  13. Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals

    DEFF Research Database (Denmark)

    Galuszka, P.; Frebort, I.; Sebela, M.;

    2001-01-01

    An enzyme degrading cytokinins with isoprenoid side chain, previously named cytokinin oxidase, was purified to near homogeneity from wheat and barley grains. New techniques were developed for the enzyme activity assay and staining on native electrophoretic gels to identify the protein. The purified...... wheat enzyme is a monomer 60 kDa, its N-terminal amino-acid sequence shows similarity to hypothetical cytokinin oxidase genes from Arabidopsis thaliana, but not to the enzyme from maize. N-6-isopentenyl-2-(2-hydroxyethylamino)-9-methyladenine is the best substrate from all the cytokinins tested....... Interestingly, oxygen was not required and hydrogen peroxide not produced during the catalytic reaction, so the enzyme behaves as a dehydrogenase rather than an oxidase. This was confirmed by the ability of the enzyme to transfer electrons to artificial electron acceptors, such as phenazine methosulfate and 2...

  14. Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Dhand, Chetna [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Department of Chemistry, University of Delhi, Delhi 110007 (India); Singh, S.P. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Arya, Sunil K. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Department of Chemistry, University of Delhi, Delhi 110007 (India); Datta, Monika [Department of Chemistry, University of Delhi, Delhi 110007 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)], E-mail: bansi.malhotra@gmail.com

    2007-10-29

    Cholesterol oxidase (ChOx) has been covalently immobilized onto electrophoretically deposited conducting polymer film (on indium-tin-oxide (ITO) glass plate) derived from nano-structured polyaniline (PANI) colloidal suspension using N-ethyl-N'-(3-dimethylaminopropyl) corbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. These PANI/ITO and ChOx/PANI/ITO electrodes have been characterized using ultraviolet-visible (UV-vis), Fourier transform-infrared (FT-IR), scanning electron microscopy (SEM), and impedance spectroscopy techniques, respectively. These ChOx/PANI/ITO bio-electrodes exhibit linearity from 25 to 400 mg dL{sup -1} of cholesterol, detection limit as 25 mg dL{sup -1} and sensitivity as 7.76 x 10{sup -5} Abs (mg/dL){sup -1}. The value of the apparent Michaelis-Menten constant (K{sub m}{sup app}) calculated from amperometric response studies has been found to be 0.62 mM for ChOx/PANI/ITO bio-electrode.

  15. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    2012-01-01

    Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). T

  16. Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study123

    OpenAIRE

    Racette, Susan B.; Lin, Xiaobo; Lefevre, Michael; Spearie, Catherine Anderson; MOST, MARLENE M.; Ma, Lina; Ostlund, Richard E

    2009-01-01

    Background: Phytosterol supplementation of 2 g/d is recommended by the National Cholesterol Education Program to reduce LDL cholesterol. However, the effects of different intakes of phytosterol on cholesterol metabolism are uncertain.

  17. High Blood Cholesterol Q&A Dr. Michael Lauer | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... this page please turn Javascript on. Feature: High Cholesterol High Blood Cholesterol Q&A with Dr. Michael Lauer Past Issues / ... heavier and older, what does recent research on cholesterol and heart health tell us that Americans need ...

  18. LCAT, HDL Cholesterol and Ischemic Cardiovascular Disease: A Mendelian Randomization Study of HDL Cholesterol in 54,500 Individuals

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Ali Qayyum, Abbas;

    2012-01-01

    Background:Epidemiologically, high-density lipoprotein (HDL) cholesterol levels associate inversely with risk of ischemic cardiovascular disease. Whether this is a causal relation is unclear.Methods:We studied 10,281 participants in the Copenhagen City Heart Study (CCHS) and 50,523 participants...... in the Copenhagen General Population Study (CGPS), of which 991 and 1,693 participants, respectively, had developed myocardial infarction (MI) by August 2010. Participants in the CCHS were genotyped for all six variants identified by resequencing lecithin-cholesterol acyltransferase in 380 individuals. One variant......, S208T (rs4986970, allele frequency 4%), associated with HDL cholesterol levels in both the CCHS and the CGPS was used to study causality of HDL cholesterol using instrumental variable analysis.Results:Epidemiologically, in the CCHS, a 13% (0.21 mmol/liter) decrease in plasma HDL cholesterol levels...

