WorldWideScience

Sample records for chlorophyll fluorescence signals

  1. Spectral and physiological information from chlorophyll fluorescence signals in the detection of pine damage

    Energy Technology Data Exchange (ETDEWEB)

    Meinander, O. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.; Somersalo, S. [Helsinki Univ., Helsinki (Finland). Dept. of Plant Biology

    1995-12-31

    Photosynthesis is often among the first targets of the air pollution stress of plants. As chlorophyll fluorescence is a process competing with photosynthetic electron transport it can be employed to study the potential photosynthetic capacity and to detect damage to the photosynthetic apparatus. Many previous studies have shown that chlorophyll fluorescence can be a powerful tool in the detection of forest damage. In this preliminary study, singular value analysis of the fluorescence induction curves was used together with the traditional way of analyzing fluorescence measurements. The experimental data were collected from ozone and carbon dioxide fumigated Scots pine saplings. (author)

  2. Tomato seeds maturity detection system based on chlorophyll fluorescence

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  3. Detection of the onset of glyphosate-induced soybean plant injury through chlorophyll fluorescence signal extraction and measurement

    Science.gov (United States)

    Zhao, Feng; Guo, Yiqing; Huang, Yanbo; Reddy, Krishna N.; Zhao, Yanhua; Molin, William T.

    2015-01-01

    In this study, chlorophyll fluorescence (ChlF) was used to detect the onset of soybean plant injury from treatment of glyphosate, the most widely used herbicide. Thirty-six pots of nonglyphosate-resistant soybean were randomly divided into three groups and treated with different doses of glyphosate solutions. The three treatment groups were control (CTRL) group (with no glyphosate treatment), 0.25X group (treated with 0.217 kg.ae/ha solution of glyphosate), and 0.5X group (treated with 0.433 kg.ae/ha solution of glyphosate). Three kinds of fluorescence measurements, steady-state fluorescence spectra, Kautsky effect parameters, and ChlF-related spectral indices were extracted and generated from the measurements in the glyphosate treatment experiment. The mean values of these fluorescence measurements for each of the CTRL group, the 0.25X group, and the 0.5X group were calculated. Glyphosate-induced leaf injury was then analyzed by examining the separability of these mean values at 6, 24, 48, and 72 hours after the treatment (HAT). Results indicate that the peak position of far-red ChlF shows an obvious blue shift for glyphosate-treated soybean, and peak values of steady-state fluorescence spectra for the three groups can be significantly distinguished from each other at 48 HAT and later. Four Kautsky effect parameters, Fv, Fv/Fm, Area, and PI, are parameters sensitive to glyphosate treatment, showing some differences between the CTRL group and treated groups at 24 HAT, and significant differences among the three groups at and beyond 48 HAT. Moreover, ChlF-related spectral indices, R6832/(R675.R690) and R690/R655, are also shown to be useful in detection of the glyphosate injury, though they are less effective than the steady-state fluorescence spectra and the Kautsky effect parameters. Based on the presented results, it can be concluded that glyphosate-induced soybean injury can be detected in a timely manner by the ChlF measurements, and this method has the

  4. Phytoplankton productivity quantified from chlorophyll fluorescence

    DEFF Research Database (Denmark)

    Hancke, Kasper; Dalsgaard, Tage; Sejr, Mikael Kristian

    Phytoplankton are the main food source for marine life, and accurate uantification of its productivity is essential for understanding how marine food webs function. As a novel non-invasive technology, chlorophyll fluorescence can be used to assess in situ primary production in phytoplankton...

  5. Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction.

    Science.gov (United States)

    Hamdani, Saber; Qu, Mingnan; Xin, Chang-Peng; Li, Ming; Chu, Chengcai; Govindjee; Zhu, Xin-Guang

    2015-04-01

    The difference between the photosynthetic properties of elite and landrace Chinese rice cultivars was studied, using chlorophyll a fluorescence induction (mostly a monitor of Photosystem II activity) and I820 transmission signal (mostly a monitor of Photosystem I activity) to identify potential photosynthetic features differentiating these two groups, which show different degrees of artificial selection and grain yields. A higher fluorescence (related to PSII) IP rise phase and a lower P700(+) (related to PSI) accumulation were observed in the elite cultivars as compared to the landraces. Using these data, together with simulation data from a kinetic model of fluorescence induction, we show that the high IP rise phase and the low P700(+) accumulation can be a result of transient block on electron transfer and traffic jam on the electron acceptor side of PSI under a high [NADPH]/[NADP(+)] ratio. Considering that the ferredoxin NADP(+) reductase (FNR) transcript levels of XS134 (a representative elite cultivars) remains unaffected during the first few minutes of light/dark transition compared to Q4145 (a representative landrace cultivars), which shows a strong decline during the same time range, we propose that the FNR of elite cultivars may take more time to be inactivated in darkness. During this time the FNR enzyme can continue to reduce NADP(+) molecules, leading to initially high [NADPH]/[NADP(+)] ratio during OJIP transient. These data suggested a potential artificial selection of FNR during the breeding process of these examined elite rice cultivars.

  6. Chlorophyll a fluorescence analysis in forests

    OpenAIRE

    M. Pollastrini; Holland, V; Brüggemann, W.; F. Bussotti

    2016-01-01

    A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples) parameters in forest ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChlF in forest ecology surveys, the protocols adopted for leaf sampling and ChlF measurements, the variability of...

  7. CHLOROPHYLL a FLUORESCENCE ANALYSIS IN FORESTS

    OpenAIRE

    M. Pollastrini; Holland, V; Brüggemann, W.; F. Bussotti

    2016-01-01

    A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples) parameters in forest ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChlF in forest ecology surveys, the protocols adopted for leaf sampling and ChlF measurements, the variability of...

  8. Salt stress change chlorophyll fluorescence in mango

    Directory of Open Access Journals (Sweden)

    Cicero Cartaxo de Lucena

    2012-12-01

    Full Text Available This study evaluated the tolerance of mango cultivars 'Haden', 'Palmer', 'Tommy Atkins' and 'Uba' grafted on rootstock 'Imbú' to salt stress using chlorophyll fluorescence. Plants were grown in modified Hoagland solution containing 0, 15, 30, and 45 mmol L-1 NaCl. At 97 days the parameters of the chlorophyll fluorescence (F0, Fm, Fv, F0/Fm, Fv/Fm, Fv'/Fm', ΦPSII = [(Fm'-Fs/(Fm'], D = (1- Fv'/Fm' and ETR = (ΦPSII×PPF×0,84×0,5 were determined. At 100 days, the leaf emission and leaf area, toxicity and leaf abscission indexes were determined. In all cultivars evaluated, in different degree, there were decreases in photochemical efficiency of photosystem II, enhanced concentrations from 15 mmol L-1 NaCl. The decreases in the potential quantum yield of photosystem II (Fv/Fm were 27.9, 18.7, 20.5, and 27.4%, for cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba', respectively, when grown in 45 mmol L-1 NaCl. It was found decreases in leaf emission and mean leaf area in all cultivars from 15 mmol L-1 NaCl. There were increases in leaf toxicity of 33.0, 67.5, 41.6 and 80.8% and in leaf abscission of 71.8, 29.2, 32.5, and 67.9% for the cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba' respectively, when grown in 45 mmol L-1 NaCl. Leaf toxicity and leaf abscission were not observed in 15 mmol L-1 NaCl. The decrease in Fv/Fm ratio were accompanied by decreasing in leaf emission and increased leaf toxicity index, showing, therefore, the potential of chlorophyll fluorescence in the early detection of salt stress in mango tree.

  9. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    Science.gov (United States)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application.

  10. Modulated Chlorophyll "a" Fluorescence: A Tool for Teaching Photosynthesis

    Science.gov (United States)

    Marques da Silva, Jorge; Bernardes da Silva, Anabela; Padua, Mario

    2007-01-01

    "In vivo" chlorophyll "a" fluorescence is a key technique in photosynthesis research. The recent release of a low cost, commercial, modulated fluorometer enables this powerful technology to be used in education. Modulated chlorophyll a fluorescence measurement "in vivo" is here proposed as a tool to demonstrate basic…

  11. Modulated Chlorophyll "a" Fluorescence: A Tool for Teaching Photosynthesis

    Science.gov (United States)

    Marques da Silva, Jorge; Bernardes da Silva, Anabela; Padua, Mario

    2007-01-01

    "In vivo" chlorophyll "a" fluorescence is a key technique in photosynthesis research. The recent release of a low cost, commercial, modulated fluorometer enables this powerful technology to be used in education. Modulated chlorophyll a fluorescence measurement "in vivo" is here proposed as a tool to demonstrate basic photosynthesis phenomena to…

  12. A model for chlorophyll fluorescence and photosynthesis at leaf scale

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Rosema, A.

    2009-01-01

    This paper presents a leaf biochemical model for steady-state chlorophyll fluorescence and photosynthesis of C3 and C4 vegetation. The model is a tool to study the relationship between passively measured steady-state chlorophyll fluorescence and actual photosynthesis, and its evolution during the da

  13. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  14. An overview of remote sensing of chlorophyll fluorescence

    Science.gov (United States)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  15. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence

    NARCIS (Netherlands)

    Damm, A.; Erler, A.; Hillen, W.; Meroni, M.; Schaepman, M.E.; Verhoef, W.; Rascher, U.

    2011-01-01

    Chlorophyll fluorescence is related to photosynthesis and can serve as a remote sensing proxy for estimating photosynthetic energy conversion and carbon uptake. Recent advances in sensor technology allow remote measurements of the sun-induced chlorophyll fluorescence signal (Fs) at leaf and canopy s

  16. Herbivory of wild Manduca sexta causes fast down-regulation of photosynthetic efficiency in Datura wrightii: an early signaling cascade visualized by chlorophyll fluorescence.

    Science.gov (United States)

    Barron-Gafford, Greg A; Rascher, Uwe; Bronstein, Judith L; Davidowitz, Goggy; Chaszar, Brian; Huxman, Travis E

    2012-09-01

    Plants experiencing herbivory suffer indirect costs beyond direct loss of leaf area, but differentially so based on the herbivore involved. We used a combination of chlorophyll fluorescence imaging and gas exchange techniques to quantify photosynthetic performance, the efficiency of photochemistry, and heat dissipation to examine immediate and longer-term physiological responses in the desert perennial Datura wrightii to herbivory by tobacco hornworm, Manduca sexta. Herbivory by colony-reared larvae yielded no significant reduction in carbon assimilation, whereas herbivory by wild larvae induced a fast and spreading down-regulation of photosynthetic efficiency, resulting in significant losses in carbon assimilation in eaten and uneaten leaves. We found both an 89 % reduction in net photosynthetic rates in herbivore-damaged leaves and a whole-plant response (79 % decrease in undamaged leaves from adjacent branches). Consequently, herbivory costs are higher than previously estimated in this well-studied plant-insect interaction. We used chlorophyll fluorescence imaging to elucidate the mechanisms of this down-regulation. Quantum yield decreased up to 70 % in a small concentric band surrounding the feeding area within minutes of the onset of herbivory. Non-photochemical energy dissipation by the plant to avoid permanent damage was elevated near the wound, and increased systematically in distant areas of the leaf away from the wound over subsequent hours. Together, the results underscore not only potential differences between colony-reared and wild-caught herbivores in experimental studies of herbivory but also the benefits of quantifying physiological responses of plants in unattacked leaves.

  17. CHLOROPHYLL a FLUORESCENCE ANALYSIS IN FORESTS

    Directory of Open Access Journals (Sweden)

    M. Pollastrini

    2016-03-01

    Full Text Available A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples parameters in forest ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChlF in forest ecology surveys, the protocols adopted for leaf sampling and ChlF measurements, the variability of the ChlF parameters within and between trees, their dependence to environmental factors and the relationships with other functional leaf traits. The most relevant findings were as follows: (i The least variable ChlF parameter within and between the trees was the maximum quantum yield of primary photochemistry (FV/FM, whereas the performance indices (PIABS and PITOT showed the highest variability; (ii for a given tree, the ChlF parameters measured at two heights of the crown (top and bottom leaves were correlated and, in coniferous species, the ChlF parameters were correlated between different needle age classes (from the current year and previous year; (iii the ChlF parameters showed a geographical pattern, and the photochemical performance of the forest trees was higher in central Europe than in the edge sites (northernmost and southernmost; and (iv ChlF parameters showed different sensitivity to specific environmental factors: FV/FM increased with the increase of the leaf area index of stands and soil fertility; ΔVIP was reduced under high temperature and drought. The photochemical responses of forest tree species, analyzed with ChlF parameters, were influenced by the ecology of the trees (i.e. their functional groups, continental distribution, successional status, etc., tree species’ richness and composition of the stands. Our results support the applicability and usefulness of the ChlF in forest monitoring investigations on a large spatial scale and

  18. Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa).

    Science.gov (United States)

    Novo, Johanna Mendes; Iriel, Analia; Lagorio, M Gabriela

    2012-04-01

    Kiwi fruit displays chlorophyll fluorescence. A physical model was developed to reproduce the observed original fluorescence for the whole fruit, from the emission of the different parts of the kiwi fruit. The spectral distribution of fluorescence in each part of the fruit, was corrected to eliminate distortions due to light re-absorption and it was analyzed in relation to photosystem II-photosystem I ratio. Kiwi fruit also displays variable chlorophyll-fluorescence, similar to that observed from leaves. The maximum quantum efficiency of photosystem II photochemistry (F(v)/F(m)), the quantum efficiency of photosystem II (Φ(PSII)), and the photochemical and non-photochemical quenching coefficients (q(P) and q(NP) respectively) were determined and discussed in terms of the model developed. The study was extended by determining the photosynthetic parameters as a function of the storage time, at both 4 °C and room temperature for 25 days.

  19. Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: differences in fluorescence properties with chlorophyll replacement.

    Science.gov (United States)

    Mimuro, Mamoru; Murakami, Akio; Tomo, Tatsuya; Tsuchiya, Tohru; Watabe, Kazuyuki; Yokono, Makio; Akimoto, Seiji

    2011-05-01

    A marine cyanobacterium, Prochlorococcus, is a unique oxygenic photosynthetic organism, which accumulates divinyl chlorophylls instead of the monovinyl chlorophylls. To investigate the molecular environment of pigments after pigment replacement but before optimization of the protein moiety in photosynthetic organisms, we compared the fluorescence properties of the divinyl Chl a-containing cyanobacteria, Prochlorococcus marinus (CCMP 1986, CCMP 2773 and CCMP 1375), by a Synechocystis sp. PCC 6803 (Synechocystis) mutant in which monovinyl Chl a was replaced with divinyl Chl a. P. marinus showed a single fluorescence band for photosystem (PS) II at 687nm at 77K; this was accompanied with change in pigment, because the Synechocystis mutant showed the identical shift. No fluorescence bands corresponding to the PS II 696-nm component and PS I longer-wavelength component were detected in P. marinus, although the presence of the former was suggested using time-resolved fluorescence spectra. Delayed fluorescence (DF) was detected at approximately 688nm with a lifetime of approximately 29ns. In striking contrast, the Synechocystis mutant showed three fluorescence bands at 687, 696, and 727nm, but suppressed DF. These differences in fluorescence behaviors might not only reflect differences in the molecular structure of pigments but also differences in molecular environments of pigments, including pigment-pigment and/or pigment-protein interactions, in the antenna and electron transfer systems.

  20. Chlorophyll fluorescence imaging of cadmium-treated white cabbage plants

    Directory of Open Access Journals (Sweden)

    Borek M.

    2013-04-01

    Full Text Available The chlorophyll fluorescence imaging technique is a valuable tool to study the impact of heavy metal stress in plants. The aim of this paper was to investigate the influence of Cd on photosynthetic apparatus of white cabbage (Brassica oleracea subsp. capitata f. alba plants. Two cabbage cultivars ‘Ditmarska Najwcześniejsza’ (‘DN’; early and ‘Amager Polana’ (‘AP’; late were used. Cd was applied before planting seedlings (10 mg Cd kg−1 DM of soil.. Measurements were performed at the 3rd leaf after 2 weeks of planting. The level of Cd-induced stress to plants was estimated by chlorophyll (Chl content (photometrically and analyses of images and numeric values of the major fluorescence parameters of Chl (Chl fluorescence imaging system FluorCam. Cd negatively affected the chlorophyll content and Fv/Fm, Fv’/Fm’, Φ PSII and qP in leaves of early cultivar of white cabbage. However, in the case of late cv. we did not observe such distinct changes. It suggests that late cultivars. are more resistant to Cd than the early ones. Considering methodological aspect of the study, Chl fluorescence imaging can better reveal some alterations within the leaf, because numeric values of specific parameters, which are the averaged data collected from the whole leaf, cannot reflect the tissue specificity. Abbreviations: HM – heavy metal, Cd – cadmium, Chl – chlorophyll, Fv/Fm – photochemical efficiency of PSII in the dark-adapted state, F‘v’/F‘m’ – PSII maximum efficiency, Φ PSII – quantum efficiency of PSII electron transport, NPQ – nonphotochemical quenching of maximal Chl fluorescence, qP – photochemical quenching coefficient.

  1. Quenching of chlorophyll fluorescence induced by silver nanoparticles

    Science.gov (United States)

    Queiroz, A. M.; Mezacasa, A. V.; Graciano, D. E.; Falco, W. F.; M'Peko, J.-C.; Guimarães, F. E. G.; Lawson, T.; Colbeck, I.; Oliveira, S. L.; Caires, A. R. L.

    2016-11-01

    The interaction between chlorophyll (Chl) and silver nanoparticles (AgNPs) was evaluated by analyzing the optical behavior of Chl molecules surrounded by different concentrations of AgNPs (10, 60, and 100 nm of diameter). UV-Vis absorption, steady state and time-resolved fluorescence measurements were performed for Chl in the presence and absence of these nanoparticles. AgNPs strongly suppressed the Chl fluorescence intensity at 678 nm. The Stern-Volmer constant (KSV) showed that fluorescence suppression is driven by the dynamic quenching process. In particular, KSV was nanoparticle size-dependent with an exponential decrease as a function of the nanoparticle diameter. Finally, changes in the Chl fluorescence lifetime in the presence of nanoparticles demonstrated that the fluorescence quenching may be induced by the excited electron transfer from the Chl molecules to the metal nanoparticles.

  2. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.

    Science.gov (United States)

    Jockusch, Steffen; Turro, Nicholas J; Banala, Srinivas; Kräutler, Bernhard

    2014-02-01

    Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

  3. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death

    Science.gov (United States)

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J.; Kräutler, Bernhard

    2009-01-01

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in ‘senescence associated’ dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212

  4. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  5. Chlorophyll a fluorescence to phenotype wheat genotypes for heat tolerance

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    In prospects of global climate change, heat stress is a rising constraint for the productivity of wheat (Triticum aestivum L.). It is a heat-susceptible crop beyond 17-23oC temperature throughout its phenological stages, flowering phase being the most sensitive stage. Chlorophyll a fluorescence...... for 72h was appropriate to induce genotype dependent variation in Fv/Fm. This standardized protocol was used to phenotype wheat genotypes until the variation in the genotypes was consistently high with increased heritability for the trait, Fv/Fm. Mass screening of 1273 wheat genotypes in a milder stress...

  6. Modeling chlorophyll a fluorescence transient: relation to photosynthesis.

    Science.gov (United States)

    Stirbet, A; Riznichenko, G Yu; Rubin, A B; Govindjee

    2014-04-01

    To honor Academician Alexander Abramovitch Krasnovsky, we present here an educational review on the relation of chlorophyll a fluorescence transient to various processes in photosynthesis. The initial event in oxygenic photosynthesis is light absorption by chlorophylls (Chls), carotenoids, and, in some cases, phycobilins; these pigments form the antenna. Most of the energy is transferred to reaction centers where it is used for charge separation. The small part of energy that is not used in photochemistry is dissipated as heat or re-emitted as fluorescence. When a photosynthetic sample is transferred from dark to light, Chl a fluorescence (ChlF) intensity shows characteristic changes in time called fluorescence transient, the OJIPSMT transient, where O (the origin) is for the first measured minimum fluorescence level; J and I for intermediate inflections; P for peak; S for semi-steady state level; M for maximum; and T for terminal steady state level. This transient is a real signature of photosynthesis, since diverse events can be related to it, such as: changes in redox states of components of the linear electron transport flow, involvement of alternative electron routes, the build-up of a transmembrane pH gradient and membrane potential, activation of different nonphotochemical quenching processes, activation of the Calvin-Benson cycle, and other processes. In this review, we present our views on how different segments of the OJIPSMT transient are influenced by various photosynthetic processes, and discuss a number of studies involving mathematical modeling and simulation of the ChlF transient. A special emphasis is given to the slower PSMT phase, for which many studies have been recently published, but they are less known than on the faster OJIP phase.

  7. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, P.K. Entcheva [Joint Center for Earth Systems Technology, UMBC, Baltimore, MD 21228 (United States); Biospheric Sciences Branch, Hydrospheric and Biospheric Sciences Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)], E-mail: pcampbel@pop900.gsfc.nasa.gov; Middleton, E.M. [Biospheric Sciences Branch, Hydrospheric and Biospheric Sciences Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Corp, L.A. [Biospheric Sciences Branch, Hydrospheric and Biospheric Sciences Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States); Agricultural Research Service, USDA, Beltsville, MD 20705 (United States); Kim, M.S. [Agricultural Research Service, USDA, Beltsville, MD 20705 (United States)

    2008-10-15

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance data, which provide estimates of vigor based primarily on chlorophyll content. Chlorophyll fluorescence (ChlF) measurements offer a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, technology based on ChlF may allow more accurate carbon sequestration estimates and earlier stress detection than is possible when using reflectance data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contributions from both the reflected and fluoresced radiation. The aim of this study is to determine the relative contributions of reflectance and ChlF fractions to Ra in the red to near-infrared region (650-800 nm) of the spectrum. The practical objectives of the study are to: 1) evaluate the relationship between ChlF and reflectance at the foliar level for corn, soybean and maple; and 2) for corn, determine if the relationship established for healthy vegetation changes under nitrogen (N) deficiency. To obtain generally applicable results, experimental measurements were conducted on unrelated crop and tree species (corn, soybean and maple) under controlled conditions and a gradient of inorganic N fertilization levels. Optical reflectance spectra and actively induced ChlF emissions were collected on the same foliar samples, in conjunction with measurements of photosynthetic function, pigment levels, and carbon (C) and N content. The spectral trends were examined for similarities. On average, 10-20% of Ra at 685 nm was actually due to ChlF. The spectral trends in steady state and maximum fluorescence varied significantly, with steady state fluorescence (especially red, 685 nm) showing higher ability for species and treatment separation. The relative contribution of ChlF to Ra varied significantly among species, with maple

  8. Changes of Photosystem Ⅱ Electron Transport in the Chlorophyll-deficient Oilseed Rape Mutant Studied by Chlorophyll Fluorescence and Thermoluminescence

    Institute of Scientific and Technical Information of China (English)

    Jun-Wei Guo; Jin-Kui Guo; Yun Zhao; Lin-Fang Du

    2007-01-01

    The photosystem Ⅱ (PSII) complex of photosynthetic membranes comprises a number of chlorophyll-binding proteins that are important to the electron flow. Here we report that the chlorophyll b-deficient mutant has de creased the amount of light-harvesting complexes with an increased amount of some core polypeptides of PSII,including CP43 and CP47. By means of chlorophyll fluorescence and thermoluminescence, we found that the ratio of Fv/Fm, qP and electron transport rate in the chlorophyll b-deficient mutant was higher compared to the wild type.In the chlorophyll b-deficient mutant, the decay of the primary electron acceptor quinones (QA-) reoxidation was decreased, measured by the fluorescence. Furthermore, the thermolumlnescence studies in the chlorophyll b deficient mutant showed that the B band (S2/S3QB-) decreased slightly and shifted up towards higher temperatures.In the presence of dichlorophenyl-dimethylurea, which is inhibited in the electron flow to the second electron acceptor quinines (QB) at the PSII acceptor side, the maximum of the Q band (S2QA-) was decreased slightly and shifted down to lower temperatures, compared to the wild type. Thus, the electron flow within PSll of the chlorophyll b-deficient mutant was down-regulated and characterized by faster oxidation of the primary electron acceptor quinine QA- via forward electron flow and slower reduction of the oxidation S states.

  9. Photosynthesis, chlorophyll fluorescence characteristics, and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium.

    Science.gov (United States)

    Hu, Huiqing; Wang, Lihong; Wang, Qingqing; Jiao, Liya; Hua, Weiqi; Zhou, Qing; Huang, Xiaohua

    2014-11-01

    Bisphenol A (BPA) is ubiquitous in the environment because of its continual application in plastics and the epoxy resin industry. Cadmium (Cd) is a highly toxic heavy metal element mainly used in smelting, electroplating, and plastic and dye manufacturing. Pollution as a result of BPA and Cd exists simultaneously in many agricultural regions. However, little information is available regarding the combined effects of BPA and Cd on plants. The combined effects of BPA and Cd on the photosynthesis, chlorophyll fluorescence, and chlorophyll content of soybean seedlings were investigated using noninvasive technology. Combined treatment with 1.5 mg/L BPA and 0.2 mg/L Cd synergistically improved the net photosynthetic rate (Pn ), initial fluorescence (F0 ), maximal photochemical efficiency (Fv /Fm ), effective quantum yield of photosystem II (ΦPSII ), photosynthetic electron transport rate (ETR), and chlorophyll content. Combined treatment with 1.5 mg/L BPA and 3.0 mg/L Cd increased the F0 and decreased the Pn , Fv /Fm , ΦPSII , and ETR, whereas BPA and Cd exhibited an antagonistic effect. Furthermore, combined treatment with 17.2/50.0 mg/L BPA and 3.0/10.0 mg/L Cd synergistically decreased the Pn , Fv /Fm , ΦPSII , ETR, and chlorophyll content, although it increased the F0 . Finally, the effects of BPA and Cd on photosynthesis, chlorophyll fluorescence, and chlorophyll content ceased when BPA stress was stopped.

  10. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield

    Science.gov (United States)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.

    2012-01-01

    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  11. Effects of LEDs on chlorophyll fluorescence and secondary metabolites in Phalaenopsis

    DEFF Research Database (Denmark)

    Ouzounis, T.; Fretté, X.; Rosenqvist, Eva

    2015-01-01

    of the experiment. Chlorophyll fluorescence was also recorded with PAM-2001. Leaf area and total fresh weight were highest in the 40%B/60%R for Phalaenopsis 'Vivien', while 100%R demonstrated the highest leaf area and fresh weight for Phalaenopsis 'Purple star'. Chlorophyll fluorescence for the same treatments...

  12. Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    Science.gov (United States)

    Campbell, P. K. Entcheva; Middleton, E. M.; Kim, M. S.

    2007-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as

  13. [Study on the characters of phytoplankton chlorophyll fluorescence excitation spectra based on fourth-derivative].

    Science.gov (United States)

    Lu, Lu; Su, Rong-Guo; Wang, Xiu-Lin; Zhu, Chen-Jian

    2007-11-01

    Chlorophyll fluorescence excitation spectra of six phytoplankton species, belonging to Bacillariophyta and Dinophyta, were dealt by fourth-derivative analysis with the Matlab program. The results show that between 350 nm and 550 nm six fluorescence peaks were found in the fourth-derivative spectra, which are representatives of non-pigments, chlorophylls and carotenoides respectively. The method makes Bacillariophyta and Dinophyta more distinguishable when the fourth-derivative spectra are compared with the chlorophyll fluorescence excitation spectra. It can be used not only to discriminate the two groups of algaes, but also to reduce the effect of noise. The fluorescence peaks in the fourth-derivative spectra are proved to be stable.

  14. Role of formation of statistical aggregates in chlorophyll fluorescence concentration quenching.

    Science.gov (United States)

    Shi, Wu-Jun; Barber, James; Zhao, Yang

    2013-04-18

    Using extensive Monte Carlo simulations, a comprehensive investigation has been carried out on the phenomenon of chlorophyll fluorescence concentration quenching. Our results reveal that statistical aggregations of chlorophylls act mainly as trapping sites for excitation energy and lead to fluorescence quenching. Due to transition dipolar-dipolar interactions between the chlorophylls within a statistical aggregate, the associated oscillator strength changes in comparison to a monomer, and excited energy states show splitting. Further, as the lower energy states are more likely associated with lower oscillator strengths, the fluorescence intensity is observed to decrease. Due to the rapid energy transfer between chlorophyll molecules after photoexcitation, the excitonic energy can easily reach a statistical aggregate, where trapping of the exciton and its subsequent decay occur. With an increase in the chlorophyll concentration, the probability of statistical aggregation increases, thereby accentuating the fluorescence quenching effect.

  15. Chlorophyll bleaching by UV-irradiation in vitro and in situ: Absorption and fluorescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Zvezdanovic, Jelena [Faculty of Technology, University of Nish, Bulevar oslobodjenja 124, 16000 Leskovac (Serbia)], E-mail: jelite74@yahoo.com; Cvetic, Tijana [Faculty of Biology, University of Belgrade, Takovska 43, Belgrade 11000 (Serbia); Veljovic-Jovanovic, Sonja [Center for Multidisciplinary Studies, University of Belgrade, Kneza Viseslava la, Belgrade 11030 (Serbia); Markovic, Dejan [Faculty of Technology, University of Nish, Bulevar oslobodjenja 124, 16000 Leskovac (Serbia)], E-mail: dejan_markovic57@yahoo.com

    2009-01-15

    Chlorophyll bleaching by UV-irradiation has been studied by absorbance and fluorescence spectroscopy in extracts containing mixtures of photosynthetic pigments, in acetone and n-hexane solutions, and in aqueous thylakoid suspensions. Chlorophyll undergoes destruction (bleaching) accompanied by fluorescent transient formation obeying first-order kinetics. The bleaching is governed by UV-photon energy input, as well as by different chlorophyll molecular organizations in solvents of different polarities (in vitro), and in thylakoids (in situ). UV-C-induced bleaching of chlorophylls in thylakoids is probably caused by different mechanisms compared to UV-A- and UV-B-induced bleaching.

  16. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    Science.gov (United States)

    Mignot, A.; Claustre, H.; D'Ortenzio, F.; Xing, X.; Poteau, A.; Ras, J.

    2011-08-01

    In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m-3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m-3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape

  17. From the shape of the vertical profile of in vivo fluorescence to Chlorophyll-a concentration

    Directory of Open Access Journals (Sweden)

    J. Ras

    2011-08-01

    Full Text Available In vivo fluorescence of Chlorophyll-a (Chl-a is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m−3 of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m−3 and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m. This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC. Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration

  18. Chlorophyll fluorescence in vivo as a probe for rapid measurement of tolerance to ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Smillie, R.M. (Macquarie Univ., North Ryde (Australia). School of Biological Sciences)

    1983-02-01

    Chlorophyll fluorescence in vivo was progressively lost in pea leaves irradiated with either short or long-wave light. The changes were consistent with the development in the intact leaves of an inhibitory site on the photooxidizing side of photosystem II. In contrast, leaves of two species of Agave, plants regarded as more resistant to UV radiation, showed only minor changes in chlorophyll fluorescence. Agave americana was affected less than A. attenuata. The application of measurements of chlorophyll fluorescence in vivo to screening for tolerance to UV radiation is discussed.

  19. Chlorophyll content and chlorophyll fluorescence in tomato leaves infested with an invasive mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Huang, Jun; Zhang, Peng-Jun; Zhang, Juan; Lu, Yao-Bin; Huang, Fang; Li, Ming-Jiang

    2013-10-01

    Herbivore injury has indirect effects on the growth and performance of host plants through photosynthetic suppression. It causes uncertain reduction in photosynthesis, which likely depends on the degree of infestation. Rapid light curves provide detailed information on the saturation characteristics of electron transport as well as the overall photosynthetic performance of a plant. We examined the effects of different intensities of infestation of the invasive mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), on the relative chlorophyll content and rapid light curves of tomato Solanum lycopersicum L. leaves using a chlorophyll meter and chlorophyll fluorescence measurement system, respectively, under greenhouse conditions. After 38 d of P. solenopsis feeding, relative chlorophyll content of tomato plants with initial high of P. solenopsis was reduced by 57.3%. Light utilization efficiency (α) for the initial high-density treatment was reduced by 42.4%. However, no significant difference between initial low-density treatment and uninfested control was found. The values of the maximum electron transport rate and minimum saturating irradiance for initial high-density treatment were reduced by 82.0 and 69.7%, respectively, whereas the corresponding values for low-density treatment were reduced by 55.9 and 58.1%, respectively. These data indicated that changes were induced by P. solenopsis feeding in the relative chlorophyll content and chlorophyll fluorescence of infested tomato plants. The results indicating that low initial infestation by P. solenopsis caused no change in relative leaf chlorophyll content or light utilization efficiency could have been because the plants rapidly adapted to P. solenopsis feeding or because of compensatory photosynthesis.

  20. Fo-spectra of chlorophyll fluorescence for the determination of zooplankton grazing

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Verschoor, A.M.

    2003-01-01

    In the PHYTO-PAM phytoplankton analyzer the minimal fluorescence of dark-adapted samples (F-0) was assessed, which gives direct information on the chlorophyll-a content. Clearance rates (CR) of Daphnia and Brachionus were calculated from a decrease in chlorophyll-a concentration using the PHYTO-PAM

  1. FO-spectra of chlorophyll fluorescence for the determination of zooplankton grazing

    NARCIS (Netherlands)

    Lürling, M.; Verschoor, A.M.

    2003-01-01

    In the PHYTO-PAM phytoplankton analyzer the minimal fluorescence of dark-adapted samples (F0) was assessed, which gives direct information on the chlorophyll- a content. Clearance rates (CR) of Daphnia and Brachionus were calculated from a decrease in chlorophyll-a concentration using the PHYTO-PAM

  2. Study of plant fluorescence prop erties based on laser-induced chlorophyll fluorescence lifetime imaging technology%基于激光诱导叶绿素荧光寿命成像技术的植物荧光特性研究∗

    Institute of Scientific and Technical Information of China (English)

    万文博; 华灯鑫; 乐静; 闫哲; 周春艳

    2015-01-01

    Plant fluorescence is a susceptible signal in plant fluorescence remote sensing detection. In order to solve this problem, a technique for plant chlorophyll fluorescence lifetime imaging is presented to evaluate living status for plant growth and environmental monitoring. A concave lens is used to expand laser beam at a wavelength of 355 nm, and the living plant is exposed in this laser light source to excite chlorophyll fluorescence. And the chlorophyll fluorescence signals are detected by an intensification charge coupled device. Time resolved measurement method is used in this article, so that every time the same fluorescence signals can be excited by the same laser pulse. Meanwhile, the delay time needed for triggering intensification charge coupled device should be changed consecutively, and the whole discrete fluorescence signal can be obtained. The discrete fluorescence signals from the particular location points of the plant are fitted. An improved method of forward iterative deconvolution is used to retrieve the corresponding fluorescence lifetime, and the high-precision fluorescence lifetime can be obtained. Furthermore, the fluorescence lifetime values at all the location points are retrieved to obtain the distribution map of chlorophyll fluorescence lifetime. This method can give the chlorophyll fluorescence image efficiently. The distribution map of fluorescence lifetime can more effectively reflect the plant chlorophyll concentration than the fluorescence intensity image does. The physical property of chlorophyll fluorescence lifetime from living plants has been studied preliminarily, indicating that the plant physiological status is related to its fluorescence lifetime to a certain extent; and the chlorophyll fluorescence lifetime and plant environment have a subtle and complex correlation. In the future, the relationship between chlorophyll fluorescence lifetime and plant environment will be expected to study with the cooperation of biophysicist.

  3. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

    Science.gov (United States)

    Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A

    2014-08-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal.

  4. Detection of Fluorescence from Single Chlorophyll a Molecules Absorbed on Glass Surface

    Institute of Scientific and Technical Information of China (English)

    JI Dong-Mei; HUANG Zheng-Xi; XIA An-Dong

    2005-01-01

    @@ We investigate the single molecule spectroscopy of chlorophyll a molecules on glass surface in N2-saturated environment. The basic photodynamic parameters of chlorophyll a molecules, such as fluorescence lifetime,survival time before photobleaching, on-time, and off-time, are reported. A four-level model is employed to describe the possible dynamics and photobleaching of chlorophyll a upon excitation. Broad distributions in fluorescence lifetimes and survival times are mainly due to the heterogeneities of both molecular conformation and local environment.

  5. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  6. Comparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained from Four Portable Field Spectroradiometers

    Directory of Open Access Journals (Sweden)

    Tommaso Julitta

    2016-02-01

    Full Text Available Remote Sensing of Sun-Induced Chlorophyll Fluorescence (SIF is a research field of growing interest because it offers the potential to quantify actual photosynthesis and to monitor plant status. New satellite missions from the European Space Agency, such as the Earth Explorer 8 FLuorescence EXplorer (FLEX mission—scheduled to launch in 2022 and aiming at SIF mapping—and from the National Aeronautics and Space Administration (NASA such as the Orbiting Carbon Observatory-2 (OCO-2 sampling mission launched in July 2014, provide the capability to estimate SIF from space. The detection of the SIF signal from airborne and satellite platform is difficult and reliable ground level data are needed for calibration/validation. Several commercially available spectroradiometers are currently used to retrieve SIF in the field. This study presents a comparison exercise for evaluating the capability of four spectroradiometers to retrieve SIF. The results show that an accurate far-red SIF estimation can be achieved using spectroradiometers with an ultrafine resolution (less than 1 nm, while the red SIF estimation requires even higher spectral resolution (less than 0.5 nm. Moreover, it is shown that the Signal to Noise Ratio (SNR plays a significant role in the precision of the far-red SIF measurements.

  7. Effect of Phosphatidylcholine on the Steady State Fluorescence of Chlorophyll in Photosystem Ⅱ Particles

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phosphatidylcholine (PC) accounts for less than 1% of the total lipids in plant photosystem II (PSII) particles.In this experiment, PSII particles were reconstituted with PC to construct PSII-PC vesicles.The effect of PC on the steady state fluorescence of chlorophyll (Chl) in PSII particles was studied.The results show that PC significantly affected the fluorescence intensity, but did not obviously affect the fluorescence emission band peak position.PC also did not obviously affect the absorbance at 436 nm or the amide I band peak position in FT-IR spectroscopy of PSII particles.The results suggest that PC may affect the light energy transfer from the antenna chlorophyll molecules to the reaction center chlorophyll molecule (P680).

  8. Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Svend Bode; Ottosen, Carl-Otto

    2012-01-01

    on a physiological trait, the maximum quantum efficiency of PSII (Fv/Fm). A chlorophyll fluorescence protocol was standardised and used for repeated screening with increased selection pressure with a view to identifying a set of cultivars extreme for the trait. An initial mass screening of 1274 wheat cultivars...... with an increased genetic component (15.43.6%), which was further increased to 27.96.8% in the third screening with 41 contrasting cultivars. This contrasting set of cultivars was then used to compare the ability of chlorophyll fluorescence parameters to detect genetic difference in heat tolerance...

  9. Pico-projector-based optical sectioning microscopy for 3D chlorophyll fluorescence imaging of mesophyll cells

    Science.gov (United States)

    Chen, Szu-Yu; Hsu, Yu John; Yeh, Chia-Hua; Chen, S.-Wei; Chung, Chien-Han

    2015-03-01

    A pico-projector-based optical sectioning microscope (POSM) was constructed using a pico-projector to generate structured illumination patterns. A net rate of 5.8 × 106 pixel/s and sub-micron spatial resolution in three-dimensions (3D) were achieved. Based on the pico-projector’s flexibility in pattern generation, the characteristics of POSM with different modulation periods and at different imaging depths were measured and discussed. With the application of different modulation periods, 3D chlorophyll fluorescence imaging of mesophyll cells was carried out in freshly plucked leaves of four species without sectioning or staining. For each leaf, an average penetration depth of 120 μm was achieved. Increasing the modulation period along with the increment of imaging depth, optical sectioning images can be obtained with a compromise between the axial resolution and signal-to-noise ratio. After ∼30 min imaging on the same area, photodamage was hardly observed. Taking the advantages of high speed and low damages of POSM, the investigation of the dynamic fluorescence responses to temperature changes was performed under three different treatment temperatures. The three embedded blue, green and red light-emitting diode light sources were applied to observe the responses of the leaves with different wavelength excitation.

  10. Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues

    DEFF Research Database (Denmark)

    Ralph, P.J.; Gademann, R.; Larkum, A.W.D.

    2002-01-01

    Chlorophyll-a fluorescence was measured in six species of coral, using pulse-amplitude-modulated fluorometers employing fibre-optic probes with diameters of 8 mm, 1 mm and 140 µm. The 8-mm probe integrated responses over a large area, giving more weight to coenosarc than polyp tissue for Acropora...

  11. Chlorophyll fluorescence varies more across seasons than leaf water potential in drought-prone plants

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2016-01-01

    Full Text Available ABSTRACT Among the effects of environmental change, the intensification of drought events is noteworthy, and tropical vegetation is predicted to be highly vulnerable to it. However, it is not clear how tropical plants in drought-prone habitats will respond to this change. In a coastal sandy plain environment, we evaluated the response of six plant species to water deficits across seasons, the relationship between their morpho-physiological traits, and which traits would be the best descriptors of plants' response to drought. Regardless of leaf succulence and phenology, responses between seasons were most strongly related to chlorophyll fluorescence. In this study we have demonstrated that a better comprehension of how tropical species from drought-prone habitats cope with changes in water availability can be based on seasonal variation in leaf water potential and chlorophyll fluorescence. Temporal variation in leaf water potential and chlorophyll fluorescence was found useful for differentiating between groups of sandy soil species that are responsive or unresponsive to water availability. However, chlorophyll fluorescence appeared to be a more sensitive descriptor of their seasonal and short-term responses.

  12. Behavior of Sethoxydim Alone or in Combination with Turnip Oils on Chlorophyll Fluorescence Parameter

    Directory of Open Access Journals (Sweden)

    Hossein HAMMAMI

    2014-03-01

    Full Text Available Sethoxydim is an acetyl-coenzyme A carboxylase (ACCase inhibitor that changed the shape of the chlorophyll fluorescence curve (kautsky curve in wild oat (Avena ludoviciana Durieu. in greenhouse experiment. This experiment was conducted as completely randomized factorial design with three replications at the College of Agriculture, Ferdowsi University of Mashhad, Iran, during 2012. Results of this study revealed that sethoxydim only and plus emulsifiable turnip oil changed the shape of the chlorophyll fluorescence curve (kautsky curve 7 days after spraying. Sethoxydim plus emulsifiable turnip oil changed the shape of the kautsky curve more than for sethoxydim only. We found that in our study the fv/fm (maximum quantum efficiency was closely linked to the fresh and dry weight dose-response. Sethoxydim plus emulsifiable turnip oil proved more rapidly effect on fv/fm in comparison with sethoxydim only. The fresh and dry weight dose-response relationship with fv/fm showed a similar behavior. This study revealed a good relation between fresh and dry weight according with values of 28 DAS and fv/fm 7 DAS. In general, the findings of this study revealed that Fv/Fm is a good parameter for evaluating effect of sethoxydim little time after spraying. Also, this research showed that 4 folds more time for classical screening methods comparing to chlorophyll fluorescence method. Thereupon, classical screening methods may be replaced by chlorophyll fluorescence method in future.

  13. Interregional difference in spring neap variations in stratification and chlorophyll fluorescence during summer in a tidal sea (Yatsushiro Sea, Japan)

    Science.gov (United States)

    Aoki, Kazuhiro; Onitsuka, Goh; Shimizu, Manabu; Matsuo, Hitoshi; Kitadai, Yuuki; Ochiai, Hironori; Yamamoto, Takeshi; Furukawa, Shinpei

    2016-10-01

    Spring neap variations in stratification and chlorophyll fluorescence were studied during the summers of 2011-2014 in a tidal sea (Yatsushiro Sea, Japan) using monitoring data and hydrodynamic models. Vertical profiles of salinity, temperature and chlorophyll fluorescence were collected nearly weekly from nine stations in this sea during the same period. Composite analysis using vertical profiles of density clearly indicated enhancement of the stratification during the neap tide and a vertically mixed water column during the spring tide in the tidal area. Interregional differences were revealed in the variation of chlorophyll fluorescence with the spring neap tidal cycle. More notable increases in chlorophyll fluorescence were observed during the neap tide in the tidal area around the narrow strait than in the inner area. Temporal stratification led to an increase in the chlorophyll fluorescence in the tidal strait during the neap tide.

  14. Metal-enhanced fluorescence of chlorophylls in light-harvesting complexes coupled to silver nanowires.

    Science.gov (United States)

    Kowalska, Dorota; Krajnik, Bartosz; Olejnik, Maria; Twardowska, Magdalena; Czechowski, Nikodem; Hofmann, Eckhard; Mackowski, Sebastian

    2013-01-01

    We investigate metal-enhanced fluorescence of peridinin-chlorophyll protein coupled to silver nanowires using optical microscopy combined with spectrally and time-resolved fluorescence techniques. In particular we study two different sample geometries: first, in which the light-harvesting complexes are deposited onto silver nanowires, and second, where solution of both nanostructures are mixed prior deposition on a substrate. The results indicate that for the peridinin-chlorophyll complexes placed in the vicinity of the silver nanowires we observe higher intensities of fluorescence emission as compared to the reference sample, where no nanowires are present. Enhancement factors estimated for the sample where the light-harvesting complexes are mixed together with the silver nanowires prior deposition on a substrate are generally larger in comparison to the other geometry of a hybrid nanostructure. While fluorescence spectra are identical both in terms of overall shape and maximum wavelength for peridinin-chlorophyll-protein complexes both isolated and coupled to metallic nanostructures, we conclude that interaction with plasmon excitations in the latter remains neutral to the functionality of the biological system. Fluorescence transients measured for the PCP complexes coupled to the silver nanowires indicate shortening of the fluorescence lifetime pointing towards modifications of radiative rate due to plasmonic interactions. Our results can be applied for developing ways to plasmonically control the light-harvesting capability of photosynthetic complexes.

  15. Effects of Chlorophyll Availability on Fluorescence Components of Photosystems in the ORF469-Deletion Mutant of Cyanobacterium

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    PCR-amplified ORF469 fragment from Synechocystis sp.PCC 6803 was cloned into pUC118 and a construct was made in which part of ORF469 was deleted and replaced by erythromycin resistance cassette.Transformation of wild type strain of Synechocystis sp.PCC 6803 with this construct yielded a mutant in which ORF469 was deleted.In the resulting mutant, the light-independent pathway of chlorophyll biosynthesis was inactivated and availability of chlorophyll was fully dependent on light.When propagated the mutant in dark, the chlorophyll was non-detectable and protochlorophyllide with 645 nm fluorescence emission peak was accumulated.Meanwhile, the fluorescence emission peaks (excited at 435 nm) of thylakoids at 685 nm, 695 nm and 725 nm, which represented relative chlorophyll-binding proteins, disappeared.Upon return of dark-grown ORF469 mutant to the light, greening occurred and chlorophyll was synthesized to assembly fluorescence emission components in photosystems.Newly synthesized chlorophyll combined the fluorescence component of 685 nm at first, then 725 nm and 695 nm at last, which indicates a pecking order for biogenesis of chlorophyll-binding proteins when availability of chlorophyll is limited.The mutant lacking ORF469 in Synechocystis sp.PCC 6803 was suggested as an excellent cyanobacterial system for studies on the interactions between chlorophyll and chlorophyll-binding proteins in photosystems.

  16. Effects of lanthanum nitrate on growth and chlorophyll fluorescence characteristics of Alternanthera philoxeroides under perchlorate stress

    Institute of Scientific and Technical Information of China (English)

    谢寅峰; 蔡贤雷; 刘伟龙; 陶功胜; 陈倩; 张强

    2013-01-01

    To investigate the effects of exogenous lanthanum (La) on Alternanthera philoxeroides (Mart.) Griseb under perchlorate stress, changes in the growth and physiological parameters were investigated in solution culture experiments under controlled condi-tions. Different concentrations of La (NO3)3 were used in our study. It was shown that 0.1 and 0.5 mg/L La3+alleviated the inhibition effect of perchlorate on A. philoxeroides, including relative growth yield, dry weight of different organs, leaf area and root activity. And La3+prevented decline in the relative chlorophyll content and chlorophyll fluorescence parameters including Fv/Fm, Fv'/Fm',ΦPSI and ETR induced by perchlorate stress. Moreover, 0.5 mg/L La3+showed an optimal mitigative effect, while excess La3+(5.0 mg/L) led to synergistic effect on stress. Correlation analysis revealed a significant positive relationship between growth indexes and the chlorophyll fluorescence parameters, root activity and relative chlorophyll content (p<0.05). The results suggested that appropriate concentration of La3+could effectively alleviate growth inhibition and injury of A. philoxeroides caused by perchlorate stress, and the mitigative effect of La3+might be achieved by improving root activity, maintaining chlorophyll content and promoting photochemical efficiency of photosystem II of A. philoxeroides under perchlorate stress.

  17. [Monitoring of the Moskva River Water Using Microbiological Parameters and Chlorophyll a Fluorescence].

    Science.gov (United States)

    Mosharova, I V; Il'inskii, V V; Matorin, D N; Mosharov, S A; Akulova, A Yu; Protopopov, F F

    2015-01-01

    The results of investigations of three Moskva River sites with different degree of pollution using a complex of microbiological characteristics and the parameters of chlorophyll a fluorescence are presented. We determined that the bacterioplankton seasonal dynamics at less polluted waters (Tushino and Vorobyovy Gory) were similar and differed significantly from one in more polluted waters (Dzerzhinskii). The number of bacteria with active electron transport chain, as well as their share in the bacterioplankton structure, was higher in the water of Dzerzhinskii (average annual values of 0.23 x 10(6) cells/mL and 14%), that in the less polluted water of Tushino and Vorobyovy Gory (0.14 x 10(6) cells/mL; 6% and 0.15 x 10(6) cells/mL; 7%, respectively). From April to October, the content of chlorophyll a and its photosynthetic activity were the highest in Tushino. In Dzerzhinskii, during spring the increase in photosynthetic activity commenced earlier and was more intensive that the increase in chlorophyll a content, i.e., the increase in phytoplankton biomass was temporarily suppressed. We suggest association of this phenomenon with suppression of organic matter synthesis by phytoplankton due to the high water pollution in Dzerzhinskii. The second autumn peak of chlorophyll a content, that was typical of clear water and was observed in Tushino, did not occur in Dzerzhinskii. We recommend combined application of these microbiological parameters and characteristics of chlorophyll a fluorescence for a monitoring.

  18. In Vivo Single-Cell Fluorescence and Size Scaling of Phytoplankton Chlorophyll Content.

    Science.gov (United States)

    Álvarez, Eva; Nogueira, Enrique; López-Urrutia, Ángel

    2017-04-01

    In unicellular phytoplankton, the size scaling exponent of chlorophyll content per cell decreases with increasing light limitation. Empirical studies have explored this allometry by combining data from several species, using average values of pigment content and cell size for each species. The resulting allometry thus includes phylogenetic and size scaling effects. The possibility of measuring single-cell fluorescence with imaging-in-flow cytometry devices allows the study of the size scaling of chlorophyll content at both the inter- and intraspecific levels. In this work, the changing allometry of chlorophyll content was estimated for the first time for single phytoplankton populations by using data from a series of incubations with monocultures exposed to different light levels. Interspecifically, our experiments confirm previous modeling and experimental results of increasing size scaling exponents with increasing irradiance. A similar pattern was observed intraspecifically but with a larger variability in size scaling exponents. Our results show that size-based processes and geometrical approaches explain variations in chlorophyll content. We also show that the single-cell fluorescence measurements provided by imaging-in-flow devices can be applied to field samples to understand the changes in the size dependence of chlorophyll content in response to environmental variables affecting primary production.IMPORTANCE The chlorophyll concentrations in phytoplankton register physiological adjustments in cellular pigmentation arising mainly from changes in light conditions. The extent of these adjustments is constrained by the size of the phytoplankton cells, even within single populations. Hence, variations in community chlorophyll derived from photoacclimation are also dependent on the phytoplankton size distribution.

  19. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence.

    Science.gov (United States)

    Kumar, K Suresh; Dahms, Hans-Uwe; Lee, Jae-Seong; Kim, Hyung Chul; Lee, Won Chan; Shin, Kyung-Hoon

    2014-06-01

    Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides).

  20. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.

    Science.gov (United States)

    Murchie, E H; Lawson, T

    2013-10-01

    Chlorophyll fluorescence is a non-invasive measurement of photosystem II (PSII) activity and is a commonly used technique in plant physiology. The sensitivity of PSII activity to abiotic and biotic factors has made this a key technique not only for understanding the photosynthetic mechanisms but also as a broader indicator of how plants respond to environmental change. This, along with low cost and ease of collecting data, has resulted in the appearance of a large array of instrument types for measurement and calculated parameters which can be bewildering for the new user. Moreover, its accessibility can lead to misuse and misinterpretation when the underlying photosynthetic processes are not fully appreciated. This review is timely because it sits at a point of renewed interest in chlorophyll fluorescence where fast measurements of photosynthetic performance are now required for crop improvement purposes. Here we help the researcher make choices in terms of protocols using the equipment and expertise available, especially for field measurements. We start with a basic overview of the principles of fluorescence analysis and provide advice on best practice for taking pulse amplitude-modulated measurements. We also discuss a number of emerging techniques for contemporary crop and ecology research, where we see continual development and application of analytical techniques to meet the new challenges that have arisen in recent years. We end the review by briefly discussing the emerging area of monitoring fluorescence, chlorophyll fluorescence imaging, field phenotyping, and remote sensing of crops for yield and biomass enhancement.

  1. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    Directory of Open Access Journals (Sweden)

    H. Lavigne

    2012-06-01

    Full Text Available Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represent the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers have operated routinely on oceanographic cruises since the 1970s. Nevertheless, fluorescence is only a proxy of the total chlorophyll a concentration and a data calibration is required. Calibration issues are, however, sources of uncertainty, and they have prevented a systematic and wide range exploitation of the fluorescence data set. In particular, very few attempts to standardize the fluorescence databases have been made. Consequently, merged estimations with other data sources (e.g. satellite are lacking.

    We propose a merging method to fill this gap. It consists firstly in adjusting the fluorescence profile to impose a zero chlorophyll a concentration at depth. Secondly, each point of the fluorescence profile is then multiplied by a correction coefficient, which forces the chlorophyll a integrated content measured on the fluorescence profile to be consistent with the concomitant ocean colour observation. The method is close to the approach proposed by Boss et al. (2008 to correct fluorescence data of a profiling float, although important differences do exist. To develop and test our approach, in situ data from three open ocean stations (BATS, HOT and DYFAMED were used. Comparison of the so-called "satellite-corrected" fluorescence profiles with concomitant bottle-derived estimations of chlorophyll a concentration was performed to evaluate the final error (estimated at 31%. Comparison with the Boss et al. (2008 method, using a subset of the DYFAMED data set, demonstrated that the methods have similar

  2. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    Directory of Open Access Journals (Sweden)

    H. Lavigne

    2011-12-01

    Full Text Available Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represents the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers operate routinely on oceanographic cruise since the seventies. Nevertheless, fluorescence is only a proxy of the Total Chlorophyll-a concentration and a data calibration is required. Calibration issues are, however, source of uncertainty and they have prevented a systematic and wide range exploitation of the fluorescence data set. In particular, very few attempts to standardize the fluorescence data bases exist. Consequently, merged estimations with other data sources (i.e. satellite are lacking.

    We propose a merging method to fill this gap. It consists firstly, in adjusting the fluorescence profile to impose a zero Chlorophyll-a concentration at depth. Secondly, each point of the fluorescence profile is then multiplied by a correction coefficient which forces the Chlorophyll-a integrated content measured on the fluorescence profile to be consistent with the concomitant ocean color observation. The method is close to the approach proposed by Boss et al. (2008 to calibrate fluorescence data of a profiling float, although important differences do exist. To develop and test our approach, in situ data from three open ocean stations (BATS, HOT and DYFAMED were used. Comparison of the so-called "satellite-corrected" fluorescence profiles with concomitant bottle derived estimations of Chlorophyll-a concentration was performed to evaluate the final error, which resulted to be of about 31 %. Comparison with the Boss et al. (2008 method, carried out on a subset of the DYFAMED data set simulating a profiling float

  3. Spectral reflectance, chlorophyll fluorescence and virological investigations of tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV)

    Science.gov (United States)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Application of multispectral remote sensing techniques to plant condition monitoring has been adopted for various purposes. Remote sensing is a reliable tool for detecting signs of vege-tation stress and diseases. Spectral reflectance and chlorophyll fluorescence are functions of tissue optical properties and biological status of the plants, and illumination conditions. The mean reflectance spectrum depends on the relative composition of all the pigments in the leaf including chlorophylls, carotenoids etc. Chlorophyll fluorescence results from the primary re-actions of photosynthesis and during the last decade it finds widening application as a means for revelation of stress and diseases. The changes in chlorophyll function take place before the alteration in chlorophyll content to occur so that changes in the fluorescence signal arise before any visible signs are apparent. The aim of our investigations was to study the development and spreading out of a viral infection on the leaves of two cultivars tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV). We applied two remote sensing tech-niques (spectral reflectance and chlorophyll fluorescence measurements) for evaluation of the changes in the optical properties of the plants in accordance to their physiological status. The serological analyses via the Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) were made with appropriate kits (Leowe, Germany) for quantitative assessment of the concentration of viruses in the plants. The tobacco plants were grown in green house under controlled conditions. The first cultivar Nevrocop 1146 is known as resistive to the TMV, i.e. it shows hypersensitive response. The second cultivar named Krumovgrad is normally sen-sitive to the TMV. At growth stage 4-6 expanded leaf, up to one leaf from 20 plants for each cultivar were inoculated with TMV. The leaves opposite to the infected ones formed the group of control (untreated) leaves. The

  4. Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices

    Directory of Open Access Journals (Sweden)

    Kang Yu

    2013-12-01

    Full Text Available Leaf diseases, such as powdery mildew and leaf rust, frequently infect barley plants and severely affect the economic value of malting barley. Early detection of barley diseases would facilitate the timely application of fungicides. In a field experiment, we investigated the performance of fluorescence and reflectance indices on (1 detecting barley disease risks when no fungicide is applied and (2 estimating leaf chlorophyll concentration (LCC. Leaf fluorescence and canopy reflectance were weekly measured by a portable fluorescence sensor and spectroradiometer, respectively. Results showed that vegetation indices recorded at canopy level performed well for the early detection of slightly-diseased plants. The combined reflectance index, MCARI/TCARI, yielded the best discrimination between healthy and diseased plants across seven barley varieties. The blue to far-red fluorescence ratio (BFRR_UV and OSAVI were the best fluorescence and reflectance indices for estimating LCC, respectively, yielding R2 of 0.72 and 0.79. Partial least squares (PLS and support vector machines (SVM regression models further improved the use of fluorescence signals for the estimation of LCC, yielding R2 of 0.81 and 0.84, respectively. Our results demonstrate that non-destructive spectral measurements are able to detect mild disease symptoms before significant losses in LCC due to diseases under natural conditions.

  5. Carotenoid-chlorophyll coupling and fluorescence quenching correlate with protein packing density in grana-thylakoids.

    Science.gov (United States)

    Holleboom, Christoph-Peter; Yoo, Sunny; Liao, Pen-Nan; Compton, Ian; Haase, Winfried; Kirchhoff, Helmut; Walla, Peter Jomo

    2013-09-26

    The regulation of light-harvesting in photosynthesis under conditions of varying solar light irradiation is essential for the survival and fitness of plants and algae. It has been proposed that rearrangements of protein distribution in the stacked grana region of thylakoid membranes connected to changes in the electronic pigment-interaction play a key role for this regulation. In particular, carotenoid-chlorophyll interactions seem to be crucial for the down-regulation of photosynthetic light-harvesting. So far, it has been difficult to determine the influence of the dense protein packing found in native photosynthetic membrane on these interactions. We investigated the changes of the electronic couplings between carotenoids and chlorophylls and the quenching in grana thylakoids of varying protein packing density by two-photon spectroscopy, conventional chlorophyll fluorometry, low-temperature fluorescence spectroscopy, and electron micrographs of freeze-fracture membranes. We observed an increasing carotenoid-chlorophyll coupling and fluorescence quenching with increasing packing density. Simultaneously, the antennas size and excitonic connectivity of Photosystem II increased with increasing quenching and carotenoid-chlorophyll coupling whereas isolated, decoupled LHCII trimers decreased. Two distinct quenching data regimes could be identified that show up at different protein packing densities. In the regime corresponding to higher protein packing densities, quenching is strongly correlated to carotenoid-chlorophyll interactions whereas in the second regime, a weak correlation is apparent with low protein packing densities. Native membranes are in the strong-coupling data regime. Consequently, PSII and LHCII in grana membranes of plants are already quenched by protein crowding. We concluded that this ensures efficient electronic connection of all pigment-protein complexes for intermolecular energy transfer to the reaction centers and allows simultaneously

  6. Photoprotective function of chloroplast avoidance movement: in vivo chlorophyll fluorescence study.

    Science.gov (United States)

    Sztatelman, Olga; Waloszek, Andrzej; Banaś, Agnieszka Katarzyna; Gabryś, Halina

    2010-06-15

    Light-induced chloroplast avoidance movement has long been considered to be a photoprotective mechanism. Here, we present an experimental model in which this function can be shown for wild type Arabidopsis thaliana. We used blue light of different fluence rates for chloroplast positioning, and strong red light inactive in chloroplast positioning as a stressing light. The performance of photosystem II was measured by means of chlorophyll fluorescence. After stressing light treatment, a smaller decrease in photosystem II quantum yield was observed for leaves with chloroplasts in profile position as compared with leaves with chloroplasts in face position. Three Arabidopsis mutants, phot2 (no avoidance response), npq1 (impaired zeaxanhtin accumulation) and stn7 (no state transition), were examined for their chloroplast positioning and chlorophyll fluorescence parameters under identical experimental conditions. The results obtained for these mutants revealed additional stressing effects of blue light as compared with red light.

