WorldWideScience

Sample records for chlorine isotopes

  1. Characters of chlorine isotopic composition in ocean water

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.; Zhou, Y.; Liu, W.G.; Hong, A.; Wang, Q.; Wang, Y.; Wei, H.; Shirodkar, P.V.

    The chlorine isotopic composition of ocean water was determined using thermal ionization mass spectrometry based on the measurement of Cs sub(2) Cl sup(+) ion. The results show that the sup(37) Cl/ sup(35) Cl ratios are basically homogeneous...

  2. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    Science.gov (United States)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  3. The chlorine isotope fingerprint of the lunar magma ocean

    OpenAIRE

    Boyce, Jeremy W.; Treiman, Allan H.; Guan, Yunbin; Ma, Chi; Eiler, John M.; Gross, Juliane; Greenwood, James P.; Stolper, Edward M.

    2015-01-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free (“dry”) Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because ^(37)Cl/^(35)Cl ratios are not related to Cl a...

  4. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Liu, W.G.; Xiao, Y.K.; Wang, Q.Z.; Qi, H.P.; Wang, Y.H.; Zhou, Y.M.; Shirodkar, P.V.

    The isotopic compositions of chlorine in salt lake brine coexisting with halite, oil-field water and river water from the Qaidam Basin (Qinghai, China) have been examined using high-precision measurement of chlorine isotopes based on thermal...

  5. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets. PMID:26601265

  6. The Chlorine Isotopic Composition Of Lunar UrKREEP

    Science.gov (United States)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. Numerous studies have examined the abundances and isotopic compositions of volatiles in lunar apatite, Ca5(PO4)3(F,Cl,OH). In particular, apatite has been used as a tool for assessing the sources of H2O in the lunar interior. However, current models for the Moon's formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. For ex-ample, in the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs (Rare Earth Elements), and P, collectively called KREEP, and in its primitive form - urKREEP, given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon (BSM). In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes in lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  7. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Ying-kai; Liu, Wei-guo; Zhou, Y.M.; Wang, Yun-hui; Shirodkar, P.V.

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs sub(2) Cl sup(+) ion by thermal ionization...

  8. Experimental chlorine stable isotope fractionation of perchlorate respiring bacteria

    Science.gov (United States)

    Ader, M.; Coleman, M.; Coates, J.; Chaudhuri, S.

    2006-12-01

    Perchlorate natural occurrences on earth are very limited and seem restricted to extremely arid environments such as nitrate deposits of the Atacama Desert of northern Chile, where perchlorate contents can reach 0.1 to 1%. Anthropogenically sourced perchlorate however is extensively used as a major component of explosives and rocket fuels. Careless disposal of these highly soluble and very stable perchlorates locally led to the contamination of drinking water, now recognised as posing a significant health threat. Recent studies have demonstrated that some microorganisms are able to completely reduce perchlorate to innocuous chloride, and offer a great potential for the bioremediation of contaminated waters. Provided that the isotopic fractionation associated with this reduction is significant, the measurement of the chloride isotopic composition of contaminated water is a powerful tool for monitoring the progress of in-situ remediation. We report here, the characterisation of the isotopic fractionation associated with perchlorate reduction performed by Dechlorosoma suillum strain PS during 3 culture experiments performed in a batch fermentor (anoxic, 37°°C, pH =7). The basal medium contained acetate as the electron donor and perchlorate as the electron acceptor. When possible, chloride salts were replaced by sulphate salts so as to lower the initial chloride content. The paired chlorine isotopic compositions of chloride and perchlorate in solutions sampled throughout the experiment were measured using the method described in Ader et al. 2001. The fractionation between chloride and perchlorate was calculated independently for each sample, using on the one hand the chloride content and isotopic composition and on the other hand the perchlorate content and isotopic composition. The results show that the fractionation is constant within error throughout the experiment for the 3 experiments with a weighted mean of -14.94±0.14‰. This value is much lower than the

  9. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, Kouhei [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, {sup 35}Cl and {sup 37}Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, {sup 36}Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  10. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    International Nuclear Information System (INIS)

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, 35Cl and 37Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, 36Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  11. Precise determination of stable chlorine isotopic ratios in low-concentration natural samples

    Science.gov (United States)

    Magenheim, A. J.; Spivack, A. J.; Volpe, C.; Ransom, B.

    1994-07-01

    Investigation of stable chlorine isotopes in geological materials has been hindered by large sample requirements and/or lack of analytical precision. Here we describe precise methods for the extraction, isolation, and isotopic analysis of low levels of chlorine in both silicate and aerosol samples. Our standard procedure uses 2 μg of Cl for each isotopic analysis. External reproducibility (1 σ) is 0.25%. for the 37Cl /35Cl measurements. Chlorine is extracted from silicate samples (typically containing at least 20 μg of Cl) via pyrohydrolysis using induction heating and water vapor as the carrier, and the volatilized chlorine is condensed in aqueous solution. Atmospheric aerosols collected on filters are simply dissolved in water. Prior to isotopic measurement, removal of high levels of SO 42-, F -, and organic compounds is necessary for the production of stable ion beams. Sulfate is removed by BaSCO 4 precipitation, F - by CaF 2 precipitation, and organic compounds are extracted with activated carbon. Chlorine is converted to stoichiometric CsCl by cation exchange, and isotopic ratios are determined by thermal ionization mass spectrometry of Cs 2Cl +. We demonstrate that the sensitivity and precision of this method allow resolution of natural variations in chlorine isotopic composition, and thereby provide insight to some fundamental aspects of chlorine geochemistry.

  12. Chlorine isotopes and their application to groundwater dating at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M. [Gascoyne GeoProjects Inc., Pinawa (Canada)

    2014-09-15

    The chlorine isotopes {sup 36}Cl and {sup 37}Cl have been shown to be useful tracers of groundwater, and for investigations of sources of dissolved Cl, mixing of fluids, water-rock interactions in sedimentary environments and in identifying solute sources and transport mechanisms. In addition, the radioactive isotope, {sup 36}Cl, is a useful tracer for determining the residence time of groundwater. This report examines the results of Cl isotopic analysis of groundwaters from as deep as 1000 m at the Olkiluoto site in southwest Finland. Thirty-four samples were analysed for {sup 36}Cl/Cl and 29 were analysed for {sup 37}Cl (expressed as δ {sup 37}Cl). The value δ{sup 37}Cl was found to stabilize at higher salinities and the maximum range of δ{sup 37}Cl was from about - 0.6 to +0.6 per mille. Because of this limited range and the relatively large error margins associated with the δ{sup 37}Cl measurement, the usefulness of this ratio appears to be limited. Therefore, the main part of this report is largely focused on {sup 36}Cl. Estimation of residence time of {sup 36}Cl gives results that support the presence of at least five groundwater types at Olkiluoto. The consistency of {sup 36}Cl/Cl ratios in groundwaters of several widely separated, deep locations and different rock compositions, suggests that these deeper groundwaters are in secular equilibrium and, therefore, likely to be older than 1.5 million years. (orig.)

  13. Stabile Chlorine Isotope Study of Martian Shergottites and Nakhlites; Whole Rock and Acid Leachates and Residues

    Science.gov (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2011-01-01

    We have established a precise analytical technique for stable chlorine isotope measurements of tiny planetary materials by TIMS (Thermal Ionization Mass Spectrometry) [1], for which the results are basically consistent with the IRMS tech-nique (gas source mass spectrometry) [2,3,4]. We present here results for Martian shergottites and nakhlites; whole rocks, HNO3-leachates and residues, and discuss the chlorine isotope evolution of planetary Mars.

  14. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

    DEFF Research Database (Denmark)

    Hunkeler, D.; Abe, Y.; Broholm, Mette Martina;

    2011-01-01

    pyrite oxidation as confirmed by the depleted sulfur isotope signature of SO4 2−. In the same zone, PCE and trichloroethene (TCE) disappeared and cis- 1,2-dichloroethene (cDCE) became the dominant chlorinated ethene. PCE and TCE were likely transformed by reductive dechlorination rather than abiotic...... reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of 13C in the daughter products followed by an enrichment of 13C as degradation proceeded. At 1000 m downgradient...

  15. VARIATIONS IN ISOTOPIC COMPOSITIONS OF CHLORINE IN EVAPORATION-CONTROLLED SALT LAKE BRINES OF QAIDAM BASIN,CHINA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs2Cl+ ion by thermal ionization mass spectrometry. The results showed that variation in δ37Cl values in these evaporation-controlled brines are attributable to evaporation of brine accompanied by the deposition of saline minerals. The isotopic fractionation of chlorine between the deposited saline mineral and the co-existing brine caused the variation of δ37Cl values in the brine. In general the isotopic fractionation of chlorine in nature indicates enrichment of 37Cl in the solid phase relative to 35Cl. The reverse isotopic fractionation of chlorine in which 35Cl is enriched in the solid phase, was observed to some extent during quick deposition under laboratory conditions as well as in nature. The mechanism of isotopic fractionation of chlorine during evaporation deposition was studied.

  16. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  17. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13C/12C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  18. Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer

    International Nuclear Information System (INIS)

    Natural attenuation of chlorinated aliphatic hydrocarbons (CAHs) can be an important mechanism for groundwater remediation. It is difficult to determine the effectiveness of natural CAH attenuation from chemical analyses of groundwater samples because mixing, dispersion, and secondary reactions can mask the chemical evidence of attenuation. In this paper, the authors explore the application of stable chlorine isotope ratio measurements as a new tool for evaluating natural attenuation of CAHs. They report stable isotope ratios of chlorine in both trichloroethene (TCE) and inorganic chloride in groundwater from an aerobic aquifer beneath an extensively contaminated industrial site, the Paducah Gaseous Diffusion Plant in western Kentucky. Variations in the concentrations and chlorine isotope ratios of TCE and chloride in the groundwater are consistent with those expected from natural attenuation. These data support a model in which partial TCE degradation occurred in relatively impermeable, clay-rich sediments above the aquifer, and little or no further degradation of TCE occurred within the aquifer. A record of changing conditions within the TCE source area can be inferred from the spatial variation of chlorine isotope ratios for TCE and chloride within the plume

  19. Chlorine

    Science.gov (United States)

    ... chlorine gas are inhaled. Fluid in the lungs (pulmonary edema) that may be delayed for a few hours ... health problems such as fluid in the lungs (pulmonary edema) following the initial exposure. How people can protect ...

  20. Chlorine isotope effects in ion exchange reactions with a strongly basic anion exchanger

    International Nuclear Information System (INIS)

    As can be shown by the results of this study, the chemical preenrichment of the stable chlorine isotopes in inorganic ion-exchange equilibria is feasible in principle. This process should be performed in chromotographic separation columns at temperatures as low as possible. Because of the dependence of the isotopic effect on the elution medium concentration a very low concentration is desirable for the chemical enrichment process. Smaller elution concentrations however result in increasingly longer elution times. (HK)

  1. Isotope Fractionation of chlorine in Aqueous System: One Study on Anion-Exchange Chromatography.

    Science.gov (United States)

    Musashi, M.; Oi, T.; Eggenkamp, H.; Van Cappellen, P.

    2001-05-01

    Stable chlorine isotopes such as 37Cl and 35Cl have been paid attention as useful tool identifying the source, and monitoring the transport process and natural fate of chlorinated organic pollutants in air and groundwater. However, it is not established yet whether any isotope effects accompany biodegradation or reductive dehalogenation of the pollutants (Clark and Fritz, 1997). Here we first present an experimental determination of isotope fractionation factor of chlorine in aqueous system by using anion-exchange chromatographic technique. Into the Cl-free anion exchange resin (Muromac, OH- form) packed in a 30 cm long pyrex glass column and controlled temperature at 25 oC, hydrochloric solution was fed with controlling the flow rate constant. Effluent from the column was recovered by an automatic fraction collector and prepared for Cl isotope analysis. The Cl isotope ratio (δ 37Cl vs. SMOC) was measured by IR-MS at the Utrecht University with precision of 0.06 per-mil. Magnitude of the factor obtained was 1.00035 at 25 oC. The result indicates that the lighter isotope (35Cl) was preferably fractionated into the resin phase, while the heavier one (37Cl) was enriched into the aqueous phase. This trend suggests that molecular structure of hydrolysis with Cl in aqueous phase may be more stable than that of Cl ionically bonding with the resin. This result may offer physico-chemical insights into behavior and fate of the pollutants.

  2. The Chlorine Isotopic Composition of Lunar urKREEP

    Science.gov (United States)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-05-01

    We have measured the Cl isotopic composition of apatite in a range of lunar rocks using NanoSIMS. We find a correlation between Cl isotopes and bulk rock chemistry which strongly suggesting urKREEP was characterized by heavy Cl.

  3. Stable isotope fractionation of chlorine during the precipitation of single chloride minerals

    International Nuclear Information System (INIS)

    Highlights: • Solutions of NaCl, KCl, and MgCl2⋅6H2O were evaporated at 28 ± 2 °C. • The δ37Cl values of samples decreased during precipitation. • Cl isotope has fractionation features different from predecessor research. • New Cl isotopic evolution curve of seawater precipitation were calculated. • The δ37Cl values can be used as an better indicator of brine evolution. - Abstract: In order to better understand chlorine isotopic variations during brine evolution, experiments were designed to determine the changes in the chlorine isotope composition (δ37Cl value) during evaporations of solutions containing NaCl, KCl and MgCl2⋅6H2O at 28 ± 2 °C. Three evaporation experiments were conducted in a clean environment. The precipitate and brine samples were collected during the evaporation, and the chlorine isotopic ratios of the samples were determined using an improved thermal ionisation mass spectrometry procedure based on Cs2Cl+ ion measurement. The results are as follows: the mean fractionation factors of the three solutions are αNa = 1.00055, αK = 1.00025, and αMg = 1.00012, respectively, where αNa, αK and αMg are the fractionation factors between salts (NaCl, KCl and MgCl2⋅6H2O) and saturated solutions. The results showed that the δ37Cl values of precipitate and coexisting brine samples decrease during the precipitation of single chloride minerals. The residual brine was a 35Cl reservoir for different single chloride solutions. New chlorine isotopic evolution curve during seawater evaporation were also calculated. The results indicated that during the primary precipitation stage of halite, δ37Cl decreased continuously, and the most important thing is that this trend continues during the final stages when Mg–salts begin to precipitate

  4. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    Science.gov (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  5. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site.

    Science.gov (United States)

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas. PMID:24077332

  6. To what extent can isotopes help substantiate natural attenuation of chlorinated ethenes?

    DEFF Research Database (Denmark)

    Badin, A.; Broholm, Mette Martina; Hunkeler, D.

    degree to which isotopes could help substantiate natural attenuation of chlorinated ethenes at the field scale. Our work hence aims at exploring the latter based on data acquired in 2006 in a site located in Denmark which is contaminated with PCE and its end-products TCE, cDCE, and VC. Previous work on...... this site has enabled to demonstrate that PCE and TCE were undergoing reductive dechlorination while cDCE would be at least partially degraded through reductive dechlorination1. However, the magnitude of the contaminants attenuation by biodegradation was not evaluated. Based on simple modeling...

  7. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    Science.gov (United States)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  8. Contribution to chlorine cycle: a Cl stable isotope approach on Mantle-Ocean exchanges

    Science.gov (United States)

    Bonifacie, M.; Jendrzejewski, N.; Pineau, F.; Agrinier, P.

    2003-04-01

    The stable isotope composition of chlorine (37Cl/35Cl) can be used to trace its geochemical cycle and is a powerfull tool to constrain the origin of high chlorine contents found for some fresh MORB glasses. Despite the fact that chlorine is a volatile element of primary importance, its cycle and isotopic fractionation factors during exchange processes between Earth's reservoirs or phases are poorly known. Furthermore, the scarcity of data for solid samples (rocks or minerals) reflects the analytical difficulty to extract chlorine from silicate structure. The classical methods of pyrohydrolysis followed by isotope-ratio mass spectrometric measurements on CH_3Cl gas have been optimised. Our technique represents the most quantitative and precise method of chlorine extraction for δ37Cl determination on solids published to date. Mean extraction yields are 100 ± 3%, δ37Cl values on duplicate extractions show reproducibility better than 0.2 ppm and the blanks represent less than 5% of the sample size. To characterise chlorine behaviour during the oceanic crust alteration, we have analysed fresh MORB glasses (from SWIR and EPR), altered basalts from leg 504B site (EPR), serpentinized peridotites (from SWIR and MAR) and an altered gabbro from the Hess Deep site (EPR). All samples (n=9) are depleted in 37Cl (δ37Cl from -1.4 to 0 ppm) relative to seawater (δ37Cl =0 ppm); Cl concentrations are between 200 and 2200 ppm. Our results on fresh MORBs: δ37Cl = -1.4 ppm and -0.6 ppm are in the lower range already published (-3 to +11 ppm, e.g. Magenheim et al., 95; Stewart, 2000). However, our δ37Cl range of altered samples: δ37Cl = -1.3 to -0.2 ppm (basalts, serpentinised peridotites and gabbro) is outside the range observed by Magenheim et al., 95 (+0.4 to +7.5 ppm in amphibole-rich rocks and smectite veins) despite the fact that in both study amphibole-rich rocks from the same site (i.e. leg 504B) have been analysed. On this site, our δ37Cl results are very homogeneous

  9. Chlorine isotope evidence for the anthropogenic origin of tris-(4-chlorophenyl)methane

    Energy Technology Data Exchange (ETDEWEB)

    Holmstrand, Henry, E-mail: henry.holmstrand@itm.su.se [Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm (Sweden); Zencak, Zdenek [Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm (Sweden); Mandalakis, Manolis [Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm (Sweden)] [Environmental Chemical Processes Laboratory (ECPL), University of Crete, 71003 Heraklion (Greece); Andersson, Per [Laboratory for Isotope Geology (LIG), Swedish Museum of Natural History, 10405 Stockholm (Sweden); Gustafsson, Orjan [Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm (Sweden)

    2010-09-15

    Research highlights: {yields} TCPMe is a bioaccumulating organochlorine found at significant levels in organisms at high trophic levels, e.g. birds and mammals. {yields} Previous investigations have suggested TCPMe being co-released as a trace byproduct in pesticides such as DDT. {yields} The results from compound-specific chlorine isotope analysis of TCPMe supports the hypothesis that the source of TCPMe is indeed the extensive historical use of DDT. - Abstract: Compound-specific Cl-isotope analysis was performed on the persistent and bioaccumulating compound tris-(4-chlorophenyl)methane (4,4',4''-TCPMe, referred to as TCPMe in this study) to elucidate whether its main source is natural or anthropogenic. Blubber from the Baltic grey seal (Halichoerus grypus) was extracted by continuous acetonitrile partitioning, and the TCPMe was isolated from the extract by preparative-capillary gas chromatography. Chlorine isotope analysis was subsequently performed by sealed-tube combustion in conjunction with thermal-ionization mass spectrometry (TIMS). The {delta}{sup 37}Cl of TCPMe was -3.5 {+-} 0.5 per mille, similar to the previously reported {delta}{sup 37}Cl of technical grade p,p'-DDT (referred to as DDT in this study). The data is not consistent with a putative marine natural source of TCPMe, as enzymatic (biotic) production is reported to give values of {delta}{sup 37}Cl < -10 per mille. The {delta}{sup 37}Cl-TCPMe data thus supports the hypothesis that TCPMe is produced as a byproduct during DDT synthesis and is released to the environment through the same pathways as DDT. It is also consistent with tris-(4-chlorophenyl)methanol as the primary biotransformation product of TCPMe.

  10. Chlorine isotope evidence for the anthropogenic origin of tris-(4-chlorophenyl)methane

    International Nuclear Information System (INIS)

    Research highlights: → TCPMe is a bioaccumulating organochlorine found at significant levels in organisms at high trophic levels, e.g. birds and mammals. → Previous investigations have suggested TCPMe being co-released as a trace byproduct in pesticides such as DDT. → The results from compound-specific chlorine isotope analysis of TCPMe supports the hypothesis that the source of TCPMe is indeed the extensive historical use of DDT. - Abstract: Compound-specific Cl-isotope analysis was performed on the persistent and bioaccumulating compound tris-(4-chlorophenyl)methane (4,4',4''-TCPMe, referred to as TCPMe in this study) to elucidate whether its main source is natural or anthropogenic. Blubber from the Baltic grey seal (Halichoerus grypus) was extracted by continuous acetonitrile partitioning, and the TCPMe was isolated from the extract by preparative-capillary gas chromatography. Chlorine isotope analysis was subsequently performed by sealed-tube combustion in conjunction with thermal-ionization mass spectrometry (TIMS). The δ37Cl of TCPMe was -3.5 ± 0.5 per mille, similar to the previously reported δ37Cl of technical grade p,p'-DDT (referred to as DDT in this study). The data is not consistent with a putative marine natural source of TCPMe, as enzymatic (biotic) production is reported to give values of δ37Cl 37Cl-TCPMe data thus supports the hypothesis that TCPMe is produced as a byproduct during DDT synthesis and is released to the environment through the same pathways as DDT. It is also consistent with tris-(4-chlorophenyl)methanol as the primary biotransformation product of TCPMe.

  11. Chlorine isotopic composition of perchlorate in human urine as a means of distinguishing among exposure sources.

    Science.gov (United States)

    Poghosyan, Armen; Morel-Espinosa, Maria; Valentin-Blasini, Liza; Blount, Benjamin C; Ferreccio, Catterina; Steinmaus, Craig M; Sturchio, Neil C

    2016-05-01

    Perchlorate (ClO4(-)) is a ubiquitous environmental contaminant with high human exposure potential. Natural perchlorate forms in the atmosphere from where it deposits onto the surface of Earth, whereas synthetic perchlorate is manufactured as an oxidant for industrial, aerospace, and military applications. Perchlorate exposure can potentially cause adverse health effects in humans by interfering with the production of thyroid hormones through competitively blocking iodide uptake. To control and reduce perchlorate exposure, the contributions of different sources of perchlorate exposure need to be quantified. Thus, we demonstrate a novel approach for determining the contribution of different perchlorate exposure sources by quantifying stable and radioactive chlorine isotopes of perchlorate extracted from composite urine samples from two distinct populations: one in Atlanta, USA and one in Taltal, Chile (Atacama region). Urinary perchlorate from the Atlanta region resembles indigenous natural perchlorate from the western USA (δ(37)Cl=+4.1±1.0‰; (36)Cl/Cl=1 811 (±136) × 10(-15)), and urinary perchlorate from the Taltal, Chile region is similar to natural perchlorate in nitrate salt deposits from the Atacama Desert of northern Chile (δ(37)Cl=-11.0±1.0‰; (36)Cl/Cl=254 (±40) × 10(-15)). Neither urinary perchlorate resembled the isotopic pattern found in synthetic perchlorate. These results indicate that natural perchlorate of regional provenance is the dominant exposure source for the two sample populations, and that chlorine isotope ratios provide a robust tool for elucidating perchlorate exposure pathways. PMID:25805252

  12. Chlorine isotope enrichment on a strong alkaline anion exchanger in dependence of type and concentration of the strange electrolytic solution

    International Nuclear Information System (INIS)

    Chlorine isotope enrichment for heterogenous ionexchange equilibria was studied. The dependence of element separation effects on the anion of the strange electrolyte (for same cation), on the cation of the strange electrolyte (for same anion), on the concentration of the strange electrolyte and also on the acetone: water ratio of the solvent was investigated. (orig./HBR)

  13. Chlorine isotopic compositions of deep saline fluids in Ibusuki coastal geothermal region, Japan : using B–Cl isotopes to interpret fluid sources

    NARCIS (Netherlands)

    Musashi, Masaaki; Oi, Takao; Kreulen, Rob

    2015-01-01

    We report chlorine stable isotopic compositions (δ37Cl, expressed in ‰ relative to the standard mean ocean chloride) as well as δ2H and δ18O values of deep saline fluids taken at eight drill-holes reaching from 73 to 780 m below sea level in the Ibusuki coastal geothermal region, Japan. Analytical r

  14. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    International Nuclear Information System (INIS)

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ13C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ37Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ37Cl and δ13C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA (13C,35Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer

  15. Isotopic control of methods for the determination of residues of chlorinated hydrocarbon pesticides Pt. 1

    International Nuclear Information System (INIS)

    The determination of residues of chlorinated hydrocarbon pesticides is of importance mainly in case of foods of animal origin. However, this determination is made slower or even inhibited by a number of difficulties. Extraction and clean-up procedures are of primary importance even in case of the most polished methods of pesticide analysis problems. The isotopic method was used for testing the mentioned steps. Experiments were carried out with radioactive C-14 isotope. According to the results of control tests, data varying within relatively wide limits have been obtained, depending on the applied method. In each case where the boiling point of the solvent permits, the use of the Kuderna--Danish instrument is advisable. In case of a solvent of higher boiling point a combined method is more expedient. For this purpose a method has been suggested which enables the evaporation of the sample to be carried out without any practical loss of agent, thus the obtained analytical results can be considered as perfectly reliable ones. (P.J.)