  19. Interrelationship Between Broadband NIRS Measurements of Cerebral Cytochrome C Oxidase and Systemic Changes Indicates Injury Severity in Neonatal Encephalopathy.

    Science.gov (United States)

    Bale, Gemma; Mitra, Subhabrata; de Roever, Isabel; Chan, Marcus; Caicedo-Dorado, Alexander; Meek, Judith; Robertson, Nicola; Tachtsidis, Ilias

    2016-01-01

    Perinatal hypoxic ischaemic encephalopathy (HIE) is associated with severe neurodevelopmental problems and mortality. There is a clinical need for techniques to provide cotside assessment of the injury extent. This study aims to use non-invasive cerebral broadband near-infrared spectroscopy (NIRS) in combination with systemic physiology to assess the severity of HIE injury. Broadband NIRS is used to measure the changes in haemodynamics, oxygenation and the oxidation state of cytochrome c oxidase (oxCCO). We used canonical correlation analysis (CCA), a multivariate statistical technique, to measure the relationship between cerebral broadband NIRS measurements and systemic physiology. A strong relationship between the metabolic marker, oxCCO, and systemic changes indicated severe brain injury; if more than 60 % of the oxCCO signal could be explained by the systemic variations, then the neurodevelopmental outcome was poor. This boundary has high sensitivity and specificity (100 and 83 %, respectively). Broadband NIRS measured concentration changes of the oxidation state of cytochrome c oxidase has the potential to become a useful cotside tool for assessment of injury severity following hypoxic ischaemic brain injury. PMID:27526141

  20. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose.

    Science.gov (United States)

    Raninen, Kaisa; Lappi, Jenni; Mykkänen, Hannu; Poutanen, Kaisa

    2011-01-01

    Dietary fiber is a nutritional concept based not on physiological functions but on defined chemical and physical properties. Recent definitions of dietary fiber differentiate inherent plant cell wall-associated fiber from isolated or synthetic fiber. For the latter to be defined as fiber, beneficial physiological effects should be demonstrated, such as laxative effects, fermentability, attenuation of blood cholesterol levels, or postprandial glucose response. Grain fibers are a major natural source of dietary fiber worldwide, while inulin, a soluble indigestible fructose polymer isolated from chicory, and polydextrose, a synthetic indigestible glucose polymer, have more simple structures. Inulin and polydextrose show many of the same functionalities of grain fiber in the large intestine, in that they are fermentable, bifidogenic, and laxative. The reported effects on postprandial blood glucose and fasting cholesterol levels have been modest, but grain fibers also show variable effects. New biomarkers are needed to link the physiological functions of specific fibers with long-term health benefits.

  1. Partially Purification and Characterization of Polyphenol Oxidase of Quince

    OpenAIRE

    YAĞAR, Hülya; SAĞIROĞLU, Ayten

    2002-01-01

    Polyphenol oxidase (PPO, EC 1.14.18.1) was extracted from quince (Cydonia oblonga) by using 0.1 M phosphate buffer, pH 6.8. The polyphenol oxidase of quince was partially purified by (NH4)2SO4 and dialysis. Substrate specificity experiments were carried out with catechol, pyrogallol, L-DOPA, p-cresole and tyrosine. Catechol was the most suitable substrate compound for quince PPO. The Michaelis constants were 4.54 mM, 7.35mM and 17.8 mM for catechol, pyrogallol and L-DOPA, respective...

  2. Copper complexes as biomimetic models of catechol oxidase: mechanistic studies

    OpenAIRE

    Koval, Iryna A.

    2006-01-01

    The research described in this thesis deals with the synthesis of copper(II) complexes with phenol-based or macrocyclic ligands, which can be regarded as model compounds of the active site of catechol oxidase, and with the mechanism of the catalytic oxidation of catechol mediated by these compounds. Catechol oxidase is a type-3 copper enzyme usually encountered in plants and in some crustaceans, which catalyzes a conversion of a wide range of o-diphenols (catechols) to the respective o-benzoq...

  3. Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism

    OpenAIRE

    Sullivan, Michael L.

    2015-01-01

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catechol oxidase activity (i.e. they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-chara...