  7. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission.

    Science.gov (United States)

    Mishra, Kumud Bandhu; Iannacone, Rina; Petrozza, Angelo; Mishra, Anamika; Armentano, Nadia; La Vecchia, Giovanna; Trtílek, Martin; Cellini, Francesco; Nedbal, Ladislav

    2012-01-01

    Drought stress is one of the most important factors that limit crop productivity worldwide. In order to obtain tomato plants with enhanced drought tolerance, we inserted the transcription factor gene ATHB-7 into the tomato genome. This gene was demonstrated earlier to be up-regulated during drought stress in Arabidopsis thaliana thus acting as a negative regulator of growth. We compared the performance of wild type and transgenic tomato line DTL-20, carrying ATHB-7 gene, under well-irrigated and water limited conditions. We found that transgenic plants had reduced stomatal density and stomatal pore size and exhibited an enhanced resistance to soil water deficit. We used the transgenic plants to investigate the potential of chlorophyll fluorescence to report drought tolerance in a simulated high-throughput screening procedure. Wild type and transgenic tomato plants were exposed to drought stress lasting 18 days. The stress was then terminated by rehydration after which recovery was studied for another 2 days. Plant growth, leaf water potential, and chlorophyll fluorescence were measured during the entire experimental period. We found that water potential in wild type and drought tolerant transgenic plants diverged around day 11 of induced drought stress. The chlorophyll fluorescence parameters: the non-photochemical quenching, effective quantum efficiency of PSII, and the maximum quantum yield of PSII photochemistry yielded a good contrast between wild type and transgenic plants from day 7, day 12, and day 14 of induced stress, respectively. We propose that chlorophyll fluorescence emission reports well on the level of water stress and, thus, can be used to identify elevated drought tolerance in high-throughput screens for selection of resistant genotypes.

  8. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading

    Directory of Open Access Journals (Sweden)

    M. A. García-Sánchez

    2016-07-01

    Full Text Available Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most

  9. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence

    Science.gov (United States)

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-01

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6 d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.

  10. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence.

    Science.gov (United States)

    Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel

    2017-01-01

    The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.

  11. Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter Fo.

    Science.gov (United States)

    Chen, Hui; Zhou, Wei; Chen, Weixian; Xie, Wei; Jiang, Liping; Liang, Qinlang; Huang, Mingjun; Wu, Zongwen; Wang, Qiang

    2017-04-01

    Primary productivity in water environment relies on the photosynthetic production of microalgae. Chlorophyll fluorescence is widely used to detect the growth status and photosynthetic efficiency of microalgae. In this study, a method was established to determine the Chl a content, cell density of microalgae, and water primary productivity by measuring chlorophyll fluorescence parameter Fo. A significant linear relationship between chlorophyll fluorescence parameter Fo and Chl a content of microalgae, as well as between Fo and cell density, was observed under pure-culture conditions. Furthermore, water samples collected from natural aquaculture ponds were used to validate the correlation between Fo and water primary productivity, which is closely related to Chl a content in water. Thus, for a given pure culture of microalgae or phytoplankton (mainly microalgae) in aquaculture ponds or other natural ponds for which the relationship between the Fo value and Chl a content or cell density could be established, Chl a content or cell density could be determined by measuring the Fo value, thereby making it possible to calculate the water primary productivity. It is believed that this method can provide a convenient way of efficiently estimating the primary productivity in natural aquaculture ponds and bringing economic value in limnetic ecology assessment, as well as in algal bloom monitoring.

  12. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    Science.gov (United States)

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  13. Effect of changes in chlorophyll concentration on photosynthetic properties I. Fluorescence and absorption of greening bean leaves

    NARCIS (Netherlands)

    Goedheer, J.C.

    1961-01-01

    In order to obtain new information about the way of functioning of chlorophyll in vivo a study was made of optical properties and photosynthesis under condition of a low chlorophyll content in the leave. It was found that the fluorescence yeild of greening bean leaves decreased from a value approxim

  14. Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants.

    Science.gov (United States)

    Iriel, Analia; Dundas, Gavin; Fernández Cirelli, Alicia; Lagorio, Maria G

    2015-01-01

    Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400 nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media.

  15. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    Science.gov (United States)

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009.

  16. Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Pen-Nan; Bode, Stefan [Technische Universitaet Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig (Germany); Wilk, Laura [Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main (Germany); Hafi, Nour [Technische Universitaet Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig (Germany); Walla, Peter J., E-mail: pwalla@gwdg.de [Technische Universitaet Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig (Germany); Max Planck Institute for Biophysical Chemistry, Department of Spectroscopy and Photochemical Kinetics, Am Fassberg 11, 37077 Goettingen (Germany)

    2010-07-19

    The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid-chlorophyll interactions, {phi}{sub Coupling}{sup Car S{sub 1}-Chl}, as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between {phi}{sub Coupling}{sup Car S{sub 1}-Chl} and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II . In order to elucidate which carotenoid-chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.

  17. Development of the spectrometric imaging apparatus of laser induced fluorescence from plants and estimation of chlorophyll contents of rice leaves; Laser reiki keiko sokutei sochi no kaihatsu to inehanai no chlorophyll ganryo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, K.; Shoji, K.; Hanyu, H.

    1999-05-01

    Photosynthetic activity of plants is an important factor to assess the micrometeorological effect of plant canopy or to estimate the influence of circumstances such as water stress. Light illumination induces fluorescence from a leaf or suspension of chloroplasts. The red chlorophyll fluorescence had been used to determine the process of the electron transportation in photosynthetic reaction. The fluorescence source other than chlorophyll is not announced sufficiently, but is supposed to be useful to determine the contents of the substance corresponding to physiological response of plants. We developed a fluorescence imaging apparatus to observe spectrum and distribution of laser induced fluorescence from a leaf. Pulsed UV-laser (Nd:YAG) induced blue-green fluorescence and red chlorophyll fluorescence from a green leaf. The pulse modulated measuring light and CCD with image-intensifier (ICCD) enable to detect the fluorescence from plants under illumination. The laser induced fluorescence (LIF) spectra were investigated to estimate the chlorophyll contents in leaves of rice. During the greening course of dark grown etiolated rice leaves, chlorophyll contents were determined using the extraction of leaves and steady state LIF spectra were measured. As a result, the ratio of fluorescent intensity between blue-green and red peaks (F460/F740 and F510/F740) decreased in proportion to alteration of chlorophyll contents respectively. These fluorescence intensity ratios perform more precise estimation of higher chlorophyll contents of leaves than reported red chlorophyll fluorescence intensity ratio (F690/E740). (author)

  18. High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora)

    DEFF Research Database (Denmark)

    Wakjera, Eshetu Janka; Körner, Oliver; Rosenqvist, Eva

    2013-01-01

    (PSII) and stomatal conductance (gs). A combination of chlorophyll a fluorescence, gas exchange measurements and infrared thermography was applied using Chrysanthemum (Dendranthema grandiflora Tzvelev) cultivar ‘Coral Charm’ as a model species. Increasing temperature had a highly significant effect...

  19. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging

    DEFF Research Database (Denmark)

    Trampe, Erik Christian Løvbjerg; Kolbowski, J.; Schreiber, U.

    2011-01-01

    We present a new system for microscopic multicolour variable chlorophyll fluorescence imaging of aquatic phototrophs. The system is compact and portable and enables microscopic imaging of photosynthetic performance of individual cells and chloroplasts using different combinations of blue, green, ...

  20. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Junsheng Wang

    2013-11-01

    Full Text Available Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis.

  1. The Use of Chlorophyll Fluorescence Lifetime to Assess Phytoplankton Physiology within a River-Dominated Environment

    Science.gov (United States)

    Hall, Callie M.; Miller, Richard L.; Redalje, Donald G.; Fernandez, Salvador M.

    2002-01-01

    Chlorophyll a fluorescence lifetime was measured for phytoplankton populations inhabiting the three physical zones surrounding the Mississippi River's terminus in the Gulf of Mexico. Observations of river discharge volume, nitrate + nitrite, silicate, phosphate, PAR (Photosynthetically Active Radiation) diffuse attenuation within the water column, salinity, temperature, SPM, and chl a concentration were used to characterize the distribution of chl fluorescence lifetime within a given region within restricted periods of time. 33 stations extending from the Mississippi River plume to the shelf break of the Louisiana coast were surveyed for analysis of chlorophyll fluorescence lifetime during two cruises conducted March 31 - April 6, 2000, and October 24 - November 1, 2000. At each station, two to three depths were chosen for fluorescence lifetime measurement to represent the vertical characteristics of the water column. Where possible, samples were taken from just below the surface and from just above and below the pycnocline. All samples collected were within the 1% light level of the water column (the euphotic zone). Upon collection, samples were transferred to amber Nalgene bottles and left in the dark for at least 15 minutes to reduce the effects of non-photochemical quenching and to insure that photosynthetic reaction centers were open. Before measurements within the phase fluorometer were begun, the instrument was allowed to warm up for no less than one hour.

  2. A Graphical User Interface for Parameterizing Biochemical Models of Photosynthesis and Chlorophyll Fluorescence

    Science.gov (United States)

    Kornfeld, A.; Van der Tol, C.; Berry, J. A.

    2015-12-01

    Recent advances in optical remote sensing of photosynthesis offer great promise for estimating gross primary productivity (GPP) at leaf, canopy and even global scale. These methods -including solar-induced chlorophyll fluorescence (SIF) emission, fluorescence spectra, and hyperspectral features such as the red edge and the photochemical reflectance index (PRI) - can be used to greatly enhance the predictive power of global circulation models (GCMs) by providing better constraints on GPP. The way to use measured optical data to parameterize existing models such as SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) is not trivial, however. We have therefore extended a biochemical model to include fluorescence and other parameters in a coupled treatment. To help parameterize the model, we then use nonlinear curve-fitting routines to determine the parameter set that enables model results to best fit leaf-level gas exchange and optical data measurements. To make the tool more accessible to all practitioners, we have further designed a graphical user interface (GUI) based front-end to allow researchers to analyze data with a minimum of effort while, at the same time, allowing them to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. Here we discuss the tool and its effectiveness, using recently-gathered leaf-level data.

  3. Use of O-J-I-P Chlorophyll Fluorescence Transients to Probe Multiple Effects of UV-C Radiation on the Photosynthetic Apparatus of Euglena

    Directory of Open Access Journals (Sweden)

    Chalinda Koshitha Beneragama

    2014-12-01

    Full Text Available Although the kinetic chlorophyll fluorescence signals are rich in information, most of the chlorophyll fluorescence related studies deal only with the quantum yield of primary photochemistry (Fv/Fm. JIP-test based OJIP fluorescence transient analysis is relatively a new technique to investigate the environmental stress responses of photosynthetic organisms. In the present study, the deleterious effects of ultraviolet (UV radiation on the photosynthetic machinery were probed by the JIP-test in Euglena, one of the most potent organisms for the future space stations. The cells were exposed to a series of UV-C doses and immediately after exposure, survival percentage was determined with Neutral Red staining, and the chlorophyll fluorescence was measured using AquaPen AP-C 100 fluorometer. Resultant OJIP transients were analyzed according to JIP-test, and several functional and structural parameters were derived to explain the PSII behavior. Results indicated that the UV-C induced inhibition of electron transport is severely affected due to higher sensitivity of dark reactions after QA -, represented as ψo, the electron transfer probability, than of the light dependent reactions, represented as φPo, the trapping probability. The performance index (PIABS of PSII, which is a combination of the indices of three independent parameters, decreased markedly in exponential manner in response to UVC. Results illustrate the advantage of using a number of fluorescent parameters over the use of one parameter, often the Fv/Fm.

  4. Chlorophyll Fluorescence Is a Better Proxy for Sunlit Leaf Than Total Canopy Photosynthesis

    Science.gov (United States)

    Chen, J. M.; Wang, Z.; Zhang, F.; Mo, G.

    2015-12-01

    Chlorophyll fluorescence (CF) results from non-photochemical quenching during plant photosynthesis under excessive radiation. We explore the relationship between gross primary productivity (GPP) and CF using a process ecosystem model, which separates a vegetation canopy into sunlit and shaded leaf groups and simulates the total canopy GPP as the sum of sunlit and shaded leaf GPP. Using GOME-2 and GOSAT data acquired in 2010 over the global land surface, we found that measured CF signals gridded in 1 degree resolution are well correlated with simulated total GPP and its sunlit and shaded components, but the correlation coefficients (R) are largest for the sunlit GPP and smallest for shaded GPP. The seasonal R2 values vary from 0.57 to 0.74, 0.58 to 0.71, and 0.48 to 0.56 for sunlit, total and shaded GPP, respectively. The significance levels for these correlations are all greater than pCASA model results, respectively. These values are similar or larger than those for sunlit GPP simulated in our study, but are considerably larger than those for total GPP in our study because the correlation for total GPP is contaminated by the inclusion of shaded GPP. All these three models use canopy total light use efficiency without considering the differences between sunlit and shaded leaves, and therefore they mostly capture spatio-temporal variations in sunlit GPP. We therefore argue that solar-induced CF measured from vegetation is a better proxy of sunlit GPP than the total GPP, and the use of CF data for assessing the terrestrial carbon cycle can be improved when sunlit and shaded GPP are modelled separately.

  5. Remote Sensing of chlorophyll fluorescence and the impact of clouds on the retrival

    Science.gov (United States)

    Köhler, Philipp; Guanter, Luis; Frankenberg, Christian

    2013-04-01

    Remote sensing of sun-induced chlorophyll fluorescence (SIF) is a new, alternative option to gain information about terrestrial photosynthesis and CO2 assimilation on a global scale. The SIF is an electromagnetic signal emitted in the aprox. 650-800 nm spectral window by the photosynthesis apparatus, and can therefore be considered as a direct indicator of plant biochemical processes. The general approach to measure SIF from space is the evaluation of the in-filling of solar Fraunhofer lines or atmospheric absorption bands by SIF. To distinguish the SIF signal from the total incoming radiance at the sensor, which is about 100 times more intense, is a challenge and high resolution measurements are required. The high spectral resolution (approx. 0.02 nm) of the Fourier Transform Spectrometer (FTS) on-board the Greenhouse Gases Observing Satellite (GOSAT) enables such a measurement of SIF by means of the evaluation of the in-filling of solar Fraunhofer lines by SIF. The narrow wavelength band from 755 to 759 nm and around 770 nm can be used for this purpose because they are free from atmospheric absorption features, the solar radiation shows several Fraunhofer lines and the SIF values in this region are relatively high. A new SIF retrieval approach (GARLiC, for GOSAT Retrieval of cholorphyll fluorescence) will be presented in this contribution. This method is intended to simplify some of the assumptions of existing retrieval approaches without a loss in accuracy. The comparison of the GARLiC fluorescence retrievals with two state-of-the-art SIR retrieval methods such as those by Frankenberg et al. (2011) and Guanter et al. (2012) from GOSAT data shows corresponding and feasible results. In addition to the basics of SIF remote sensing, this contribution will assess the effect of clouds in the retrieval. To do this, the SIF retrieval has been coupled to a cloud optical thickness (COT) retrieval algorithm adapted to GOSAT-FTS O2A-band measurements, so that SIF and COT

  6. [Effects of acid rain stress on Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth].

    Science.gov (United States)

    Yin, Xiu-Min; Yu, Shu-Quan; Jiang, Hong; Liu, Mei-Hu

    2010-06-01

    A pot experiment was conducted to study the Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth in different seasons under simulated acid rain stress (heavy, pH = 2. 5; moderate, pH = 4.0; and control, pH = 5.6). In the same treatments, the leaf relative chlorophyll content (SPAD), maximum PS II photochemical efficiency (F(v)/F(m)), actual PSII photochemical quantum yield (phi(PS II)), plant height, and stem diameter in different seasons were all in the order of October > July > April > January. In the same seasons, all the parameters were in the order of heavy acid rain > moderate acid rain > control. The interactions between different acid rain stress and seasons showed significant effects on the SPAD, F(v)/F(m), plant height, and stem diameter, but lesser effects on phi(PS II), qp and qN.

  7. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].

    Science.gov (United States)

    Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan

    2009-09-01

    Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.

  8. Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves.

    Science.gov (United States)

    Dobránszki, Judit; Mendler-Drienyovszki, Nóra

    2014-10-15

    Cytokinins (CKs) are one of the main regulators of in vitro growth and development and might affect the developmental state and function of the photosynthetic apparatus of in vitro shoots. Effects of different cytokinin regimes including different types of aromatic cytokinins, such as benzyl-adenine, benzyl-adenine riboside and 3-hydroxy-benzyladenine alone or in combination were studied on the capacity of the photosynthetic apparatus and the pigment content of in vitro apple leaves after 3 weeks of culture. We found that the type of cytokinins affected both chlorophyll a and b contents and its ratio. Chlorophyll content of in vitro apple leaves was the highest when benzyl-adenine was applied as a single source of cytokinin in the medium (1846-2176 μg/1g fresh weight (FW) of the leaf). Increasing the concentration of benzyl-adenine riboside significantly decreased the chlorophyll content of the leaves (from 1923 to 1183 μg/1g FW). The highest chl a/chl b ratio was detected after application of meta-topolin (TOP) at concentrations of 2.0 and 6.0 μM (2.706 and 2.804). Chlorophyll fluorescence was measured both in dark-adapted (Fv/Fm test) and in light-adapted leaf samples (Yield test; Y(II)). The maximum quantum yield and efficiency of leaves depended on the cytokinin source of the medium varied between 0.683 and 0.861 (Fv/Fm) indicating a well-developed and functional photosynthetic apparatus. Our results indicate that the type and concentration of aromatic cytokinins applied in the medium affect the chlorophyll content of the leaves in in vitro apple shoots. Performance of the photosynthetic apparatus measured by chlorophyll fluorescence in the leaves was also modified by the cytokinin supply. This is the first ever study on the relationship between the cytokinin supply and the functionability of photosystem II in plant tissue culture and our findings might help to increase plantlet survival after transfer to ex vitro conditions.

  9. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies.

    Science.gov (United States)

    Zhou, Xijia; Liu, Zhigang; Xu, Shan; Zhang, Weiwei; Wu, Jun

    2016-05-27

    Detecting sun-induced chlorophyll fluorescence (SIF) offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O₂-A and O₂-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR) can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD), Three FLD (3FLD) and the spectral fitting method (SFM), and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O₂-A and O₂-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1) the daily variation trend of SIF value of sweet potato leaves is

  10. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies

    Directory of Open Access Journals (Sweden)

    Xijia Zhou

    2016-05-01

    Full Text Available Detecting sun-induced chlorophyll fluorescence (SIF offers a new approach for remote sensing photosynthesis. However, to analyse the response characteristics of SIF under different stress states, a long-term time-series comparative observation of vegetation under different stress states must be carried out at the canopy scale, such that the similarities and differences in SIF change law can be summarized under different time scales. A continuous comparative observation system for vegetation canopy SIF is designed in this study. The system, which is based on a high-resolution spectrometer and an optical multiplexer, can achieve comparative observation of multiple targets. To simultaneously measure the commonly used vegetation index and SIF in the O2-A and O2-B atmospheric absorption bands, the following parameters are used: a spectral range of 475.9 to 862.2 nm, a spectral resolution of approximately 0.9 nm, a spectral sampling interval of approximately 0.4 nm, and the signal-to-noise ratio (SNR can be as high as 1000:1. To obtain data for both the upward radiance of the vegetation canopy and downward irradiance data with a high SNR in relatively short time intervals, the single-step integration time optimization algorithm is proposed. To optimize the extraction accuracy of SIF, the FluorMOD model is used to simulate sets of data according to the spectral resolution, spectral sampling interval and SNR of the spectrometer in this continuous observation system. These data sets are used to determine the best parameters of Fraunhofer Line Depth (FLD, Three FLD (3FLD and the spectral fitting method (SFM, and 3FLD and SFM are confirmed to be suitable for extracting SIF from the spectral measurements. This system has been used to observe the SIF values in O2-A and O2-B absorption bands and some commonly used vegetation index from sweet potato and bare land, the result of which shows: (1 the daily variation trend of SIF value of sweet potato leaves is

  11. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments

    Institute of Scientific and Technical Information of China (English)

    Domagojimi; Hrvoje Lepedu; Vlatka Jurkovi; Jasenka Antunovi; Vera Cesar

    2014-01-01

    Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environ-ments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test param-eters were analyzed in the intermated B73 ? Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyl fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthe-sis under different field scenarios.

  12. Fluorescence imaging and chlorophyll fluorescence to evaluate the role of EDU in UV-B protection in cucumber

    Science.gov (United States)

    Sandhu, Ravinder K.; Kim, Moon S.; Krizek, Donald T.; Middleton, Elizabeth M.

    1997-07-01

    A fluorescence imaging system and chlorophyll fluorescence emissions were used to evaluate whether EDU, N-[2-(2-oxo-1- imidazolidinyl) ethyl]-N'-phenylurea, provided protection against ultraviolet-B (UV-B) irradiation (290 - 320 nm) in cucumber (Cucumis sativus L.) leaves. Plants were grown in growth chambers illuminated for 14 h per day with 400 W high pressure sodium and metal halide lamps. Photosynthetically active radiation (PAR) for 1 hr at the beginning and end of each cycle was provided at 270 micrometers ol m-2 s-1 PAR; during the other 12 hr of the photoperiod, the plants received 840 micrometers ol m-2 s-1 PAR. Beginning on the twelfth day, the plants were exposed to UV-B radiation (0.2 & 18.0 kJ m-2d-1) for 2 days at 8 h per day centered in the photoperiod. Rapidly acquired (less than 1 s), high spatial resolution (less than 1 mm2) images were obtained for whole adaxial leaf surfaces using a fluorescence imaging system. The steady-state fluorescence images were acquired in four spectral regions: blue (F450 nm), green (F550 nm), red (F680 nm), and far-red (F740 nm). Fluorescence emission spectra for leaf pigments extracted in dimethyl sulfoxide (DMSO) were obtained by excitation at 280 and 380 nm (280EX 300 - 530 nm; 380EX 400 - 800 nm). Both UV-B and EDU induced stress responses in cucumber leaves that altered the fluorescence emissions obtained from extracts. In the fluorescence images only UV-B induced stress responses were observed but this damage was detected before it was visually apparent. There was no evidence that EDU afforded protection against UV-B irradiation. Use of fluorescence imaging may provide an early stress detection capability for helping to assess damage to the photosynthetic apparatus of plants.

  13. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    Science.gov (United States)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  14. Violet diode laser-induced chlorophyll fluorescence: a tool for assessing mosaic disease severity in cassava (Manihot esculenta Crantz) cultivars.

    Science.gov (United States)

    Anderson, Benjamin; Eghan, Moses J; Asare-Bediako, Elvis; Buah-Bassuah, Paul K

    2012-01-01

    Violet diode laser-induced chlorophyll fluorescence was used in agronomical assessment (disease severity and average yield per plant). Because cassava (Manihot esculenta Crantz) is of economic importance, improved cultivars with various levels of affinity for cassava mosaic disease were investigated. Fluorescence data correlated with cassava mosaic disease severity levels and with the average yield per plant.

  15. A Dioxobilin-Type Fluorescent Chlorophyll Catabolite as a Transient Early Intermediate of the Dioxobilin-Branch of Chlorophyll Breakdown in Arabidopsis thaliana.

    Science.gov (United States)

    Süssenbacher, Iris; Hörtensteiner, Stefan; Kräutler, Bernhard

    2015-11-09

    Chlorophyll breakdown in higher plants occurs by the so called "PaO/phyllobilin" path. It generates two major types of phyllobilins, the characteristic 1-formyl-19-oxobilins and the more recently discovered 1,19-dioxobilins. The hypothetical branching point at which the original 1-formyl-19-oxobilins are transformed into 1,19-dioxobilins is still elusive. Here, we clarify this hypothetical crucial transition on the basis of the identification of the first natural 1,19-dioxobilin-type fluorescent chlorophyll catabolite (DFCC). This transient chlorophyll breakdown intermediate was isolated from leaf extracts of Arabidopsis thaliana at an early stage of senescence. The fleetingly existent DFCC was then shown to represent the direct precursor of the major nonfluorescent 1,19-dioxobilin that accumulated in fully senescent leaves.

  16. Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators of Drought Tolerance in Barley

    Institute of Scientific and Technical Information of China (English)

    LI Rong-hua; GUO Pei-guo; Michael Baum; Stefania Grando; Salvatore Ceccarelli

    2006-01-01

    Drought is a major abiotic stress that severely affects food production worldwide. Agronomic and physiological traits associated with drought tolerance are suitable indicators for selection of drought tolerance genotypes to reduce the impact of water deficit on crop yield in breeding program. The objective of this study was to identify indicators related to drought tolerance through analysis of photosynthetic traits in barley (Hordeum vulgare L.). These traits included chlorophyll content, initial fluorescence (Fo), maximum primary yield of photochemistry of pho tosystem Ⅱ (Fv / Fo) and maximum quantum yield of photosystem Ⅱ (Fv/Fm). Four genotypes (Tadmor, Arta, Morocco9-75 and WI2291) variable in drought tolerance were used to investigate the correlation between these traits and drought tolerance. The results reflected that all of these traits were affected negatively in the four genotypes at different levels of post-anthesis drought stress, but the decrease in drought tolerant genotypes was much less than that of drought sensitive genotypes. The results further revealed that the components of the photosynthetic apparatus could be damaged significantly in drought sensitive genotypes, while drought tolerant genotypes were relatively less affected. On the other hand, the values of chlorophyll content, Fo, Fv/Fo and Fv/Fm in drought tolerance genotypes were significantly higher than those in drought sensitive genotypes under drought stress. It was concluded that chlorophyll content, Fo, Fv / Fo and Fv / Fm could be considered as reliable indicators in screening barley germplasm for drought tolerance.

  17. Effect of carbon and nitrogen assimilation on chlorophyll fluorescence emission by the cyanobacterium Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J.M.; Lara, C. (Instituto de Bioquimica Vegetal y Fotosintesis, Univ. de Sevilla y CSIC, Sevilla (ES)); Sivak, M.N. (Dept. of Biochemistry, Michigan State Univ., East Lansing (US))

    1992-01-01

    O{sub 2} evolution and chlorophyll A fluorescence emission have been monitored in intact cells of the cyanobacterium Anacystis nidulans 1402-1 to study the influence of carbon and nitrogen assimilation on the operation of the photosynthetic apparatus. The pattern of fluorescence induction in dark-adapted cyanobacterial cells was different from that of higher plants. Cyanobacteria undergo large, rapid state transitions upon illumination, which lead to marked changes in the fluorescence yield, complicating the estimation of quenching coefficients. The Kautsky effect was not evident, although it could be masked by a state II-state I transition, upon illumination with actinic light. The use of inhibitors of carbon assimilation such as D,L-glyceraldehyde or iodoacetamide allowed us to relate changes in variable fluorescence to active CO{sub 2} fixation. Ammonium, but not nitrate, induced non-photochemical fluorescence quenching, in agreement with a previous report on green algae, indicative of an ammonium-induced state i transition. (au).

  18. Evaluation of Copper Oxide Nanoparticles Toxicity Using Chlorophyll a Fluorescence Imaging in Lemna gibba

    Directory of Open Access Journals (Sweden)

    François Perreault

    2010-01-01

    Full Text Available Copper oxide nanoparticles (CuO NPs, used in antifouling paints of boats, are released in the environment and can induce toxicity to aquatic organisms. In this report, we used chlorophyll a fluorescence imaging to evaluate CuO NPs toxicity in Lemna gibba. This approach allowed to evaluate the differential effect of CuO NPs on photosynthesis of whole L. gibba plants. Exposure to 0.1 to 0.4 g/L CuO NPs during 48h induced strong inhibition of photosynthetic processes resulting in a decrease of plant growth. By using fluorescence imaging, different photosynthetic parameters were evaluated simultaneously in microplate conditions. Imaging of FO fluorescence yield showed the decrease of leaf photosynthetic active surface for whole plants exposed to CuO NPs. This method showed that CuO NPs inhibited photosystem II maximal, photosystem II operational quantum yields, and photochemical quenching of fluorescence associated with electron transport. Nonphotochemical fluorescence quenching as an indicator of energy dissipation not used in photosynthesis was shown to be increased by the effect of CuO NPs. Such approach in microplate conditions provides synchronous high repetition measurements for numerous plants. This study may give a reliable methodological approach to evaluate toxicity risk of NPs in aquatic ecosystems.

  19. Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses

    Science.gov (United States)

    Żurek, Grzegorz; Rybka, Krystyna; Pogrzeba, Marta; Krzyżak, Jacek; Prokopiuk, Kamil

    2014-01-01

    Chlorophyll a fluorescence gives information about the plant physiological status due to its coupling to the photosynthetic electron transfer chain and to the further biochemical processes. Environmental stresses, which acts synergistically, disturbs the photosynthesis. The OJIP test, elaborated by Strasser and co-workers, enables comparison of the physiological status of plants grown on polluted vs. control areas. The paper shows that the Chl a measurements are very useful tool in evaluating of heavy metal ions influence on perennial grasses, tested as potential phytoremediators. Among 5 cultivars tested, the highest concentration of Cd and Zn ions, not associated with the yield reduction, was detected in the biomass of tall fescue cv. Rahela. Chl a fluorescence interpreted as double normalized curves pointed out Rahela as the outstanding cultivar under the HM ions stress. PMID:24633293

  20. [Photosynthetic functions and chlorophyll fast fluorescence characteristics of five Pinus species].

    Science.gov (United States)

    Qiu, Nian-Wei; Zhou, Feng; Gu, Zhu-Jun; Jia, Shu-Qin; Wang, Xing-An

    2012-05-01

    A comparative study was made on the needle morphological characteristics, photosynthetic rate, and chlorophyll fast fluorescence induction curves of five representative Pinus species P. parvifiora, P. armandii, P. bungeana, P. tabuliformis, and P. densiflora. Significant differences were observed in the needle morphological characteristics among the five species. P. tabuliformis had the longest needle length and highest needle density, whereas P. bungeana had the highest chlorophyll content. P. densiflora and P. parvifiora had the maximum and minimum photosynthetic rate, respectively. There was a positive correlation between the photosynthetic rate and stomatal conductance across the five species. The differences in the chlorophyll fast fluorescence induction curves of the five species were mainly manifested in J-step and I-step. Although the five species had similar values of Fv/Fm, Fv/Fo and Tfm, P. parviflora had significantly higher values of dV/dt(o), dVG/d(o), V and Vi, but lower energy flux ratio psi(o), phiEo and phiRo, compared with the other four species. The low PSII activity and efficiency of P. parviflora might relate to its smallest Sm, Sm/Tfm and N. P. densiflora and P. parvifiora had the maximum and minimum vitality indices PI(ABS/CSo/CSm) and DF, respectively, and there existed significant positive correlations between the PI(CSo) and PI(CSm) and the net photosynthetic rate of the five species, suggesting that PI(CSo) and PI(CSm) could be used to estimate the photosynthetic activity of Pinus trees.

  1. Changes in Chlorophyll Fluorescence of Rice Mutants Induced by High Hydrostatic Pressure

    Institute of Scientific and Technical Information of China (English)

    BAI Cheng-ke; LI Gui-shuang; PENG Chang-lian; DUAN Jun

    2003-01-01

    Three mutants of rice (Oryza sativa L. ), Mutant 1, Mutant 2and Mutant 3, which were selected by high hydrostatic pressure (75 MPa), and their parent Yuexiangzhan were used to study the changes in chlorophyll fluorescence during different growth stages. In all the three mutants, the function of PSⅡ was improved, Fy/Fm ratio of mutants increased compared to their parent at tillering and heading stage, and φPS Ⅱ also improved except for Mutant 2 at heading stage. Similar to their parent, the mutants exhibited slight photoinhibition at noon and almost complete recovery to initial levels of 6:00 after 18:00 at heading stage. At milking stage, the photoinhibition in the mutants was obvious, and recovered rapidly compared to the parent. Yields of individual plant and grain/straw ratio were also higher in three mutants than the parent. Results indicated that characteristics of chlorophyll fluorescence in leaves of mutants and their photoinhibition in the field had changed. It is suggested that high hydrostatic pressure induction could be applied as a new effective approach in high-yield rice breeding in the future.

  2. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    Science.gov (United States)

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also

  3. Leaf Gas Exchange and Chlorophyll a Fluorescence Imaging of Rice Leaves Infected with Monographella albescens.

    Science.gov (United States)

    Tatagiba, Sandro Dan; DaMatta, Fábio Murilo; Rodrigues, Fabrício Ávila

    2015-02-01

    This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded. However, these changes were negligible for the photosystem II photochemical efficiency (Fv/Fm) at 24 hai, in contrast to other Chl fluorescence traits such as the photochemical quenching coefficient, yield of photochemistry, and yield for dissipation by downregulation; which, therefore, were much more sensitive than the Fv/Fm ratio in assessing the early stages of fungal infection. It was also demonstrated that M. albescens was able to impair the photosynthetic process in both symptomatic and asymptomatic leaf areas. Overall, it was proven that Chl a fluorescence imaging is an excellent tool to describe the loss of functionality of the photosynthetic apparatus occurring in rice leaves upon infection by M. albescens.

  4. Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems

    Directory of Open Access Journals (Sweden)

    Félix L Figueroa

    2013-11-01

    Full Text Available In vivo chlorophyll fluorescence associated to Photosystem II is being used to evaluate photosynthetic activity of microalgae grown in different types of photobioreactors; however, controversy on methodology is usual. Several recommendations on the use of chlorophyll fluorescence to estimate electron transport rate and productivity of microalgae grown in thin-layer cascade cultivators and methacrylate cylindrical vessels are included. Different methodologies related to the measure of photosynthetic activity in microalgae are discussed: (1 measurement of light absorption, (2 determination of electron transport rates versus irradiance and (3 use of simplified devices based on pulse amplitude modulated (PAM fluorescence as Junior PAM or Pocket PAM with optical fiber and optical head as measuring units, respectively. Data comparisons of in vivo chlorophyll fluorescence by using these devices and other PAM fluorometers as Water-PAM in the microalga Chlorella sp. (Chlorophyta are presented. Estimations of carbon production and productivity by transforming electron transport rate to gross photosynthetic rate (as oxygen evolution using reported oxygen produced per photons absorbed values and carbon photosynthetic yield based on reported oxygen/carbon ratio are also shown. The limitation of ETR as estimator of photosynthetic and biomass productivity is discussed. Low cost:quality PAMs can promote monitoring of chlorophyll fluorescence in algal biotechnology to estimate the photosynthetic activity and biomass productivity.

  5. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    Science.gov (United States)

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.

  6. Modelling satellite-level solar-induced chlorophyll fluorescence and its comparison with OCO-2 observations

    Science.gov (United States)

    Pradhan, Rohit; Gohel, Ankit

    2016-04-01

    Solar Induced chlorophyll Fluorescence (SIF) is a direct measure of photosynthesis rate as it is emitted by the photosynthetic system. This paper reports a method to model SIF over India by assimilating spatial inputs (LAI, Chlorophyll content etc.) into FluorMOD leaf and canopy model. Modelled SIF was then compared to Orbiting Carbon Observatory (OCO-2) SIF observations from September 2014 to August 2015. Modelled SIF at 757 nm averaged over the country varied between 0.18 to 0.33 W m-2 sr-1 μm-1 whereas SIF at 771 nm varied between 0.10 to 0.19 W m-2 sr-1 μm-1. OCO-2 observed SIF at 757 nm averaged over the country ranged from 0.18 to 0.42 Wm-2sr-1μm-1. Fairly good agreement (r=0.77, p<0.01 at 757nm; r=0.71, p<0.05 at 771 nm) was observed between modelled and observed SIF except for summer months of April and May. This paper presents a new approach to upscale a leaf and canopy level model to estimate SIF over entire country.

  7. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.

    Science.gov (United States)

    Dreuw, Andreas; Wormit, Michael

    2008-03-01

    Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin.

  8. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence

    Science.gov (United States)

    Luus, K. A.; Commane, R.; Parazoo, N. C.; Benmergui, J.; Euskirchen, E. S.; Frankenberg, C.; Joiner, J.; Lindaas, J.; Miller, C. E.; Oechel, W. C.; Zona, D.; Wofsy, S.; Lin, J. C.

    2017-02-01

    Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012-2014) according to temperature and shortwave radiation and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring "green-up" to occur 9 days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO2. Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.

  9. Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2

    Science.gov (United States)

    Frankenberg, Christian; Odell, Chris; Berry, Joseph; Guanter, Luis; Joiner, Joanna; Kohler, Philipp; Pollock, Randy; Taylor, Thomas E.

    2014-01-01

    The Orbiting Carbon Observatory-2 (OCO-2), scheduled to launch in July 2014, is a NASA mission designed to measure atmospheric CO2. Its main purpose is to allow inversions of net flux estimates of CO2 on regional to continental scales using the total column CO2 retrieved using high-resolution spectra in the 0.76, 1.6, and 2.0 nm ranges. Recently, it was shown that solar-induced chlorophyll fluorescence (SIF), a proxy for gross primary production (GPP, carbon uptake through photosynthesis), can be accurately retrieved from space using high spectral resolution radiances in the 750 nm range from the Japanese GOSAT and European GOME-2 instruments. Here, we use real OCO-2 thermal vacuum test data as well as a full repeat cycle (16 days) of simulated OCO-2 spectra under realistic conditions to evaluate the potential of OCO-2 for retrievals of chlorophyll fluorescence and also its dependence on clouds and aerosols. We find that the single-measurement precision is 0.3-0.5 Wm(exp -2)sr(exp -1) nm(exp -1) (15-25% of typical peak values), better than current measurements from space but still difficult to interpret on a single-sounding basis. The most significant advancement will come from smaller ground-pixel sizes and increased measurement frequency, with a 100-fold increase compared to GOSAT (and about 8 times higher than GOME-2). This will largely decrease the need for coarse spatial and temporal averaging in data analysis and pave the way to accurate local studies.We also find that the lack of full global mapping from the OCO-2 only incurs small representativeness errors on regional averages. Eventually, the combination of net ecosystem exchange (NEE) derived from CO2 source/sink inversions and SIF as proxy for GPP from the same satellite will provide a more process-based understanding of the global carbon cycle.

  10. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    Science.gov (United States)

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  11. Leaf Chlorophyll Fluorescence and Gas Exchange Response to Different Light Levels in Platycerium bifurcatum

    Directory of Open Access Journals (Sweden)

    Ruzana-Adibah M. Sanusi

    2011-01-01

    Full Text Available Problem statement: Platycerium bifurcatum (Cav. C. Chr. is epiphytes which lives in forest canopy and commonly used for its ornamental value. In these environments, they were always exposed to many types of stresses such as high light intensity. Light intensity plays an important role in affecting plants physiological performance. Therefore, the purpose of this study was to investigate physiological responses of P. bifurcatum to light stress. Approach: In this study, P. bifurcatum were grown under four different Photosynthetic Active Radiation (PAR levels which were 20 µmol m-2 s-1 (T1, 70 µmol m-2 s-1 (T2, 200 µmol m-2 s-1 (T3 and 1500 µmol m-2 s-1 (T4. Leaf gas exchange and chlorophyll fluorescence were used to evaluate the stress response of various levels of light intensity. All measurements were carried out on weekly basis for twelve weeks. Results: Results showed that Anet value of T1, T2 and T3 in the range near to the average Anet value for most epiphytes. Conversely, T4 showed lower value in Anet with 1.797 µmol CO2 m-2 s-1. Fv/Fm ratio in T3 and T4 were below 0.8 indicates that there was a sign of stress occurred in these treatments. However Anet of T3 was not affected although there have been event of photoinhibition observed in the treatment. On the contrary, T4 was fully affected by high light intensity as there was a reduction of Fv/Fm ratio and also Anet. T1 and T2 of Anet and Fv/Fm ratio values ranged of unstressed plants after subjected to light treatment. Conclusion: Measurement of leaf chlorophyll fluorescence and gas exchange are useful to detection of light stress in P. bifurcatum. Different levels of light intensity were significantly affecting physiological attributes of P. bifurcatum.

  12. Laser-induced chlorophyll fluorescence: a technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Gopal, R

    2011-03-01

    Laser-induced chlorophyll fluorescence (LICF) spectra and fluorescence induction kinetics (FIK) curves of wheat plant leaves treated with different concentrations (50, 100 and 200 ppm) of dimethoate are recorded. LICF spectra are recorded in the region of 650-780 nm using violet diode laser (405 nm) and FIK curve at 685 and 730 nm with red diode laser (635 nm) for excitation. The fluorescence intensity ratios (FIR) are determined from LICF spectra and vitality index (R(fd)) from FIK curves. These parameters along with photosynthetic pigment contents and growth parameters are used to analyze the effect of dimethoate on wheat plants. The result indicates that lower concentration of 50 ppm shows stimulatory response while higher concentrations of dimethoate are hazardous for growth, photosynthetic pigments and activity of wheat plants.

  13. [Effects of controlled-release fertilizer on chrysanthemum leaf chlorophyll fluorescence characteristics and ornamental quality].

    Science.gov (United States)

    Song, Xu-xu; Zheng, Cheng-shu; Sun, Xia; Ma, Hai-yan

    2011-07-01

    Taking cut flower chrysanthemum 'Baima' as test material, a pot experiment was conducted to study the effects of controlled-release fertilizer on the leaf chlorophyll fluorescence parameters, chlorophyll and nutrient contents, and ornamental quality of chrysanthemum. Under no fertilization, the maximal photochemical efficiency of PS II in dark (F(v)/F(m)), potential photochemical efficiency of PS II (F(v)/F(0)), and quantum yield of PS II electron transport (phi(PS II)) decreased significantly, compared with those under fertilization. With the application of conventional compound fertilizers CCFA (N:P:K=20:8:10) and CCFB (N:P:K= 14:14:14), the F(v)/F(m), F(v)/F(0) and phi(PS II) had a slight increase in early period (30-60 d) but a remarkable decrease in mid and later periods (75 - 120 d), compared with those under the application of controlled-release fertilizers CRFA (N:P:K = 20:8:10) and CRFB (N:P:K= 14:14:14). Under the application of CRFA, the F(v)/F(m), phi(PS II), and photochemical quenching (q(P)) had somewhat increase, as compared with the application of CRFB. The non-photochemical quenching (NPQ) under the application of CRFA and CRFB decreased significantly, compared with that under the application of CCFA and CCFB and the control. The chlorophyll content had a similar change trend with F(v)/F(m), F(v)/F(0), and phi(PS II). The leaf N, P, and K contents, flower stalk length and stalk diameter, flower diameter, and flower fresh and dry mass at harvest stage all increased under the application of CRFA and CRFB, compared with those under the application of CCFA and CCFB and the control, and the flower fresh and dry mass was significantly higher under the application of CRFA than of CRFB. This study showed that controlled-release fertilizer could improve the ornamental quality of chrysanthemum via improving the leaf chlorophyll content, photochemical transduction rate, and nutrient uptake, and CRFA had better effects than CRFB.

  14. Temperature and light tolerance of representative brown,green and red algae in tumble culture revealed by chlorophyll fluorescence measurements

    Institute of Scientific and Technical Information of China (English)

    PANG Shaojun; SHAN Tifeng

    2008-01-01

    Laminaria japonica,Undaria pinnatifida,Ulva lactuca,Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass,rapid growth and promising nutrient uptake rates. In this investigation,the responses of the optimal chlorophyll fluolescence yield of the five algal species in tumble culture were assessed at a temperature range of 10~30℃.The results revealed that Ulva lactuca was the most resistant species to high temperature,withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield. While the arctic alga Palmaria palmata was the most vulnerable one,showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h.The cold-water species Laminaria japonica,however,demonstrated strong ability to cope with higher temperature(24~26℃)for shorter time(within 24 h)without significant decline in the optimal chlorophyll fluorescence yield.Grateloupia turuturu showed a general decrease in the optimal chiorophyll fluores-cence yield with the rising temperature from 23 to 30℃,similar to the temperate kelp Undaria pinnatifida.Changes of chio-rophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light.Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°Nwas proposed according to these basic measurements.

  15. Chemical bonding of chlorophylls and plant aminic axial ligands impact harvesting of visible light and quenching of fluorescence.

    Science.gov (United States)

    Ioannidis, Nikolaos E; Tsiavos, Theodoros; Kotzabasis, Kiriakos

    2012-01-01

    In the present work, we tested the mode of interaction of all three polyamines (putrescine, spermidine and spermine) with chlorophyll a and b, as well as pheophytin a and b. The results showed that all three polyamines bind to the Mg ion of chlorophyll ring as probed by Raman spectroscopy. The coordination of spermine with Chl b has the most interesting features from all pigments tested. Spermine induces reversible increases and decreases of the fluorescence yield of Chl b at about 661 nm. Interestingly, equilibrium between a high-fluorescence yield conformation and a low yield is feasible by the interaction of chlorophyll b and aminic ligands. Furthermore, absorption data for the diagnostic regions of 518 and 535 nm are provided for all combinations of pigments and ligands. The significance and consistence of these results with respect to photochemical and bioenergetic principles are discussed.

  16. [Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca Quercus glauca].

    Science.gov (United States)

    Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing

    2014-08-01

    At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max).

  17. Chlorophyll Fluorescence Sorting Method to Improve Quality of Capsicum Pepper Seed Lots Produced from Different Maturity Fruits

    NARCIS (Netherlands)

    Kenanoglu, B.B.; Demir, I.; Jalink, H.

    2013-01-01

    This work was conducted to investigate the efficacy of chlorophyll fluorescence (CF) sorting to improve seed germination, seedling emergence, and vigor of seeds produced from different maturity fruits of four different cultivars. Four harvest dates from each cultivar were evaluated by harvesting ora

  18. Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin ain Marine and Freshwater Algae by Fluorescence

    Science.gov (United States)

    This method provides a procedure for low level determination of chlorophyll a (chl a) and its magnesium free derivative, pheophytin a (pheo a), in marine and freshwater phytoplankton using fluorescence detection.(1,2) Phaeophorbides present in the sample are determined collective...

  19. Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L) Walp) varieties

    Science.gov (United States)

    Anderson, Benjamin; Buah-Bassuah, Paul K.; Tetteh, Jonathan P.

    2004-07-01

    The use of violet laser-induced chlorophyll fluorescence (LICF) emission spectra to monitor the growth of five varieties of cowpea in the University of Cape Coast Botanical Garden is presented. Radiation from a continuous-wave violet laser diode emitting at 396 nm through a fibre is closely incident on in vivo leaves of cowpea to excite chlorophyll fluorescence, which is detected by an integrated spectrometer with CCD readout. The chlorophyll fluorescence spectra with peaks at 683 and 731 nm were used for growth monitoring of the cowpea plants over three weeks and analysed using Gaussian spectral functions with curve fitted parameters to determine the peak positions, area under the spectral curve and the intensity ratio F683/F731. The variation in the intensity ratio of the chlorophyll bands showed sensitive changes indicating the photosynthetic activity of the cowpea varieties. A discussion of the fluorescence result as compared to conventional assessment is presented with regard to discrimination between the cowpea varieties in terms of crop yield performance.

  20. Effect of Methanol on Photosynthesis and Chlorophyll Fluorescence of Flag Leaves of Winter Wheat

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yue-jin; YANG Yue-qin; LIANG Shan-shan; YI Xian-feng

    2008-01-01

    Photosynthesis and chlorophyll a fluorescence parameters, photochemical efficiency of PS II (Fv/Fm), photochemical quenching of PS II (qP), nonphotochemical quenching of PS II (NPQ), maximum activity of PS II (Fv/Fo) as well as electron transport rate (ETR), and quantum yield of PS II (ΦPS II) were measured on flag leaves of the winter wheat treated by methanol at different concentrations. The results revealed that photosynthesis was greatly improved by methanol, as indicated by higher photosynthetic rates and stomatal conductance. The enhancement effect of methanol on photosynthesis was maintained for 3-4 days. Different methanol concentration treatments also increased intercellular CO2 concentration and transpiration rates. No significant decline was found in Fv/Fm, Fv/Fo, and ΦPS II, which revealed no photoinhibition during methanol application in different methanol concentrations. Methanol showing no apparent inhibitory effects indicated higher potential photosynthetic capacity of flag leaves of winter wheat. However, the increase in photosynthesis was not followed by an increase in the photosynthetic activity (Fv/Fm), and fluorescence parameters did not indicate an improvement in intercellular CO2 concentration and PS II photochemical efficiency compared with the control, thereby encouraging us to propose that lower leaf temperatures caused by applied methanol would reduce both dark respiration and photorespiration (most importantly), thus, increasing net CO2 uptake and photosynthetic rates.

  1. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves.

    Science.gov (United States)

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-09-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. 'Sven' (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R(2) = 0.73; artificial light: R(2) = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R(2) = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R(2) = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology.

  2. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa

    Science.gov (United States)

    Wang, Shoubing; Xu, Ziran

    2016-01-01

    Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice. PMID:27755566

  3. Assessment of phytotoxicity of anthracene in soybean (Glycine max) with a quick method of chlorophyll fluorescence.

    Science.gov (United States)

    Tomar, R S; Sharma, A; Jajoo, A

    2015-07-01

    A decrease in photosynthetic efficiency may indicate the toxic effects of environmental pollutants on higher plants. Measurement of chlorophyll (Chl) a fluorescence to assess the performance of photosystem II (PSII) was used as an bioindicator of toxicity of the polycyclic aromatic hydrocarbon (PAH) anthracene (ANT) in soybean plants. The results revealed that ANT treatment caused a reduction in quantum yield of PSII, damage to the oxygen evolving complex, as well as a significant reduction in performance index of PSII. However, change in performance index was more prominent, and it seems that the performance index is a more sensitive parameter to environmental contaminants. Moreover, a change in heterogeneity of PSII was also observed. The number of active reaction centres decreased with increasing concentration of ANT, as secondary plastoquinone reducing centres were converted into non-reducing centres, and PSIIα centres were converted into PSIIβ and PSIIγ centres. The influence of ANT on PSII heterogeneity could be an important reason for reductions in the PSII performance.

  4. CO2, CH4, CO and Chlorophyll Fluorescence Retrievals for the Geostationary Carbon Process Investigation

    Science.gov (United States)

    Xi, X.; Natraj, V.; Luo, M.; Shia, R.; Sander, S. P.; Yung, Y. L.

    2013-12-01

    The Geostationary Carbon Process Investigation (GCPI) combines an imaging Fourier Transform Spectrometer instrument with a geostationary Earth orbit vantage point to realize a transformational advance in carbon monitoring beyond the synoptic capabilities of Low Earth Orbit instruments such as SCIAMACHY, GOSAT and OCO-2. GCPI follows the paradigm of numerical weather prediction and aims to provide orders of magnitude improvement in observational density for atmospheric CO2, CH4, CO, and new measurements of chlorophyll fluorescence (CF). These new observations could be used to drive and constrain Earth system models, improve our understanding of the underlying carbon cycle processes and evaluate model forecasting capabilities. GCPI is designed to deliver simultaneous measurements of CF and column averaged CO2, CH4 and CO dry air mole fractions to disentangle biogenic and anthropogenic sources of carbon. Here, we perform radiative transfer simulations over a range of conditions expected to be observed by GCPI and estimate prospective performance of retrievals based on results from Bayesian error analysis and characterizations. The potential benefits from the measurements of CF are also investigated.

  5. CO2 Exchange and Chlorophyll Fluorescence of Phosphoenolpyruvate Carboxylase Transgenic Rice Pollen Lines

    Institute of Scientific and Technical Information of China (English)

    Li-Li Ling; Hong-Hui Lin; Ben-Hua Ji; De-Mao Jiao

    2006-01-01

    To elucidate the photosynthetic physiological characteristics and the physiological inherited traits of rice(Oryza sativa L.) hybrids and their parents, physiological indices of photosynthetic CO2 exchange and chlorophyll fluorescence parameters were measured in leaves of the maize phosphoenolpyruvate carboxylase (PEPC) transgenic rice as the male parent, sp. japonica rice cv. 9516 as the female parent, and the stable JAAS45 pollen line. The results revealed that the PEPC gene could be stably inherited and transferred from the male parent to the JAAS45 pollen line. Moreover, the JAAS45 pollen line exhibited high levels of PEPC activity, manifesting higher saturated photosynthetic rates, photosynthetic apparent quantum yield (AQY), photochemical efficiency of photosystem Ⅱ and photochemical and non-photochemical quenching, which indicated that the JAAS45 pollen line has a high tolerance to photo-inhibition/photooxidation under strong light and high temperature. Furthermore, JAAS45 was confirmed to still be a C3 plant by δ13C carbon isotope determination and was demonstrated to have a limited photosynthetic C4 microcycle by feeding with exogenous C4 primary products, such as oxaloacetate or maiate, or phosphoenolpyruvate.The present study explains the physiological inherited properties of PEPC transgenic rice and provides an expectation for the integration of traditional breeding and biological technology.

  6. Validation of the chlorophyll fluorescence imaging method (CFI for early detection of herbicide resistance in weeds

    Directory of Open Access Journals (Sweden)

    Menegat, Alexander

    2014-02-01

    Full Text Available The increasing number of herbicide tolerant weed populations is illustrating the increasing demand for reliable methods for an accelerated detection of herbicide tolerance compared to greenhouse studies. Several methods for resistance quick detection have been published in previous years. One of the recent methods is the Chlorophyll Fluorescence Imaging Method (CFI. For this method changes in photosynthetic activity of the target organisms, caused by herbicides, are determined. General assumption of this method in terms of herbicide resistance detection is that each herbicidal compound, independent of the mode of action, will cause changes within the photosynthetic apparatus of the target organisms. This effect already could be confirmed for several modes of action (PSII, ALS, ACCase, EPSPS, synth. Auxins. Aim of this study is to validate this novel method on the basis of greenhouse experiments and single nucleotide polymorphisms (SNP analysis. The resistance profiles of 10 black-grass populations (Alopecurus myosuroides Huds. have been determined in greenhouse herbicide efficacy trials and constitutive SNP analyses of the survivors. With the CFI-method it was possible to detect the resistance profile as well as the resistance frequency within the populations. The results from the greenhouse experiments could be reproduced with conformity of 94%. This result is valid for the tested herbicides mesosulfuron, pyroxsulam as well as clodinafop and pinoxaden.

  7. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  8. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    Science.gov (United States)

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal.

  9. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis.

    Science.gov (United States)

    Tejos, Ricardo I; Mercado, Ana V; Meisel, Lee A

    2010-01-01

    The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  10. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Science.gov (United States)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  11. Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT

    OpenAIRE

    Parazoo, Nicholas C.; Bowman, Kevin; Frankenberg, Christian; Lee, Jung-Eun; Fisher, Joshua B.; Worden, John; Jones, Dylan B. A.; Berry, Joseph; Collatz, G James; Baker, Ian T.; Jung, Martin; Liu, Junjie; Osterman, Gregory; O'Dell, Chris; Sparks, Athena

    2013-01-01

    Amazon forests exert a major influence on the global carbon cycle, but quantifying the impact is complicated by diverse landscapes and sparse data. Here we examine seasonal carbon balance in southern Amazonia using new measurements of column-averaged dry air mole fraction of CO_2 (XCO_2) and solar induced chlorophyll fluorescence (SIF) from the Greenhouse Gases Observing Satellite (GOSAT) from July 2009 to December 2010. SIF, which reflects gross primary production (GPP), is used to disentang...

  12. Quantitative Trait Loci Mapping for Chlorophyll Fluorescence and Associated Traits in Wheat (Triticum aestivum)

    Institute of Scientific and Technical Information of China (English)

    De-Long Yang; Rui-Lian Jing; Xiao-Ping Chang; Wei Li

    2007-01-01

    Parameters of chlorophyll fluorescence kinetics (PCFKs) under drought stress condition are generally used to characterize instincts for dehydration tolerance in wheat (Triticum aestivum L.). Therefore, it is important to map quantitative trait loci (QTLs) for PCFKs in wheat genetic improvement for drought tolerance. A doubled haploid (DH)population with 150 lines, derived from a cross between two common wheat varieties, Hanxuan 10 and Lumai 14,was used to analyze the correlation between PCFKs and chlorophyll content (ChlC) and to map QTLs at the grainfilling stage under conditions of both rainfed (drought stress, DS) and well-watered (WW), respectively. QTLs for these traits were detected by QTLMapper version 1.0 based on the composite interval mapping method of the mixed-linear model. The results showed a very significant positive correlation between Fy, Fm, Fv/Fm and Fv/Fo.The correlation coefficients were generally higher under WW than under DS. Also, there was a significant or a highly significant positive correlation between Fv, Fm, Fv/Fm, Fv/Fo and ChlC. The correlation coefficients were higher in the DS group than the WW group. A total of 14 additive QTLs (nine QTLs detected under DS and five QTLs under WW)and 25 pairs of eplstatic QTLs (15 pairs detected under DS and 10 pairs under WW) for PCFKs were mapped on chromosomes 6A, 7A, 1B, 3B, 4D and 7D. The contributions of additive QTLs for PCFKs to phenotype variation were from 8.40% to 72.72%. Four additive QTLs (two QTLs detected under DS and WW apiece) controlling ChlC were mapped on chromosomes 1A, 5A and 7A. The contributions of these QTLs for ChlC to phenotype variation were from 7.27% to 11.68%. Several QTL clusters were detected on chromosomes 1B, 7A and 7D, but no shared chromosomal regions for them were identified under different water regimes, indicating that these QTLs performed different expression patterns under rainfed and well-watered conditions.

  13. Characteristics of Gas Exchange and Chlorophyll Fluorescence in Different Position Leaves at Booting Stage in Rice Plants

    Institute of Scientific and Technical Information of China (English)

    Mo Yi-wei; JIN Song-heng; WANG Zhong; WANG Pin-mei; QIAN Shan-qin; ZHAO Kai; GU Yun-jie; YANG Yi-qing; YAO Sheng; JIANG De-an

    2004-01-01

    To investigate the senescence of rice leaves at different positions at booting stage, gas exchange and chlorophyll fluorescence properties in leaves at different positions were examined by using six rice materials. The net rates of photosynthesis (Pn),stomatal conductance (gs), transpiration rate (E) and water use efficiency (WUE) decreased significantly with lowering of leaf positions,while intercellular CO2 concentration (Cj) had a little change, indicating that the decrease of photosynthetic rate was not resulted from the decrease of gs. The decrease of SPAD reading which had a close correlation with chlorophyll content was one of apparent reasons resulting in the decease of Pn. Further evidence by chlorophyll fluorescence showed that the photochemical efficiency of PS Ⅱ and its electron transport rate (ETR) decreased substantially with lowering of the leaf positions but the variable-to-maximum fluorescence ratio(Fv/Fm) and efficiency of energy conversion of open PS Ⅱ (Fv'/Fm') remained rather stable, suggesting that primary limitation of Pn was suppression of electron transport of PS Ⅰ, and probably associated with carbon assimilation.

  14. Consistency Between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Jin, Cui; Dong, Jinwei; Zhou, Sha; Wagle, Pradeep; Joiner, Joanna; Guanter, Luis; Zhang, Yongguang; Zhang , Geli; Qin, Yuanwei; Wang, Jie; Moore, Berrien, III

    2016-01-01

    Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems is vital for a better understanding of the spatial-temporal patterns of the global carbon cycle. In this study,we estimate GPP in North America (NA) using the satellite-based Vegetation Photosynthesis Model (VPM), MODIS (Moderate Resolution Imaging Spectrometer) images at 8-day temporal and 500 meter spatial resolutions, and NCEP-NARR (National Center for Environmental Prediction-North America Regional Reanalysis) climate data. The simulated GPP (GPP (sub VPM)) agrees well with the flux tower derived GPP (GPPEC) at 39 AmeriFlux sites (155 site-years). The GPP (sub VPM) in 2010 is spatially aggregated to 0.5 by 0.5-degree grid cells and then compared with sun-induced chlorophyll fluorescence (SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly related to vegetation photosynthesis. Spatial distribution and seasonal dynamics of GPP (sub VPM) and GOME-2 SIF show good consistency. At the biome scale, GPP (sub VPM) and SIF shows strong linear relationships (R (sup 2) is greater than 0.95) and small variations in regression slopes ((4.60-5.55 grams Carbon per square meter per day) divided by (milliwatts per square meter per nanometer per square radian)). The total annual GPP (sub VPM) in NA in 2010 is approximately 13.53 petagrams Carbon per year, which accounts for approximately 11.0 percent of the global terrestrial GPP and is within the range of annual GPP estimates from six other process-based and data-driven models (11.35-22.23 petagrams Carbon per year). Among the seven models, some models did not capture the spatial pattern of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The results from this study demonstrate the reliable performance of VPM at the continental scale, and the potential of SIF data being used as a benchmark to compare with GPP models.

  15. Quality assessment of urban trees using growth visual and chlorophyll fluorescence indicators

    Directory of Open Access Journals (Sweden)

    Uhrin Peter

    2016-06-01

    Full Text Available Urbanised landscape represents composed structures of technical and biotic elements where social and economy activities create living space for human society but with strongly changed environment. To dominant characters belong climate changes with increased air temperature, drought and emission load, which has developed wide spectrum of stress factors influencing the urban vegetation. For the assessment of plant growth and adaptation response, we have used Sycamore maple (Acer pseudoplatanus L. as study model woody plant. In the framework of visual characters, we assessed the following indicators: (a assimilation organs (leaf necrosis; (b crown quality (degree of foliage and degree of dead tree crown; (c trunk and branch quality (mechanical damage, incidence of wood destroying fungus and trunk cavities and callus healing of trunk wounds. Each indicator was assessed in five-point scale, and in the end, the common index of quality was calculated. The quality index achieved 9.33 points in the first and 10.33 in the second evaluation periods in the Nitra city and 2.66 at the both assessed periods in the comparable rural park. In the group of physiological indicators, chlorophyll a fluorescence marker and its Fv/Fm parameter were used. Within three repeating assessment during growing season (June, August and September, the average values reached Fv/Fm = 0.814 in the city and Fv/Fm = 0.829 in rural park. The results confirmed statistical significances between loaded city conditions and relatively clean rural locality. Used markers have shown as appropriate tools for growth response measurements of street trees in a changed urban environment.