  16. Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

    Directory of Open Access Journals (Sweden)

    S. J. Allin

    2014-12-01

    Full Text Available The stratospheric degradation of chlorofluorocarbons (CFCs releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3. A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, similar to effects seen in nitrous oxide (N2O. Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F and CFC-113 (CClF2CCl2F exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (ϵapp for mid- and high-latitude stratospheric samples are (−2.4 ± 0.5 and (−2.3 ± 0.4‰ for CFC-11, (−12.2 ± 1.6 and (−6.8 ± 0.8‰ for CFC-12 and (−3.5 ± 1.5 and (−3.3 ± 1.2‰ for CFC-113, respectively. Assuming a constant source isotope composition, we estimate the expected trends in the tropospheric isotope signature of these gases due to their stratospheric 37Cl enrichment and stratosphere–troposphere exchange. We compare these model results to the long-term δ(37Cl trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978–2010 and tropospheric firn air samples from Greenland (NEEM site and Antarctica (Fletcher Promontory site. Model trends agree with tropospheric measurements within analytical uncertainties. From 1970 to the present-day, we find no evidence for variations in chlorine isotope ratios associated with changes in CFC manufacturing processes. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes, using a single-detector gas chromatography-mass spectrometry system.

  17. Quantification of Degradation of Chlorinated Hydrocarbons in Saturated Low Permeability Sediments Using Compound-Specific Isotope Analysis.

    Science.gov (United States)

    Wanner, Philipp; Parker, Beth L; Chapman, Steven W; Aravena, Ramon; Hunkeler, Daniel

    2016-06-01

    This field and modeling study aims to reveal if degradation of chlorinated hydrocarbons in low permeability sediments can be quantified using compound-specific isotope analysis (CSIA). For that purpose, the well-characterized Borden research site was selected, where an aquifer-aquitard system was artificially contaminated by a three component chlorinated solvent mixture (tetrachloroethene (PCE) 45 vol %, trichloroethene (TCE) 45 vol %, and chloroform (TCM) 10 vol %). Nearly 15 years after the contaminant release, several high-resolution concentration and CSIA profiles were determined for the chlorinated hydrocarbons that had diffused into the clayey aquitard. The CSIA profiles showed large shifts of carbon isotope ratios with depth (up to 24‰) suggesting that degradation occurs in the aquitard despite the small pore sizes. Simulated scenarios without or with uniform degradation failed to reproduce the isotope data, while a scenario with decreasing degradation with depth fit the data well. This suggests that nutrients had diffused into the aquitard favoring stronger degradation close to the aquifer-aquitard interface than with increasing depth. Moreover, the different simulation scenarios showed that CSIA profiles are more sensitive to different degradation conditions compared to concentration profiles highlighting the power of CSIA to constrain degradation activities in aquitards. PMID:27153381

  18. Hydrodynamic and isotopic characterization of a site contaminated by chlorinated solvents: Chienti River Valley, Central Italy

    International Nuclear Information System (INIS)

    Highlights: ► The fate of chlorinated solvents in groundwater in an alluvial aquifer has been investigated. ► Heterogeneity of the aquifer sediments causes vertical components of groundwater flow. ► Multilevel data shows the VOC’s stratification in the aquifer. ► Concentration and δ13C and δ37Cl data showed that dilution controls the VOC’s distribution. ► Biodegradation has been confirmed by isotope data only in low permeability layers. - Abstract: Contaminant sources have been attributed to shoe manufacturers in an alluvial aquifer located along 26 km2 in the Chienti River Valley, Central Italy. During the 1980s and 1990s, the main chlorinated compound used in the study area was 1,1,1-Trichloroethane (1,1,1-TCA), which was substituted by Perchloroethene (PCE) in the last 15 years. A hydrogeological conceptual model has been developed for the alluvial aquifer taking into account the presence of low permeability lenses, forming a multilayer semi-confined aquifer. Hydrodynamic tests (pumping and flowmeter heat-pulse tests) coupled with standard and multilevel hydrochemical and isotopic samplings were performed. Flowmeter tests showed the existence of vertical flow between aquifer levels having different permeability. Physical–chemical parameter logs agreed with the existence of a multilayer aquifer. Concentration data collected in 21 wells located downgradient of the different sources revealed VOC (Volatile Organic Compound) levels lower than 100 μg/L in the upper part of the valley and levels reaching about 200 μg/L in the near shore areas. PCE is the main compound present in the aquifer. No evidence of the presence of TCA was found in the upper areas of the Chienti Valley, but in the areas near the shore, TCA and its degradation products are predominant. Data collected at multilevels located at two sites (upper and near shore areas) to refine the results obtained in the regional survey show a stratification of the VOC concentrations; values of

  19. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Jordi, E-mail: jordi.palau@unine.ch [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Marchesi, Massimo [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Chambon, Julie C.C. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Canals, Àngels [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Binning, Philip J.; Bjerg, Poul L. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Otero, Neus; Soler, Albert [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain)

    2014-03-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ{sup 13}C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ{sup 37}Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ{sup 37}Cl and δ{sup 13}C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ({sup 13}C,{sup 35}Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer.

  20. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    Science.gov (United States)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems

  1. Chlorine isotopic compositions of deep saline fluids in Ibusuki coastal geothermal region, Japan: using B-Cl isotopes to interpret fluid sources.

    Science.gov (United States)

    Musashi, Masaaki; Oi, Takao; Kreulen, Rob

    2015-01-01

    We report chlorine stable isotopic compositions (δ(37)Cl, expressed in ‰ relative to the standard mean ocean chloride) as well as δ(2)H and δ(18)O values of deep saline fluids taken at eight drill-holes reaching from 73 to 780 m below sea level in the Ibusuki coastal geothermal region, Japan. Analytical results show that the δ(37)Cl values narrowly range between -0.26 and +0.21 ‰ with an analytical precision of ±0.06 ‰. Except for one sample, the samples examined are negative in δ(37)Cl value with varying Cl/B molar ratios from 117 to 1265. A correlation study between the Cl/B molar ratio and the δ(37)Cl/δ(11)B ratio indicates a hyperbola-type mixing of at least two Cl sources in the Ibusuki region. One of them depletes in (37)Cl with a higher value of Cl/B molar ratio; and the other one enriches in (37)Cl with a lower Cl/B molar ratio. The former is chemically identical to that of the deep brine, which is altered seawater through the seawater-hot rock interaction. The latter is chemically similar to gas condensate derived from the high-temperature (890 °C) vent of an island-arc volcano near the Ibusuki region. PMID:25564103

  2. Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater.

    Science.gov (United States)

    Palau, Jordi; Jamin, Pierre; Badin, Alice; Vanhecke, Nicolas; Haerens, Bruno; Brouyère, Serge; Hunkeler, Daniel

    2016-04-01

    Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ(13)C/Δδ(37)Cl) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r(2) = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field. PMID:26874254

  3. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    Science.gov (United States)

    Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  4. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    DEFF Research Database (Denmark)

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie Claire Claudia;

    2014-01-01

    pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources...

  5. Reactive transport modeling of chemical and isotope data to identify degradation processes of chlorinated ethenes in a diffusion-dominated media

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Damgaard, Ida; Jeannottat, Simon;

    Chlorinated ethenes are among the most widespread contaminants in the subsurface and a major threat to groundwater quality at numerous contaminated sites. Many of these contaminated sites are found in low-permeability media, such as clay tills, where contaminant transport is controlled by diffusi...... important finding, that is further supported by microbial and chemical data. Improved understanding of degradation processes in clay tills is useful for improving the reliability of risk assessment and the design of remediation schemes for chlorinated solvents....... modeling has been used to identify the degradation processes occurring at the core scale. The field data was from a site located at Vadsby, Denmark, where chlorinated solvents were spilled during the 1960-70’s, resulting in contamination of the clay till and the underlying sandy layer (15 meters below...... source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around the...

  6. Isothermal gas chromatography of short-lived Hf isotopes and element 104 in chlorinating, oxygen containing carrier gas

    Energy Technology Data Exchange (ETDEWEB)

    Jost, D.T.; Dressler, R.; Eichler, B.; Piguet, D.; Tuerler, A.; Gaeggeler, H.W.; Gaertner, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Grantz, M.; Huebener, S. [FZR (Germany); Buklanov, G.; Lebedev, V.; Timkhin, S.; Vedeneev, M.V.; Yakushev, A.; Zvara, I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    Based on thermodynamic state functions retention times of Hf and element 104 were calculated in the case of the simple adsorption of the tetrachlorides and the case of a complex adsorption involving a substitution process with oxygen in the chlorinating gas. Preliminary results for {sup 261}104 and Hf are shown. (author) 1 fig., 1 tab., 3 refs.

  7. Reactive Transport Modeling of Chemical and Isotope Data to Identify Degradation Processes of Chlorinated Ethenes in a Diffusion-Dominated Media

    Science.gov (United States)

    Chambon, J. C.; Damgaard, I.; Jeannottat, S.; Hunkeler, D.; Broholm, M. M.; Binning, P. J.; Bjerg, P. L.

    2012-12-01

    Chlorinated ethenes are among the most widespread contaminants in the subsurface and a major threat to groundwater quality at numerous contaminated sites. Many of these contaminated sites are found in low-permeability media, such as clay tills, where contaminant transport is controlled by diffusion. Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport modeling has been used to identify the degradation processes occurring at the core scale. The field data was from a site located at Vadsby, Denmark, where chlorinated solvents were spilled during the 1960-70's, resulting in contamination of the clay till and the underlying sandy layer (15 meters below surface). The clay till is heavily contaminated between 4 and 15 mbs, both with the mother compounds PCE/TCE and TCA and the daughter products (DCE, VC, ethene, DCA), indicating the occurrence of natural dechlorination of both PCE/TCE and TCA. Intact core samples of length 0.5m were collected from the source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around the observed higher permeability zones such as sand lenses, sand stringers and fractures, where a higher degradation activity was expected. This study made use of a reactive transport model to investigate the appropriateness of several conceptual models. The conceptual models considered the location of dechlorination and degradation pathways (biotic reductive dechlorination or abiotic β-elimination with iron minerals) in three core profiles. The model includes diffusion in the matrix

  8. δ37Cl of Mid-Ocean Ridge Vent Fluids Determined by a new SIMS Method for Stable Chlorine Isotope Ratio Measurements

    Science.gov (United States)

    Bach, W.; Layne, G. L.; von Damm, K. L.

    2002-12-01

    A method has been developed for the direct determination of δ37Cl in natural fluid samples or rock leachates (pyrohydrolysis products) using Secondary Ion Mass Spectrometry (SIMS). Samples as small as 1 μl (100 analyses of continental waters (formation and oil-field waters, fresh waters, brines, etc.) that cluster around 0 ‰ with a maximum variation of only 5 ‰ . Two observations suggest that the 37Cl enriched nature of the vent fluids is not related to phase separation. (1) Laboratory experiments indicate that the Δ37Cl(vapor-brine) associated with super-critical phase separation of seawater between 420 and 450°C is small (-0.6 to 0.2 ‰ ; Magenheim, PhD Thesis, UCSD, 1995). (2) Conjugate vapor-brine pairs of boiling sampled in 1991 and 1994 at F vent (Von Damm et al. EPSL, 149, 101-111, 1997) have basically identical δ37Cl values indicating that phase separation (sub- or super-critical) does not significantly fractionate chlorine isotopes. We suggest, therefore, that the heavy Cl isotope signature of the fluids is a result of seawater-rock interaction and/or mineral precipitation rather than phase separation of seawater. However, the specific mechanisms responsible for this enrichment are not yet understood. The Cl isotope signatures of hydrothermally altered gabbros and sheeted dike rocks (δ37Cl: 0.4-3.4 ‰ ) tend to be heavier than seawater and it has been suggested that this indicates preferential uptake of 37Cl by amphibole (Magenheim et al., EPSL 131, 427-432, 1995). Amphibolitization can therefore not account for the development of the 37Cl enrichment of the fluids. Although the exact mechanisms of Cl isotope fractionation are not yet defined, our data suggest that Cl may not be a strictly conservative component in MOR hydrothermal systems.

  9. Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: Laboratory results and implications for forensics and natural attenuation studies

    Science.gov (United States)

    Sturchio, N.C.; Böhlke, J.K.; Beloso, A.D., Jr.; Streger, S.H.; Heraty, L.J.; Hatzinger, P.B.

    2007-01-01

    Perchlorate is a widespread environmental contaminant having both anthropogenic and natural sources. Stable isotope ratios of O and Cl in a given sample of perchlorate may be used to distinguish its source(s). Isotopic ratios may also be useful for identifying the extent of biodegradation of perchlorate, which is critical for assessing natural attenuation of this contaminant in groundwater. For this approach to be useful, however, the kinetic isotopic fractionations of O and Cl during perchlorate biodegradation must first be determined as a function of environmental variables such as temperature and bacterial species. A laboratory study was performed in which the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial strains (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10??C and 22??C with acetate as the electron donor. Perchlorate was completely reduced by both strains within 280 h at 22??C and 615 h at 10??C. Measured values of isotopic fractionation factors were ??18O = -36.6 to -29.0??? and ??37Cl = -14.5 to -11.5???, and these showed no apparent systematic variation with either temperature or bacterial strain. An experiment using 18O-enriched water (??18O = +198???) gave results indistinguishable from those observed in the isotopically normal water (??18O = -8.1???) used in the other experiments, indicating negligible isotope exchange between perchlorate and water during biodegradation. The fractionation factor ratio ??18O/??37Cl was nearly invariant in all experiments at 2.50 ?? 0.04. These data indicate that isotope ratio analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (??18O/??37Cl) also has significant implications for forensic studies. ?? 2007 American Chemical Society.

  10. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob;

    2013-01-01

    The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1...... distributed bioactive zones with partial degradation to ethene were identified in the clay till matrix (thickness from 0.10 to 0.22 m). In one sub-section profile the presence of Dhc with the vcrA gene supported the occurrence of degradation of cis-DCE and VC, and in another enriched δ13C for TCE, cis-DCE and...

  11. Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values

    International Nuclear Information System (INIS)

    Highlights: ► TCE and cis-DCE Cl isotope fractionation was investigated for the first time with ZVI. ► A C–Cl bond is broken in the rate-limiting step during ethylene ZVI dechlorination. ► Dual C/Cl isotope plot is a promising tool to discriminate abiotic degradation. ► Product-related carbon isotopic fractionation gives evidence of abiotic degradation. ► Hydrogenolysis and β-dichloroelimination pathways occur simultaneously. - Abstract: This study investigated C and, for the first time, Cl isotope fractionation of trichloroethene (TCE) and cis-dichloroethene (cis-DCE) during reductive dechlorination by cast zero-valent iron (ZVI). Hydrogenolysis and β-dichloroelimination pathways occurred as parallel reactions, with ethene and ethane deriving from the β-dichloroelimination pathway. Carbon isotope fractionation of TCE and cis-DCE was consistent for different batches of Fe studied. Transformation of TCE and cis-DCE showed Cl isotopic enrichment factors (εCl) of −2.6‰ ± 0.1‰ (TCE) and −6.2‰ ± 0.8‰ (cis-DCE), with Apparent Kinetic Isotope Effects (AKIECl) for Cl of 1.008 ± 0.001 (TCE) and 1.013 ± 0.002 (cis-DCE). This indicates that a C–Cl bond breakage is rate-determining in TCE and cis-DCE transformation by ZVI. Two approaches were investigated to evaluate if isotope fractionation analysis can distinguish the effectiveness of transformation by ZVI as opposed to natural biodegradation. (i) Dual isotope plots. This study reports the first dual (C, Cl) element isotope plots for TCE and cis-DCE degradation by ZVI. The pattern for cis-DCE differs markedly from that reported for biodegradation of the same compound by KB-1, a commercially available Dehalococcoides-containing culture. The different trends suggest an expedient approach to distinguish abiotic and biotic transformation, but this needs to be confirmed in future studies. (ii) Product-related isotope fractionation. Carbon isotope ratios of the hydrogenolysis product cis

  12. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  13. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks

    Science.gov (United States)

    Révész, Kinga M.; Lollar, Barbara Sherwood; Kirshtein, Julie D.; Tiedeman, Claire R.; Imbrigiotta, Thomas E.; Goode, Daniel J.; Shapiro, Allen M.; Voytek, Mary A.; Lancombe, Pierre J.; Busenberg, Eurybiades

    2014-01-01

    An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in 2H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ13C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ2H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H2 gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE + VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average 13C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect of the

  14. Assessing biodegradation of chlorinated aliphatic hydrocarbons in a river sediment by conservative and reactive isotope tracers (2H, 18O, 13C)

    International Nuclear Information System (INIS)

    Full text: This study is part of the joint project SEDBARCAH, which investigates the intrinsic capacity of microbial communities in eutrophic river sediments as natural biobarriers against the release of chlorinated aliphatic hydrocarbons (CAHs) from polluted ground water into surface water. The study site is located in an industrial area in Vilvoorde (Belgium) and characterized by heavily CAH-contaminated groundwater, which infiltrates the sediments of the eutrophic river Zenne. The stable isotopic compositions (δ2H, δ18O) of ground water, interstitial water, and Zenne surface water were used as conservative tracers to distinguish between river sediment zones, which are characterized by (i) ground water influx and exfiltration and (ii) river water infiltration and mixing between ground and surface water. Interstitial water was sampled in 3 longitudinal river sediment profiles in up to 3 depths in a 45 m long section of the Zenne. The δ2H- and δ18O-data show that ground water and Zenne surface water are isotopically clearly distinct. Interstitial water mostly exhibits δ2H- and δ18O-values identical or close to ground water, indicating influx of ground water into the sediments and exfiltration into the surface water at these positions. However, at several sampling positions and depths δ2H- and δ18O-values of interstitial water approaches or attains those of Zenne surface water. This testifies to surface water infiltration into the river sediments and mixing with ascending groundwater. These findings thus reflect the existence of small- to mid-scale hydraulic heterogeneities in the sediment and/or differences in the basal river flow velocities, which led to the establishment of zones of rapid as well as slow or even suppressed discharge of CAH-contaminated ground water into the Zenne surface water. At present, the CAH-pollution in the ground and interstitial water consists of vinyl chloride (VC), cis-1,2-dichloroethene (cis-DCE), and 1,1-dichloroethane (1

  15. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.;

    2016-01-01

    was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast...

  16. Determination of water movement in the unsaturated zone at Yucca Mountain using chloride, bromide, and chlorine isotopes as environmental tracers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-31

    This report, prepared by Hydro Geo Chem staff for Los Alamos National Laboratory, summarizes work conducted by the company under Subcontract 9-XG1-N3993-1. The ultimate objective of this work is to characterize the movement of subsurface water in the vicinity of Yucca Mountain, Nevada. Data produced under this contract is to be used by the US Department of Energy in its Yucca Mountain Site Characterization Project (YMP) to help determine hydrologic flows that may affect the performance of a potential nuclear waste repository. The data may be used in the licensing proceedings, and certain quality assurance procedures have thus been required. The work has focussed on measuring the distribution of environmental tracers-chlorine-36, chlorine, and bromine-and on evaluating the depth to which these conservative solutes have percolated in the unsaturated zone at Yucca Mountain. The following discussion summarizes progress made on the tasks outlined in the original Scope of Work. Details of this work and all data acquired by Hydro Geo Chem for this subcontract have been systematically organized in logbooks and laboratory notebooks. These documents have been structured to make it easy to trace the analytical history of a sample, from time of receipt to the final analytical results.

  17. 水中氯代烃单体碳同位素分析中预富集方法进展%Review on Pre-enrichment Methods in Compound Specific Carbon Isotope Analysis of Chlorinated Hydrocarbon in Water

    Institute of Scientific and Technical Information of China (English)

    凌媛; 黄毅; 尚文郁; 谢曼曼; 刘舒波; 孙青

    2011-01-01

    Highly accurate determination of Compound Specific Carbon Isotope Analysis ( CSIA ) of chlorinated hydrocarbons is of great significance in tracing the source and revealing the biodegradating progress of pollutants. The isotopic composition of organic contaminations may be stable or varied in the process of environmental transformation. We can trace the source of contaminations if the composition is stable and can evaluate the probability and degree of degradation of contaminations. This paper summarizes solid-phase microextraction, static headspace analysis, purge and trap method and compound specific isotope analyses of chlorinated hydrocarbon in water, using combinations of these pretreatment methods, Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry ( GC-C-IRMS ), and comparesthe three methods. Compared with liquid-liquid extraction, solid-phase micro extraction, static headspace analysis, purge and trap method are all solvent-free enrichment techniques, producing no secondary pollution, less interference, and the resolution and accuracy of the analysis of GC-C-IRMS is improved. No, or little, isotopic mass fractionation occurred during the isotope analysis of chlorinated hydrocarbon in water by combining these solvent-free enrichment techniques with GC-C-IRMS, of which the precision of the analysis is less than l%e. The detection limit decreased along with the methods of static headspace analysis, solid-phase micro extraction, purge and trap method. Purge and trap is the most popular method because of its good reproducibility and low detection limit for the compound specific isotope analysis of chlorinated hydrocarbon in Water. The combinations of in-needle microextraction, in-tube microextraction, stir bar sorptive extraction or headspace sorptive extraction with GC-C-IRMS have a bright future.%高精度准确测定氯代烃单体碳同位素对示踪污染物来源,了解污染物的生物降解过程具有重要意义.在环境转化过程中,

  18. Chlorinated tyrosine derivatives in insect cuticle

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2004-01-01

    , not-yet sclerotized cuticle of adult femur and tibia, the amounts increased rapidly during the first 24 h after ecdysis and more slowly during the next two weeks. Control analyses using stable isotope dilution mass spectrometry have confirmed that the chlorinated tyrosines are not artifacts formed...

  19. Technology assessment: Chlorine chemistry

    International Nuclear Information System (INIS)

    Chlorine is not just one of many chemical feedstocks which is used in a few definitely harmful products like PVC or CFC but is irrelevant in all other respects. Just the opposite is true: There is hardly any product line of the chemical industry that can do without chlorine, from herbicides and pesticides to dyes, plastics, pharmaceuticals, photographic atricles, and cosmetics. Chlorine is not only a key element of chemical production but also an ubiquitous element of everyday life in civilisation. There are even many who would agree that the volume of chlorine production is an indicator of the competitive strength and national wealth of a modern society. By now, however, it has become evident that the unreflected use of chlorine is no longer ecologically acceptable. The consequences of a chlorine phase-out as compared to the continued chlorine production at the present level were investigated scientifically by a PROGNOS team. They are presented in this book. (orig.)

  20. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. PMID:26657361

  1. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

    International Nuclear Information System (INIS)

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for 35Cl+ to more than 6 x 105 cps for 238U+ for 1 μg of trace element per gram of coal sample. Detection limits vary from 450 ng g-1 for chlorine and 18 ng g-1 for sulfur to 9.5 pg g-1 for mercury and 0.3 pg g-1 for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. (orig.)

  2. Water Treatment Technology - Chlorination.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  3. Chlorine solar neutrino experiment

    International Nuclear Information System (INIS)

    The chlorine solar neutrino experiment in the Homestake Gold Mine is described and the results obtained with the chlorine detector over the last fourteen years are summarized and discussed. Background processes producing 37Ar and the question of the constancy of the production rate of 37Ar are given special emphasis

  4. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F. [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria); Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany); Heilmann, Jens; Heumann, Klaus G. [Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany); Prohaska, Thomas [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria)

    2007-10-15

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for {sup 35}Cl{sup +} to more than 6 x 10{sup 5} cps for {sup 238}U{sup +} for 1 {mu}g of trace element per gram of coal sample. Detection limits vary from 450 ng g{sup -1} for chlorine and 18 ng g{sup -1} for sulfur to 9.5 pg g{sup -1} for mercury and 0.3 pg g{sup -1} for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. (orig.)

  5. Reaction products of chlorine dioxide.

    OpenAIRE

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxi...