  4. Research on Oxalate Oxidase and Its Genes in Plants

    Institute of Scientific and Technical Information of China (English)

    WANG Li; WANG Xiao-li; LIU jia; YI Zhi-gang; DONG Zhi-min

    2011-01-01

    This paper introduces the discovery, composition and structure of oxalate oxidase, as well as illustrates the biological functions of this enzyme. With a comprehensive introduction upon previous researches upon gene cloning and heredity transformation of this enzyme, it indicates that heredity transformation can increase the content of oxalate oxidase within the plants and also enhance their resistance. The paper also points out the problems such as lack of gene resources and difficulty in the transformation of heterologous genes, and the focus in later researches should be laid upon the exploration of plant resources relative to this enzyme and selection of resistant species.

  5. Colloidal properties of biomacromolecular solutions: Towards urate oxidase crystal design

    Science.gov (United States)

    Bonneté, Françoise

    2013-02-01

    Crystallization of biological macromolecules is governed by weak interaction forces, attractive and repulsive. Knowledge of solution properties, via second virial coefficient measurements, makes it possible to select physico-chemical parameters that govern and control phase diagrams and thus to grow crystals for specific applications (bio-crystallography or pharmaceutical processes). We highlight here with urate oxidase a salting-in effect that increases its solubility and the depletion effect of amphiphilic polymer, at a polymer concentration above its cmc, in order to grow diffracting crystals of urate oxidase. These two effects were used to grow crystals for high pressure crystallography and in a purification process.

  6. Treatment of hyperlipemia in diabetic patients on dialysis with a physiological substance.

    Science.gov (United States)

    Coronel, F; Tornero, F; Torrente, J; Naranjo, P; De Oleo, P; Macia, M; Barrientos, A

    1991-01-01

    Hyperlipemia is a very frequent complication of the diabetic patient on dialysis. There is difficulty of treatment with the diet, because the dietary restriction already imposed on these patients and the secondary effects and toxicity of the available drugs in uremics aggravate the problem. We have treated 22 diabetic patients on dialysis (8 on hemodialysis and 14 on continuous ambulatory peritoneal dialysis) suffering from hyperlipemia with pantethine, a physiological substance and coenzyme A precursor in the Krebs cycle. With the administration of an oral dose of 900 mg/day we obtained a reduction of total cholesterol (275 +/- 72 vs. 231 +/- 54 mg/dl; p less than 0.001), very-low-density lipoprotein (VLDL)-cholesterol (66 +/- 36 vs. 46 +/- 18 mg/dl; p less than 0.01) and triglycerides (332 +/- 182 vs. 227 +/- 90 mg/dl; p less than 0.01) at 2 months. High-density lipoprotein (HDL)-cholesterol did not change, but the total cholesterol/HDL-cholesterol ratio decreased significantly (p less than 0.05). Total cholesterol, VLDL and triglycerides showed a progressive and significant reduction at 4 and 6 months. No changes were observed in serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, uric acid, blood glucose and glycosylated hemoglobin. Gastric discomfort in 2 patients and pruritus in another one were the secondary effects related. Pantethine was shown to be a very effective hypolipemic agent in diabetic patients on dialysis with a great tolerance. PMID:2048576

  7. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells[S

    OpenAIRE

    Sankaranarayanan, Sandhya; de la Llera-Moya, Margarita; Drazul-Schrader, Denise; Phillips, Michael C.; Kellner-Weibel, Ginny; Rothblat, George H.

    2013-01-01

    An important mechanism contributing to cell cholesterol efflux is aqueous transfer in which cholesterol diffuses from cells into the aqueous phase and becomes incorporated into an acceptor particle. Some compounds can enhance diffusion by acting as shuttles transferring cholesterol to cholesterol acceptors, which act as cholesterol sinks. We have examined whether particles in serum can enhance cholesterol efflux by acting as shuttles. This task was accomplished by incubating radiolabeled J774...

  8. Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness.

    OpenAIRE

    Rukmini, R; Rawat, S S; Biswas, S. C.; Chattopadhyay, A

    2001-01-01

    Cholesterol is often found distributed nonrandomly in domains in biological and model membranes and has been reported to be distributed heterogeneously among various intracellular membranes. Although a large body of literature exists on the organization of cholesterol in plasma membranes or membranes with high cholesterol content, very little is known about organization of cholesterol in membranes containing low amounts of cholesterol. Using a fluorescent cholesterol analog (25-[N-[(7-nitrobe...