  16. Underwater Optical Fiber Fluorescent System for Measuring Chlorophyll-a Concentration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on-line measurement for alga concentration using He-Ne laser as the light source. It can also effectively detect weak signals. The system with a passive sensor head has such advantages as simple structure, high sensitivity and high accuracy. It has been demonstrated that this system can be used to monitor water quality and can also be used to survey some matter.

  17. The drought impact on satellite solar-induced chlorophyll fluorescence in China during 2007-2015

    Science.gov (United States)

    Li, Ruitao

    2016-04-01

    Drought is one of the most damaging and complicated natural hazards in the world. China is one of the countries which are most severely affected by drought. And there is a severe drought event in China every 2-3 years. From the beginning of the 1980s, some vegetation indices have been used to monitor vegetation under water stress. With the development of remote sensing technology, satellite solar-induced chlorophyll fluorescence (SIF) has emerged as a new method to monitor vegetation in recent years. Some studies have shown that compared with vegetation indices, SIF is more sensitive for vegetation functioning. However, the related studies using the satellite SIF is relatively limited in China. The objective of this study is to investigate the impact of drought on SIF by analyzing the relationships of SIF and crucial land surface parameter under the drought condition and to assess the adaption of satellite SIF in China. The SIF data are from the Global Ozone Monitoring Experiment 2 (GOME-2). Firstly, the widely used Palmer Drought Severity Index (PDSI) was used for drought events identification from 2007 to 2015 in China. On the basis of the identification results, we chose a number of areas of interest according to different land cover types and drought intensity. Then, we analyzed the relationships of SIF and land surface variables, i.e. normalized difference vegetation index (NDVI), the fraction of absorbed photosynthetically active radiation (fPAR), root-zone soil moisture (SMC) and surface skin temperatures (Tskin). The results show that the spatial patterns of negative SIF anomalies are closely relevant to the drought intensity. The decrease of SIF is aggravated in the phase of drought occurs. Moreover we find that the GOME-2 SIF is sensitive to fPAR and fluorescence yield. And the SIF is strongly correlated with SMC, Tskin and NDVI. But the SIF decreases more rapidly during the early time of drought events than NDVI. In other words, the SIF can well capture

  18. Monitoring the Photosynthetic Apparatus During Space Flight: Interspecific Variation in Chlorophyll Fluorescence Signatures Induced by Different Root Zone Stresses

    Science.gov (United States)

    Bubenheim, David L.; Patterson, Mark T.; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Chlorophyll fluorescence has been used extensively as a tool to indicate stress to the photosynthetic apparatus in green plants. A rise in fluorescence has been attributed to the blockage of photosystem II photochemistry, and patterns of fluorescence decay (quenching) from dark adapted leaves can be related to specific photochemical and non-photochemical deexcitation pathways of light trapped by the photosynthetic apparatus and thus result in characteristically different fluorescence signatures. Four distantly related plant species, Hypocharis radicata (Asteraceae), Brassica rapa (Brassicaceae), Spinacea oleracea (Chenopodiaceae) and Triticum aestivum (Poaceae), were grown hydroponically for three weeks before the initiation of three different root zone stresses (10 mM Cu, 100 mM NaCl and nitrogen deficient nutrition). After 10 days, characteristic fluorescence signatures for each stress could be noted although the degree varied between species. Fast kinetics analysis showed a reduction in plastoquinone pool size for copper and nitrogen stress for all species but a more species specific result with NaCl stress. Photochemical quenching kinetics varied between species and stress treatments from no quenching in S. oleracea in copper treatments to increased photochemical quenching in NaCl treatments. Non-photochemical quenching kinetics demonstrated a distinct pattern between stresses for all species. Copper treatments characteristically exhibited a shallow, flat non-photochemical quenching profile suggesting a general blockage of electron transport whereas NaCl treatments exhibited a slow rising profile that suggested damage to thylakoid acidification kinetics and nitrogen deficiency exhibited a fast rising and declining profile that suggested an altered state 1-state 2 transition regulated by the phosphorylation of LHCII. These results demonstrate characteristic fluorescence signatures for specific plant stresses that may be applied to different, unrelated plant

  19. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Pedas, Pai; Laursen, Kristian Holst;

    2013-01-01

    chlorophyll (Chl) a fluorescence as a tool for diagnosis of latent Mn deficiency. Methods: Barley plants grown under controlled greenhouse conditions or in the field were exposed to different intensities of Mn deficiency. The responses were characterised by analysis of Chl a fluorescence, photosystem II (PSII......) proteins and mineral elements. Results: Analysis of the Chl a fluorescence induction kinetics (FIK) revealed distinct changes long before any visual symptoms of Mn deficiency were apparent. The changes were specific for Mn and did not occur in Mg, S, Fe or Cu deficient plants. The changes in Mn deficient......Background and aims: Manganese (Mn) deficiency represents a major plant nutritional disorder in winter cereals. The deficiency frequently occurs latently and the lack of visual symptoms prevents timely remediation and cause significant yield reductions. These problems prompted us to investigate...

  20. Diurnal and Directional Responses of Chlorophyll Fluorescence and the PRI in a Cornfield

    Science.gov (United States)

    Middleton, Elizabeth; Cheng, Y. B.; Corp, L.; Campbell, P.; Kustas, W.

    2010-01-01

    Determining the health and vigor of vegetation using high spectral resolution remote sensing is an important goal which has application to monitoring agriculture and ecosystem productivity and carbon exchange. Two spectral indices used to assess whether vegetation is performing near-optimally or exhibiting symptoms of environmental stress (e.g., drought or nutrient deficiency, non-optimal temperatures, etc.) are the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (Fs). Both the PRI and Fs capture the dynamics of photoprotection mechanisms within green foliage: the PRI is based on the association of the reflected radiation in the green spectrum with the xanthophyll cycle, whereas Fs measures the emitted radiation in the red and far-red spectrum. Fs was determined from retrievals in the atmospheric oxygen absorption features centered at 688 and 760 nm using a modified Fraunhofer Line Depth (FLD) method. We previously demonstrated diurnal and seasonal PRI differences for sunlit vs. shaded foliage in a conifer forest canopy, as expressed in the hotspot and darkspot of the Bidirectional Reflectance Function (BRF). In a USDA-ARS experimental field site located in Beltsville, MD, USA, measurements were acquired over a corn crop from a nadir view in 2008 with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc., Boulder, CO, USA) to study the behavior of the PRI for sunlit and shaded foliage as captured in reflectance variations associated with the BRF, in a I m tall canopy in the vegetative growth stage. Those observations were compared to simulations obtained from two radiative transfer models. Measurements were then acquired to examine whether the PRI and Fs were influenced by view zenith and azimuth geometries at different times of day. Those measurements were made in 2010 with the Ocean Optics USB4000 Miniature Fiber Optic Spectrometer (Ocean Optics Inc., Dunedin, Florida, USA) at several times during the day on

  1. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’

    DEFF Research Database (Denmark)

    Ouzounis, Theoharis; Fretté, Xavier; Ottosen, Carl-Otto

    2015-01-01

    We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200μmolm-2s-1 at plant height for 14h per day and 24/18°Cday/night temp......We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis 'Vivien' and 'Purple Star' under purpose-built LED arrays yielding c. 200μmolm-2s-1 at plant height for 14h per day and 24/18°Cday...... and pigmentation. There was no clear pattern in the spectral effect on growth since the order of leaf size differed between harvests in March and April. Fv/Fm was in the range of 0.52-0.72, but overall slightly higher in the control, which indicated a permanent downregulation of PSII in the colored treatments....... The fluorescence quenching showed no acclimation to color in 'Purple Star', while 'Vivien' had lower ETR and higher NPQ in the 40% B/R, resembling low light acclimation. The pigmentation showed corresponding spectral response with increasing concentration of lutein while increasing the fraction of blue light...

  2. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    Science.gov (United States)

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control.

  3. Indication of transthylakoid proton-fluxes in Aegopodium podagraria L. by light-induced changes of plasmalemma potential, chlorophyll fluorescence and light-scattering.

    Science.gov (United States)

    Vanselow, K H; Dau, H; Hansen, U P

    1988-12-01

    The time course of the responses of chlorophyll fluorescence in leaves of Aegopodium podagraria to changes in irradiance does not necessarily show the time constant of thylakoid energization at energy fluence rates below 10-25 W·m(-2). In addition, other measures of thylakoid energization, such as lightscattering at 532 nm and the responses to saturating flashes, show that the related component disappears from these signals at low fluence rates, but not necessarily all together at the same fluence rate. However, this time constant still appears in the light-induced responses of the plasmalemma potential. This implies that the effect on the electrogenic proton pump in the plasmalemma is the most sensitive indicator of proton fluxes into the inner thylakoid space. These results are a further indication that energy-quenching is coupled ther indication that energy-quenching is coupled to transthylakoid proton fluxes via an intermediate, which is not active in Aegopodium podagraria at low irradiances.

  4. Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages.

    Science.gov (United States)

    Rahimzadeh-Bajgiran, Parinaz; Munehiro, Masashi; Omasa, Kenji

    2012-09-01

    This study aimed to evaluate the photochemical reflectance index (PRI) for assessing plant photosynthetic performance throughout the plant life cycle. The relationships between PRI, chlorophyll fluorescence parameters, and leaf pigment indices in Solanum melongena L. (aubergine; eggplant) were studied using photosynthetic induction curves both in short-term (diurnal) and long-term (seasonal) periods under different light intensities. We found good correlations between PRI/non-photochemical quenching (NPQ) and PRI/electron transport rate (ETR) in the short term at the same site of a single leaf but these relationships did not hold throughout the life of the plant. In general, changes in PRI owing to NPQ or ETR variations in the short term were PRI was highly correlated to plant pigments, especially chlorophyll indices measured by spectral reflectance. Moreover, relationships of steady-state PRI/ETR and steady-state PRI/photochemical yield of photosystem II (Φ(PSII)) measured at uniform light intensity at different life stages proved that overall photosynthesis capacity and steady-state PRI were better correlated through chlorophyll content than NPQ and xanthophylls. The calibrated PRI index accommodated these pigments effects and gave better correlation with NPQ and ETR than PRI. Further studies of PRI indices based on pigments other than xanthophylls, and studies on PRI mechanisms in different species are recommended.

  5. Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence

    KAUST Repository

    Brewin, Robert J W

    2013-09-01

    The Red Sea is a unique marine environment but relatively unexplored. The only available long-term biological dataset at large spatial and temporal scales is remotely-sensed chlorophyll observations (an index of phytoplankton biomass) derived using satellite measurements of ocean colour. Yet such observations have rarely been compared with in situ data in the Red Sea. In this paper, satellite chlorophyll estimates in the Red Sea from the MODIS instrument onboard the Aqua satellite are compared with three recent cruises of in vivo fluorometric chlorophyll measurements taken in October 2008, March 2010 and September to October 2011. The performance of the standard NASA chlorophyll algorithm, and that of a new band-difference algorithm, is found to be comparable with other oligotrophic regions in the global ocean, supporting the use of satellite ocean colour in the Red Sea. However, given the unique environmental conditions of the study area, regional algorithms are likely to fare better and this is demonstrated through a simple adjustment to the band-difference algorithm. © 2013 Elsevier Inc.

  6. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    Science.gov (United States)

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments.

  7. O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence.

    Science.gov (United States)

    Schreiber, U; Neubauer, C

    1990-09-01

    Recent progress in chlorophyll fluorescence research is reviewed, with emphasis on separation of photochemical and non-photochemical quenching coefficients (qP and qN) by the 'saturation pulse method'. This is part of an introductory talk at the Wageningen Meeting on 'The use of chlorophyll fluorescence and other non-invasive techniques in plant stress physiology'. The sequence of events is investigated which leads to down-regulation of PS II quantum yield in vivo, expressed in formation of qN. The role of O2-dependent electron flow for ΔpH- and qN-formation is emphasized. Previous conclusions on the rate of 'pseudocyclic' transport are re-evaluated in view of high ascorbate peroxidase activity observed in intact chloroplasts. It is proposed that the combined Mehler-Peroxidase reaction is responsible for most of the qN developed when CO2-assimilation is limited. Dithiothreitol is shown to inhibit part of qN-formation as well as peroxidase-induced electron flow. As to the actual mechanism of non-photochemical quenching, it is demonstrated that quenching is favored by treatments which slow down reactions at the PS II donor side. The same treatments are shown to stimulate charge recombination, as measured via 50 μs luminescence. It is suggested that also in vivo internal thylakoid acidification leads to stimulation of charge recombination, although on a more rapid time scale. A unifying model is proposed, incorporating reaction center and antenna quenching, with primary control of ΔpH at the PS II reaction center, involving radical pair spin transition and charge recombination to the triplet state in a first quenching step. In a second step, triplet excitation is trapped by zeaxanthin (if present) which in its triplet excited state causes additional quenching of singlet excited chlorophyll.

  8. Improvement of Photosynthesis by Sub1 QTL in Rice Under Submergence: Probed by Chlorophyll Fluorescence OJIP Transients

    Directory of Open Access Journals (Sweden)

    Panda Debabrata

    2011-09-01

    Full Text Available The influence of submergence on the photosynthetic activity in rice plants either possessing or not possessing Sub1 QTL i.e. Swarna and Swarna Sub1 cultivars (cv. were evaluated under simulated complete submergence. The leaf photosynthetic rate and stomatal conductance decreased in both the cv. during the progression of submergence as compared to control plant but significant varietal differences was observed after 1 day (d of submergence. Submergence also alters the photo-system (PS II activity, as reflected in a decrease in the values of Fo, Fm and the Fv/Fm ratio and degradation of chlorophyll, more in Swarna than that of Swarna Sub1. Under complete submergence the shape of the OJIP transient also changed in rice leaves with decrease in maximal fluorescence (P=Fm intensity, resulted lowering of variable fluorescence levels. The decrease was more pronounced in Swarna compared to the Swarna Sub1 cv. Thus, Swarna Sub1 improves photosynthetic activity showing more photosynthetic rate compared to Swarna under submergence because, of less degradation of chlorophyll, higher stomatal conductance, and efficient PS II activity.

  9. Effects of Nitrogen Fertilizer Level on Chlorophyll Fluorescence Characteristics in Flag Leaf of Super Hybrid Rice at Late Growth Stage

    Institute of Scientific and Technical Information of China (English)

    LONG Ji-rui; MA Guo-hui; WAN Yi-zheng; SONG Chun-fang; SUN Jian; QIN Rui-jun

    2013-01-01

    To compare the effects of slow-release nitrogen fertilizer at six different levels on the flag leaf chlorophyll fluorescence characteristics of super hybrid rice,a field fertilization experiment was conducted with super hybrid rice Y Liangyou 1 as a test material.The photosynthetic electron transport rate (ETR),effective quantum yield (EQY),photochemical quenching coefficient (qp),and non-photochemical quenching coefficient (NPQ) of flag leaves were measured at the initial heading,full heading,10 d after full heading and 20 d after full heading stages.Results showed that the values of ETR,EQY and qp increased with rice development from initial heading to 20 d after full heading,whereas the NPQ decreased.During the measured stages,ETR,EQY and qp increased initially and then decreased as nitrogen application amount increased,but they peaked at different nitrogen fertilizer levels.The maximum ETR and EQY values appeared at the treatment of 135 kg/hm2 N.In conclusion,the optimum nitrogen amount for chlorophyll fluorescence characteristics of super hybrid rice was 135-180 kg/hm2.

  10. Multiple effects of cadmium on the photosynthetic apparatus of Avicennia germinans L. as probed by OJIP chlorophyll fluorescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Mendoza, D.; Zapata-Perez, O. [Cinvestav Unidad Merida, Yucatan (Mexico). Dept. de Recursos del Mar; Espadas y Gil, F.; Santamaria, J.M. [Unidad de Biotecnologia, CICY, Yucatan (Mexico)

    2007-03-15

    The toxic effects of cadmium on the photosynthetic apparatus of Avicennia germinans were evaluated by means of the chlorophyll fluorescence transient O-J-I-P. The chlorophyll fluorescence transients were recorded in vivo with high time resolution and analyzed according to the OJIP-test that can quantify the performance of photosystem II. Cadmium-treated plants showed a decrease in yield for primary photochemistry, TR{sup 0}/ABS. The performance index of photosystem II (PSII), PI{sub ABS}, decreased due to cadmium treatment. This performance index is the combination of the indexes of three independent parameters: (1) total number of active reaction centers per absorption (RC/ABS), (2) yield of primary photochemistry (TR{sup 0}/ABS), and (3) efficiency with which a trapped exciton can move an electron into the electron transport chain (ET{sup 0}/TR{sup 0}). Additionally, the F{sub 0}/F{sub v} registered the highest sensitivity to the metal, thus indicating that the water-splitting apparatus of the oxidizing side of PSII is the primary site of action of cadmium. In summary, cadmium affects several targets of photosystem II. More specifically the main targets of cadmium, according to the OJIP-test, can be listed as a decrease in the number of active reaction centers and damage to the activity of the water-splitting complex. (orig.)

  11. Chlorophyll Fluorescence in Partially Defoliated Grape Plants (Vitis vinifera L. cv. Chardonnay) / Fluorescencia de la Clorofila en Plantas de Uva (Vitis vinifera L. cv. Chardonnay) Defoliadas Parcialmente

    OpenAIRE

    Peña Olmos Jaime Ernesto; Casierra Posada Fánor

    2013-01-01

    The chlorophyll content and fluorescence weredetermined in five-year-old grape plants (Vitis vinifera L. cv.Chardonnay) that were subjected to early partial defoliation,in Villa de Leyva, Colombia. The experimental design wascompletely randomized, consisting of two treatments (50%defoliation and control), each with four replications of 35 plants. Every two weeks, one of every two recently-emerged leaves was removed from the non-control plants. The determination of total chlorophyll content wa...

  12. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection.

    Science.gov (United States)

    Merzlyak, Mark N; Melø, Thor Bernt; Naqvi, K Razi

    2008-01-01

    Whole apple fruit (Malus domestica Borkh.) widely differing in pigment content and composition has been examined by recording its chlorophyll fluorescence excitation and diffuse reflection spectra in the visible and near UV regions. Spectral bands sensitive to the pigment concentration have been identified, and linear models for non-destructive assessment of anthocyanins, carotenoids, and flavonols via chlorophyll fluorescence measurements are put forward. The adaptation of apple fruit to high light stress involves accumulation of these protective pigments, which absorb solar radiation in broad spectral ranges extending from UV to the green and, in anthocyanin-containing cultivars, to the red regions of the spectrum. In ripening apples the protective effect in the blue region could be attributed to extrathylakoid carotenoids. A simple model, which allows the simulation of chlorophyll fluorescence excitation spectra in the visible range and a quantitative evaluation of competitive absorption by anthocyanins, carotenoids, and flavonols, is described. Evidence is presented to support the view that anthocyanins, carotenoids, and flavonols play, in fruit with low-to-moderate pigment content, the role of internal traps (insofar as they compete with chlorophylls for the absorption of incident light in specific spectral bands), affecting thereby the shape of the chlorophyll fluorescence excitation spectrum.

  13. [Effects of O3-FACE(ozone-free air control enrichment) on gas exchange and chlorophyll fluorescence of rice leaf].

    Science.gov (United States)

    Liang, Jing; Zeng, Qing; Zhu, Jian-Guo; Zhu, Chun-Wu; Cao, Ji-Ling; Xie, Zu-Bin; Liu, Gang; Tang, Hao-Ye

    2010-04-01

    O3-FACE (Ozone-free air control enrichment) platform has been established for observing the effect of elevated tropospheric ozone concentration on the gas exchange and chlorophyll fluorescence of two rice varieties (Wuyunjing 21 and Liangyoupeijiu). The results showed that high ozone concentration decreased the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of rice leaves. After 76d fumigation the decline in them for Wuyunjing 21 was as follows: 21.7%, 26.64% and 24.74% respectively, and that for Liangyoupeijiu was as follows: 25.53%, 30.31% and 25.48% respectively; however, no significant impact on leaf intercellular CO2 concentration was observed. Chlorophyll fluorescence kinetics parameters changed as can be seen by the decrease in F0 (initial fluorescence in the dark), ETR (The apparent electron transfer rate) and psiPSII (actual photochemical efficiency of PS II in the light), and the increase in NPQ (non-photochemical quenching). After 76 days of O3 treatment, the NPQ of Wuyunjing 21 and Liangyoupeijiu was enhanced by 16.37% and 11.77%, respectively. The impact of ozone on rice was a cumulative effect, and the extent of variation in the above parameters and the differences between the two varieties were enlarged as the O3 treatment time increased; At the same time because the rice leaf intercellular CO2 concentration did not significantly reduce, the inferred decrease in net photosynthetic rate was restricted by non-stomatal factors. The results of this experiment indicated that Liangyoupeijiu was more susceptible to ozone than Wuyunjing 21.

  14. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y; Garrity, S.; Middleton, E. M.; Huemmrich, K. F.; Gu, L.; Marchesini, L. Belelli

    2014-01-01

    Mapping of terrestrial chlorophyll uorescence from space has shown potentialfor providing global measurements related to gross primary productivity(GPP). In particular, space-based fluorescence may provide information onthe length of the carbon uptake period that can be of use for global carboncycle modeling. Here, we examine the seasonal cycle of photosynthesis asestimated from satellite fluorescence retrievals at wavelengths surroundingthe 740nm emission feature. These retrievals are from the Global OzoneMonitoring Experiment 2 (GOME-2) flying on the MetOp A satellite. Wecompare the fluorescence seasonal cycle with that of GPP as estimated froma diverse set of North American tower gas exchange measurements. Because the GOME-2 has a large ground footprint (40 x 80km2) as compared with that of the flux towers and requires averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP in the satellite averaging area surrounding the tower locations estimated from the Max Planck Institute for Biogeochemistry (MPI-BGC) machine learning algorithm. We also examine the seasonality of absorbed photosynthetically-active radiation(APAR) derived with reflectances from the MODerate-resolution Imaging Spectroradiometer (MODIS). Finally, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested sites(particularly deciduous broadleaf and mixed forests), the GOME-2 fluorescence captures the spring onset and autumn shutoff of photosynthesis as delineated by the tower-based GPP estimates. In contrast, the reflectance-based indicators and many of the models tend to overestimate the length of the photosynthetically-active period for these and other biomes as has been noted previously in the literature. Satellite fluorescence measurements therefore show potential for

  15. Experimental effects of sand-dust storm on tolerance index, percentage phototoxicity and chlorophyll a fluorescence of Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    M. Alavi

    2015-03-01

    Full Text Available In arid and semi-arid parts of the world excessive mineral aerosol carried by air parcels is a common climatic incident with well-known environmental side effects. In this way, we studied the role of sand-dust accumulation on various aspects of productivity of Vigna radiata L. including dry mass (DM, chlorophyll (Chl a, b, Chlorophyll a fluorescence (effective quantum yield of PSII photochemistry (ФPSII, maximal quantum yield of PSII photochemistry (Fv/Fm and electron transport rate (ETR. V. radiata was exposed to a gradient of dust concentrations in a dust chamber (0.5 (T1, 1(T2 and 1.5 g/m3 (T3 simulated by a dust generator for a period of 60 days. Results of this experiment indicate that DM and Chl content of shoot are negatively correlated with the intensity of the dust exposure. Exposure of V. radiata to dust compared with the control was caused 5% (T1, 14% (T2 and 27% (T3 reduction in leaf DM (p≤0.05, ANOVA. Also, exposure to the dust induced a significant (p≤0.05 reduction in the Total Chl content in (T3 25%. Also, we showed that ФPSII, ETR and Fv/Fm were affected by increasing of the dust concentrations. Exposure to the dust resulted in a significant reduction in ETR of 15%, 22%, and 43%.

  16. Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity.

    Science.gov (United States)

    Yanniccari, Marcos; Tambussi, Eduardo; Istilart, Carolina; Castro, Ana María

    2012-08-01

    Despite the extensive use of glyphosate, how it alters the physiology and metabolism of plants is still unclear. Photosynthesis is not regarded to be a primary inhibitory target of glyphosate, but it has been reported to be affected by this herbicide. The aim of the current research was to determine the effects of glyphosate on the light and dark reactions of photosynthesis by comparing glyphosate-susceptible and glyphosate-resistant Lolium perenne biotypes. After glyphosate treatment, accumulation of reduced carbohydrates occurred before a decrease in gas exchange. Stomatal conductance and CO(2) assimilation were reduced earlier than chlorophyll fluorescence and the amount of chlorophyll in susceptible plants. In the glyphosate-resistant biotype, stomatal conductance was the only parameter slightly affected only 5 days post-application. In susceptible plants, the initial glyphosate effects on gas exchange could be a response to a feedback regulation of photosynthesis. Since the herbicide affects actively growing tissues regardless of the inhibition of photosynthesis, the demand of assimilates decreased and consequently induced an accumulation of carbohydrates in leaves. We concluded that stomatal conductance could be a very sensitive parameter to assess both the susceptibility/resistance to glyphosate before the phytotoxic symptoms become evident.

  17. Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions

    Institute of Scientific and Technical Information of China (English)

    WANG WeiBo; YANG CuiYun; TANG DongShan; LI DunHai; LIU YongDing; HU ChunXiang

    2007-01-01

    Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence andextracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under different burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular polysaccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of photosystem Ⅱ (PS Ⅱ) after rehydration.

  18. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    Science.gov (United States)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  19. Effect of Light Quality on Photosynthesis and Chlorophyll Fluorescence in Strawberry Leaves

    Institute of Scientific and Technical Information of China (English)

    XU Kai; GUO Yan-ping; ZHANG Shang-long; ZHANG Liang-cheng; ZHANG Ling-xiao

    2004-01-01

    The photosynthetic characteristics of strawberry(Fragaria x ananassa Duch. cv. Toyonoka)leaves under illumination of identical light intensity(55-57% natural light)with different light quality were studied. It was showed that the chlorophyll content,maximal photochemical efficiency of PS Ⅱ(Fv/Fm),Fm/Fo,amount of inactive PS Ⅱ reaction centers(Fi-Fo)and rate of QAreduction were positively correlated with the red-light/blue-light ratios,but the chlorophyll(a/b)ratios were negatively correlated with them. Carotenoid content of the leaves was maximum under the blue film,than under green film,red film,white film and yellow film,and negatively correlated with the red/farred ratios. The apparent quantum yield(AQY),photorespiratory rate(Pr)and carboxylation efficiency(CE)were also strongly affected by light quality. The photosynthetic rate(Pn)in strawberry leaves under green film was significantly lower than under all other film. Our results suggested that light quality is an essential factor regulating the development of PS Ⅱ and phytochrome and an independent blue light photoreceptor,possibly a cryptochrome,can regulate photosynthetic performance.

  20. High Spatio-Temporal-Resolution Detection of Chlorophyll Fluorescence Dynamics from a Single Chloroplast with Confocal Imaging Fluorometer

    CERN Document Server

    Tseng, Yi-Chin

    2016-01-01

    Chlorophyll fluorescence (CF) is a key indicator to study plant physiology or photosynthesis efficiency. Conventionally, CF is characterized by fluorometers, which only allows ensemble measurement through wide-field detection. For imaging fluorometers, the typical spatial and temporal resolutions are on the order of millimeter and second, far from enough to study cellular/sub-cellular CF dynamics. In addition, due to the lack of optical sectioning capability, conventional imaging fluorometers cannot identify CF from a single cell or even a single chloroplast. Here we demonstrated a novel fluorometer based on confocal imaging, that not only provides high contrast images, but also allows CF measurement with spatiotemporal resolution as high as micrometer and millisecond. CF transient (the Kautsky curve) from a single chloroplast is successfully obtained, with both the temporal dynamics and the intensity dependences corresponding well to the ensemble measurement from conventional studies. The significance of con...

  1. Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Fernández, Juan Olivares; Rosenqvist, Eva;

    2014-01-01

    The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat...... of the cultivar response in intact plants versus detached leaves was low (r=0.13 (with expt.1) and 0.02 with expt.2). The most important difference between the two methods was the pronounced difference in time scale of reaction, which may indicate the involvement of different physiological mechanisms in response...... treatment affect chlorophyll fluorescence parameters. A set of 41 spring wheat cultivars differing in their maximum photochemical efficiency of photosystem (PS) II (Fv/Fm) under heat stress conditions was used. These cultivars were previously evaluated based on the heat treatment of intact plants...

  2. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa.

    Science.gov (United States)

    Lin, Li; Feng, Cong; Li, Qingyun; Wu, Min; Zhao, Liangyuan

    2015-10-01

    Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm(-2) at 2.5 × 10(7), 5 × 10(7), 1 × 10(8), 2.5 × 10(8), and 5 × 10(8) cells mL(-1) initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa.

  3. Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.W. [Southwest Texas State Univ.. Dept. of Biology, San Marcos, TX (United States); Searles, P.S.; Ryel, R.J.; Caldwell, M.M. [Utah State Univ., Dept. of Rangeland Resources and the Ecology Center, Logan, UT (United States); Ballare, C.L. [IFEVA, Univ. de Buenos Aires, Dept. de Ecologia, Facultad de Agronomia, Buenos Aires, (Argentina)

    2000-07-01

    Ratios of chlorophyll fluorescence induced by ultraviolet (UV) and bluegreen (BG) radiation [F(UV)/F(BG)] were determined with a Xe-PAM fluorometer to test the utility of this technique as a means of non-intrusively assessing changes in the pigmentation and optical properties of leaves exposed to varying UV exposures under laboratory and field conditions. For plants of Vicia faba and Brassica campestris, grown under controlled-environmental conditions, F(UV-B)/F(BG) was negatively correlated with whole-leaf UV-B-absorbing pigment concentrations. Fluorescence ratios of V.faba were similar to, and positively correlated with (r{sup 2} = 0.77 [UV-B]; 0.85 [UV-A]), direct measurements of epidermal transmittance made with an integrating sphere. Leaves of 2 of 4 cultivars of field-grown Glycine max exposed to near-ambient solar UV-B at a mid-latitude site (Buenos Aires, Argentina, 34 degrees S) showed significantly lower abaxial F(UV-B)/F(BG) values (i.e., lower UV-B epidermal transmittance) than those exposed to attenuated UV-B, but solar UV-B reduction had a minimal effect on F(UV-B)/F(BG) in plants growing at a high-latitude site (Tierra del Fuego, Argentina, 55 degrees S). Similarly, the exotic Taraxacum officinale did not show significant changes in F(UV-B)/F(BG) when exposed to very high supplemental UV-B (biologically effective UV-B = 14-15 kJ m{sup -2} day{sup -1}) in the field in Tierra del Fuego, whereas a native species, Gunnera magellanica, showed significant increases in F(UV-B)/F(BG) relative to those receiving ambient UV-B. These anomalous fluorescence changes were associated with increases in BG-absorbing pigments (anthocyanins), but not UV-B-absorbing pigments. These results indicate that non-invasive estimates of epidermal transmittance of UV radiation using chlorophyll fluorescence can detect changes in pigmentation and leaf optical properties induced by UV-B radiation under both field and laboratory conditions. However, this technique may be of limited

  4. Gross Primary Production of a Wheat Canopy Relates Stronger to Far Red Than to Red Solar-Induced Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Yves Goulas

    2017-01-01

    Full Text Available Sun-induced chlorophyll fluorescence (SIF is a radiation flux emitted by chlorophyll molecules in the red (RSIF and far red region (FRSIF, and is considered as a potential indicator of the functional state of photosynthesis in remote sensing applications. Recently, ground studies and space observations have demonstrated a strong empirical linear relationship between FRSIF and carbon uptake through photosynthesis (GPP, gross primary production. In this study, we investigated the potential of RSIF and FRSIF to represent the functional status of photosynthesis at canopy level on a wheat crop. RSIF and FRSIF were continuously measured in the O2-B (SIF687 and O2-A bands (SIF760 at a high frequency rate from a nadir view at a height of 21 m, simultaneously with carbon uptake using eddy covariance (EC techniques. The relative fluorescence yield (Fyield and the photochemical yield were acquired at leaf level using active fluorescence measurements. SIF was normalized with photosynthetically active radiation (PAR to derive apparent spectral fluorescence yields (ASFY687, ASFY760. At the diurnal scale, we found limited variations of ASFY687 and ASFY760 during sunny days. We also did not find any link between Fyield and light use efficiency (LUE derived from EC, which would prevent SIF from indicating LUE changes. The coefficient of determination ( r 2 of the linear regression between SIF and GPP is found to be highly variable, depending on the emission wavelength, the time scale of observation, sky conditions, and the phenological stage. Despite its photosystem II (PSII origin, SIF687 correlates less than SIF760 with GPP in any cases. The strongest SIF–GPP relationship was found for SIF760 during canopy growth. When canopy is in a steady state, SIF687 and SIF760 are almost as effective as PAR in predicting GPP. Our results imply some constraints in the use of simple linear relationships to infer GPP from SIF, as they are expected to be better predictive

  5. Linking Physiological Responses, Chlorophyll Fluorescence and Hyperspectral Imagery to Detect Salinity Stress Using the Physiological Reflectance Index in the Coastal Shrub, Myrica cerifera

    Science.gov (United States)

    2008-01-01

    fluorescence prior to any saturating pulse (Fs) was used to estimate the effective quantum yield of photosystem II: ΔF=F Vm ¼ F Vm−Fs½ =F Vm After gas...1989). Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday...use efficiency, chlorophyll fluorescence, and reflectance indices associated with ontogenic changes in water- limited Chenopodium quinoa leaves

  6. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical phosphorus concentration

    Science.gov (United States)

    To evaluate the response of CO2 assimilation (PN) and various chlorophyll fluorescence (CF) parameters to phosphorus (P) nutrition soybean plants were grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) P supply under ambient and elevated CO2 (a...

  7. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices.

  8. Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll-a fluorescence parameters from fluorescence transients

    DEFF Research Database (Denmark)

    Albert, Kristian Rost

    2005-01-01

    cross-section of leaf sample, the number of active PSII reaction centres (RC/ CSM) and electron transport rate (ETM/CSM) and all performance indexes (PIABS, PICSo and PICSm) were increased in reduced UV-B. The total soluble flavonoid content was highest in ambient UV-B. The treatment effects......A UV-B exclusion-experiment was conducted in the high arctic Zackenberg, NE Greenland, in which Salix arctica leaves during most of the growing season were fixed perpendicular to the solar zenith angle, thereby receiving maximal solar radiation. Covered with Teflon and Mylar foil, the leaves...... received approximately 90 and 40% of the ambient UV-B irradiance, respectively. The effects were examined through recordings of chlorophyll a fluorescence transients, determination of biomass and analysis of total carbon and nitrogen content and amount of soluble flavonoids in the leaves. The processing...

  9. Light Intensity Affects Chlorophyll Synthesis During Greening Process by Metabolite Signal from Mitochondrial Alternative Oxidase in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Dawei; YUAN; Shu; 徐飞; ZHU; Feng; YUAN; Ming; YE; Huaxun; GUO; Hongqing; LV; Xin; YIN; Yanhai; 林宏辉

    2015-01-01

    Although mitochondrial alternative oxidase(AOX)has been proposed to play essential roles in high light stress tolerance,the effects of AOX on chlorophyll synthesis are unclear.Previous studies indicated that during greening,chlorophyll accumulation was largely delayed in plants whose mitochondrial cyanide-resistant respiration was inhibited by knocking out nuclear encoded AOX gene.Here we show that this delay of chlorophyll accumulation was more significant under high light condition.Inhibition of cyanide-resistant respiration was also accompanied by the increase of plastid NADPH/NADP~+ratio,especially under high light treatment which subsequently blocked the import of multiple plastidial proteins,such as some components of the photosynthetic electron transport chain,the Calvin-Benson cycle enzymes and malate/oxaloacetate shuttle components.Over expression of AOXla rescued the aoxla mutant phenotype,including the chlorophyll accumulation during greening and plastidial protein import.It thus suggests that light intensity affects chlorophyll synthesis during greening process by a metabolic signal,the AOX-derived plastidial NADPH/NADP~+ratio change.And our results thus revealed a molecular mechanism of chloroplast-mitochondria interactions.

  10. Chlorophyll a fluorescence and herbicide efficacy, metabolism and selectivity

    DEFF Research Database (Denmark)

    Abbas Poor, Majid

    like black nightshade (Paper III). In field studies with logarithmic sprayer the effects of glyphosate (EPSPS inhibitor) and terbuthylazine (PSII inhibitor)mixed with three EC non-ionic adjuvants (Torpedo-II, Li-700 and Validate) on the fluorescence parameters were investigated in spring barley...... by analyzing the changes in Kautsky curve. Torpedo-II significantly increased the herbicide effect on fluorescence parameters while Li-700 decreased the effect. Spring barley sprayed with glyphosate died few weeks after spraying whether mixed with adjuvants or not while completely recovering from...

  11. Effects of nitrogen form on growth, CO₂ assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants.

    Science.gov (United States)

    Zhou, Yan-hong; Zhang, Yi-li; Wang, Xue-min; Cui, Jin-xia; Xia, Xiao-jian; Shi, Kai; Yu, Jing-quan

    2011-02-01

    Cucumber and rice plants with varying ammonium (NH(4)(+)) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO(3)(-))-grown plants, cucumber plants grown under NH(4)(+)-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO(2)) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O(2)-independent alternative electron flux, and increased O(2)-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH(4)(+)-grown plants had a higher O(2)-independent alternative electron flux than NO(3)(-)-grown plants. NO(3)(-) reduction activity was rarely detected in leaves of NH(4)(+)-grown cucumber plants, but was high in NH(4)(+)-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO(3)(-) assimilation, an effect more significant in NO(3)(-)-grown plants than in NH(4)(+)-grown plants. Meanwhile, NH(4)(+)-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO(3)(-) reduction, regardless of the N form supplied, while NH(4)(+)-sensitive plants had a high water-water cycle activity when NH(4)(+) was supplied as the sole N source.

  12. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress.

    Science.gov (United States)

    Shu, Sheng; Yuan, Ling-Yun; Guo, Shi-Rong; Sun, Jin; Yuan, Ying-Hui

    2013-02-01

    The effects of exogenous spermine (Spm) on plant growth, chlorophyll fluorescence, ultrastructure and anti-oxidative metabolism of chloroplasts were investigated in Cucumis sativus L. under NaCl stress. Salt stress significantly reduced plant growth, chlorophylls content and F(v)/F(m). These changes could be alleviated by foliar spraying with Spm. Salt stress caused an increase in malondialdehyde (MDA) content and superoxide anion [Formula: see text] generation rate in chloroplasts. Application of Spm significantly increased activities of superoxidase dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11) which decreased the levels of [Formula: see text] and MDA in the salt-stressed chloroplasts. Salt stress decreased the activities of dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) in the chloroplasts and reduced the contents of dehydroascorbate (DAsA) and glutathione (GSH), but increased monodehydroascorbate reductase (MDAR, EC 1.6.5.4) activity. On the other hand, Spm significantly increased the activities of antioxidant enzymes and levels of antioxidants in the salt-stressed chloroplasts. Further analysis of the ultrastructure of chloroplasts indicated that salinity induced destruction of the chloroplast envelope and increased the number of plastoglobuli with aberrations in thylakoid membranes. However, Spm application to salt-stressed plant leaves counteracted the adverse effects of salinity on the structure of the photosynthetic apparatus. These results suggest that Spm alleviates salt-induced oxidative stress through regulating antioxidant systems in chloroplasts of cucumber seedlings, which is associated with an improvement of the photochemical efficiency of PSII.

  13. Assessment of growth rate, chlorophyll a fluorescence, lipid peroxidation and antioxidant enzyme activity in Aphanizomenon flos-aquae, Pediastrum simplex and Synedra acus exposed to cadmium.

    Science.gov (United States)

    Ran, Xiaofei; Liu, Rui; Xu, Sha; Bai, Fang; Xu, Jinzhu; Yang, Yanjun; Shi, Junqiong; Wu, Zhongxing

    2015-03-01

    In this study, the effects of cadmium on the cyanobacterium Aphanizomenon flos-aquae, the green alga Pediastrum simplex and the diatom Synedra acus was evaluated on the basis of growth rate, chlorophyll a fluorescence, lipid peroxidation and antioxidant enzyme activity. The EC50 values (effective concentration inducing 50 % of growth inhibition) of cadmium in A. flos-aquae, P. simplex and S. acus were 1.18 ± 0.044, 4.32 ± 0.068 and 3.7 ± 0.055 mg/L, respectively. The results suggested that cadmium stress decreases growth rate and chlorophyll a concentration. The normalized chlorophyll a fluorescence transients significantly increased at cadmium concentrations of 5.0, 10.0 and 20.0 mg/L, but slightly decreased at concentrations of 0.2, 0.5 and 1.0 mg/L. The chlorophyll fluorescence parameters showed considerable variation among the three species, while lipid peroxidation and antioxidant enzyme activities showed a significant increase. Our results demonstrated that blockage of electron transport on the acceptor side of photosystem II is the mechanism responsible for cadmium toxicity in freshwater microalgae, and that the tolerance of the three species to cadmium was in the order green alga P. simplex > diatom S. acus > cyanobacterium A. flos-aquae.

  14. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.

    Science.gov (United States)

    Stirbet, Alexandrina; Govindjee

    2012-09-01

    The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence

  15. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis.

    Science.gov (United States)

    Wang, Wanqing; Tang, Weijiang; Ma, Tingting; Niu, De; Jin, Jing Bo; Wang, Haiyang; Lin, Rongcheng

    2016-01-01

    Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.

  16. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    Science.gov (United States)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  17. Evaluation of Chlorophyll Fluorescence and Biochemical Traits of Lettuce under Drought Stress and Super Absorbent or Bentonite Application

    Directory of Open Access Journals (Sweden)

    Akram Valizadeh Ghale Beig

    2014-03-01

    Full Text Available The effects of two superabsorbents (natural-bentonite and (synthetic-A 200 on the chlorophyll fluorescence index, proline accumulation, phenolic compounds, antioxidant activity and total carbohydrate in lettuce (Lactuca sativa L. was evaluated. For this purpose, a factorial experiment using completely randomized design with superabsorbents at 3 levels (0, 0.15, 0.30 w/w%, drought stress at 2 levels (60 and 100% of field capacity and 4 replicates was conducted. Results showed that photosystem photochemical efficiency (Fv/Fm II under drought stress (60% FC as well as lower levels of bentonite superabsorbent polymer reduced. The minimum and maximum proline content were obtained in 0.3% bentonite, 100% FC and 0 benetonite, 60% FC, respectively. The lowest and highest phenolic compounds was corresponded to the highest levels in both super absorbents and control respectively, so that the super absorbent and bentonite, reduced phenolic compounds by 62.65 and 66.21% compared to control. 0 and 0.15 wt % bentonite in high drought stress (60% FC showed the highest and 0.3 wt % bentonite and 100% FC attained the lowest level of antioxidant activity. Control bentonite treatment beds at 60% FC and beds containing 0.3 wt. % bentonite in 100% FC, showed the lowest and the highest total carbohydrate content respectively. Results of this study indicate that bentonite can reduce the negative effects of drought stress similar to artificial super absorbent.

  18. Herbicidal effects of harmaline from Peganum harmala on photosynthesis of Chlorella pyrenoidosa: probed by chlorophyll fluorescence and thermoluminescence.

    Science.gov (United States)

    Deng, Chunnuan; Shao, Hua; Pan, Xiangliang; Wang, Shuzhi; Zhang, Daoyong

    2014-10-01

    The herbicidal effects of harmaline extracted from Peganum harmala seed on cell growth and photosynthesis of green algae Chlorella pyrenoidosa were investigated using chlorophyll a fluorescence and thermoluminescence techniques. Exposure to harmaline inhibited cell growth, pigments contents and oxygen evolution of C. pyrenoidosa. Oxygen evolution was more sensitive to harmaline toxicity than cell growth or the whole photosystem II (PSII) activity, maybe it was the first target site of harmaline. The JIP-test parameters showed that harmaline inhibited the donor side of PSII. Harmaline decreased photochemical efficiency and electron transport flow of PSII but increased the energy dissipation. The charge recombination was also affected by harmaline. Amplitude of the fast phase decreased and the slow phase increased at the highest level of harmaline. Electron transfer from QA(-) to QB was inhibited and backward electron transport flow from QA(-) to oxygen evolution complex was enhanced at 10 μg mL(-1) harmaline. Exposure to 10 μg mL(-1) harmaline caused appearance of C band in thermoluminescence. Exposure to 5 μg mL(-1) harmaline inhibited the formation of proton gradient. The highest concentration of harmaline treatment inhibited S3QB(-) charge recombination but promoted formation of QA(-)YD(+) charge pairs. P. harmala harmaline may be a promising herbicide because of its inhibition of cell growth, pigments synthesis, oxygen evolution and PSII activities.

  19. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin; Lotfi; Mohammad; Pessarakli; Puriya; Gharavi-Kouchebagh; Hossein; Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid(0, 300, and 600 mg L-1) on photosystem II and antioxidant enzyme activity of the rapeseed(Brassica napus L.) plant under water stress(60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid(FA) improved the maximum quantum efficiency of PSII(Fv/Fm)and performance index(PI) of plants under both well-watered and limited-water conditions. The time span from Foto Fmand the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species(ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  20. Physiological responses of Brassica napus to fulvic acid under water stress:Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin Lotfi; Mohammad Pessarakli; Puriya Gharavi-Kouchebagh; Hossein Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid (0, 300, and 600 mg L−1) on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L.) plant under water stress (60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA) improved the maximum quantum efficiency of PSII (Fv/Fm) and performance index (PI) of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  1. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  2. Effect of Nitrogen Fertilization on Leaf Chlorophyll Fluorescence in Field-Grown Winter Wheat Under Rainfed Conditions

    Institute of Scientific and Technical Information of China (English)

    SHANGGUAN Zhou-ping; ZHENG Shu-xia; ZHANG Lei-ming; XUE Qing-wu

    2005-01-01

    The effect of nitrogen fertilization on leaf chlorophyll fluorescence was studied in field-grown winter wheat during grain filling under rainfed conditions in Loess Plateau. Results showed that the actual photochemical efficiency of PS Ⅱ reaction center (Ф PS Ⅱ) decreased significantly as leaf water stress progressed, however, the Ф PS was increased by nitrogen fertilization. The Ф PS Ⅱ of 0, 90 and 180 kg ha-1 nitrogen treatments at noon were 0.197, 0.279 and 0.283, respectively, which decreased by 57.7, 56.4 and 40.2% as compared was even higher than that in the moming. Application of nitrogen fertilizer significantly increased maximum photochemical efficiency (Fv/Fm), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qNP). These results indicated that application of nitrogen fertilizer could increase the light energy conversion efficiency, the potential activity of photosynthetic reaction center, and the non-photochemical dissipation of excess light energy, which can prevent leaf photosynthetic apparatus from damage of treatments, indicating that the excess nitrogen was unfavorable to photosynthesis.

  3. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting.

    Science.gov (United States)

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock.

  4. Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa-OJIP chlorophyll a fluorescence analysis

    Institute of Scientific and Technical Information of China (English)

    XIA Jianrong; TIAN Qiran

    2009-01-01

    Acute toxicity of excess Cu on the photosynthetic performance of Chlorella pyrenoidosa was examined by using chlorophyll a fluorescence transients and JIP-test after exposure to elevated Cu concentrations for a short period of time.High Cu concentration resulted in a significant suppression in photosynthesis and respiration.The absorption flux (ABS/RC) per PSⅡ reaction center increased with increasing Cu concentration,but the electron transport flux (ET_0/RC) decreased.Excess Cu had an insignificant effect on the trapping flux (TR_0/RC).The decline in the efficiency with which a trapped exciton can move an electron into the electron transport chain further than QA- (ψ_o),the maximal quantum yield of primary photochemistry (φP_o),and the quantum yield of electron transport (φE_o) were also observed.The amount of active PSⅡ reaction centers per excited cross section (RC/CS) was also in consistency with the change of photosynthesis when cells were exposed to excess Cu concentration.JIP-test parameters had a good linear relationship with photosynthetic O_2 evolution.These results suggested that the decrease of photosynthesis in exposure to excess Cu may be a result of the inactivation of PSⅡ reaction centers and inhibition of electron transport in the acceptor side.

  5. Effects of NaCl Stress on Chlorophyll Fluorescence Parameters in Cinnamomum japonicum var. chenii%NaCl胁迫对普陀樟叶绿素荧光参数的影响

    Institute of Scientific and Technical Information of China (English)

    李影丽; 汪奎宏; 杜国坚; 许利群; 杨华; 肖纪军

    2008-01-01

    [Objective] Study on the changes of chlorophyll fluorescence parameters in Cinnamomum japonicum var. chenii under NaCl stress. [Method] The seedling growth increment, chlorophyll content and chlorophyll fluorescence parameters in leaves of 1-year old Cinnamomum japonicum var. chenii were investigated in field experiment. [Result] Under NaCl stress, seedling growth increment reduced and the chlorophyll content decreased to a stable value; changes of Fv/Fm and Fv/Fo showed identical increasing trend and double peak type. With the aggravation of salt stress, most variations were ob- served in Fo, correlations among chlorophyll fluorescence parameters presented "rise-drop" trend (in the treatment of 7 g/L NaCl). [Condusion] Cinna-momum japonicum var. chenii is endowed with strong salt resistance and wide adaptability.

  6. Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia.

    Science.gov (United States)

    Van Wittenberghe, Shari; Alonso, Luis; Verrelst, Jochem; Hermans, Inge; Delegido, Jesús; Veroustraete, Frank; Valcke, Roland; Moreno, José; Samson, Roeland

    2013-02-01

    Passive steady-state chlorophyll fluorescence (Fs) provides a direct diagnosis of the functional status of vegetation photosynthesis. With the prospect of mapping Fs using remote sensing techniques, field measurements are mandatory to understand to which extent Fs allows detecting plant stress in different environments. Trees of four common species in Valencia were classified in either a low or a high local traffic exposure class based on their leaf magnetic value. Upward and downward hyperspectral fluorescence yield (FY) and indices based on the two Fs peaks (at 687 and 741 nm) were calculated. FY indices of P. canariensis and P. x acerifolia were significantly different between the two traffic exposure classes defined, but not for C. australis nor M. alba. While chlorophyll content could not indicate the difference between low and high traffic exposure, the FY(687)/FY(741) peak ratio increased significantly (p < 0.05) for both leaf sides for the higher traffic exposure class.

  7. Effects of different concentrations of nitrogen and phosphorus on chlorophyll biosynthesis,chlorophyll a fluorescence,and photosynthesis In Larix olgensis seedlings

    Institute of Scientific and Technical Information of China (English)

    Wu Chu; Wang Zhengquan; Sun Hailong; Guo Shenglei

    2006-01-01

    In our experiments,one-year-old Larix olgensis seedlings were cultivated in sand,and supplied with solutions with different concentrations of nitrate or phosphate.The effects of nitrogen and phosphorus supply on chlorophyll biosynthesis,total nitrogen content,and photosynthetic rate were studied.The experimental results are listed below: 1) 5-aminolevulinic acid (ALA) synthetic rate increased as nitrate concentrations supplied to larch seedlings increased from 1 to 8 mmol/L.But the rate decreased by 17% when nitrate concentration increased to 16 mmol/L,in contrast to the control.Under phosphate treatments,ALA synthetic rates were similar to those under nitrate treatments.The activities of porphobilinogen (PBG)synthase reached a maximum when larch seedlings were supplied with 8 mmol/L of nitrate or 1 mmol/L of phosphate.2) When larch seedlings were supplied with 8 mmol/L of nitrate and 0.5 mmol/L of phosphate,the contents of chlorophyll a,chlorophyll b,total chlorophyll,and carotenoids reached a maximum.The total nitrogen contents in leaves increased as nitrate concentrations increased.3) When phosphate concentrations increased from 0.125 to 1 mmol/L,the total nitrogen contents in leaves slightly increased;however,continuous increase of phosphate concentrations resulted in the decrease in total nitrogen contents in leaves.When nitrate concentrations increased from 1 to 8 mmol/L,soluble protein contents in leaves increased in general,and continuous increase of nitrate concentrations induced a decrease in soluble protein contents in leaves.Under treatment of 0.25 mmol/L of phosphate,the soluble protein contents reached a maximum.4) In general,Fv/Fm increased as nitrate concentrations increased from 1 to 8 mmol/L,and continuous increase of nitrate concentration resulted in decrease in FvlFm.The similar changes occurred under phosphate treatments.As nitrate concentrations increased from 1 to 8 mmol/L,photosynthetic rates gradually increased,but when nitrate

  8. Ratiometric fluorescence signalling of fluoride ions by an amidophthalimide derivative

    Indian Academy of Sciences (India)

    Moloy Sarkar; Raghavendra Yellampalli; Bhaswati Bhattacharya; Ravi Kumar Kanaparthi; Anunay Samanta

    2007-03-01

    Fluorescence behaviour of 4-benzoylamido-N-methylphthalimide (1), designed and developed for selective detection of fluoride ions, is reported. 1 displays F--induced colour change that allows its detection with the naked eye. The F- specificity of the sensor system is evident from the fact that unlike F-, other halides do not affect the absorption characteristics of 1. Apart from the colorimetric response, the fluorescence output of 1 is also modulated by F- in a manner that permits ratiometric fluorescence signalling of F- as well. It is found that the system can detect F- in the concentration range of 10- 60 M. The results of the experiments and theoretical calculations unambiguously suggest that the changes of the electronic absorption and fluorescence behaviour of 1, which have been exploited for signalling purpose, are due to F--induced deprotonation of the 4-amido moiety of the sensor system.

  9. The development of attenuation compensation models of fluorescence spectroscopy signals

    Science.gov (United States)

    Dremin, Victor V.; Zherebtsov, Evgeny A.; Rafailov, Ilya E.; Vinokurov, Andrey Y.; Novikova, Irina N.; Zherebtsova, Angelina I.; Litvinova, Karina S.; Dunaev, Andrey V.

    2016-04-01

    This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.

  10. Characteristics of Gas Exchange, Chlorophyll Fluorescence and Expression of Key Enzymes in Photosynthesis During Leaf Senescence in Rice Plants

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yan WENG; Hong-Xia XU; De-An JIANG

    2005-01-01

    Gas exchange, chlorophyll (Chl) fluorescence, photosynthetic pigments, and the expression of Rubisco and Rubisco activase in flag leaves of rice (Oryza sativa L.) from the heading to mature grain stage were investigated. The results showed that the photosynthetic capacity declined after full expansion of flag leaves. The decline of photosynthetic rate (Pn) in two cultivars during natural senescence was accompanied by a decrease in Chl content, as well as in the Rubisco and Rubisco activase contents. The Rubisco and Rubisco activase contents in Zhenong 966 decreased faster than that in Zhenong 952. The Pn diminished without a decrease in intercellular CO2 concentration during the early senescence of flag leaves, indicating that lower photosynthetic capacity is not caused by stomatal limitation but by reduced carboxylation efficiency. During the senescence of flag leaves, the correlation between the change in photosynthetic capacity and the variation in the abundance of Rubisco and Rubisco activase suggested that the decline in Pn of flag leaves could be attributed to the lower level of rbcS and rca transcripts. The (φ)PSⅡ and the electron transport rate appeared in the same rate as Pn. However, excitation pressure (1-qP) showed a different pattern and there was an inverse linear correlation between increased excitation pressure and the reduced Rubisco. Therefore, it is likely that the increased excitation pressure resulted from saturation of the electron transport chain, owing to a limitation of the reductant used by the Calvin cycle; in addition, the change in excitation pressure could further mediate the expression of the rbcS and rca genes, resulting in a fast reduction in Rubisco content.

  11. Atividade da redutase do nitrato e fluorescência da clorofila a em mamoeiro Nitrate reductase activity and chlorophyll a fluorescence in papaya

    Directory of Open Access Journals (Sweden)

    Renata Venturim Fontes

    2008-03-01

    correlation r= 0,740 and coefficient of determination r²= 0,706 and Sunrise Solo 72/12 (coefficient of correlation r= 0,960 and coefficient of determination r²= 0,945. These results suggest that there is a correlation between chlorophyll a fluorescence and nitrate reductase activity in these plants.

  12. The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: accumulation and function of QB-nonreducing centers.

    Science.gov (United States)

    Vredenberg, Wim; Kasalicky, Vojtech; Durchan, Milan; Prasil, Ondrej

    2006-03-01

    The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.

  13. Red fluorescence in reef fish: A novel signalling mechanism?

    Directory of Open Access Journals (Sweden)

    Siebeck Ulrike E

    2008-09-01

    Full Text Available Abstract Background At depths below 10 m, reefs are dominated by blue-green light because seawater selectively absorbs the longer, 'red' wavelengths beyond 600 nm from the downwelling sunlight. Consequently, the visual pigments of many reef fish are matched to shorter wavelengths, which are transmitted better by water. Combining the typically poor long-wavelength sensitivity of fish eyes with the presumed lack of ambient red light, red light is currently considered irrelevant for reef fish. However, previous studies ignore the fact that several marine organisms, including deep sea fish, produce their own red luminescence and are capable of seeing it. Results We here report that at least 32 reef fishes from 16 genera and 5 families show pronounced red fluorescence under natural, daytime conditions at depths where downwelling red light is virtually absent. Fluorescence was confirmed by extensive spectrometry in the laboratory. In most cases peak emission was around 600 nm and fluorescence was associated with guanine crystals, which thus far were known for their light reflecting properties only. Our data indicate that red fluorescence may function in a context of intraspecific communication. Fluorescence patterns were typically associated with the eyes or the head, varying substantially even between species of the same genus. Moreover red fluorescence was particularly strong in fins that are involved in intraspecific signalling. Finally, microspectrometry in one fluorescent goby, Eviota pellucida, showed a long-wave sensitivity that overlapped with its own red fluorescence, indicating that this species is capable of seeing its own fluorescence. Conclusion We show that red fluorescence is widespread among marine fishes. Many features indicate that it is used as a private communication mechanism in small, benthic, pair- or group-living fishes. Many of these species show quite cryptic colouration in other parts of the visible spectrum. High inter

  14. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models.

    Science.gov (United States)

    Zhang, Yongguang; Guanter, Luis; Berry, Joseph A; Joiner, Joanna; van der Tol, Christiaan; Huete, Alfredo; Gitelson, Anatoly; Voigt, Maximilian; Köhler, Philipp

    2014-12-01

    Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation (Vcmax ) is a key control parameter of photosynthetic capacity. Even though Vcmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measurements of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top-of-canopy SIF measurements from space are sensitive to Vcmax at the ecosystem level, and present an approach to invert Vcmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal Vcmax and SIF which are used to solve the inverse problem. We evaluate our Vcmax estimation method at six agricultural flux tower sites in the midwestern US using spaced-based SIF retrievals. Our Vcmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101 μmol m(-2)  s(-1) , respectively) and show plausible seasonal patterns. The effect of the updated seasonally varying Vcmax parameterization on simulated gross primary productivity (GPP) is tested by comparing to simulations with fixed Vcmax values. Validation against flux tower observations demonstrate that simulations of GPP and light use efficiency improve significantly when our time-resolved Vcmax estimates from SIF are used, with R(2) for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83. Our results support the use of

  15. Toxic Effects of Ethyl Cinnamate on the Photosynthesis and Physiological Characteristics of Chlorella vulgaris Based on Chlorophyll Fluorescence and Flow Cytometry Analysis

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2015-01-01

    Full Text Available The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, Fv/Fm (maximal photochemical efficiency of PSII, ФPSII (actual photochemical efficiency of PSII in the light, FDA, and PI staining fluorescence, were measured. The results showed the following: (1 The inhibition on biomass increased as the exposure concentration increased. 1 mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07 mg/L (1.94–2.20 and 1.89 mg/L (1.82–1.97. (2 After 24 h of exposure to 2–4 mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in ФPSII being close to zero. After 72 h of exposure to 4 mg/L ethyl cinnamate, the Fv/Fm of C. vulgaris dropped to zero. (3 Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable.

  16. Evaluation the vigour of urban green lawn grown under long-term shade conditions by the use of chlorophyll fluorescence technique

    Directory of Open Access Journals (Sweden)

    Dąbrowski Piotr

    2015-09-01

    Full Text Available Unfavorable light conditions in urban areas are one of the most important cause of inappropriate grass communities condition. The possibility to detect the plant stress caused by shade is an important element in shaping the environment. The answer to following questions: what is the ability to detect the stress caused by shade in chosen lawn varieties of Perennial ryegrass by using the chlorophyll a fluorescence (O-J-I-P test and which of tested varieties has the best properties to create grasslands in reduced light conditions is the aim of this work. Two-factor experimental micro-plot was conducted with three varieties and three different shadowing variants. Chlorophyll a fluorescence measurements were provided and were compared to leaf density. Our results explored significant difference between selected varieties in the terms of their photosynthetic apparatus adaption to light conditions. During May, all tested varieties were characterized by the rise of all fluorescence curve points under lower light intensity. The largest changes under shade conditions were noticed for the variety ‘Taya’. During next months a declining trend of photosynthetic efficiency for this variety was observed. On the basis of our results, we assume that each variety has unique threshold and needs of light intensity.

  17. A field study on solar-induced chlorophyll fluorescence and pigment parameters along a vertical canopy gradient of four tree species in an urban environment.