  6. Chlorine trifluoride (1963)

    International Nuclear Information System (INIS)

    This monograph on chlorine trifluoride may be considered as a working tool useful in gaseous diffusion research. It consists of data gathered from the literature and includes furthermore a certain amount of original data. This monograph groups together the physical, chemical and physiological properties of chlorine trifluoride, as well as the preparation and analytical methods. It has been thought wise to add some technological information, and the safety regulations governing its use. (authors)

  7. Zirconia concentrate chlorination

    International Nuclear Information System (INIS)

    Chlorination experiments were conducted in order to study the kinetics of gasification of the zirconium oxide present in the zirconia concentrate. The variables studied are temperature (1173 to 1373 K), percentage of reducing agent (12 to 36%) and porosity (22 to 30%). The results indicated a greater influence of temperature and percentage of reducing agent as well as allowed the conclusion that a balance between the levels of these variables is an important factor in the appropriate chlorination conditions. (author)

  8. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    OpenAIRE

    Taylor, Robert H.; Joseph O. Falkinham; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains wer...

  9. Chlorination of zirconyte concentrate

    International Nuclear Information System (INIS)

    Chlorination experiments with zirconyte concentrate were carried out in order to study the effects of temperature, percentage of reducing agent and porosity on the gasification of ZrO2 for 10 and 20 minutes of reaction. Factorial analysis was applied and the results indicated that temperature and percentage of reducing agent were the two only variables effecting the ZrO2 gasification. (author)

  10. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    OpenAIRE

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the ...

  11. The chlorination of cooling water

    International Nuclear Information System (INIS)

    After reviewing the means of fighting biological pollution of cooling water circuits in nuclear power stations, the authors describe the chlorination treatment methods used by EDF. This deals with the massive shock chlorination of the cooling towers and the continuous low-level chlorination of coastal nuclear power stations. In both areas, the Research and Development Board of EDF has carried out and encouraged research with the aim of improving circuit protection, while still protecting the aquatic eco-system against damage that might be caused by waste chlorinated water

  12. separation of thorium from the rare earth elements by chlorination in Eskisehir-Beylikahir ore

    International Nuclear Information System (INIS)

    There are 3 fissionable isotopes for nuclear energy generation and these are ''2''3''5U, ''2''3''9Pu, 233U.233U has the highest neutron yield of these three isotopes. 235U has the lowest neutron yield is issued widely as a fuel in nuclear reactors because it occurs in nature.233U is produced by irradiation of thorium in reactors. Bastnasit are containing rare earths, in eskisehir, Turkey, also contains Th. Th content and its composition differ according to the area. In this study chlorination of the ores of various content is proposed for separation of the Th from rare earths in place of the conventional acid and alkaline leach methods.The ore is crushed and grinded under 75 micrometers and mixed with C at 1:1 ratio for chlorination. This mixture is humidified and dried in a drying oven. The caked mixture is then chlorinated in a chlorination furnace. Particle size of thorium ore, chlorination time and temperature, ore/carbon ratio of the mixture, choline gas flow rate, Th content of the ore are parameters affecting the chlorination yield. Fluorite mineral in the ore decreases the chlorination yield

  13. Investigation of Stable C and Cl Isotope Effects of Trichloroethene and Tetrachloroethylene during Evaporation at Different Temperatures

    Institute of Scientific and Technical Information of China (English)

    Tingting Yu; Yiqun Gan; Aiguo Zhou; Kai Yu; Yunde Liu

    2014-01-01

    There are variations of reported isotope enrichment factors of chlorinated organic contaminants in evaporation processes. Trichloroethene (TCE) and tetrachloroethylene (PCE) were chosen to study carbon and chlorine isotope effects during evaporation at different temperatures. Equilibrium vapor-liquid carbon and chlorine isotope effects experiments were also conducted. In the equilibrium liquid-vapor system, the 13C was enriched but 37Cl was depleted in the vapor phase, being consistent with previous results. For evaporation average carbon isotope enrichment factor εC were +0.28‰± 0.01‰ for TCE and +0.56‰±0.09‰ for PCE at temperature from 20 to 26 ºC. Meanwhile, average chlorine isotope enrichment factor εCl were -1.33‰±0.21‰ for TCE and -1.00‰±0.00‰ for PCE. The results indicate that during evaporation the equilibrium isotope effect attenuates the magnitude of carbon isotope fractionation whereas enhances the chlorine isotope effect. Isotope fractionation during evaporation is determined by both equilibrium and kinetic factors. Chlorine isotope fractionation is influenced by the evaporation rate which is linked to temperature. When using stable isotope to investigate the behavior of chlorinated organic contaminants in groundwater with slow biodegradation rate, the isotope fractionation resulted from evaporation should be taken into consideration. Furthermore, the environment conditions such as temperature are also factors to be considered.

  14. Site-selective photofragmentation of chlorinated polymeric films observed around the chlorine K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, C., E-mail: csilva@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém 25250-020, Duque de Caxias, RJ (Brazil); Mendes, L.A.V. [Instituto de Física, Universidade Federal da Bahia, Ondina, 40210-340 Salvador, BA (Brazil); Pinho, R.R. [Departamento de Física-ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-330 Juiz de Fora, MG (Brazil); Ferreira, M. [PEMM/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de; Rocha, A.B.; Rocco, M.L.M. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ (Brazil)

    2013-03-29

    Highlights: ► PVC and PVDC were studied by PSID and NEXAFS techniques at the Chlorine 1s-edge. ► PVC film presented isotope ratio of 3:1 in the PSID spectrum. ► Cl{sup +} ion yield curves reproduce the photoabsorption spectrum for both polymers. ► Site-selectivity of C–Cl bond breaking due to an efficient spectator Auger decay. - Abstract: Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly(vinyl chloride) (PVC) and poly(vinyl dichloride) (PVDC) around the chlorine 1s-edge. Experiments were performed using a synchrotron source operating in the single-bunch mode and a time-of-flight mass spectrometry for ion analysis. Cl{sup +} ion yields, as a function of the photon energy, reproduce the photoabsorption spectrum, showing significant increase at the 1s-resonance. Edge-jump ratios, defined as the ratio between edge-jumps (intensity ratio of the yields between above and below the absorption edge) of two different transitions, for Cl{sup +} ion yields were much higher than the equivalent electron yields, indicating site-selectivity in C–Cl bond breaking for both polymers, as a result of efficient spectator Auger decay. The expected isotope ratio of 3:1 for chlorine was measured for PVC. The interpretation of the NEXAFS spectrum was assisted by quantum mechanical calculations at a multireference perturbation theory level.

  15. Studies with solid chlorine chemical for chlorination of sea water systems

    International Nuclear Information System (INIS)

    Chlorination is one of the conventional methods to control biofouling of condenser cooling water systems using either river water, reservoir water or sea water. However, there are many safety concerns associated with handling, storage and application of gaseous chlorine. Studies were carried out with suitable alternative chlorine chemical compounds which do not involve majority of these concerns but meet the functional requirement of gas chlorine. Trichloroisocyanuric Acid (TCCA) is one of the suitable alternatives to Gas chlorine. TCCA is a chlorine stabilized compound, stabilized with Cyanuric acid, thus similar to Gas Chlorine in its functions except that it is available in solid form. Release of chlorine is a gradual process in TCCA unlike Gaseous chlorine. Field studies with TCCA indicated gradual and near uniform release rate of chlorine, for longer duration with the requisite free residual chlorine levels (FRC). Thus, use of TCCA could be considered as a suitable alternative for gas chlorine for regular chlorination requirements. (author)

  16. Radiochemical analysis of chlorine-36

    International Nuclear Information System (INIS)

    The aim of this paper is to propose a radiochemical separation method of chlorine-36 from other beta-gamma emitters based on an oxidation technique where chlorine is trapped by NaOH. Chlorine-36 beta emissions are measured by liquid scintillation counting by the dual label technique in order to avoid the contamination produced by carbon-14 which is also trapped by NaOH and it is the main contaminant present in graphite samples. The sensitivity of this radiochemical method is high enough to achieve the needed thresholds for the radiological characterization of the radioactive materials in which this method can be applied

  17. Handbook of environmental isotope geochemistry: The terrestrial environment, B. Volume 2

    International Nuclear Information System (INIS)

    This book examines environmental isotope geochemistry in relation to the terrestrial environment. Topics considered include mathematical models for the interpretation of environmental radioisotopes in groundwater systems; isotopes in cloud physics: multiphase and multistage condensation processes; environmental isotopes in lake studies; environmental isotope and anthropogenic tracers of recent lake sedimentation; stable isotope geochemistry of travertines; isotope geochemistry of carbonates in the weathering zone; geochronology and isotopic geochemistry of speleothems; oxygen and hydrogen isotope geochemistry of deep basin brines; isotope effects of nitrogen in the soil and biosphere; chlorine-36 in the terrestrial environment; radioactive noble gases in the terrestrial environment and isotopes and food

  18. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  19. Kinetic study of neodymium oxide chlorination with gaseous chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Marta V., E-mail: marta.bosco@cab.cnea.gov.ar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Fouga, Gaston G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Complejo Tecnologico Pilcaniyeu, Comision Nacional de Energia Atomica, Avenida Bustillo 9500, CP 8400 San Carlos de Bariloche (Argentina); Bohe, Ana E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Complejo Tecnologico Pilcaniyeu, Comision Nacional de Energia Atomica, Avenida Bustillo 9500, CP 8400 San Carlos de Bariloche (Argentina); Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, CP 8400 San Carlos de Bariloche (Argentina)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer We analyze the kinetics of the neodymium oxide chlorination reactions. Black-Right-Pointing-Pointer For temperatures below 425 Degree-Sign C the system is under chemical control. Black-Right-Pointing-Pointer The formation of oxychloride progresses through a nucleation and growth mechanism. Black-Right-Pointing-Pointer A reaction order of 0.40 with respect to chlorine partial pressure was determined. Black-Right-Pointing-Pointer An activation energy of 161 {+-} 4 kJ mol{sup -1} was determined. - Abstract: The kinetics of the chlorination of neodymium oxide has been investigated by thermogravimetry between 312 Degree-Sign C and 475 Degree-Sign C, and for partial pressures of chlorine ranging from 10 kPa to 50 kPa. The starting temperature for the reaction of neodymium oxide with chlorine was determined to be about 250 Degree-Sign C, leading to neodymium oxychloride as product. The results showed that, for temperatures below 425 Degree-Sign C, the system is under chemical control and the formation of the oxychloride progresses through a nucleation and growth mechanism. The influence of chlorine mass transport through the bulk gas phase and through the boundary layer on the overall reaction rate was analyzed. In the absence of these two mass-transfer steps, a reaction order of 0.39 with respect to chlorine partial pressure, and an activation energy of 161 {+-} 4 kJ mol{sup -1} were determined. A complete rate equation has been successfully developed.

  20. Effects of Chlorine on Enterovirus RNA Degradation

    Science.gov (United States)

    The primary mechanism of disinfection of waterborne pathogens by chlorine has always been believed to be due to the alteration of proteins by free chlorine and subsequent disruption of their biological structure.

  1. Stable isotope sales: Mound customer and shipment summaries, FY 1982

    International Nuclear Information System (INIS)

    A listing is given of Mound's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1982. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  2. Stable isotope sales: Mound customer and shipment summaries, FY 1984

    International Nuclear Information System (INIS)

    A listing is given of Mound's sales of stable isotopes of noble gases, deuterium, carbon, oxygen, nitrogen, chlorine, bromine, and sulfur for Fiscal Year 1984. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location and a cross-reference listing by isotope purchased are included for all customers

  3. Stable isotopes sales: Mound customer and shipment summaries, FY 1985

    International Nuclear Information System (INIS)

    A listing is given of Mound's sales of stable isotopes of noble gases, deuterium, carbon, oxygen, nitrogen, chlorine, bromine, and sulfur for fiscal year 1985. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic and foreign customers. Cross-reference listings by isotope purchased are included for all customers

  4. New Isotopes In Hydrology And Their Applications

    International Nuclear Information System (INIS)

    In recent years, new isotopes have been being used in hydrology. The increase in the number of the hydrologic problems in time, and the necessity of more detailed information about the origin and the dynamics of the water cause to apply these new isotopes. There are lots of isotopes can be used in problems where the oxygen, hydrogen and the carbon isotopes are not sufficient or can not be used any more (such as the recession of tritium to background level, the requirement of dating much older water than the range of 14C). Some of these are used for groundwater dating, and some are used in origin and pollution problems. In this study, the hydrologic application areas of the helium, krypton, argon, chlorine, strontium, nitrogen and iodine isotopes are summarized. The technological enhancements in laboratories will result the extensive use of these isotopes and the newer isotopes, which will provide to solutions to new hydrological problems

  5. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    OpenAIRE

    Korich, D G; Mead, J R; Madore, M S; Sinclair, N. A.; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactiv...

  6. Reducing chlorination of niobium pentoxide

    International Nuclear Information System (INIS)

    Studies of cylindric briquettes of Nb2O5 and carbon are presented. The effects of chlorine flow, dimension of the briquettes, porosity, percentage of the reducing agent in the mixture and temperature are analysed. The volatilization aspect of Nb2O5 by the briquettes and the structural transformations of the samples are described. (M.A.C.)

  7. Novel chlorinated derivatives of BODIPY

    OpenAIRE

    Garcia-Moreno, I.; Costela González, Ángel; Chiara, José Luis; Duran-Sampedro, G.; Ortiz, M. J.; Rodríguez Agarrabeitia, Antonio

    2012-01-01

    [EN] The invention relates to the use of novel dyes with a BODIPY structure, characterised in that they contain at least one chlorine atom bound to the carbons of the boradiazaindacene system, to the use thereof as laser dyes and fluorescent markers, and to a method for obtaining some of these compounds.

  8. Method for separation of isotopes

    International Nuclear Information System (INIS)

    The initial material UCl6 flows through the separation facility in vaporous form, the mixture of isotopes being selectively excited by means of lasers. Separation of the excited molecules is done chemically or physically. The non-excited molecules get to an isotope balancing section, where the chlorine gas is supplied in natural composition with a quantitative ratio of 76 : 24 for 35Cl : 37Cl, and the UCl6 is restored to its original composition. This cycle is repeated for enrichment of 235U or 238U. (DG)

  9. Effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chlorine content and position of chlorinated phenols have many significant effects on the reactivity of oxido-reduction. The effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate were evaluated through different kinetics studies. Since chlorine was an electron withdrawing atom, the substitution of chlorine on the aromatic ring decreased the oxidation rate constant by σ-electron withdrawing conductive effect; at the same time, the substitution of chlorine at ortho or para position on the aromatic ring increased the oxidation rate constant by π-electron donating conjugative effect, and the conjugative effect could counteract the negative impact of the conductive effect to some extent. On the other hand, the substitution of chlorine at ortho position on the aromatic ring decreased the oxidation rate constant by steric hindrance effect. The oxidation rate constants of phenol and chlorinated phenols studied decreased as follow order: 4-chlorophenol>2,4-dichlorophenol>phenol>2,6-dichlorophenol.

  10. Water Chlorination for human consumption

    International Nuclear Information System (INIS)

    Beginning from this issue, an initiative of Federgasacqua (Federal association dealing with the gas and the water) takes place through the activities of the Task Forces Water Quality Control and Materials and Processes, which aim is to offer to the water industry operators and updated information concerning some main subjects, emphasizing in particular the technical and management applied topics. The paper deals with the chlorination processes in drinking water treatment. An overview of the italian situation is presented, concerning disinfection as well as other oxidation processes, together with an historical background on chlorination. Concerning the applications, the chemical technologies and the main processes, the disinfectant effectiveness and the byproducts formation have been described. Further, the regulations in force have been reported and discussed on national and international bases

  11. Metabolic fate of chlorinated paraffins

    International Nuclear Information System (INIS)

    The disposition of three [1-14C]-chlorododecanes (MCDD, PCDD I and PCDD II; 17.4%, 55.9%, and 68.5% chlorination) was studied in C57Bl mice. [1-14C]-lauric acid (LA) was studied as reference compound. Fifty-two percent (MCDD), 32% (PCDD I), and 8% (PCDD II) of the radioactive doses were exhaled as 14CO2 during 12 h after i.v. injection. Similar results were obtained after p.o. administration. In addition to a marked labelling of the liver and fat, the distribution patterns observed at 24 h after administration revealed an uptake of radioactivity in tissues with high cell turnover/high metabolic activity, e.g., intestinal mucosa, bone marrow, salivary glands and thymus. The concentration of radioactivity in these sites and the exhalation of 14CO2, which were inverse to the degree of chlorination, indicate that the chloroalkanes are degraded to metabolites which can be utilized in the intermediary metabolism. A similar, although more pronounced, distribution pattern and 14CO2-exhalation (70% of i.v. dose) was observed after LA administration. The long time retention of heptane-soluble radioactivity in liver and fat (indicating unmetabolized substance) increased with degree of chlorination. On the contrary, the administration of LA and the chlorododecanes MCDD and PCDD I, but not of PCDD II, resulted in a selective labelling of the central nervous system 30-60 days after injection. (orig.)

  12. Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers.

    Science.gov (United States)

    Stelzer, Nicole; Imfeld, Gwenaël; Thullner, Martin; Lehmann, Jürgen; Poser, Alexander; Richnow, Hans-H; Nijenhuis, Ivonne

    2009-06-01

    Biodegradation of chlorobenzenes was assessed at an anoxic aquifer by combining hydrogeochemistry and stable isotope analyses. In situ microcosm analysis evidenced microbial assimilation of chlorobenzene (MCB) derived carbon and laboratory investigations asserted mineralization of MCB at low rates. Sequential dehalogenation of chlorinated benzenes may affect the isotope signature of single chlorobenzene species due to simultaneous depletion and enrichment of (13)C, which complicates the evaluation of degradation. Therefore, the compound-specific isotope analysis was interpreted based on an isotope balance. The enrichment of the cumulative isotope composition of all chlorobenzenes indicated in situ biodegradation. Additionally, the relationship between hydrogeochemistry and degradation activity was investigated by principal component analysis underlining variable hydrogeochemical conditions associated with degradation activity at the plume scale. Although the complexity of the field site did not allow straightforward assessment of natural attenuation processes, the application of an integrative approach appeared relevant to characterize the in situ biodegradation potential. PMID:19250727

  13. Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions

    NARCIS (Netherlands)

    van der Heijden, A.W.A.M.; Podkolzin, S.G.; Jones, M.E.; Bitter, J.H.; Weckhuysen, B.M.

    2008-01-01

    Chlorinated hydrocarbons (CHCs) remain important industrial chemical intermediates and solvents, especially for the exploration of the potential of La-based materials for the conversion of chlorinated waste compounds.[1] The production of industrially important CHCs frequently occurs with concurrent

  14. Compound specific stable isotope analysis: research frontiers in isotope hydrology and water resources management

    International Nuclear Information System (INIS)

    Compound Specific Isotope Analysis (CSIA) - the characterization of stable isotope compositions of individual contaminant compounds dissolved in groundwater, sparked a revolution in the interface between isotope geochemistry and contaminant hydrogeology. Stable isotope fingerprints can provide diagnostic tools to identify and differentiate sources of contamination. Furthermore CSIA rapidly proved a novel method for investigation of abiotic and biotic remediation potential at contaminated sites. Several novel developments in CSIA are directly relevant to moving applications of this field from point source contamination to larger regional watershed and ground water resource management applications. The limits of sensitivity and detection limit are being pushed back to facilitate the application of CSIA to low concentrations of contaminants in more diffusive sources. Multi-isotope approaches such as incorporation of both carbon and hydrogen isotope signatures, which to date have been used primarily for non-chlorinated hydrocarbons, are now being extended to investigation of chlorinated hydrocarbon compounds. Improved detection limits and chromatography are facilitating applications of CSIA to new classes of compounds including pesticides, and chlorinated aromatics, where the presence of many isomers presents both an analytical challenge and a challenge for identifying promising lines of evidence for biodegradation. (author)

  15. Compound specific stable isotope analysis: Research frontiers in isotope hydrology and water resources management

    International Nuclear Information System (INIS)

    Compound Specific Isotope Analysis (CSIA) - the characterization of stable isotope compositions of individual contaminant compounds dissolved in groundwater, sparked a revolution in the interface between isotope geochemistry and contaminant hydrogeology. Stable isotope fingerprints can provide diagnostic tools to identify and differentiate sources of contamination. Furthermore CSIA rapidly proved a novel method for investigation of both abiotic and biotic remediation potential at contaminated sites. Several novel developments in CSIA are directly relevant to moving applications of this fi eld from point source contamination to larger regional watershed and ground water resource management applications. The limits of sensitivity and detection limit are being pushed back to facilitate the application of CSIA to low concentrations of contaminants in more diffuse sources. Multi-isotope approaches such as incorporation of both carbon and hydrogen isotope signatures, which to date have been used primarily for non-chlorinated hydrocarbons, are now being extended to investigation of chlorinated hydrocarbon compounds. Improved detection limits and chromatography are facilitating applications of CSIA to new classes of compounds including pesticides, and chlorinated aromatics, where the presence of many isomers presents both an analytical challenge and a challenge for identifying promising lines of evidence for biodegradation. (author)

  16. Fracturing graphene by chlorination: a theoretical viewpoint

    OpenAIRE

    Ijäs, M.; Havu, P.; Harju, A.

    2012-01-01

    Motivated by the recent photochlorination experiment [B. Li et al., ACS Nano 5, 5957 (2011)], we study theoretically the interaction of chlorine with graphene. In previous theoretical studies, covalent binding between chlorine and carbon atoms has been elusive upon adsorption to the graphene basal plane. Interestingly, in their recent experiment, Li et al. interpreted their data in terms of chemical bonding of chlorine on top of the graphene plane, associated with a change from sp2 to sp3 in ...

  17. Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers

    International Nuclear Information System (INIS)

    Biodegradation of chlorobenzenes was assessed at an anoxic aquifer by combining hydrogeochemistry and stable isotope analyses. In situ microcosm analysis evidenced microbial assimilation of chlorobenzene (MCB) derived carbon and laboratory investigations asserted mineralization of MCB at low rates. Sequential dehalogenation of chlorinated benzenes may affect the isotope signature of single chlorobenzene species due to simultaneous depletion and enrichment of 13C, which complicates the evaluation of degradation. Therefore, the compound-specific isotope analysis was interpreted based on an isotope balance. The enrichment of the cumulative isotope composition of all chlorobenzenes indicated in situ biodegradation. Additionally, the relationship between hydrogeochemistry and degradation activity was investigated by principal component analysis underlining variable hydrogeochemical conditions associated with degradation activity at the plume scale. Although the complexity of the field site did not allow straightforward assessment of natural attenuation processes, the application of an integrative approach appeared relevant to characterize the in situ biodegradation potential. - Lines of evidence for in situ biodegradation of chlorinated benzenes in an anoxic aquifer by combining hydrogeochemical and stable isotope data with multivariate statistics.

  18. The continuous chlorination of plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, M.J.

    1959-08-14

    Previous reports on the chlorination of plutonium dioxide describe numerous small-scale experiments and a few fair-sized batch preparations. The chemistry of chlorination by numerous reagents is covered, but no process had received sufficient study for large-scale preparation of anhydrous plutonium trichloride. The literature search revealed no extensive studies on chlorination rates, exhaust gas filtering, atmospheric requirements, reactor materials, etc. A program was undertaken to select a chlorination process, to develop the necessary information for defining operating conditions and equipment specifications, and then to demonstrate the operation of the process.

  19. Potassium chloride production by microcline chlorination

    International Nuclear Information System (INIS)

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl2–N2 mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated

  20. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  1. Water budget of a dam in the semi-arid northeast of Brazil based on oxygen-18 and chlorine contents

    International Nuclear Information System (INIS)

    The water balance of an artificial reservoir in the northeast of Brazil is derived by using the variations of oxygen isotopes and chlorine contents. With these two methods, the water losses through subsurface outflow are estimated at 20-40%. A more accurate evaluation would require an investigation of the variability of the relative humidity of the atmosphere. (author)

  2. Behavior of chlorine in lake water

    International Nuclear Information System (INIS)

    Water from monsoon fed Sagre lake is being used as a source of raw water for Tarapur Atomic Power Station (TAPS--1 and 2). The raw water from the lake is initially pumped to Sagre water treatment plant (SWTP) operated by Maharashtra Industrial Development Corporation (MIDC) from where, the processed water is sent to cater the needs of both the units of TAPS-1 and 2, townships of TAPS and MIDC, and the nearby villages. At the SWTP the raw water is treated with alum to remove the turbidity, filtered and chlorinated using bleaching powder. All these years the raw water is chlorinated in such a way whereby a residual chlorine level of 0.5-1.0 mg/l, is maintained at the outlet of water treatment plant. The adequacy of the current chlorination practice was investigated, at the request of the NPC-500 MWe group during 1990, so that the future requirements of raw water for TAPP-3 and 4, can be met from the expanded SWTP. In this connection experiments on chlorine dose -- residual chlorine relationship and the decay pattern of chlorine with time was carried out in the lake water (with low value of total dissolved solids and total hardness 3 sample at the site. The total bacterial count in the raw water observed to be 107 counts/ml originally came down to 103 counts/ml at the end of one-hour exposure time to chlorine. It was found that the chlorine demand of the water was around 6 mg/l. In addition Jar test to evaluate the aluminum dose was also carried out. Based on these experiments a chlorine dose of 6 mg/l for one hour contact time was arrived at. The experimental findings were in agreement with the current chlorination practices. (author)

  3. Chlorine dioxide and by-products in water distribution systems

    OpenAIRE

    Ferreira, Francisco Cardoso

    1991-01-01

    Chlorine dioxide is used as both a pre-oxidant and/or a post-disinfectant in several water treatment plants in the United States. Chlorine dioxide is associated with its byproducts chlorite and chlorate. Chlorine dioxide, chlorine, chlori te and chlorate were sampled in four distribution systems where chlorine dioxide is used for disinfection purposes: Charleston, WV, Columbus, GA, New Castle, PA, and Skagit, WA. The fate of chlorine dioxide and its by-products in dist...