  9. Resveratrol Protects Rabbits Against Cholesterol Diet-Induced Hyperlipidaemia.

    Science.gov (United States)

    Tanko, Y; Jimoh, A; Ahmed, A; Mohammed, A; Ayo, J O

    2016-01-01

    The excessive consumption of high cholesterol diet has been associated with an increased incidence oflipidaemia. Lipidaemia is enhanced by formation of oxidative stress, lipid peroxidation and hyperglycaemia. The aim ofthese experiments was to investigate the protective effect of resveratrol co-administered with cholesterol diet inducedhyperlipidaemia in rabbits. Thirty rabbits divided into six groups of five animal (group= 5) each: group 1 = normal control,group 2 = cholesterol diet/high fat diet group only (HFD), group 3 = resveratrol 200 mg/kg (R200), group 4 = resveratrol400 mg/kg (R400), group 5 = HFD + R200 and group 6 = HFD + R400. The normal group was fed with standard animalfeeds only; while the HFD groups were fed with standard animal feeds + cholesterol diet (10% Groundnut oil, 20%Groundnut mill and 2% cholesterol). Resveratrol-treated rabbits received resveratrol suspended in 10 g/Lcarboxymethylcellulose (CMC) and the control group received the vehicle only, CMC. The preparations were administeredfor 8 weeks of experimental protocol. At the end of the study period, the animals were sacrificed. Blood and plasma sampleswere collected. Serum evaluation of lipid profile such as total cholesterol (TC), triacylglycerol (Tg), low density lipoproteincholesterol (LDP-c) and high density lipoprotein cholesterol (HDL-c) were also assessed. The results obtained showsignificant (P resveratrol treated groups compared to HFD group only.In conclusion, the findings indicated that Resveratrol may contain polar products able to lower plasma lipid concentrationsand might be beneficial in treatment of hyperlipidemia and atherosclerosis. PMID:27574767

  10. CHOLESTEROL LEVELS AND SUICIDAL BEHAVIOR: A CASE CONTROL STUDY

    Directory of Open Access Journals (Sweden)

    Nikhil

    2014-06-01

    Full Text Available BACKGROUND: In modern psychiatry, there is a movement to understand mental health, not solely based on behaviors and subjective report, but also based on objective markers of illness. Several studies have focused on a relationship between serum cholesterol levels and aggressive behaviors including suicide. AIM: To identify a potential link between cholesterol and suicidal behavior. MATERIAL AND METHODS: 150 patients with psychiatry diagnosis were divided into three equal groups (50 each: those who had a recent suicidal attempt, those who had suicidal ideations but no attempts and those with psychiatry diagnosis but no suicidal ideations and attempts. Blood sample for total cholesterol level was on IPD or OPD basis. The study was started after taking approval from institute ethical committee. Analysis was done using Chi square test. OBSERVATIONS AND RESULTS: It was found that maximum patients who attempted suicide belonged to major depression and schizophrenia followed by substance dependence and bipolar affective disorder (BPAD with major depression and there was statistical difference in cholesterol levels of patients with suicide attempt, with suicidal ideations and control group. 42% and 44% of major depression and schizophrenia cases respectively had low total serum cholesterol levels (below 160 mg%. CONCLUSION: There is a potential link between serum total cholesterol levels and suicidal behavior. Taking the literature as a whole there is substantial evidence that low cholesterol levels are found in suicidal behaviors of various psychiatric illnesses especially major depressive disorder, schizophrenia, substance dependence and bipolar depressive disorder

  11. In silico docking studies and in vitro xanthine oxidase inhibitory activity of commercially available terpenoids

    OpenAIRE

    MUTHUSWAMY UMAMAHESWARI; Preetha prabhu; KUPPUSAMY ASOKKUMAR; THIRUMALAISAMY SIVASHANMUGAM; Varadharajan Subhadradevi; Puliyath Jagannath; Arumugam Madeswaran

    2012-01-01

    Objective Xanthine oxidase is a highly versatile enzyme that is widely distributed among different species. The hydroxylation of purines is catalysed by xanthine oxidase and especially the conversion of xanthine to uric acid. Xanthine oxidase inhibitors are much useful, since they possess lesser side effects compared to uricosuric and anti-inflammatory agents. The present study deals with in silico and in vitro xanthine oxidase inhibitory analysis of commercially available terpenoids (bisabol...