    Science.gov (United States)

    Van Wittenberghe, Shari; Alonso, Luis; Verrelst, Jochem; Hermans, Inge; Valcke, Roland; Veroustraete, Frank; Moreno, José; Samson, Roeland

    2014-01-01

    To better understand the potential uses of vegetation indices based on the sun-induced upward and downward chlorophyll fluorescence at leaf and at canopy scales, a field study was carried out in the city of Valencia (Spain). Fluorescence yield (FY) indices were derived for trees at different traffic intensity locations and at three canopy heights. This allowed investigating within-tree and between-tree variations of FY indices for four tree species. Several FY indices showed a significant (p alba (white mulberry) and Phoenix canariensis (Canary Island date palm). The upward FY parameters of M. alba, and the upward to downward ratios at 687 and 741 nm for both species, were significantly related to tree location. It was found that not the total chlorophyll (Chl) content, but rather the Chl a/b ratio showed the strongest correlations with several of the indices applied. Chl a/b was lowest at the bottom level of the highest traffic intensity location for both species due to an increased Chl b, indicating a larger light harvesting complex related to Photosystem II (LHCII) as a response to limiting light. The leaf deposits from traffic observed at this sampling location possibly led to a shading effect, resulting further in an adaptive response of the photosynthetic system and subsequent difference of FY indices. This study therefore indicated the importance of the size of LHCII on the fluorescence emission, observed under different traffic generated pollution conditions.

  18. Toxic Effects of Ethyl Cinnamate on the Photosynthesis and Physiological Characteristics of Chlorella vulgaris Based on Chlorophyll Fluorescence and Flow Cytometry Analysis.

    Science.gov (United States)

    Jiao, Yang; Ouyang, Hui-Ling; Jiang, Yu-Jiao; Kong, Xiang-Zhen; He, Wei; Liu, Wen-Xiu; Yang, Bin; Xu, Fu-Liu

    2015-01-01

    The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, F(v)/F(m) (maximal photochemical efficiency of PSII), Ф(PSII) (actual photochemical efficiency of PSII in the light), FDA, and PI staining fluorescence, were measured. The results showed the following: (1) The inhibition on biomass increased as the exposure concentration increased. 1 mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07 mg/L (1.94-2.20) and 1.89 mg/L (1.82-1.97). (2) After 24 h of exposure to 2-4 mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in Ф(PSII) being close to zero. After 72 h of exposure to 4 mg/L ethyl cinnamate, the Fv /Fm of C. vulgaris dropped to zero. (3) Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable.

  19. Effect of Different Norms of Under-Mulch-Drip Irrigation on Diurnal Changes of Photosynthesis and Chlorophyll Fluorescence Parameter in High Yield Cotton of Xinjiang

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wang-feng; REN Li-tong; WANG Zhen-lin; LI Shao-kun; GOU Ling; YU Songlie; CAO Lian-pu

    2003-01-01

    Under-mulch-drip irrigation is an advanced irrigation technique, which combines plastic-film-covered cultivation with drip irrigation. The influence of different norms of under-mulch-drip irrigation on di-urnal changes of photosynthetic rates and chlorophyll fluorescence parameters of cotton was studied, in orderto understand the physiological mechanisms of water-saving and high-yielding farming in Xinjiang. Results in-dicated that limited drip irrigation, which supplies 2/3 of 375 m3 ha-1 , the widely-used irrigation norm in cot-ton cultivation in Xinjiang, caused a water deficit in cotton field. Compared with the proper drip irrigation,the leaf photosynthetic rate under limited drip irrigation decreased during 9:00 to 11:00 a. m., and was sig-nificantly suppressed at midday, and then recovered afterwards. Using the chlorophyll fluorescence method,the absorption, transfer and transformation features of solar radiation by cotton leaf were investigated. Underlimited drip irrigation, the variable fluorescence (Fy) and primary light transfer efficiency of PSII (Fv/Fm)in cotton leaves were reduced because of the high light intensities and high temperatures at noon, and the de-crease in Xinluzao8 was greater than that in Xinluzao6. Therefore, it could be concluded that Xinluzao6 has ahigher drought-tolerance, and the Fv/Fm ratio could be used as a drought-resistance index for cotton.

  20. 小球藻内叶绿素a荧光特征的研究%Fluorescence Characteristics Studies of Chlorophyll a in Chlorella vulgaris

    Institute of Scientific and Technical Information of China (English)

    王志勤

    2012-01-01

    由于叶绿素a外环境极性的不同,其荧光行为有很大的改变。通过小球藻体内叶绿素荧光光谱特性的研究,发现其体内叶绿素的激发波长有在丙酮溶剂中的相同,均为430nm,但发射波长为680nm,红移了13nm。利用小球藻的叶绿素荧光强度进行水体中叶绿素a的定量检测,在浓度为1—100μg/L的浓度范围内,相对荧光强度与叶绿素浓度有很好的相关性,线性方程为Y=0.5338x+1.8515,线性相关系数R2为0.9974。%The fluorescence characteristics of Chlorophyll a were found to have great change under different polar environment. For the Chlorophyll a in Chlorella vulgaris, its excite wavelength was kept at 430 nm, but 13 nm red-shift was found for its emission wavelength. The fluorescence intensity of Chlorella vulgaris was used for the determination of Chlorophyll a in water, indicating that the response fluorescence intensity and the concentration presented a good linearity in the range of 1 to 100 μg/L, and the linear equation was y = 0.5338x + 1.8515, R2 = 0.9947.

  1. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  2. Diurnal variations in gas exchange and chlorophyll fluorescence in rice leaves: the cause for midday depression in CO2 photosynthetic rate

    Directory of Open Access Journals (Sweden)

    Debabrata Panda

    2011-12-01

    Full Text Available Gas exchange and chlorophyll fluorescence analysis were carried out to investigate the diurnal variations in photosynthesis in leaves of rice (Oryza sativa L.. Leaf CO2 photosynthetic rate (Pn showed a bimodal diurnal pattern and midday depression in Pn was observed at 13:00 h. Depression in Pn at midday was mostly attributed to stomatal limitation since the reduction in Pn was followed by the significant reduction in stomatal conductance (Gs. Midday depression in Pn was found to be associated with reversible inactivation of Photo-system II (PS II reaction centers and increase of photo-inhibition in response to high intensity as evidenced by the maximum efficiency of PS II (Fv/Fm decreased with increase of light intensity from 6:00 h to 16:00 h of a day. The minimal fluorescence (Fo gradually increased with increasing light intensity and reached its highest value at 13:00 h and on contrary the maximal fluorescence (Fm decreased and reached its lowest value at 13:00 h. Quantification of several chlorophyll fluorescence parameters (JIP-test like area above the fluorescence curve between Fo and Fm, phenomenological energy fluxes like electron transport per cross section (ETo/CS, active PS II reaction center per exited cross-section (RC/CSo and performance index (Pi were low in early morning, increasing with time and reaching a maximum at 9:00 h subsequently decreasing and reaching a minimum value at 13.00 h. On contrary the dissipation per cross-section (Dio/CS gradually increased with increasing light intensity and reached its highest value at 13:00 h. It is likely that PS II down-regulation and heat dissipation co-operated together to prevent the chloroplast from photo damage.

  3. Chlorophyll a Fluorescence as a Tool in Evaluating the Effects of ABA Content and Ethylene Inhibitors on Quality of Flowering Potted Bougainvillea

    Directory of Open Access Journals (Sweden)

    Antonio Ferrante

    2012-01-01

    Full Text Available Flowering potted plants during the postproduction stage are usually stored in inadequate environmental conditions. We evaluated the effect of the most common storage conditions and treatments on two Bougainvillea cultivars after harvest and during recovery. Flowering potted Bougainvillea plants were treated with 100 mL 2 mM amino-oxyacetic acid (AOA or 500 ppb 1-methylcyclopropene (1-MCP prior storage in dark at 14∘C for simulating transport or storage conditions and, subsequently, transferred to growth chambers at 20∘C in the light for one week for evaluating the recovery ability. The plant stress during the experiments was assessed by ethylene, ABA, and chlorophyll a fluorescence measurements. Ethylene production was affected by temperature rather than treatments. ABA concentration declined in leaves and flowers during storage and was not affected by treatments. Fluorescence parameters appear to be very useful for screening Bougainvillea cultivars resistant to prolonged storage periods.

  4. Chlorophyll a fluorescence as a tool in evaluating the effects of ABA content and ethylene inhibitors on quality of flowering potted Bougainvillea.

    Science.gov (United States)

    Ferrante, Antonio; Trivellini, Alice; Borghesi, Eva; Vernieri, Paolo

    2012-01-01

    Flowering potted plants during the postproduction stage are usually stored in inadequate environmental conditions. We evaluated the effect of the most common storage conditions and treatments on two Bougainvillea cultivars after harvest and during recovery. Flowering potted Bougainvillea plants were treated with 100 mL 2 mM amino-oxyacetic acid (AOA) or 500 ppb 1-methylcyclopropene (1-MCP) prior storage in dark at 14°C for simulating transport or storage conditions and, subsequently, transferred to growth chambers at 20°C in the light for one week for evaluating the recovery ability. The plant stress during the experiments was assessed by ethylene, ABA, and chlorophyll a fluorescence measurements. Ethylene production was affected by temperature rather than treatments. ABA concentration declined in leaves and flowers during storage and was not affected by treatments. Fluorescence parameters appear to be very useful for screening Bougainvillea cultivars resistant to prolonged storage periods.

  5. [Effects of long-term ozone exposure on chlorophyll a fluorescence and gas exchange of winter-wheat leaves].

    Science.gov (United States)

    Zheng, You-fei; Zhao, Ze; Wu, Rong-jun; Hu, Cheng-da; Liu, Hong-ju

    2010-02-01

    In order to provide basis for evaluating the effects of air pollutant such as O3 on crops yield and food security, the effects of O3 fumigation (ambient air, CK; 100 nL x L(-1), T1; 150 nL x L(-1), T2) on chlorophyll a fluorescence and gas exchange of a field-grown winter-wheat (Triticum aestivum L. Yang Mai 13) in different growing period were conducted via open-top chamber technique in conjunction with Diving-PAM fluorometer and LC pro + photosynthesis system. Results indicated that Fv/Fm caused by T1 was higher than 0.8, while the Pm, qP, (1-qP)/NPQ and Y(NO) were similar to those of CK, the NPQ and Y(NPQ) were increased by 13.5%-29.0% and 13.3%-22.7% respectively due to O3 stress. Under nature light (rapid light curve, RLC) and after dark adaptation (induction curve in steady-state, IC) the Yield of T1 was decreased by 4.6%-7.6% and 11.3%-19.3% respectively, with 8.0%-9.8% and 11.0%-23.1% reductions in Pn, and Gs compared to CK, respectively. In heading stage and blooming stage, the Ls of T, was greater than CK, but in filling stage and mature stage, it became lower compared to CK. The Fv/Fm was slightly lower than 0.8 under T2 treatment, with the Y(NO), (1-qP)/NPQ and c(i) were increased by 37.9%-75.6%, 157.1%-325.8% and 3.4%-18.1% relative to CK. Under RLC and IC condition, the Yield of T2 was respectively decreased by 10.2%-13.6% and 21.4%-29.1%, and the Pn, Ls, qP, Pm, NPQ and Y(NPQ) were decreased by 28.1%-39.9%, 5.2%-21.3%, 15.8%-30.4%, 27.6%-45.6%, 3.3%-52.9% and 5.7%-17.9% in comparison, respectively. Obviously the enhanced O3 causes a significant decrease in the capacity of photosynthesis of winter wheat, and the influence mechanism presents a series of dynamic changes according to growing seasons. The reduction of Fv/Fm under T1 treatment is a response of PS II reaction center to the increase of NPQ, and the decrease in Pn and Yield is a consequence of protective adjustment, by this approach, the antioxidant system and energy dissipation mechanism can

  6. Spectroscopic properties of chlorophyll f.

    Science.gov (United States)

    Li, Yaqiong; Cai, Zheng-Li; Chen, Min

    2013-09-26

    The absorption and fluorescence spectra of chlorophyll f (newly discovered in 2010) have been measured in acetone and methanol at different temperatures. The spectral analysis and assignment are compared with the spectra of chlorophyll a and d under the same experimental conditions. The spectroscopic properties of these chlorophylls have further been studied by the aid of density functional CAM-B3LYP and high-level symmetric adapted coupled-cluster configuration interaction calculations. The main Q and Soret bands and possible sidebands of chlorophylls have been determined. The photophysical properties of chlorophyll f are discussed.

  7. Effects of Chilling Stress on Photosynthetic Rate and Chlorophyll Fluorescence Parameter in Seedlings of Two Rice Cultivars Differing in Cold Tolerance

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-li; GUO Zhen-fei

    2005-01-01

    A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthetic rates declined dramatically during chilling, and decreased by 48.7% and 67.5% in Xiangnuo 1 and IR50 seedlings, respectively, after being subjected to chilling treatment for two days. Chlorophyll fluorescence measurements showed that relatively higher qP and qNP in Xiangnuo 1 were maintained to dissipate the redundant excitation energy and protect the reaction centers from chill injury; accordingly, redundant excitation energy accumulated less in the reaction centers, and antenna systems were less injured by chilling in Xiangnuo 1. On the contrary, in IR50, qP and qNP declined rapidly while Ex increased, as the chilling persisted. This result indicated that the reaction centers and antenna systems in IR50 were damaged severely by chilling, which led to the lower photosynthetic rate.

  8. [Effects of exogenous Ca2+ on morphological and photosynthetic characteristics and chlorophyll fluorescent parameters of squash seedlings under high temperature and strong light stress].

    Science.gov (United States)

    Qin, Shu-hao; Li, Ling-ling; Chen, Na-na

    2010-11-01

    Taking squash (Cucurbita pepo L.) variety Alan as test object, this paper studied the effects of exogenous Ca2+ on the morphological and photosynthetic characteristics and chlorophyll fluorescent parameters of squash seedlings under the cross-stress of high temperature and strong light. Under the stress, applying 5-20 mmol x L(-1) of Ca2+ increased the plant height, leaf area, chlorophyll and carotenoid contents, photosynthetic rate (Pn), stoma conductance (Gs), transpiration rate (Tr), maximal PS II efficiency (Fv/Fm), actual PS II efficiency (phi(PS II)), and photochemical queching coefficient (q(P)), and decreased the intercellular CO2 concentration (Ci) and non-photochemical fluorescence quenching coefficient (NPQ), suggesting that this application of exogenous Ca2+ could effectively mitigate the damage of high temperature and strong light stress on the squash seedlings leaf, and make it keep more rapid photosynthetic electron transfer rate and higher PS II electron transfer activity. Among the treatments of applying Ca2+, 10 mmol Ca2+ x L(-1) had the best effect. When the Ca2+ application rate exceeded 40 mmol x L(1), no mitigation effect was observed on the high temperature and strong light stress.

  9. Signal enhanced holographic fluorescence microscopy with guide-star reconstruction

    Science.gov (United States)

    Jang, Changwon; Clark, David C.; Kim, Jonghyun; Lee, Byoungho; Kim, Myung K.

    2016-01-01

    We propose a signal enhanced guide-star reconstruction method for holographic fluorescence microscopy. In the late 00’s, incoherent digital holography started to be vigorously studied by several groups to overcome the limitations of conventional digital holography. The basic concept of incoherent digital holography is to acquire the complex hologram from incoherent light by utilizing temporal coherency of a spatially incoherent light source. The advent of incoherent digital holography opened new possibility of holographic fluorescence microscopy (HFM), which was difficult to achieve with conventional digital holography. However there has been an important issue of low and noisy signal in HFM which slows down the system speed and degrades the imaging quality. When guide-star reconstruction is adopted, the image reconstruction gives an improved result compared to the conventional propagation reconstruction method. The guide-star reconstruction method gives higher imaging signal-to-noise ratio since the acquired complex point spread function provides optimal system-adaptive information and can restore the signal buried in the noise more efficiently. We present theoretical explanation and simulation as well as experimental results. PMID:27446653

  10. Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn

    Science.gov (United States)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Campbell, Petya K. E.

    2007-01-01

    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems.

  11. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    Science.gov (United States)

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment.

  12. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta)

    Science.gov (United States)

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation. PMID:27642603

  13. Vase Life Extension and Chlorophyll Fluorescence Yield of Bougainvillea Flower as Influenced by Ethanol to Attain Maximum Environmental Beautification as Ornamental Components

    Directory of Open Access Journals (Sweden)

    A. B.M. Hossain

    2008-01-01

    Full Text Available The study was conducted to investigate the effect of ethanol at different concentrations (ET on bougainvillea flower longevity and delay senescence in storage condition. The treatments were water control, 2% ET, 4% ET, 8% ET, 10% ET, 20% ET, 30% ET, 40% ET, 50% ET and 70% ET. Flower longevity was 2 days more in 4, 8% and 10% ethanol than water control and other concentrations of ethanol. Petal wilting and senescence were occurred 2 days later in 4, 8 and 10% ET than in water control. Percent petal's color changed was later in water 4, 8% and 10% than in control, 2, 20, 30, 40, 50 and 70% ET. Chlorophyll fluorescence intensity (photosynthetic yield followed by time (ms at different ethanol concentrations was higher in 4, 8 and 10% ET than in water control and other concentrations. Fo (lower fluorescence was lower in 4, 8 and 10% ET than in water and other concentrations. However, Fm and Fv [(higher fluorescence and relative variable fluorescence (Fm-Fo] were higher in 4, 8 and 10% ET than in other ET concentrations. Fv/Fm (quantum yield or photosynthetic yield was higher in 4, 8 and 10% ET than in other ET concentrations. The result showed flower vase life was significantly affected by ethanol concentrations and longevity was higher in 4, 8 and 10% ethanol than in water control and other concentrations.

  14. RNA signal amplifier circuit with integrated fluorescence output.

    Science.gov (United States)

    Akter, Farhima; Yokobayashi, Yohei

    2015-05-15

    We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.

  15. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    Science.gov (United States)

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  16. Photo-electric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in absence and presence of valinomycin

    NARCIS (Netherlands)

    Vredenberg, W.J.; Bulychev, A.A.

    2003-01-01

    Fluorescence induction curves (F(t)) in low intensity 1s light pulses have been measured in leaf discs in the presence and absence of valinomycin (VMC). Addition of VMC causes: (i) no effect on the initial fluorescence level Fo and the initial (O-J) phase of F(t) in the 0.01-1 ms time range. (ii) An

  17. 3个钓钟柳品种叶绿素荧光特性比较%Chlorophyll fluorescence parameters in three cultivars of Penstemon

    Institute of Scientific and Technical Information of China (English)

    陶文文; 蒋文伟; 赵丽娟

    2011-01-01

    The chlorophyll fluorescence parameters change of the Penstemon was studied, the aim was to enhance its planting management for the region in east China. Chlorophyll fluorescence parameters [minimal fluo rescence(Fo), maximum fluorescence (Fm), photochemical quenching (qp), variable fluorescence (Fv), yield (Y), non photochemical quenching (NPQ), and electron transport rate (ETR) ] of Penstemon campanulatus ‘Purple Passion' , Penstemon digitalis ‘Husker Red' , and Penstemon barbatus ‘Rondo' , all perennial root flowers, were measured and compared by the chlorophyll florescence measuring technique. A correlation analysis was conducted. Results of the correlation analysis showed significant positive correlations between Fo and Fm, qp and Fm, qp and Fv, Y and ETa, Fm and Fv, Fo and F, and Fm and Y; significantly negative correlations were found between Fo and ETR and Fv/Fo and Y. Also, chlorophyll fluorescence parameters for the three cultivars were significant(P < 0.05) and highly significant (P < 0.01 ). The values of Fv, Fv/Fm, Fv/Fo, Y,ETR, qp, and Nm for the three cultivars were in the order: ‘Purple Passion' > ‘Rondo' > ‘Husker Red'. Thus, the photosynthetic physiological functions of P. campanulatus ‘Purple Passion' were best.%利用叶绿素荧光测定技术测定了多年生宿根花卉紫红钓钟柳penstemon campanulatus'Purple Passion',毛地黄钓钟柳P.digitalis'Husker Red'和五彩钓钟柳P.barbatus'Rondo'等3个钓钟柳品种的叶绿素荧光参数,并对它们进行比较.结果表明:3个钓钟柳品种间的叶绿素荧光参数均达到显著或极显著水平,紫红钓钟柳的可变荧光(Fv),光系统Ⅱ原始光能转化效率(Fv/Fm),光系统Ⅱ的潜在活性(Fv/Fo),光合量子产额(Y),表观光合电子传递速率(ETR),光化学猝灭系数(qp),非炮化学猝灭系数(NPQ)值最高,其次为五彩钓钟柳,最低是毛地黄钓钟柳.说明紫红钓钟柳具有较好的光合生理功能,其次是五彩钓钟

  18. The chlorophyll a fluorescence induction curve in the green microalga Haematococcus pluvialis: further insight into the nature of the P-S-M fluctuation and its relationship with the "low-wave" phenomenon at steady-state.

    Science.gov (United States)

    Fratamico, Anthony; Tocquin, Pierre; Franck, Fabrice

    2016-06-01

    Chlorophyll fluorescence is an information-rich signal which provides an access to the management of light absorbed by PSII. A good example of this is the succession of fast fluorescence fluctuations during light-induced photosynthetic induction after dark-adaptation. During this period, the fluorescence trace exhibits several inflexion points: O-J-I-P-S-M-T. Whereas the OJIP part of this kinetics has been the subject of many studies, the processes that underly the PSMT transient are less understood. Here, we report an analysis of the PSMT phase in the green microalga Haematococcus pluvialis in terms of electron acceptors and light use by photochemistry, fluorescence and non-photochemical quenching (NPQ). We identify additional sub-phases between P and S delimited by an inflexion point, that we name Q, found in the second time scale. The P-Q phase expresses a transient photochemical quenching specifically due to alternative electron transport to oxygen. During the transition from Q to S, the NPQ increases and then relaxes during the S-M phase in about 1 min. It is suggested that this transient NPQ observed during induction is a high energy state quenching (qE) dependent on the alternative electron transport to molecular oxygen. We further show that this NPQ is of the same nature than the NPQ, known as the low-wave phenomenon, which is transiently observed after a saturating light pulse given at steady-state. In both cases, the NPQ is oxygen-dependent. This NPQ is observed at external pH 6.0, but not at pH 7.5, which seems correlated with faster saturation of the PQ pool at pH 6.0.

  19. Varietal differences in photosynthetic characters and chlorophyll fluorescence induction kinetics parameters among intergeneric progeny derived from Oryza×Sorghum, its parents, and hybrid rice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A comparative study on the photosynthetic parameters among intergeneric progenies derived from Oryza sativa L.×Sorghum vulgare L., its maternal parent Gui 630 and commercial 3-line hybrid rice Shanyou 63 in pot experiment in greenhouse was conducted. The morphological and photosynthetic characters of canopy leaves and chlorophyll fluorescence kinetic parameters including Fv/Fm, Fv/F0, photochemical quenching coefficient and non-photochemical coefficient of canopy leaves of 3 varieties were measured. The results showed the progeny, Yuanyou 1, derived from an intergeneric cross of rice and sorghum possesses better canopy spatial architecture with thicker, heavier and bigger canopy leaf than its maternal parent Gui 630. Higher photosynthetic rate due to higher chlorophyll content, higher primary energy transformation efficiency, potential of PSII and non-photochemical quenching coefficient (qE) were also measured in Yuanyou 1. These explain partly why the intergeneric progeny has higher biomass production, and better tolerance to adverse conditions and higher field yields even under stress conditions.

  20. Varietal differences in photosynthetic characters and chlorophyll fluorescence induction kinetics parameters among intergeneric progeny derived from Oryza×Sorghum, its parents, and hybrid rice

    Institute of Scientific and Technical Information of China (English)

    KatsuyoshiShimizu; 唐建军; 陈欣

    2002-01-01

    A comparative study on the photosynthetic parameters among intergeneric progenies derived from Oryza sativa L.× Sorghum vulgare L. , its maternal parent Gui 630 and commercial 3-line hybrid rice Shanyou 63 in pot experiment in greenhouse was conducted. The morphological and photosynthetic characters of canopy leaves and chlorophyll fluorescence kinetic pm'mneters including Fv/Fm, Fv/F0, photochemical quenching coefficient and non-photochemical coefficient of canopy leaves of 3 varieties were measured. The results showed the progeny, Yuanyou 1, derived from an intergeneric cross of rice and sorghum possesses better canopy spatial architecture with thicker, heavier and bigger canopy leaf than its maternal parent Gui 630.Higher photosynthetic rate due to higher chlorophyll content, higher primary energy transformation efficiency,potential of PSII and non-photochemieal quenching coefficient (qE) were also measured in Yuanyou 1. These explain partly why the intergeneric progeny has higher biomass production, and better tolerance to adverse conditions and higher field yields even under stress conditions.

  1. Effects of sand burial on biomass, chlorophyll fluores-cence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under dif-ferent burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular poly-saccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of pho-tosystem II (PS II) after rehydration.

  2. Effects of Low Temperature Stress and INA Bacteria on Chlorophyll a Fluorescence Induction Kinetics in Young Fruit of Two Apricot Cultivars

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-min; MENG Qing-rui; PENG Wei-xiu; WANG Xue-dong; ZHANG Yuan-hui; SUN Fu-zai; ZHAO Ting-chang; LI Shao-hua

    2002-01-01

    Effects of low temperature and INA bacteria on the change of chlorophyll a fluorescence inyoung fruit from two apricot cultivars were investigated. Low temperature decreased the potential activity(Fv/Fo) ,conversion efficiency of primary light energy (Fv/Fm)of PS Ⅱ and photochemical quenching (qP) inyoung fruit of two apricot cultivars. Low temperature enhanced non-photochemical quenching qN, decreasingthe quantum yield of photosynthetic electron transfer. The presence of ice nucleating active (INA) bacteria in-tensified the effects of low temperature, raised the injury temperature threshold from - 4℃ to - 2 - - 3℃.INA bacteria can be a factor to induce frost susceptibility of apricot fruit. The amount of damaged PS Ⅱ activi-ty center was related to apricot fruit size and cultivar.

  3. Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland: insights from imaging variable chlorophyll fluorescence of ice cores.

    Science.gov (United States)

    Hawes, Ian; Lund-Hansen, Lars Chresten; Sorrell, Brian K; Nielsen, Morten Holtegaard; Borzák, Réka; Buss, Inge

    2012-06-01

    We undertook a series of measurements of photophysiological parameters of sea ice algae over 12 days of early spring growth in a West Greenland Fjord, by variable chlorophyll fluorescence imaging. Imaging of the ice-water interface showed the development of ice algae in 0.3-0.4 mm wide brine channels between laminar ice crystals in the lower 4-6 mm of the ice, with a several-fold spatial variation in inferred biomass on cm scales. The maximum quantum yield of photosynthesis, F(v) /F(m), was initially low (~0.1), though this increased rapidly to ~0.5 by day 6. Day 6 also saw the onset of biomass increase, the cessation of ice growth and the time at which brine had reached -2 °C. We interpret this as indicating that the establishment of stable brine channels at close to ambient salinity was required to trigger photosynthetically active populations. Maximum relative electron transport rate (rETR(max)), saturation irradiance (E(k)) and photosynthetic efficiency (α) had also stabilised by day 6 at 5-6 relative units, ~30 μmol photons m⁻² s⁻¹ and 0.4-0.5 μmol photons m⁻²s⁻¹, respectively. E(k) was consistent with under-ice irradiance, which peaked at a similar value, confirming that daytime irradiance was adequate to facilitate photosynthetic activity throughout the study period. Photosynthetic parameters showed no substantial differences with depth within the ice, nor variation between cores or brine channels suggesting that during this early phase of ice algal growth cells were unaffected by gradients of environmental conditions within the ice. Variable chlorophyll fluorescence imaging offers a tool to determine how this situation may change over time and as brine channels and algal populations evolve.

  4. Effect of Drought Stress on Leaf Water Status, Electrolyte Leakage, Photosynthesis Parameters and Chlorophyll Fluorescence of Two Kochia Ecotypes (Kochia scoparia Irrigated With Saline Water

    Directory of Open Access Journals (Sweden)

    A Masoumi

    2012-12-01

    Full Text Available Rainfall deficiency and the development of salinity in Iran are the most important factors for using new salt and drought-resistant plants instead of conventional crops. Kochia species have recently attracted the attention of researchers as a forage and fodder crop in marginal lands worldwide due to its drought and salt tolerant characteristics. This field experiment was performed at the Salinity Research Station of Ferdowsi University of Mashhad, Iran, in a split plot based on randomized complete block design with three replications in 2008. Drought stress, including four levels (control, no irrigation in vegetative stage, no irrigation at reproductive stage and no irrigation at maturity stage for four weeks, and two Kochia ecotypes (Birjand and Borujerd were allocated as main and sub plots, respectively. Relative water content, electrolyte leakage, photosynthesis parameters and chlorophyll fluorescence were assayed every two week from late vegetative stage. Results showed that drought stress decreased significantly measured parameters in plants under stress, in all stages. Plants completely recovered after eliminating stress and rewatering and recovered plants did not show significant difference with control. Electrolyte leaking and chlorophyll fluorescence showed the lowest change among the measured parameters. It can emphasize that resistant to stress conditions in this plant and cell wall is not damaged at this level of stress situation. Birjand ecotype from the arid region, revealed a better response than Borujerd ecotype to drought stress. Probably it returns to initial adaptation of Birjand. In general this plant can recover after severe drought stress well. It is possible to introduce this plant as a new fodder in arid and saline conditions.

  5. Chlorophyll Fluorescence in Partially Defoliated Grape Plants (Vitis vinifera L. cv. Chardonnay / Fluorescencia de la Clorofila en Plantas de Uva (Vitis vinifera L. cv. Chardonnay Defoliadas Parcialmente

    Directory of Open Access Journals (Sweden)

    Peña Olmos Jaime Ernesto

    2013-08-01

    Full Text Available The chlorophyll content and fluorescence weredetermined in five-year-old grape plants (Vitis vinifera L. cv.Chardonnay that were subjected to early partial defoliation,in Villa de Leyva, Colombia. The experimental design wascompletely randomized, consisting of two treatments (50%defoliation and control, each with four replications of 35 plants. Every two weeks, one of every two recently-emerged leaves was removed from the non-control plants. The determination of total chlorophyll content was carried out on six leaves per plant using a CCM-200 Plus chlorophyll meter, while chlorophyll fluorescence measurements were taken with one darkadapted leaf per plant using a Junior-PAM fluorometer. Initial fluorescence (Fo, maximum fluorescence (Fm, terminal fluorescence (Ft, variable fluorescence (Fv, electron transport rate (ETR, maximum photochemical quantum yield of PSII (Fv/ Fm, effective photochemical quantum yield of photosystem II (Y(II, photochemical fluorescence quenching coefficient (qP, two non-photochemical quenching coefficients (qN and NPQ,quantum yield of light-induced non-photochemical fluorescence quenching (Y(NPQ, and quantum yield of non-light-induced non-photochemical quenching (Y(NO were measured. The chlorophyll concentration index showed higher values in the defoliated plants. There were no significant differences for the values of Fm, Ft and Fv. Fo was higher in the defoliated plants, while ETR, Fv/Fm and Y(II showed higher values in the control plants. It is evident that a reduction in leaf area modifies thepartitioning of excitation energy destined for photochemicaland non-photochemical processes, thus directly influencing the photosynthetic process of the plants evaluated. / Utilizando un diseño completamente aleatorizado,con dos tratamientos (defoliación al 50% y control y cuatrorepeticiones de 35 plantas cada una, se determinó el contenido y la fluorescencia de la clorofila en plantas de uva, sometidas a defoliación parcial

  6. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, I.M.; Basahi, J.M. [Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589 (Saudi Arabia); Hassan, I.A., E-mail: ihassan_eg@yahoo.com [Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589 (Saudi Arabia); Department of Botany, Faculty of Science, Alexandria University, 21526 El Shatby, Alexandria (Egypt)

    2014-11-01

    Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009–2013) at a rural site in northern Egypt. Net photosynthetic rates (P{sub N}), stomatal conductance (g{sub s}), intercellular CO{sub 2} (C{sub i}) and chlorophyll fluorescence were measured. Ozone (O{sub 3}) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. P{sub N} of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O{sub 3}. The maximum impairment in P{sub N} was recorded in the cultivar Victory (46%) in 2013 when the highest O{sub 3} levels were recorded (90 nL L{sup −1}). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between P{sub N} and C{sub i}, indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The P{sub N} vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (Φ{sub PSII}) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively. - Highlights: • Ozone (O{sub 3}) concentrations recorded were within the ranges of phytotoxicity. • O{sub 3} has a clear influence on the physiological

  7. Using the UFL-8 UV fluorescent LIDAR to collect ground truth data for calibrating MODIS based CDOM, chlorophyll and suspended sediment measurements

    Science.gov (United States)

    Zlinszky, A.; Pelevin, V.; Goncharenko, I.; Soloviev, D.; Molnár, G.

    2009-04-01

    Satellite remote sensing of water quality parameters is becoming a routine method in oceanological applications around the world. One of the main difficulties of calibrating satellite images to map water quality parameters is the large number and high spatial coverage of ground truth data needed. The UFL-8 fluorescent LIDAR developed by the Shirshov Oceanological Institute of the Russian Academy of Sciences measures CDOM, chlorophyll and suspended sediment near-surface concentrations optically in situ, on a travelling boat, and so is capable of a large number of widespread measurements very quickly. The registration of the measured values is connected to a GPS, so all measurements are geo-tagged and can be used for interpolating maps of the measured parameters. Since this instrument also has to be calibrated, some water samples have to be collected, but the optical measurements usually show very strong correlation to the water sample data. This approach was tested on Lake Balaton, Hungary in September 2008. Lake Balaton is characterized by its large area (597 km2), elongated shape and relatively shallow water depth (avg 3,2 m). The lake has a strong trophic gradient from the SW to the NE, the main tributary river carries large amounts of CDOM and suspended sediment concentrations can be very high because the lake is shallow and the sediment is fine grained. We measured in diverse weather conditions, and in an enclosed bay, a narrow strait and a large area of open water. 28 water samples were collected during the LIDAR measurement and the CDOM, chlorophyll and suspended sediment concentrations were measured in the laboratory using classic hydrological methods. These results were used to calibrate the LIDAR measurements with R2 values between 0,90 and 0,95. The relative values measured by the LIDAR were converted to absolute values using this regression, and the point-by-point results were interpolated into a raster with a cell size equal to the spatial resolution of

  8. EFFECT OF Cu AND Mn TOXICITY ON CHLOROPHYLL FLUORESCENCE AND GAS EXCHANGE IN RICE AND SUNFLOWER UNDER DIFFERENT LIGHT INTENSITIES

    Directory of Open Access Journals (Sweden)

    Hajiboland R.

    2007-06-01

    Full Text Available Copper (Cu and manganese (Mn are essential micronutrients for plants, but toxic at high concentrations. Responses of rice (Oryza sativa L. and sunflower (Helianthus annuus L. to toxic concentrations of Mn and Cu (up to 100 μM were studied under three light intensities including low (LL, PPFD=100, intermediate (IL, PPFD=500 and high (HL, PPFD=800 light intensities in hydroponic medium. Rice plants showed higher susceptibility than sunflower to both heavy metals concerning dry matter of shoot and root. Growing under higher light intensity strengthened the effect of Cu toxicity while ameliorated that of Mn, the latter was attributed to the lower Mn accumulation of HL plants in both shoot and root. Chlorophyll content of leaves was influenced negatively only by Cu treatment and that at the highest concentration in the medium (100 μM. Similar with growth results, reduction of net assimilation rate (A was higher in HL than LL plants treated by excess Cu, but in contrast to growth response, reduction was more prominent in sunflower than rice. Excess Mn-induced reduction of A was similar between LL and HL plants and was greater in sunflower than rice. Reduction of A was partly attributable to stomatal limitation, but non-stomatal mechanisms were also involved in this reduction. Copper and Mn treatment did not change the optimal quantum efficiency of PSII in dark-adapted chloroplasts (Fv/Fm ratio, but Fv/F0 was influenced particularly by Cu treatment, the reduction was higher in rice than sunflower and in HL compared to LL plants. Regarding excess Cu and Mn-mediated alterations in chlorophyll concentration, Fv/F0 and Tm values, it was suggested that, Cu and Mn toxicity depress the leaf photosynthetic capacity primarily by causing a significant alteration of the composition and functional competence of the photosynthetic units rather a reduction in the number of photosynthetic units (PSUs per unit leaf area.

  9. Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence.

    Science.gov (United States)

    Akimoto, Seiji; Teshigahara, Ayaka; Yokono, Makio; Mimuro, Mamoru; Nagao, Ryo; Tomo, Tatsuya

    2014-09-01

    In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx-Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300fs. Chl c transferred excitation energy to Chl a with time constants of 500-600fs (intra-complex transfer), 600-700fs (intra-complex transfer), and 4-6ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

  10. Detection of chlorophylls in spores of seven ferns.

    Science.gov (United States)

    Tseng, Mei-Hwei; Lin, Kuei-Huei; Huang, Yi-Jia; Chang, Ya-Lan; Huang, Sheng-Cih; Kuo, Li-Yaung; Huang, Yao-Moan

    2017-03-01

    Fern spores were traditionally classified into chlorophyllous (green) and nonchlorophyllous (nongreen) types based on the color visible to the naked eye. Recently, a third type, "cryptochlorophyllous spores", is recognized, and these spores are nongreen under white light but contain chlorophylls. Epifluorescence microscopy was previously used to detect chlorophylls in cryptochlorophyllous spores. In addition to epifluorescence microscopy, current study performed some other approaches, including spore-squash epifluorescence, absorption spectra, laser-induced fluorescence emission spectra, thin layer chromatography (TLC), and ultra-high performance liquid chromatography with ultraviolet and mass spectrometric detection (UHPLC-UV-MS) in order to detect chlorophylls of spores of seven ferns (Sphaeropteris lepifera, Ceratopteris thalictroides, Leptochilus wrightii, Leptochilus pothifolius, Lepidomicrosorum buergerianum, Osmunda banksiifolia, and Platycerium grande). Destructive methods, such as TLC and UHPLC-UV-MS, successfully detected chlorophylls inside the spores when their signals of red fluorescence under epifluorescence microscope were masked by spore wall. Although UHPLC-UV-MS analysis was the most sensitive and reliable for determining the chlorophylls of spores, spore-squash epifluorescence is not only reliable but also cost- and time-effective one among our study methods. In addition, we first confirmed that Lepidomicrosorium buergerianum, Leptochilus pothifolius, Leptochilus wrightii, and Platycerium grande, produce cryptochlorophyllous spores.

  11. Effects of Shading Stress and Light Recovery on the Photosynthesis Characteristic and Chlorophyll Fluorescence Characteristic of Fragaria Ananassa Duch. cv. Toyonoka

    Directory of Open Access Journals (Sweden)

    Renyan Duan

    2013-06-01

    Full Text Available Light is an important resource for plant growth and development, crops need to change their physiological characteristics to different light environments. Fragaria ananassa Duch. cv. Toyonoka. is an important economic plant which is widely planted at home. A greenhouse experiment was conducted from April 2010 with different sun-shading treatment, 85% (CK, 60% (T1, 35% (T2 and 10% (T3. After 7 days of shading stress, the physiological characteristics were slowly recovered. The results showed that (1 Under shading condition, Light saturation rate (Amax, Apparent Quantum Yield (AQY, Carboxylation Efficiency (CE, dark respiration (Rd, Light Saturation Point (LSP and Light Compensation Point (LCP became lower. (2 The maximal fluorescence (Fm, light energy transformation efficiency of PS II (Fv/Fm, actual photochemical efficiency of PS II in the light (Yield, photochemical quenching coefficient (qP declined with shading stress increase. (3 There were significant difference in the chlorophyll fluorescence parameters among different treatment groups by the end of sun-shading treatment (p<0.05. After the light was recovered, the physiological characteristics could rapidly recover under low shading stress and moderate shading stress, while in severe shading stress the physiological characteristics hardly recover.

  12. The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen production in planktonic algae.

    Science.gov (United States)

    Blache, Ulrich; Jakob, Torsten; Su, Wanwen; Wilhelm, Christian

    2011-08-01

    Photosynthesis-irradiance (P-E)-curves describe the photosynthetic performance of autotrophic organisms. From these P-E-curves the photosynthetic parameters α-slope, P(max), and E(k) can be deduced which are often used to characterize and to compare different organisms or organisms in acclimation to different environmental conditions. Particularly, for in situ-measurements of P-E curves of phytoplankton the analysis of variable chlorophyll fluorescence proved its potential as a sensitive and rapid method. By using Chlorella vulgaris (Trebouxiophyceae), Nannochloropsis salina (Eustigmatophyceae), Skeletonema costatum and Cyclotella meneghiniana (Bacillariophyceae), the present study investigated the influence of cellular bio-optical properties on the correlation of the photosynthetic parameters derived from fluorescence-based P-E-curves with photosynthetic parameters obtained from the measurement of oxygen evolution. It is demonstrated that small planktonic algae show a wide range of cellular absorptivity which was subject to species-specifity, growth stage and environmental conditions, e.g. nutrient limitation. This variability in bio-optical properties resulted in a great deviation of relative electron transport rates (rETRs) from oxygen-based photosynthesis rates. Thus, the photosynthetic parameters α-slope and P(max) derived from rETRs strongly depend on the specific cellular absorptivity and cannot be used to compare the photosynthetic performance of cells with different optical properties. However, it was shown that E(k) is independent of cellular absorptivity and could be used to compare samples with unknown optical properties.

  13. 3个杏品种荧光特性的比较%Study on the Chlorophyll Fluorescent Characteristics of 3 Apricot Cultivars

    Institute of Scientific and Technical Information of China (English)

    赵锋

    2011-01-01

    [ Objective] The basis of the screening of the species of high-efficiency photosynthic ecology of apricot cultivar was provided through the analysis of the difference of 3 apricot cultivars in photosynthesis. [ Method] The chlophyll fluorescent index of the apricot cultivar:Chuanzhihong, Sungold and Katy was measured with . The chlorophyll fluorescent parameters of 3 apricot cultivars in field were measured with Heady Plant Efficiency Analyzer(PEA). [ Result] There was significant or highly significant difference in chlorophyll fluorescent parameters among 3 cultivars. Compared with other two cultivars, the number of active reaction center on the unit leaf area of Chuanzhihong was many more, which could be used for higher excitation energy of QA so that the energy of heat dissipation was relatively fewer and the energy transferred into the electron transport chain was higher. [ Conclusion] Chuanzhihong had higher light energy absorption, transmission and conversion efficiency than other two cultivars.%[目的]分析3个杏品种的光合生理差异,为杏属植物高光效生态类型筛选提供依据.[方法]以我国河北的串枝红、美国的Sun-gold(金太阳)和Katy(凯特)3个杏品种为试材,利用Handy PEA(Hansatech,UK)田间测定了其叶绿素荧光参数.[结果]3个杏品种的荧光参数存在极显著差异.其中,串枝红单位叶面积上有活性的反应中心数量多,用来还原Q的激发能高,以热的形式耗散的能量比例较少,进入电子传递链的能量较高.[结论]串枝红在光能的吸收、传递与转换效率上优于Sungold和Katy.

  14. Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb).

    Science.gov (United States)

    Horn, Ruth; Grundmann, Götz; Paulsen, Harald

    2007-02-23

    The apoprotein of the major light-harvesting chlorophyll a/b complex (LHCIIb) is post-translationally imported into the chloroplast, where membrane insertion, protein folding, and pigment binding take place. The sequence and molecular mechanism of the latter steps is largely unknown. The complex spontaneously self-organises in vitro to form structurally authentic LHCIIb upon reconstituting the unfolded recombinant protein with the pigments chlorophyll a, b, and carotenoids in detergent micelles. Former measurements of LHCIIb assembly had revealed two apparent kinetic phases, a faster one (tau1) in the range of 10 s to 1 min, and a slower one (tau2) in the range of several min. To unravel the sequence of events we analysed the binding of chlorophylls into the complex by using time-resolved fluorescence measurements of resonance energy transfer from chlorophylls to an acceptor dye attached to the apoprotein. Chlorophyll a, offered in the absence of chlorophyll b, bound with the faster kinetics (tau1) exclusively whereas chlorophyll b, in the absence of chlorophyll a, bound predominantly with the slower kinetics (tau2). In double-jump experiments, LHCIIb assembly could be dissected into a faster chlorophyll a and a subsequent, predominantly slower chlorophyll b-binding step. The assignment of the faster and the slower kinetic phase to predominantly chlorophyll a and exclusively chlorophyll b binding, respectively, was verified by analysing the assembly kinetics with a circular dichroism signal in the visible domain presumably reflecting the establishment of pigment-pigment interactions. We propose that slow chlorophyll binding is confined to the exclusively chlorophyll b binding sites whereas faster binding occurs to the chlorophyll a binding sites. The latter sites can bind both chlorophylls a and b but in a reversible fashion as long as the complex is not stabilised by proper occupation of the chlorophyll b sites. The resulting two-step model of LHCIIb assembly is

  15. Multiple signal classification algorithm for super-resolution fluorescence microscopy

    Science.gov (United States)

    Agarwal, Krishna; Macháň, Radek

    2016-12-01

    Single-molecule localization techniques are restricted by long acquisition and computational times, or the need of special fluorophores or biologically toxic photochemical environments. Here we propose a statistical super-resolution technique of wide-field fluorescence microscopy we call the multiple signal classification algorithm which has several advantages. It provides resolution down to at least 50 nm, requires fewer frames and lower excitation power and works even at high fluorophore concentrations. Further, it works with any fluorophore that exhibits blinking on the timescale of the recording. The multiple signal classification algorithm shows comparable or better performance in comparison with single-molecule localization techniques and four contemporary statistical super-resolution methods for experiments of in vitro actin filaments and other independently acquired experimental data sets. We also demonstrate super-resolution at timescales of 245 ms (using 49 frames acquired at 200 frames per second) in samples of live-cell microtubules and live-cell actin filaments imaged without imaging buffers.

  16. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt.

    Science.gov (United States)

    Ismail, I M; Basahi, J M; Hassan, I A

    2014-11-01

    Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009-2013) at a rural site in northern Egypt. Net photosynthetic rates (PN), stomatal conductance (gs), intercellular CO2 (Ci) and chlorophyll fluorescence were measured. Ozone (O3) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. PN of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O3. The maximum impairment in PN was recorded in the cultivar Victory (46%) in 2013 when the highest O3 levels were recorded (90 nL L(-1)). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between PN and Ci, indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The PN vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (ΦPSII) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively.

  17. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees.

    Science.gov (United States)

    Lichtenthaler, Hartmut K; Babani, Fatbardha; Navrátil, Martin; Buschmann, Claus

    2013-11-01

    The chlorophyll (Chl) fluorescence induction kinetics, net photosynthetic CO2 fixation rates P N, and composition of photosynthetic pigments of differently light exposed leaves of several trees were comparatively measured to determine the differences in photosynthetic activity and pigment adaptation of leaves. The functional measurements were carried out with sun, half-shade and shade leaves of seven different trees species. These were: Acer platanoides L., Ginkgo biloba L., Fagus sylvatica L., Platanus x acerifolia Willd., Populus nigra L., Quercus robur L., Tilia cordata Mill. In three cases (beech, ginkgo, and oak), we compared the Chl fluorescence kinetics and photosynthetic rates of blue-shade leaves of the north tree crown receiving only blue sky light but no direct sunlight with that of sun leaves. In these cases, we also determined in detail the pigment composition of all four leaf types. In addition, we determined the quantum irradiance and spectral irradiance of direct sunlight, blue skylight as well as the irradiance in half shade and full shade. The results indicate that sun leaves possess significantly higher mean values for the net CO2 fixation rates P N (7.8-10.7 μmol CO2 m(-2) s(-1) leaf area) and the Chl fluorescence ratio R Fd (3.85-4.46) as compared to shade leaves (mean P N of 2.6-3.8 μmol CO2 m(-2) s(-1) leaf area.; mean R Fd of 1.94-2.56). Sun leaves also exhibit higher mean values for the pigment ratio Chl a/b (3.14-3.31) and considerably lower values for the weight ratio total chlorophylls to total carotenoids, (a + b)/(x + c), (4.07-4.25) as compared to shade leaves (Chl a/b 2.62-2.72) and (a + b)/(x + c) of 5.18-5.54. Blue-shade and half-shade leaves have an intermediate position between sun and shade leaves in all investigated parameters including the ratio F v/F o (maximum quantum yield of PS2 photochemistry) and are significantly different from sun and shade leaves but could not be differentiated from each other. The

  18. Effects of ambient versus reduced UV-B radiation on high arctic ¤Salix arctica¤ assessed by measurements and calculations of chlorophyll a fluorescence parameters from fluorescence transients

    DEFF Research Database (Denmark)

    Albert, K.R.; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2005-01-01

    cross-section of leaf sample, the number of active PSII reaction centres (RC/CSM) and electron transport rate (ETM/CSM) and all performance indexes (PIABS, PICSo and PICSm) were increased in reduced UV-B. The total soluble flavonoid content was highest in ambient UV-B. The treatment effects......A UV-B exclusion-experiment was conducted in the high Arctic Zackenberg, NE Greenland, in which Salix arctica leaves during most of the growing season were fixed perpendicular to the solar zenith angle, thereby receiving maximal solar radiation. Covered with Teflon and Mylar foil, the leaves...... received approximately 90 and 40% of the ambient UV-B irradiance, respectively. The effects were examined through recordings of chlorophyll a fluorescence transients, determination of biomass and analysis of total carbon and nitrogen content and amount of soluble flavonoids in the leaves. The processing...

  19. Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis Seedling to changes of soil moisture and temperature

    Institute of Scientific and Technical Information of China (English)

    XU Zhen-zhu; ZHOU Guang-sheng; LI Hui

    2004-01-01

    Controlled experiment of Leymus chinensis seedlings grown in the environmental growth chambers at 3 soilmoisture levels and 3 temperature levels was conducted in order to improve the understanding how leafphotosynthetic parameters will respond to climatic change. The results indicated that soil drought and hightemperature decreased the photochemical efficiency of photosystem (Fv/Fm ), the overall photochemical quantumyield of PSIl(yield), the coefficient of photochemical fluorescence quenching(qp), but increased the coefficient ofnon-photochemical fluorescence quenching(qN). Severe soil drought would decrease Fv/Fm and yield by 3.12% and 37.04% under 26℃ condition, respectively, and 6.60% and 73.33% under 32℃ condition, respectively, suggesting that higher temperature may enhance the negative effects of soil drought. All the soil drought treatments resulted in the decline in leaf nitrogen content. There was no significant effect of temperature on leaf nitrogen level, but higher temperature significantly reduced the root nitrogen content and the ratio of root nitrogen to leaf nitrogen, indicating the different strategies of adaptation to soil drought and temperature. It was also implied that higher temperature would enhance the effect of soil drought on leaf photosynthetic capacity, decrease the adaptability of Leymus chinensis to drought.

  20. Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin.

    Science.gov (United States)

    Vredenberg, Wim J; Bulychev, Alexander

    2003-08-01

    Fluorescence induction curves (F(t)) in low intensity 1s light pulses have been measured in leaf discs in the presence and absence of valinomycin (VMC). Addition of VMC causes: (i) no effect on the initial fluorescence level Fo and the initial (O-J) phase of F(t) in the 0.01-1 ms time range. (ii) An approximately 10% decrease in the maximal fluorescence Fm in the light reached at the P level in the O-J-I-P induction curve. (iii) Nearly twofold increase in the rate and extent of the F(t) rise in the J-I phase in the 1-50 ms time range. (iv) A 60-70% decrease in the rise (I-P phase) in the 50-1000 ms time range with no appreciable effect, if at all, on the rate. System analysis of F(t) in terms of rate constants of electron transfer at donor and acceptor sides have been done using the Three State Trapping Model (TSTM). This reveals that VMC causes: (i) no, or very little effect on rate constants of e-transfer reactions powered by PSII. (ii) A manifold lower rate constant of radical pair recombination (k(-1)) in the light as compared to that in the control. The low rate constant of radical pair recombination in the reaction center (RC) in the presence of VMC is reflected by a substantial increase in the nonzero trapping efficiency in RCs in which the primary quinone acceptor (Q(A)) is reduced (semi-open centers). This causes an increase in their rate of closure and in the overall trapping efficiency. Data suggest evidence that membrane chaotropic agents like VMC abolish the stimulation of the rate constant of radical pair recombination by light. This light stimulation that becomes apparent as an increase in Fo has been documented before [Biophys. J. 79 (2000) 26]. It has been ascribed to effects of (changes in) local electric fields in the vicinity of the RC. The decrease of the I-P phase is attributed to a decrease in the photoelectric trans-thylakoid potential in the presence of VMC. Such effects have been hypothesized and illustrated.

  1. Chlorophyll fluorescence of epiphytic lichens under acid, ammonium and fungicide stress - a comparison of laboratory and field results

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, K.; Tremp, H. [Hohenheim Univ., Stuttgart (Germany). Inst. for Landscape and Plant Ecology

    2002-07-01

    Fungicide treatment (dithiocarbamate) caused a significant reduction of the quantum yield of photochemical energy conversion of the tested lichen species Parmelia sulcata and Parmelia subrudecta under laboratory conditions. Especially P. subrudecta showed a rapid decrease of photosynthetic capacity in between one week and was more susceptible to fungicide stress compared to Parmelia sulcata. Over the time span of four weeks, sulphuric acid and ammonium sulphate induced no significant changes of fluorescence parameters. At natural stands (lichens on apple tree bark) the same fungicide was applied. Here no vitality-decline (visual verification, yield parameter) was detectable. So results from laboratory are not transferable on lichen living under natural habitat conditions, because removing lichens from tree bark causes additional stress to species. Results obtained from ecotoxicological laboratory experiments should be carefully proven and if possible completed and verified under more realistic background situations. (orig.)

  2. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY

    Science.gov (United States)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-08-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736 nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683 nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths > 712 nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric and/or solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) γ band that is not affected by SIF. The SIF-free O2 γ band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps to estimate red SIF emission. Our approach is then an extension of previous approaches applied to satellite data that utilized only the filling-in of SFLs by red SIF. We conducted retrievals of red SIF using an extensive database of simulated radiances covering a wide range of conditions. Our new algorithm produces good agreement between the simulated truth and retrievals and shows the potential of the O2 bands for noise reduction in red SIF retrievals as compared with approaches that rely solely on SFL filling. Biases seen with existing satellite data, most likely

  3. Effects of nitrogen form on growth,CO2 assimilation,chlorophyll fluorescence,and photosynthetic electron allocation in cucumber and rice plants

    Institute of Scientific and Technical Information of China (English)

    Yan-hong ZHOU; Yi-li ZHANG; Xue-min WANG; Jin-xia CUI; Xiao-jian XIA; Kai SHI; Jing-quan YU

    2011-01-01

    Cucumber and rice plants with varying ammonium(NH4+)sensitivities were used to examine the effects of different nitrogen(N)sources on gas exchange,chlorophyll(ChI)fluorescence quenching,and photosynthetic electron allocation.Compared to nitrate(NO3-)-grown plants,cucumber plants grown under NH4+-nutdtion showed decreased plant growth,net photosynthetic rate,stomatal conductance,intercellular carbon dioxide(CO2)level,transpiration rate,maximum photochemical efficiency of photosystem Ⅱ,and O2-independent alternative electron flux,and increased O2-dependent alternative electron flux.However,the N source had little effect on gas exchange,ChI a fluorescence parameters,and photosynthetic electron allocation in rice plants,except that NH4+-grown plants had a higher O2-independent alternative electron flux than NO3--grown plants.NO3-reduction activity was rarely detected in leaves of NH4+-grown cucumber plants,but was high in NH4+-grown rice plants.These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO3-assimilation,an effect more significant in NO3--grown plants than in NH4+-grown plants.Meanwhile,NH4+-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate(NADPH)for NO3-reduction,regardless of the N form supplied,while NH4+-sensitive plants had a high water-water cycle activity when NH4+was supplied as the sole N source.

  4. Non-invasive, whole-plant imaging of chloroplast movement and chlorophyll fluorescence reveals photosynthetic phenotypes independent of chloroplast photorelocation defects in chloroplast division mutants.

    Science.gov (United States)

    Dutta, Siddhartha; Cruz, Jeffrey A; Jiao, Yuhua; Chen, Jin; Kramer, David M; Osteryoung, Katherine W

    2015-10-01

    Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high-sensitivity, non-invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image-based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less-mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1-5 phot2-1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual-imaging platform also allowed us to develop a straightforward approach to correct non-photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy-dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the

  5. Measurements of chlorophyll fluorescence as an auxiliary method in estimating susceptibility of cultivated hazel (Corylus L. for filbert aphid (Myzocallis coryli goetze

    Directory of Open Access Journals (Sweden)

    Magdalena Gantner

    2012-12-01

    Full Text Available The influence of aphid feeding on chlorophyll a fluorescence in the leaves of four cultivated hazel cultivars, with different levels of resistance to filbert aphid (Myzocallis coryli Goetze, was studied. The maximum effect of photosystem reaction measured on dark-adapted hazel leaves (Fv/Fm parameter and maximum efficiency of photon energy PAR conversion to chemical energy in light conditions (Y parameter were estimated twice, in the leaves of four hazel cultivars with different levels of resistance to filbert aphid, using a fluorometer PAM- 2000 by Walz GmbH - Germany. The analysis of changes of these parameters showed that aphid feeding caused a reaction in all tested cultivars. The most visible reduction of the Fv/Fm and Y values as a result of aphid feeding was observed in the cultivars 'Cud z Bollwiller' and 'Olbrzymi z Halle', numerously colonized by aphids. A smaller number of aphids found on the leaves of more resistant cultivars - 'Kataloński' and 'Lamberta Biały', caused a weaker response of plants and a smaller decline in the value of this parameter. 'Cud z Bollwiller' cultivar showed higher tolerance than other tested cultivars to stress caused by the feeding of sucking insects. The Fv/Fm and Y parameters can be regarded as reliable indexes useful in diagnosing susceptibility of hazel cultivars to aphids, helpful in determining, for example, harmfulness thresholds.

  6. A new method to estimate photosynthetic parameters through net assimilation rate-intercellular space CO2 concentration (A-Ci ) curve and chlorophyll fluorescence measurements.

    Science.gov (United States)

    Moualeu-Ngangue, Dany P; Chen, Tsu-Wei; Stützel, Hartmut

    2017-02-01

    Gas exchange (GE) and chlorophyll fluorescence (CF) measurements are widely used to noninvasively study photosynthetic parameters, for example the rates of maximum Rubisco carboxylation (Vcmax ), electron transport rate (J), daytime respiration (Rd ) and mesophyll conductance (gm ). Existing methods for fitting GE data (net assimilation rate-intercellular space CO2 concentration (A-Ci ) curve) are based on two assumptions: gm is unvaried with CO2 concentration in the intercellular space (Ci ); and light absorption (α) and the proportion of quanta absorbed by photosystem II (β) are constant in the data set. These may result in significant bias in estimating photosynthetic parameters. To avoid the above-mentioned hypotheses, we present a new method for fitting A-Ci curves and CF data simultaneously. This method was applied to a data set obtained from cucumber (Cucumis sativus) leaves of various leaf ages and grown under eight different light conditions. The new method had significantly lower root mean square error and a lower rate of failures compared with previously published methods (6.72% versus 24.1%, respectively) and the effect of light conditions on Vcmax and J was better observed. Furthermore, the new method allows the estimation of a new parameter, the fraction of incoming irradiance harvested by photosystem II, and the dependence of gm on Ci .

  7. Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient.

    Science.gov (United States)

    Zhang, Meiping; Shan, YongJie; Kochian, Leon; Strasser, Reto J; Chen, GuoXiang

    2015-12-01

    Chlorophyll a fluorescence of flag leaves in a super-high-yielding hybrid rice (Oryza sativa L.) LYPJ, and a traditional hybrid rice SY63 cultivar with lower grain yield, which were grown in the field, were investigated from emergence through senescence of flag leaves. As the flag leaf matured, there was an increasing trend in photosynthetic parameters such as quantum efficiency of primary photochemistry ([Formula: see text] Po) and efficiency of electron transport from PS II to PS I (Ψ Eo). The overall photosynthetic performance index (PIABS) was significantly higher in the high-yielding LYPJ compared to SY63 during the entire reproductive stage of the plant, the same to MDA content. However, [Formula: see text] Po(=F V/F M), an indicator of the primary photochemistry of the flag leaf, did not display significant changes with leaf age and was not significantly different between the two cultivars, suggesting that PIABS is a more sensitive parameter than [Formula: see text] Po (=F V/F M) during leaf age for distinguishing between cultivars differing in yield.

  8. Monitoring and Assessing the 2012 Drought in the Great Plains: Analyzing Satellite-Retrieved Solar-Induced Chlorophyll Fluorescence, Drought Indices, and Gross Primary Production

    Directory of Open Access Journals (Sweden)

    Siheng Wang

    2016-01-01

    Full Text Available We examined the relationship between satellite measurements of solar-induced chlorophyll fluorescence (SIF and several meteorological drought indices, including the multi-time-scale standard precipitation index (SPI and the Palmer drought severity index (PDSI, to evaluate the potential of using SIF to monitor and assess drought. We found significant positive relationships between SIF and drought indices during the growing season (from June to September. SIF was found to be more sensitive to short-term SPIs (one or two months and less sensitive to long-term SPI (three months than were the normalized difference vegetation index (NDVI or the normalized difference water index (NDWI. Significant correlations were found between SIF and PDSI during the growing season for the Great Plains. We found good consistency between SIF and flux-estimated gross primary production (GPP for the years studied, and synchronous declines of SIF and GPP in an extreme drought year (2012. We used SIF to monitor and assess the drought that occurred in the Great Plains during the summer of 2012, and found that although a meteorological drought was experienced throughout the Great Plains from June to September, the western area experienced more agricultural drought than the eastern area. Meanwhile, SIF declined more significantly than NDVI during the peak growing season. Yet for senescence, during which time the reduction of NDVI still went on, the reduction of SIF was eased. Our work provides an alternative to traditional reflectance-based vegetation or drought indices for monitoring and assessing agricultural drought.