  4. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine.

    OpenAIRE

    Berman, D.; Hoff, J C

    1984-01-01

    The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s...

  5. The isotopic distribution conundrum.

    Science.gov (United States)

    Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz

    2012-01-01

    Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart

  6. Isotopic Biogeochemistry

    Science.gov (United States)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  7. 21 CFR 173.300 - Chlorine dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chlorine dioxide. 173.300 Section 173.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.300 Chlorine...

  8. Chlorine demand and residual chlorine decay kinetics of Kali river water at Kaiga project area

    International Nuclear Information System (INIS)

    The nuclear power plant at Kaiga would use Kali river water for condenser cooling. This necessitated studies on the chemistry of chlorination such as chlorine demand, kinetics of chlorination and other water characteristics aimed at obtaining base line data. The study revealed significant seasonal variation of chlorine demand ranging from 0.5 ppm to 1.7 ppm (3.0 ppm dose, 30 min contact time) and total consumption of 5.0 ppm (10.0 ppm dose, 48 hours contact time). The reaction follows first order kinetics in chlorine. High correlation of chlorine demand with chlorophyll a, suspended matter, turbidity, silica, nitrite, phosphate and sulphate indicated that chlorine demand is greatly influenced by water quality. (author). 3 refs., 1 tab

  9. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  10. Chlorine

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Page last reviewed April ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Download page Subscribe to RSS Get email ...

  11. Derivation of a radionuclide inventory for irradiated graphite-chlorine-36 inventory determination

    International Nuclear Information System (INIS)

    The irradiation of materials in nuclear reactors results in neutron activation of component elements. Irradiated graphite wastes arise from their use in UK gas-cooled research and commercial reactor cores, and in fuel element components, where the graphite has acted as the neutron moderator. During irradiation the residual chlorine, which was used to purify the graphite during manufacture, is activated to chlorine-36. This isotope is long-lived and poorly retarded by geological barriers, and may therefore be a key radionuclide with respect to post-closure disposal facilities performance. United Kingdom Nirex Limited, currently responsible for the development of a disposal route for intermediate-level radioactive wastes in the UK, carried out a major research programme to support an overall assessment of the chlorine-36 activity of all wastes including graphite reactor components. The various UK gas cooled reactors reactors have used a range of graphite components made from diverse graphite types; this has necessitated a systematic programme to cover the wide range of graphite and production processes. The programme consisted of: precursor measurements - on the surface and/or bulk of representative samples of relevant materials, using specially developed methods; transfer studies - to quantify the potential for transfer of Cl-36 into and between waste streams during irradiation of graphite; theoretical assessments - to support the calculational methodology; actual measurements - to confirm the modelling. For graphite, a total of 458 measurements on samples from 57 batches were performed, to provide a detailed understanding of the composition of nuclear graphite. The work has resulted in the generation of probability density functions (PDF) for the mean chlorine concentration of three classes of graphite: fuel element graphite; Magnox moderator and reflector graphite and AGR reflector graphite; AGR moderator graphite. Transfer studies have shown that a significant

  12. Stable isotope sales: Mound Facility customer and shipment summaries, FY 1980

    International Nuclear Information System (INIS)

    A listing is given of Mound Facility's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1980. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  13. Stable isotope sales: Mound Facility customer and shipment summaries, FY 1981

    International Nuclear Information System (INIS)

    A listing is given of Mound Facility's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1981. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  14. Isotopic geology

    International Nuclear Information System (INIS)

    Born from the application to geology of nuclear physics techniques, the isotopic geology has revolutionized the Earth's sciences. Beyond the dating of rocks, the tracer techniques have permitted to reconstruct the Earth's dynamics, to measure the temperatures of the past (giving birth to paleoclimatology) and to understand the history of chemical elements thanks to the analysis of meteorites. Today, all domains of Earth sciences appeal more or less to the methods of isotopic geology. In this book, the author explains the principles, methods and recent advances of this science: 1 - isotopes and radioactivity; 2 - principles of isotope dating; 3 - radio-chronological methods; 4 - cosmogenic isotope chronologies; 5 - uncertainties and radio-chronological results; 6 - geochemistry of radiogenic isotopes; 7 - geochemistry of stable isotopes; 8 - isotopic geology and dynamical analysis of reservoirs. (J.S.)

  15. Isotopic clusters

    International Nuclear Information System (INIS)

    Spectra of isotopically mixed clusters (dimers of SF6) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  16. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    OpenAIRE

    Taylor, G R; Butler, M

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the ...

  17. Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions

    OpenAIRE

    van der Heijden, A.W.A.M.; Podkolzin, S.G.; Jones, M. E.; Bitter, J.H.; Weckhuysen, B. M.

    2008-01-01

    Chlorinated hydrocarbons (CHCs) remain important industrial chemical intermediates and solvents, especially for the exploration of the potential of La-based materials for the conversion of chlorinated waste compounds.[1] The production of industrially important CHCs frequently occurs with concurrent formation of less desirable side-products. For example, mixtures of chlorinated C1 and C2 hydrocarbons are still formed as by-products in industrial processes such as the production of vinyl chlor...

  18. Formation of Chloroform and Other Chlorinated Byproducts by the Chlorination of Antibacterial Products

    OpenAIRE

    Fiss, Edward Matthew

    2006-01-01

    Triclosan is a widely used antibacterial agent found in many personal hygiene products. While it has been established that pure triclosan and free chlorine readily react, interactions between triclosan-containing products and free chlorine have not previously been analyzed. Sixteen double-blinded solutions including both triclosan-containing (1.14-3.12 mg triclosan/g product) and triclosan-free products were contacted with free chlorine. Products detected included (chlorophenoxy)phenols, ...

  19. Chlorine demand studies: a need for optimisation of chlorine doses for biofouling control

    International Nuclear Information System (INIS)

    Studies on chlorine demand, chlorine decay, rate of HOBr formation and speciation of chlorine residuals of cooling water from Madras Atomic Power Station (MAPS) were carried out. April to September was found to be a high demand period. The rate of reaction is faster and also initial demand is relatively high for this seawater as compared to other sea areas. Decay occurs in two phases, the first being instantaneous and the second being very slow. (author). 9 refs., 1 fig

  20. Perchlorate in The Great Lakes: Isotopic Composition and Origin

    OpenAIRE

    Poghosyan, Armen; Sturchio, Neil C.; Morrison, Candice G.; Beloso, Abelardo D., Jr.; Guan, Yunbin; Eiler, John M.; Jackson, W. Andrew; Hatzinger, Paul B.

    2014-01-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ^(18)O, Δ^(17)O) and chlorine (δ^(37)Cl) along with the abundance of the radioactive isotope ^(36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0....

  1. Chlorination of organic material in different soil types

    OpenAIRE

    Gustavsson, Malin

    2009-01-01

    Research has shown that formation of chlorinated organic matter occurs naturally and that organic chlorine is as abundant as the chloride ion in organic soils. A large number of organisms are known to convert inorganic chloride (Clin) to organic chlorine (Clorg) (e.g. bacteria, lichen, fungi and algae) and some enzymes associated to these organisms are capable of chlorinating soil organic matter. The aim with the study was to compare organic matter chlorination rates in soils from several dif...

  2. Ozone depletion and chlorine loading potentials

    Science.gov (United States)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  3. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  4. Radiolytic removal of trihalomethane in chlorinated seawater

    International Nuclear Information System (INIS)

    Biofouling is one of the major operational problems in seawater cooling systems. It is controlled by application of chlorine based biocides in the range of 0.5-2.0 mg L-1. The bromide in seawater reacts with the added chlorine and forms hypobromous acid. The brominated residual biocides react with natural organic matter present in the seawater, resulting in the formation of trihalomethanes (THM) such as bromoform (CHBr3), dibromochloromethane (CHBr2Cl) bromodichloromethane (CHBrCl2). Though THMs represent a small fraction of the added chlorine, they are relatively more persistent than residual chlorine, and hence pose a potential hazard to marine life because of their reported mutagenicity. There have been few reports on removal of THMs from chlorinated seawater. In this work, the efficacy of gamma irradiation technique for the removal of THMs from chlorine-dosed seawater was investigated. Experiments were carried out using seawater collected from Kalpakkam. Irradiation study was conducted in chlorinated (1, 3, and 5 mg L-1 of Cl2) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation using a 60Co Gamma Chamber 5000. Bromoform showed a faster rate of degradation as compared to other halocarbons like bromodichloromethane and dibromochloromethane. This shows the change in total THM concentration with variation in the radiation dose and initial Cl2 dosing. When the percentage degradation of all the three trihalomethane species was compared with applied doses, it was found that the maximum reduction occurred at a dose of 2.5 kGy. The reduction was almost similar for all the three doses (1, 3, 5 ppm of Cl2) used for chlorination. With a further increase in radiation dose to 5.0 kGy, a slight increase in reduction was observed

  5. Photostability of different chlorine photosensitizers

    International Nuclear Information System (INIS)

    In this paper, we report the photodegradation of three different chlorine photosensitizers (Photoditazine®, Radachlorin®, and Foscan®). The photosensitizer degradation was analyzed by changes in the fluorescence spectrum during illumination. The rate of fluorescence variation was normalized to the solution absorption and the photon energy resulting in the determination of the necessary number of photons to be absorbed to induce photosensitizer photodegradation. The parameter for rate of the molecules decay, the photon fluence rate and optical properties of the solution allow us to determine the photosensitizer stability in solution during illumination. The results show that the order of susceptibility for photodegradation rate is: Radachlorin® < Photoditazine® < Foscan®. This difference in the photodegradation rate for Foscan can be explained by the high proportion of aggregates in solution that inhibit the photo-oxidative process that impede the singlet oxygen formation. We hypothesize that there is a correlation between photodegradation rate and photodynamic efficacy witch is governed by the singlet oxygen formation responsible for the most relevant reaction of the cell death photodynamic induction. Then its is important to know the photostability of different types of drugs since the photodegradation rate, the photodegradation as well as the photodynamic efficacy are strong correlated to the oxygen concentration in the tissue

  6. Chlorine Abundances in Cool Stars

    CERN Document Server

    Maas, Z G; Hinkle, K

    2016-01-01

    Chlorine abundances are reported in 15 evolved giants and one M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H$^{35}$Cl at 3.69851 $\\mu$m. The high resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4m telescope. The average [$^{35}$Cl/Fe] abundance in stars with --0.72$<$[Fe/H]$<$0.20 is [$^{35}$Cl/Fe]=(--0.10$\\pm$0.15) dex. The mean difference between the [$^{35}$Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16$\\pm$0.15) dex. The [$^{35}$Cl/Ca] ratio has an offset of $\\sim$0.35 dex above model predictions suggesting chemical evolution models are under producing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and \\ion{H}{2} regions. In one star where both H$^{35}$Cl a...

  7. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability.

    Science.gov (United States)

    Xue, Bin; Jin, Min; Yang, Dong; Guo, Xuan; Chen, Zhaoli; Shen, Zhiqiang; Wang, Xinwei; Qiu, Zhigang; Wang, Jingfeng; Zhang, Bin; Li, Junwen

    2013-06-15

    Despite the health risks posed by waterborne human rotavirus (HRV), little information is available concerning the effectiveness of chlorine or chlorine dioxide (ClO2), two common disinfectants of public water sources, against HRV and their effects on its genome remain poorly understood. This study investigated the effects of chlorine and ClO2 on purified HRV by using cell culture and RT-PCR to assess virus infectivity and genetic integrity, respectively. The disinfection efficacy of ClO2 was found to be higher than that of chlorine. According to the efficiency factor Hom model, Ct value (mg/L min) ranges required for a 4-log reduction of HRV at 20 °C by chlorine and ClO2 were 5.55-5.59 and 1.21-2.47 mg/L min, respectively. Detection of the 11 HRV genome segments revealed that damage to the 1227-2354 bp of the VP4 gene was associated with the disappearance of viral infectivity by chlorine. However, no complete accordance between culturing and RT-PCR assays was observed after treatment of HRV with ClO2. These results collectively indicate that the current practice of chlorine disinfection may be inadequate to manage the risk of waterborne HRV infection, and offer the potential to monitor the infectivity of HRV adapting PCR-based protocols in chlorine disinfection. PMID:23591108

  8. Potential of isotope analysis (C, Cl) to identify dechlorination mechanisms

    Science.gov (United States)

    Cretnik, Stefan; Thoreson, Kristen; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-04-01

    Chloroethenes are commonly used in industrial applications, and detected as carcinogenic contaminants in the environment. Their dehalogenation is of environmental importance in remediation processes. However, a detailed understanding frequently accounted problem is the accumulation of toxic degradation products such as cis-dichloroethylene (cis-DCE) at contaminated sites. Several studies have addressed the reductive dehalogenation reactions using biotic and abiotic model systems, but a crucial question in this context has remained open: Do environmental transformations occur by the same mechanism as in their corresponding in vitro model systems? The presented study shows the potential to close this research gap using the latest developments in compound specific chlorine isotope analysis, which make it possible to routinely measure chlorine isotope fractionation of chloroethenes in environmental samples and complex reaction mixtures.1,2 In particular, such chlorine isotope analysis enables the measurement of isotope fractionation for two elements (i.e., C and Cl) in chloroethenes. When isotope values of both elements are plotted against each other, different slopes reflect different underlying mechanisms and are remarkably insensitive towards masking. Our results suggest that different microbial strains (G. lovleyi strain SZ, D. hafniense Y51) and the isolated cofactor cobalamin employ similar mechanisms of reductive dechlorination of TCE. In contrast, evidence for a different mechanism was obtained with cobaloxime cautioning its use as a model for biodegradation. The study shows the potential of the dual isotope approach as a tool to directly compare transformation mechanisms of environmental scenarios, biotic transformations, and their putative chemical lab scale systems. Furthermore, it serves as an essential reference when using the dual isotope approach to assess the fate of chlorinated compounds in the environment.

  9. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine

    Institute of Scientific and Technical Information of China (English)

    Meiquan Cai; Liqiu Zhang; Fei Qi; Li Feng

    2013-01-01

    Owing to its low cost,free chlorine is one of the most common disinfectants for wastewater and drinking water treatment.However,the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades.Antipyrine (ANT),an anti-inflammatory analgesic,has been frequently detected in the aquatic environment.In this work.the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments.The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L,free chlorine dosage from 0.30 to 1.31 mg/L,and pH from 1.5 to 9.0.The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry.The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L,ANT 0.5 mg/L,pH 7.0).Higher oxidant dosage,lower ANT initial concentration and low pH favor the ANT removal.The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-l,2-dihydro1,5-dimethyl-2-phenyl-3H-pyrazol-3-one),which can be further chlorinated by free chlorine.In addition,the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  10. 3.6. Chlorination of alumina containing waste products

    International Nuclear Information System (INIS)

    Chlorination of alumina containing waste products is considered in this article. Based on conducted studies following optimal conditions of chlorination of alumina containing waste products with reducer - coal were found: temperature - 750-850 deg C, chlorination duration -1-1,5 hours, quantity of reducer - 30% and size of particles - 0,1 mm. Based on conducted studies following optimal conditions of chlorination of alumina containing waste products with reducer - natural gas were found: temperature - 650-750 deg C, chlorination duration - 2 hours, chlorine to methane ratio is 4:1 and size of particles - 0,2-0,3 mm.

  11. Phosphate valorization by dry chlorination route

    Directory of Open Access Journals (Sweden)

    Kanari N.

    2016-01-01

    Full Text Available This work deals with the extraction of phosphorus chlorinated compounds from phosphate materials using chlorination with gaseous chlorine. An industrial sample of dicalcium phosphate dihydrate, after transformation into calcium pyrophosphate (Ca2P2O7, is subjected to reactions with Cl2+CO+N2 and Cl2+C+N2 at temperatures ranging from 625 to 950°C using boat experiments. Gathering results of the thermodynamic predictions and TG/DT analysis with those of SEM and XRD examinations of the chlorinated residues allowed the interpretation of phenomena and reactions mechanism occurring during the calcium pyrophosphate carbochlorination. Reaction rate of Ca2P2O7 by Cl2+CO+N2 at 950°C is slowed down due to the formation of a CaCl2 liquid layer acting as a barrier for the diffusion of the reactive gases and further reaction progress. While, the carbochlorination with Cl2+C+N2 led to almost full chlorination of Ca2P2O7 at 750°C and the process proceeds with an apparent activation energy of about 104 kJ/mol between 625 and 750°C. Carbochlorination technique can be considered as an alternative and selective route for the valorization of low grade phosphates and for the phosphorus extraction from its bearing materials.

  12. Accumulation of chlorinated benzenes in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W.N. [Patuxent Wildlife Research Center, Laurel, MD (United States)

    1996-12-31

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. They probably entered the water as leachates from chemical waste dumps and as effluents from manufacturing. Hexachlorobenzene and pentachlorobenzene are commonly present in Herring gull (Larus argentatus) eggs from the Great Lakes, and some of the isomers of trichlorobenzene and tetrachlorobenzene are occasionally detected at low concentrations. Hexachlorobenzene, which was formerly used as a fungicide, has been the most thoroughly studied chlorinated benzene, and has been detected in many species. Its use as a fungicide in the United States was canceled in 1984. Since about 1975 hexachlorobenzene has been formed mainly in the production of chlorinated solvents. It is highly persistent in the environment and some species are poisoned by hexachlorobenzene at very low chronic dietary exposures. As little as 1 ppm in the diet of mink (Mustela vison) reduced the birth weights of young, and 5 ppm in the diet of Japanese quail (Coturnix coturnix japonica) caused slight liver damage. This paper describes a long-term (26 wk) experiment relating the concentrations of chlorinated benzenes in earthworms to length of exposure and three 8 wk experiments relating concentration to the concentration in soil the soil organic matter content, and the degree of chlorination. 20 refs., 3 figs., 1 tab.

  13. Assessment of in situ degradation of chlorinated ethenes and bacterial community structure in a complex contaminated groundwater system.

    Science.gov (United States)

    Imfeld, Gwenaël; Nijenhuis, Ivonne; Nikolausz, Marcell; Zeiger, Simone; Paschke, Heidrun; Drangmeister, Jörg; Grossmann, Jochen; Richnow, Hans H; Weber, Stefanie

    2008-02-01

    The occurrence of in situ degradation of chlorinated ethenes was investigated using an integrated approach in a complex groundwater system consisting of several geological units. The assessment of hydrogeochemistry and chlorinated ethenes distribution using principal component analysis (PCA) in combination with carbon stable isotope analysis revealed that chlorinated ethenes were subjected to substantial biodegradation. Shifts in isotopic values up to 20.4 per thousand, 13.9 per thousand, 20.1 per thousand and 31.4 per thousand were observed between geological units for tetrachloroethene (PCE), trichloroethene (TCE), cis-dichloroethene (cDCE) and vinyl chloride (VC), respectively. The use of specific biomarkers (16S rRNA gene) indicated the presence of Dehalococcoides sp. DNA in 20 of the 33 evaluated samples. In parallel, the analysis of changes in the bacterial community composition in the aquifers using canonical correspondence analysis (CCA) indicated the predominant influence of the chlorinated ethene concentrations (56.3% of the variance, P=0.005). The integrated approach may open new prospects for the assessment of spatial and temporal functioning of bioattenuation in contaminated groundwater systems. PMID:17915287

  14. Separation of niobium from ferroniobium by chlorination

    International Nuclear Information System (INIS)

    Separation of niobium from ferroniobium by chlorine metallurgy were investigated. The chlorination of ferroniobium by chlorine gas was carried out under several thermodynamic conditions and the effective conditions were determined. Preliminary separation of niobium pentachloride from ferric chloride is possible by selective condensation with temperature gradient techniques. Selective reduction of ferric chloride to ferrous chloride by iron powder was done to separate niobium pentachloride by their volatility difference. Separation of niobium pentachloride from ferric chloride using organic solvent was tested. The niobium pentachloride with high purity could be separated effectively from ferroniobium chlorides by selective reduction of ferric chloride and selective dissolution of niobium pentachloride in organic solvent. A new dry process which has the possibility of industrial application is presented. (Author

  15. Investigation of molybdenum pentachloride interaction with chlorine

    International Nuclear Information System (INIS)

    In Raman spectra of molybdenum pentachloride solutions in liquid chlorine lines were recorded in case of 397, 312, 410, 217 and 180 cm-1 vibrations of ν1(A1'), ν2(A1'), ν5(E'), ν6(E') and ν8(E'') monomer (symmetry D3h) molecules of MoCl5. Interaction of molten molybdenum pentachloride with chlorine at increased (up to 6 MPa) pressures of Cl2 was studied. In Raman spectra of its vapour distillation in liquid chlorine alongside with MoCl5 lines appearance of new lines at 363 and 272 cm-1, similar in their frequency to the ones calculated for the vibrations ν1(A1g) and ν2(Eg) of MoCl6 molecules (symmetry Oh), was observed

  16. Simultaneous chlorination and sulphation of calcined limestone

    Energy Technology Data Exchange (ETDEWEB)

    Matsukata, M.; Takeda, K.; Miyatain, T.; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering

    1996-06-01

    In order to analyze HCl and SO{sub 2} retention in fluidized bed combustors of coal and wastes, chlorination and sulphation of calcined limestone were investigated at 1023 K and atmospheric pressure using thermogravimetry. The rate of chlorination of calcined limestone slightly depended on its particle size and was kept almost constant against the progress of chlorination. In contrast, the rate of sulphation increased with decreasing particle size and steeply decreased with the progress of sulphation as commonly reported. It was found that the sulphation was markedly accelerated in the presence of HCl. Such acceleration of sulphation was remarkable for larger limestone. The level of conversion of CaO to (CaSO{sub 4} + CaCl{sub 2}) always approached 100% in the simultaneous absorption of HCl and SO{sub 2}. It was observed by SEM that in the chlorination a number of spherical aggregates and large voids were formed on the surface of limestone and that large aggregates with very flat surface and large voids have been formed in the course of the simultaneous chlorination and sulphation. The chlorination behavior and the acceleration of SO{sub 2} absorption in the presence of HCl can be due both to the formation of a mobile Cl{sup -} ion-containing phase and to the formation of voids playing a role of the diffusion paths for HCl and SO{sub 2} toward the interior of a limestone particle. Melting of a eutectic mixture of CaCl{sub 2} and CaSO{sub 4} might largely contribute to the promotion of SO{sub 2} absorption in the case of simultaneous absorption of HCl and SO{sub 2}. 8 refs., 4 figs.

  17. Occupational exposure to chlorinated and petroleum solvents and mycosis fungoides

    DEFF Research Database (Denmark)

    Morales-Suárez-Varela, Maria M; Olsen, Jorn; Villeneuve, Sara;

    2013-01-01

    To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF).......To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF)....