  12. Cholesterol induces fetal rat enterocyte death in culture

    Directory of Open Access Journals (Sweden)

    Gazzola J.

    2004-01-01

    Full Text Available The effect of cholesterol on fetal rat enterocytes and IEC-6 cells (line originated from normal rat small intestine was examined. Both cells were cultured in the presence of 20 to 80 µM cholesterol for up to 72 h. Apoptosis was determined by flow cytometric analysis and fluorescence microscopy. The expression of HMG-CoA reductase and peroxisome proliferator-activated receptor gamma (PPARgamma was measured by RT-PCR. The addition of 20 µM cholesterol reduced enterocyte proliferation as early as 6 h of culture. Reduction of enterocyte proliferation by 28 and 41% was observed after 24 h of culture in the presence and absence of 10% fetal calf serum, respectively, with the effect lasting up to 72 h. Treatment of IEC-6 cells with cholesterol for 24 h raised the proportion of cells with fragmented DNA by 9.7% at 40 µM and by 20.8% at 80 µM. When the culture period was extended to 48 h, the effect of cholesterol was still more pronounced, with the percent of cells with fragmented DNA reaching 53.5% for 40 µM and 84.3% for 80 µM. Chromatin condensation of IEC-6 cells was observed after treatment with cholesterol even at 20 µM. Cholesterol did not affect HMG-CoA reductase expression. A dose-dependent increase in PPARgamma expression in fetal rat enterocytes was observed. The expression of PPAR-gamma was raised by 7- and 40-fold, in the presence and absence of fetal calf serum, respectively, with cholesterol at 80 mM. The apoptotic effect of cholesterol on enterocytes was possibly due to an increase in PPARgamma expression.

  13. Low HDL cholesterol, aggression and altered central serotonergic activity.

    Science.gov (United States)

    Buydens-Branchey, L; Branchey, M; Hudson, J; Fergeson, P

    2000-03-01

    Many studies support a significant relation between low cholesterol levels and poor impulse, aggression and mood control. Evidence exists also for a causal link between low brain serotonin (5-HT) activity and these behaviors. Mechanisms linking cholesterol and hostile or self-destructive behavior are unknown, but it has been suggested that low cholesterol influences 5-HT function. This study was designed to explore the relationship between plasma cholesterol, measures of impulsivity and aggression, and indices of 5-HT function in personality disordered cocaine addicts. Thirty-eight hospitalized male patients (age 36.8+/-7.1) were assessed with the DSM-III-R, the Buss-Durkee Hostility Inventory (BDHI), the Barratt Impulsiveness Scale (BIS) and the Brown-Goodwin Assessment for Life History of Aggression. Fasting basal cholesterol (total, LDL and HDL) was determined 2 weeks after cocaine discontinuation. On the same day 5-HT function was assessed by neuroendocrine (cortisol and prolactin) and psychological (NIMH and 'high' self-rating scales) responses following meta-chlorophenylpiperazine (m-CPP) challenges. Reduced neuroendocrine responses, 'high' feelings and increased 'activation-euphoria' following m-CPP have been interpreted as indicating 5-HT alterations in a variety of psychiatric conditions. Significantly lower levels of HDL cholesterol were found in patients who had a history of aggression (P=0.005). Lower levels of HDL cholesterol were also found to be significantly associated with more intense 'high' and 'activation-euphoria' responses as well as with blunted cortisol responses to m-CPP (P=0.033, P=0.025 and P=0.018, respectively). This study gives further support to existing evidence indicating that in some individuals, the probability of exhibiting impulsive and violent behaviors may be increased when cholesterol is low. It also suggests that low cholesterol and alterations in 5-HT activity may be causally related.