  9. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon Flux Measurements of Montanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    Directory of Open Access Journals (Sweden)

    Alexander Ač

    2012-01-01

    Full Text Available We explored ability of reflectance vegetation indexes (VIs related to chlorophyll fluorescence emission (686/630, 740/800 and de-epoxidation state of xanthophyll cycle pigments (PRI, calculated as (531−570/(531−570 to track changes in the CO2 assimilation rate and Light Use Efficiency (LUE in montane grassland and Norway spruce forest ecosystems, both at leaf and also canopy level. VIs were measured at two research plots using a ground-based high spatial/spectral resolution imaging spectroscopy technique. No significant relationship between VIs and leaf light-saturated CO2 assimilation (MAX was detected in instantaneous measurements of grassland under steady-state irradiance conditions. Once the temporal dimension and daily irradiance variation were included into the experimental setup, statistically significant changes in VIs related to tested physiological parameters were revealed. ΔPRI and Δ(686/630 of grassland plant leaves under dark-to-full sunlight transition in the scale of minutes were significantly related to MAX (2=0.51. In the daily course, the variation of VIs measured in one-hour intervals correlated well with the variation of Gross Primary Production (GPP, Net Ecosystem Exchange (NEE, and LUE estimated via the eddy-covariance flux tower. Statistical results were weaker in the case of the grassland ecosystem, with the strongest statistical relation of the index 686/630 with NEE and GPP.

  10. Comparative assessment of single and joint effects of diuron and Irgarol 1051 on Arctic and temperate microalgae using chlorophyll a fluorescence imaging

    KAUST Repository

    Kottuparambil, Sreejith

    2017-02-06

    Ship groundings and ice-breakers can cause pollution of the polar environment with antifouling biocides such as diuron and Irgarol 1051. The present study used pulse amplitude modulated fluorometry to compare single and joint toxicities of diuron and Irgarol 1051 on two freshwater taxa of microalgae (Chlorella and Chlamydomonas) originating from Arctic and temperate regions. 30min acute toxicity tests using chlorophyll a (Chl a) fluorescence revealed that Arctic strains of microalgae were more sensitive to herbicides than their temperate counterparts. Diuron and Irgarol 1051 had equal toxicities in the Arctic species, while Irgarol 1051 was more toxic (EC50=5.55–14.70μgL−1) than diuron (EC50=12.90–>40μgL−1) in the temperate species. Toxicity assessment of various mixtures of diuron and Irgarol 1051 revealed antagonistic, additive, and synergistic effects. Our data suggest that herbicides can adversely affect photosynthesis in Arctic microalgae at relatively low levels, and their impact can increase under complex mixture conditions.

  11. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models.

  12. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd.

  13. Sun-induced Chlorophyll fluorescence and PRI improve remote sensing GPP estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    Science.gov (United States)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-07-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different Nitrogen (N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluorescence yield computed at 760 nm (Fy760), scaled-photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and Normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy-chambers on the same locations sampled by the spectrometers. We hypothesized that light-use efficiency (LUE) models driven by remote sensing quantities (RSM) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed significantly higher GPP in the N fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was tightly related to plant N content (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments but it is affected by N availability. Results from a cross validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv = 140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses

  14. Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    Science.gov (United States)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-11-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However

  15. Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags

    Science.gov (United States)

    Guinet, C.; Xing, X.; Walker, E.; Monestiez, P.; Marchand, S.; Picard, B.; Jaud, T.; Authier, M.; Cotté, C.; Dragon, A. C.; Diamond, E.; Antoine, D.; Lovell, P.; Blain, S.; D'Ortenzio, F.; Claustre, H.

    2013-02-01

    , we are able to assess the 3-dimension distribution of phytoplankton concentration by foraging southern elephant seals. This approach reveals that for the Indian sector of the SO, the surface chlorophyll a (chl a) concentrations provided by MODIS were underestimated by a factor 2 compared to chl a concentrations estimated from HPLC corrected in situ fluorescence measurements. The scientific outcomes of this programme include an improved understanding of both the present state and variability in ocean biology, and the accompanying biogeochemistry, as well as the delivery of real-time and open-access data to scientists (doi:10.7491/MEMO.1).

  16. Trocas gasosas e fluorescência da clorofila em seis cultivares de cafeeiro sob estresse de alumínio Gas exchange and chlorophyll fluorescence in six coffee cultivars under aluminum stress

    Directory of Open Access Journals (Sweden)

    Maria Luiza Freitas Konrad

    2005-01-01

    Full Text Available Em experimento desenvolvido em casa de vegetação e em câmara de crescimento avaliou-se o efeito do alumínio (Al na fotossíntese de seis cultivares de cafeeiro. As plantas foram cultivadas em solução nutritiva aerada continuamente, contendo duas concentrações de Al, 0 e 0,148 mmol L-1, fornecidas como Al2(SO43. Após 97 dias mediram-se as taxas de assimilação de CO2 (A e transpiração (E, a condutância estomática (gs, a concentração interna de CO2 (Ci, eficiência instantânea de carboxilação (fic e variáveis de fluorescência da clorofila. Em todas as cultivares, a presença de Al causou quedas significantes em A, gs, fic, ocorrendo aumento em Ci. Também se observou aumento significativo na fluorescência basal (Fo e queda na eficiência quântica máxima do fotossistema II (Fv/Fm, sugerindo injúrias na estrutura dos tilacóides causadas pelo Al. Na curva de indução de fotossíntese, observou-se que o Al causou queda no coeficiente de extinção fotoquímica da fluorescência e aumento no coeficiente de extinção não fotoquímico. Os resultados desse estudo indicaram que a queda de A foi devida à queda da condutância estomática, nas atividades bioquímicas e fotoquímicas.Experiments were carried out under greenhouse and growth chamber to evaluate the effects of aluminum (Al on several photosynthetic characteristics in six coffee cultivars. Plants were grown in nutrient solution aerated continuously, containing two Al concentration, 0 and 0.148 mmol L-1, supplied as Al2(SO43. After 97 days of treatament, measurements of CO2 assimilation rate (A, transpiration rate (E, stomatal conductance (gs, internal CO2 concentration (Ci, instantaneous carboxylation efficiency (phic and chlorophyll fluorescence related characteristics were performed. All six cultivars showed decrease in A, gs and phic and increase in Ci. The basal chlorophyll fluorescence yield (Fo increased and the maximum quantum efficiency (Fv/Fm decreased

  17. 4种苦苣苔科植物光合特性的比较%Comparative study on the photosynthesis and chlorophyll fluorescence of four Gesneriaceae species

    Institute of Scientific and Technical Information of China (English)

    郑月萍; 沈宗根; 姜波; 姜武; 吕洪飞

    2012-01-01

    以苦苣苔科植物半蒴苣苔(Hemiboea henryi Clarke)、温州长蒴苣苔(Didymocarpus cortusifolius (Hance)W.T.Wang)、牛耳朵(Chirita eburnea Hance)和大花旋蒴苣苔(Boea clarkeana Hemsl.)为材料,测定并比较了它们的生理生态因子、光合作用和叶绿素荧光参数.结果表明:4种苦苣苔科植物的净光合速率日变化曲线均为双峰曲线,峰形也相似;4种苦苣苔科植物均有较低的光补偿点和光饱和点,以及较高的CO2补偿点和CO2饱和点,说明低光照(600~750μmol·m-2·s-1)和高CO2浓度(1277~1965 mg/m3)可以有效促进植物的生长和发育.叶绿素荧光参数的测定结果显示:随着光合有效辐射从0μmol·m-2·s-1增加到1400μmol·m-2·s-1,4种苦苣苔科植物的光系统Ⅱ实际光化学量子产量和光化学猝灭值逐渐下降,表观电子传递速率和非光化学猝灭值则增加;光化学量子产量、表观电子传递速率和光化学猝灭的大小顺序为温州长蒴苣苔>牛耳朵>半蒴苣苔>大花旋蒴苣苔,非光化学猝灭均值的大小顺序为牛耳朵>半蒴苣苔>温州长蒴苣苔>大花旋蒴苣苔.表明4种苦苣苔科植物中,牛耳朵同时具有较高的光利用能力和光适应能力,是引种开发的优选品种.%Eco-physiology parameters, photosynthesis and chlorophyll fluorescence of four endangered Gesneriaceae species, Hemiboea henryi Clarke, Boea clarkeana Hemsl. , Chirita eburnea Hance, and Didymocarpus cortusifolius ( Hance) W. T. Wang, were determined. The curve of diurnal variation of leaf photosyntheses of these Gesneriaceae species were similar and showed two peaks in a day with " Wuxiu" phenomenon. The low light compensation points and light saturation points and the high CO2 compensation points and CO2 saturation points suggested that low irradiation (600~750 μmol · m-2 ·s-1 ) and high C02 concentration ( 1 277 ~ 1 965 mg/m3) would enhance plant growth and development. The study on

  18. Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications

    Science.gov (United States)

    Sauzède, R.; Claustre, H.; Jamet, C.; Uitz, J.; Ras, J.; Mignot, A.; D'Ortenzio, F.

    2015-01-01

    neural network-based method is developed to assess the vertical distribution of (1) chlorophyll a concentration ([Chl]) and (2) phytoplankton community size indices (i.e., microphytoplankton, nanophytoplankton, and picophytoplankton) from in situ vertical profiles of chlorophyll fluorescence. This method (FLAVOR for Fluorescence to Algal communities Vertical distribution in the Oceanic Realm) uses as input only the shape of the fluorescence profile associated with its acquisition date and geo-location. The neural network is trained and validated using a large database including 896 concomitant in situ vertical profiles of High-Performance Liquid Chromatography (HPLC) pigments and fluorescence. These profiles were collected during 22 oceanographic cruises representative of the global ocean in terms of trophic and oceanographic conditions, making our method applicable to most oceanic waters. FLAVOR is validated with respect to the retrieval of both [Chl] and phytoplankton size indices using an independent in situ data set and appears to be relatively robust spatially and temporally. To illustrate the potential of the method, we applied it to in situ measurements of the BATS (Bermuda Atlantic Time Series Study) site and produce monthly climatologies of [Chl] and associated phytoplankton size indices. The resulting climatologies appear very promising compared to climatologies based on available in situ HPLC data. With the increasing availability of spatially and temporally well-resolved data sets of chlorophyll fluorescence, one possible global-scale application of FLAVOR could be to develop 3-D and even 4-D climatologies of [Chl] and associated composition of phytoplankton communities. The Matlab and R codes of the proposed algorithm are provided as supporting information.

  19. Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars.

    Science.gov (United States)

    Panda, Debabrata; Sarkar, Ramani Kumar

    2013-01-01

    Natural leaf senescence was investigated in four rainfed lowland rice cultivars, FR 13A (tolerant to submergence), Sabita and Sarala (adapted to medium depth, 0-50 cm stagnant flooding) and Dengi (conventional farmers' cultivar). Changes in the levels of pigment content, CO2 photosynthetic rate, photosystem II photochemistry and anti-oxidant enzyme activities of flag leaves during grain-filling stage were investigated. Chlorophyll content, photochemical efficiency of photosystem II and CO2 photosynthetic rate decreased significantly with the progress of grain-filling. Likely, the activities of antioxidant enzymes namely, superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase decreased with progress of grain-filling. A substantial difference was observed among the four cultivars for the sustainability index (SI) of different photosynthetic parameters and antioxidant enzyme activities; SIs of those parameters, in general, were lower in low yielding cultivar FR 13A compared to the other three cultivars. Among the four cultivars Sabita gave maximum grain yield. Yet, SI of Pn was greater in Sarala and Dengi compared to the Sabita. SIs of electron transport (ETo/CS), maximal photochemical efficiency (Fv/Fm), area above Fo and Fm, catalase and ascorbate peroxidase were also greater in Sarala and Dengi. The data showed that among the different Chl a fluorescence parameters, PI could be used with greater accuracy to distinguish slow and fast senescence rice cultivars during grain-filling period. It was concluded that maintaining the vitality of rice plants during grain-filling gave guarantee to synthesize carbohydrate, however greater yield could be realized provided superior yield attributing parameters are present.

  20. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    Science.gov (United States)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  1. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    Science.gov (United States)

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  2. Lutein from Deepoxidation of Lutein Epoxide Replaces Zeaxanthin to Sustain an Enhanced Capacity for Nonphotochemical Chlorophyll Fluorescence Quenching in Avocado Shade Leaves in the Dark1

    Science.gov (United States)

    Förster, Britta; Pogson, Barry James; Osmond, Charles Barry

    2011-01-01

    Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m−2 s−1, increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQΔpH) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQΔLAZ); and after epoxidation of A+Z but with residual ΔL (NPQΔL). The capacity of both NPQΔLAZ and NPQΔL was similar and 45% larger than NPQΔpH, but dark relaxation of NPQΔLAZ was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQΔLAZ and NPQΔL provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to “lock in” enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools. PMID:21427278

  3. Enhancement of single-molecule fluorescence signals by colloidal silver nanoparticles in studies of protein translation.

    Science.gov (United States)

    Bharill, Shashank; Chen, Chunlai; Stevens, Benjamin; Kaur, Jaskiran; Smilansky, Zeev; Mandecki, Wlodek; Gryczynski, Ignacy; Gryczynski, Zygmunt; Cooperman, Barry S; Goldman, Yale E

    2011-01-25

    Metal-enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold, respectively. Fluorescence intensity fluctuations above shot noise, at 0.1-5 Hz, were greater on silver particles. Overall signal-to-noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G.

  4. An Introduction to Chlorophyll Fluorescence

    NARCIS (Netherlands)

    Harbinson, J.; Rosenqvist, E.

    2003-01-01

    Photosynthesis is a physiological process that couples the energy of light to certain metabolic changes in biochemical reactions, via photochemical processess. It is the purpose of this chapter to lay out the basic physical and physiological processess associated with this coupling and to show how t

  5. Efficient signal processing for time-resolved fluorescence detection of nitrogen-vacancy spins in diamond

    Science.gov (United States)

    Gupta, A.; Hacquebard, L.; Childress, L.

    2016-03-01

    Room-temperature fluorescence detection of the nitrogen-vacancy center electronic spin typically has low signal to noise, requiring long experiments to reveal an averaged signal. Here, we present a simple approach to analysis of time-resolved fluorescence data that permits an improvement in measurement precision through signal processing alone. Applying our technique to experimental data reveals an improvement in signal to noise equivalent to a 14% increase in photon collection efficiency. We further explore the dependence of the signal to noise ratio on excitation power, and analyze our results using a rate equation model. Our results provide a rubric for optimizing fluorescence spin detection, which has direct implications for improving precision of nitrogen-vacancy-based sensors.

  6. Chlorophyll fluorescence characteristics of Amaranthus tricolor L.under high temperature stress%高温胁迫下苋菜的叶绿素荧光特性

    Institute of Scientific and Technical Information of China (English)

    陈梅; 唐运来

    2013-01-01

    为了探明高温胁迫对苋菜(Amaranthus tricolor L.)光合过程的影响,用不同温度(25、30、35、40、45℃)处理苋菜植株1h后,随即测定了其叶绿素荧光动力学参数和快速光响应曲线特征参数的变化.结果表明:40℃以上高温胁迫下,苋菜叶片的光系统Ⅱ(PSⅡ)潜在光化学效率(Fv/Fo)、最大光化学效率(Fv/Fm)下降;最大荧光(Fm)、光合电子传递速率(ETR)、PSⅡ实际光化学效率(Yield)、光化学淬灭系数(qP)也均有所下降;而初始荧光(F.)和非光化学淬灭系数(NPQ)在40℃以上高温胁迫下显著上升.叶绿素荧光快速光响应曲线测定结果表明,初始斜率α、最大相对电子传递速率ETRmax和半饱和光强Ik在40℃以上高温胁迫下有所下降.研究表明,40℃以上高温胁迫对苋菜的光能的吸收、转换、光合电子传递和强光耐受能力等均有一定的影响.%Amaranth (Amaranthus tricolor L.) plants were exposed to several temperature levels (25,30,35,40,and 45 ℃) for 1 h,and then,the characteristic parameters of chlorophyll fluorescence and the rapid light response curves of photosynthesis were measured,aimed to understand the effects of high temperature stress on the photosynthesis process of amaranth.High temperature stress (>40 ℃) decreased the maximum fluorescence (Fm),potential photochemical efficiency (Fv/Fo),and maximum photochemical efficiency of PS Ⅱ (Fv/Fm).Simultaneously,the electron transport rate (ETR),actual photochemical efficiency of PS Ⅱ (Yield),and photochemical quenching coefficient (qP) also had some decrease.In contrast,the initial fluorescence (Fo) and non-photochemical quenching coefficient (NPQ) were increased significantly.The initial slope rate (a),maximum apparent electron transport rates (ETRmax),and half-saturation light intensity (Ik) under high temperature stress also had some decline.These results indicated that the photosynthesis of A.tricolor plants was very sensitive to high

  7. Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and {beta}-catenin/Tcf signaling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Carmen A.; Xu Meirong; Orner, Gayle A.; Dario Diaz, G.; Li Qingjie; Dashwood, Wan Mohaiza; Bailey, George S.; Dashwood, Roderick H

    2003-03-01

    ), whereas chlorophyllin had no effect and copper promoted the number of small ACF induced by IQ. The results suggest that further investigation of the dose-response for suppression versus promotion by chlorophyll and chlorophyllin is warranted, including studies of the {beta}-catenin/Tcf signaling pathway and its influence on cell proliferation and apoptosis in the colonic crypt.

  8. Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and beta-catenin/Tcf signaling.

    Science.gov (United States)

    Blum, Carmen A; Xu, Meirong; Orner, Gayle A; Darío Díaz, G; Li, Qingjie; Dashwood, Wan Mohaiza; Bailey, George S; Dashwood, Roderick H

    2003-01-01

    chlorophyllin had no effect and copper promoted the number of small ACF induced by IQ. The results suggest that further investigation of the dose-response for suppression versus promotion by chlorophyll and chlorophyllin is warranted, including studies of the beta-catenin/Tcf signaling pathway and its influence on cell proliferation and apoptosis in the colonic crypt.

  9. Chlorophyll fluorescence of tropical tree species in a semi-deciduous forest gap Fluorescência da clorofila de espécies arbóreas tropicais em uma clareira de floresta semidecídua

    Directory of Open Access Journals (Sweden)

    Rafael Vasconcelos Ribeiro

    2004-02-01

    Full Text Available The characterization of different ecological groups in a forest formation/succession is unclear. To better define the different successional classes, we have to consider ecophysiological aspects, such as the capacity to use or dissipate the light energy available. The main objective of this work was to assess the chlorophyll fluorescence emission of tropical tree species growing in a gap of a semi-deciduous forest. Three species of different ecological groups were selected: Croton floribundus Spreng. (pioneer, P, Astronium graveolens Jacq. (early secondary, Si, and Esenbeckia febrifuga A. Juss. (late secondary, St. The potential (Fv/Fm and effective (deltaF/Fm' quantum efficiency of photosystem II, apparent electron transport rate (ETR, non-photochemical (qN and photochemical (qP quenching of fluorescence were evaluated, using a modulated fluorometer, between 7:30 and 11:00 h. Values of Fv/Fm remained constant in St, decreasing in P and Si after 9:30 h, indicating the occurrence of photoinhibition. Concerning the measurements taken under light conditions (deltaF/Fm', ETR, qP and qN, P and Si showed better photochemical performance, i.e., values of deltaF/Fm', ETR and qP were higher than St when light intensity was increased. Values of qN indicated that P and Si had an increasing tendency of dissipating the excess of energy absorbed by the leaf, whereas the opposite was found for St. The principal component analysis (PCA, considering all evaluated parameters, showed a clear distinction between St, P and Si, with P and Si being closer. The PCA results suggest that chlorophyll fluorescence may be a potential tool to differentiate tree species from distinct successional groups.A caracterização dos diferentes grupos ecológicos envolvidos nos processos de formação/sucessão florestal é ainda pouco precisa. Para melhor distinção das classes sucessionais deve-se levar em consideração aspectos ecofisiológicos, como a capacidade de

  10. Hybridization chain reaction-based fluorescence immunoassay using DNA intercalating dye for signal readout.

    Science.gov (United States)

    Deng, Yan; Nie, Ji; Zhang, Xiao-hui; Zhao, Ming-Zhe; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2014-07-07

    A novel format of fluorescence immunosorbent assay based on the hybridization chain reaction (HCR) using a DNA intercalating dye for signal readout was constructed for the sensitive detection of targets, both in competitive and sandwich modes. In this platform, the capture and recognition processes are based on immunoreactions and the signal amplification depends on the enzyme-free, isothermal HCR-induced labelling event. After a competitive or a sandwich immunoreaction, a biotinylated capture DNA was bound to a biotinylated signal antibody through avidin, and triggered the HCR by two specific hairpins into a nicked double helix. Gene Finder (GF), a fluorescent probe for double-strand DNA, was intercalated in situ into the amplified chain to produce the fluorescence signal. The limit of detection (LOD) for rabbit IgG in competitive mode by HCR/GF immunoassay was improved at least 100-fold compared with the traditional fluorescence immunoassay using the fluorescein isothiocyanate-labelled-streptavidin or fluorescein isothiocyanate-labelled second antibody as the signal readout. The proposed fluorescence immunoassay was also demonstrated by using α-fetoprotein as the model target in sandwich mode, and showed a wide linear range from 28 ng mL(-1) to 20 μg mL(-1) with a LOD of 6.0 ng mL(-1). This method also showed satisfactory analysis in spiked human serum, which suggested that it might have great potential for versatile applications in life science and point-of-care diagnostics.

  11. Effects of manganese stress on growth and chlorophyll fluorescence parameters of Celosia argentea Linn%锰胁迫对青葙生长及叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    尚伟伟; 刘杰; 张学洪; 余轲

    2013-01-01

    Celosia argentea Linn., an annual herb, was found to be a pioneer species on the Mn mine wasteland. To gain fundamental insights into the tolerance of C. argentea to Mn excess, 28-days-old plants grown in aerated nutrient solution were supplied with 2.5(control), 50, 100, 150, 200 and 300 mg·L-1 Mn and analyzed for chlorophyll contents, chlorophyll fluorescence parameters, height and root length. It was found that chlorophyll contents and chlorophyll fluorescence parameters were decreased with increased in Mn supply level. Chlorophyll a, chlorophyll b and total chlorophyll contents dropped significantly as Mn concentrations exceeded 50 mg·L-1; however, the contents of chlorophyll b did not significantly decreased at Mn concentrations ranging from 100 mg·L-1 to 300 mg·L-1 (p>0.05). The responses of chlorophyll fluorescence parameters in leaves of C. argentea showed that maximum quantum yield (Fv/Fm), maximum fluorescence(Fm), minimal fluorescence (Fo), effective quantum yield (EQY), electron transport rate (ETR) and photo chemical quenching (qP) were decreased by Mn stress. The reduction of chlorophyll fluorescence parameters indicated that Mn stress inhibited the electronic transfer process in the plants. At high manganese concentrations (150, 200, 300 mg·L-1), ETR EQY did not vary significantly, although qP decreased progressively with each increase in Mn supply concentration to 300 mg·L-1. Changes in the pattern of plant height were similar to those of ETR and EQY, while C. argentea suffered no significant reduction in root length until the Mn concentration reached 300 mg L-1. The results indicated that C. argentea has a high tolerance to manganese.%通过温室水培实验,研究在不同锰质量浓度(2.5、50、100、150、200、300 mg·L-1)胁迫下青葙(Celosia argentea Linn.)的叶绿素含量、叶绿素荧光参数的变化,及对其生长的影响,探究青葙对锰毒的耐性。结果表明,随着Mn2+质量浓度的升高,青葙叶

  12. Indicators: Chlorophyll a

    Science.gov (United States)

    Chlorophyll allows plants (including algae) to photosynthesize, i.e., use sunlight to convert simple molecules into organic compounds. Chlorophyll a is the predominant type of chlorophyll found in green plants and algae.

  13. UV-B辐射胁迫对细叶青冈幼苗叶绿素荧光特性的影响%UV-B radiative forcing on chlorophyll fluorescence characteristics of Cyclobalanopsis gracilis seedlings

    Institute of Scientific and Technical Information of China (English)

    余小龙; 余树全; 伊力塔; 殷秀敏; 张华柳

    2011-01-01

    通过对在自然生境(CK)、辐射UV-B增强(+10%)和辐射UV-B减弱(-80%)三种条件下的细叶青冈幼苗叶绿素含量、荧光参数Fv/Fm、Fv/Fo和φPSⅡ的测定研究,探讨UV-B辐射胁迫对细叶青冈生长的影响.结果表明,细叶青冈幼苗在辐射UV-B减弱胁迫下叶绿素含量、荧光参数Fv/Fm、Fv/Fo和φPSⅡ均高于辐射增强胁迫组和对照组,表明细叶青冈幼苗在减弱UV-B辐射胁迫下具有较好的适应性,并能促进其生长;而辐射增强胁迫下细叶青冈幼苗的适应性较差.%The paper studied chlorophyll content and chlorophyll fluorescence characteristics(Fv/ Fm, FvlFo and φPSH)of Cyc/oba/anopsis gradlis under the different UV-B radiative forcing. Three intensities of radiative forcing were treated in this experiment: radiative forcing (CK), +10% radiative forcing and -80% radiative forcing. To investigate UV-B radiation forcing effect on the growth of Cyclobalanopsis gradlis. The results showed: under -80% radiative forcing treatment, chlorophyll content, fluorescence parameters FvlFm, FvlFo, and φPSⅡ were higher than radiative forcing (CK) and +10% radiative forcing, The results indicated that Cydobalanopsis gradlis had better adaptability under the lower radiative forcing, it can promote its growth; but it had poor adaptability under higher radiative forcing conditions.

  14. A conjunct near-surface spectroscopy system for fix-angle and multi-angle continuous measurements of canopy reflectance and sun-induced chlorophyll fluorescence

    Science.gov (United States)

    Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.

    2016-09-01

    An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.

  15. Fluorescência e teores de clorofilas em abacaxizeiro cv. pérola submetido a diferentes concentrações de sulfato de amônio Fluorescence and levels of chlorophyll in pineapple plants cv. perola submitted to different concentration of ammonium sulphate

    Directory of Open Access Journals (Sweden)

    Darlene Ana de Paula Vieira

    2010-06-01

    Full Text Available O presente trabalho teve como objetivo a análise da emissão da fluorescência da clorofila a e dos teores de clorofilas em plantas de Ananas comosus (L. Merril cv pérola, cultivadas em casa de vegetação, submetidas a quatro concentrações de nitrogênio por adição ou não de sulfato de amônio, de acordo com os seguintes tratamentos: Tº= 0 T1/2 = 15; T1 = 30; e T2 = 60 mg/kg solo. As determinações de fluorescência mínima (F0, máxima (Fm, variável (Fv, terminal (Ft e da eficiência fotoquímica máxima (Fv/Fm de folhas adaptadas ao escuro foram realizadas ao longo do dia, aos cinco dias após a segunda aplicação de sulfato de amônio, efetuada 120 dias após o transplantio. A adição de sulfato de amônio afetou a fluorescência variável e a máxima, mas não afetou a fluorescência mínima, a terminal nem a eficiência fotoquímica. Houve diferenças significativas entre os valores das variáveis da fluorescência ao longo do dia em que foram feitas as leituras. Houve diferenças nos teores de clorofilas foliares, em função das concentrações de sulfato de amônio aplicadas, com aumento para clorofila a e para a relação clorofila a/b, mas não para clorofila b.The present research aimed to analyze chlorophyll a fluorescence emission as well as chlorophyll levels in Ananas comosus (L. Merril cv Pérola grown under greenhouse conditions and submitted to four concentration of nitrogen, through addition or not of ammonium sulphate according to the following treatments: Tº= 0.000; T1/2 = 0.015; T1 =0.030; and T2 = 0.060 g/kg soil. Determinations of minimum (F0, maximum (Fm, variable (Fv, and terminal (Ft fluorescence and maximum photochemical efficiency (Fv/Fm of dark-adapted leaves were carried out during the day, five days after the second application of ammonium sulphate, carried out 120 days after the transplant. The results showed that the addition of ammonium sulphate affected variable and maximum fluorescence, but not

  16. An LED-based fluorometer for chlorophyll quantification in the laboratory and in the field.

    Science.gov (United States)

    Lamb, Jacob J; Eaton-Rye, Julian J; Hohmann-Marriott, Martin F

    2012-10-01

    The chlorophyll content is an important experimental parameter in agronomy and plant biology research. In this report, we explore the feasibility of determining total concentration of extracts containing chlorophyll a and chlorophyll b by chlorophyll fluorescence. We found that an excitation at 457 nm results in the same integrated fluorescence emission for a molecule of chlorophyll a and a molecule of chlorophyll b. The fluorescence yield induced by 457 nm is therefore proportional to total molar chlorophyll concentration. Based on this observation, we designed an instrument to determine total chlorophyll concentrations. A single light emitting diode (LED) is used to excite chlorophyll extracts. After passing through a long-pass filter, the fluorescence emission is assessed by a photodiode. We demonstrate that this instrument facilitates the determination of total chlorophyll concentrations. We further extended the functionality of the instrument by including LEDs emitting at 435 and 470 nm wavelengths, thereby preferentially exciting chlorophyll a and chlorophyll b. This instrument can be used to determine chlorophyll a and chlorophyll b concentrations in a variety of organisms containing different ratios of chlorophylls. Monte-Carlo simulations are in agreement with experimental data such that a precise determination of chlorophyll concentrations in carotenoid-containing biological samples containing a concentration of less than 5 nmol/mL total chlorophyll can be achieved.

  17. Parameter Difference of Chlorophyll Fluorescence in Leaves of Different Cultivars of Lycium barbarum%不同枸杞品种叶绿素荧光参数差异分析

    Institute of Scientific and Technical Information of China (English)

    杨娟; 王有科; 李捷; 陈娜; 李小刚; 张晓娜

    2014-01-01

    In this research,some cultivars of Lycium barbarum were taken as the materials.In the field experiment,the chlorophyll fluorescence parameters and the chlorophyll contents in the cultivars of L.barbarum were studied using the chlorophyll fluorescence measuring technique.The results revealed that the maximal photochemical efficiency of PS Ⅱ (Fv/Fm) and potential activity of PS Ⅱ (Fv/Fo) of Ningqi No.2 were remarkably higher than those of other three cultivars.The actual photosynthesis yield (Y(Ⅱ)),activity photosynthesis yield (Fv'/ Fm'),photochemical quenching (qP) and electron transport rate (ETR) were significantly different from different cultivars under a photo synthetically active radiation of 0-2 847 μmol · m-2 · s-1,and they were the highest in Ningqi No.2,followed by Mengqi No.1 and Damaye,and the lowest in Ningqi No.1.The initial slope α of fitting parameter ETR was similar to the change trend of ETR.The content of Chlorophyll a,Chlorophyll b and Chlorophyll a + b in Ningqi No.2 were the highest.There was an extremely significant or a significant positive correlation between chlorophyll a + b and Y(Ⅱ),Fv'/Fm',qP and ETR,but a negative correlation with NPQ.So it could be concluded that Ningqi No.2 had a higher physiological activity of PS Ⅱ and physiological basis of potential biomass,the photosynthesis capability of all the four cultivars was strong.The photochemical efficiency of Ningqi No.1 was weaker,and it was easy to suffer from photo inhibition at high light intensity.%在田间试验条件下,以宁杞1号、宁杞2号、大麻叶和蒙杞l号为材料,采用叶绿素荧光技术测定了不同枸杞品种的叶绿素荧光参数,并测定供试品种的叶绿素含量.结果表明:宁杞2号的PSⅡ最大光化学效率(Fv/Fm)和PSⅡ潜在活性(Fv/Fo)值显著高于其他3个品种.在不同光照强度(PAR,0~2 847 μmol·m-2·s-1)下,实际光合量子产量[Y(Ⅱ)]、有效光合量子产量(Fv'/Fm')、光化学淬灭系数(qP)

  18. Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II

    NARCIS (Netherlands)

    Vredenberg, W.J.

    2008-01-01

    The fluorescence induction F(t) of dark-adapted chloroplasts has been studied in multi-turnover 1 s light flashes (MTFs). A theoretical expression for the initial fluorescence rise is derived from a set of rate equations that describes the sequence of transfer steps associated with the reduction of

  19. Fluorescence signalling of the transition metal ions: Design strategy based on the choice of the fluorophore component

    Indian Academy of Sciences (India)

    N B Sankaran; S Banthia; A Samanta

    2002-12-01

    Transition metal ions are notorious for their fluorescence quenching abilities. In this paper, we discuss the design strategies for the development of efficient off-on fluorescence signalling systems for the transition metal ions. It is shown that even simple fluorophore-spacer-receptor systems can display excellent off-on fluorescence signalling towards the quenching metal ions when the fluorophore component is chosen judiciously.

  20. 夜间低温对不同基因型番茄叶绿素荧光参数的影响%Effect of Low Night Temperature on Chlorophyll Fluorescence Parameters in Different Genotypes Tomato Leaves

    Institute of Scientific and Technical Information of China (English)

    齐红岩; 华利静; 赵乐; 汤羽凡

    2011-01-01

    In order to reveal the effects of low night temperature on chlorophyll content and PS Ⅱ activity in different genotypes tomatoes leaves. The changes of chlorophyll content and chlorophyll fluorescence parameters in chilling-tolerant wild tomato LA 1777 and chilling-sensitive tomato Moneymaker under short-time 15℃(control) , 9℃ and 6℃ night temperature were studied. The results showed that the chlorophyll a, b content and chlorophyll a/b in two genotypes tomato leaves were significantly decreased under low night temperature stress, and the chlorophyll a and b content in Moneymaker significantly decreased than control after 1 d low night temperature treated. The Fo and NPQ increased in two tomatoes leaves under low night temperature, however, Fv/Fm,Φ>PS Ⅱ , ETR and qP were decreased significantly after low night temperature treated. Only NPQ in two tomatoes had the same trend, other fluorescence parameters in Moneymaker leaves had greater changed scale than LA 1777. The results showed that PS Ⅱ activity and electron transfer in cold-sensitive tomato leaves were influenced under low night temperature, and PS Ⅱ activity decreased significantly, but its decline scale was lower in cold-tolerant tomato.%为了明确不同基因型番茄叶片光系统Ⅱ(PSⅡ)活性对夜间低温逆境的响应.以耐低温野生番茄(Lycopersicon hirstum)LA1777和低温敏感型番茄(Lycopersicon esculentum Mill.)Moneymaker为试材,研究短期夜间15℃(对照)、9℃和6℃对不同基因型番茄叶片的叶绿素含量和叶绿素荧光参数的影响.结果表明:夜间低温下两种类型番茄幼苗叶片的叶绿素a、b含量及叶绿素a/b值均随着温度降低而呈下降趋势,夜间低温处理1d后,Moneymaker的叶绿素a和b含量均显著低于对照.夜间低温增加了番茄叶片的Fo(初始荧光)和NPQ(非光化学猝灭系数),显著降低了Fv/Fm(原初光能效率)、φPSⅡ(实际光化学量子效率)、ETR(电子传递速率)和qP(光

  1. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.

    Science.gov (United States)

    Vasil'ev, S; Bruce, D

    1998-08-04

    Chlorophyll a fluorescence emission is widely used as a noninvasive measure of a number of parameters related to photosynthetic efficiency in oxygenic photosynthetic organisms. The most important component for the estimation of photochemistry is the relative increase in fluorescence yield between dark-adapted samples which have a maximal capacity for photochemistry and a minimal fluorescence yield (F0) and light-saturated samples where photochemistry is saturated and fluorescence yield is maximal (Fm). However, when photosynthesis is saturated with a short (less than 50 micro(s)) flash of light, which induces only one photochemical turnover of photosystem II, the maximal fluorescence yield is significantly lower (Fsat) than when saturation is achieved with a millisecond duration multiturnover flash (Fm). To investigate the origins of the difference in fluorescence yield between these two conditions, our time-resolved fluorescence apparatus was modified to allow collection of picosecond time-resolved decay kinetics over a short time window immediately following a saturating single-turnover flash (Fsat) as well as after a multiturnover saturating pulse (Fm). Our data were analyzed with a global kinetic model based on an exciton radical pair equilibrium model for photosystem II. The difference between Fm and Fsat was modeled well by changing only the rate constant for quenching of excitation energy in the antenna of photosystem II. An antenna-based origin for the quenching was verified experimentally by the observation that addition of the antenna quencher 5-hydroxy-1,4-naphthoquinone to thylakoids under Fm conditions resulted in decay kinetics and modeled kinetic parameters very similar to those observed under Fsat conditions in the absence of added quinone. Our data strongly support the origin of low fluorescence yield at Fsat to be an antenna-based nonphotochemical quenching of excitation energy in photosystem II which has not usually been considered explicitly in

  2. Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy.

    Science.gov (United States)

    Rys, Magdalena; Juhász, Csilla; Surówka, Ewa; Janeczko, Anna; Saja, Diana; Tóbiás, István; Skoczowski, Andrzej; Barna, Balázs; Gullner, Gábor

    2014-10-01

    Leaves of a pepper cultivar harboring the L(3) resistance gene were inoculated with Obuda pepper virus (ObPV), which led to the appearance of hypersensitive necrotic lesions approx. 72 h post-inoculation (hpi) (incompatible interaction), or with Pepper mild mottle virus (PMMoV) that caused no visible symptoms on the inoculated leaves (compatible interaction). ObPV inoculation of leaves resulted in ion leakage already 18 hpi, up-regulation of a pepper carotenoid cleavage dioxygenase (CCD) gene from 24 hpi, heat emission and declining chlorophyll a content from 48 hpi, and partial desiccation from 72 hpi. After the appearance of necrotic lesions a strong inhibition of photochemical energy conversion was observed, which led to photochemically inactive leaf areas 96 hpi. However, leaf tissues adjacent to these inactive areas showed elevated ΦPSII and Fv/Fm values proving the advantage of chlorophyll a imaging technique. PMMoV inoculation also led to a significant rise of ion leakage and heat emission, to the up-regulation of the pepper CCD gene as well as to decreased PSII efficiency, but these responses were much weaker than in the case of ObPV inoculation. Chlorophyll b and total carotenoid contents as measured by spectrophotometric methods were not significantly influenced by any virus inoculations when these pigment contents were calculated on leaf surface basis. On the other hand, near-infrared FT-Raman spectroscopy showed an increase of carotenoid content in ObPV-inoculated leaves suggesting that the two techniques detect different sets of compounds.

  3. Unique chlorophylls in picoplankton Prochlorococcus sp. "Physicochemical properties of divinyl chlorophylls, and the discovery of monovinyl chlorophyll b as well as divinyl chlorophyll b in the species Prochlorococcus NIES-2086".

    Science.gov (United States)

    Komatsu, Hirohisa; Wada, Katsuhiro; Kanjoh, Terumitsu; Miyashita, Hideaki; Sato, Mayumi; Kawachi, Masanobu; Kobayashi, Masami

    2016-12-01

    In this review, we introduce our recent studies on divinyl chlorophylls functioning in unique marine picoplankton Prochlorococcus sp. (1) Essential physicochemical properties of divinyl chlorophylls are compared with those of monovinyl chlorophylls; separation by normal-phase and reversed-phase high-performance liquid chromatography with isocratic eluent mode, absorption spectra in four organic solvents, fluorescence information (emission spectra, quantum yields, and life time), circular dichroism spectra, mass spectra, nuclear magnetic resonance spectra, and redox potentials. The presence of a mass difference of 278 in the mass spectra between [M+H](+) and the ions indicates the presence of a phytyl tail in all the chlorophylls. (2) Precise high-performance liquid chromatography analyses show divinyl chlorophyll a' and divinyl pheophytin a as the minor key components in four kinds of Prochlorococcus sp.; neither monovinyl chlorophyll a' nor monovinyl pheophytin a is detected, suggesting that the special pair in photosystem I and the primary electron acceptor in photosystem II are not monovinyl but divinyl-type chlorophylls. (3) Only Prochlorococcus sp. NIES-2086 possesses both monovinyl chlorophyll b and divinyl chlorophyll b, while any other monovinyl-type chlorophylls are absent in this strain. Monovinyl chlorophyll b is not detected at all in the other three strains. Prochlorococcus sp. NIES-2086 is the first example that has both monovinyl chlorophyll b as well as divinyl chlorophylls a/b as major chlorophylls.

  4. Spatial Four Wave Mixing, Probe Images, and Fluorescence Signals in Dressed Three-Level System

    Science.gov (United States)

    Lan, Huayan; Sun, Jia; Wu, Zhenkun; Zhang, Dan; Zhang, Yiqi; Zheng, Huaibin; Zhang, Yanpeng

    2013-10-01

    We investigate the spatial images of the probe, generated four wave mixing (FWM) signal and the accompanying fluorescence spectrum signal simultaneously in FWM process in a cascade three-level atomic system for the first time. We experimentally observe and theoretically investigate the three spectrum signals versus the probe field as well as the dressing field frequency detunings. Utilizing the experimental results of spectrum signals, the cross phase modulation and the relative position between the weak and strong beams, we analyze the characteristics indicated in the spatial images of probe transmission and FWM, such as focusing or defocusing, shift and splitting in detail. Such studies can be used in all-optical controlled spatial signal transmission.

  5. A Lagrangian Interpretation of Laser Induced Fluorescence Signals in a Plasma

    Science.gov (United States)

    Chu, Feng; Skiff, Fred; Berumen, Jorge; Mattingly, Sean; Hood, Ryan

    2015-11-01

    Laser induced fluorescence (LIF) is a nonintrusive diagnostic technique that has found applications in the study of a wide range of fundamental and applied problems. Thus it is important to make a correct interpretation of LIF signals. We adopt a Lagrangian approach to model LIF signals by introducing a non-linear conditional probability function P(x,v,tx',v',t'). A simulation is performed to compute the LIF signals and the results are presented. We investigate how mean-field waves affect these signals and metastable state birth rates. The ultimate goal is to construct the complete model for LIF signals by combining optical pumping, mean-field wave effect and metastable state birth rate modulation. This research is supported by the Department of Energy under grant No. DOE DE-FG02-99ER54543.

  6. The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity.

    Science.gov (United States)

    Kirst, Henning; Melis, Anastasios

    2014-01-01

    The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated.

  7. Larval vision contributes to gregarious settlement in barnacles: adult red fluorescence as a possible visual signal

    KAUST Repository

    Matsumura, K.

    2014-02-26

    Gregarious settlement, an essential behavior for many barnacle species that can only reproduce by mating with a nearby barnacle, has long been thought to rely on larval ability to recognize chemical signals from conspecifics during settlement. However, the cyprid, the settlement stage larva in barnacles, has one pair of compound eyes that appear only at the late nauplius VI and cyprid stages, but the function(s) of these eyes remains unknown. Here we show that cyprids of the intertidal barnacle Balanus (=Amphibalanus) amphitrite can locate adult barnacles even in the absence of chemical cues, and prefer to settle around them probably via larval sense of vision. We also show that the cyprids can discriminate color and preferred to settle on red surfaces. Moreover, we found that shells of adult B. amphitrite emit red auto-fluorescence and the adult extracts with the fluorescence as a visual signal attracted cyprid larvae to settle around it. We propose that the perception of specific visual signals can be involved in behavior of zooplankton including marine invertebrate larvae, and that barnacle auto-fluorescence may be a specific signal involved in gregarious larval settlement.

  8. Absorption and Distribution of Na+, K+ and Chlorophyll Fluorescence in Castor under Salt Stress%盐胁迫对蓖麻Na+、K+吸收分布特点和叶绿素荧光的影响

    Institute of Scientific and Technical Information of China (English)

    张(丰 刀)(女); 姚舸; 钦佩

    2008-01-01

    [Objective] The aim of this study is to reveal the salt resistance of castor. [Method] Under salt stress, the growth, osmotic potential, chlorophyll fluorescence parameters, Na+ and K+ uptakes and transports in the seedlings of two Ricinus communis varieties (cultivar saline-alkali land), were comparatively studied. [Result] Wild castor preformed better in halophilism than that of cultivar castor Zibi 6 under the NaCl treatment. One of the salt tolerant mechanisms of castor is to improve K+ uptake and transport to overground portion, thus to maintain K+/Na+ homeostasis in leaves; on the other hand, the high stability of Photoreaction System Ⅱ (PS Ⅱ) plays a key role in maintaining the leaf photosynthetic rate under salt stress. [Conclusion] The results of this study provided theoretical basis for the extension and application of castor in saline beach.

  9. Changes in Terpene Lactones of Ginkgo biloba and Its Relation with Chlorophyll Fluorescence Characters%银杏叶萜内酯含量的变化及其与叶绿素荧光特性的关系

    Institute of Scientific and Technical Information of China (English)

    肖强; 张峥; 周大寨

    2015-01-01

    为探究银杏(Ginkgo biloba)叶萜类内酯含量和光合同化作用的关系,对其内酯含量和叶绿素荧光特性进行了研究。结果表明,不同采收时间银杏叶中白果内酯和银杏内酯含量有显著差异,总体上,5月份含量较低,此后逐渐升高,8月份达到高峰,然后快速下降,10月底最低;与此同时,银杏叶片的光合色素以及叶绿素荧光参数也呈现周期性变化。白果内酯以及萜内酯含量与叶绿素荧光参数Y(NPQ)之间呈极显著正相关关系,因此,可以通过银杏叶片的叶绿素荧光参数预测白果内酯和萜内酯含量。%In order to understand the relationship between contents of terpene lactones and photosynthetic characters in Ginkgo biloba leaves, the contents of terpene lactones were determined and chlorophyll lfuorescence features was studied. The results showed that the changes in terpene lactone contents were signiifcant at different harvest time. In general, bilobalide and ginkgolide contents were low in May, then increased gradually, reached peak in August, and afterwards decreased until the end of October. At the same time, the photosynthetic pigment content and chlorophyll lfuorescence parameters in leaves showed periodical changes. The contents of bilobalide and lactone had significant positive correlation with chlorophyll fluorescence index of Y(NPQ). So, it was suggested that bilobalide and lactone contents could be forecasted by chlorophyll lfuorescence parameters.

  10. Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval

    Science.gov (United States)

    Xing, Xiaogang; Morel, André; Claustre, Hervé; Antoine, David; D'Ortenzio, Fabrizio; Poteau, Antoine; Mignot, Alexandre

    2011-06-01

    Eight autonomous profiling floats equipped with miniaturized radiometers and fluorimeters have collected data in Pacific, Atlantic, and Mediterranean offshore zones. They measured in particular 0-400 m vertical profiles of the downward irradiance at three wavelengths (412, 490, and 555 nm) and of the chlorophyll a fluorescence. Such autonomous sensors collect radiometric data regardless of sky conditions and collect essentially uncalibrated fluorescence data. Usual processing and calibration techniques are no longer usable in such remote conditions and have to be adapted. The proposition here is an interwoven processing by which missing parts of irradiance profiles (due to intermittent cloud occurrence) are interpolated by accounting for possible changes in optical properties (detected by the fluorescence signal) and by which the attenuation coefficient for downward irradiance, used as proxy for [Chl a] (the chlorophyll a concentration), allows the fluorescence signal to be calibrated in absolute units (mg m-3). This method is successfully applied to about 600 irradiance and fluorescence profiles. Validation of the results in terms of [Chl a] is made by matchup with satellite (MODIS-A) chlorophyll (24.3% RMSE, N = 358). Validation of the method is obtained by applying it on similar field data acquired from ships, which, in addition to irradiance and fluorescence profiles, include the [Chl a] HPLC determination, used for final verification.

  11. Correlation functions in resonance fluorescence with spectral resolution: Signal-processing approach

    Science.gov (United States)

    Shatokhin, Vyacheslav N.; Kilin, Sergei Ya.

    2016-09-01

    In the framework of the signal processing approach to single-atom resonance fluorescence with spectral resolution, we diagrammatically derive an analytical formula for arbitrary-order spectral correlation functions of the scattered fields that pass through Fabry-Perot interferometers. Our general expression is then applied to study correlation signals in the limit of well separated spectral lines of the resonance fluorescence spectrum. In particular, we study the normalized second-order temporal intensity correlation functions in the case of the interferometers tuned to the components of the spectrum and obtain interferential corrections to the approximate results derived in the secular limit. In addition, we explore purely spectral correlations and show that they can fully be understood in terms of the two-photon cascades down the dressed state ladder.

  12. Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen for human G-protein-coupled receptor signaling in microbial yeast cells.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nakamura

    Full Text Available G-protein-coupled receptors (GPCRs are currently the most important pharmaceutical targets for drug discovery because they regulate a wide variety of physiological processes. Consequently, simple and convenient detection systems for ligands that regulate the function of GPCR have attracted attention as powerful tools for new drug development. We previously developed a yeast-based fluorescence reporter ligand detection system using flow cytometry. However, using this conventional detection system, fluorescence from a cell expressing GFP and responding to a ligand is weak, making detection of these cells by fluorescence microscopy difficult. We here report improvements to the conventional yeast fluorescence reporter assay system resulting in the development of a new highly-sensitive fluorescence reporter assay system with extremely bright fluorescence and high signal-to-noise (S/N ratio. This new system allowed the easy detection of GPCR signaling in yeast using fluorescence microscopy. Somatostatin receptor and neurotensin receptor (implicated in Alzheimer's disease and Parkinson's disease, respectively were chosen as human GPCR(s. The facile detection of binding to these receptors by cognate peptide ligands was demonstrated. In addition, we established a highly sensitive ligand detection system using yeast cell surface display technology that is applicable to peptide screening, and demonstrate that the display of various peptide analogs of neurotensin can activate signaling through the neurotensin receptor in yeast cells. Our system could be useful for identifying lead peptides with agonistic activity towards targeted human GPCR(s.

  13. Response of Water Stress on Chlorophyll Fluorescence Parameters of Tomato Seedlings%番茄幼苗叶绿素荧光参数对水分胁迫的响应

    Institute of Scientific and Technical Information of China (English)

    须晖; 高洁; 王蕊; 李天来; 马健; 刘满昌

    2011-01-01

    To study the response of tomato seedlings to water stress, the effect on chlorophyll fluorescence properties and chlorophyll content and the relative leaf water content. The results suggested that water stress lead to the maximum quantum efficiency of PSII photochemistry (Fv/Fm), the photochemical quenching (qL)and the linear electron transport rate (ETR) decreased gradually. In contrast, the non photochemical quenching (NPQ) rose gradually. Chlorophyll fluorescence parameters had dash jump phenomena on moderate water stress (the fourth day). Results showed a high correlation (-0.83*) between the decreasing of soil water content (SWC)and NPQ. Hence, NPQ can be an indicator as a guide for irrigation. When NPQ was 2.095, SWC was lower than 32.1%, tomato seedlings were affect on water stress and should be irrigation timely.%以5叶1心期番茄品种‘辽园多丽'为试材,研究番茄幼苗叶绿素荧光特性、叶绿素含量以及叶片相对含水量对水分胁迫的生理响应.结果表明,水分胁迫导致叶绿素荧光参数Fy/Fm、qL、ETR下降,NPQ上升;在轻度水分胁迫下,叶绿素荧光各参数值均有突跃现象.在整个水分胁迫过程中番茄幼苗叶片相对含水量及叶绿素含量均呈下降趋势.NPQ与基质含水量的变化密切相关,相关系数为-0.83',表明荧光参数NPQ可以作为指导灌溉的一个指标.当NPO为2.0975时,基质含水量降到31.2%,番茄幼苗生长受到水分胁迫的影响,应及时灌溉.

  14. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  15. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  16. Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation.

    Science.gov (United States)

    Ji, L; Danuser, G

    2005-12-01

    We have developed a novel cross-correlation technique to probe quasi-stationary flow of fluorescent signals in live cells at a spatial resolution that is close to single particle tracking. By correlating image blocks between pairs of consecutive frames and integrating their correlation scores over multiple frame pairs, uncertainty in identifying a globally significant maximum in the correlation score function has been greatly reduced as compared with conventional correlation-based tracking using the signal of only two consecutive frames. This approach proves robust and very effective in analysing images with a weak, noise-perturbed signal contrast where texture characteristics cannot be matched between only a pair of frames. It can also be applied to images that lack prominent features that could be utilized for particle tracking or feature-based template matching. Furthermore, owing to the integration of correlation scores over multiple frames, the method can handle signals with substantial frame-to-frame intensity variation where conventional correlation-based tracking fails. We tested the performance of the method by tracking polymer flow in actin and microtubule cytoskeleton structures labelled at various fluorophore densities providing imagery with a broad range of signal modulation and noise. In applications to fluorescent speckle microscopy (FSM), where the fluorophore density is sufficiently low to reveal patterns of discrete fluorescent marks referred to as speckles, we combined the multi-frame correlation approach proposed above with particle tracking. This hybrid approach allowed us to follow single speckles robustly in areas of high speckle density and fast flow, where previously published FSM analysis methods were unsuccessful. Thus, we can now probe cytoskeleton polymer dynamics in living cells at an entirely new level of complexity and with unprecedented detail.

  17. Kinetic models of photosystem II should accommodate the effect of donor side quenching on variable chlorophyll a fluorescence in the microseconds time

    NARCIS (Netherlands)

    Vredenberg, W.J.

    2009-01-01

    Quantitative data on laser flash-induced variable fluorescence in the 100 ns to 1 ms time range (Belyaeva et al. in Photosynth Res 98:105–119, 2008) confirming those of others (Steffen et al. in Biochemistry 40:173–180, 2001, Biochemistry 44:3123–3132, 2005; Belyaeva et al. in Biophysics 51(6):976–9

  18. Chlorophylls - natural solar cells

    CERN Document Server

    Jantschi, Lorentz; Balan, Mugur C; Sestras, Radu E

    2011-01-01

    A molecular modeling study was conducted on a series of six natural occurring chlorophylls. Quantum chemistry calculated orbital energies were used to estimate frequency of transitions between occupied molecular orbital and unoccupied molecular orbital energy levels of chlorophyll molecules in vivo conditions in standard (ASTMG173) environmental conditions. Obtained results are in good agreement with energies necessary to fix the Magnesium atom by chlorophyll molecules and with occurrence of chlorophylls in living vegetal organisms.

  19. Beyond "turn-on" readout: from zero background to signal amplification by combination of magnetic separation and plasmon enhanced fluorescence.

    Science.gov (United States)

    Gong, Suqin; Xia, Yunsheng

    2016-08-11

    By magnetic separation and subsequent plasmon enhanced fluorescence, an assay platform with a signal output from completely "zero" background to fluorescence amplification is achieved, using quantum dots as reporters. So, it well breaks through the conventional "turn-on" strategy in both lower and upper limits. The sensitivity for hyaluronidase sensing is enhanced 10(4)-10(6) times as compared with previous fluorescence methods.

  20. 叶绿素荧光技术在珊瑚礁研究中的应用%Application of Chlorophyll Fluorescence Technique in the Study of Coral Reefs

    Institute of Scientific and Technical Information of China (English)

    周洁; 施祺; 余克服

    2011-01-01

    Mutualism between corals and their zooxanthellae is the essential feature of reef formation. Through performing photosynthesis, zooxanthellae nourish the host coral as well as help it deposit its skeleton. Thus, the chlorophyll fluorescence technique, previously being used in the study of photosynthesis of plants, including algae, can shed light on the research of coral reefs, and has been widely spread in the field. Its application contains several aspects: revealing of photophysiology principles of symbiont dinoflagelates, explanation of the machanism of coral bleaching, early warning of coral bleaching, monitoring the responses of coral to pollutions, monitoring the effects of turbidity to coral growth, and exploring the ecological pattern of coral reef. PAM fluorometry has good potential for such applications, as fluorescence yield is a sensitive, non-invasive indicator of sublethal stress. Therefore, the study of physiological ecology of scleractinian corals may be more effective in the aid of chlorophyll fluorescence technique.%珊瑚礁生态系统最基本的生态特征是虫黄藻与珊瑚虫的共生,虫黄藻的光合作用在珊瑚礁生态系统中发挥着重要作用,因此用于测定植物光合作用的叶绿素荧光技术在认识珊瑚礁生态系统中得到越来越广泛的应用.应用方面主要包括:①揭示珊瑚共生藻光生理学原理;②探索珊瑚白化的机制;③监测及预警珊瑚白化事件;④研究珊瑚对污染的响应;⑤监测珊瑚对水体浑浊的响应;⑥探寻珊瑚礁生态模式.叶绿素荧光技术具有快速、灵敏和非破坏性测量等优点,在造礁珊瑚生理生态研究方面将有广阔的应用前景.

  1. Effect of chelating agents and metal ions on nickel bioavailability and chlorophyll fluorescence response in wheat- An approach for attenuation of Ni stress

    Directory of Open Access Journals (Sweden)

    Nilima Patnaik

    2012-08-01

    Full Text Available The objectives of the study are to analyze the physiological changes, biochemical alterations and attenuation of nickel toxicity effects in wheat seedlings under combined applications of Ni ions, metal chelators (EDTA/Citric Acid and metal ions (Zn2+ /Mg2+. Wheat (Triticum aestivum L cv UP262 seedlings were grown hydroponically using different concentrations of Ni up to 7 days along with chelators and metal ions for study. The seedling growth was maximum with NiCl2–Zn2+ (100μM and minimum with NiCl2–EDTA (100μM treatments. Total chlorophyll content was maximum in the seedlings treated with NiCl2-Zn2+ (100μM and minimum in NiCl2-EDTA (100μM treatments. NiCl2–EDTA (100μM showed less Fo and Fm values and therefore, a trend in the decrease in OJIP transient indicates the maximum alteration of photochemical activity of PS-II in presence of NiCl2–EDTA (100μM treatment. Similar observation was found by NiCl2 –EDTA (200μM treatment where Fo and Fm values were noted to decline. High nickel content in roots of the seedlings was noted as compared to shoots.

  2. Impact of salt stress (NaCl on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.

    Directory of Open Access Journals (Sweden)

    Kaouther Zhani

    2012-11-01

    Full Text Available Salinity is considered as the most important abiotic stress limiting crop production and plants are known to be able continuing survive under this stress by involving many mechanisms. In this content, the present study was carried out to evaluate the impact of NaCl on some physiological and biochemical parameters in five Tunisian chili pepper (Capsicum frutescens L. cultivars: Tebourba (Tb, Somaa (Sm, Korba (Kb, Awald Haffouzz (AW and Souk jedid (Sj. Thus, an experiment of five months was carried out under greenhouse at Higher Institute of Agronomy, Chott Meriem, Tunisia and stress is induced by NaCl at 7 concentrations (0, 2, 4, 6, 8, 10 and 12g/l. Results showed that increasing salinity stress, for all cultivars, had a negative impact on roots (length, fresh and dry weights and leaves (number and area. Also, chlorophyll (a and b amount in addition to quantium yield (Fv/Fm decreased significantly. However, biosynthesis of proline in leaves is activated. Awlad Haffouzz and Korba cultivars succefully tolerated highest salinity level by accumulating more proline in leaves and maintaining usually higher values in all parameters in opposition to Souk jedid cultivar. Taken together, our data partly explain the mechanism used to ovoid salt stress by pepper plants when excessive in the culture medium.

  3. Photosystem II antennae are not energetically connected: evidence based on flash-induced O2 evolution and chlorophyll fluorescence in sunflower leaves.

    Science.gov (United States)

    Oja, Vello; Laisk, Agu

    2012-10-01

    Oxygen evolution was measured in sunflower leaves in steady-state and during multiple-turnover pulses (MTP) of different light (630 nm LED plus far-red light) intensity and duration. In parallel, Chl fluorescence yields F(0) (minimum), F(s) (steady-state), and F(m) (pulse-saturated), as well as fluorescence induction during MTPs were recorded. Extra O(2) evolution was measured in response to a saturating single-turnover Xe flash (STF) applied immediately subsequently to the actinic light in the steady-state and to each MTP. Under the used anaerobic conditions and randomized S-states electron transport per STF was calculated as 4O(2) evolution. The STF-induced electron transport (=the number of open PSII) was maximal at the low background light, but decreased with progressing light saturation in steady-state and with the increasing duration of MTP. The quantum yield (effective antenna size) of open PSII centers remained constant when adjacent centers became closed. The photochemical quenching of fluorescence q(P) = (F(m) - F(s))/(F(m) - F(0)) was proportional with the portion of open PSII centers in the steady-state (variable non-photochemical quenching, NPQ) and with increasing MTP duration (NPQ absent). Comparison of experimental responses to a model based on PSII dimers with well-connected antennae showed no energetic connectivity between PSII antennae in intact leaves, suggesting that in vivo PSII exist as monomers, or dimers with energetically disconnected antennae.

  4. Visualization and quantification of APP intracellular domain-mediated nuclear signaling by bimolecular fluorescence complementation.