  18. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    International Nuclear Information System (INIS)

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water

  19. Review of chlorination of zirconium dioxide

    International Nuclear Information System (INIS)

    A review of chlorination zirconium dioxide is presented.used semi batch process with vertical reactor, horizontal reactor and fluidized reactor. The feed were zircon dioxide from Aldrich, direct zircon sand and briquette of zircon sand. From the study it is obtained that the best reactor is vertical reactor.It needs modification of chlorination reactor and sublimator to obtain the larger conversion. It is come to reality that zirconium tetrachloride preparation by process is significant with zirconium tetrachloride from Aldrich. It needs the sequel research to get the best result of process. (author)

  20. Chlorinated organic compounds produced by Fusarium graminearum.

    Science.gov (United States)

    Ntushelo, Khayalethu

    2016-06-01

    Fusarium graminearum, a pathogen of wheat and maize, not only reduces grain yield and degrades quality but also produces mycotoxins in the infected grain. Focus has been on mycotoxins because of the human and animal health hazards associated with them. In addition to work done on mycotoxins, chemical profiling of F. graminearum to identify other compounds produced by this fungus remains critical. With chemical profiling of F. graminearum the entire chemistry of this fungus can be understood. The focus of this work was to identify chlorinated compounds produced by F. graminearum. Various chlorinated compounds were detected and their role in F. graminearum is yet to be understood. PMID:27165533

  1. Influence of Plants on Chlorine Cycling in Terrestrial Environments

    Science.gov (United States)

    Montelius, Malin; Thiry, Yves; Marang, Laura; Ranger, Jacques; Cornelis, Jean-Thomas; Svensson, Teresia; Bastviken, David

    2016-04-01

    Chlorine (Cl), one of the 20 most abundant elements on Earth, is crucial for life as a regulator of cellular ionic strength and an essential co-factor in photosynthesis. Chlorinated organic compounds (Clorg) molecules are surprisingly abundant in soils, in fact many studies during the last decades show that Clorg typically account for more than 60% of the total soil Cl pool in boreal and temperate forest soils and frequently exceed chloride (Cl-) levels. The natural and primarily biotic formation of this Clorg pool has been confirmed experimentally but the detailed content of the Clorg pool and the reasons for its high abundance remains puzzling and there is a lack of Cl budgets for different ecosystems. Recently, the radioisotope 36Cl has caused concerns because of presence in radioactive waste, a long half-life (301 000 years), potential high mobility, and limited knowledge about Cl residence times, speciation and uptake by organisms in terrestrial environments. The chlorination of organic molecules may influence the pool of available Cl- to organisms and thereby the Cl cycling dynamics. This will prolong residence times of total Cl in the soil-vegetation system, which affects exposure times in radioactive 36Cl isotope risk assessments. We tested to what extent the dominating tree species influences the overall terrestrial Cl cycling and the balance between Cl- and Clorg. Total Cl and Clorg were measured in different tree compartments and soil horizons in the Breuil experimental forest, Bourgogne, established in 1976 and located at Breuil-Chenue in Eastern France. The results from this field experiment show how the dominating tree species affected Cl cycling and accumulation over a time period of 30 years. Cl uptake by trees as well as content of both total Cl and Clorg in soil humus was much higher in experimental plots with coniferous forests compared to deciduous forests. The amounts of Clorg found in plant tissue indicate significant Clorg production inside

  2. Electronic properties, doping and defects in chlorinated silicon nanocrystals

    OpenAIRE

    de Carvalho, A.; Öberg, S; Rayson, M. J.; Briddon, P. R.

    2011-01-01

    Silicon nanocrystals with diameters between 1 and 3 nm and surfaces passivated by chlorine or a mixture of chlorine and hydrogen were modeled using density functional theory, and their properties compared with those of fully hydrogenated nanocrystals. It is found that fully and partially chlorinated nanocrystals are stable, and have higher electron affinity, higher ionization energy and lower optical absorption energy threshold. As the hydrogenated silicon nanocrystals, chlorinated silicon na...

  3. Attacks of Asthma due to Chlorinized Water: Case Report

    OpenAIRE

    Murat Eyup Berdan; Ercan Gocgeldi; Sami Ozturk; Ali Kutlu

    2008-01-01

    The presence of a high prevalence of bronchial hyperresponsiveness and asthma-like symptoms in swimmers has been reported. But, attacks of asthma which is related to chlorinized water is rare. Chlorine, a strong oxidizing agent, is an important toxic gas that the swimmer can breath during swimming and a worker can exposed to chlorine while he or she was using water with chlorine at home. We describe a persistent increase in nonspecific bronchial hyperresponsiveness following chronic exposure ...

  4. Immunofluorescence and morphology of Giardia lamblia cysts exposed to chlorine.

    OpenAIRE

    Sauch, J F; Berman, D

    1991-01-01

    Giardia cyst-like objects detected by immunofluorescence in chlorinated water samples often cannot be positively identified by their morphological appearance. To determine the effect of chlorine on cyst immunofluorescence and morphology, Giardia lamblia cysts were exposed to chlorine for 48 h. The majority of cysts exposed to chlorine concentrations of 1 to 11 mg/liter at 5 and 15 degrees C lost their internal morphological characteristics necessary for identification, but most of them were s...

  5. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    Directory of Open Access Journals (Sweden)

    Jones, Robert MD

    2010-05-01

    Full Text Available Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. [West J Emerg Med. 2010; 11(2:151-156.

  6. Blends of caprolactam/caprolactone copolymers and chlorinated polymers

    NARCIS (Netherlands)

    Alberda van Ekenstein, G.O.R.; Deuring, H.; ten Brinke, G.; Ellis, T.S.

    1997-01-01

    The phase behaviour of blends of chlorinated polyethylene, polyvinyl chloride (PVC) and chlorinated PVC with random copolymers of caprolactone and caprolactam has been investigated and the results correlated with a binary interaction model. The known miscibility of polycaprolactone in the chlorinate

  7. OLGA experiments with {sup 261}104 under chlorinating and brominating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W.; Eichler, B.; Jost, D.T.; Piguet, D.; Tuerler, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Buklanov, G.; Lebedev, V.; Timokhin, S.; Vedeev, M.V.; Yakushev, A.; Zvara, I. [FLNR, Dubna (Russian Federation); Huebener, S. [FZR (Germany)

    1997-09-01

    With the On-Line Gas chemistry Apparatus OLGA III the retention times of element 104 chloride and bromide was measured in a quartz column using the isotope {sup 261}104 with a half-life of 78 s. With HCl as chlorinating agent element 104 was found to quantitatively pass through the column at 150{sup o}C, whereas with HBr this temperature shifted to about 300{sup o}C. Under both halogenating conditions, the homologuous element Hf passed through the column at higher temperatures than element 104, in agreement with expectations. (author) 2 figs., 2 refs.

  8. 46 CFR 151.50-31 - Chlorine.

    Science.gov (United States)

    2010-10-01

    ... desired rate of discharge, provided the air or gas is oil-free and thoroughly dried by passing it over activated aluminum oxide, silica gel, or other acceptable drying agent, and provided the supply pressure is...-resistant to chlorine in either the gas or liquid phase. Cast or malleable iron shall not be used....

  9. Chlorinated organic compounds in urban river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  10. Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps.

    NARCIS (Netherlands)

    Vidal, G.; Soto, M.; Field, J.; Mendez-Pampin, R.; Lema, J.M.

    1997-01-01

    Chlorine bleaching effluents are problematic for anaerobic wastewater treatment due to their high methanogenic toxicity and low biodegradability. Presently, alternative bleaching processes are being introduced, such as elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. The methan

  11. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    OpenAIRE

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested o...

  12. Reaction products of aquatic humic substances with chlorine.

    OpenAIRE

    Johnson, J D; Christman, R F; Norwood, D L; Millington, D S

    1982-01-01

    A major concern of the chlorination of aquatic humic materials is the ubiquitous production of trihalomethanes. A large number of other chlorinated organic compounds, however, have been shown to be formed by chlorine's reaction with humic substances. In this study, humic material was concentrated from a coastal North Carolina lake and chlorinated at a chlorine to carbon mole ratio of 1.5 at pH 12. A high pH was necessary for complete dissolution of the humic material and for production of ade...

  13. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  14. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  15. [Characterization of historical infiltration in the unsaturated zone at the Nevada Test Site using chloride, bromide, and chlorine-36 as environmental tracers]. [Final subcontract report

    International Nuclear Information System (INIS)

    This document is an end-of-contract report, prepared by Hydro Geo Chem for Los Alamos National Laboratory under contract number 9-XDD-6329F-1. The ultimate goal of this work is to characterize historical infiltration and unsaturated flow in the Yucca Mountain area of the Nevada Test Site. Work on this contract has focused on using chloride, bromide, stable chlorine isotopes, and chlorine-36 distributions to evaluate the depth of infiltration in the unsaturated zone. Effort in support of this work has included developing analytical procedures, exploring ways in which to separate the. meteoric component from the rock component, and meeting quality assurance requirements

  16. Relation between chlorine with the quality of crude water

    International Nuclear Information System (INIS)

    Chlorine as disinfection agent in drinking water was used widely since it was successfully been practiced in drinking water in Jersey City, 1908. Mostly, water treatment plants in Malaysia were using chlorine as disinfection agent to kill pathogen and contaminated materials that can be dangerous to consumer. Because of chlorine was a strongly disinfection agent, it also can react with another chemical components such as manganese, hydrogen, sulfides, ammonia and phenol in water. These reactions happen very fast, and chlorine will not react as disinfection agent unless all the organic and inorganic substitution presented in water reacts with chlorine. These reactions between components will increase demand of chlorine in water. The demand of chlorine in water must be filled before the free radical chlorine occurred. These free radical chlorine will decay into hypochlorous acid and hypochlorite ion that so important in disinfection process to kill pathogens and pollutants in water. Most of water treatment plant to maintain free chlorine up to 0.2 mg/ L in distribution system to consumer. These researches involved determination of parameters that can be trusted to react with the chlorine in nine sampling station along Semenyih River and four stations in water treatment plants. These parameters were determined from ammonia, cyanides, sulfides, phenol, phosphorus, nitrite, manganese, iron and sum of organic carbons. Overall, these researches concluded that ammonia and sum of organic carbons were the most compounds that react with the chlorine to produce tryhalometane and chloramines. Besides that, the concentration of cyanides compounds, sulfide, phenol, phosphorus, nitrite, manganese and iron also decrease after the chlorination process. Results can used to evaluate demanding levels of chlorine in Semenyih River. (author)

  17. Antiradiation effectiveness of the chlorine C

    International Nuclear Information System (INIS)

    At present ever more attention of the experimenters in the field of search of high-effective antiray means - is directed to development of preparations from bio-active substances of a natural origin. In this connection all greater interest is caused by researches of antiray activity of these compounds, distinguished, as a rule, from known preparations of synthetic manufacture of low toxicity, absence of expressed collateral effects and possibility of course application. It has biological (antiray) activity in dozes 5-10 mg/kg and chlorine C which is derivative of chlorophil A. At present it passes tests in oncology. Porphyrines (synthetic and natural) are recently subjected to wide study as potential medicinal means, due to their ability to be accumulated in bodies of the reticulo-endothelial system and proliferous tissues, as well as their physical-chemical characteristics (fluorescence, photosensitizing action, colouring). All this testifies for the benefit of perspective use of porphyrin for treatment and diagnostics of tumors. According to the above described properties of porphyrines there is that fact, that for some of them radioprotective properties are revealed during the injections as well as before and after radiation treatment. The above said has formed the basis for study of antiray properties of the chlorine C during the experiments on small-sized laboratory animals. Antiradiation effectivity of chlorine C was studied on the mice (CBA x C57 B1) F1. Chlorine C was applied in a wide range of dozes with its' use in 3 variants: before radiation treatment, after radiation treatment, combined (before and after radiation treatment). Radioprotective activity of chlorine C reduces at an increase of a time of the injection before radiation treatment and at other ways of injection (intramuscularly, subcutaneously, per os). Studies of medical activity of chlorine C in experiments on mice have shown, that the compound does not possess medical activity. The death of

  18. Comparative efficacy of chlorine and chlorine dioxide regimes for condenser slime control in seawater cooled heat exchangers

    International Nuclear Information System (INIS)

    Chlorination has long been used as an effective and economic biocide for biofouling control in seawater cooling systems. However, the efficacy of chlorine is reduced in the presence of organic content of seawater and the inability of chlorine to effectively penetrate biofilms. Chlorine dioxide is being projected as a possible alternative to chlorine. Experiments were carried out with the help of a seawater circulating facility, in which direct comparison of the efficacy of the two biocides was possible using test condenser tube assemblies. The test condenser tubes made of titanium, SS 316L and Cu-Ni 90/10 were dosed with chlorine and chlorine dioxide. Each dose was evaluated for 30 days. Continuous and intermittent additions of chlorine (0.38 - 0.45 mg L-1 TRO) and chlorine dioxide (0.4 - 0.5 mg L-1) were used, along with control. The flow velocity in the tubes was maintained at 1.5 m/s. Results of the study showed that the efficacy of the biocide to control biofilms depended on the biocide and the material. Continuous chlorination resulted in 75% reduction of viable counts on titanium, followed by 24% reduction on CuNi and 6% reduction on SS 316L surfaces, as compared to the control. When compared to continuous chlorination, increase in bacterial density in the tubes was observed at different regimes of intermittent chlorination. On SS 316L and Cu-Ni surfaces, intermittent chlorination for 1h, once every 3 h, appeared to give adequate protection. Continuous addition of chlorine dioxide resulted in 99% reduction of viable counts on titanium surfaces, followed by 28% reduction on SS 316 L surfaces and 52% reduction on Cu-Ni surfaces, as compared to the controls. The data indicate that the efficacy of biocides to control biofilms depend on not only the biocide and its frequency of application but also the material of construction. (author)

  19. Comparative efficacy of chlorine and chlorine dioxide regimes for condenser slime control in seawater cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.S.; Veeramani, P.; Ershath, M.; Rajamohan, R.; Harinath, Y.V.; Mohan, T.V.K.; Venugopalan, V.P. [BARC Facilities, Water and Steam Chemistry Div., Kalpakkam, Tamil nadu (India)

    2010-07-01

    Chlorination has long been used as an effective and economic biocide for biofouling control in seawater cooling systems. However, the efficacy of chlorine is reduced in the presence of organic content of seawater and the inability of chlorine to effectively penetrate biofilms. Chlorine dioxide is being projected as a possible alternative to chlorine. Experiments were carried out with the help of a seawater circulating facility, in which direct comparison of the efficacy of the two biocides was possible using test condenser tube assemblies. The test condenser tubes made of titanium, SS 316L and Cu-Ni 90/10 were dosed with chlorine and chlorine dioxide. Each dose was evaluated for 30 days. Continuous and intermittent additions of chlorine (0.38 - 0.45 mg L{sup -1} TRO) and chlorine dioxide (0.4 - 0.5 mg L{sup -1}) were used, along with control. The flow velocity in the tubes was maintained at 1.5 m/s. Results of the study showed that the efficacy of the biocide to control biofilms depended on the biocide and the material. Continuous chlorination resulted in 75% reduction of viable counts on titanium, followed by 24% reduction on CuNi and 6% reduction on SS 316L surfaces, as compared to the control. When compared to continuous chlorination, increase in bacterial density in the tubes was observed at different regimes of intermittent chlorination. On SS 316L and Cu-Ni surfaces, intermittent chlorination for 1h, once every 3 h, appeared to give adequate protection. Continuous addition of chlorine dioxide resulted in 99% reduction of viable counts on titanium surfaces, followed by 28% reduction on SS 316 L surfaces and 52% reduction on Cu-Ni surfaces, as compared to the controls. The data indicate that the efficacy of biocides to control biofilms depend on not only the biocide and its frequency of application but also the material of construction. (author)

  20. Recent Achievements in the Radiation-Catalysed Chlorination of Chlorinated Pentane Derivatives

    International Nuclear Information System (INIS)

    The radiation-catalysed chlorination of the so-called tetrachloro-cyclopentane, the product obtained from cyclopentadiene by addition of chlorine, has already been studied earlier by the authors with success. On maintaining an adequate dosage rate, no ring cleavage occurs, and, mainly for stereochemical reasons, octachloro-cyclopentene forms as an end product - similarly to conventional chlorination carried out at high temperature (400-500oC), but at substantially lower temperature (170oC) and without any resin formation. It is known that besides other end products, octachloro-cyclopentene forms also from perchlorinated pentane, under simultaneous cyclization. In their recent experiments presented here, the authors investigated how and to what extent the yield of octachloro-cyclopentene is affected by additional chlorination of pentane, previously chlorinated under cooling (at 10 to 30oC). The experiments were carried out with a Co60 radiation source of 330 c at a dosage rate of 8 x 103 to 8 x 104r/hr, in a heated reaction mixture, mixed with a chlorine stream for periods not exceeding 30 hr. It was found that also this type of chlorination and cyclization takes place at a temperature substantially lower than the conventional 500-600oC. According to the experiments, in this case it is advisable to raise the initial temperature of 170oC of the reaction gradually to 220oC with the progress of the reaction, in order to promote the cyclization reaction. It was found, namely, that first the paraffin chain was further chlorinated and later the perchlorinated pentane derivatives cyclize partly to octachloro-cyclopentene, under formation of other chlorinated alkane and alkene derivatives. This reaction mechanism was also supported by thermodynamical calculations. The end product contains three main components; its content of octachloro-cyclopentene ranges between 25 and 35%. The data required for the evaluation of the economy of the method will be available only on the

  1. Revisiting the thermochemistry of chlorine fluorides

    CERN Document Server

    Sánchez, H R

    2016-01-01

    In this work, accurate calculations of standard enthalpies of formation of chlorine fluorides (ClF$_n$, n=1--7; Cl$_2$F and Cl$_3$F$_2$) were performed through the isodesmic reactions scheme. It is argued that, for many chlorine fluorides, the gold standard method of quantum chemistry (CCSD(T)) is not capable to predict enthalpy values nearing chemical accuracy if atomization scheme is used. This is underpinned by a thorough analysis of total atomization energy results and the inspection of multireference features of these compounds. Other thermodynamic quantities were also calculated at different temperatures. In order to complement the energetic description, elimination curves were studied through density functional theory as a computationally affordable alternative to highly correlated wave function-based methods.

  2. Chlorine-Free Red-Burning Pyrotechnics.

    Science.gov (United States)

    Sabatini, Jesse J; Koch, Ernst-Christian; Poret, Jay C; Moretti, Jared D; Harbol, Seth M

    2015-09-01

    The development of a red, chlorine-free pyrotechnic illuminant of high luminosity and spectral purity was investigated. Red-light emission based solely on transient SrOH(g) has been achieved by using either 5-amino-1H-tetrazole or hexamine to deoxidize the combustion flame of a Mg/Sr(NO3 )2 /Epon-binder composition and reduce the amount of both condensed and gaseous SrO, which emits undesirable orange-red light. The new formulations were found to possess high thermal onset temperatures. Avoiding chlorine in these formulations eliminates the risk of the formation of PCBs, PCDDs, and PCDFs. This finding, hence, will have a great impact on both military pyrotechnics and commercial firework sectors. PMID:26333055

  3. Spectrographic determination of chlorine and fluorine

    International Nuclear Information System (INIS)

    Experimental conditions have been investigated in order to obtain the highest sensitivity in spectrographic determination of chlorine and fluorine using the Fassel method of excitation in an inert atmosphere. The influence of the nature of the atmosphere, of the discharge conditions and of the matrix material has been investigated. The following results have been established: 1. chlorine determination is definitely possible: a working curve has been drawn between 10 μg and 100 μg, the detection limit being around 5 μg; 2. fluorine determination is not satisfactory: the detection limit is still of the order of 80 μg. The best operating conditions have been defined for both elements. (author)

  4. Bacterial responses to reactive chlorine species.

    Science.gov (United States)

    Gray, Michael J; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  5. Stability and effectiveness of chlorine disinfectants in water distribution systems.

    Science.gov (United States)

    Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K

    1986-11-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min. PMID:3028767

  6. Chlorine diffusion in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Sadaiyandi, K.; Ramachandran, K. (School of Physics, Madurai Kamaraj Univ. (India))

    1991-06-01

    The experimental results of chlorine diffusion in CdTe reveal that the dominant mechanism for diffusion is through neutral defect pair such as (V{sub Cd}V{sub Te}){sup *}. Here, theoretical calculations are carried out for all the possible mechanisms such as single vacancy, single interstitial, neutral defect pair, and Frenkel defect pair. The results suggest that the most possible mechanism for Cl diffusion in CdTe is that through neutral defect pair, supporting the experiment. (orig.).

  7. Chlorine requirement for Japanese laying quails

    OpenAIRE

    Fernando Guilherme Perazzo Costa; Jalceyr Pessoa Figueiredo Júnior; Denise Fontana Figueiredo Lima; Cláudia de Castro Goulart; José Humberto Vilar da Silva; Matheus Ramalho de Lima; Sarah Gomes Pinheiro; Valéria Pereira Rodrigues

    2012-01-01

    The objective of this study was to determine the chlorine nutritional requirement of Japanese Quails during the laying phase, based on performance and egg quality parameters. A total of 240 Japanese quails were distributed according to a randomized block design, with five treatments and six replicates, with 8 birds each. The experiment lasted 84 days, divided in four cycles of 21 days each. Treatments consisted of a basal diet formulated to meet the nutritional requirements, except for chlori...

  8. Radiolytic degradation of chlorinated hydrocarbons in water

    International Nuclear Information System (INIS)

    Radiolytic degradation of chlorinated hydrocarbons (chloroform, trichloroethylene, and tetrachloroethylene) in water was carried out. Water solutions of the chlorinated hydrocarbons with different concentrations were irradiated with γ rays. Concentrations of methane, ethane, CO, CO2, H2, and O2 after the irradiation were determined by gas chromatography. Concentration of chloride ion in the irradiated sample was determined by ion chromatography. Experimental results show that radiolytic degradation of the chlorinated hydrocarbon increased with the radiation dose. Methane, ethane, CO2, H2, and Cl- concentrations increased with the radiation dose and the sample concentration. On the other hand, O2 concentration decreased with the radiation dose and the sample concentration. When sample concentration was high, dissolved oxygen might be not enough for converting most of the C atoms in the sample into CO2. This resulted in a low decomposition ratio. Addition of H2O2 as an oxygen resource could increase the decomposition ratio greatly. Furthermore, gas chromatography-mass spectroscopy was applied to identify some intermediates of the radiolytic dehalogenation. Radiolytic degradation mechanisms are also discussed. (author)

  9. Radioimmunoassay for chlorinated dibenzo-p-dioxins

    International Nuclear Information System (INIS)

    The invention provides a double-antibody radioimmunoassay method for the determination of chlorinated dibenzo-p-dioxins, particularly, 2,3,7,8-tetrachlorodibenzo-p-dioxin, in environmental samples including animal tissues such as monkey liver and adipose tissues. The limit of detection is approximately 25 picograms for 2,3,7,8-tetrachlorodibenzo-pdioxin. Assuming an appropriate cleanup procedure is used, chlorinated dibenzofurans are the only likely interferences, and these can be distinguished through the use of two antisers of different dibenzo-furan/dibenzodioxin selectivities. The invention includes the preparation of a reproducible antigen, an appropriate radiolabeled hapten, and effective sample extracts. A feature of the assay method is the use of a nonionic detergent (e.g., ''cutscum'' or ''triton x-305'') to solubilize the extremely hydrophobic dibenzo-p-dioxins in a manner permitting their binding by antibodies. The immunoassay is applicable to screening samples in order to minimize the demand for mass spectrometric screening, and to routine monitoring for exposure to known chlorinated dibenzo-p-dioxins in potentially contaminated environments

  10. Chlorination and Carbochlorination of Cerium Oxide

    International Nuclear Information System (INIS)

    The chlorination and carbochlorination of cerium oxide were studied by thermogravimetry under controlled atmosphere (TG) in the 7000C 9500C temperature range.Both reactants and products were analyzed by X-ray diffraction (RX), scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). Thermodynamic calculations were performed by computer assisted software.The chlorination starts at a temperature close to 8000C.This reaction involves the simultaneous formation and evaporation of CeCl3.Both processes control the reaction rate and their kinetic may not be easily separated.The apparent chlorination activation energy in the 8500C-9500C temperature range is 172 to 5 kJ/ mole.Carbon transforms the CeO2-Cl2 into a more reactive system: CeO2-C-Cl2, where the effects of the carbon content, total flow rate and temperature were analyzed.The carbochlorination starting temperature is 7000C.This reaction is completed in one step controlled by mass transfer with an apparent activation energy of 56 to 5 kJ/mole in the 8500C-9500C temperature range

  11. Chlorine Behavior in Metasedimentary Rocks during Subduction Zone Metamorphism

    Science.gov (United States)

    Barnes, J.; Selverstone, J.; Bebout, G. E.; Penniston-Dorland, S.