  14. Statins: Cholesterol guidelines and Indian perspective

    Directory of Open Access Journals (Sweden)

    Anil S Menon

    2015-01-01

    Full Text Available Statins have become an important drug in preventing the occurrence of atherosclerotic cardiovascular disease (ASCVD. The effectiveness of statins in reducing ASCVD has been established in large-scale clinical trials. The lipid management guidelines have been periodically modified due to accumulating evidence about the proportionate benefit achieved with a progressive reduction in cholesterol levels with higher doses of statins and even in those at low risk of development of ASCVD. The current American College of Cardiology/American Heart Association guidelines have based its recommendations from data gathered exclusively from randomized controlled trials. It has simplified the use of statins, but also raised questions regarding the validity of its cardiovascular event risk prediction tool. Epidemiology of cardiovascular disease in India differs from the western population; there is an increased the prevalence of metabolic syndrome and atherogenic dyslipidemia phenotype a group not addressed in the current guidelines. The guidelines are based on trials, which do not have a representative South Asian population. This article reviews the relevant literature, and examines the issues involved in adopting the guidelines to the Indian population.

  15. Does fat in milk, butter and and cholesterol differently?

    DEFF Research Database (Denmark)

    Tholstrup, T,; Høy, Carl-Erik; Andersen, L.N.;

    2004-01-01

    and 8 hours following intake of the meals. Results: Fasting LDL cholesterol concentration was significantly higher after butter than cheese diet (p 0.037), with a borderline significant difference in total cholesterol (p = 0.054) after the experimental periods of three weeks. Postprandial glucose showed...... a higher response after cheese diet than after milk diet (p = 0.010, diet X time interaction). Conclusions: A different effect of fat in milk and butter could not be confirmed in this study. The moderately lower LDL cholesterol after cheese diet compared to butter diet should be investigated further....

  16. Reverse cholesterol transport: From classical view to new insights

    Institute of Scientific and Technical Information of China (English)

    Astrid; E; van; der; Velde

    2010-01-01

    Cholesterol is of vital importance for the human body. It is a constituent for most biological membranes, it is needed for the formation of bile salts, and it is the pre- cursor for steroid hormones and vitamin D. However, the presence of excess cholesterol in cells, and in particular in macrophages in the arterial vessel wall, might be harmful. The accumulation of cholesterol in arteries can lead to atherosclerosis, and in turn, to other cardiovascular diseases. The route that is primarily thought to be re...

  17. Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by L-tryptophan or 5-methoxy-N,N-dimethyltryptamine in rats treated with a monoamine oxidase inhibitor

    Science.gov (United States)

    Grahame-Smith, D. G.

    1971-01-01

    1. The hyperactivity and hyperpyrexia produced by L-tryptophan in rats treated with a monoamine oxidase inhibitor was inhibited by chlorpromazine. 2. Chlorpromazine did not inhibit the increased rate of synthesis of brain 5-hydroxytryptamine (5-HT) produced by tryptophan loading. 3. Hyperactivity and hyperpyrexia were also produced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) in rats. Pretreatment with a monoamine oxidase inhibitor potentiated the hyperactivity response. Pretreatment of rats with p-chlorophenylalanine did not inhibit hyperactivity produced by 5-MeODMT. 4. Chlorpromazine inhibits hyperactivity caused by tryptophan or 5-MeODMT after monoamine oxidase inhibition either by competition with 5-HT or 5-MeODMT, respectively, at receptor sites or by physiological antagonism. PMID:4261561

  18. Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol

    Science.gov (United States)

    Lee, Hyeon Jeong; Zhang, Wandi; Zhang, Delong; Yang, Yang; Liu, Bin; Barker, Eric L.; Buhman, Kimberly K.; Slipchenko, Lyudmila V.; Dai, Mingji; Cheng, Ji-Xin

    2015-01-01

    We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms.

  19. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    Directory of Open Access Journals (Sweden)

    A Abdullahi

    2012-01-01

    Conclusions: Enzyme inhibition mechanism indicated that the mode of inhibition was of a mixed type. Our findings suggest that the therapeutic use of these plants may be due to the observed Xanthine oxidase inhibition, thereby supporting their use in traditional folk medicine against inflammatory-related diseases, in particular, gout.

  20. Subcellular localization of vanillyl-alcohol oxidase in Penicillium simplicissimum

    NARCIS (Netherlands)

    Fraaije, MW; Sjollema, KA; Veenhuis, M; van Berkel, WJH; Berkel, Willem J.H. van

    1998-01-01

    Growth of Penicillium simplicissimum on anisyl alcohol, veratryl alcohol or 3-(methoxymethyl)phenol, is associated with the synthesis of relatively large amounts of the hydrogen peroxide producing flavoprotein vanillyl-alcohol oxidase (VAO), Immunocytochemistry revealed that the enzyme has a dual lo