    Directory of Open Access Journals (Sweden)

    Florian Riese

    Full Text Available BACKGROUND: The amyloid precursor protein (APP intracellular domain (AICD is released from full-length APP upon sequential cleavage by either α- or β-secretase followed by γ-secretase. Together with the adaptor protein Fe65 and the histone acetyltransferase Tip60, AICD forms nuclear multiprotein complexes (AFT complexes that function in transcriptional regulation. OBJECTIVE: To develop a medium-throughput machine-based assay for visualization and quantification of AFT complex formation in cultured cells. METHODS: We used cotransfection of bimolecular fluorescence complementation (BiFC fusion constructs of APP and Tip60 for analysis of subcellular localization by confocal microscopy and quantification by flow cytometry (FC. RESULTS: Our novel BiFC-constructs show a nuclear localization of AFT complexes that is identical to conventional fluorescence-tagged constructs. Production of the BiFC signal is dependent on the adaptor protein Fe65 resulting in fluorescence complementation only after Fe65-mediated nuclear translocation of AICD and interaction with Tip60. We applied the AFT-BiFC system to show that the Swedish APP familial Alzheimer's disease mutation increases AFT complex formation, consistent with the notion that AICD mediated nuclear signaling mainly occurs following APP processing through the amyloidogenic β-secretase pathway. Next, we studied the impact of posttranslational modifications of AICD on AFT complex formation. Mutation of tyrosine 682 in the YENPTY motif of AICD to phenylalanine prevents phosphorylation resulting in increased nuclear AFT-BiFC signals. This is consistent with the negative impact of tyrosine phosphorylation on Fe65 binding to AICD. Finally, we studied the effect of oxidative stress. Our data shows that oxidative stress, at a level that also causes cell death, leads to a reduction in AFT-BiFC signals. CONCLUSION: We established a new method for visualization and FC quantification of the interaction between

  5. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    Science.gov (United States)

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  6. Photosynthetic Characteristics and Chlorophyll Fluorescence Kinetic Parame-ters Analyses of Chlorophyll-Reduced Mutant in Brassica napus L.%甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析

    Institute of Scientific and Technical Information of China (English)

    肖华贵; 杨焕文; 饶勇; 杨斌; 朱英

    2013-01-01

      调查油菜自发黄化突变体(NY)、野生型(NG)及其正反交后代材料(F1和rF1)的光合色素含量、光合特性、叶绿素荧光参数及农艺性状,分析五叶期各参数的变化规律.结果表明,突变体叶绿素 a、叶绿素 b、类胡萝卜素和总叶绿素均大幅减少,其中叶绿素 b 减幅最大;净光合速率显著降低,胞间 CO2浓度升高,但气孔导度与野生型相当,表明光合速率不受气孔限制;光补偿点和光饱和点升高,暗呼吸速率与野生型等相当,表观量子效率和光补偿点处量子效率显著降低;CO2补偿点、光呼吸速率和羧化效率均显著降低, CO2饱和点则显著升高;突变体的荧光参数,包括Fo、Fm、Fv/Fm、Fv'/Fm'、ΦPSII、qp、NPQ和ETR均显著降低,说明光合色素含量降低导致 PSII反应中心捕光能力弱和光化学转化效率低,使叶片光合速率降低.突变体的黄化持续时间较长,对生长发育产生影响较大,单株籽粒产量只有野生型的57.09%,但与正常材料组配F1的光合特性和农艺性状均能恢复到正常水平.%We investigated the photosynthetic pigment contents, photosynthetic characteristics, chlorophyll fluorescence kinetic parameters and agronomic traits at five-leaf stage of the chlorophyll-reduced mutant (NY), wild-type (NG), F1, and rF1 of their combinations (reciprocal cross). The results showed that the chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in the mutant were significantly reduced compared with those in other materials, especially for chlorophyll b. The net photosynthetic rate (Pn) of the mutant was significantly lower than those of wild-type and their F1 and rF1. Relatively high intercellular CO2 con-centration (Ci) and an equivalent stomatal conductance (Gs) in the mutant indicated that stomatal factor was not the limiting factor of the photosynthetic rate. The mutant had higher light compensation point (LCP) and

  7. Systems approach to excitation-energy and electron transfer reaction networks in photosystem II complex: model studies for chlorophyll a fluorescence induction kinetics.

    Science.gov (United States)

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2015-09-07

    Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points.

  8. Chlorophyll in tomato seeds: marker for seed performance?

    NARCIS (Netherlands)

    Suhartanto, M.R.

    2002-01-01

    Using Xe-PAM, laser induced fluorometry and high performance liquid chromatography we found that chlorophyll was present in young tomato (cv. Moneymaker) seeds and was degraded during maturation. Fluorescence microscopy and imaging showed that the majority of chlorophyll is located in the seed coat

  9. Quantitative optical biomarkers of lung cancer based intrinsic two-photon excited fluorescence signal

    Science.gov (United States)

    Li, Jingwen; Zhan, Zhenlin; Lin, Hongxin; Zuo, Ning; Zhu, Xiaoqin; Xie, Shusen; Chen, Jianxin; Zhuo, Shuangmu

    2016-10-01

    Alterations in the elastic fibers have been implicated in lung cancer. However, the label-free, microscopic imaging of elastic fibers in situ remains a major challenge. Here, we present the use of intrinsic two-photon excited fluorescence (TPEF) signal as a novel means for quantification of the elastic fibers in intact fresh human lung tissues. We obtained the TPEF images of elastic fibers from ex vivo the human lung tissues. We found that three features, including the elastic fibers area, the elastic fibers orientation, the elastic fibers structure, provide the quantitative identification of lung cancer and the direct visual cues for cancer versus non-cancer areas. These results suggest that the TPEF signal can be used as the label-free optical biomarkers for rapid clinical lung diagnosis and instant image-guided surgery.

  10. 双酚A对番茄和生菜幼苗叶绿素荧光参数的影响%Effects of Bisphenol A on Chlorophyll Fluorescence Parameters in Tomato and Lettuce

    Institute of Scientific and Technical Information of China (English)

    李曼; 王丽红; 周青

    2014-01-01

    利用叶绿素荧光测定技术,研究了BPA对番茄和生菜幼苗叶绿素荧光反应的影响。结果表明,1.5 mg·L-1和3.0 mg·L-1 BPA处理降低番茄和生菜初始荧光(F0),增加最大光化学量子产量(Fv/Fm)、实际光化学量子产量(ΦPSⅡ)、表观电子传递速率(ETR)、光化学猝灭(qP)和非光化学猝灭(qN);BPA作用解除后,各指标均有所恢复,即1.5 mg·L-1和3.0 mg·L-1 BPA可通过增加光能的吸收、改善PSⅡ系统、提高电子传递和光能转化效率、释放过量能量来增强光合作用,该作用随BPA解除而恢复。6.0 mg·L-1 BPA处理的番茄幼苗各荧光参数无显著变化,生菜幼苗F0和q N显著升高,可恢复到对照水平,表明6.0 mg·L-1 BPA已使生菜幼苗发生光抑制,BPA解除后可恢复至正常水平。除10 mg·L-1 BPA增加番茄qN外,10 mg·L-1和17.2 mg·L-1 BPA增加2种作物F0而抑制其他各荧光参数,恢复期时各荧光参数向对照组靠近,即高剂量BPA引起作物光抑制、PSⅡ中心受损、光能转化和电子传递效率降低。BPA解除后各项指标可恢复,但恢复程度随BPA处理剂量增加而降低。对比2种作物荧光参数变幅可知,BPA对生菜各荧光参数影响大于番茄,恢复期番茄幼苗各荧光参数恢复程度大于生菜。总之,BPA对2种作物叶绿素荧光反应的影响方式和影响效果上存在差异,且BPA作用解除后,叶绿素荧光反应有不同程度恢复,仅6.0 mg·L-1 BPA作用解除后能恢复至对照水平。%Bisphenol A(BPA), an endocrine disruptor, has showed obvious toxic effects on life system. However, little information is avail-able regarding the toxic effects of BPA on crops. A hydroponic experiment was carried out to investigate the effects of BPA on chlorophyll fluorescence in tomato(Solanum lycopersicum)and lettuce(Lactuca sativa)seedlings. Treatments with 1.5 mg·L-1 and 3.0 mg·L-1 BPA de-creased the F

  11. Endolithic chlorophyll d-containing phototrophs

    DEFF Research Database (Denmark)

    Behrendt, Lars; Larkum, Anthony W D; Norman, Anders

    2011-01-01

    hyperspectral and variable chlorophyll fluorescence imaging, scanning electron microscopy, photopigment analysis and DNA sequencing to show that Acaryochloris-like cyanobacteria thrive underneath crustose coralline algae in a widespread endolithic habitat on coral reefs. This finding suggests an important role...

  12. Effects of drought stress on chlorophyll fluorescence parameters of two fast-growing tree species%干旱胁迫对2种速生树种叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    白晶晶; 吴俊文; 李吉跃; 何茜; 邱权; 潘昕

    2015-01-01

    Objective] A comparison of drought resistance was made between two fast-growing species in South China, Eucalyptus urophylla ×E.grandis (EE for abbr.) and bamboo willow (BW for abbr.).[Method]Effective quantum yield of PSⅡ photochemistry ( Yield ) , apparent electron transport rate ( ETR) , the photochemical quenching ( qP ) , the non-photochemical quenching ( qN) , minimal fluores-cence(F0), maximal fluorescence(Fm), potential photochemical efficiency of PSⅡ(Fv/Fm) in EE and BW were tested by OS5P pulse modulated chlorophyll fluorometer under drought stress .[Result and con-clusion] Yield, ETR, qP, Fm and Fv/Fm all declined during the drought .At day 24 after treatment, ETR declined by 48.02% and 25.12% EE and BW , respectively.qN and F0 in the 2 species in-creased.qN in BW rose by 217.59%, which was significantly higher than that in EE (146.40%, P<0.05).The relative increment in F0 in BW (49.11%) was smaller than that in EE (92.03%) at the end of the drought treatment .Correlation analyses were made concerning chlorophyll fluorescence charac-teristics and soil water content .In both species , ETR showed a significant positive correlation with soil water content ( P<0.01 ) .F0 in EE showed a significant negative correlation with soil water content (P<0.01).Fm and Fv/Fm of BB and soil water content showed a significant positive correlation (P<0.01).These results indicate that correlations existe among chlorophyll fluorescence characteristics in two species under drought.BW has greater drought resistance than EE as revealed by chlorophyll fluo-rescence characteristics.%目的对华南地区2个速生树种尾巨桉Eucalyptus urophylla × E.grandis和竹柳( bamboo willow )的抗旱性进行比较.方法采用干旱胁迫处理,利用脉冲调制式叶绿素荧光仪( OS5 P-美国)对2树种叶绿素荧光参数进行测定.结果和结论在干旱胁迫条件下,实际光量子产量( Yield)、表观光合电子传递速率( ETR)、

  13. 高温胁迫对水稻剑叶光合和叶绿素荧光特征的影响%Effects of high temperature stress on the flag leaf photosynthesis and chlorophyll fluorescence parameters of rice

    Institute of Scientific and Technical Information of China (English)

    杜尧东; 李键陵; 王华; 唐湘如; 胡飞

    2012-01-01

    Super hybrid rice variety Tianyou 998 was pot-cultured in climate chambers to study the characteristics of its flag leaf photosynthesis and chlorophyll fluorescence parameters at four growth stages ( heading, milking, wax-maturing, and full maturing) under high temperature stress. Five high temperature treatments were installed. The maximum temperature was installed at 32, 35 , 38 , 40, and 42 ℃ , respectively, with a 6 ℃ difference per day, and each treatment was lasted for 5 days, 2 hours per day, and taking the natural condition as the control (CK). High temperature had obvious effects on the characteristics of the flag leaf photosynthesis and chlorophyll fluorescence parameters, and the effects differed with the high temperature treatments, rice development stages, and test items. The higher the temperature, the greater the effects were. After treated with high temperature, the test items such as chlorophyll content (SPAD) , net photosynthetic rate ( Pn) , stomatal conductance ( Gs) , efficiency of PSII photochemistry ( Fv/Fm ) , actual quantum yield ( φPSII ) , apparent photosynthetic electron transport rate ( ETR) , photochemical quenching coefficient (qP) , and photochemical reaction ( P) decreased, while the intercellular CO2 concentration ( C;) , initial fluorescence (F o) , non-photo- chemical quenching coefficient (qN) , and other heat dissipation (E) increased. Most of the photosynthetic and chlorophyll fluorescence parameters at the four growth stages changed significantly when the maximum temperature was above 35 ℃ , and decreased greatly when the maximum temperature was above 38 X.. At heading and milking stages, the Pn and Gs had a significant decrease while the Ci had a significant increase; at wax- and full maturing stages, the SPAD decreased significantly. The decrement of the Fv/Fm and the decrement of the FO were greater at heading and milking stages than at wax- and full maturing stages. High temperature stress had greater effects on

  14. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy.

    Science.gov (United States)

    Mori, Takayasu; Kikuchi, Eriko; Watanabe, Yuko; Fujii, Shinya; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Sohara, Eisei; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2013-11-01

    WNKs (with-no-lysine kinases) are the causative genes of a hereditary hypertensive disease, PHAII (pseudohypoaldosteronism type II), and form a signal cascade with OSR1 (oxidative stress-responsive 1)/SPAK (STE20/SPS1-related proline/alanine-rich protein kinase) and Slc12a (solute carrier family 12) transporters. We have shown that this signal cascade regulates blood pressure by controlling vascular tone as well as renal NaCl excretion. Therefore agents that inhibit this signal cascade could be a new class of antihypertensive drugs. Since the binding of WNK to OSR1/SPAK kinases was postulated to be important for signal transduction, we sought to discover inhibitors of WNK/SPAK binding by screening chemical compounds that disrupt the binding. For this purpose, we developed a high-throughput screening method using fluorescent correlation spectroscopy. As a result of screening 17000 compounds, we discovered two novel compounds that reproducibly disrupted the binding of WNK to SPAK. Both compounds mediated dose-dependent inhibition of hypotonicity-induced activation of WNK, namely the phosphorylation of SPAK and its downstream transporters NKCC1 (Na/K/Cl cotransporter 1) and NCC (NaCl cotransporter) in cultured cell lines. The two compounds could be the promising seeds of new types of antihypertensive drugs, and the method that we developed could be applied as a general screening method to identify compounds that disrupt the binding of two molecules.

  15. Thousand-fold fluorescent signal amplification for mHealth diagnostics.

    Science.gov (United States)

    Balsam, Joshua; Rasooly, Reuven; Bruck, Hugh Alan; Rasooly, Avraham

    2014-01-15

    The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an image stacking algorithm to decrease the image noise and enhance weak signals, and (2) an optical signal amplifier utilizing a capillary tube array. These approaches were used in a detection system which includes multi-wavelength LEDs capable of exciting many fluorophores in multiple wavelengths, a mobile phone or a webcam as a detector, and capillary tube array configured with 36 capillary tubes for signal enhancement. The capillary array enables a ~100× increase in signal sensitivity for fluorescein, reducing the limit of detection (LOD) for mobile phones and webcams from 1000 nM to 10nM. Computational image stacking enables another ~10× increase in signal sensitivity, further reducing the LOD for webcam from 10nM to 1 nM. To demonstrate the feasibility of the device for the detection of disease-related biomarkers, adenovirus DNA labeled with SYBR green or fluorescein was analyzed by both our capillary array and a commercial plate reader. The LOD for the capillary array was 5 ug/mL, and that of the plate reader was 1 ug/mL. Similar results were obtained using DNA stained with fluorescein. The combination of the two signal amplification approaches enables a ~1000× increase in LOD for the webcam platform. This brings it into the range of a conventional plate reader while using a smaller sample volume (10 ul) than the plate reader requires (100 ul). This suggests that such a device could be suitable for biosensing applications where up to 10 fold smaller sample sizes are needed. The simple optical configuration for mHealth described in this paper employing the combined capillary and image processing signal amplification is capable of measuring weak fluorescent signals

  16. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid.

    Science.gov (United States)

    Hussain, M Iftikhar; Reigosa, Manuel J

    2011-11-01

    This study investigated the effects of cinnamic acid (CA) on growth, biochemical and physiological responses of Lactuca sativa L. CA (0.1, 0.5, 1.0 and 1.5 mM) treatments decreased plant height, root length, leaf and root fresh weight, but it did not affect the leaf water status. CA treatment (1.5 mM) significantly reduced F(v), F(m), photochemical efficiency of PSII (F(v)/F(m)) and quantum yield of PSII (ΦPSII) photochemistry in L. sativa. The photochemical fluorescence quenching (qP) and non-photochemical quenching (NPQ) were reduced after treatment with 1.5 mM CA. Fraction of photon energy absorbed by PS II antennae trapped by "open" PS II reaction centers (P) was reduced by CA (1.5 mM) while, portion of absorbed photon energy thermally dissipated (D) and photon energy absorbed by PSII antennae and trapped by "closed" PSII reaction centers (E) was increased. Carbon isotope composition ratios (δ(13)C) was less negative (-27.10) in CA (1.5 mM) treated plants as compared to control (-27.61). Carbon isotope discrimination (Δ(13)C) and ratio of intercellular CO(2) concentration (ci/ca) from leaf to air were also less in CA treated plants. CA (1.5 mM) also decreased the leaf protein contents of L. sativa as compared to control.

  17. Effects of Nitrogen Rate on the Characteristics of Photosynthesis and Chlorophyll Fluorescence in Potato (Solanum Tuberosum L.)%氮肥水平对马铃薯光合及叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    郑顺林; 杨世民; 李世林; 袁继超

    2013-01-01

    以3个品种为材料,采用随机区组设计,在田间试验条件下,研究了施氮水平对春、秋马铃薯Solanum Tuberosum L.光合和叶绿素荧光特性的影响,以期为合理氮肥运筹,提高马铃薯光能利用提供理论依据.结果表明:①增施氮肥因提高了功能叶的叶绿素质量分数而显著影响春、秋马铃薯的净光合速率及其对光照强度和CO2体积分数的响应,但影响的程度和趋势在春、秋马铃薯之间有一定差异.在试验的处理范围内,春马铃薯功能叶的最大净光合速率(Am)、表观量子效率(ψ)随施氮水平的增加而提高,而秋马铃薯的Am和ψ则随氮肥用量的增加先增后减,春薯光合作用的光饱和点和补偿点均大于秋薯,表明马铃薯光合作用的氮肥效应受栽培季节的影响;②氮肥水平对马铃薯功能叶片叶绿素的荧光特性也有一定影响,适量的氮肥可以提高最大光化学效率(Fv/Fm)、实际光化学效率(ΦpsⅡ)和电子传递速率(ETR),降低光化学猝灭系数(qP)和非光化学猝灭系数(qN),从而增加PsⅡ天线色素对光能的捕获效率,降低光能的热耗散,提高PsⅡ的光化学效率;③不同马铃薯品种的光合与叶绿素荧光特性及其对氮肥的响应存在一定差异,在秋播和中高氮水平下,川芋117的Am、羧化效率(CE)、Fv/Fm、ΦpsⅡ、ETR和qP等光合和叶绿素荧光参数均高于青薯2号.%Two field experiments were conducted with three potato varieties in spring and autumn in Ya'an, Sichuan province to study the effects of nitrogen rate on the characteristics of photosynthesis and chloro-phyll fluorescence of the plants. The main results were as follows: 1) The increase in nitrogen rate increased the chlorophyll content of the functional leaves and thus significantly improved the net photosyn-thetic rate (Pn) and its response to light intensity and CO2 concentration of both spring and autumn potato. However, some differences between

  18. Effects of Cu2+ on the Growth and Chlorophyll Fluorescence of Two Species of Marine Microalgae%Cu2+对两种海洋微藻生长和叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    姜恒; 吴斌; 阎冰; 吴志强; 邢永泽

    2013-01-01

    The changes of the fluorescence parameters of Dicrateria zhanjiangensis and Isochrysis galbana MACC/H59 exposed to Cu2+ were investigated by means of the chlorophyll fluorescence technology(Water-PAM) ,and the growth of these two species of marine microal-gae was observed. The results showed that all fluorescence parameters ( Fv/Fm ,Fv/F0,Yield and ETR) of Dicrateria zhanjiangensis and Isochrysis galbana MACC/H59 decreased under Cu2+ stress. The growth of cell density for Dicrateria zhanjiangensis and Isochrysis galbana MACC/H59 decreased under Cu2+ stress,and it can be expressed as Dicrateria zhanjiangensis > Isochrysis galbana MACC/H59 in the 24h while it can be expressed as Isochrysis galbana MACC/H59> Dicrateria zhanjiangensis during 48h to 96h. The toxicity of Dicrateria zhanjiangensis and Isochrysis galbana MACC/H59 increased with the increase of exposure time.%运用水样叶绿素荧光仪(WATER-PAM)研究Cu2+胁迫下,湛江叉鞭金藻(Dicrateria zhanjiangensis)和球等鞭金藻3011(Isochrysis galbana MACC/H59)叶绿素荧光特性的变化,同时监测微藻的生长情况.结果就叶绿素荧光参数而言,湛江叉鞭金藻和球等鞭金藻3011的叶绿素荧光参数Fv/Fm,Fv/F0,Yield和ETR均随着Cu2+浓度的增大而明显降低;就生长情况而言,随着Cu2+浓度的增大,两种海洋微藻细胞密度的增长明显变缓.在24 h时Cu2+对湛江叉鞭金藻的毒性大于球等鞭金藻3011,48~96 h时Cu2+对球等鞭金藻3011的毒性大于湛江叉鞭金藻,Cu2+的毒性随着胁迫时间的延长而逐步增大.

  19. Measurement of radiative lifetime in atomic samarium using simultaneous detection of laser-induced fluorescence and photoionization signals

    Indian Academy of Sciences (India)

    A C Sahoo; M L Shah; P K Mandal; A K Pulhani; G P Gupta; Vas Dev; B M Suri

    2014-02-01

    In this paper, we report the investigations of lifetime measurement of odd-parity energy level 19009.52 cm-1 of Sm I using simultaneous detection of laser-induced fluorescence and laserinduced photoionization signals employing pump–probe technique. To the best of our knowledge, this is for the first time that the results obtained using laser-induced fluorescence and photoionization techniques have been compared with each other. The obtained results match well with those reported in the literature.

  20. Fluorescence-enhancement with different ionic inputs in a cryptand-based multi-receptor signalling system

    Indian Academy of Sciences (India)

    Bamaprasad Bag; Parimal K Bharadwaj

    2005-03-01

    Two molecules of a laterally non-symmetric aza cryptand have been attached to 9,10-dimethylanthracene to obtain a multi-receptor fluorescent signalling system in the ``receptor-spacer-fluorophore- spacer-receptor” format. In the absence of a metal ion, weak fluorescence is observed upon excitation of the anthryl group owing to efficient photo-induced electron transfer (PET) of the lone pair of N attached to the anthryl group. However, when a metal salt is added, the lone pair is engaged, thus in blocking of the PET and leading to recovery of fluorescence to different extents depending upon the nature of the metal ion.

  1. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    Directory of Open Access Journals (Sweden)

    Meng-Chang Hsieh

    2015-02-01

    Full Text Available Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.

  2. A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules.

    Science.gov (United States)

    El Meskini, R; Jin, L; Marx, R; Bruzzaniti, A; Lee, J; Emeson, R; Mains, R

    2001-02-01

    To investigate trafficking in neuroendocrine cells, green fluorescent protein (GFP) tags were fused to various portions of the preproneuropeptide Y (NPY) precursor. Two neuroendocrine cell lines, AtT-20 corticotrope tumor cells and PC-12 pheochromocytoma cells, along with primary anterior pituitary cells, were examined. Expression of chimeric constructs did not disrupt trafficking or regulated secretion of endogenous ACTH and prohormone convertase 1 in AtT-20 cells. Western blot and immunocytochemical analyses demonstrated that the chimeric constructs remained intact, as long as the Lys-Arg cleavage site within preproNPY was deleted. GFP was stored in, and released from, regulated granules in cells expressing half of the NPY precursor fused to GFP, and also in cells in which only the signal sequence of preproNPY was fused to GFP. Thus, in neuroendocrine cells, entering the lumen of the secretory pathway is sufficient to target GFP to regulated secretory granules.

  3. Multiple Signal Classification Algorithm (MUSICAL) for super-resolution fluorescence microscopy

    CERN Document Server

    Agarwal, Krishna

    2016-01-01

    Super-resolution microscopy is providing unprecedented insights into biology by resolving details much below the diffraction limit. State-of-the-art Single Molecule Localization Microscopy (SMLM) techniques for super-resolution are restricted by long acquisition and computational times, or the need of special fluorophores or chemical environments. Here, we propose a novel statistical super-resolution technique of wide-field fluorescence microscopy called MUltiple SIgnal Classification ALgorithm (MUSICAL) which has several advantages over SMLM techniques. MUSICAL provides resolution down to at least 50 nm, has low requirements on number of frames and excitation power and works even at high fluorophore concentrations. Further, it works with any fluorophore that exhibits blinking on the time scale of the recording. We compare imaging results of MUSICAL with SMLM and four contemporary statistical super-resolution methods for experiments of in-vitro actin filaments and datasets provided by independent research gro...

  4. Effects of Acid Rain Stress on Antioxidant Enzyme Activity and Chlorophyll Fluorescence in Leaves of Gazania Hybrids%酸雨对勋章菊保护酶活性及叶绿素荧光参数的影响

    Institute of Scientific and Technical Information of China (English)

    侯维; 潘远智

    2013-01-01

    In this paper,pot experiments were conducted to study the effect of simulated acid rain that included four different pH values (5.6,4.5,3.5,2.5) on the membrane permeability,malondialdehyde (MDA) content and antioxidant enzyme activity,chlorophyll (Chl) content,and chlorophyll fluorescence in of leaves Gazania Hybrids.The membrane permeability and MDA content increased significantly after acid rain stress and with an extremely significant correlation between them.The dismutase (SOD),catalase (CAT) and peroxidase (POD) activities were showed a single-peak curve which was firstly increased and then decreased,and the maximum activity of SOD,CAT and POD were observed at pH4.5.Chl a,Chl b,total chlorophyll content,Chl a/b,the PS Ⅱ photochemical efficiency (Fv/ Fm) and the PS Ⅱ potential activity (Fv/Fo),actual PS Ⅱ photochemical quantum yield (ΦpsⅡ) and qP decreased accordingly with the decreasing of pH value,while qN increased.The study showed that G.Hybrids has strong resistance to acid rain stress and the visible damage threshold was less than pH 3.5.Therefore,G.Hybrids can be considered as one of the landscaping and vegetation constructing plants in the acid rain-hit areas.%采用盆栽方法,以不同pH值(5.6、4.5、3.5、2.5)的模拟酸雨胁迫试验,探讨其对勋章菊(Gazania Hybrids)叶片质膜透性、MDA含量、保护酶活性、叶绿素含量及叶绿素荧光参数的影响.结果表明,随pH值的降低,勋章菊叶片质膜透性和MDA含量呈逐渐升高的趋势,且二者呈显著正相关;SOD、CAT和POD活性呈先升高后下降的单峰曲线变化,其中SOD、CAT和POD活性最大值均出现在pH4.5处理;叶绿素a、叶绿素b、叶绿素a+b的含量、叶绿素a/b、PSⅡ最大光化学效率(Fv/Fm)、PSⅡ的潜在活性(Fv/Fo)、PSⅡ实际光化学量子产量(Φps.Ⅱ)、光化学淬灭系数(qP)均随pH值的降低而下降,非光化学淬灭系数(qN)随pH值的降低而升高.模拟酸雨对勋章菊叶片

  5. Prediction of Greenhouse Cucumber Disease Based on Chlorophyll Fluorescence Spectrum Index%基于叶绿素荧光光谱指数的温室黄瓜病害预测

    Institute of Scientific and Technical Information of China (English)

    隋媛媛; 王庆钰; 于海业

    2016-01-01

    fluorescence induced by laser and established the prediction model of greenhouse vegetable diseases .In this paper ,the experiment used comparative analysis method .The healthy leaves of the crops were inoculated with the pathogen spores ,the spectrum curves of four groups of test samples :healthy ,2 d inoculated ,6 d inoc‐ulated and the ones with obvious symptoms were collected ;then qualitative analysis was given to the variation regulation of the fluorescence intensity with the leaf samples infected with the pathogen spores .The chlorophyll fluorescence spectrum index k1 =F685 /F512 and k2 = F734 /F512 were created by using the peak and valley values of different bands .According to the range of val‐ues ,set k1 = 20 and k2 = 10 as the characteristic value to judge the sample with obvious symptoms or with no obvious symptoms , and the accuracy rate of the judgment was 96% and 94% respectively .Based on spectrum index created and the classification re‐sults of sample health status ,we selected the spectrum index F685 /F512 ,F685 - F734 ,F715 /F612 to determine the health status of the sample and selected spectrum index F685 /F512 ,F734 /F512 ,F685 - F734 ,F715 /F612 as the inputs of quantitative analysis model . Regarding classification accuracy of prediction set as the evaluation criteria ,we compared three data modeling methods :discrimi‐nant analysis ,BP neural network and support vector machine .The results showed that the forecasting ability can reach 91.38%when the support vector machine was used as the modeling method for predicting the downy mildew disease .Use the method with chlorophyll fluorescence induced by laser to construct spectrum index to study the prediction of plant diseases ,which has a good classification and identification effect .

  6. 铅对山梨和山荆子光合作用和叶绿素荧光特性的影响%Influence of Pb on Photosynthesis and Chlorophyll Fluorescence Characteristics in Pyrus ussuriensis and Malus baccata

    Institute of Scientific and Technical Information of China (English)

    李亚藏; 梁彦兰; 王庆成

    2012-01-01

    以北方阔叶树种山梨(Pyrus ussuriensis)和山荆子(Malus baccata)1年生苗木为材料,采用土壤和风化砂混合物作为盆栽基质,设置0(CK)、100、500、1000、2000 mg·kg-15种土壤铅浓度,研究了土壤铅胁迫对苗木叶片光合作用和叶绿素荧光特性的影响.结果表明:随着土壤铅胁迫浓度增加,山梨的净光合速率(Pn)持续下降,气孔导度(Gs)先升后降、胞间二氧化碳浓度(Ci)和蒸腾速率(Tr)持续升高;同时山荆子的Pn和Gs先升后降,Ci在100 mg·kg-1出现谷值,随后逐渐升高,Tr持续升高;随土壤铅处理浓度的增加,山梨的Fv/Fm、Fv/Fo和qN逐渐增加,山荆子逐渐下降,qP和(Φ)pSⅡ二者均表现为先升后降.研究发现,铅污染胁迫导致的Pn的下降是由非气孔限制因素所致;铅污染对山梨叶绿素荧光特性起促进作用,对山荆子影响不显著(p<0.05);综合各项参数山梨对土壤铅的耐性>山荆子.%One-year-old seedlings of two broadleaved trees occurring in Northern China, Pyrus ussuriensis and Malus baccata were potted in the mixed substrates of soil and weathered sand, in which different concentrations of lead salt (0, 100, 500, 1 000, and 2 000 mg · kg-1) were applied to examine the influence of Pb on the photosynthesis and chlorophyll fluorescence characteristics in the leaves of the seedlings tested. The results showed that with the increase of Pb concentration, Pn of P. ussuriensis declines continuously; Gs first increased and then decreased; C, and Tr increased continuously; Fv/Fm, Fv/Fo and qN gradually increased. For M. baccata, Pn and Gs first increased and then decreased; C, appeared minimum value in the Pb concentration of 100 mg · kg~' and then gradually increased; Tr increased continuously; Fv/Fm, Fv/ Fo and qN gradually declined. Values of qP and Φpsh in the leaves of two species showed first increased and then decreased. The decline of Pn in the leaves under lead stress was resulted from non

  7. THE INTERACTION EFFECTS OF DIFFERENT CD2+ CONCENTRATIONS AND TEMPERATURE ON THE GROWTH AND CHLOROPHYLL FLUORESCENCE OF 3 MICROALGAL STRAINS%Cd2+浓度、温度及交互作用对3株微藻生长及叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    王帅; 梁英

    2012-01-01

    Chlorophyll fluorescence measurement has several good characteristics, such as very quick, extremely sensitive, non-invasive and non-destructive, thus becomes a widely used technique for the investigation of mechanisms of photosynthesis and to study the effects of various environmental conditions (temperature, salinity, heavy metal stress, nutrient deficiency) on the microalgal photosynthetic reactions, particularly for stress physiology of mi-croalgae. In this study, the interaction effects of different Cd2+ concentrations (Chlorella sp. S 0, 20, 40fimol/L:Nannochloris oculata -. 0, 10, 30fimol/L: Dunaliella salina : 0, 70, 140fimol/L) and different temperature (Chlorella sp. And N. Oculata: 20, 25, 30℃ : D. Salina : 15, 25, 35℃) on the chlorophyll fluorescence parameters (Fv/Fm, Yield, qP and NPQ), relative chlorophyll content and cell density of 3 microalgal strains were reported. The above fluorescence parameters including the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm), which has been shown to be a sensitive indicator of photosynthetic performance and photoinhibition, the actual photochemical efficiency of PSII in the light (ΦPSII), the photochemical quenching (qP) and the non-photochemical quenching (NPQ). The 3 microalgal strains used in the experiment were obtained from the Microalgae Culture Center (MACC), Ocean University of China. Cultures were grown in sterilized seawater enriched with f/2 medium. The salinity was adjusted to 28 by using distilled water, and the light intensity was l00μmol o m-2 o s-1. The results showed that the chlorophyll fluorescence parameters, relative chlorophyll contents and cell densities all decreased obviously in the 3 microalgal strains with the increasing heavy metal (Cd2+ ) concentrations, with the exception of Fv/Fm in N. Oculata, where there was no significant difference between the control and the l0μmol/L Cd2+ concentration treatment. This was primarily due to the stimulation algal growth by

  8. 间作遮荫对花生光合作用及叶绿素荧光特性的影响%Effect of Shading on Photosynthesis and Chlorophyll Fluorescence Characteristic of Peanut under Different Inter-row Space in Cassava-peanut Intercropping

    Institute of Scientific and Technical Information of China (English)

    唐秀梅; 唐荣华; 钟瑞春; 揭红科; 刘超; 王泽平; 韩柱强; 蒋菁; 贺梁琼; 李忠

    2011-01-01

    以花生单作为对照,设置30、35、40、45、50 cm 5个木薯花生间作行距,播种90d后测定花生叶片的净光合速率、叶绿素含量及叶绿素荧光参数.结果表明,与单作对照相比,间作花生的光合速率(Pn)、叶绿素含量(Chl a+b)、初始荧光(Fo)、光化学猝灭系数(qP)降低;最大荧光(Fm)、可变荧光(Fv)、最大光化学效率(Fv/ Fm)、潜在光化学活性(Fv/Fo)、非光化学淬灭系数(qN)升高;且窄行距(30~35 cm)处理的Pn、Fv、Fv/Fm、Fv/Fo、表观光合电子传递速率(ETR)、实际光化学量子效率(Yield)高于宽行距(45~50cm)处理.间作遮荫使花生功能叶片的光合速率和叶绿素含量降低,叶绿素荧光参数的一系列变化是花生对间作遮荫的适应性反应.%The net photosynthetic rate, chlorophyll content and chlorophyll fluorescence characteristic of peanut (Arachis hypogaea L. ) were determined under different inter-row space of cassava/peanut intercropping (30, 35, 40, 45, 50 cm) and monocropping in the field after 90 d of sowing. The result showed that the net photosynthetic rate and chlorophyll ( Chi a + b) content, initial fluorescence ( Fo) , photochemical quenching (qP) in leaves of peanut intercropped with cassava decreased. However, the maximum fluorescence (Fm) , variable fluorescence (Fv) , maximum photochemical efficiency (Fv/Fm), potential activity of photosystem II {Fv/Fo, non-photochemical quenching (qN) of intercropped peanut increased. Moreover, Pn, Fv, Fv/Fm , Fv/ Fo, apparent electron transport rates (£77?) and effective quantum yield of photosystem II ( Yield) of peanut intercropped under 30 - 35 cm inter-row treatment were more than those under 40-45 cm row space. In conclusion, the shading of intercropping decreased net photosynthetic rate and chlorophyll content of peanut in leaves, and these changes of chlorophyll fluorescence characteristic showed that peanut had flexibility to shading stress under intercropping.

  9. Nanoembossed gold nanoshell with a fluorescence-like strong SERS signal

    Science.gov (United States)

    Kim, J. H.; Pompa, P. P.; Baek, H. G.; Chung, B. H.

    2016-04-01

    We present a nanoembossed nanoshell with a new internal location for the formation of strong electromagnetic fields. The internally nanoembossed gold nanoshell (AuNS) is fabricated by electrostatically assembling smaller silica nanoparticles (∼15.7 nm) around the silica core (∼123.6 nm) followed by growing gold nanoseeds on the core in a wet process. FDTD calculations reveal the creation of a strong electromagnetic field (|E/Ein|max = 55 at 633 nm) at sharp edges formed by the contact between the nanoembosses and the silica core. The field formation is supported by measuring the SERS signal of Ru(bpy) encapsulated in the nanoembossing silica nanoparticles. SERS signals as strong as the corresponding fluorescence are obtained. The Raman enhancement factor (EF) is estimated to be up to 1010 at 633 nm excitation, in addition to a comparable EF at 785 nm laser excitation. The SERS intensity of the nanoembossed nanoshell layer is sufficiently high compared to the outer or the core of the nanoshell. Finally, we fabricate all-in-one nanoparticles with all the three places where the reporter dyes are loaded and acquire the highest SERS intensity to potentially enable bio-medical applications of the nanoembossed AuNS as a sensitive and reliable labeling particle.

  10. Rubpy Dye-Doped Silica Nanoparticles as Signal Reporter in a Dot Fluorescence Immunoassay Strip

    Directory of Open Access Journals (Sweden)

    Nualrahong Thepwiwatjit

    2014-01-01

    Full Text Available This paper describes an application of Rubpy dye-doped silica nanoparticles (RSNPs as signal reporter in a dot fluorescence immunoassay strip for rapid screening of Vibrio cholera O1 (VCO1. These nanoparticles have a spherical shape with an average diameter of 45 nm. They appear luminescent orange when excited with a 312 nm UV lamp. Based on the sandwich immunoassay principle, a test strip was made of a nitrocellulose membrane dotted with monoclonal antibodies against VCO1 as analyte capture molecules. After introducing a test sample, followed by polyclonal rabbit anti-VCO1 antibody conjugated RSNPs as detection reporters and one washing step, the presence or absence of the target bacteria could be identified under UV light by naked eyes. A positive sample would signal a bright orange dot on the strip. The proposed assay had a detection limit of 4.3×103 cfu/mL and was successfully applied as a rapid screening test for VCO1 in food samples with high sensitivity, specificity, and accuracy.

  11. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  12. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples.

    Science.gov (United States)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Che, Ruping; Luo, Pinchen; Meng, Changgong

    2017-01-15

    A facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background. In the presence of the target, however, the hybridization event between the two protruding segments and the target triggers the digestion reaction of Exo III, recycles the initial target, and simultaneously releases both the secondary target analogue and the ATMND caged in the stem. The released initial and secondary targets take part in another cycle of digestion, thus leading to the release of a huge amount of free ATMND for signal transducing. Based on the fluorescence recovery, the as-proposed label-free fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 10pM to 1μM, a low limit of detection of 6pM, good selectivity, and a facile one-step operation at room temperature. Practical sample analysis in serum samples indicates the method has good precision and accuracy, which may thus have application potentials for point-of-care screening of DNA in complex clinical and environmental samples.

  13. Chlorophyll_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included chlorophyll for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  14. OSU Chlorophyll Bloom Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This product was developed for the Oregon coast based on the observed change between running 8-day composite chlorophyll-a (CHL) data obtained by the MODerate...

  15. Chlorophyll: The wonder pigment

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.

    body cannot manufacture antioxidants. Their deficiency increases vulnerability to various diseases. Vegetables and fruits, particularly deep green, bright yellow and red ones, are very rich in phytochemicals. Adding them to our diet in combinations... is like fortifying our body against diseases and ill health. Chlorophyll's Effect on Cancer Cancer research exploring cures and prevention measures has been trying the effects of chlorophyll on cancer cells. In the mid 1980s, Dr. Roderick Dashwood...

  16. Impact of two different types of heat stress on chloroplast movement and fluorescence signal of tobacco leaves.

    Science.gov (United States)

    Frolec, Jirí; Rebícek, Jirí; Lazár, Dusan; Naus, Jan

    2010-07-01

    Although the chloroplast movement can be strongly affected by ambient temperature, the information about chloroplast movement especially related to high temperatures is scarce. For detailed investigation of the effects of heat stress (HS) on tobacco leaves (Nicotiana tabacum L. cv. Samsun), we used two different HS treatments in dark with wide range of elevated temperatures (25-45 degrees C). The leaf segments were either linearly heated in water bath at heating rate of 2 degrees C min(-1) from room temperature up to maximal temperature (T (m)) and then linearly cooled down to 25 degrees C or incubated for 5 min in water bath at the same T (m) followed by 5 min incubation at 25 degrees C (T-jump). The changes in light-induced chloroplast movement caused by the HS pretreatment were detected after the particular heating regime at 25 degrees C using a method of time-dependent collimated transmittance (CT) and compared with the chlorophyll O-J-I-P fluorescence rise (FLR) measurements. The inhibition of chloroplast movement started at about 40 degrees C while the fluorescence parameters responded generally at higher T (m). This difference in sensitivity of CT and FLR was higher for the T-jump than for the linear HS indicating importance of applied heating regime. A possible influence of chloroplast movement on the FLR measurement and a physiological role of the HS-impaired chloroplast movement are discussed.

  17. 低温胁迫对玉米幼苗叶片叶绿素荧光参数的影响%EFFECTS OF LOW TEMPERATURE STRESS ON CHLOROPHYLL FLUORESCENCE CHARACTERISTICS OF COM SEEDLINGS

    Institute of Scientific and Technical Information of China (English)

    陈梅; 唐运来

    2012-01-01

    低温伤害是限制玉米产量和品质的主要因素之一.本研究中,将三叶期玉米(川单25号)幼苗用不同温度(25℃、20℃、15℃、10 ℃、5℃和0℃)处理1h后,测定玉米幼苗叶片的叶绿素荧光动力学参数和光响应曲线参数,以期探讨低温胁迫对玉米幼苗光合过程的影响.结果表明,低温胁迫下,玉米幼苗叶片光系统Ⅱ(PSⅡ)的潜在光化学效率(Fv/Fo)、最大光化学效率(Fv/Fm)显著下降;暗下最大荧光(Fm)、电子传递速率(ETR)、PSⅡ光下实际光化学效率(Yield)、光化学淬灭系数(qP)也均同时下降;而初始荧光(Fo)显著上升,非光化学淬灭系数(qN)则先上升后下降.此外,低温也导致玉米幼苗叶片的光能利用效率(α)、最大相对电子传递速率(rETRmax)与半饱和光强(Ik)显著下降,三者的下降程度与低温胁迫程度均呈显著正相关.本研究表明,玉米幼苗对低温较敏感,低温伤害了光合机构,对光能的吸收、转换与光合电子传递都有较显著的影响.此外,玉米幼苗的叶绿素荧光动力学参数对低温很敏感,可以作为筛选玉米耐冷品种的手段,加快耐冷品种的选育工作.%Low temperature stress is one of major abiotic factors to limit the yield and quality of corn crop.To investigate the effects of low temperature stress on the photosynthesis process,three-leaf stage corn (Zea mays L.Chuandan No.25) seedlings were subjected to several temperature levels (25 ℃,20 ℃,15 ℃,10 ℃,5 ℃ and 0 ℃) for 1 h.Subsequently chlorophyll fluorescence and light response curve were determined.The data obtained in this experiment showed that,as the treatment temperature decreased,the maximum fluorescence (Fm),potential photochemical efficiency (Fv/Fo),maximum photochemical efficiency of PS Ⅱ (Fv/Fm),the photosynthetic electron transport (ETR),actual photochemical efficiency of PS Ⅱ (Yield),and photochemical quenching coefficient (qP)were decreased gradually

  18. 5种松属树种光合功能及叶绿素快相荧光动力学特征比较%Photosynthetic functions and chlorophyll fast fluorescence characteristics of five Pinus species

    Institute of Scientific and Technical Information of China (English)

    邱念伟; 周峰; 顾祝军; 贾树芹; 王兴安

    2012-01-01

    A comparative study was made on the needle morphological characteristics, photosynthetic rate, and chlorophyll fast fluorescence induction curves of five representative Pinus species P. parvifiora, P. armandii, P. bungeana, P. tabuliformis, and P. densiflora. Significant differences were observed in the needle morphological characteristics among the five species. P. tabuliformis had the longest needle length and highest needle density, whereas P. bungeana had the highest chlorophyll content. P. densiflora and P. parvifiora had the maximum and minimum photosynthetic rate, respectively. There was a positive correlation between the photosynthetic rate and stomatal conductance across the five species. The differences in the chlorophyll fast fluorescence induction curves of the five species were mainly manifested in J-step and I-step. Although the five species had similar values of Fv/Fm,Fy/Fo and Tfm, P. parvifiora had significantly higher values of dV/dt0, dVG/dt0, Vj and Vi, but lower energy flux ratio Ψ0,φEo and φRo, compared with the other four species. The low PSII activity and efficiency of P. parvifiora might relate to its smallest Sm, Sm/Tfm and N. P. densiflora and P. parvifiora had the maximum and minimum vitality indices PI(ABS/CSo/CSm) and DF, respectively, and there existed significant positive correlations between the P/(CSo) and P/(CSm) and the net photosynthetic rate of the five species, suggesting that P/(CSo)and P/(CSm) could be used to estimate the photosynthetic activity of Pinus trees.%以松属5种代表树种日本五针松、华山松、白皮松、油松和赤松为研究对象,比较了它们针叶的形态特征、光合速率和叶绿素快相荧光动力学方面的异同.结果表明:5种松树的针叶形态特征存在显著差异,油松的针叶长度和密度最大;白皮松的叶绿素含量最高;但赤松的光合速率最大,日本五针松的光合速率最小.5种松树针叶的光合速率与气孔导度呈正相关.5种

  19. 桑沟湾常见温带海草叶绿素荧光特性的比较%Chlorophyll fluorescence characteristics of common temperate seagrass species in Sanggou Bay

    Institute of Scientific and Technical Information of China (English)

    唐望; 方建光; 高亚平; 邹健; 吴桃; 杜美荣

    2012-01-01

    The chlorophyll fluorescence of the blades of three common seagrass species (Zostera marina, Z. caespitosa and Phyllospadix iwatensis) in eastern waters of Chudao, south coast of Sanggou Bay, was determined using the pulse amplitude modulated (PAM) fluo-rometer. The absorbance factor (AF) of seagrass blades were also determined,and the absolute electron transport rates of the seagrass species were calculated. It was found that the photosyn-thetic activity of Z. marina, Z. caespitosa and P. iwatensis, was strongly influenced by leaf age. The chlorophyll content and the AF values increased with blade age in respective plants. Young blades showed higher electron transport rate than older ones (Zm: Leaf 1 = 26. 56, Leaf 2 = 16.3, Leaf 3= 19.98; Pi: Leaf 1 =22.31, Leaf 2=19. 23, Leaf 3 = 17. 06; and Zc: Leaf 1 = 20. 16, Leaf 2 =16. 10,Leaf 3 = 13. 10). Among three species, Z. marina showed the highest photosynthetic activity (ETRmax=22. 67), in accordance with its highest productivity in the field compared with the other two species.%2011年7~8月在桑沟湾楮岛南岸东部海域,利用水下调制脉冲式荧光仪(DIVING-PAM)原位测定了中国北方3种常见温带海草大叶藻、丛生大叶藻以及红纤维虾海藻的不同叶龄叶片的叶绿素荧光特性,并确定了几种海草的吸光系数(AF)和叶片叶绿素含量,计算出海草绝对电子传递速率.实验结果表明,叶龄对海草的光合活性有较大影响,同种海草的AF值和叶绿素含量都随叶龄增加而增加,叶龄小的叶片明显具有较大的最大电子传递速率(ETRmx)(大叶藻∶叶1=26.56,叶2=21.45,叶3=19.98;红纤维虾海藻叶1=22.31,叶2=19.23,叶3=17.06;丛生叶藻∶叶1=20.16,叶2=16.10;叶3=13.10).相比于丛生大叶藻和红纤维虾形藻,大叶藻具有最高的光合活性(ETRmax=22.67),这也与大叶藻在3种海草中所具有最高的初级生产力是相符合的.

  20. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy.

    Science.gov (United States)

    Marchand, Jean-Rémy; Carotti, Andrea; Passeri, Daniela; Filipponi, Paolo; Liscio, Paride; Camaioni, Emidio; Pellicciari, Roberto; Gioiello, Antimo; Macchiarulo, Antonio

    2014-10-01

    The inhibition of the poly(ADP-ribose) polymerase (PARP) family members is a strategy pursued for the development of novel therapeutic agents in a range of diseases, including stroke, cardiac ischemia, cancer, inflammation and diabetes. Even though some PARP-1 inhibitors have advanced to clinical setting for cancer therapy, a great deal of attention is being devoted to understand the polypharmacology of current PARP inhibitors. Besides blocking the catalytic activity, recent works have shown that some PARP inhibitors exhibit a poisoning activity, by trapping the enzyme at damaged sites of DNA and forming cytotoxic complexes. In this study we have used microsecond molecular dynamics to study the allosteric reverse signalling that is at the basis of such an effect. We show that Olaparib, but not Veliparib and HYDAMTIQ, is able to induce a specific conformational drift of the WGR domain of PARP-1, which stabilizes PARP-1/DNA complex through the locking of several salt bridge interactions. Fluorescence anisotropy assays support such a mechanism, providing the first experimental evidence that HYDAMTIQ, a potent PARP inhibitor with neuroprotective properties, is less potent than Olaparib to trap PARP-1/DNA complex.

  1. An optimised method for correcting quenched fluorescence yield

    Directory of Open Access Journals (Sweden)

    L. Biermann

    2014-05-01

    Full Text Available Under high light intensity, phytoplankton protect their photosystems from bleaching through non-photochemical quenching processes. The consequence of this is suppression of fluorescence emission, which must be corrected when measuring in situ yield with fluorometers. Previously, this has been done using the limit of the mixed layer, assuming that phytoplankton are uniformly mixed from the surface to this depth. However, the assumption of homogeneity is not robust in oceanic regimes that support deep chlorophyll maxima. To account for these features, we correct from the limit of the euphotic zone, defined as the depth at which light is at ~1% of the surface value. This method was applied to fluorescence data collected by eleven animal-borne fluorometers deployed in the Southern Ocean over four austral summers. Six tags returned data showing evidence of deep chlorophyll features. Using the depth of the euphotic layer, quenching was corrected without masking subsurface fluorescence signals.

  2. Label-free triple-helix aptamer as sensing platform for "signal-on" fluorescent detection of thrombin.

    Science.gov (United States)

    Xu, Nan; Wang, Quanbo; Lei, Jianping; Liu, Lin; Ju, Huangxian

    2015-01-01

    The design of a label-free aptamer for separation of recognition sequence from signal reporter is significant to ensure the high-efficiency affinity between aptamer and target. This work develops a label-free triple-helix aptamer (THA) as sensing platform for "signal-on" fluorescent detection of thrombin. THA was composed of aptamer sequence and help DNA 1 (H1), which contained the complementary sequence of hexachloro-fluorescein (HEX) labeled help DNA 2 (H2). The specific recognition event between aptamer and thrombin triggered the dismission of THA to release H1. The released H1 then reacted with the signal probe of H2/graphene oxide (GO) nanocomposite to form H1-H2 duplex, leading to the fluorescence recovery of H2 due to the detachment of H1-H2 duplex from the surface of GO. With employment of THA as a signal transducer and GO as a "superquencher", this method shows a sensitive response to thrombin with a wide concentration range from 5 to 1200 nM. The limit of detection is 1.8 nM (S/N=3) with excellent selectivity. Considering the universality of THA, the proposed aptasensor would provide a platform for homogeneous fluorescent detection of a wide range of analytes.

  3. Centimeter-deep tissue fluorescence microscopic imaging with high signal-to-noise ratio and picomole sensitivity

    CERN Document Server

    Cheng, Bingbing; Wei, Ming-Yuan; Pei, Yanbo; DSouza, Francis; Nguyen, Kytai T; Hong, Yi; Tang, Liping; Yuan, Baohong

    2015-01-01

    Fluorescence microscopic imaging in centimeter-deep tissue has been highly sought-after for many years because much interesting in vivo micro-information, such as microcirculation, tumor angiogenesis, and metastasis, may deeply locate in tissue. In this study, for the first time this goal has been achieved in 3-centimeter deep tissue with high signal-to-noise ratio (SNR) and picomole sensitivity under radiation safety thresholds. These results are demonstrated not only in tissue-mimic phantoms but also in actual tissues, such as porcine muscle, ex vivo mouse liver, ex vivo spleen, and in vivo mouse tissue. These results are achieved based on three unique technologies: excellent near infrared ultrasound-switchable fluorescence (USF) contrast agents, a sensitive USF imaging system, and an effective correlation method. Multiplex USF fluorescence imaging is also achieved. It is useful to simultaneously image multiple targets and observe their interactions. This work opens the door for future studies of centimeter...

  4. Comparison on Photosynthetic Characteristics and Chlorophyll Fluorescence Parameters between Thuja sutchuenensis and Platycladus orientalis%崖柏与侧柏光合特性和叶绿素光参数的比较研究

    Institute of Scientific and Technical Information of China (English)

    刘建锋; 杨文娟; 史胜青; 郭泉水; 江泽平

    2011-01-01

    The paper focused on the ecological adaptability of an endemic and endangered species, Thuja sutchuenensis , by detecting the difference of the photosynthetic characteristic,gas exchange and chlorophyll fluorescence parameters from its related widespread species, Platycladus orientalis. The results showed thati(l)For the light response parameters,the apparent quantum efficiency (a) of T. Sutchuenensis and P. Orientalis were not significantly different,and were 0. 039 mol · mol-1 photons and 0. 027 mol · mol-1 photons?respectively. However,the light compensation point (LCP) of T. Sutchuenensis (81. 04 jLtmol · m-1 ? A-1) was significantly higher than that of P. Orientalis (59. 72 μmol · m -2 · s-1 )(PpsⅡ ) and non-photochemical quenching (NPQ) were not significantly different in the two species. However, the photochemical quenching (PQ) of T. Sutchuenensis was significantly lower than that of P. Orientalis, which were 0. 218 and 0. 322, respectively. The above results showed that, the photosynthesis and chlorophyll fluorescence parameters of T. Sutchuenensis exhibited greater similarity with P. Orientalis, which indicated T. Sutchuenensis had a strong adaptability to the northern environment during the growing season.%以盆栽的中国特有濒危植物崖柏及其近缘广布种侧柏幼苗为材料,测定了二者的光照和二氧化碳响应特征参数、光合作用气体交换参数和叶绿素荧光参数,比较分析两者间差异并探讨崖柏异地保存的可行性.结果显示:(1)在光响应参数方面,崖柏和侧柏的表观量子效率分别为0.039和0.027 mol·mol-1,但二者差异不显著;崖柏的光补偿点(81,04 μmol·m-2·s-1)显著高于侧柏(59.72 μmol·m-2·s-1),但二者的最大净光合速率(Pmax)、光饱和点(LSP)和暗呼吸速率(Rd)均无显著差异;崖柏的CO2补偿点(129.17fmol·mol-1)显著高于侧柏(95.86μmol·mol-1),而光呼吸速率则崖柏略高于侧柏,但二者的羧化效率相当.(2)气

  5. Effect of High Temperature Stress on Photosynthesis and Chlorophyll Fluorescence of Rice%高温胁迫对水稻光合作用和叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    宋丽莉; 赵华强; 朱小倩; 董根西; 谢戎

    2011-01-01

    [Objective]The aim was to study photosynthesis and chlorophyll fluorescence parameters of plant under high temperature stress. [Method] Two varieties of rice were treated at 30,35,40 and 45 ℃ for two hours, respectively, and then placed at 25 ℃ to resumed for 0,3,6 d, respectively. The photosynthesis and chlorophyll fluorescence parameters were measured. [ Result ] High temperature resulted in the reduction of net photosynthesis in two kinds of rice, whereas the net photosynthesis in 'Zhongyou 9801' decreased more than 'II you7' under same high temperature. The decrease of the net photosynthesis in ' II you 7' was reversible and that in ' Zhongyou 9801' was nonreversible. The decrease of net photosynthesis in ' H you 7' was primarily due to stoma limiting factor at 30-35 t whereas due to non-stoma limiting factor under 40 ℃. Non-stoma factor was the primary reason for the decrease of net photosynthesis in ' Zhongyou 9801'. Lower water loss resulted from rapid decrease of stomatal conductance and transpiration rate might be one of the reasons for thermotolerance of ' Iiyou 7'. High temperature resulted in significant increase of F0 and reduction of Pn,Fv/Fm,Qp and ETR in 'Zhongyou 9801' .which demonstrated that PSD reaction center had been destroyed or inactivated reversibly and then induced electron transfer delay and photochemistry reduction. [Conclusion] The increase of F0 and decrease of Pn, Fv/Fm, Qp and ETR in ' II you 7' were significantly weaker than in ' Zhongyou 9801'. Moreover, the above parameters resumed to control level after 6 d recovery. Higher stability and self-repair ability of PSQ were the important reason fors the thermotolerance of ' fl you 7'.%[目的]研究高温胁迫对植物光合作用和叶绿素荧光参数的影响.[方法]以不同耐热性的2种水稻品种为材料,30、35、40、45℃温度下处理2h后于25℃恢复3、6d,分别在第0、3、6天进行光合指标和叶绿素荧光的测定.[结果]高温胁迫导致2种

  6. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design

    Energy Technology Data Exchange (ETDEWEB)

    Akerboom, Jasper; Velez Rivera, Jonathan D.; Rodriguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Hernandez, Hector H.; Tian, Lin; Hires, S. Andrew; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.; (MIT); (Puerto Rico); (HHMI)

    2009-03-16

    The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca{sup 2+}-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.

  7. Using genetically encoded fluorescent reporters to image lipid signalling in living plants

    NARCIS (Netherlands)

    J.E.M. Vermeer; T. Munnik

    2013-01-01

    The discovery of the green fluorescent protein has revolutionized cell biology as it allowed researchers to visualize dynamic processes in living cells. The fusion of fluorescent protein variants with lipid binding domains that bind to specific phospholipids have been very instrumental in investigat

  8. Effects of foliar spraying methyl jasmonate on leaf chlorophyll fluorescence characteristics of flue-cured tobacco seedlings under drought and re-watering%茉莉酸甲酯对干旱及复水条件下烤烟幼苗叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    金微微; 王炎; 张会慧; 焦志丽; 王鹏; 李鑫; 岳冰冰; 孙广玉

    2011-01-01

    以烤烟品种“龙江911”为试验材料,研究了干旱及复水过程中外源茉莉酸甲酯(Me-JA)对移栽后烤烟幼苗叶绿素含量和叶绿素荧光特性的影响.结果表明:干旱下烤烟幼苗叶绿素含量、PSⅡ反应中心完全关闭时荧光产量(Fm)、PSⅡ潜在活性(Fv/Fo)、最大光化学效率(Fv/Fm)、实际光化学效率(φPSⅡ)、表观电子传递速率(ETR)和光化学猝灭系数(qp)下降,而初始荧光(Fo)和非光化学猝灭系数(qN)升高,0.2和0.5 mmol·L-1的外源MeJA明显减缓了干旱下烤烟幼苗Fv/Fm、Fv /Fo、φPsⅡ、ETR、qP的下降和qN的上升,而1.0 mmol·L-1 MeJA效果不明显.复水后,烤烟幼苗各项叶绿素荧光指标均有明显恢复,并且MeJA处理后的幼苗恢复更明显.表明外源MeJA减轻了干旱胁迫下烤烟叶片叶绿素的分解,对PSⅡ反应中心起到一定的保护作用,提高了电子传递速率,降低了干旱胁迫对烤烟幼苗的伤害,并且复水后叶绿素含量和叶绿素荧光参数能迅速恢复,从而保证了经干旱胁迫后烤烟幼苗能迅速缓苗.%Taking the flue-cured tobacco variety of "Longjiang 911" from Heilongjiang Province of Northeast China as test material, a pot experiment was conducted to study the effects of foliar spraying different concentration methyl jasmonate ( MeJA) on the seedlings leaf chlorophyll content and chlorophyll fluorescence characteristics during the transplantation stage under drought and re-watering. Under drought condition, the leaf chlorophyll content, maximum fluorescence ( Fm ) , potential activities of PSII (Fv/Fo) , maximum photochemical efficiency ( Fv/Fm ) , actual photochemical efficiency ( φpsⅡ ) , apparent electron transport rate (ETR), and photochemical quenching ( qp) decreased, but the minimal fluorescence ( Fo) and non-photochemical quenching ( qN ) increased. Foliar spraying 0. 2 and 0. 5 mmol · L-1 of MeJA had obvious positive effects in mitigating the decrease of Fv/Fm, Fv

  9. Chlorophyll formation and phytochrome

    NARCIS (Netherlands)

    Raven, C.W.

    1973-01-01

    The rôle of phytochrome in the regeneration of protochlorophyll (Pchl) in darkness following short exposures to light, as well as in the accumulation of chlorophyll- a (Chl- a ) in continuous light in previously dark-grown seedlings of pea, bean, and maize has been the subject of the present investi

  10. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays.