    2014-12-01

    Chlorine concentrations and isotopic compositions were measured in two well-characterized metasedimentary suites from the Catalina Schist and the Western Alps to determine Cl behavior during prograde metamorphism. The Catalina Schist is a subduction zone metamorphic complex in California, USA containing lawsonite-albite (LA) to amphibolite grade rocks recording temperatures of 350 to 750°C and depths of 15 to 45 km. Previous work has shown a decrease in N, B, Cs, As, and Sb concentrations from the LA to the epidote-blueschist facies, with relatively little loss at higher metametamorphic grade [1], and limited Li loss across all grades [2]. Metapelitic rocks from the Western Alps (Schistes Lustres and Lago di Cignana) record temperatures of 350 to 550°C and depths up to 90 km. In contrast to Catalina, N, B, Cs, Ba, and Rb concentrations are relatively uniform across grade [3]. In the Catalina Schist, Cl concentration shows a pattern of loss similar to B and N, from ~100-500 ppm Cl in the LA facies to ~100 ppm in the lawsonite-blueschist facies to relatively uniform concentrations of ~10-25 ppm at higher grades. This loss is likely not due to the breakdown of apatite as P2O5 concentrations remain constant across grade. In the Alps, Cl concentrations are overall lower and show moderate loss from ~10 ppm in the lowest grade to <5 ppm in the highest grade. δ37Cl values range from -1 to +1.6‰ and -1.7 to -0.7‰ in Catalina and the Alps, respectively. Both suites show significant isotopic heterogeneities within a single metamorphic grade and no systematic change in δ37Cl value with increasing grade. We interpret these heterogeneities to be inherited from the protolith. Despite large Cl losses, limited Cl isotope fractionation at high temperatures minimizes variations in δ37Cl value with increasing metamorphic grade. [1] Bebout et al, 1999, EPSL, 171, 53-81 [2] Penniston-Dorland et al, 2012, GCA, 77, 530-545 [3] Bebout et al, 2013, Chem Geol, 342, 1-20

  12. Attacks of Asthma due to Chlorinized Water: Case Report

    Directory of Open Access Journals (Sweden)

    Murat Eyup Berdan

    2008-02-01

    Full Text Available The presence of a high prevalence of bronchial hyperresponsiveness and asthma-like symptoms in swimmers has been reported. But, attacks of asthma which is related to chlorinized water is rare. Chlorine, a strong oxidizing agent, is an important toxic gas that the swimmer can breath during swimming and a worker can exposed to chlorine while he or she was using water with chlorine at home. We describe a persistent increase in nonspecific bronchial hyperresponsiveness following chronic exposure to strong respiratory irritant with chlorinized water in two subjects with no past history of asthma or atopy. We conclude that airway hyperresponsiveness can develop or increase after chronic inhalation of high concentrations of irritants such as chlorinized water an indoor irritant factor and that these changes may be prolonged. [TAF Prev Med Bull. 2008; 7(1: 87-90

  13. Attacks of Asthma due to Chlorinized Water: Case Report

    Directory of Open Access Journals (Sweden)

    Murat Eyup Berdan

    2008-02-01

    Full Text Available The presence of a high prevalence of bronchial hyperresponsiveness and asthma-like symptoms in swimmers has been reported. But, attacks of asthma which is related to chlorinized water is rare. Chlorine, a strong oxidizing agent, is an important toxic gas that the swimmer can breath during swimming and a worker can exposed to chlorine while he or she was using water with chlorine at home. We describe a persistent increase in nonspecific bronchial hyperresponsiveness following chronic exposure to strong respiratory irritant with chlorinized water in two subjects with no past history of asthma or atopy. We conclude that airway hyperresponsiveness can develop or increase after chronic inhalation of high concentrations of irritants such as chlorinized water an indoor irritant factor and that these changes may be prolonged. [TAF Prev Med Bull 2008; 7(1.000: 87-90

  14. Electric plasma discharge combustion synthesis of chlorine dioxide

    International Nuclear Information System (INIS)

    A process for the production of chlorine dioxide comprises feeding an inert gas to a reaction zone and applying an electrical discharge to the inert gas to produce a high temperature plasma. Chlorine gas and oxygen gas are supplied simultaneously to the reaction zone and reacted in the plasma to produce a gaseous mixture comprised of chlorine dioxide, chlorine, oxygen and inert gas, the molar ratio of oxygen to chlorine in the reaction zone being at least about 2.5;1. The gaseous mixture is recovered from the reaction zone. Chlorine dioxide, which may be recovered as a gas or reacted to produce an alkali metal chlorite, is employed as a bleaching agent and a water treatment agent

  15. Stable isotope sales: Mound Laboratory customer and shipment summaries, FY 1976 and FY 1976A

    Energy Technology Data Exchange (ETDEWEB)

    Ruwe, A.H. Jr. (comp.)

    1977-06-06

    A listing is given of Mound Laboratory's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for fiscal years 1976 and 1976A (the period July 1, 1975 through September 30, 1976). Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers.

  16. Stable isotope sales: Mound Laboratory customer and shipment summaries, FY 1976 and FY 1976A

    International Nuclear Information System (INIS)

    A listing is given of Mound Laboratory's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for fiscal years 1976 and 1976A (the period July 1, 1975 through September 30, 1976). Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  17. Isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    The isotope hydrology of the Great Artesian Basin has been systematically investigated. Because of the size of the Basin and the long residence times of the groundwater, carbon-14 techniques can be used only to delineate recharge areas. Isochrones over the whole basin have been developed with chlorine-36 and compared with the calculated ages. The results of surveys of dissolved hydrocarbons and uranium series nuclides are reported

  18. Isotope Spectroscopy

    CERN Document Server

    Caffau, E; Bonifacio, P; Ludwig, H -G; Monaco, L; Curto, G Lo; Kamp, I

    2013-01-01

    The measurement of isotopic ratios provides a privileged insight both into nucleosynthesis and into the mechanisms operating in stellar envelopes, such as gravitational settling. In this article, we give a few examples of how isotopic ratios can be determined from high-resolution, high-quality stellar spectra. We consider examples of the lightest elements, H and He, for which the isotopic shifts are very large and easily measurable, and examples of heavier elements for which the determination of isotopic ratios is more difficult. The presence of 6Li in the stellar atmospheres causes a subtle extra depression in the red wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the highest quality. But even with the best spectra, the derived $^6$Li abundance can only be as good as the synthetic spectra used for their interpretation. It is now known that 3D non-LTE modelling of the lithium spectral line profiles is necessary to account properly for the intrinsic line asymmetry, which is produced ...

  19. Treatment of algae-induced tastes and odors by chlorine, chlorine dioxide and permanganate

    OpenAIRE

    Buffin, Lisa Webster

    1992-01-01

    Chlorine (C12(sq»' chlorine dioxide (Cl02 ) and potassium permanganate (KMn04) were evaluated as oxidants for the removal of grassy and cucumber odors associated with the pure compounds, cis-3-hexenol and trans-2, cis-6-nonadienal, respectively, and for the removal of fishy odors associated with a culture of an alga, Synura petersenii. The effects of the oxidants on the pure compounds were assessed both by Flavor Profile Analysis (FPA) and gas chromatography/mass spectrometry (GC/MS). The ef...

  20. Some kinetics aspects of chlorine-solids reactions

    OpenAIRE

    Kanari, N.; Mishra, D.; Mochón, J.; Verdeja, L. F.; Diot, F.; Allain, E.

    2011-01-01

    The present paper describes detailed kinetics investigations on some selected chlorine-solid reactions through thermogravimetric measurements. The solids studied in this article include chemical pure oxides and sulfides as well as their natural bearing materials. The chlorinating agents employed are gaseous mixtures of Cl2+N2 (chlorination), Cl2+O2 (oxychlorination), and Cl2+CO (...

  1. The removal of phenols from oily wastewater by chlorine dioxide

    OpenAIRE

    Hsu, Chung-Jung

    1988-01-01

    Treatability studies were performed on oily wastewaters produced by petroleum and canning industries. Chlorine dioxide was used for the removal of phenolic compounds from these oily wastewaters. Most of phenolic compounds can be destroyed by chlorine dioxide within 15 minutes if CI02-to-phenol ratios of higher than 5.0 are provided. Factors such as pH, temperature, and COD have little effect on phenol removal. The effectiveness of chlorine dioxide treatment depends critic...

  2. Palau’chlor: A Practical and Reactive Chlorinating Reagent

    OpenAIRE

    Rodriguez, Rodrigo A.; Pan, Chung-Mao; Yabe, Yuki; Kawamata, Yu; Eastgate, Martin D.; Baran, Phil S.

    2014-01-01

    Unlike its other halogen atom siblings, the utility of chlorinated arenes and (hetero)arenes are twofold: they are useful in tuning electronic structure as well as acting as points for diversification via cross-coupling. Herein we report the invention of a new guanidine-based chlorinating reagent, CBMG or “Palau’chlor”, inspired by a key chlorospirocyclization en route to pyrrole imidazole alkaloids. This direct, mild, operationally simple, and safe chlorinating method is compatible with a ra...

  3. Blends of caprolactam/caprolactone copolymers and chlorinated polymers

    OpenAIRE

    Alberda van Ekenstein, G.O.R.; Deuring, H.; ten Brinke, G.; Ellis, T. S.

    1997-01-01

    The phase behaviour of blends of chlorinated polyethylene, polyvinyl chloride (PVC) and chlorinated PVC with random copolymers of caprolactone and caprolactam has been investigated and the results correlated with a binary interaction model. The known miscibility of polycaprolactone in the chlorinated polymers is not compromised until a relatively high lactam content in the copolymer is attained. The incorporation of segmental interaction parameters, derived from separate studies involving pol...

  4. Mechanisms of inactivation of poliovirus by chlorine dioxide and iodine.

    OpenAIRE

    Alvarez, M E; O'Brien, R T

    1982-01-01

    Chlorine dioxide and iodine inactivated poliovirus more efficiently at pH 10.0 than at pH 6.0. Sedimentation analyses of viruses inactivated by chlorine dioxide and iodine at pH 10.9 showed that viral RNA separated from the capsids, resulting in the conversion of virions from 156S structures to 80S particles. The RNAs release from both chlorine dioxide- and iodine-inactivated viruses cosedimented with intact 35S viral RNA. Both chlorine dioxide and iodine reacted with the capsid proteins of p...

  5. Water splitting processes of the iron-chlorine family

    International Nuclear Information System (INIS)

    Multi-step processes for thermal water splitting comprise individual chemical reactions which, as far as the iron-chlorine family is concerned, may be generalized: hydrolysis, chlorination, dechlorination, reduction, regeneration of chlorinating agent. These categories comprise series of chemical equations which can be combined to water splitting cycles in different configurations. A systematic estimation of the chemical equations of the five categories is given instead of treating several hundred water-splitting processes of the iron-chlorine family. The individual chemical equations are estimated from published data, by laboratory experiments, and by operating conditions of technical processes. (author)

  6. Baseline isotopic data of polyhalogenated compounds

    International Nuclear Information System (INIS)

    The δ 2H- and δ 13C-values of polyhalogenated compounds were determined by EA-IRMS. Most of the compounds were related to the chloropesticides DDT and its metabolites, hexachlorocyclohexanes, and toxaphene, as well as several polybrominated compounds such as bromophenols and -anisoles. δ 2H-values ranged between -235 per mille and +75 per mille whereas δ 13C-values were found in the range -22 per mille to -38 per mille . No correlation between δ 2H- and δ 13C-values could be identified. Comparative analysis clarified that bromophenols and the corresponding bromoanisoles may vary in their isotopic distribution. 2H NMR was used to quantify abundances of 2H isotopomers. Quantification of isotopomers of 2,4-dibromophenol and 2,4-dibromoanisole proved that both compounds from different suppliers do not originate from the same source. Differences in the δ 2H-values of two toxaphene products were further investigated by the synthesis of products of different degree of chlorination from camphene. It was shown that the δ 13C-values remained mostly unaltered as was expected since no carbon is lost in this procedure. However, the reaction products became enriched in 2H with increasing degree of chlorination. Different δ 2H-values of the starting material will also impact the δ 2H-values of the chlorination products

  7. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    OpenAIRE

    Zoeteman, B C; Hrubec, J.; De Greef, E; Kool, H J

    1982-01-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutageni...

  8. Isotopic mapping of groundwater perchlorate plumes.

    Science.gov (United States)

    Sturchio, Neil C; Hoaglund, John R; Marroquin, Roy J; Beloso, Abelardo D; Heraty, Linnea J; Bortz, Sarah E; Patterson, Thomas L

    2012-01-01

    Analyses of stable isotope ratios of chlorine and oxygen in perchlorate can, in some cases, be used for mapping and source identification of groundwater perchlorate plumes. This is demonstrated here for large, intersecting perchlorate plumes in groundwater from a region having extensive groundwater perchlorate contamination and a large population dependent on groundwater resources. The region contains both synthetic perchlorate derived from rocket fuel manufacturing and testing activities and agricultural perchlorate derived predominantly from imported Chilean (Atacama) nitrate fertilizer, along with a likely component of indigenous natural background perchlorate from local wet and dry atmospheric deposition. Most samples within each plume reflect either a predominantly synthetic or a predominantly agricultural perchlorate source and there is apparently a minor contribution from the indigenous natural background perchlorate. The existence of isotopically distinct perchlorate plumes in this area is consistent with other lines of evidence, including groundwater levels and flow paths as well as the historical land use and areal distribution of potential perchlorate sources. PMID:21352209

  9. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  10. Use of environmental isotopes in organic contaminants research in groundwater systems

    International Nuclear Information System (INIS)

    The paper presents two case studies that explore the use of environmental isotopes (13Cl, 37Cl) in organic contaminants research in groundwater systems. Carbon-13 data on soil CO2 were collected at a gas plant site where the degradation of organic contaminants by bioventing is being investigated. The isotope study was done to contribute to the evaluation of biodegradation of organic contaminants, especially under field conditions where results obtained by standard techniques are not conclusive. The results show enriched δ13C values on soil CO2, in comparison with the natural gas condensate source, a by-product of gas plants. Degradation of the condensate in a controlled laboratory microcosm did not show any significant isotopic fractionation during degradation. These results suggest that preferential degradation of enriched 13C hydrocarbons is occurring during bioventing. This hypothesis is being tested under field and laboratory conditions. The isotope research on chlorinated solvents aims to evaluate the use of 37Cl and 13C as tracers to provide information about sources and transformation of chlorinated solvents in groundwater systems. Chlorine-37 and 13C data in chlorinated solvents, perchlorethylene (PCE), trichloroethylene (TCE) and 1,1,1, trichloroethane (TCA), supplied by different manufacturers range from -3.5 to +6.0 per mille for δ37Cl and from -37.2 to -23.3 per mille for δ13C. These results indicated that these compounds have a different and distinct isotopic composition, which results from the individual manufacturing practices. These results show the potential of 37Cl and 13Cl as tracers to provide information to identify source areas of chlorinated solvent plumes in groundwater. (author). 25 refs, 3 figs

  11. Some kinetics aspects of chlorine-solids reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kanari, N.; Mishra, D.; Mochon, J.; Verdeja, L. F.; Diot, F.; Allain, E.

    2010-07-01

    The present paper describes detailed kinetics investigations on some selected chlorine-solid reactions through thermogravimetric measurements. The solids studied in this article include chemical pure oxides and sulfides as well as their natural bearing materials. The chlorinating agents employed are gaseous mixtures of Cl{sub 2}+N{sub 2} (chlorination), Cl{sub 2}+O{sub 2} (oxy chlorination), and Cl{sub 2}+CO (carbochlorination). Results are presented as effects of various parameters on the reaction rate of these solids with these chlorinating agents. It was observed that the reactivity of these solids towards different chlorinating agents varied widely. Sulfides could be chlorinated at room temperature, while carbochlorination of chromium (III) oxide was possible only above 500 degree centigrade. The variation of the chlorination rate of these complex materials with respect to gas velocity, composition and temperature enabled us to focus some light on the plausible reaction mechanisms and stoichiometries. The obtained results were used for selective removal of iron from chromite concentrates, extraction of valuable metals from sulfide materials, purification of MgO samples, etc.. (Author) 12 refs.

  12. Chlorine-heavy metals interaction on toxicity and metal accumulation

    International Nuclear Information System (INIS)

    The primary objectives of this study with rainbow trout (Salmo gairdneri) were: to determine whether acute toxic interaction of chlorine, nickel, and temperature is additive, synergistic, antagonistic, or if no interaction occurs; to provide a biological explanation of the mechanisms of the toxic interactions; and to develop a mortality model of the toxic interaction. Twenty chlorine-nickel toxicity tests and a bioaccumulation study, both with and without chlorine, were conducted to accomplish these objectives. Studies using 63Ni were conducted to monitor the effects of chlorine on nickel accumulation in the tissues of trout under conditions similar to those of multiple toxicant studies. The presence of 0.018 ppM TRC (total residual chlorine) increased nickel accumulation in tissues from fish exposed to chlorine and 63Ni. This may be due to an increase in the permeability of the gill to nickel during chlorine exposure. Chlorine and nickel had a synergistic toxic interaction. Mortality in these groups was significantly higher. Temperature did not influence toxicity as strongly

  13. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    Science.gov (United States)

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  14. UASB reactor effluent disinfection by ozone and chlorine

    NARCIS (Netherlands)

    Ribeiro da Silvia, G.H.; Bruning, H.; Gerrity, D.; Daniel, L.A.

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L-1, followed by chlorine doses of 10, 20 and 30

  15. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4...

  16. 78 FR 66767 - Chlorinated Isocyanurates From China and Japan

    Science.gov (United States)

    2013-11-06

    ... publishing the notice in the Federal Register of September 10, 2013 (78 FR 55293). The conference was held in... COMMISSION Chlorinated Isocyanurates From China and Japan Determinations On the basis of the record \\1... injured by reason of imports from China and Japan of chlorinated isocyanurates, provided for...

  17. Biodegradability of Chlorinated Anilines in Waters

    Institute of Scientific and Technical Information of China (English)

    CHAO WANG; GUAN-GHUA LU; YAN-JIE ZHOU

    2007-01-01

    Objective To identify the bacteria tolerating chlorinated anilines and to study the biodegradability of o-chloroaniline and its coexistent compounds. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicant. Biodegradability of chlorinated anilines was determined using domesticated complex bacteria as an inoculum by shaking-flask test. Results The complex bacteria were identified, consisting of Xanthomonas, Bacillus alcaligenes,Acinetobacter, Pseudomonas, and Actinomycetaceae nocardia. The obtained complex bacteria were more tolerant to o-chloroaniline than mixture bacteria in natural river waters. The effects of exposure concentration and inoculum size on the biodegradability of o-chloroaniline were analyzed, and the biodegradation characteristics of single o-chloroaniline and 2,4-dichloroaniline were compared with the coexistent compounds. Conclusion The biodegradation rates can be improved by decreasing concentration of compounds and increasing inoculum size of complex bacteria. When o-chloroaniline coexists with aniline, the latter is biodegraded prior to the former, and as a consequence the metabolic efficiency of o-chloroaniline is improved with the increase of aniline concentration. Meanwhile, when o-chloroaniline coexists with 2,4-dichloroaniline, the metabolic efficiency of 2,4-dichloroaniline is markedly improved.

  18. New infrared spectroscopic database for chlorine nitrate

    International Nuclear Information System (INIS)

    Fourier transform infrared measurements of chlorine nitrate have been performed in the spectral region 500-1330 cm-1 at 0.002-0.008 cm-1 spectral resolution. Absorption cross sections were derived from 23 spectra covering the temperature range from 190 to 296 K and air pressure range from 0 to 150 hPa. For line-by-line analysis, further spectra were recorded at 0.00094 cm-1 spectral resolution at 190 and 296 K. The sample was synthesized from N2O5 and Cl2O. Number densities in the absorption cell were derived from pressure measurements of the purified sample. Quality assurance included measurements with different sample pressures, spectroscopic purity check of the sample, comparison of integrated absorption cross sections over entire band systems, and assessment of residuals from remote-sensing retrievals. Multiplicative and additive errors were considered giving an overall uncertainty of +2.5/-3.5%. Further data reduction was achieved with an interpolation scheme based on two-dimensional polynomials in ln(pressure) and temperature. The worst-case error for the interpolated data is +4.5/-5.5%. The database is well-suited for remote-sensing application and should reduce the atmospheric chlorine nitrate error budget substantially

  19. Chlorine-36 alidation Study at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Paces

    2006-08-28

    The amount, spatial distribution, and velocity of water percolating through the unsaturated zone (UZ) at Yucca Mountain, Nevada, are important issues for assessing the performance of the proposed deep geologic repository for spent nuclear fuel and high-level radioactive waste. To help characterize the nature and history of UZ flow, isotopic studies were initiated in 1995, using rock samples collected from the Miocene ash-flow tuffs in the Exploratory Studies Facility (ESF), an 8-km-long tunnel constructed along the north-south extent of the repository block, and the Enhanced Characterization of the Repository Block (ECRB) Cross Drift, a 2.5-km-long tunnel constructed across the repository block (Figure 1-1, Sources: Modified from DOE 2002 [Figure 1-14] and USBR 1996). Scientists from Los Alamos National Laboratory (LANL) analyzed for chlorine-36 ({sup 36}Cl) in salts leached from whole-rock samples collected from tunnel walls and subsurface boreholes, and scientists from the U.S. Geological Survey (USGS) analyzed for isotopes of oxygen, carbon, uranium, lead, thorium, and strontium in secondary minerals collected from subsurface fractures and lithophysal cavities. Elevated values for ratios of {sup 36}Cl to total chloride ({sup 36}Cl/CL) at the level of the proposed repository indicated that small amounts of water carrying bomb-pulse {sup 36}Cl (i.e., {sup 36}Cl/Cl ratios greater than 1250 x 10{sup -15} resulting from {sup 36}Cl produced by atmospheric testing of nuclear devices during the 1950s and early 1960s) had percolated through welded and nonwelded tuffs to depths of 200 to 300 meters (m) beneath the land surface over the past 50 years. Because of the implications of short travel times to the performance of the proposed repository, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), Office of Repository Development (ORD), decided to verify the {sup 36}Cl/Cl data with an independent validation study. DOE asked the USGS

  20. Chlorine-36 validation Study at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    The amount, spatial distribution, and velocity of water percolating through the unsaturated zone (UZ) at Yucca Mountain, Nevada, are important issues for assessing the performance of the proposed deep geologic repository for spent nuclear fuel and high-level radioactive waste. To help characterize the nature and history of UZ flow, isotopic studies were initiated in 1995, using rock samples collected from the Miocene ash-flow tuffs in the Exploratory Studies Facility (ESF), an 8-km-long tunnel constructed along the north-south extent of the repository block, and the Enhanced Characterization of the Repository Block (ECRB) Cross Drift, a 2.5-km-long tunnel constructed across the repository block (Figure 1-1, Sources: Modified from DOE 2002 [Figure 1-14] and USBR 1996). Scientists from Los Alamos National Laboratory (LANL) analyzed for chlorine-36 (36Cl) in salts leached from whole-rock samples collected from tunnel walls and subsurface boreholes, and scientists from the U.S. Geological Survey (USGS) analyzed for isotopes of oxygen, carbon, uranium, lead, thorium, and strontium in secondary minerals collected from subsurface fractures and lithophysal cavities. Elevated values for ratios of 36Cl to total chloride (36Cl/CL) at the level of the proposed repository indicated that small amounts of water carrying bomb-pulse 36Cl (i.e., 36Cl/Cl ratios greater than 1250 x 10-15 resulting from 36Cl produced by atmospheric testing of nuclear devices during the 1950s and early 1960s) had percolated through welded and nonwelded tuffs to depths of 200 to 300 meters (m) beneath the land surface over the past 50 years. Because of the implications of short travel times to the performance of the proposed repository, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), Office of Repository Development (ORD), decided to verify the 36Cl/Cl data with an independent validation study. DOE asked the USGS to design and implement a validation study that

  1. Release of chlorine from biomass at gasification conditions

    International Nuclear Information System (INIS)

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O2, H2O and CO2 had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO2 increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  2. Effects of chlorine or chlorine dioxide during immersion chilling on recovery of bacteria from broiler carcasses and chiller water

    Science.gov (United States)

    A study was conducted to determine the microbiological impact of immersion chilling broiler carcasses with chlorine or chlorine dioxide. Eviscerated, pre-chill commercial broiler carcasses were cut into left and right halves along the keel bone, and each half was rinsed (HCR) in 100 mL of 0.1% pept...