  11. Pulse amplitude modulated chlorophyll fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  12. An Analysis of Chlorophyll Fluorescence Parameters and Protein Expression Levels in PSⅡof Cassava%华南系列木薯叶绿素荧光参数及光系统Ⅱ相关蛋白表达水平分析

    Institute of Scientific and Technical Information of China (English)

    陈霆; 李开绵; 安飞飞; 周建国; 魏艳

    2014-01-01

    以华南205( cv.SC205)为对照,研究7个华南系列木薯品种华南5号( cv.SC5)、华南6号( cv.SC6)、华南7号(cv.SC7)、华南8号(cv.SC8)、华南9号(cv.SC9)、华南10号(cv.SC10)、华南11号(cv.SC11)的叶绿素含量、叶绿素荧光参数及光系统Ⅱ( PSⅡ)中相关蛋白表达水平的差异。结果表明:SC6叶片叶绿素a、叶绿素b及总叶绿素含量均显著低于对照SC205及其它6个品种;叶绿素荧光参数中ΦPSⅡ显示8个木薯品种PSⅡ的实际光合效率Φ从高到低顺序为ΦSC5、ΦSC8、ΦSC9、ΦSC10、ΦSC205、ΦSC11、ΦSC7、ΦSC6。 Western Blot结果表明D1蛋白、放氧复合体(OEC)及核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)均在SC6叶片中表达最低,而在SC5、SC8、SC9叶片中表达较高。叶绿素荧光参数及PSⅡ相关蛋白可为高效选育木薯优良品种提供参考。%In order to detect the chlorophyll content ,chlorophyll fluorescence parameters and protein ex-pression levels related with PSⅡ in different cassava varieties , SCATC5 ( cv.SC5 ) , SCATC6 ( cv.SC6 ) , SCATC7 (cv.SC7),SCATC8 (cv.SC8),SCATC9 (cv.SC9),SCATC10 (cv.SC10),SCATC11 (cv.SC11), SCATC205 (cv.SC205) were studied in this experiment,and SC205 (cv.SC205) was the control as CK.The results showed that the contents of chlorophyll a ,chlorophyll b and total chlorophyll of SC 6 were significantly lower than that of the control cv .SC205 and those of the other six cassava varieties .The chlorophyll fluorescence parameters of ΦP SⅡ revealed that the actual photosynthetic efficiency order of 8 cassava varieties from high to low was ΦSC5 ,ΦSC8 ,ΦSC9 ,ΦSC10 ,ΦSC205 ,ΦSC11 ,ΦSC7 ,ΦSC6 .The western Blot results showed that the expression levels of D1 protein,oxygen-evolving complex ( OEC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were the lowest in cv.SC6 leaves,but higher in cv.SC5,cv.SC8,cv.SC9 leaves.Chlorophyll

  13. Preliminary Studies on chlorophyll fluorescence characteristics of endangered plant Ulmus elongata seedlings%濒危植物长序榆(Ulmus elongata)幼苗叶绿素荧光特性的初步研究

    Institute of Scientific and Technical Information of China (English)

    高建国; 徐根娣; 刘鹏; 岑维亚

    2011-01-01

    用Li-6400XT便携式光合作用仪对濒危植物长序榆幼苗的各叶绿素荧光参数的日变化和快速光响应曲线进行了测定.结果发现,光系统Ⅱ(PSⅡ)的实际光化学效率(ΦPS Ⅱ)、电子传递速率(ETR)在整个白天阶段较稳定,下午18:00显著下降.光化学淬灭(qP)先增大后减小.非光化学淬灭(NPQ)呈现出与光化学淬灭(qP)相反的变化趋势,中午最低,说明长序榆幼苗光能利用率较高.快速光曲线表明实际光化学效率(ΦPSⅡ)和光化学淬灭(qP)随着光合有效辐射(PAR)的增大而减小,电子传递速率(ETR)和非光化学淬灭(NPQ)随着光合有效辐射(PAR)的增大而增大.使用幂函数能够很好的拟合实际光化学效率(ΦPSⅡ)和电子传递速率(ETR)随光强的变化,而对数函数能较好的拟合实际光化学淬灭(qP)和非光化学淬灭(NPQ)随光强的变化.%Diurnal variations of chlorophyll fluorescence parameters and rapid light curves of endangered plant Ulmus elongata seedlings were determined by using Li -6400XT portable photosynthesis system. The results showed that the actual photochemical efficiency(ΦPSII)> electron transport rate(ETR)of photosystem H(PSII)were stable throughout the daytime, and decreased significantly at 18:00 pm. Photochemical quenching (qP)increased firstly at morning and then decreased after midday, non-photochemical quenching (NPQ)showed the opposite changes, the minimum at noon, indicating that the light use efficiency of Ulmus elongata seedlings were high. The rapid light curves showed that actual photochemical efficiency(ΦPSII) and photochemical quenching (qP)decreased while the photosynthetic active radiation (PAR)increased, electron transport rate (ETR)and non-photochemical quenching (NPQ)increased while the photosynthetic active radiation (PAR)increased. The power function could fit well the actual photochemical efficiency (ΦPSII)and electron transport rate (ETR)with the light intensity changes, while

  14. Compare of chlorophyll fluorescence characteristics between vegetative and germ cells of Porphyra haitanensis%坛紫菜叶状体营养细胞与生殖细胞叶绿素荧光特性比较

    Institute of Scientific and Technical Information of China (English)

    李家富; 张涛; 陆勤勤; 朱建一; 沈宗根; 刘兆普; 王长海

    2013-01-01

      Light utilization characteristics of vegetative and germ cells of Porphyra haitanensis were compared by technique of chlorophyll fluorescence. The results showed that the actual photochemical efficiency of PSII (ΔF/Fm´) of the vegetative cells and female cells exhibited only a little difference, but they were both significantly higher than that of the male cells. The maximum relative electron transport rate (rETRmax) of the vegetative cells and fe-male cells were both significantly higher than that of the male cells. There was no significant difference in half saturating irradiance (Ik) between the vegetative and germ cells. The vegetative cells and female cells had similar rETR, photochemical quenching (qP) and non-photochemical quenching (NPQ) under the growing light intensity, which were higher than those of the male cells. These results suggested that the vegetative cells and female cells of P. haitanensis could use light efficiently and most of absorbed light energy was used for photosynthetic electron transport, but the male cells had much lower light energy use efficiency.%  利用叶绿素荧光技术对坛紫菜(Porphyra haitanensis)叶状体营养细胞和生殖细胞的光能利用特性进行了比较。结果表明:坛紫菜叶状体营养细胞和雌性生殖细胞的实际量子效率(ΔF/Fm′)差异不明显,但显著高于雄性生殖细胞;快速光曲线测定表明雌、雄藻体营养细胞的最大相对电子传递速率(rETRmax)相近,但显著高于雄性生殖细胞;不同生殖细胞半饱和光强(Ik)无显著差异;在生长光强下,营养细胞和雌性生殖细胞rETR、光化学猝灭(qP)和非光化学猝灭(NPQ)差异不明显,而雄性生殖细胞rETR、qP等荧光参数均显著低于营养细胞和雌性生殖细胞。本文表明坛紫菜叶状体营养细胞和雌性生殖细胞具有较高的光能利用能力,能够将吸收的光能多数用于电子传递,而雄性生殖细胞对光能的利用能力较低。

  15. Effects of Para-hydroxybenzoic Acid on Chlorophyll Fluorescence Parameter in Leaves of Cerasus sachalinensis%对-羟基苯甲酸对东北山樱桃叶绿素荧光参数的影响

    Institute of Scientific and Technical Information of China (English)

    高鹤

    2016-01-01

    The effects of para-hydroxybenzoic on fast chlorophyll fluorescence transient and its parameters in Cera-sus sachalinensis seedlings were studied through plant efficiency analyzer from Hansatch PEA.Result shows that the performance index on a basis of absorption (PIABS )of seedlings under the treatment with different concentra-tions (0.1 A,1 A & 10 A),efficiency that trapped exciton can move an election into the election transport chain be-yond QA-(ψo),quantum yield for election transport (φEo),density of RC (RC/CSm )decreased.The maximum quantum efficiency of PSII (φPo),density of RC (RC/CS0 )hardly varied,whereas that normalized total complemen-tary area above the O-J-I-P transie (Sm )increased.In addition,absorption flux per CS (ABS/RC)increased, trapped energy flux per CS (TRo/RC),election transport flux per RC (ETo/RC)and dissipated energy flux per RC (DIo/RC)hardly varied.These results demonstrate that para-hydroxybenzoic acid affect different positions of pho-tosynthesis of Cerasus sachalinensis,decrease the performance of photosynthesis,influence the photosynthesis.%以东北山樱桃(Cerasus sachalinensis Kom.)实生幼苗为试材,利用 Hansatch PEA,采用叶绿素荧光诱导动力学理论和JIP-test数据分析方法,研究了对-羟基苯甲酸对叶片叶绿素荧光参数的影响。结果表明:幼苗在不同浓度对-羟基苯甲酸(0.1A、1A、10A)处理下的叶片光合性能指数(PIABS )、捕获的激子将电子传递到电子传递链中QA-下游的其他电子受体的概率(Ψo)、用于电子传递的量子产额(φEo)和单位面积有活性的反应中心数目(RC/CSm)较对照均有所下降;PSⅡ最大量子效率(φPo)、单位面积有活性的反应中心数目(RC/CS0)几乎没有变化;而PSⅡ受体侧的电子受体库容量(Sm)则高于对照,且呈“上升-下降”趋势。天线色素吸收的能量(ABS/RC)在低浓度下有小幅升高,反应中心捕获的能量(TRo/RC)、用于电子传递的能量(ETo/RC)

  16. 东北山樱桃叶绿素荧光对外源化感物质的响应%Response of Cerasus sachalinensis chlorophyll fluorescence to exogenous allelochemical

    Institute of Scientific and Technical Information of China (English)

    高鹤

    2016-01-01

    以东北山樱桃实生幼苗为试材,利用Hansatch PEA,采用叶绿素荧光诱导动力学理论和JIP-test数据分析方法,研究对羟基苯甲酸对叶片叶绿素荧光参数的影响。结果表明:幼苗在不同浓度对羟基苯甲酸(0.1、1、10 mmol·L-1)处理下的叶片光合性能指数、捕获的激子将电子传递到电子传递链中QA-下游的其他电子受体的概率、用于电子传递的量子产额和单位面积有活性的反应中心数目较对照均有所下降;PSⅡ最大量子效率、单位面积有活性的反应中心数目几乎没有变化;而PSⅡ受体侧的电子受体库容量则高于对照,且呈“上升—下降”趋势。天线色素吸收的能量在低浓度下有小幅升高,反应中心捕获的能量、用于电子传递的能量及用于热耗散的能量则无明显变化。可见,对羟基苯甲酸对东北山樱桃叶片光合结构的不同部位产生影响,进而降低光合性能,影响光合作用。%The effects of para-hydroxybenzoic on chlorophyll fluorescence parameters in seedlings of Cerasus sachalinensis were stud-ied through Plant Efficiency Analyzer Hansatch PEA.The results showed that with different concentrations(0.1,1,10 mmol·L-1)of para-hydroxybenzoic acid treatments,Photosynthetic characteristics in leaf,Probability of transferring electrons to other electron ac-ceptors in downstream of QA through electron transport chain,quantum yield for electron transport and density of RC(RC/CSm)were all decreased in comparison to control.The maximum quantum efficiency of PSII(φpo),density of RC(RC/CS0)hardly varied, whereas that normalised total complementary area above the O-J-I-P transie(Sm)increased.In addition,absorption flux per CS(ABS/RC)increased,trapped energy flux per CS(TRo/RC),election transport flux per RC(ETo/RC)and dissipated energy flux per RC (DIo/RC)hardly varied.These results demonstrate that para-hydroxybenzoic acid effect photosynthesis by

  17. As clorofilas The chlorophylls

    Directory of Open Access Journals (Sweden)

    Nivia Maria Streit

    2005-06-01

    Full Text Available As clorofilas são pigmentos verdes, comuns em todas as células fotossintéticas. Por sua estrutura química ser instável, são facilmente degradadas, resultando em produtos de decomposição que modificam a percepção e qualidade dos alimentos. Esta revisão trata dos vários fatores que interferem na degradação das clorofilas, como a luz, radiação, calor, ácidos, oxigênio, alteração enzimática e interação com outros pigmentos. Também, outro aspecto a ser abordado é a utilização das clorofilas como corantes, através da formação de complexos que tornam esses pigmentos mais estáveis à decomposição.The Chlorophylls are a common green pigment to all photosynthetic cells. They are easily degraded, because of their unstable chemical structure. Degradation results in products alter the perception and quality of foods. This review discusses the various factors, that interfere on chlorophyll degradation such as light, irradiation, heat, acids, oxygen, enzymatical alteration and the interaction with other pigments. Also, the other topic that was mentioned the utilization of the chlorophylls as dyes through a complex formation that make this pigment more stable to degradation.

  18. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA.

    Science.gov (United States)

    Tanpure, Arun A; Srivatsan, Seergazhi G

    2012-11-05

    The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.

  19. Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f.

    Science.gov (United States)

    Li, Yaqiong; Scales, Nicholas; Blankenship, Robert E; Willows, Robert D; Chen, Min

    2012-08-01

    Both chlorophyll f and chlorophyll d are red-shifted chlorophylls in oxygenic photosynthetic organisms, which extend photon absorbance into the near infrared region. This expands the range of light that can be used to drive photosynthesis. Quantitative determination of chlorophylls is a crucial step in the investigation of chlorophyll-photosynthetic reactions in the field of photobiology and photochemistry. No methods have yet been worked out for the quantitative determination of chlorophyll f. There is also no method available for the precise quantitative determination of chlorophyll d although it was discovered in 1943. In order to obtain the extinction coefficients (ε) of chlorophyll f and chlorophyll d, the concentrations of chlorophylls were determined by Inductive Coupled Plasma Mass Spectrometry according to the fact that each chlorophyll molecule contains one magnesium (Mg) atom. Molar extinction coefficient ε(chl f) is 71.11×10(3)Lmol(-1)A(707nm)cm(-1) and ε(chl d) is 63.68×10(3)Lmol(-1)A(697nm)cm(-1) in 100% methanol. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

  20. 氮素水平对转C4光合基因水稻花期剑叶PSⅡ荧光特性的影响%Responses of Chlorophyll Fluorescence Characteristics to Nitrogen in Flag Leaves of C4 Photosynthetic Enzymes Transgenic Rice during the Reproductive Stage

    Institute of Scientific and Technical Information of China (English)

    魏晓东; 李霞; 郭士伟; 陈平波

    2013-01-01

    There was close relationship between nitrogen use efficiency and photosynthetic capability. C4 photo-synthetic gene transgenic rice had higher light use efficiency and CO2 assimilation compared to traditional C3 rice cultivars. However, whether nitrogen had influence on photosynthesis of these transgenic rice cultivars was unknown Chlorophyll fluorescence can reflect intrinsic characteristics using fast measurement without any damage to leaves, and is usually used as probe of photosynthesis. In the present study, the pepc (PC) ,ppdk (PK)and pepc + ppdk (CK) transgenic rice plants were used as experimental materials with their wild type Kitaaki( WT) to investigate the responses of photosynthetic characteristics to different nitrogen levels in C4 photosynthetic gene transgenic rice at the late reproductive stage. Changes in SPAD values, morphological parameters were measured in flag leaves of four cultivars under different nitrogen levels. The analysis of chlorophyll fluorescence kinetic curves and some related parameters were also done under three nitrogen levels(0. 7 mmol/L N-1/4N low nitrogen,3 mmol/L N-1N control, 6 mmol/L N-2N high nitrogen)at the late reproductive stage using fast chlorophyll fluorescence kinetic technology, in order to explore the effects of nitrogen on photosystem Ⅱ ( PS Ⅱ ) function of C4 photosynthetic gene transgenic rice flag leaves. The results showed that 1/4N treatment increased root length,decreased plant height,leaf area and chlorophyll contents of flag leaves in all cultivars, while 2N treatment increased leaf area and chlorophyll contents. C4 photosynthetic gene transgenic plants exposed to 1/4N treatment had higher chlorophyll contents, and PC had longest root length and largest leaf area of flag leaves, which indicated that they had more morphological advantage under 1/4N treatment than wild type. The fluorescence O-J-I-P curves changes were found in all cultivars under 1/4N treatment. The K phase (at 300 μs) increased and C

  1. Use of independent component analysis to improve signal-to-noise ratio in multi-probe fluorescence microscopy.

    Science.gov (United States)

    Dao, L; Lucotte, B; Glancy, B; Chang, L-C; Hsu, L-Y; Balaban, R S

    2014-11-01

    In conventional multi-probe fluorescence microscopy, narrow bandwidth filters on detectors are used to avoid bleed-through artefacts between probes. The limited bandwidth reduces the signal-to-noise ratio of the detection, often severely compromising one or more channels. Herein, we describe a process of using independent component analysis to discriminate the position of different probes using only a dichroic mirror to differentiate the signals directed to the detectors. Independent component analysis was particularly effective in samples where the spatial overlap between the probes is minimal, a very common case in cellular microscopy. This imaging scheme collects nearly all of the emitted light, significantly improving the image signal-to-noise ratio. In this study, we focused on the detection of two fluorescence probes used in vivo, NAD(P)H and ANEPPS. The optimal dichroic mirror cutoff frequency was determined with simulations using the probes spectral emissions. A quality factor, defined as the cross-channel contrast-to-noise ratio, was optimized to maximize signals while maintaining spatial discrimination between the probes after independent component analysis post-processing. Simulations indicate that a ∼3 fold increase in signal-to-noise ratio using the independent component analysis approach can be achieved over the conventional narrow-band filtering approach without loss of spatial discrimination. We confirmed this predicted performance from experimental imaging of NAD(P)H and ANEPPS in mouse skeletal muscle, in vivo. For many multi-probe studies, the increased sensitivity of this 'full bandwidth' approach will lead to improved image quality and/or reduced excitation power requirements.

  2. Homogeneous Time-Resolved Fluorescence-Based Assay to Monitor Extracellular Signal-Regulated Kinase Signalling in a High-Throughput Format

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAyoub

    2014-06-01

    Full Text Available The extracellular signal-regulated kinases (ERKs are key components of multiple important cell signalling pathways regulating diverse biological responses. This signalling is characterized by phosphorylation cascades leading to ERK1/2 activation and promoted by various cell surface receptors including G protein-coupled receptors (GPCRs and receptor tyrosine kinases (RTKs. We report the development of a new cell-based phospho-ERK1/2 assay (designated Phospho-ERK, which is a sandwich proximity-based assay using the homogeneous time-resolved fluorescence technology. We have validated the assay on endogenously expressed ERK1/2 activated by the epidermal growth factor (EGFR as a prototypical RTK, as well as various GPCRs belonging to different classes and coupling to different heterotrimeric G proteins. The assay was successfully miniaturized in 384-well plates using various cell lines endogenously, transiently or stably expressing the different receptors. The validation was performed for agonists, antagonists and inhibitors in dose-response as well as kinetic analysis, and the signalling and pharmacological properties of the different receptors were reproduced. Furthermore, the determination of a Z’-factor value of 0.7 indicates the potential of the Phospho-ERK assay for high-throughput screening of compounds that may modulate ERK1/2 signalling. Finally, our study is of great interest in the current context of investigating ERK1/2 signalling with respect to the emerging concepts of biased ligands, G protein-dependent/independent ERK1/2 activation, and functional transactivation between GPCRs and RTKs, illustrating the importance of considering the ERK1/2 pathway in cell signalling.

  3. Chloroplastid pigment contents and chlorophyll a fluorescence in Amazonian tropical three species Concentração de pigmentos cloroplastídicos e fluorescência da clorofila a em espécies arbóreas tropicais da Amazônia

    Directory of Open Access Journals (Sweden)

    Ronaldo Ribeiro de Morais

    2007-10-01

    Full Text Available Plants react to changes in light and hydrological conditions in terms of quantity and composition of chloroplastidic pigments, which affects the photosynthetic properties and consequently the accumulation of plant biomass. Thus, the chloroplastidic pigment concentration and chlorophyll a fluorescence of three Amazonian species (Bertholletia excelsa, Carapa guianensis e Dipteryx odorata were investigated in sun and shade leaves form the tree crown collected during two distinct periods of precipitation (dry and rainy seasons. Pigment contents were determined by spectrophotometry and fluorescence variables were determined using a portable fluorometer. The results demonstrated that the species showed high concentrations of Chl a, Chl b e Chl total during the wet season in relation to the dry season, especially in shade leaves. A higher concentration of carotenoids was found in B. excelsa, when compared with leaves of C. guianensis and D. odorata. In leaves of B. excelsa and D. odorata no significant difference was found in relation to the photochemistry of photosystem II (Fv/Fm between the wet and dry seasons. In conclusion, the three species react differently to variations in the light and precipitation conditions regarding light capture, aspects that might be considered in the management of forest plantations.As plantas respondem a mudanças nas condições de luz e na disponibilidade hídrica em termos da quantidade e composição dos pigmentos cloroplastídicos, o que afeta as propriedades fotossintéticas e, conseqüentemente, o acúmulo de biomassa das espécies. Assim, a concentração de pigmentos cloroplastídicos e a fluorescência da clorofila a de três espécies arbóreas (Bertholletia excelsa, Carapa guianensis e Dipteryx odorata da Amazônia foi investigada em folhas sombreadas e não-sombreadas da copa das árvores e em dois períodos distintos de precipitação (chuvoso e seco. As concentrações de pigmentos foram determinadas por

  4. Double-staining chromogenic in situ hybridization as a useful alternative to split-signal fluorescence in situ hybridization in lymphoma diagnostics

    DEFF Research Database (Denmark)

    van Rijk, A.; Svenstroup-Poulsen, T.; Jones, M.;

    2010-01-01

    , their detection is an important adjunct for increasing the reliability of the diagnosis. Recently, split-signal fluorescence hi situ hybridization has become available as a robust method to detect chromosomal breaks in paraffin-embedded formalin-fixed tissues. A bright field approach would bring this technology...... within the reach of every pathology laboratory. Design and Methods Our study was initiated to determine the consistency between chromogenic in situ hybridization and fluorescence in situ hybridization, both using split-signal probes developed for the detection of chromosomal breaks. Five hundred...... after split-signal fluorescence in situ hybridization staining. Conclusions We conclude that double-staining chromogenic in situ hybridization is equally reliable as fluorescence in situ hybridization in detecting chromosomal breaks in lymphoid tissue. Although differences in morphology, hematoxylin...

  5. A factor from spinach leaves interacting with chlorophylls

    NARCIS (Netherlands)

    Terpstra, Willemke

    1967-01-01

    A factor has been isolated from spinach leaves that interacts with chlorophyll. This interaction is measurable as an increased light sensitivity and fluorescence capacity of the pigment in an aqueous medium. The factor is probably a protein. Interaction was also observed with bacteriochlorophyll an

  6. Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients

    DEFF Research Database (Denmark)

    Frydenvang, Jens

    of a sufficient quality; something that remains a problem for many in-situ methods. In my PhD, I present my work with two such in-situ methods, Laser-Induced Breakdown Spectroscopy (LIBS) and OJIP transients, the rising part of chlorophyll a fluorescence transients from dark-adapted leaves....

  7. Effect of Water Stress and Rehydration on the Chlorophyll Fluorescence Characteristics of Alfalfa Seedling Leaves%水分胁迫和复水对紫花苜蓿幼苗叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    李文娆; 张岁岐; 山仑

    2007-01-01

    Water stress mimicked by PEG-6000 solution (ψs =- 0.2 MPa, stress period 48 h, then rehydration 48 h) was performed on leaves of alfalfa (Medicago sativa L) varieties of Longdong and Algonquin seedlings. Chlorophyll fluorescence parameters and photosynthetic pigments concentration were measured. These measurements were used to investigate the available photosynthetic response mechanism to different water conditions. The results show that the change patterns of photochemical quenching (qP) and the effective quantum yield of PSII photochemistry (YIELD) with the increasing of the active radiation of photosynthesis (PAR) could be expressed by the equation:Y=a Ln(x)+b (Y:qP or YIELD, X:PAR,X≠0) and the change patterns of non-photochemical quenching (qN) and the relative electron transport rate (ETR) with the increasing of PAR could be expressed by the equation:Y=aX2+bX+c (Y:qN orETR, X: PAR). Significantly, the maximal photochemical efficiency of PSⅡ in the dark (Fv/Fm),potential activity of PSII (Fv/Fo)and photosynthetic pigments concentration in alfalfa leaves decreased obviously subjected to water stress. Simultaneously, the values of qP, YIELD and ETR in stress treatments were decreased significantly and the values of qN in stress treatments were increased obviously under every PAR. More particularly, the light intensities corresponding to the top point of light response curve of qN and ETR declined submitted to water stress. Compared to the controls, the initial point of photo-inhibition and the maximum photo-protection ability decreased, or photo-inhibition occurred in advance. It indicated that photosynthetic apparatuses and functions were inhibited by water stress, which weakened the light energy utilization and transform capability of PSII reaction center and light energy dissipated through heat energy mostly. After rehydration, all parameters except photosynthetic pigments concentration in Longdong and carotenoid in Algonquin partly recovered only to the

  8. Effect of Polyamines,Putrescine,Spermidine and Spermine on Chloro-phyll Fluorescence Parameters of Cucumber Seedlings under Low Tem-perature Stress%外源多胺对低温胁迫下黄瓜幼苗叶绿素荧光参数的影响

    Institute of Scientific and Technical Information of China (English)

    曹玉杰; 钱春桃; 薄凯亮; 程春燕; 陈劲枫

    2014-01-01

    应用外源多胺(Polyamines,PAs)腐胺(Putrescine,Put)、亚精胺(Spermidine,Spd)、精胺(Spermine,Spm)处理2叶1心黄瓜幼苗,然后进行8℃/8℃低温及恢复处理,研究Put、Spd、Spm对黄瓜幼苗叶绿素荧光参数的影响。结果表明,在低温胁迫下黄瓜幼苗叶片叶绿素荧光参数最大荧光Fm、最大光化学效率Fv/Fm、PSII(光系统II)潜在活性Fv/F0均下降,初始荧光F0上升,表明PSII受到了伤害,使得PSII原初光能转换效率、PS潜在活性降低;与单纯低温胁迫相比,外源Put、Spd、Spm预处理均可以提高Fm、Fv/Fm、Fv/F0,而使F0降低。这一结果从叶绿素荧光动力学方面说明Put、Spd、Spm对改善黄瓜的耐冷性有一定的作用。%Cucumber seedlings of two true leaves were sprayed by exogenous PAs (Put,Spd,Spm ) and then they were stressed under low temperature of 8℃/8℃for three days and recovered for one day. Effect of exogenous PAs on the changes of chlorophyll fluorescence parameters of cucumber seedlings under low temperature stress was studied. The results indicat-ed that the fluorescent parameters of chlorophyll, Fm,Fv/Fm and Fv/F0 appeared to decline and F0 appeared to increase, suggesting that PSII could be damaged,causing some decrease of primary light energy conversion and potential activities of PSII. Compared with the control treatment,exogenous PAs pre-treatment could significantly promote the increment of Fm, Fv/Fm,and Fv/F0,whereas decreased F0.The effect of exogenous PAs on cold-tolerance of cucumber is proved again by im-proving the changes of chlorophyll fluorescence parameters of cucumber seedlings.

  9. 采用叶绿素成像技术测定细叶榕(FicusmicrocarpaL.)叶片对聚乙二醇模拟的水分胁迫的响应%Response of Ficus microcarpa L.Foliage to Water Stress Determined by Chlorophyll Fluorescence Imaging Technique

    Institute of Scientific and Technical Information of China (English)

    林淑玲; 陈华; 董蕾; 曹洪麟; 陈贻竹; 顾群

    2012-01-01

    [目的]采用叶绿素成像技术测定细叶榕(Ficus microcarpaL.)叶片对聚乙二醇模拟的水分胁迫的响应.[方法]人工模拟水分胁迫下检测细叶榕、垂叶榕和极端耐旱的欧洲夹竹桃离体叶片,并用叶绿素荧光成像技术同时提取单片叶多个部位进行检测和分析.[结果]细叶榕、垂叶榕和夹竹桃对脱水响应的结果表明:①叶片各测定部位之间的光合反应中心最大光能转换效率(Fv/Fm)和非光化学猝灭(NPQ)的值较小,而电子传递速率(ETR)、PSII真实光化效率(φPS(II))、光化学猝灭(qP)则有较大的差异;②水分胁迫下叶片不同部位的这种离散性更加明显;③抗逆性强的离散程度明显变小.[结论]为叶绿素成像技术进一步应用于植物对干旱胁迫的响应研究奠定了基础.%[Objective] This study was to determine the response of Ficus microcarpa L. Foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluorescence imaging technique. [Method] The responses of detached leaves from Ficus microcarpa, Ficus benjamina and Nerium oleander to PEG-6000 simulated water stress were detected, and the chlorophyll fluorescence imaging technique was used to detect and analyze different spots of a single leaf simultaneously. [ Result ] The responses of Ficus microcarpa, Ficus benjamina and Nerium oleander to dehydration showed that;① the maximal photochemical efficiency (Fv/Fm) and non-photo-chemical quenching (NPQ) values were small in the reaction center among different detected spots of leaves, and there were great differences between relative electron transport rate (ETR) , photochemical quenching (Qp) and quantum efficiency of PSII photochemistry (ΦPSII) ; ②the differences of these parameters were more obvious among different spots of water-stressed leaves; ③ there was obviously little differences among species with strong resistance. [ Conclusion] This study lays foundation for the further

  10. Effects of growth characteristics and chlorophyll fluorescence characteristics in leaves of Ocimum basilicum L. seedlings under low light intensity%弱光环境对罗勒幼苗叶片生长和叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    林晗婧; 田野; 张秀丽; 孙广玉

    2015-01-01

    以花色素苷含量不同的紫罗勒和大叶罗勒为对象,分别对其进行弱光和自然光处理30d后进行生长参数、色素含量和叶绿素荧光参数的测定,结果显示:弱光导致两种罗勒幼苗叶片比叶面积、叶面积、叶宽、叶长和株高显著增加,幼苗根长,地上、地下生物量和总生物量明显降低。经过弱光处理的叶片花色苷与总叶绿素比和花色苷含量均降低。总叶绿素含量、叶绿素a含量、叶绿素b含量和叶绿素a/b比值较自然光明显升高。在弱光下,两种罗勒幼苗叶片失活PSⅡ反应中心的热耗散量子产额(ФNF)降低,而基本的荧光量子产额和热耗散的量子产额(Фf,D)升高。说明,花色素苷可能在光破坏防御上发挥了作用。%Based on Ocimum basilicum L. seedlings with different content of anthocyanins, this article studied on the growth parameters, pigment content and chlorophyll fluorescence parameters dealed with low light intensity and nature light intensity for 30 days. Finally, the specific leaf area, leaf area, blade width, leaf length, plant height of leaves of Ocimum basilicum L. seedlings increased significantly, however root length, aboveground biomass, underground biomass, total biomass of leaves decreased significantly with low light intensity. The content of anthocyanins and the ratio of anthocyanins and total chlorophyll of Ocimum basilicum L. seedlings with low light intensity was lower than the one with nature light intensity,however the content of total chlorophyll, chlorophyll a, chlorophyll b, the ratio of chlorophyll a and b of Ocimum basilicum L. seedlings with low light intensity was higher. Dealed with low light intensity, the quantum yield of thermal dissipation in nonfunctional PSⅡ (ФNF) decreased, the basic quantum yield of fluorescence and thermal dissipation(Фf,D) increased in leaves of Ocimum basilicum L. seedlings. The result showed that anthocyanins may have the effect

  11. Improved signal recognition for interphase fluorescent in-situ hybridization using a non-ionic detergent (NP-40) pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.M.; Day-Salvatore, D.L.; Sciorra, L.J. [Univ. of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ (United States)] [and others

    1994-09-01

    We have reported that the non-ionic detergent ethylphenolpoly (ethyleneglycolether)x known as Noniet-P40 (Shell International Petroleum) can gently disrupt cell membranes, resulting in cells with varying degrees of free chromatin release. The extent of this phenomena is dependent upon the concentration of NP-40 and the detergent`s exposure time to the cells. Treated cells can range from halos of DNA around the cells to fully extended free chromatin configurations. We have demonstrated that these treated cells are excellent targets for many different fluorescently labelled probes used for in situ hybridization studies. Recently, we have compared NP-40 harvested lymphocytes with normally harvested cells to see if we could improve upon the number of cells showing discreet signals in interphase fluorescent in situ hybridization. Preliminary work has shown that using a trisomy 21 cell line, one can get a statistically significant improvement with NP-40 pretreatment cells over control levels, in the number of cells having three discreet signals in interphase {open_quotes}FISH{close_quotes}. Such a pretreatment is simple to perform and may be of value when the number of cells available for analysis is low, as in the search for fetal cells from maternal circulation.

  12. 不同光质对金线莲组培苗叶绿素含量及叶绿素荧光参数的影响%Effect of Light Quality on the Growth of Tissue Culture Chlorophyll and Chlorophyll Fluorescence in Anoectochilus roxburghii

    Institute of Scientific and Technical Information of China (English)

    周锦业; 丁国昌; 何荆洲; 曹光球; 李秀玲; 卜朝阳

    2015-01-01

    To research the effect of different light quality and the light intensity treatment on the growth of Anoectochilus roxburghii tissue culture seedling, the LED light source was used as an artificial light source for A.roxburghii in Zhangzhou to subculture. The results showed that red light treatment was benefit to the growth of A.roxburghii height, chlorophyll content, Fv/Fm and Fv/Fo values were smaller. Among them, the shoot high of A.roxburghii was up to 6.26 cm under 70μmol/(m2 · s) red light, but the chlorophyll a, chlorophyll b, total content of chlorophyll, Fv/Fm and Fv/Fo were only 1.19 mg/g, 0.55 mg/g, 1.73 mg/g, 0.572 and 1.34;the effect of green light was not obvious for the indicators of A.roxburghii, and no significant difference between different intensities;there was a promoting effect on accumulation of biomass and chlorophyll and Fv/Fm and Fv/Fo of A.roxburghii under the blue light treatment, but certain inhibitory effect on plant height, among them. Under the blue light treatment of 70 μmol/(m2 · s), the chlorophyll a, chlorophyll b, total content of chlorophyll, fresh weight, dry weight, the ratio of dry weight to fresh weight, Fv/Fm and Fv/Fo were up to 1.47 g, 0.19 g, 0.130, 1.83 mg/g, 0.71 mg/g, 2.54 mg/g, 0.801 and 4.02, respectively, but the shoot high of A.roxburghii was only 4.56 cm. Therefore, the red light was advantageous to the growth of aerial parts of plants, the green light had little impact on plant photosynthesis, and there were certain effect on dwarfed and strong tissue culture seedling under the blue light.%为了研究不同光质光强处理对金线莲组培苗生长的影响,采用不同光质LED作为人工光源对漳州金线莲进行继代培养。结果显示:红光处理有利于株高生长,其叶绿素含量、Fv/Fm和Fv/Fo值均较小,其中70μmol/(m2· s)红光处理时金线莲高度达到6.26 cm,但此时其叶绿素a含量、叶绿素b含量、叶绿素总量、Fv/Fm和Fv/Fo值仅分别为1.19 mg

  13. Assessment of in vivo fluorescence method for chlorophyll-a estimation in optically complex waters (Curuai floodplain, Pará - Brazil Avaliação do método de fluorescência in vivo para a estimativa da concentração de clorofila-a em águas opticamente complexas (planície de inundação do Curuai, Pará - Brasil

    Directory of Open Access Journals (Sweden)

    Rafael Damiati Ferreira

    2012-12-01

    Full Text Available AIM: This paper describes an experiment carried out to evaluate in vivo fluorescence (IVF as an alternative method for chlorophyll-a estimation in optically complex aquatic environment (Amazon floodplain lakes METHODS: The experiment consisted of collecting in situ measurements at 26 sampling stations distributed throughout Curuai floodplain lakes. For each sampling station the following parameters were measured: temperature, turbidity, depth, Secchi depth, chlorophyll-a (Chl-a concentration, total suspended solids (TSS and dissolved organic carbon (DOC, concurrently with several transects of IVF. Two methods were tested for quantifying the fluorescence measurement to be used as input for the chlorophyll-a estimates: instantaneous IFV and average IVF. Global and regional models were tested and assessed by analyzing optically active components (Chl-a, DOC and TSS of the water. RESULTS: Regardless of fluorescence estimating method, the results indicate that it was not possible to fit a global model for estimating Chl-a from IVF for all the lakes in the Curuai floodplain. Regional models provided contrasting results according to the concentration of optically active components. The best results were observed for aquatic systems with a single dominant component homogenously distributed throughout the lake. The results highlight the influence of the ratios Chl-a/TSS, Chl-a/DOC and Phaephytin/Chl-a in the relationship between IVF and chlorophyll concentration. CONCLUSIONS: It was not possible to develop a global model to account for the entire region of Curuai floodplain. The search for regional models provided insights on the main factors affecting the relationship between IVF and Chl-a concentration. Nevertheless this work reinforces the great potential of fluorometry technique, since even with a small number of samples it was possible to set a good model in the main lake of the Curuai floodplain. In spite the fact that this is not an accurate

  14. Influence on Chlorophyll Fluorescence Dynamics Parameter of Harm Stages of Dendroctonus armandi by Bark Beetles in Qinling Mountains%小蠹虫危害对秦岭华山松叶绿素荧光动力学参数的影响

    Institute of Scientific and Technical Information of China (English)

    王静静; 陈辉; 李宗波

    2011-01-01

    Imaging-Pam chlorophyll fluorescence appliance were used to analyze the dynamic parameters of Dentroctonus armand in Qinling Mountains in the harm stage. The key physiological parameters to assess the harm stage of the pest were found as Fm=0.139 7,F0= 0. 089 74,Fv/Fm=0. 20 and Fv/F0=0. 349.%利用Imaging-Pam脉冲调制荧光成像仪测定秦岭林区不同危害阶段的华山松离体针叶叶绿素荧光变化状况.结果发现F:0.139 7,F=0.089 74,F/F=0.20,F/F=0.349是华山松受害后的关键生理指标.

  15. Chlorophyll d: the puzzle resolved

    DEFF Research Database (Denmark)

    Larkum, Anthony W D; Kühl, Michael

    2005-01-01

    Chlorophyll a (Chl a) has always been regarded as the sole chlorophyll with a role in photochemical conversion in oxygen-evolving phototrophs, whereas chlorophyll d (Chl d), discovered in small quantities in red algae in 1943, was often regarded as an artefact of isolation. Now, as a result...... of discoveries over the past year, it has become clear that Chl d is the major chlorophyll of a free-living and widely distributed cyanobacterium that lives in light environments depleted in visible light and enhanced in infrared radiation. Moreover, Chl d not only has a light-harvesting role but might also...... replace Chl a in the special pair of chlorophylls in both reactions centers of photosynthesis. Udgivelsesdato: 2005-Aug...

  16. Diamond Radio Receiver: Nitrogen-Vacancy Centers as Fluorescent Transducers of Microwave Signals

    Science.gov (United States)

    Shao, Linbo; Zhang, Mian; Markham, Matthew; Edmonds, Andrew M.; Lončar, Marko

    2016-12-01

    We demonstrate a robust frequency-modulated radio receiver using electron-spin-dependent photoluminescence of nitrogen-vacancy centers in diamond. The carrier frequency of the frequency-modulated signal is in the 2.8-GHz range, determined by the zero-field splitting in the nitrogen-vacancy electronic ground state. The radio can be tuned over 300 MHz by applying an external dc magnetic field. We show the transmission of high-fidelity audio signals over a bandwidth of 91 kHz using the diamond radio. We demonstrate operating temperature of the radio as high as 350 ° C .

  17. 激动素和丁二酸拌种对玉米衰老过程中叶绿体结构和叶绿素荧光参数的影响%Effects of kinetin and succinic acid seed dressing on the ultrastructure of chloroplasts and chlorophyll fluorescence parameters in aging process of maize

    Institute of Scientific and Technical Information of China (English)

    邵瑞鑫; 李健; 信龙飞; 赵宇; 杨青华

    2012-01-01

    In order to investigate the effects of kinetin (KT) and succinic acid (SUA) on the chloroplasts ultrastructure and function, the ultrastructure of chloroplasts and chlorophyll (Chl) fluorescence characteristics were studied for two genotypes with KT and SUA seed dressing under pot experiment. The results showed that KT and SUA inhibited the production of osmioplilic granules in order to maintain the structure of granum thylakoid integrity, which resulted in the increase of the chlorophyll and car content, the ratio of Chl a/b. KT and SUA also promoted the Fv/Fm and Фps Ⅱ ivalues by 7.8% and 6.2% , 10. 2% and 2.7% at the 1/2 leaf yellow stage of Zhengdan 958 and Yudan 2002, but reduced the qN and qP values. Compared with Yudan 2002, normal senescence variety Zhengdan 958 was more excellent on the chloroplasts ultrastructure, chlorophyll content and fluorescence characteristics.%为探明外源激动素(KT)和丁二酸(SUA)对叶绿体结构和功能特性的影响,以郑单958(晚衰型品种)和豫单2002(早衰型品种)为材料,采用盆栽试验,研究了0.00003mg/kg的KT和300mg/kgSUA复合剂进行拌种处理后叶绿体超微结构和荧光参数的变化。结果表明,KT和SUA拌种能明显抑制嗜锇颗粒的增加,防止基粒片层的扩张,从而维持了叶绿体结构的稳定性,表现出叶绿素(Chl)水平、类胡萝b素含量(Car)及Chla/b比值的增加;KT和SUA还能提高玉米生育后期叶片的光合效率,郑单958和豫单2002在1/2叶尖枯黄时的Fv/Fm和中PSⅡ值分别比对照提高7.8%和6.2%、10.2%和2.7%,qP和qN值有所降低,从而调节PSII反应中心的开放,以减少热耗散利于延长叶片光合功能持续期。

  18. 利用叶绿素含量及荧光动力学参数评价青贮玉米耐旱关键指标研究%Evaluation of drought tolerance in silage maize based on chlorophyll content and fluorescence kinetics parameters

    Institute of Scientific and Technical Information of China (English)

    何文铸; 张彪; 王培; 杨俊品; 冷益丰; 康继伟; 唐海涛; 陈洁; 谭君

    2013-01-01

    In attempt to provide a reliable theoretical basis for breeding of drought tolerance in silage maize in the arid hilly areas,the drought tolerance in silage maize were determined.The chlorophyll content and chlorophyll fluorescence kinetics parameters of 26 silage maize inbred lines and 105 crosses were measured using chlorophyll fluorometer.The principal component and correlation analysis were conducted against their key indices of drought tolerance,combining ability and genetic parameters.The order of influencing factors of Fv/Fm was:leaf Fv > leaf Fm > leaf Fo > leaf Area > leaf SPAD > bracteal leaf Fv/Fm > bracteal leaf SPAD.9 inbred lines which had higher general combining ability (GCA) and 19 crosses which had higher specific combining ability (SCA) were screened from the present study for 5 traits including leaf Fm,leaf Fv,leaf Area,leaf Fv/Fm and leaf SPAD.At silking stage in F1,the additive variation was principal in leaf Fo and leaf Area; leaf Fm and leaf Fv were commonly controlled by additive and no-additive effects; non-additive variation was principal in leaf Fv/Fm and leaf SPAD.The order of narrow heritability (h2N) was:leaf SPAD > leaf Area > leaf Fo > leaf Fv > leaf Fm> leaf Fv/Fm.It could increase biological yield of silage maize in the arid areas through early generation positive direct selection for leaf Fv,early generation negative direct selection for leaf Fo,and utilization of heterosis for leaf Fv/Fm.Chlorophyll content and chlorophyll fluorescence kinetics parameters could be employed for screening of drought tolerance in silage maize.%利用叶绿素荧光仪测定了26份青贮玉米自交系和105个组合的叶绿素含量及荧光动力学参数,对其生理性状关键耐旱指标进行主成分及相关分析,并进行配合力及遗传参数分析.青贮玉米Fv/Fm的影响因素大小依次为:叶片Fv>叶片Fm>叶片Fo>叶片Area>叶片SPAD>苞叶Fv/Fm>苞叶SPAD.筛选出了5个关键指标(叶

  19. Thousand-fold fluorescent signal amplification for mHealth diagnostics

    Science.gov (United States)

    The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an imag...

  20. 脱硫石膏改良盐碱土对水稻质膜和叶绿素荧光特性的影响%Effects of Improved Saline-alkali Soil by Desulfurized Gypsum on Plasma Membrane and Chlorophyll Fluorescence Characteristics of Rice

    Institute of Scientific and Technical Information of China (English)

    陈亚萍; 江凯; 张隆春; 郭磊; 李建花; 孙旭; 韩昌烨; 田蕾

    2016-01-01

    以水稻品种越光(盐敏感)和Bertone(耐盐)为试材,设置了正常稻田土、典型盐碱土和改良盐碱土3个处理,分别在水稻插秧后1、4、7、14 d取样测定水稻叶片伤害百分率、丙二醛含量、叶绿素含量、叶绿素荧光参数等,以分析改良盐碱土处理的效果.结果表明,随着处理时间的延长,与正常稻田土相比,典型盐碱土和改良盐碱土处理的水稻叶片伤害百分率、丙二醛含量均极显著增加,叶绿素a、b及总叶绿素含量以及Fm、Fv/Fm、ETR等叶绿素荧光参数均明显降低;与典型盐碱土处理相比,在改良盐碱土条件下,2个水稻品种的叶片伤害百分率、丙二醛含量总体均极显著降低,叶绿素a、b及总叶绿素含量以及Fm、Fv/Fm等叶绿素荧光参数总体均明显升高,并表现出不同的变化规律,其中Bertone的盐害症状较轻.表明,施用适量的脱硫石膏、改良剂和有机肥,辅以灌排水措施可以有效缓解盐碱土对水稻幼苗的伤害,尤其对耐盐水稻品种效果更佳.%In this study,a salt-sensitive rice variety Koshihikari and a salt-tolerant variety Bertone were used as material,three treatments were designed as normal paddy soil,typical saline-alkali soil,modified saline-alkali soil,and rice samples were sampled at 1,4,7,14 days after transplanting to measure rice leaf damage percentage,leaf MDA content,leaf chlorophyll content and chlorophyll fluorescence characteristics, so as to analyze the improvement effects of modified saline-alkali soil. The results showed that as time went by compared with normal paddy soil,the leaf damage percentage and MDA content significantly in-creased, while chlorophyll a,b contents,total chlorophyll content and Fm,Fv/Fm,ETR were significantly reduced in typical saline-alkali soil and modified saline-alkali soil. Compared with typical saline-alkali soil,the leaf damage percentage and MDA content significantly decreased,and chlorophyll a,b contents

  1. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit.

    Science.gov (United States)

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-08-27

    The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles.

  2. Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Reveal a Split Path of Chlorophyll Breakdown in a Ripening Fruit

    Science.gov (United States)

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-01-01

    Abstract The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397

  3. Resolution and signal-to-noise ratio improvement in confocal fluorescence microscopy using array detection and maximum-likelihood processing

    Science.gov (United States)

    Kakade, Rohan; Walker, John G.; Phillips, Andrew J.

    2016-08-01

    Confocal fluorescence microscopy (CFM) is widely used in biological sciences because of its enhanced 3D resolution that allows image sectioning and removal of out-of-focus blur. This is achieved by rejection of the light outside a detection pinhole in a plane confocal with the illuminated object. In this paper, an alternative detection arrangement is examined in which the entire detection/image plane is recorded using an array detector rather than a pinhole detector. Using this recorded data an attempt is then made to recover the object from the whole set of recorded photon array data; in this paper maximum-likelihood estimation has been applied. The recovered object estimates are shown (through computer simulation) to have good resolution, image sectioning and signal-to-noise ratio compared with conventional pinhole CFM images.

  4. 镉胁迫对黄瓜幼苗光合和叶绿素荧光特性的影响%Effects of Cd~(2+) Stress on Photosynthesis and Chlorophyll Fluorescence Characteristics of Cucumber Seedlings

    Institute of Scientific and Technical Information of China (English)

    刘劲松; 石辉; 李秧秧

    2011-01-01

    通过室内水培试验,研究了不同浓度镉处理(0,25,50,100,200μmol/L)对黄瓜幼苗叶片光合及叶绿素荧光特性的影响。结果表明:镉胁迫第4天,净光合速率、气孔导度和蒸腾速率已显著下降,但细胞间隙CO2浓度变化不大;叶绿素相对含量仅在200μmol/L镉胁迫时下降;叶绿素荧光参数Fv/Fm、Yield和ETR变化不大,表明200μmol/L以下镉处理光合下降的主要原因是气孔因素。在胁迫第8天,所有镉处理净光合速率、气孔导度、蒸腾速率进一步下降,细胞间隙CO2浓度上升,叶绿素相对含量和除NPQ外的所有荧光参数也显著下降,表明此时光合下降与非气孔因素如叶绿素相对含量下降和原初光化学反应受到伤害等有关。50μmol/L镉胁迫导致除NPQ外的所有荧光参数出现一低谷值,原因可能与镉胁迫引起的严重Fe缺乏有关。%The effects of different concentrations of cadmium(0,25,50,100,200 μmol/L) on the photosynthesis and chlorophyll fluorescence characteristics of cucumber seedlings were studied with a solution culture.The results showed that net photosynthetic rate(Pn),stomatal conductance(Gs) and transpiration rate(Tr) greatly decreased but intercellular CO2 concentration(Ci) showed no change at the 4th day of cadmium stress,relative chlorophyll content only decreased at 200 μmol/L cadmium treatment,while major PSII florescence parameters(the maximal photochemical efficiency of PSII Fv/Fm,the actual photochemical efficiency of PSII in the light Yield and electron transport rate ETR) did not change,indicating a stronger stomatal limitation in the decline of photosynthesis for those treatments with cadmium lower than 200 μmol/L.On the 8th day of cadmium,net photosynthetic rate,stomatal conductance and transpiration decreased more sharply with the increase of intercellular CO2 concentration(Ci),relative chlorophyll content and major fluorescence parameters except NPQ

  5. 不同叶色水稻孕穗期不同叶位叶片的光合与叶绿素荧光特性%Characteristics of Photosynthesis and Chlorophyll Fluorescence of Different Position Leaves at Booting Stage in Rice Genotypes with Different Leaf Colors

    Institute of Scientific and Technical Information of China (English)

    韩光明; 赵明辉; 詹先进; 蓝家样; 陈温福

    2014-01-01

    研究了4个不同叶色水稻品系孕穗期不同叶位叶片的光合和叶绿素荧光特性,结果表明:SPAD值最高的深叶色品系净光合速率并不是最高,说明叶绿素总量高其净光合速率并不一定最高;荧光参数在深叶色品系与浅叶色品系间差异也不显著;各品系间倒1叶净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Evap)均明显低于倒2叶;而胞间CO2浓度(Ci)基本维持不变,说明叶片Pn 的变化主要不是气孔因素引起的。不同叶位叶绿素含量降低与Pn下降的表现一致,叶绿素荧光分析表明Fo、Fm、Fv/ Fm 和PI随叶位发生变化,而每个品系倒1叶的Fm均大于倒2叶,这表明孕穗期倒1叶PS域电子传递的潜力强于倒2叶。不同叶色品系中,除沈农07015外,反映光合荧光参数中光合有活反应中心吸收(ABS/RC)、耗散(DIo/RC)的能量和用来还原QA的激发能(TRo/RC)均为倒1叶大于倒2叶,表明倒1叶有活性的反应中心剩余的耗能效率高于倒2叶。%Four rice genotypes w ith different leaf colors were examined at booting stage for investigating the photosynthesis and chlorophyll fluorescence properties of different position leaves. The dark-green leaf rice genotype had the highest SPA D value, but not highest net photosynthetic rate (Pn), which suggested that the genotype with the highest chlorophyll content didn't mean the highest Pn. There were no significant differences in fluorescence parameters between dark-green leaf color and light leaf color genotypes.The Pn, stomatal conductance (Gs) , transpiration rate (Evap) of the first leaf were significantly lower than that of the second leaf, while the intercellular CO2 concentration (Ci) had little change, which indicated that the decrease of Pn did not result from the decrease of Gs. The decrease of SPAD value that has a close correlation with chlorophyll content was one of the apparent reasons resulted in decease of Pn. Further

  6. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal.

    Science.gov (United States)

    Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong

    2011-08-03

    Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.

  7. Aggregation-induced emissive nanoparticles for fluorescence signaling in a low cost paper-based immunoassay.

    Science.gov (United States)

    Engels, Jan F; Roose, Jesse; Zhai, Demi Shuang; Yip, Ka Man; Lee, Mei Suet; Tang, Ben Zhong; Renneberg, Reinhard

    2016-07-01

    Low cost paper based immunoassays are receiving interest due to their fast performance and small amounts of biomolecules needed for developing an immunoassay complex. In this work aggregation-induced emissive (AIE) nanoparticles, obtained from a diastereoisomeric mixture of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene (TPEDH) in a one-step top-down method, are characterized through Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Zeta potential. By measuring the Zeta potential before and after labeling the nanoparticles with antibodies we demonstrate that the colloidal system is stable in a wide pH-range. The AIE-active nanoparticles are deposited on chitosan and glutaraldehyde modified paper pads overcoming the common aggregation-caused quenching (ACQ) effect. Analyte concentrations from 1000ng and below are applied in a model immunocomplex using Goat anti-Rabbit IgG and Rabbit IgG. In the range of 7.81ng-250ng, linear trends with a high R(2) are observed, which leads to a strong increase of the blue fluorescence from the TPEDH nanoparticles.

  8. Spontaneous chlorophyll mutants of Pennisetum americanum: Genetics and chlorophyll quantities.

    Science.gov (United States)

    Koduru, P R; Rao, M K

    1980-05-01

    Thirteen spontaneously occurring chlorophyll deficient phenotypes have been described and their genetic basis was established. Ten of these - 'white', 'white tipped green', 'patchy white', 'white virescent', 'white striping 1', 'white striping 2', 'white striping 4', 'fine striping', 'chlorina' and 'yellow virescent' showed monogenic recessive inheritance and the remaining three - 'yellow striping', 'yellow green' and 'light green' seedling phenotypes showed digenic recessive inheritance. The genes for (i) 'white tipped green' (wr) and 'yellow virescent' (yv) and (ii) 'patchy white' (pw) and 'white striping 1' (wst 1) showed independent assortment. Further, the genes for 'white' (w), 'white tipped green' (wr) and 'yellow virescent' (yv) were inherited independently of the gene for hairy leaf margin (Hm).In the mutants - 'white tipped green', 'patchy white', 'white striping 1', 'white striping 2', 'fine striping', 'chlorina', 'yellow virescent', 'yellow striping', 'yellow green' and 'light green' phenotypes total quantity of chlorophyll was significantly less than that in the corresponding controls, while in 'white virescent' there was no reduction in the mature stage. For nine of the mutants the quantity of chlorophyll was also estimated in F1's (mutant x control green). In F1's of six of the mutants - 'white tip', 'patchy white', 'chlorina', 'yellow virescent', 'fine striping' and 'yellow striping' the quantity of chlorophyll was almost equal to the wild type. In the F1's of three of the mutants - 'white striping 1', 'white striping 2' and 'light green' an intermediate value between the mutant and wild types was observed. In 'yellow virescent' retarded synthesis of chlorophyll, particularly chlorophyll a was observed in the juvenile stage. Reduced quantity of chlorophyll was associated with defective chloroplasts. In the mutants - 'white tipped green, 'white virescent', 'fine striping', 'chlorina', 'yellow striping', 'yellow green' and 'light green' defective

  9. Chlorophyll Fluorescence Characteristics of Elaeagnus angustifolia L. And Grewia biloba G. Don var. Parviflora (Bge.)Hand.-Mazz. Seedlings under Drought Stress%干旱胁迫下沙枣和孩儿拳头叶绿素荧光特性研究

    Institute of Scientific and Technical Information of China (English)

    孙景宽; 张文辉; 陆兆华; 刘新成

    2009-01-01

    以沙枣和孩儿拳头2年生盆栽苗为材料,采用称重控水的方法设置对照(土壤含水量为25.6%~27.2%),轻度胁迫(19.2%~20.8%),中度胁迫(12.8%~14.4%),重度胁迫(6.4%~8.0%)4个梯度,研究了干旱胁迫对沙枣和孩儿拳头色素含量和叶绿素荧光特性的影响.结果表明:(1)随着干旱胁迫的加剧,两物种叶绿素a含量,叶绿素a/b比值,总叶绿素含量呈下降趋势,且叶绿素a对干旱胁迫的反应较叶绿素b敏感,但两物种叶绿素b含量和胡萝卜素含量变化规律不一致.(2)随着干旱胁迫的加剧,孩儿拳头F_m、F_v呈下降趋势,沙枣相反,但两物种F_0呈增加趋势,F_v/F_0、F_v/F_m呈下降趋势,F_v/F_m差异不显著;PhiPS2、ETR、qP先升高后降低,NPQ则先降低后升高.(3)虽然两物种表现出较强的抗旱性,但在重度干旱胁迫下(6.4%、~8.0%),光合色素含量、叶绿素荧光参数受到较大影响,推测此时的土壤水分含量为两物种光合色素、光系统Ⅱ的耐受极限;物种间相比,孩儿拳头更为敏感,在今后的园林管护中,要根据土壤水分状况和物种间的差异做好园林灌溉.%Elaeagnus angustifolia L. and Grewia biloba v ar. parviflora( Bge. ) Hand. -Mazz. 2-year-old seedlings as materials, using weighing method to set up control ( soil moisture 25. 6 % ~27. 2 % ) , light stress (19. 2 %~ 20. 8% ) , moderate stress (12.8%~14.4%), severe stress (6. 4% ~ 8. 0% ) , the effects of drought stress on pigment content and Chlorophyll fluorescence characteristics of E. angustifolia L. and G. biloba G. Don var. parv-iflora( Bge. )Hand. -Mazz. seedlings were studied. The results showed; ( 1 ) Along with the increasing degree of drought stress, the content of chlorophyll a, value of chlorophyll a/b, content of total chlorophyll of two species decreased, and the response of chlorophyll a to drought stress more is sensitive than chlorophyll b, but content of chlorophyll b and content of carotinoid of

  10. 典型城区与郊区环境大叶黄杨气体交换及叶绿素荧光特性比较%Comparative analysis of leaf gas exchange and chlorophyll fluorescence of Euonymus japonicus Thunb by field experiment in the typical urban and suburban areas in Beijing

    Institute of Scientific and Technical Information of China (English)

    冯强; 胡聃; 李娜

    2009-01-01

    Using Li-6400 portable photosynthesis system, we studied the differences of leaf gas exchange and chlorophyll fluorescence of Euonymus japonicus Thunb by the field experiment in summer and autumn seasons in the typical urban and suburban areas in Beijing city. The results showed that there are higher levels of atmospheric temperature, relative humidity and CO2 concentration in the urban areas than that in the suburban areas, the net assimilation ability of CO2 for E. japonicus leaf is usually subject to the total assimilation ability of CO2 and respiration rate, and its significances of difference varied in the studied months. In addition, the indicators of intercellular CO2 concentration, VPDleaf-to-air, transpiration rate of E. japonicus leaf in the urban plot were higher than those in the suburban plot.The monthly changes in atmospheric temperature and CO2 concentration in the urban areas affected leaf respiration, leading to a increase or decrease of leaf respiration rate, in the same time, the monthly changes in atmospheric pollutants′ concentration also damaged chlorophyll and chloroplast of E. japonicus leaf and further led to the decline in its total assimilation ability of CO2, both of them determined the variation in net assimilation ability of CO2 for E. japonicus leaf.Further comparative analysis of leaf chlorophyll fluorescence parameters indicated that, the total content of chlorophyll, chlorophyll a/b and chlorophyll fluorescence parameters (Fv/Fm, Fv/Fo, qP, ΦPSⅡ, ETR) for E. japonicus leaf in the urban plot decreased but qN increased, showing that the activity of leaf photosystemⅡ was negatively affected by the increase in atmospheric pollutants' concentration and led to the damage to chlorophyll and chloroplast of E. japonicus leaf that really became a cause for the reduction of leaf total assimilation ability of CO2 in the urban areas.%采用Li-6400便携式光合作用测定系统对夏秋季典型城区与郊区环境下大叶黄杨的

  11. EFFECTS OF SIMULATED ACID RAIN STRESS ON GAS EXCHANGE AND CHLOROPHYLL A FLUORESCENCE PARAMETERS IN LEAVES OF LONGAN%模拟酸雨对龙眼叶片气体交换和叶绿素a荧光参数的影响

    Institute of Scientific and Technical Information of China (English)

    邱栋梁; 刘星辉; 郭素枝

    2002-01-01

    Longan (Dimorcarpus longana Lour. cv. Wulongling) seedlings of two different ages grown in pots were selected to study the effects of acid rain stress on gas exchange, and chlorophyll a fluorescence parameters and their recovery. Sulfuric acid and nitric acid were selected for the preparation of artificial acid rain, based on the mole ratio 1:5 of sulfuric acid to nitric acid in the precipitation of southern Fujian. Dilution of reagent grade acid was done with distilled water and determined by Phsj-4 acidity analyzer. A series of solutions of simulated acid rains with pH 5.6, 3.0 and 2.5 were prepared. A sprayer was used to apply the acid solution to young trees. At each application, leaves were thoroughly wetted. Sprays were repeated 12 times in 6 h at 30 min intervals. Gas exchange was detected with an open gas analyzer CID-301PS, and chlorophyll a fluorescence parameters with OS5-FL modulated chlorophyll fluorometer.The results showed that photosynthesis was inhibited by acid rain stress, and light compensation point (LCP) of stressed leaves increased. Gas exchange and chlorophyll a fluorescence parameters of leaves were reduced after 6 h stress with acid rain of pH 3.0, and could be recovered to the level of control 72 h after the treatment ended. Net photosynthetic rate (Pn), stomatal conductance (Cs), transpiration rate (Tr), ratio of variable fluorescence to initial fluorescence (Fv/F0), ratio of variable fluorescence to maximum fluorescence (Fv/Fm), quantum yield of PSⅡelectron transport (ΦPSⅡ), ratio of fluorescence decrease (Rfd), nonphotochemical quenching (qN) and photochemical quenching (qP) were reduced after a 6 h stress with acid rain of pH 2.5, and could not be recovered 72 h after the stress ceased. Intercellular CO2 concentration (Ci) decreased under treatment with acid rain of pH 2.5, rose in the first day and surpassed the level of control 72 h after the acid rain spraying stopped. Dark respiration (Rd) was increased by acid rain, and

  12. Color change and chlorophyll fluorescence kinetics characteristics of Buxus microphylla leaves during the period of overwintering and regreening%越冬返青期间小叶黄杨叶色与叶绿素荧光动力学变化

    Institute of Scientific and Technical Information of China (English)

    彭金根; 刘燕; 郭翎; 高荣孚

    2011-01-01

    The Royal Horticultural Society Color Chart(RHSCC) and modulated chlorophyll fluorescence analysis technique were used in this paper to study the spatial and temporal color changes as well as chlorophyll fluorescence kinetics curve and parameters of leaves during the period of overwintering and regreening in three Buxus microphylla cultivars:'Green Beauty','Sunny Side' and 'Winter Green',which have been introduced from abroad to Beijing for more than ten years.The results indicated that sun leaf color of three cultivars of B.microphylla showed different levels of changes during the whole period.The color of 'Green Beauty' changed least,while 'Sunny Side' and 'Winter Green' showed serious discoloration.By contrast,shade leaf color of all cultivars almost presented no changes during the process.In addition,significant differences were observed in the chlorophyll fluorescence kinetics induction curve(FI) and the steady-state multistep fluorescence curve(SMS) from sun and shade leaves of three cultivars during periods of overwintering and regreening,and those differences were cultivars dependent.Before regreenning,sun leaves FI dynamics activity and fluctuations of SMS were significantly lower than those of shade leaves in the same period,and the recovery rate of the former was also slower than the latter during regreening.In winter,sun leaves of 'Green Beauty' maintained a certain activity of light and dark reactions and electrons transport rate,while 'Sunny Side' and 'Winter Green' were almost inactive.%利用英国皇家园艺学会比色卡(RHSCC)与调制式叶绿素荧光分析技术,研究了由国外引种北京10余年的3个小叶黄杨品种‘绿美’、‘阳光’及‘冬绿’的越冬及返青过程中叶色时空变化规律以及叶绿素荧光动力学曲线及参数。结果表明:3个品种阳生叶的叶色在整个过程中均有不同程度的变化,其中‘绿美’变化最小,‘阳

  13. Effects of exogenous 5-aminolevulinic acid on chlorophyll fluorescence characteristics and energy dissipation of Sarcandra glabra under drought stress%外源5-氨基乙酰丙酸对干旱胁迫下草珊瑚叶绿素荧光特性及能量分配的影响

    Institute of Scientific and Technical Information of China (English)

    张春平; 何平; 袁凤刚; 喻泽莉; 杜丹丹; 韦品祥; 胡世俊

    2012-01-01

    Objective To study the effects of drought stress on chlorophyll fluorescence characteristics and energy dissipation of Sarcandra glabra and get the method of alleviating drought stress, so as to provide theoretical basis against drought in planting. Methods Several physiological indexes of S. Glabra treated by 5-aminolevulinic acid (ALA) under drought stress (PEG-6000 at the concentration of 15%) were measured, such as the contents of photosynthetic pigment, chlorophyll fluorescence parameters, and energy parameters. Results Exogenous ALA obviously increased the content of chlorophyll and carotenoids, enhanced the maximum fluorescence (Fm), photochemical efficiency of photosystem II (PSII, Fv/Fm), potential photochemical efficiency (Fv/Fo), photochemical efficiency (Fv'/Fmr), PSII actual photochemical efficiency (OPSII), photochemical quenching coefficient (qP), electronic transfer rate (ETR), and photochemistry rate (PCR), as well as significnatly decreased the level of minimum fluorescence (Fo), non-photochemical quenching (NPQ) coefficient, and heat dissipation rate (HDR). The proportion of ALA absorbed light in photochemistry (P) was increased, the fraction of antenna pigment heat dissipation (D) and excess energy (£) for NPQ was decreased. The fraction of P was the main pathway for excessive energy dissipation. ALA could promote the redistribution of energy reasonablely. Conclusion Exogenous ALA (100 mg/L) could significantly reduce the dissipation of excess excitation energy, improve the photochemical electron transport efficiency,and efficiently protect leaf blade of S. Glabra from PSII damage under drought stress. ALA could obviously promote the droughtresistance of S. Glabra plantlet.%目的 探讨干旱胁迫对草珊瑚叶绿素荧光特性及能量分配的影响,找到延缓干旱胁迫的方法,为抗旱栽培提供理论依据.方法 考察15% PEG-6000模拟干旱胁迫条件下,经过不同浓度5-氨基乙酰丙酸(ALA)和不同时间处理后

  14. Tuning backbones and side-chains of cationic conjugated polymers for optical signal amplification of fluorescent DNA detection.