  3. Impact of vegetation and ecosystems on chlorine(-36) cycling and its modeling: from simplified approaches towards more complex biogeochemical tools

    Science.gov (United States)

    Thiry, Yves; Redon, Paul-Olivier; Gustafsson, Malin; Marang, Laura; Bastviken, David

    2013-04-01

    Chlorine is very soluble at a global scale with chloride (Cl-), the dominating form. Because of its high mobility, chlorine is usually perceived as a good conservative tracer in hydrological studies and by analogy as little reactive in biosphere. Since 36Cl can be considered to have the same behaviour than stable Cl, a good knowledge of chlorine distribution between compartments of terrestrial ecosystems is sufficient to calibrate a specific activity model which supposes rapid dilution of 36Cl within the large pool of stable Cl and isotopic equilibrium between compartments. By assuming 36Cl redistribution similar to that of stable Cl at steady-state, specific activity models are simplified interesting tools for regulatory purposes in environmental safety assessment, especially in case of potential long term chronic contamination of agricultural food chain (IAEA, 2010). In many other more complex scenarios (accidental acute release, intermediate time frame, and contrasted natural ecosystems), new information and tools are necessary for improving (radio-)ecological realism, which entails a non-conservative behavior of chlorine. Indeed observed dynamics of chlorine in terrestrial ecosystems is far from a simple equilibrium notably because of natural processes of organic matter (SOM) chlorination mainly occurring in surface soils (Öberg, 1998) and mediated by microbial activities on a large extent (Bastviken et al. 2007). Our recent studies have strengthened the view that an organic cycle for chlorine should now be recognized, in addition to its inorganic cycle. Major results showed that: organochlorine (Clorg) formation occurs in all type of soils and ecosystems (culture, pasture, forest), leading to an average fraction of the total Cl pool in soil of about 80 % (Redon et al., 2012), chlorination in more organic soils over time leads to a larger Clorg pool and in turn to a possible high internal supply of inorganic chlorine (Clin) upon dechlorination. (Gustafsson et

  4. Synergetic Inactivation of Microorganisms in Drinking Water by Short-term Free Chlorination and Subsequent Monochloramination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To introduce synergetic inactivation of microorganisms in drinking water by short-term free chlorination for less than 15 minutes followed by monochloramination. Methods Indicator microorganisms such as Escherichia coli,Staphylococcus aureus, Candida albicans, and spores of Bacillus subtilis were used to assess the efficiency of sequential chlorination and free chlorination. Results The sequential chlorination was more efficient in inactivating these microorganisms than free chlorination, indicating that synergy was provided by free chlorine and monochloramine. Ammonia addition time, temperature and pH had influences on this synergy. Conclusion The possible mechanism of this synergy might involve three aspects: free chlorine causing sublethal injury to microorganisms and monochloramine further inactivating them; different ability of free chlorine and monochloramine to penetrate and inactivate microorganism congeries; and higher concentration of residual chlorine in sequential chlorination than in free chlorination.

  5. Integrated characterization of natural attenuation of a PCE plume after thermal remediation of the source zone - incl. dual isotope and microbial techniques

    OpenAIRE

    Broholm, Mette Martina

    2015-01-01

    PCE DNAPL contamination at the former central dry cleaning facility in Rødekro, Denmark, was subject to thermal (steam) source zone remediation in late 2006. A > 2 km long plume of chlorinated ethenes (PCE and chlorinated degradation products) which has migrated downgradient from the source zone has not undergone active remediation. A study of the natural degradation within the plume prior to source treatment including stable isotope monitoring was conducted in 2006(-2007) by Hunkeler et a...

  6. Effective diffusivities of iodine, chlorine, and carbon in bentonite buffer material

    International Nuclear Information System (INIS)

    Effective diffusivities of iodine, chlorine, and carbon in mixtures of bentonite and sand were determined by measuring the effective diffusivities of common chemical compounds labeled with radioactive isotopes of these elements. For carbon, both inorganic and organic carbon compounds were used in order to consider the variety of chemical forms of carbon possible in a radioactive waste repository. The bentonite content and dry density of the bentonite-sand mixture were varied. Two chemically different aqueous solutions, representing concrete pore water and bentonite pore water, were used to represent different conditions that could affect diffusivity in bentonite buffer material in a hypothetical radioactive waste disposal situation. The effective diffusivities of iodine, chlorine, and carbon tended to decrease with increasing bentonite content and dry density of the mixture. In the presence of simulated concrete pore water, the effective diffusivities for iodine, chlorine, and carbon in the bentonite mixtures were not higher than those obtained when simulated bentonite pore water was used. Except for some organic compounds, the measured effective diffusivities were lower than that of tritiated water under the same experimental conditions. This was attributed primarily to exclusion of anions from the bentonite pores. The effective diffusivity of carbon depended on its chemical form. The effective diffusivity of the anionic forms of organic carbon tested (carboxylic acids) was as low as that of inorganic anionic carbon. Measured effective diffusivities were compared with those calculated using a model based on electrical double layer theory. The theory was applied to calculate distributions of electrolyte ions and diffusion ions in the bentonite pores. The calculated effective diffusivities showed good agreement with the measured values

  7. Appraisal of chlorine contact tank modelling practices.

    Science.gov (United States)

    Rauen, William B; Angeloudis, Athanasios; Falconer, Roger A

    2012-11-15

    With new water directives imposing strict regulations to reduce the footprint of treatment operations and contaminant levels, a performance review of water treatment facilities, including Chlorine Contact Tanks (CCTs) is required. This paper includes a critical appraisal of the international literature on CCT modelling practices to date, aiming to assist the identification of areas requiring further development, in particular, relating to the computational modelling capability and availability of tools to assist hydraulic design and optimisation studies of CCTs. It notes that the hydraulic optimisation practice of poorly designed tanks commenced with experimental studies undertaken in the 1960s and 1970s, which involved mainly two types of studies, namely in situ tracer tests and laboratory physical modelling. The former has traditionally been conducted to diagnose the hydraulic performance of existing CCTs, typically based on results such as Residence Time Distribution (RTD) curves and values of the Hydraulic Efficiency Indicators (HEIs). The latter has been useful in trial and error testing of the impact of certain design modifications on those results, with suggestions for later improvements of the field scale unit. In the 1980s mathematical and numerical modelling studies started to be used to assist CCT investigations, offering a greater level of detail in a more cost-effective manner than equivalent experimentally based investigations. With the growth of computing power and the popularisation of computational models, the 1990s saw the development and application of Computational Fluid Dynamics (CFD) tools to simulate the hydraulic performance of CCTs, sometimes independently of experimentation, other than by using available data to calibrate and validate modelling predictions. This has led to the current scenario of CFD models being invaluable assistive tools in optimisation studies of CCTs, with the experimentation practice continuing to allow for specific

  8. Chlorination of calcium tungstate by mixture of chlorine and sulfur dioxide

    International Nuclear Information System (INIS)

    Results of thermodynamic calculations and experimental investigations of interaction of calcium tungstate with Cl2+SO2 mixture at 400-850 deg C are presented. It is shown that the processes passes through several sequential and parallel stages with formation of tungsten (6) oxide and calcium chloride as intermediate products. Peculiarities of the process are determined by the ratio of rates of WO3 formation and chlorination stages

  9. Anaerobic Degradation of Chlorinated Hydrocarbons in Groundwater Aquifers or "Chlorinated Hydrocarbon Degradation"

    OpenAIRE

    Nielsen, R. Brent; Jay D Keasling

    1997-01-01

    Groundwater contamination by chlorinated hydrocarbons, such as tetrachloroethene (PCE) or trichloroethene (TCE), is a major concern throughout the United States. A developing strategy for the remediation of PCE and TCE contaminated aquifers is anaerobic biodegradation. From a TCE contaminated groundwater site, microorganisms were enriched with the ability to anaerobically convert PCE and TCE completely to ethene. Kinetic studies performed with this culture showed that degradation of PCE, TCE...

  10. Novel drug form of chlorin e6

    Science.gov (United States)

    Abakumova, O. Y.; Baum, Rudolf P.; Ermakova, Natalia Y.; Gradyushko, A. T.; Guseva-Donskaya, T. N.; Karmenyan, Artashes V.; Koraboyev, U. M.; Laptev, V. P.; Mechkov, V. M.; Mikhailova, L. M.; Panferova, N. G.; Rebeko, Aleksei G.; Reshetnickov, Andrei V.; Ryabov, M. V.; Stranadko, Eugeny P.; Tsvetkova, Tatyana A.; Zhukova, O. S.

    1999-12-01

    A novel stable water-soluble form of well known photosensitizer chlorin e6 named `Photodithazine' has been obtained from Spirulina Platensis cyanobacteria as a noncovalent complex with N-methyl-D-glucosamine, and its biological characteristics evaluate, which proved to be as follows: in vitro photocytotoxicity was 1 (mu) M (EC50) as determined by the extent of DNA synthesis inhibition in CaOv cells after irradiation with 650 - 900 nm light, and 5 (mu) M (EC65) as determined using MTT test on PC12 cells after irradiation with 670 nm laser light at the doses of 15 and 20 J/cm2, respectively, with Al-sulfophthalocyanine `Photosense' (Russia; oligomerized hematoporphyrin-IX mixture `Photogen', Russia) being used as permitted reference drugs.

  11. Emission of volatile chlorinated hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    The emission of simple chlorinated compounds has been analyzed at five different cases at the district heating plant in Tranaas. The aim of this project has been to investigate the possibilities of finding a method for continuous monitoring of the emissions of chlorinated organic compounds from combustion. Samples were taken only after flue gas condensation. Three easily detectable chlorinated compounds could be quantified in spite of extremely low chlorine content in the fuel: * trichloroethylene, * tetrachloroethylene, * mono chlorinated benzene. Total amount of these compounds were > 0.2 mg/nm3. It is hard to find correlations between the emissions of chlorinated hydrocarbons and combustion conditions. One reason can be the sampling method which did not come up to our expectations. The high volatility of the solvent caused ice in the sampling train and most probably there has been great losses of the most volatile compounds. In spite of the fact that the combustion parameters in several samples were very good with low values of CO (0.2 mg/nm3 of monochlorinated benzene could be detected in the flue gas. Due to the unsatisfactory sampling method the real concentrations of the detected compounds are probably higher than the reported values. The amounts of chlorinated compounds detected are, in this plant, too low for continuous measurements. ( 6 refs., 14 figs., 4 tabs.)

  12. Thermal and under irradiation diffusion of chlorine in uranium dioxide

    International Nuclear Information System (INIS)

    This work concerns the study of the thermal and radiation enhanced diffusion of 36Cl in uranium dioxide. We simulated the presence of 36Cl by implanting a quantity of 37Cl comparable to the impurity content of chlorine in UO2. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments: - the influence of the temperature was studied by carrying out thermal annealings in the temperature range 900 - 1300 C; we showed that implanted chlorine was mobile from temperatures as low as 1000 C and determined a thermal diffusion coefficient D1000 C around 10-16 cm2s-1 - the influence of the irradiation by fission products were studied by irradiating the samples with 127I (energy of 63.5 MeV). We could determine that the diffusion of the implanted chlorine under irradiation and in the range of temperature 30 - 250 C was not purely athermal. We calculated a diffusion coefficient under irradiation D250 C of about 0-14 cm2.s-1. We showed the importance of the implantation and irradiation defects as preferential paths for a fast chlorine transport. We carried out ab initio calculations showing that chlorine is preferentially located in a substitutional site. This is in favour of a Frank-Turnbull diffusion mechanism or a vacancy/chlorine. (author)

  13. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  14. Does chlorination of seawater reverse osmosis membranes control biofouling?

    Science.gov (United States)

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-07-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations. PMID:25917390

  15. Removal effect on Mesocyclops leukarti and mutagenicity with chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    ZUO Jin-long; CUI Fu-yi; QU Bo; ZHU Gui-bing

    2006-01-01

    Mesocyclops leukarti of zooplankton propagates excessively in eutrophic water body and it cannot be effectively inactivated by the conventional drinking water treatment process. In order to tackle this problem, a study of removal effect on Mesocyclops leukarti with chlorine dioxide in a waterworks was performed. The results showed that Mesocyclops leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation combined with the conventional drinking water treatment process.Higher oxidizability and molecular state of chlorine dioxide in water is the key to the inactivation of Mesocyclops leukarti. The chlorite, disinfection by-products (DBPs) of chlorine dioxide, was stable at 0.45 mg/L, which is lower than that critical value of the USEPA. GC-MS examination showed that the quantity of organic substance in the water treated by chlorine dioxide obviously decreased. Ames test further revealed that the mutagenicity was reduced by chlorine dioxide with respect to prechlorine. The propagation ofMesocyclops leukarti can be inactivated effectively and safely by chlorine dioxide pre-oxidation.

  16. Corrosion of copper by chlorine trifluoride

    International Nuclear Information System (INIS)

    The research described called for a considerable amount of preliminary development of the test methods and equipment in order that the various measurements and observations could be carried out without contaminating either the samples or this highly reactive gas. The chlorine trifluoride was highly purified before use, its purity being checked by gas-phase chromatography, micro-sublimation and infrared spectrography. The tests were carried out on copper samples of various purities, in particular a 99.999 per cent copper in the form of mono-crystals. They involved kinetic measurements and the characterization of corrosion products under different temperature and pressure conditions. The kinetics showed reactions of the same order of magnitude as those obtained with elementary fluorine. At atmospheric pressure there occurs formation of cupric fluoride and cuprous chloride. The presence of this latter product shows that it is not possible to consider ClF3 simply as a fluorinating agent. At low pressures an unknown product has been characterized. There are strong grounds for believing that it is the unstable cuprous fluoride which it has not yet been possible to isolate. A germination phenomenon has been shown to exist indicating an analogy between the initial phases of fluorination and those of oxidation. Important effects resulting from the dissociation of the copper fluorides and the solubility of chlorine in this metal have been demonstrated. Finally, tests have shown the considerable influence of the purity of the gas phase and of the nature of the reaction vessel walls on the rates of corrosion which can in certain cases be increased by a factor of several powers of ten. (author)

  17. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems. PMID:27295623

  18. Chlorination of niobium oxide in the presence of carbon monoxide

    International Nuclear Information System (INIS)

    The chlorination kinetics of niobium pentoxide in the presence of carbon monoxide between 500-8000C of temperature is studied. The following variable that influences on the reaction rate are analysed: gas flow, geometry and volume of the Nb2O5 samples, reaction temperature and composition of the chlorinated mixture. At the same time, two other materials were studied: the CaO.Nb2O5 (synthetized in laboratory) and pyrochlorine concentrates. The three materials are compared for the chlorination method used. (M.A.C.)

  19. Effect of sulfur dioxide on indium (3) oxide chlorination

    International Nuclear Information System (INIS)

    On the basis of thermodynamic calculations and kinetic investigations, it is established that in the temperature range from 550 to 800 deg C in the In2O3-Cl2-SO2 system coupled reactions of InCl3 and In2(SO4)3 formation accompanying by further In2(SO4)3 chlorination with gaseous chlorine are main processes, SO2 accelerates considerably In2O3 chlorination at a temperature below 800 deg C, its influence on the process of chloride sublimation at a temperature higher than 800 deg C is not so noticeable

  20. Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis

    OpenAIRE

    Kaur, Simran

    2013-01-01

    Chlorine dioxide is a selective oxidant and powerful antimicrobial agent. Previous work has shown that treatment of cantaloupe with chlorine dioxide gas at 5 mg/L for 10 minutes results in a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monocytogenes respectively. A significant reduction (p Current analytical methods for chlorine dioxide and chloroxyanions are only applicable to aqueous samples. Some of these methods have been used to determine surface residues in treated products by...

  1. Stability and effectiveness of chlorine disinfectants in water distribution systems.

    OpenAIRE

    Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K.

    1986-01-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic p...

  2. Effect of Chlorine on Giardia lamblia Cyst Viability

    OpenAIRE

    Jarroll, Edward L.; Bingham, Alan K.; Meyer, Ernest A.

    1981-01-01

    The effect of chlorine concentration on Giardia lamblia cyst viability was tested under a variety of conditions. The ability of Giardia cysts to undergo excystation was used as the criterion of viability. The experimental variables employed included temperature (25, 15, and 5°C), pH (6, 7, and 8), chlorine-cyst contact time (10, 30, and 60 min), and chlorine concentration (1 to 8 mg/liter). In the pH range studied, cyst survival generally was observed to increase as buffer pH increased. Water...

  3. INFRARED VIBRATIONAL SPECTRA OF CHLORINATED AND HYDROGENATED AMORPHOUS SILICON

    OpenAIRE

    Kalem, S; Chevallier, J.; Al Dallal, S.; Bourneix, J.

    1981-01-01

    The infrared spectra of chlorinated and hydrogenated amorphous silicon have been measured. In addition to the hydrogen induced bands at 2110, 1990, 885, 840 and 640 cm-1, we observe two new modes at 545 cm-1 (Si-Cl stretching) and 500 cm-1 ( Si TO modes induced by chlorine). Observation of the 545 cm-1 band proves that chlorine acts as a dangling bond terminator. Upon annealing, some of the Si-Cl groups transform into SiCl4 molecules (SiCl4 stretching at 615 cm-1). A good agreement is found b...

  4. RESEARCH ON MATHEMATICAL SIMULATION OF RESIDUAL CHLORINE DECAY AND OPTIMIZATION OF CHLORINATION ALLOCATION OF URBAN WATER DISTRIBUTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    TIAN Yi-mei; CHI Hai-yan; LI Hong; SHAN Jin-lin; ZHAI Chun-nian

    2005-01-01

    The concentration of Residual Chlorine (RC) frequently violates the standard in situations of urban water distribution system with large water supply area and long time of distribution.If chlorine dosage increases within water treatment plant, although RC in distribution system could meet water quality standard, Disinfection By-Products (DBPs) such as hydrocarbon halide rises.In the paper, a mathematical model of chlorine allocation optimization was presented based on reaction kinetics mechanism and optimization theory to solve the problem.The model includes the objective function of minimizing annual operation cost and constraints of RC standard and rational chlorination station distribution, and solving by 0-1 Integer Programming (IP).The model had been applied to a real water distribution system.The simulation results of the model showed that adding chlorine in water distribution system remarkably improved water quality and reduced the operation cost by 49.3% per year less than chlorine dosed only in water treatment plant to meet RC standard.The results prove adding chlorine in water distribution system based on the model can bring both technological and economic advancement.

  5. Effect of the temperature and the chlorine pressure, over the aluminium chlorides obtained by direct chlorination of the 6061 alloy

    International Nuclear Information System (INIS)

    The aluminium chloride is synthesized by direct chlorination of aluminium, in agreement with the following reaction: Al(s) + 3/2 Cl2 AlCl3 (s,g).The present work focuses on the preparation of aluminium chlorides by two methods: (a) Chlorination of 6061 aluminium alloy with gaseous chlorine in sealed containers, filled with different pressures of gas, from 0.8 to 74 Kpa and in the range of temperature between 2000 and 5000C.(b) Chlorination of the same alloy in chlorine flow between 1500 and 4000C.In the sealed systems, the hexahydrated aluminium trichloride predominated over the anhydrous form. For pressures lower than 14 Kpa and temperatures under 2500C, the chloride didn't appear.The residues were rich in aluminium, chlorine and magnesium.In the other systems, the anhydrous chloride was found in the areas of the reactor of temperatures above 1000C, for all the thermal treatments. The waste was composed by CrCl3 and AlCl3.6H2O.The influence of the chlorine pressures and the heating temperature over the characteristics of the product, was studied.The characterization techniques were x-ray diffraction and energy dispersive spectroscopy, and the evolution of the structure was followed by scanning electron microscopy

  6. Evaluating potential chlorinated methanes degradation mechanisms and treatments in interception trenches filled with concrete-based construction wastes

    Science.gov (United States)

    Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert

    2014-05-01

    A complex mixture of chlorinated organic compounds is located in an unconfined carbonated bedrock aquifer with low permeability in a former industrial area next to Barcelona (NE Spain). The site exhibited an especially high complexity due to the presence of multiple contaminant sources, wide variety of pollutants (mainly chlorinated ethenes but also chlorinated methanes) and unknown system of fractures (Palau et al., 2014). Interception trenches were installed in the place of the removed pollution sources and were filled with construction wastes with the aim of retaining and treating the accumulated contaminated recharge water before reaching the aquifer. Recycled concrete-based aggregates from a construction and demolition waste recycling plant were used to maintain alkaline conditions in the water accumulated in the trenches (pH 11.6±0.3) and thus induce chloroform (CF) degradation by alkaline hydrolysis. An efficacy of around 30-40% CF degradation in the interception trenches was calculated from the significant and reproducible CF carbon isotopic fractionation (-53±3o obtained in batch experiments (Torrentó et al., 2014). Surprisingly, although hydrolysis of carbon tetrachloride (CT) is extremely slow, a significant CT carbon isotopic enrichment was also observed in the trenches. The laboratory experiments verified the low capability of concrete to hydrolyze the CT and showed the high adsorption of CT on the concrete particles (73% after 50 days) with invariability in its δ13C values. Therefore, the significant CT isotopic fractionation observed in the interception trenches could point out the occurrence of other degradation processes distinct than alkaline hydrolysis. Geochemical speciation modelling using the code PHREEQC showed that water collected at the trenches is supersaturated with respect to several iron oxy-hydroxides and therefore, CT degradation processes related to these iron minerals cannot be discarded. In addition, the combination of alkaline

  7. Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources

    OpenAIRE

    Brusseau, Mark L.; Narter, Matthew

    2013-01-01

    Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on...

  8. Stable isotope studies

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  9. Stable isotope studies

    International Nuclear Information System (INIS)

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  10. Method for separating isotopes

    Science.gov (United States)

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  11. Developing isotopic functions

    International Nuclear Information System (INIS)

    Isotopic functions, or ratios of two isotopic variables, are used to verify Pu and U measurements of spent fuels in reprocessing plants. Systematic methods have been developed for forming and evaluating isotopic functions. This paper describes the method used at Battelle to form and evaluate isotopic functions. The data base at Battelle contains measurements and calculations for the fuel from 35 reactors

  12. TOXICITY OF RESIDUAL CHLORINE COMPOUNDS TO AQUATIC ORGANISMS

    Science.gov (United States)

    Laboratory studies on the acute and chronic toxicity of chlorine and inorganic chloramines to trout, salmon, minnows, bullhead, largemouth bass, and bluegill were conducted. Acute toxicity under continuous and intermittent patterns of exposure as well as behavioral, reproduction,...

  13. Complete Non-Radioactive Operability Tests for Cladding Hull Chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jared A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hylton, Tom D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brunson, Ronald Ray [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunt, Rodney Dale [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DelCul, Guillermo Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bradley, Eric Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Non-radioactive operability tests were made to test the metal chlorination reactor and condenser and their accessories using batch chlorinations of non-radioactive cladding samples and to identify optimum operating practices and components that need further modifications prior to installation of the equipment into the hot cell for tests on actual used nuclear fuel (UNF) cladding. The operability tests included (1) modifications to provide the desired heating and reactor temperature profile; and (2) three batch chlorination tests using, respectively, 100, 250, and 500 g of cladding. During the batch chlorinations, metal corrosion of the equipment was assessed, pressurization of the gas inlet was examined and the best method for maintaining solid salt product transfer through the condenser was determined. Also, additional accessing equipment for collection of residual ash and positioning of the unit within the hot cell were identified, designed, and are being fabricated.

  14. MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS

    Science.gov (United States)

    Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...

  15. The chlorination kinetics of zirconium dioxide mixed with carbon black

    International Nuclear Information System (INIS)

    In this research, the effects of chlorine gas at different chlorine partial pressures and carbon concentrations on the carbochlorination of zirconia were studied. It was found that in briquettes containing 18.7 %wt carbon, in a chlorine partial pressure range of 0.25-0.75 atm and for a reacted fraction of less than 0.7, the chemical reaction model was dominant for the carbochlorination process of zirconia. The order of reaction into chlorine gas (n) in this situation was 0.57. Moreover, the best weight ratio of carbon to zirconia was 40/60. In this case, the activation energy of the reaction was 209.9 kJ mol-1 in a temperature range of 1023-1223 K, and the dominant model was the chemical reaction model.

  16. Effect of Chlorine Dioxide Gas on Polymeric Packaging Materials

    Science.gov (United States)

    Permeability, solubility and diffusion coefficients of chlorine dioxide for high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyvinyl chloride (PVC), polystyrene (PS), polyethylene terephthalate (PET), nylon, and multilayer of ethylene viny...

  17. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  18. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquife

  19. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    Science.gov (United States)

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  20. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    Science.gov (United States)

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  1. Determination of chlorine in graphite by combustion-ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Chen Lianzhong [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy; Watanabe, Kazuo; Itoh, Mitsuo

    1995-09-01

    A combustion/ion chromatographic method has been studied for the sensitive determination of chlorine in graphite. A graphite sample was burnt at 900degC in a silica reaction tube at an oxygen flow rate of 200 ml/min. Chlorine evolved was absorbed in 20 ml of a 0.1 mM sodium carbonate solution. The solution was evaporated to dryness. The residue was dissolved with a small volume of water. Chlorine in the solution was determined using ion chromatography. The method was applied to JAERI graphite certified reference materials and practical graphite materials. The detection limit was about 0.8 {mu}gCl/g for a 2.0 g sample. The precision was about 2.5% (relative standard deviation) for samples with chlorine content of 70 {mu}g/g level. The method is also usable for coal samples. (author).