    Science.gov (United States)

    Huang, Yan-Qin; Liu, Xing-Fen; Fan, Qu-Li; Wang, Lihua; Song, Shiping; Wang, Lian-Hui; Fan, Chunhai; Huang, Wei

    2009-06-15

    Three cationic conjugated polymers (CCPs) exhibiting different backbone geometries and charge densities were used to investigate how their conjugated backbone and side chain properties, together with the transitions of DNA amphiphilic properties, interplay in the CCP/DNA-C* (DNA-C*: fluorophore-labeled DNA) complexes to influence the optical signal amplification of fluorescent DNA detection based on Förster resonance energy transfer (FRET). By examining the FRET efficiencies to dsDNA-C* (dsDNA: double-stranded DNA) and ssDNA-C* (ssDNA: single-stranded DNA) for each CCP, twisted conjugated backbones and higher charge densities were proved to facilitate electrostatic attraction in CCP/dsDNA-C* complexes, and induced improved sensitivity to DNA hybridization. Especially, by using the CCP with twisted conjugated backbone and the highest charge density, a more than 7-fold higher efficiency of FRET to dsDNA-C* was found than to ssDNA-C*, indicating a high signal amplification for discriminating between dsDNA and ssDNA. By contrast, linear conjugated backbones and lower charge density were demonstrated to favor hydrophobic interactions in CCP/ssDNA-C* complexes. These findings provided guidelines for the design of novel sensitive CCP, which can be useful to recognize many other important DNA activities involving transitions of DNA amphiphilic properties like DNA hybridization, such as specific DNA binding with ions, some secondary or tertiary structural changes of DNA, and so forth.

  15. Signal enhancement by a multi-layered substrate for mutagen detection using an SOS response-induced green fluorescent protein in genetically modified Escherichia coli.

    Science.gov (United States)

    Etoh, Hiroki; Yasuda, Mitsuru; Akimoto, Takuo

    2011-01-01

    In this paper, we describe a method to enhance the fluorescence signal of mutagen detection using SOS response-induced green fluorescence protein (GFP) in genetically modified Escherichia coli using a multi-layered substrate. To generate E. coli that express SOS response-induced GFP, we constructed a plasmid carrying the RecA promoter located upstream of the GFP gene and used it to transform E. coli BL21. The transformed strain was incubated with mitomycin C (MMC), a typical mutagen, and then immobilized on a multi-layered substrate with Ag and a thin Al(2)O(3) layer on a glass slide. Since the multi-layered substrate technique is an optical technique with potential to enhance the fluorescence of fluorophore placed on top of the substrate, the multi-layered substrate was expected to improve the fluorescence signal of mutagen detection. We obtained an average 14-fold fluorescence enhancement of MMC-induced GFP in the concentration range 1 to 1000 ng/ml. In addition, the lower detection limit of MMC was improved using this technique, and was estimated to be 1 ng/ml because of an enlargement of the difference between the blank and the signal of 1 ng/ml of MMC.

  16. A protein-tagging system for signal amplification in gene expression and fluorescence imaging.

    Science.gov (United States)

    Tanenbaum, Marvin E; Gilbert, Luke A; Qi, Lei S; Weissman, Jonathan S; Vale, Ronald D

    2014-10-23

    Signals in many biological processes can be amplified by recruiting multiple copies of regulatory proteins to a site of action. Harnessing this principle, we have developed a protein scaffold, a repeating peptide array termed SunTag, which can recruit multiple copies of an antibody-fusion protein. We show that the SunTag can recruit up to 24 copies of GFP, thereby enabling long-term imaging of single protein molecules in living cells. We also use the SunTag to create a potent synthetic transcription factor by recruiting multiple copies of a transcriptional activation domain to a nuclease-deficient CRISPR/Cas9 protein and demonstrate strong activation of endogenous gene expression and re-engineered cell behavior with this system. Thus, the SunTag provides a versatile platform for multimerizing proteins on a target protein scaffold and is likely to have many applications in imaging and controlling biological outputs.

  17. Long-wavelength chlorophylls in photosystem I of cyanobacteria: origin, localization, and functions.

    Science.gov (United States)

    Karapetyan, N V; Bolychevtseva, Yu V; Yurina, N P; Terekhova, I V; Shubin, V V; Brecht, M

    2014-03-01

    The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.

  18. Effects of Groundwater Levels on Photosynthetic Pigments and Light Response of Chlorophyll Fluorescence Parameters of Populus euphratica and Populus pruinosa%地下水位对胡杨(Populus euphratica)和灰胡杨(Populus pruinosa)叶绿素荧光光响应与光合色素含量的影响

    Institute of Scientific and Technical Information of China (English)

    王海珍; 陈加利; 韩路; 徐雅丽; 贾文锁

    2013-01-01

    Photosynthetic pigments and light response curves of chlorophyll fluorescence parameters in leaves of Populus euphratica and Poulus pruinosa,living with different groundwater depths (2.5 m,3.5 m and 5.0 m) in the upper reaches of Tarmi River,were measured with a portable fluorometer.The results showed that chlorophyll fluorescence parameters of light response curves of P.euphratica and P.pruinosa,such as photosynthetic electron transport rate(ETR),non-photochemical quenching(NPQ),excitation pressure (1-qP),the ratio of antenna thermal dissipation (D),excess excited energy(E),relative limitation of photosynthesis(PED),the deviation from full balance between PSⅠ and PS Ⅱ (β/α-1) increased with increasing photosynthetic active radiation(PAR),but PS Ⅱ actual photochemical efficiency(ΦPSⅡ),photochemistry quenching (qP) and the ratio of absorbed light in photochemistry(P) decreased with increasing PAR under different groundwater levels in arid desert environment.The decrease of groundwater levels led to decrease in leaf water content,maximum electron transport rate (ETRmax),initial slope rate of photochemical reaction(θ),ETR,ΦSⅡ,qP,P and leaf content of chlorophyll a (Chla),leaf content of chlorophyll b (Chlb),total chlorophyll (Chla + Chlb),carotenoids,but it led to increase obviously in the ratio of Chla to Chlb (Chla/ Chlb),NPQ,D,E,PED,1-qP,β/α-1 under the same light intensity.The decrease of groundwater levels influenced significantly the chlorophyll fluorescence parameters of light response curves of two tree species,and it led to changes in light energy absorption,transfer and allocation,further to decrease the photosynthetic efficiency.Greater decreases occurred with the deeper groundwater level and P.pruinosa declined more than P.euphratica,it showed P.euphratica were better ecological adaptation to desert environment than P.pruinosa.P.euphratica could maintain relative high ETR,ETRmax,θ,ΦPSⅡ,qP,P and enhanced radiationless energy dissipation

  19. Validation of MODIS FLH and In Situ Chlorophyll a from Tampa Bay, Florida (USA)

    Science.gov (United States)

    Fischer, Andrew; MorenoMadrinan, Max J.

    2012-01-01

    Satellite observation of phytoplankton concentration or chlorophyll-a (chla) is an important characteristic, critically integral to monitoring coastal water quality. However, the optical properties of estuarine and coastal waters are highly variable and complex and pose a great challenge for accurate analysis. Constituents such as suspended solids and dissolved organic matter and the overlapping and uncorrelated absorptions in the blue region of the spectrum renders the blue-green ratio algorithms for estimating chl-a inaccurate. Measurement of suninduced chlorophyll fluorescence, on the other hand, which utilizes the near infrared portion of the electromagnetic spectrum may, provide a better estimate of phytoplankton concentrations. While modelling and laboratory studies have illustrated both the utility and limitations of satellite algorithms based on the sun induced chlorophyll fluorescence signal, few have examined the empirical validity of these algorithms or compared their accuracy against bluegreen ratio algorithms . In an unprecedented analysis using a long term (2003-2011) in situ monitoring data set from Tampa Bay, Florida (USA), we assess the validity of the FLH product from the Moderate Resolution Imaging Spectrometer against a suite of water quality parameters taken in a variety of conditions throughout this large optically complex estuarine system. . Overall, the results show a 106% increase in the validity of chla concentration estimation using FLH over the standard chla estimate from the blue-green OC3M algorithm. Additionally, a systematic analysis of sampling sites throughout the bay is undertaken to understand how the FLH product responds to varying conditions in the estuary and correlations are conducted to see how the relationships between satellite FLH and in situ chlorophyll-a change with depth, distance from shore, from structures like bridges, and nutrient concentrations and turbidity. Such analysis illustrates that the correlations between

  20. 低氮胁迫对耐低氮玉米品种苗期光合及叶绿素荧光特性的影响%Effects of low nitrogen stress on photosynthetic characteristics and chlorophyll fluorescence parameters of maize cultivars tolerant to low nitrogen stress at the seedling stage

    Institute of Scientific and Technical Information of China (English)

    李强; 罗延宏; 余东海; 孔凡磊; 杨世民; 袁继超

    2015-01-01

    Objectives] Chlorophyll fluorescence parameters are often used to evaluate the function of photosynthetic organs and the influence of the environment pressure. Tolerance to low nitrogen stress are largely different with different maize genotypes, which can be reflected through photosynthesis and chlorophyll fluorescence characteristics. In this paper, the response of four maize cultivars to low nitrogen stress were compared at the seedling stage for the purpose of further understanding of the mechanism of their low nitrogen tolerance.[Methods]A completely random two-factor pot experiment was conducted in greenhouse. The main factor was maize cultivars, two tolerant cultivars of Zhenghong 311 and Chengdan 30 , two non-tolerant cultivars of Xianyu 508 and Beisan 2;The second factor was N levels: N 15 mmol/L ( CK, Hoagland nutrition solution ) , 0. 5 mmol/L ( low N stress, LN1), N:0. 05 mmol/L(extremely low N stress, LN2). The items were measured, including individual plant dry matter and nitrogen accumulation, relative chlorophyll content ( SPAD ) of leaves, and the photosynthesis parameters. [Results]The dry matter and nitrogen accumulation amounts of per plant, relative chlorophyll content (SPAD)of leaves, net photosynthetic rate(Pn), stomatal conductance(Gs), transpiration rate(Tr), variable fluorescence( Fv ) , maximum fluorescence ( Fm ) , potential activity of PSⅡ( Fv/F0 ) , the primary maximum photochemical efficiency of PSⅡ( Fv/Fm) , effective light quantum yield of PSⅡ( Fv′/Fm′) and photochemical quenching coefficient( qP ) of the four maize hybrids are declined sharply under the low nitrogen stress conditions. Compared with the low nitrogen sensitive maize cultivars, the reduced ranges of these parameters of the low nitrogen tolerant maize cultivars are much lower. In contrast to the above parameters, the intercellular CO2 concentrations are remarkably increased in the tested maize hybrids, and the concentration increases of the low nitrogen

  1. 利用高光谱植被指数监测紧凑型玉米叶绿素荧光参数Fv/Fm%Monitoring the Chlorophyll Fluorescence Parameter Fv/Fm in Compact Corn Based on Different Hyperspectral Vegetation Indices

    Institute of Scientific and Technical Information of China (English)

    谭昌伟; 黄文江; 金秀良; 王君婵; 童璐; 王纪华; 郭文善

    2012-01-01

    为进一步评价遥感监测紧凑型玉米叶绿素荧光参数Fv/Fm的可行性,通过开展小区紧凑型玉米试验,分析紧凑型玉米整个生育期Fv/Fm与高光谱植被指数的相关关系,建立紧凑型玉米Fv/Fm高光谱监测模型.结果表明,紧凑型玉米Fv/Fm与选取的高光谱植被指数均呈极显著正相关,其中结构敏感色素指数(SIPI)与Fv/Fm的相关性最好,相关系数(r)为0.88.用SIPI建立紧凑型玉米Fv/Fm的监测模型,其决定系数(R2)为0.812 6,均方根误差(RMSE)为0.082.研究表明,利用高光谱植被指数可以有效地监测紧凑型玉米整个生育期的Fv/Fm.%In order to further assess the feasibility of monitoring the chlorophyll fluorescence parameter Fv/Fm in compact corn by hyperspectral remote sensing data, in the present study, hyperspectral vegetation indices from in-situ remote sensing measurements were utilized to monitor the chlorophyll fluorescence parameter Fv/Fm measured in the compact corn experiment. The relationships were analyzed between hyperspectral vegetation indices and Fv/Fm and the monitoring models were established for Fv/Fm in the whole growth stages of compact corn. The results indicated that Fv/Fm was significantly correlated to the hyperspectral vegetation indices. Among them, structure-sensitive pigment index (SIPI) was the most sensitive remote sensing variable for monitoring Fv/Fm with correlation coefficient (r) of 0. 88. The monitoring model of Fv/Fm was established on the base of SIPI, and the determination coefficients (r2) and the root mean square errors (RMSE) were 0. 812 6 and 0. 082 respectively. The overall results suggest that hyperspectral vegetation indices can be potential indicators to monitor Fv/Fm during growth stages of compact corn.

  2. Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation.

    Science.gov (United States)

    Vergara-Domínguez, Honorio; Ríos, José Julían; Gandul-Rojas, Beatriz; Roca, María

    2016-12-01

    The central reaction of chlorophyll (chl) breakdown pathway occurring during olive fruits maturation is the cleavage of the macrocycle pheophorbide a to a primary fluorescent chl catabolite (pFCC) and it is catalyzed by two enzymes: pheophorbide a oxygenase (PaO) and red chl catabolite reductase (RCCR). In subsequent steps, pFCC is converted to different fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs). This work demonstrated that RCCR activity of olive fruits is type II. During the study of evolution of PaO and RCCR activities through the olive fruits maturation in two varieties: Hojiblanca and Arbequina, a significant increase in PaO and RCCR activity was found in ripening stage. In addition, the profile and structure of NCCs present in epicarp of this fruit was studied using HPLC/ESI-TOF-MS. Five different NCCs were defined and for the first time the enzymatic reactions implied in chlorophyll degradations in olive fruits elucidated.

  3. Construction of fluorescence resonance energy transfer vectors and their application in study of structure and function of signal transducers and activators of transcription 1

    Institute of Scientific and Technical Information of China (English)

    Fujun Han; Yongfeng Luo; Nanhai Ge; Jun Xu

    2008-01-01

    Protein-protein interactions have been studied extensively by green fluorescent protein-based fluorescence resonance energy transfer (FRET). The fluorescent proteins (FP) can be fused either to the N- or C-terminus of a host protein, but it is difficult to predict which order will perturb the host protein the least and provide the largest FRET. Therefore, a researcher needs to fuse host proteins with FP at both the N- and C-termini and test every possible combination (N-N,N-C, or C-C) to promote the energy transfer efficiency.Consequently, researchers required to do many subelonings.Herein, we designed FRET vectors to make them more efficient. The expression vectors ofpCTP.YFP and pYFP-CFP were constructed with both cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) and YFP-CFP coding sequences flanked by two restriction enzyme sites, and with multiple cloning regions in the middle of both coding sequences. To select an optimal combination for FRET detection, we created plasmids encoding various fusion proteins of FP and signal transducers and activators of transcription 1 (STAT1). We found that the nuclear:cytoplasmic fluorescence intensity ratios of STAT1 -FP were significantly higher than those of FP-STAT1 at steady state,and fluorescence redistribution was only observed for STAT1-FP upon interferon gamma (IFNΥ) stimulation. In addition, positive FRET signals were only detected in the C-C interactions of STAT 1 homodimer. Taken together, these data indicate that fusing STATI at the N.terminus with Fpimpairs the interactions ofunphospborylated STAT1 homodimers and possibly diminishes its binding with DNA. In contrast, STATIFP was functional with respect to its activation. Moreover, the FRET vectors are able to facilitate FRET studies.

  4. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis.

    Science.gov (United States)

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Shi, Changhong; Li, Qinlong; Hu, Peizhen; Chen, Yi-Ting; Dou, Xiaoliang; Sahu, Divya; Li, Wei; Harada, Hiroshi; Zhang, Yi; Wang, Ruoxiang; Zhau, Haiyen E; Chung, Leland W K

    2014-09-01

    Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy.

  5. Exploring 1,4-dihydroxyanthraquinone as long-range emissive ratiometric fluorescent probe for signaling Zn(2+)/PO4(3-): Ensemble utilization for live cell imaging.

    Science.gov (United States)

    Sinha, Sougata; Gaur, Pankaj; Mukherjee, Trinetra; Mukhopadhyay, Subhrakanti; Ghosh, Subrata

    2015-07-01

    Fluorescent 1,4-dihydroxyanthraquinone 1 was found to demonstrate its ratiometric signaling property upon interaction with divalent zinc (Zn(2+)). While the probe itself exhibited fluorescence emission in the yellow region (λem=544 nm and 567 nm), binding with Zn(2+) induced strong emission in the orange region (λem=600 nm) which was mainly due to a combination of CHEF and ICT mechanism. The probe was found to be highly sensitive toward the detection of zinc and the limit of detection (LOD) was calculated to be 9×10(-7) M. The possibility of using this probe for real-time analysis was strongly supported by the striking stability of fluorescence signal for more than five days with similar fluorescence intensity as observed during instant signaling. The present probe works within physiological pH range and is devoid of any interference caused by the same group elements such as Cd(2+)/Hg(2+). The probe possesses excellent excitation/emission wavelength profile and can penetrate cell membrane to image low concentration of zing inside living system. The in situ formed zinc-probe ensemble was further explored as ratiometric sensing platform for detecting another bio-relevant analyte phosphate anion through a zinc-displacement approach.

  6. ΔpH-dependent non-photochemical quenching (qE) of excited chlorophylls in the photosystem II core complex of the freshwater cyanobacterium Synechococcus sp PCC 7942.

    Science.gov (United States)

    Stamatakis, Kostas; Papageorgiou, George C

    2014-08-01

    Light-induced and lumen acidity-dependent quenching (qE) of excited chlorophylls (Chl) in vivo has been amply documented in plants and algae, but not in cyanobacteria, using primarily the saturation pulse method of quenching analysis which is applied to continuously illuminated samples. This method is unsuitable for cyanobacteria because the background illumination elicits in them a very large Chl a fluorescence signal, due to a state 2 to state 1 transition, which masks fluorescence changes due to other causes. We investigated the qE problem in the cyanobacterium Synechococcus sp. PCC 7942 using a kinetic method (Chl a fluorescence induction) with which qE can be examined before the onset of the state 2 to state 1 transition and the attendant rise of Chl a fluorescence. Our results confirm the existence of a qE mechanism that operates on excited Chls a in Photosystem II core complexes of cyanobacteria.

  7. Design of a Real-time Signal Processing System for LIF Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiande; Zheng Wengang; Dong Daming; Shen Changjun; Zhang Xin; Zhou Jianjun; Yan Hua; Wu Wenbiao, E-mail: zhengwg@nercita.org.cn [National Engineering Research Center for Information Technology in Agriculture, 100097 (China)

    2011-02-01

    Laser Induced Fluorescence (LIF) sensor is one of the most sensitive approaches available for a variety of analytical applications, such as determination of nitrogen content of plant leaves, detection of chlorophyll content in water, etal. As a core instrumental requirements of real time LIF sensor, signal processing system is used to store effective processing and identification algorithms in a short time. By analyzing the working principle of LIF sensor in detail, a novel platform of signal processing system used in LIF sensor is proposed in this paper. The design solutions and hardware architecture of the system are described in this paper, include Digital Signal Processor (DSP), data transmission block, and memory block. Several steps of signal processing methods are proposed, according to the characteristic of LIF sensor. At last, an application of using the signal processing system designed in this paper for measuring chlorophyll content in plant leaves is shown.

  8. Response of Ficus microcarpa L. Foliage to Water Stress Determined by Chlorophyll Fluorescence Imaging Technique%采用叶绿素成像技术测定细叶榕(Ficusmicrocarpa L.)叶片对聚乙二醇模拟的水分胁迫的响应

    Institute of Scientific and Technical Information of China (English)

    林淑玲; 陈华; 董蕾; 曹洪麟; 陈贻竹; 顾群

    2012-01-01

    [Objective] This study was to determine the response of Ficus microcarpa L. foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluo- rescence imaging technique. [Method] The responses of detached leaves from Ficus microcarpa, Ficus benjamina and Nerium oleander to PEG-6000 simulated water stress were detected, and the chlorophyll fluorescence imaging technique was used to detect and analyze the stress at different spots of a single leaf simultaneously. [Result] The responses of Ficus microcarpa, Ficus benjamina and Nerium oleander to dehydration showed that: ~1~) the maximal photochemical efficiency (Fv/Fm) and non- photo-chemical quenching (NPQ) values were small in the reaction center among different detected spots of leaves, and there were great differences between relative electron transport rate (ETR), photochemical quenching (qP) and quantum efficiency of PSII photochemistry ((φPSII); (2) the differences of these parameters were more ob- vious among different spots of water-stressed leaves; (3) the discrete degrees of the species with strong resitances decreased significantly. [Conclusion] This study lays the foundation for the further research on the response of plants to drought stress using chlorophyll fluorescence imaging technique.%[目的]采用叶绿素成像技术测定细叶榕(FicusmicrocarpaL.)叶片对聚乙二醇模拟的水分胁迫的响应。[方法]人工模拟水分胁迫下检测细叶榕、垂叶榕和极端耐旱的欧洲夹竹桃离体叶片,并用叶绿素荧光成像技术同时提取单片叶多个部位进行检测和分析。[结果]细叶榕、垂叶榕和夹竹桃对脱水响应的结果表明:①叶片各测定部位之间的光合反应中心最大光能转换效率(n/m)和非光化学猝灭(NPQ)的值较小,而电子传递速率(ETR)、PSII真实光化效率(ΦPSD)、光化学猝灭(qP)则有较大的差异;②水分胁迫下

  9. Optical Reflectance and Fluorescence for Detecting Nitrogen Needs in Zea mays L.

    Science.gov (United States)

    McMurtrey, J. E.; Middleton, E. M.; Corp. L. A.; Campbell, P. K. Entcheva; Butcher, L. M.; Daughtry, C. S. T.

    2003-01-01

    Nitrogen (N) status in field grown corn (Zea mays L.) was assessed using spectral techniques. Passive reflectance remote sensing and, both passive and active fluorescence sensing methods were investigated. Reflectance and fluorescence methods are reported to detect changes in the primary plant pigments (chlorophylls a and b; carotenoids) in higher plant species. As a general rule, foliar chlorophyll a (Chl a) and chlorophyll b (Chl b) usually exist in approx.3:l ratio. In plants under stress, Chl b content is affected before Chl a reductions occur. For reflectance, a version of the chlorophyll absorption in reflectance index (CARI) method was tested with narrow bands from the Airborne Imaging Spectroradiometer for Applications (ASIA). CARI minimizes the effects of soil background on the signal from green canopies. A modified CARI (MCARI) was used to track total Chl a levels in the red dip of the spectrum from the corn canopy. A second MCARI was used to track the auxiliary plant pigments (Chl b and the carotenoids) in the yellow/orange/red edge part of the reflectance spectrum. The difference between these two MCARI indices detected variations in N levels across the field plot canopies using ASIA data. At the leaf level, ratios of fluorescence emissions in the blue, green, red and far-red wavelengths sensed responses that were associated with the plant pigments, and were indicative of energy transfer in the photosynthetic process. N stressed corn stands could be distinguish from those with optimally applied N with fluorescence emission spectra obtained from individual corn leaves. Both reflectance and fluorescence methods are sensitive in detecting corn N needs and may be especially powerful in monitoring crop conditions if both types of information can be combined.

  10. Effects of Water Stress on Photochemical Quenching and Non-photochemical Quenching of Chlorophyll a Fluorescence in Four Tree Seedlings%水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响

    Institute of Scientific and Technical Information of China (English)

    史胜青; 袁玉欣; 杨敏生; 梁海永; 张金香

    2004-01-01

    The changes of photochemical quenching(qp) and non-photochemical quenching(qN) of chlorophyll a fluorescence in leaves of four tree seedlings ( Gleditsia sinensis, Juglans regia, Diospyros kaki and Diospyros lotus ) were different between two different water stress ways:detached drought treatment and potted drought treatment. After 4 hours dehydration by leaf detaching,the qp values had significant decrease except J. regia, only 6 hours later, the qp values compared with contrast decreased significantly in four tree seedlings(P>0.05), but the range of reduction( G.sinensis, J.regia and D.lotus) was just 2.5% to 6.4%. D.kaki, however,got to 31.3%. While the qN values increased significantly with conducting dehydration of the detached leaves. However, the qp values of four species showed no significant decrease when they were growing in pots under soil water stress(40%~60% RWC) for 30 days; and the qN values decreased obviously with a exception in J. regia, which was consistent with that of detached leaf treatment. The results suggested that some difference or changes in mechanism of excess light energy dissipation might perform in four seedlings by short-term and long-term water stress.

  11. Study on the Correlation Between Chlorophyll Maximum and Remote Sensing Data

    Institute of Scientific and Technical Information of China (English)

    XIU Peng; LIU Yuguang

    2006-01-01

    Based on the in situ optical measurements in the Bohai Sea of China, which belongs to a typical case-2 water area, we studied the characteristics of DCM (deep chlorophyll maximum) such as its spatial distribution, vertical profile,etc.We found that when the depth of the chlorophyll maximum is comparatively small, even in turbid coastal water regions,there is always a good correlation between the concentrations of chlorophyll maximum and the satellite-received signals in blue-green spectral bands; the correlation is even better than that between the surface chlorophyll concentrations and the satellite-received signals.The strong correlation existing even in turbid coastal water regions indicates that an ocean color model to retrieve the concentration of DCM can be constructed for coastal waters if a comprehensive knowledge of the vertical distribution of chlorophyll concentration in the Bohai Sea of China is available.

  12. Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins.

    Science.gov (United States)

    Mishanin, Vladimir I; Trubitsin, Boris V; Benkov, Michael A; Minin, Andrei A; Tikhonov, Alexander N

    2016-12-01

    In this work, we have compared photosynthetic performance and expression of the PsbS and Lhcb1 proteins in two contrast ecotypes of Tradescantia species, T. fluminensis (shade-tolerant) and T. sillamontana (light-resistant), grown at two intensities of light: 50-125 μmol photons m(-2) s(-1) (low light, LL) and 875-1000 μmol photons m(-2) s(-1) (high light, HL). Using the EPR method for measuring the P700 content, we have found that LL-grown plants of both species have higher (by a factor of ≈1.7-1.8) contents of PSI per fresh weight unit as compared to HL-grown plants. Acclimation of plants to LL or HL irradiation also influences the Chl(a + b) level and expression of the PsbS and Lhcb1 proteins. Immunoblotting analysis showed that acclimation to HL stimulates (by a factor of ≈1.7-1.8) the level of PsbS related to the total number of P700 centers. In light-resistant species T. sillamontana, the ratio PsbS/P700 is about 2-times higher than in shade-tolerant species T. fluminensis grown under the same conditions. This should enhance the capacity of their leaves for protection against the light stress. In agreement with these observations, the capacity of leaves for NPQ induction was enhanced during plant acclimation to HL. Kinetic studies of P700 photooxidation and light-induced changes in the yield of Chl a fluorescence also revealed that the short-term regulation of electron transport processes in chloroplasts, which manifested themselves in the kinetics of [Formula: see text] induction and the rate of Chl a fluorescence quenching, occurred more rapidly in HL-grown plants than in LL-grown plants. Thus, both factors, enhanced expression of PsbS and more rapid response of the photosynthetic electron transport chain to dark-to-light transitions should increase the capacity of HL-grown plants for their resistance to rapid fluctuations of solar light.

  13. A study of the low-lying singlet and triplet electronic states of chlorophyll A and B

    Directory of Open Access Journals (Sweden)

    Etinski Mihajlo

    2013-01-01

    Full Text Available Chlorophylls have been extensively investigated both experimentally and theoretically owing to the fact that they are essential for photosynthesis. We have studied two forms of chlorophyll, chlorophyll a and chlorophyll b, by means of density functional theory. Optimization of S0, S1 and T1 states was performed with the B3-LYP functional. The computed fluorescence lifetimes show good agreement with the available experimental data. The electronic adiabatic energies of S1 and T1 states are 2.09/2.12 and 1.19/1.29 eV for chlorophyll a and chlorophyll b respectively. We discussed the implications of this results on the triplet formation. Also, the calculated vertical ionization potentials shows good agreement with the experimental results. [Projekat Ministarstva nauke Reoublike Srbije, br. 172040

  14. Chlorophylls, Symmetry, Chirality, and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Mathias O. Senge

    2014-09-01

    Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.

  15. A unique "turn-on" fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe.

    Science.gov (United States)

    Fong, Jessica Fung Yee; Chin, Suk Fun; Ng, Sing Muk

    2016-11-15

    Carbon dots (CDs) that showed strong blue fluorescence were successfully synthesised from sodium alginate via furnace pyrolysis. The single step pyrolytic synthesis was simple to perform while yielded CDs with high photostability, good water solubility and minimum by-products. In order to design the probe with "turn-on" sensing capability, the CDs were screened against a series of metal cations to first "turn-off" the fluorescence. It was found that ferric ions (Fe(3+)) were most responsive and effective in quenching the fluorescence of CDs. Based on this observation, the conditioning of the probe was performed to ensure the fluorescence was completely quenched, while not overloading the system with Fe(3+). At the optimised condition, the CDs-Fe(3+) mixture served as a highly specific detection probe for ascorbic acid (AA). The analytical potential of the probe was evaluated and showed a good linear range of response for AA concentration of 24-40μg/mL. The selectivity study against other possible co-existing species was carried out and proved that our unique "turn-on" fluorescence signalling strategy was highly effective and selective towards AA as the target analyte. The probe was demonstrated for quantification of AA in real samples, which was the commercially available vitamin C supplement. The result showed good accuracy with minimum deviation from standard method adopted for validation purpose.

  16. Chlorophyll modulation of mixed layer thermodynamics in a mixed-layer isopycnal General Circulation Model - An example from Arabian Sea and equatorial Pacific

    Indian Academy of Sciences (India)

    S Nakamoto; S Prasanna Kumar; J M Oberhuber; H Saito; K Muneyama; R Frouin

    2002-09-01

    Western tropical Indian Ocean, Arabian Sea, and the equatorial Pacific are known as regions of intense bio-chemical-physical interactions: the Arabian Sea has the largest phytoplankton bloom with seasonal signal, while the equatorial Pacific bloom is perennial with quasi-permanent upwelling. Here, we studied three dimensional ocean thermodynamics comparing recent ocean observation with ocean general circulation model (OPYC) experiment combined with remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS). Using solar radiation parameterization representing observations that a higher abundance of chlorophyll increases absorption of solar irradiance and heating rate in the upper ocean, we showed that the mixed layer thickness decreases more than they would be under clear water conditions. These changes in the model mixed layer were consistent with Joint Global Ocean Flux Study (JGOFS) observations during the 1994-1995 Arabian Sea experiment and epi-fluorescence microscopy (EFM) on samples collected during Equatorial Pacific Ocean Climate Study (EPOCS) in November, 1988. In the Arabian Sea, as the chlorophyll concentrations peak in October (3mg/m3) after the summer plankton bloom induced by coastal upwelling, the chlorophyll induced biological heating enhanced the sea surface temperature (SST) by as much as 0.6°C and sub-layer temperature decreases and sub-layer thickness increases. In the equatorial Pacific, modest concentrations of chlorophyll less than 0.3mg/m3 is enough to introduce a meridional differential heating, which results in reducing the equatorial mixed layer thickness to more than 20 m. The anomalous meridional tilting of the mixed layer bottom enhances off equatorial westward geostrophic currents. Consequently, the equatorial undercurrent transports more water from west to east. We proposed that these numerical model experiments with use of satellite and in situ ocean observations are consistent under three

  17. An improved protocol for mRNA quantification after fluorescence-activated cell sorting with an increased signal to noise ratio in flow cytometry.

    Science.gov (United States)

    Date, Arisa; Maeda, Tomoko; Watanabe, Mikio; Hidaka, Yoh; Iwatani, Yoshinori; Takano, Toru

    2014-07-01

    We established a method to analyze cells collected by fluorescence-activated cell sorting (FACS) named mRNA quantification after FACS (FACS-mQ), in which cells are labeled with a fluorescent dye in a manner that minimizes RNA degradation, and then cells sorted by FACS are examined by analyzing their gene expression profile. In this study, we established a modified protocol to analyze molecules with a low expression level, such as N-cadherin and thyroid transcription factor, by improving the signal to noise ratio in flow cytometry. Use of a fluorophore-conjugated second antibody and the appropriate choice of a fluorescence dye showed a marked increase in the signal to noise ratio. Use of the Can Get Signal Immunostain in diluting antibodies shortened the reaction time. In real-time reverse transcription-PCR, a significant decrease in the copy number of intracellular mRNAs was not observed after in-tube immunostaining. These results indicated that the present protocol is useful for separating and analyzing cells by FACS-mQ, targeting a molecule with a low expression level.

  18. Spinach seed quality - potential for combining seed size grading and chlorophyll flourescence sorting

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Olesen, Merete Halkjær; Boelt, Birte

    2013-01-01

    might therefore improve the establishment of spinach for producers. Spinach seeds were harvested at five different times (H1, H2, H3, H4 and H5) starting 3 weeks before estimated optimum harvest time. The harvested seeds were sorted according to chlorophyll fluorescence (CF) and seed size. Two harvest.......5–3.25 mm size seeds had germinated on day 3 than both their larger and smaller counterparts at the later time of harvest (H4). Seeds with a diameter below 2.5 mm displayed the lowest MGT. Commercially, the use of chlorophyll fluorescence (CF)-sorted seeds, in combination with seed size sorting, may provide...

  19. Control of quantum interference of an excitonic wave in a chlorophyll chain with a chlorophyll ring

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Suc-Kyoung; Nam, Seog-Woo [Korea University, Jochiwon, Chungnam (Korea, Republic of); Yeon, Kyu-Hwang [Chungbuk National University, Cheonju (Korea, Republic of)

    2010-06-15

    The quantum interference of an excitonic wave and its coherent control in a nanochain with a nanoring are studied. The nanochain is comprised of six chlorophylls, where four chlorophylls compose the nanoring and two chlorophylls are attached at two opposite sites on the nanoring. The exciton dynamics and the correlation of the excitation between chlorophylls are analyzed for a given configurational arrangement and dipolar orientation of the chlorophylls. The results of this study show that the excitation at specified chlorophylls is suppressed or enhanced by destructive or constructive interference of the excitonic wave in the chlorophyll nanochain.

  20. Effect of iron fertilizer siphon transfusion on photosynthetic physiological indices and chlorophyll fluorescence parameters of iron deficiency chlorosis in apple trees%铁肥虹吸输液对缺铁失绿苹果叶片光合生理指标和荧光参数的影响

    Institute of Scientific and Technical Information of China (English)

    赵志军; 刘子英; 高一宁; 崔美香; 刘贵巧; 薛进军

    2013-01-01

    为了进一步探索矫正苹果缺铁失绿症途径,采用铁肥虹吸输液方法,研究了铁肥虹吸输液对缺铁黄化叶片复绿,叶片解剖结构、色素含量、光合生理指标和叶绿素荧光参数的影响.结果表明,虹吸输液处理的复绿苹果叶片单个细胞叶绿体数目比对照增加了3.6个,淀粉粒有所减少;叶绿体内基粒结构更清晰、垛叠增多;线粒体内嵴数量增多、清晰度提高;叶绿体和线粒体的被膜结构得到修复.虹吸输铁后失绿程度由2.00级恢复到0.49级;铁肥虹吸输液显著提高了叶片的光合速率、气孔导度,降低了细胞间隙的CO2浓度.输铁处理其PSⅡ原初光能转化效率(Fv/Fm)和PSⅡ潜在活性(Fv/Fo)均为最高.缺铁失绿苹果叶片叶绿素a、叶绿素b含量分别比未输液对照增加2.97倍和3.18倍.说明采取铁肥虹吸输液的方法能够矫正苹果缺铁失绿症.%The objective of this study was to explore a new approach of correcting iron deficiency chlorosis in apple trees.The regreen of yellow leaves,anatomical structure of leaves,pigment content,photosynthetic physiological indicators and chlorophyll fluorescence parameters were researched by means of iron fertilizer siphon transfusion.The results show that the number of chloroplast of retrieved green leaves is increased by 3.6 under the siphon transfusion treatment,while the starch grains are reduced.The chloroplast grana structure is clearer under the siphon transfusion treatment,and the stacked chloroplast lamellae is increased.The number of the cristae in mitochondrion is increased and the structure is clearer under the siphon transfusion treatment.The biofilm structures of chloroplast and mitochondrion are repaired under the siphon transfusion treatment.The scale of the chlorosis is resumed from 2.00 to 0.49 after the siphon transfusion.The photosynthetic rate and stomatal conductance are significantly improved by the iron fertilizer siphoning infusion

  1. Wide field-of-view fluorescence imaging of coral reefs.

    Science.gov (United States)

    Treibitz, Tali; Neal, Benjamin P; Kline, David I; Beijbom, Oscar; Roberts, Paul L D; Mitchell, B Greg; Kriegman, David

    2015-01-13

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys.

  2. Anthocyanin contribution to chlorophyll meter readings and its correction.

    Science.gov (United States)

    Hlavinka, Jan; Nauš, Jan; Špundová, Martina

    2013-12-01

    Leaf chlorophyll content is an important physiological parameter which can serve as an indicator of nutritional status, plant stress or senescence. Signals proportional to the chlorophyll content can be measured non-destructively with instruments detecting leaf transmittance (e.g., SPAD-502) or reflectance (e.g., showing normalized differential vegetation index, NDVI) in red and near infrared spectral regions. The measurements are based on the assumption that only chlorophylls absorb in the examined red regions. However, there is a question whether accumulation of other pigments (e.g., anthocyanins) could in some cases affect the chlorophyll meter readings. To answer this question, we cultivated tomato plants (Solanum lycopersicum L.) for a long time under low light conditions and then exposed them for several weeks (4 h a day) to high sunlight containing the UV-A spectral region. The senescent leaves of these plants evolved a high relative content of anthocyanins and visually revealed a distinct blue color. The SPAD and NDVI data were collected and the spectra of diffusive transmittance and reflectance of the leaves were measured using an integration sphere. The content of anthocyanins and chlorophylls was measured analytically. Our results show that SPAD and NDVI measurement can be significantly affected by the accumulated anthocyanins in the leaves with relatively high anthocyanin content. To describe theoretically this effect of anthocyanins, concepts of a specific absorbance and a leaf spectral polarity were developed. Corrective procedures of the chlorophyll meter readings for the anthocyanin contribution are suggested both for the transmittance and reflectance mode.

  3. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.

    Science.gov (United States)

    Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W

    2015-01-01

    We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.

  4. A new colorimetric and fluorescent bis(coumarin)methylene probe for fluoride ion detection based on the proton transfer signaling mode

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Ajit Kumar, E-mail: akmahapatra@rediffmail.com; Maiti, Kalipada; Sahoo, Prithidipa; Nandi, Prasanta Kumar

    2013-11-15

    A new turn-on fluorescent and colorimetric sensor, oxidized bis(coumarin)methane (1) for fluoride in acetonitrile was designed and synthesized. The binding ability evaluated by UV–vis and fluorescence titration experiments reveals that 1 can selectively interact with fluoride. Upon addition of fluoride to receptor 1 in acetonitrile solution, the appearance of a new absorption band around 349 nm showed a color change from colorless to yellow, which can provide a way of ‘naked eye’ detection of fluorides. The spectral change of 1 is due to the anion induced deprotonation and hence an increase in charge density and rigidity of the receptor molecule. Furthermore, the binding mode with fluoride was investigated by {sup 1}H NMR titration experiments. Again, the deprotonation of oxidized bis(coumarin)methane 1 is responsible for the color change. -- Graphical abstract: A new colorimetric and fluorescent bis(coumarin)methylene probe for fluoride ion detection based on the proton transfer signaling mode. Highlights: • The first report of conjugated biscoumarin-based colorimetric chemosensor. • Oxidized bis(coumarin)methane acts as colorimetric reporter. • The oxidized coumarin moiety might modulate the internal charge transfer (ICT). • Fluorescence turn-on sensing of fluoride.

  5. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.

    Directory of Open Access Journals (Sweden)

    Jane Courtney

    Full Text Available We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.

  6. Effects of five kinds of antibiotics stressed on chlorophyll fluorescence parameters of Isochrysis sp.CCMMS001%五种抗生素对等鞭金藻(Isochrysis sp. CCMMS001)叶绿素荧光特性的影响

    Institute of Scientific and Technical Information of China (English)

    郑明刚; 郑立; 王玲; 韩笑天; 李海东; 崔志松

    2011-01-01

    利用PHYTO-PAM测定了抗生素胁迫下等鞭金藻(Isochrysis sp.CMMS001)叶绿素荧光参数Fv/ Fm(PSⅡ的最大光能转化效率)的变化规律.结果表明:不同抗生素对等鞭金藻Fv/ Fm的影响存在很大差异,氯霉素、G-418能显著抑制其最大光能转化效率;潮霉素抑制作用次之;卡那霉素、氨苄青霉素没有抑制作用.在f/2培养基中,浓度为600 mg/L氯霉素胁迫下,第3d测得Fv/ Fm值下降97%.在f/2培养基中,浓度为1 200 mg/L潮霉素和500 mg/L G-418胁迫下,第6d测得Fv/Fm值分别下降52%、98%.在淡化5倍f/2培养基中,浓度为1200 mg/L潮霉素和500 mg/L G-418胁迫下,第6d测得的Fv Fm值分别下降77%、100%.卡那霉素、氨苄青霉素胁迫下,Fv/ Fm随着两种抗生素浓度的增加没有降低,反而上升.%The different concentrations of antibiotics stressing on chlorophyll fluorescence parameters Fv/Fm ( PS II maximum solar energy conversion efficiency) of Isochrysis sp. Were determined by Phyto-PAM. The results showed that there was large difference in the impact of different antibiotics on chlorophyll fluorescence parameters Fv/Fm of Isochrysis sp.. Chloramphenicol,C-418 could significantly inhibit the maximum solar energy conversion efficiency of Isochrysis sp. The effect followed by the hygromycin. The effect was not observed by kanamycin and ampicilin for the maximum solar energy conversion efficency of Isochrysis sp. In the f/2 medium, stressed by chloramphenicol with concentration of 600 mg/L,Fv/Fm of Isochrysis sp. Decreased by 97% on the third day. In f/2 medium,stressed by hygromycin with the concentrations of 1 200 mg/L and 500 mg/L G-418 ,Fv/Fm of Isochrysis sp. Decreased by 52% and 98% on the 6th day. In f/2 medium diluted S times,stressed by hygromycin with the concentration of 1 200 mg/L and G-418 with the concentration of 500 mg/L,Fv/Fm of Isochrysis sp. Decreased by 77% and 100% on 6th day. With increasing concentrations of Kanamycin and ampicillin

  7. A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide

    Directory of Open Access Journals (Sweden)

    Qiu HZ

    2014-12-01

    Full Text Available Huazhang Qiu,1,* Namei Wu,1,* Yanjie Zheng,1 Min Chen,2 Shaohuang Weng,1 Yuanzhong Chen,3 Xinhua Lin1 1Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China; 2Department of Orthopedic Surgery, Affiliated Union Hospital of Fujian Medical University, Fuzhou, People’s Republic of China; 3Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1 gene and mercury ion (Hg2+ were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. Keywords: fluorescence, turn-on, SYBR Green I, graphene oxide, multidrug resistance protein 1 gene, Hg2+

  8. Reconstitution of Photosystem Ⅱ Reaction Center with Cu-Chlorophyll a

    Institute of Scientific and Technical Information of China (English)

    Shuang Liu; Feng-Qin Dong; Chun-Hong Yang; Chong-Qin Tang; Ting-Yun Kuang

    2006-01-01

    An isolated photosystem (PS) Ⅱ reaction center (RC) with altered pigment content was obtained by chemical exchange of native chlorophyll a (Chl) with externally added Cu-Chl a (Cu-Chl). Pigment composition and spectroscopic properties of the RC exchanged with Cu-Chl were compared with native RC and RC treated with Chl in the same way. High-performance liquid chromatography analysis showed approximately 0.5 Cu-Chl per two pheophytin in the Cu-Chl-reconstituted RC preparation. Insertion of Cu-Chl resulted in a decrease in absorption at 670 nm and an increase at 660 nm, suggesting that the peripheral Chl may have been displaced. Fluorescence emission spectra of the Cu-Chl-reconstituted RC displayed a marked decrease in fluorescence yield and a blue shift of the band maximum, accompanied by the appearance of a broad peak at a shorter wavelength, indicating that energy transfer in the modified RC was disturbed by Cu-Chl, a quencher of the excited state. However, there were few differences in the circular dichroism (CD) spectra,suggesting that the arrangement of pigments and proteins responsible for the CD signal was not significantly affected. In addition, no obvious change in peptide components was found after the exchange procedure.

  9. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.

  10. Studying Photosynthesis by Measuring Fluorescence

    Science.gov (United States)

    Sanchez, Jose Francisco; Quiles, Maria Jose

    2006-01-01

    This paper describes an easy experiment to study the absorption and action spectrum of photosynthesis, as well as the inhibition by heat, high light intensity and the presence of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the photosynthetic process. The method involves measuring the chlorophyll fluorescence emitted by intact…

  11. γ-氨基丁酸(GABA)对低氧胁迫下甜瓜幼苗光合作用和叶绿素荧光参数的影响%Effects of γ-aminobutyric acid on the photosynthesis and chlorophyll fluorescence parameters of muskmelon seedlings under hypoxia stress

    Institute of Scientific and Technical Information of China (English)

    夏庆平; 高洪波; 李敬蕊

    2011-01-01

    By the method of hydroponic culture, this paper studied the effects of exogenous γ-aminobutyric acid ( GABA) on the photosynthetic pigment contents, photosynthesis. and chlorophyll fluorescence parameters of muskmelon seedlings under hypoxia stress. Hypoxia stress induced a significant decrease of photosynthetic pigment contents, resulting in the decrease of photosynthesis.Applying GABA could significantly increase the photosynthetic pigment contents, net photosynthetic rate (Pn) , stomatal conductance ( Gs ) , intercellular CO2 concentration ( Ci) , carboxylation efficiency ( CE ) . maximal photochemical efficiency of Ps Ⅱ ( Fv/Fm ) , photochemical quenching (qP) , apparent photosynthetic electron transfer rate ( ETR) , and quantum yield of PS Ⅱ electron transport ( ΦPSⅡ ) , and decrease the stomatal limitation value (Ls ) , minimal fluorescence ( F0) ,and non-photochemical quenching ( NPQ) under both hypoxic and normal conditions. The alleviation effect of GABA on photosynthetic characteristics was more obvious under hypoxia stress. However. simultaneously applying GABA and VGB could significantly decrease the alleviation effect of GABA under hypoxia stress.%采用营养液水培方法,研究了低氧胁迫下外源γ-氨基丁酸(GABA)对甜瓜幼苗光合色素含量、光合作用及叶绿素荧光参数的影响.结果表明:低氧胁迫导致甜瓜幼苗光合色素含量显著下降,光合作用降低;外源GABA能显著提高正常通气和低氧胁迫下甜瓜幼苗的光合色素含量、净光合速率、气孔导度、胞间CO2浓度、CO2羧化效率、最大光化学效率、光化学猝灭系数、表观光合电子传递速率和PSⅡ光合电子传递量子效率,而气孔限制值、初始荧光和非光化学猝灭系数显著降低,GABA在低氧胁迫下的提高效果更明显;同时添加GABA和GABA转氨酶抑制剂γ-乙烯基-γ-氨基丁酸(VGB)处理显著降低了低氧胁迫下GABA对甜瓜幼苗光合特性的缓解效果.

  12. Field Detection of Chlorophyll-a Concentration in the Sea Surface Layer by an Airborne Oceanographic Lidar

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An airborne oceanographic lidar, with a frequency-tripled Q-switched Nd: YAG laser of 355 nm, has been designed to measure chlorophyll-a (Chl-a) concentration in the sea surface layer by the Ocean Remote Sensing Institute, OUC. The field experiment was carried out in the bay which is located south of the Liaodong Peninsula on the 10th of September 2005. After the flight, the raw data were processed and analyzed by the fluorescence-to-Raman ratio method with seawater attenuation coefficients calculated from signal profiles. The results of Chl-a concentration measurements by lidar are shown. The measurements in clear sea water were also compared with those of Chl-a concentration by a Moderate Resolution Imaging Spectroradiometer (MODIS).

  13. Label-free and sensitive fluorescence detection of nucleic acid, based on combination of a graphene oxid /SYBR green I dye platform and polymerase assisted signal amplification

    Science.gov (United States)

    Zhu, Xiao; Xing, Da

    2012-12-01

    A new label-free isothermal fluorescence amplification detection for nucleic acid has been developed. In this paper, we first developed a novel sensitive and specific detection platform with an unmodified hairpin probe (HP) combination of the graphene oxid (GO)/ SYBR green I dye (SG), which was relied on the selective principle of adsorption and the high quenching efficiency of GO. Then for the application of this new strategy, we used Mirco RNA-21 (Mir-21) as the target to evaluate this working principle of our design. When the target was hybridizing with the HP and inducing its conformation of change, an efficient isothermal circular strand-displacement polymerization reaction was activating to assist the first signal amplification. In this format, the formed complex conformation of DNA would interact with its high affinity dye, then detached from the surface of GO after incubating with the platform of GO/intercalating dye. This reaction would accompany with obvious fluorescence recovery, and accomplish farther signal enhancement by a mass of intercalating dye inserting into the minor groove of the long duplex replication product. By taking advantage of the multiple amplification of signal, this method exerted substantial enhancement in sensitivity and could be used for rapid and selective detection of Mir-21 with attomole range. It is expected that this cost-effective GO based sensor might hold considerable potential to apply in bioanalysis studies.

  14. Obsolete - AFSC/RACE/Eco-FOCI: Chlorophyll: groundtruth data for chlorophyll fluorescence sensors on the moorings.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are part of a ocean observation study by Stabeno, Napp, and Whitledge sponsored, in part, but the North Pacific Research Board (Project 410;...

  15. Nonlinear Optical Properties of Carotenoid and Chlorophyll Harmonophores

    Science.gov (United States)

    Tokarz, Danielle Barbara

    Information regarding the structure and function of living tissues and cells is instrumental to the advancement of cell biology and biophysics. Nonlinear optical microscopy can provide such information, but only certain biological structures generate nonlinear optical signals. Therefore, structural specificity can be achieved by introducing labels for nonlinear optical microscopy. Few studies exist in the literature about labels that facilitate harmonic generation, coined "harmonophores". This thesis consists of the first major investigation of harmonophores for third harmonic generation (THG) microscopy. Carotenoids and chlorophylls were investigated as potential harmonophores. Their nonlinear optical properties were studied by the THG ratio technique. In addition, a tunable refractometer was built in order to determine their second hyperpolarizability (gamma). At 830 nm excitation wavelength, carotenoids and chlorophylls were found to have large negative gamma values however, at 1028 nm, the sign of gamma reversed for carotenoids and remained negative for chlorophylls. Consequently, at 1028 nm wavelength, THG signal is canceled with mixtures of carotenoids and chlorophylls. Furthermore, when such molecules are covalently bonded as dyads or interact within photosynthetic pigment-protein complexes, it is found that additive effects with the gamma values still play a role, however, the overall gamma value is also influenced by the intra-pigment and inter-pigment interaction. The nonlinear optical properties of aggregates containing chlorophylls and carotenoids were the target of subsequent investigations. Carotenoid aggregates were imaged with polarization-dependent second harmonic generation and THG microscopy. Both techniques revealed crystallographic information pertaining to H and J aggregates and beta-carotene crystalline aggregates found in orange carrot. In order to demonstrate THG enhancement due to labeling, cultured cells were labeled with carotenoid

  16. High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Maulucci, Giuseppe; Labate, Valentina; Mele, Marina;

    2008-01-01

    quantitation of the distribution of fluorescence by confocal microscopy, allows us to draw real-time "redox maps" of adherent cells and to score subtle changes in the intracellular redox state, such as those induced by overexpression of redox-active proteins. This strategy for in vivo imaging of redox...

  17. Chlorophyll a fluorescence to phenotype wheat genotypes for heat tolerance

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    Wheat (Triticum aestivum L.) is a heat-susceptible crop throughout its phenological stages, flowering phase being the most sensitive stage. Early stress detection method with advanced physiological measurements may provide new dimensions to establish a high throughput phenotyping technique...... yield efficiency of PSII photochemistry (Fv/Fm). We subsequently used this standardized protocol for mass screening of wheat genotypes. Our results showed that the temperature of 40°C in 300 µmol m-2s-1 light for 72 h was appropriate to induce heat stress to reveal genetic variation among genotypes...

  18. Time-resolved chlorophyll fluorescence in forest decline research

    Energy Technology Data Exchange (ETDEWEB)

    Schneckenburger, H.; Schmidt, W. [Fachhochschule Aalen (Germany). Fachbereich Optoelektronik

    1997-12-01

    Aiming at clues of forest decline we studied prompt and delayed luminescence of spruce needles from the picosecond to the second time range using various self fabricated kinetic equipments including self written software. Both kinetics in the picosecond and in the seconds time range could be fitted by three exponentially decaying components yielding three amplitudes and three reaction constants each. Basically, all components showed a typical annual time course, independent of the degree of damage or air pollution. In addition, it turned out that on one hand the `slow` component of picosecond decay kinetics (decay time {tau}=2.0-3.5 ns) reflects some damage of the photosynthetic apparatus. Similarly, in long term delayed luminescence in the seconds time range the `fast` component (decay time {tau}=0.13 s) obviously carries some information on the spruces` vitality. Interestingly, all other components are scarcely affected. In the present report we present results obtained from gas exclusion experiments performed within so-called Open Top Chambers (OTC`s) at Edelmannshof, Welzheimer Wald. In general, all spruces showed the highest photosynthetic efficiencies but also the most pronounced stress symptoms during the summer period - probably due to high irradiance, drought and increased ozone concentrations. (orig.)

  19. 油棕雄花发育时期功能叶生理生化特性及叶绿素荧光基础研究%Study on Physiological-biochemical Characteristic and Chlorophyll Fluorescence of Functional Leaves of Oil Palm During the Male Flower' Development Stages

    Institute of Scientific and Technical Information of China (English)

    倪书邦; 刘世红; 魏丽萍

    2011-01-01

    为了摸清油棕雄花发育时期主要供能器官功能叶的生理生化特性及与雄花发育的关系,笔者研究了4个油棕品种雄花发育时期功能叶可溶性糖、蔗糖、可溶性蛋白、抗氧化系统参数及叶绿素荧光的动态变化,并与雄花重量进行相关分析.结果表明,伴随雄花的发育,功能叶可溶性糖、蔗糖、可溶性蛋白、抗氧化系统参数及叶绿素荧光,表现出一定的协调同步性.苞期、开叉期功能叶转移大量营养物质到雄花,可溶性糖、蔗糖、可溶性蛋白表现为含量较低,开叉期“蔗糖/可溶性糖”比值最高,代谢最旺盛,超氧阴离子自由基伴随物质代谢产生,由POD、SOD、CAT3种保护酶协调清除,保障功能叶正常的生理功能.随着雄花的形态建成、内含物的积累及萎蔫,功能叶表现出开叉期Fo、Fv、Fm最高,Fo/Fm最低,光合机构受损最小,叶绿素含量高,光合电子传递效率高,而Fv/Fm保持稳定状态;试验得出,苞期、开叉期是雄花及功能叶的营养代谢关键期,即栽培管理重点期.%In order to find out the physiological-biochemical characteristics of functional leaf as the main organ for energy during male flowers' development stages of oil palm and the relationship with the male flowers, the author studied on dynamic changes of soluble sugar, sucrose, soluble protein, parameters of antioxidant system and chlorophyll fluorescence of functional leaf during male flowers' development stages of four oil palm varieties, and correlated with male flowers characters. The results showed that with the development of male flowers, functional leaf metabolism showed a certain coordinate synchronization. At unopened bud and split stage, a large number of nutrients produced of functional leaves were transferred to the growth of male flowers, soluble sugar, sucrose and soluble protein showed low levels. The ratio of sucrose to soluble sugar was highest at split stage, metabolism

  20. Effects of Salicylic Acid on Photosynthesis and Chlorophyll Fluorescence Characteristics of Flue-cured Tobacco Leaf in Subdued Light%弱光下水杨酸对烤烟光合特性与叶绿素荧光的影响

    Institute of Scientific and Technical Information of China (English)

    王辉; 刘国顺; 云菲; 张军; 郭超超

    2014-01-01

    [Objective] This study aimed to test whether salicylic acid (SA) can im-prove the physiological functions of flue-cured tobacco under subdued light condition, and to determine the mechanism of its action. [Method] The tobacco plants under subdued light were foliar-sprayed with 100 mg/L of SA. Then, the physiological in-dices such as plant fresh weight and dry weight, chlorophyl content, photosynthetic parameters and chlorophyl fluorescence parameters were measured. SPSS17.0 and Excellwere adopted for variance analysis and significance test. [Result] The leaf photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of tobacco plants in subdued light were al decreased while the intercellular CO2 con-centration (Ci) was increased, suggesting that non-stomatal limitation led to the de-crease of Pn under weak light intensity stress. SA released the inhibition of tobacco plant growth in weak light, as it elevated the leaf photosynthetic rate, the maximum photochemical efficiency of PSⅡ, potential activity of PSⅡ, effective photochemical efficiency of PSⅡ and photochemical quenching coefficient in weak light significant-ly, and reduced the non-photochemical quenching coefficient. [Conclusion] SA has significant effects on the photosynthetic characteristics of flue-cured tobacco in weak light, and it can improve the synthesis or distribution of photosynthesis product, and the efficiency of light energy, conducive to plant growth and development.%[目的]探讨外源水杨酸(SA)能否提高烤烟在弱光条件下的生理功能及其作用机制。[方法]在弱光条件下,对烤烟叶面进行 SA喷施,测定喷施后烟草植株的生理指标,包括植株鲜重和干重、叶绿素含量、光合参数和叶绿素荧光参数。数据采用 SPSS17.0和 Excel软件进行方差分析和显著性检验。[结果]弱光下烤烟叶片的光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)分别降低,而胞间 CO2浓度(Ci)