  2. Determination of chlorine in graphite by combustion-ion chromatography

    International Nuclear Information System (INIS)

    A combustion/ion chromatographic method has been studied for the sensitive determination of chlorine in graphite. A graphite sample was burnt at 900degC in a silica reaction tube at an oxygen flow rate of 200 ml/min. Chlorine evolved was absorbed in 20 ml of a 0.1 mM sodium carbonate solution. The solution was evaporated to dryness. The residue was dissolved with a small volume of water. Chlorine in the solution was determined using ion chromatography. The method was applied to JAERI graphite certified reference materials and practical graphite materials. The detection limit was about 0.8 μgCl/g for a 2.0 g sample. The precision was about 2.5% (relative standard deviation) for samples with chlorine content of 70 μg/g level. The method is also usable for coal samples. (author)

  3. Kinetics of Chlorine Decay in Water Distribution Systems

    Institute of Scientific and Technical Information of China (English)

    周建华; 薛罡; 赵洪宾; 汪永辉; 郭美芳

    2004-01-01

    A combined first and second-order model, which includes bulk decay and wall decay, was developed to describe chlorine decay in water distribution systems. In the model the bulk decay has complex relationships with total organic carbon (TOC), the initial chlorine concentration and the temperature. Except for the initial stages they can be simplified into a linear increase with TOC, a linear decrease with initial chlorine concentration and an exponential relationship with the temperature. The model also explains why chlorine decays rapidly in the initial stages. The parameters of model are determined by deriving the best fitness with experimental data. And the accuracy of model has been verified by using the experimental data and the monitoring data in a distribution system.

  4. Modeling of residual chlorine in water distribution system

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Water quality within water distribution system may vary with both location and time. Water quality models are used to predict the spatial and temporal variation of water quality throughout water system. A model of residual chlorine decay in water pipe has been developed,given the consumption of chlorine in reactions with chemicals in bulk water, bio-films on pipe wall, in corrosion process, and the mass transport of chlorine from bulk water to pipe wall. Analytical methods of the flow path from water sources to the observed point and the water age of every observed node were proposed. Model is used to predict the decay of residual chlorine in an actual distribution system. Good agreement between calculated and measured values was obtained.

  5. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  6. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  7. The isotopic contamination in electromagnetic isotope separators

    International Nuclear Information System (INIS)

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  8. SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Brian02 Looney, B; Michael J. Truex; Charles J. Newell

    2006-08-16

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  9. Chlorine dioxide as an oxidant for organoboron compounds

    International Nuclear Information System (INIS)

    Practicability of using chlorine dioxide aqueous solution as an oxidant for terpene organoboron compounds prepared by hydroborating (+)α-pinene (1) and (-)β-pinene (2) is studied. By the methods of IR spectroscopy and 13C NMR it is shown that products of 1 and 2 oxidation are (-)-isopinocampheol and (-)-cis-myrtanol, which are formed with a high yield. In terms of its efficiency chlorine dioxide is no worse than hydrogen peroxide in reactions of organoboric compounds oxidation

  10. Oxidation of manganese(II) during chlorination: role of bromide.

    Science.gov (United States)

    Allard, S; Fouche, L; Dick, J; Heitz, A; von Gunten, U

    2013-08-01

    The oxidation of dissolved manganese(II) (Mn(II)) during chlorination is a relatively slow process which may lead to residual Mn(II) in treated drinking waters. Chemical Mn(II) oxidation is autocatalytic and consists of a homogeneous and a heterogeneous process; the oxidation of Mn(II) is mainly driven by the latter process. This study demonstrates that Mn(II) oxidation during chlorination is enhanced in bromide-containing waters by the formation of reactive bromine species (e.g., HOBr, BrCl, Br2O) from the oxidation of bromide by chlorine. During oxidation of Mn(II) by chlorine in bromide-containing waters, bromide is recycled and acts as a catalyst. For a chlorine dose of 1 mg/L and a bromide level as low as 10 μg/L, the oxidation of Mn(II) by reactive bromine species becomes the main pathway. It was demonstrated that the kinetics of the reaction are dominated by the adsorbed Mn(OH)2 species for both chlorine and bromine at circumneutral pH. Reactive bromine species such as Br2O and BrCl significantly influence the rate of manganese oxidation and may even outweigh the reactivity of HOBr. Reaction orders in [HOBr]tot were found to be 1.33 (±0.15) at pH 7.8 and increased to 1.97 (±0.17) at pH 8.2 consistent with an important contribution of Br2O which is second order in [HOBr]tot. These findings highlight the need to take bromide, and the subsequent reactive bromine species formed upon chlorination, into account to assess Mn(II) removal during water treatment with chlorine. PMID:23859083

  11. Challenges in subsurface in situ remediation of chlorinated solvents

    OpenAIRE

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann; Hønning, J.; B. H. Hansen; Nedergaard, L. W.; Kern, Kristina; Uthuppu, Basil; Jakobsen, Mogens Havsteen; Kjeldsen, Peter; Bjerg, Poul Løgstrup; Ottesen, L.

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical as well as biological degradation of chlorinated solvents is a contact sport and requires direct contact between the contaminant and the reactants and/or degrading microorganisms. In fractured geologi...

  12. Bromoform production in tropical open-ocean waters: OTEC chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, E.O.; Valentine, R.

    1981-09-01

    The bromoform, and other volatile organics produced while chlorinating both the evaporator and condenser seawater during operation of the one megawatt (1 MW) OTEC-1 test facility are reported. Although many halogenated compounds might be produced as a result of chlorination, the quantitative analyses in this study focused on volatile EPA priority pollutants. Bromoform is the compound specifically recognized as a potential pollutant. Its concentration may be indicative of other halogenated species.

  13. Bio-remediation of aquifers polluted by chlorinated solvents

    International Nuclear Information System (INIS)

    Numerous cases of contamination of aquifers by chlorinated aliphatic solvents, largely utilized during the last decades, constitute a public health problem, because of the toxic effect of such compounds. Different types of aerobic or anaerobic bacteria are able to degrade these molecules. Processes of bio remediation are now experimented in order to restore polluted aquifers. We present here the microorganisms and the enzymatic reactions involved in the biodegradation of chlorinated solvents, and different examples of in situ bio remediation operations are described. (author)

  14. Assessment of the risk of transporting liquid chlorine by rail

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.B.

    1980-03-01

    This report presents the risk of shipping liquid chlorine by rail. While chlorine is not an energy material, there are several benefits to studying chlorine transportation risks. First, chlorine, like energy materials, is widely used as a feedstock to industry. Second, it is the major purification agent in municipal water treatment systems and therefore, provides direct benefits to the public. Finally, other risk assessments have been completed for liquid chlorine shipments in the US and Europe, which provide a basis for comparison with this study. None of the previous PNL energy material risk assessments have had other studies for comparison. For these reasons, it was felt that a risk assessment of chlorine transportation by rail could provide information on chlorine risk levels, identify ways to reduce these risks and use previous studies on chlorine risks to assess the strengths and weaknesses of the PNL risk assessment methodology. The risk assessment methodology used in this study is summarized. The methodology is presented in the form of a risk assessment model which is constructed for ease of periodic updating of the data base so that the risk may be reevaluated as additional data become available. The report is sectioned to correspond to specific analysis steps identified in the model. The transport system and accident environment are described. The response of the transport system to accident environments is described. Release sequences are postulated and evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a direct comparison with other reports in this series.

  15. Structural Insights into Regioselectivity in the Enzymatic Chlorination of Tryptophan

    OpenAIRE

    Zhu, Xiaofeng; De Laurentis, Walter; Leang, Khim; Herrmann, Julia; Ihlefeld, Katja; van Pée, Karl-Heinz; Naismith, James H.

    2009-01-01

    The regioselectively controlled introduction of chlorine into organic molecules is an important biological and chemical process. This importance derives from the observation that many pharmaceutically active natural products contain a chlorine atom. Flavin-dependent halogenases are one of the principal enzyme families responsible for regioselective halogenation of natural products. Structural studies of two flavin-dependent tryptophan 7-halogenases (PrnA and RebH) have generated important ins...

  16. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4-chloro......-chloroindoleacetic acid from pea and in the cancerostatic maytansinoids. Many compounds are chlorohydrins isolated along with the related epoxides. Some compounds, like gibberellin A6 hydrochloride from bean, are perhaps artefacts....

  17. Spatial and temporal variability of inorganic chlorine in Northwestern Europe

    Science.gov (United States)

    Sommariva, R.; Hollis, L. D. J.; Baker, A. R.; Ball, S. M.; Bell, T. G.; Cordell, R. L.; Fleming, Z.; Gaget, M.; Yang, M. X.; Monks, P. S.

    2015-12-01

    Chlorine is well known to be a strong oxidant in the atmosphere;chlorine reactivity impacts the formation of tropospheric ozone, theoxidation of methane and non-methane hydrocarbons, and the cycling ofnitrogen, sulphur and mercury. An accurate assessment of the roleplayed by chlorine in tropospheric chemical processes is complicatedby the scarce knowledge of its sources, sinks and distribution.We report observations of inorganic chlorine species (Cl2, ClNO2,particulate chloride) taken over the period 2014-2015 at threedifferent locations in Britain: an urban site a hundred kilometersfrom the ocean (Leicester), a coastal site mostly affected by shiptraffic (Penlee Point, Cornwall) and a coastal site experiencingeither clean air from the North Sea or polluted air from inland(Weybourne, Norfolk).This dataset provides a first look into the geographical distributionand seasonal variability of chlorine in Northwestern Europe: theresults suggest that, during the night, ClNO2 is ubiquitous withconcentrations in the range of hundreds to thousands of pptV at alllocations, whereas Cl2 can be observed only at coastal sites, withconcentrations of a few tens of pptV. The implications of thewidespread presence of these forms of inorganic chlorine for ozoneproduction and, in general, for the oxidative processes in the loweratmosphere are discussed with the help of a wide range of supportingmeasurements.

  18. Carboranyl-Chlorin e6 as a Potent Antimicrobial Photosensitizer.

    Directory of Open Access Journals (Sweden)

    Elena O Omarova

    Full Text Available Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane, applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters.

  19. Separation of uranium isotopes

    International Nuclear Information System (INIS)

    This invention provides a method for separating uranium isotopes comprising the steps of selectively irradiating a photochemically-reactive uranyl source material at a wavelength selective to a desired isotope of uranium at an effective temperature for isotope spectral line splitting below about 77 K, further irradiating the source material within the fluorescent lifetime of the selectively irradiated source material to selectively photochemically reduce the selectively excited isotopic species, and chemically separating the reduced isotope species from the remaining uranyl salt compound

  20. Applications of compound-specific carbon isotope ratios in organic contaminant studies

    International Nuclear Information System (INIS)

    In this paper results are presented on the application of compound-specific isotope ratios measurements to assess biodegradation of chlorinated solvents, in particularly on microbial dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE). Analytical aspects and isotope data from laboratory and field studies are discussed. The analytical tests showed that both headspace and SPME techniques provide accurate δ13C values with a similar precision for a wide range of chlorinated solvents. However, the SPME method is generally more sensitive. The microcosm experiments show that a significant isotopic fractionation occurs during dechlorination of PCE and TCE to ethene. The largest fractionation factors are observed in the steps DCE-VC and VC-Ethene. In general, the δ13C of each dechlorination product was always more negative than the δ13C of the corresponding precursor. In addition, the δ13C values of each compound increased with time. A similar pattern was observed for dechlorination of PCE at a field site. These results show that compound-specific carbon isotope ratios technology is a very sensitive tool for evaluation of natural attenuation of chlorinated solvents in groundwater. (author)

  1. The synergistic effect of Escherichia coli inactivation by sequential disinfection with low level chlorine dioxide followed by free chlorine.

    Science.gov (United States)

    Yang, Wu; Yang, Dong; Zhu, Sui-Yi; Chen, Bo-Yan; Huo, Ming-Xin; Li, Jun-Wen

    2012-12-01

    To the best of our knowledge, there was little information available on pathogen removal using low level disinfectant followed by free chlorine in sequential disinfection (SD). This study investigated Escherichia coli inactivation by four types of disinfection: single step disinfection (SSD), SD, traditional sequential disinfection (TSD) and mixed disinfectant disinfection (MDD). Results indicated that SD had higher ability to inactivate E. coli than the others, indicating there was a positive synergistic effect on chlorine disinfection by prior dosing with a low level of chlorine dioxide (ClO(2)). The ONPG assay suggested that the permeability of cell wall rather than the viability of E. coli were changed under 0.02 mg/l ClO(2) treatment. The coexistence of residual ClO(2) and free chlorine also plays an active synergistic effect. Additionally, temperature had a positive effect on E. coli inactivation in SD, while inactivation was reduced in alkaline compared to neutral and acidic conditions. PMID:23165713

  2. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    International Nuclear Information System (INIS)

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L−1. The transformation kinetic data for ARGs removal (log C0 / C) followed the second-order reaction kinetic model with FC dosage (R2 = 0.6829–0.9999) and contact time (R2 = 0.7353–8634), respectively. Higher ammonia nitrogen (NH3–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl2:NH3–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm−2, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH3–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs

  3. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  4. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species.

    Science.gov (United States)

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Wang, Ting; Hu, Hong-Ying

    2016-07-01

    For successful wastewater reclamation, advanced oxidation processes have attracted attention for elimination of emerging contaminants. In this study, the synergistic treatment with UV irradiation and chlorine (UV/chlorine) was used to degrade carbamazepine (CBZ). Neither UV irradiation alone nor chlorination alone could efficiently degraded CBZ. UV/chlorine oxidation showed a significant synergistic effect on CBZ degradation through generation of radical species (OH and Cl), and this process could be well depicted by pseudo first order kinetic. The degradation rate constants (kobs,CBZ) of CBZ increased linearly with increasing UV irradiance and chlorine dosage. The degradation of CBZ by UV/chlorine in acidic solutions was more efficient than that in basic solutions mainly due to the effect of pH on the dissociation of HOCl and OCl(-) and then on the quantum yields and radical species quenching of UV/chlorine. When pH was increased from 5.5 to 9.5, the rate constants of degradation of CBZ by OH decreased from 0.65 to 0.14 min(-1) and that by Cl decreased from 0.40 to 0.11 min(-1). The rate constant for the reaction between Cl and CBZ was 5.6 ± 1.6 × 10(10) M(-1) s(-1). Anions of HCO3(-) (1-50 mM) showed moderate inhibition of CBZ degradation by UV/chlorine, while Cl(-) did not. UV/chlorine could efficiently degrade CBZ in wastewater treatment plant effluent, although the degradation was inhibited by about 30% compared with that in ultrapure water with chlorine dosage of 0.14-0.56 mM. Nine main oxidation products of the CBZ degradation by UV/chlorine were identified using the HPLC-QToF MS/MS. Initial oxidation products arose from hydroxylation, carboxylation and hydrogen atom abstraction of CBZ by OH and Cl, and were then further oxidized to generate acylamino cleavage and decarboxylation products of acridine and acridione. PMID:27105033

  5. Modelling of the natural chlorine cycling in a coniferous stand: implications for chlorine-36 behaviour in a contaminated forest environment

    International Nuclear Information System (INIS)

    Considered as one of the most available radionuclide in soil–plant system, 36Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of 36Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of 36Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation. - Highlights: ► 36Cl is of potential concern for long-term management of radioactive wastes. ► There is a need for an appropriate understanding of the Cl

  6. Isotope separation by cw infrared laser enhanced reaction

    International Nuclear Information System (INIS)

    In laser isotope separation it is widely assumed that the rate of the chemical reaction which involves the laser excited reagents must exceed the interisotope energy transfer rate. This is shown to be an unnecessary constraint on the selection of reactions and experimental conditions. Using deactivation processes to compete with energy transfer between the isotopes, it is shown that isotope selectivity can be preserved even under the difficult conditions of cw single infrared photon excitation. The principle is demonstrated by showing bromine isotope selectivity in the radical chain chlorination of methyl bromide in a low pressure discharge-flow reactor intracavity to a CO2 laser. Thermal, VV, and chemical scrambling effects are shown to be unimportant with proper experimental design. Bromine isotope enrichment is limited to 9 or approx. =5% by the small vibrational rate enhancement of the near-thermoneutral hydrogen abstraction. The temperature dependence of the enrichment is studied and the difficulty in assigning the increased reactivity to a particular vibrational mode is discussed. The energy cost for this particular isotopic enrichment is calculated (6 keV/product molecule) to demonstrate that although energy is wasted by the deactivation process, the flexibility this technique offers in terms of permitting the use of cw (large throughput) ir (efficient) lasers outweighs the above effect. The use of cw techniques allows changes in reactivity of less than 1% to be readily observed

  7. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves

    Science.gov (United States)

    This study compared the efficacy of chlorine (20 – 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 – 200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20 – 200 ppm chlorite ion concentration, TriNova) washes in reducing population...

  8. Chlorine Stabilizer T-128 enhances efficacy of chlorine against cross contamination by E. coli O157:H7 and Salmonella in fresh-cut lettuce processing

    Science.gov (United States)

    During fresh produce processing, organic materials released from cut tissues can rapidly react with free chlorine in the wash solution, leading to the potential survival of foodborne bacterial pathogens and cross-contamination when the free chlorine is depleted. A reported chlorine stabilizer, T128...

  9. Efficacy of Nucleic Acid Probes for Detection of Poliovirus in Water Disinfected by Chlorine, Chlorine Dioxide, Ozone, and UV Radiation

    OpenAIRE

    Moore, Norman J.; Margolin, Aaron B.

    1994-01-01

    MilliQ water was inoculated with poliovirus type 1 strain LSc-1 and was treated with disinfectants, including chlorine, chlorine dioxide, ozone, and UV light. No relationship between probes and plaque assays were seen, demonstrating that viral nucleic acids were not destroyed. These findings suggest that nucleic acid probes cannot distinguish between infectious and noninfectious viruses and cannot be used in the evaluation of treated waters.

  10. Hydrogen-chlorine fuel cell for production of hydrochloric acid and electric power : chlorine kinetics and cell design

    OpenAIRE

    Thomassen, Magnus Skinlo

    2005-01-01

    This thesis work is the continuation and final part of a joint project between the Department of Materials Technology, NTNU and Norsk Hydro Research Center in Porsgrunn, looking at the possibility of using fuel cells for production of hydrogen chloride and electric power. The experimental work encompass an evaluation of three hydrogen - chlorine fuel cell design concepts, development and implementation of a mathematical fuel cell model and a kinetic study of the chlorine reduction reaction. T...

  11. Reductive dechlorination of chlorinated solvents in landfills

    International Nuclear Information System (INIS)

    The use of landfills as an in situ biological treatment system represents an alternative for source area remediation with a significant cost saving. The specific objective of this research is to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples excavated from a landfill were tested in laboratory bioreactors designed and operated to facilitate refuse decomposition under landfilling conditions. Each bioreactor was operated with leachate recirculation and gas collection. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at 20 μM each in leachate to simulate the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Results of this study suggest that landfills have an intrinsic reductive dechlorination capacity for PCE and TCE. The decomposition of refuse, a source of complex organics, enhances reductive dechlorination by the refuse cultures tested in this study. In addition, the test results suggest that it may be possible to develop engineering strategies to promote both CAHs degradation and refuse decomposition in landfills. (author)

  12. Electrochemical Membrane Reactors for Sustainable Chlorine Recycling

    Directory of Open Access Journals (Sweden)

    Ulrich Kunz

    2012-07-01

    Full Text Available Polymer electrolyte membranes have found broad application in a number of processes, being fuel cells, due to energy concerns, the main focus of the scientific community worldwide. Relatively little attention has been paid to the use of these materials in electrochemical production and separation processes. In this review, we put emphasis upon the application of Nafion membranes in electrochemical membrane reactors for chlorine recycling. The performance of such electrochemical reactors can be influenced by a number of factors including the properties of the membrane, which play an important role in reactor optimization. This review discusses the role of Nafion as a membrane, as well as its importance in the catalyst layer for the formation of the so-called three-phase boundary. The influence of an equilibrated medium on the Nafion proton conductivity and Cl crossover, as well as the influence of the catalyst ink dispersion medium on the Nafion/catalyst self-assembly and its importance for the formation of an ionic conducting network in the catalyst layer are summarized.

  13. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  14. Chlorinated and Non chlorinated-Volatile Organic Compounds (Vocs) in Drinking Water of Peninsular Malaysia

    International Nuclear Information System (INIS)

    A survey undertaken in Peninsular Malaysia has shown that volatile organic compounds (VOCs), both chlorinated and non-chlorinated, are present in selected drinking water samples. In this study, analyses of VOCs were performed by means of solid phase micro extraction (SPME) with a 100 μm polydimethylsiloxane (PDMS) fibre followed by gas chromatography - mass spectrometry detector (GC-MSD). Samples from different points of the distribution system networks were taken and analysed for 54 VOCs of different chemical families. The results of the study indicated that chloroform constituted the major portion of the VOCs in all samples analysed. In addition to trihalo methanes (THMs), other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichlorobenzene. However, the measured concentrations did not exceed the National Guideline for Drinking Water Quality 2000 in any case. No clear relationship between the status of development of a state in Malaysia to the levels and types of VOCs detected in its drinking water was noted. Nevertheless, the finding of anthropogenic chemicals, even at low concentrations, gave credibility to the viewpoint that improper development and disposal practices threatened the purity of the drinking water. (author)

  15. Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination By-Products in Seawater

    Directory of Open Access Journals (Sweden)

    Suhur Saeed

    2015-07-01

    Full Text Available Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs when exposed to naturally-occurring organic matter (NOM. Some of these CBPs can pose toxic risks to aquatic and benthic species in the receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs to fully understand the potential impacts of chlorination to the environment. The goal of this study was to develop improved predictions of how chlorine and CBP concentrations in seawater vary with time, chlorine dose and temperature. In the present study, chlorination of once-through cooling water at Ras Laffan Industrial City (RLIC, Qatar, was studied by collecting unchlorinated seawater from the RLIC cooling water system intake, treating it with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate exponential curves were used to represent fast and slow chlorine decay and CBP formation, and site-specific chlorine kinetic relationships were developed. Through extensive analysis of laboratory measurements, it was found that only some of the control parameters identified in the literature were important for predicting residual chlorine and CBP concentrations for this specific location. The new kinetic relationships were able to significantly improve the predictability and validity of Generalized Environmental Modeling System for Surfacewaters (GEMSS-chlorine kinetics module (CKM, a three-dimensional hydrodynamic and chlorine kinetics and transport model when applied for RLIC outfall studies using actual field measurements.

  16. Can chlorination co-select antibiotic-resistance genes?

    Science.gov (United States)

    Lin, Wenfang; Zhang, Menglu; Zhang, Shenghua; Yu, Xin

    2016-08-01

    Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them. PMID:27192478

  17. Study on metal corrosion caused by chlorine dioxide of various purities

    Institute of Scientific and Technical Information of China (English)

    崔崇威; 黄君礼; 许晶

    2004-01-01

    Weight lost method was used to comparatively study the corrosion behavior of four different metals under the dosage of chlorine dioxide, chlorine and their mixture respectively. The experimental results indicated that chlorine causes the most serious corrosion of carbon steel, and the higher the concentration of chlorine, the more serious the corrosion. On the contras, metals corrosion is the least serious in the case of chlorine dioxide.The results further revealed that chlorine dioxide is the most effective water treatment reagent, making it the best choice to use extensively in circulated cooling water disinfection and corrosion control.

  18. Chlorine solubility in evolved alkaline magmas

    Directory of Open Access Journals (Sweden)

    M. R. Carroll

    2005-06-01

    Full Text Available Experimental studies of Cl solubility in trachytic to phonolitic melts provide insights into the capacity of alkaline magmas to transport Cl from depth to the earth?s surface and atmosphere, and information on Cl solubility variations with pressure, temperature and melt or fluid composition is crucial for understanding the reasons for variations in Cl emissions at active volcanoes. This paper provides a brief review of Cl solubility experiments conducted on a range of trachytic to phonolitic melt compositions. Depending on the experimental conditions the melts studied were in equilibrium with either a Cl-bearing aqueous fluid or a subcritical assemblage of low- Cl aqueous fluid + Cl-rich brine. The nature of the fluid phase(s was identified by examination of fluid inclusions present in run product glasses and the fluid bulk composition was calculated by mass balance. Chlorine concentrations in the glass increase with increasing Cl molality in the fluid phase until a plateau in Cl concentration is reached when melt coexists with aqueous fluid + brine. With fluids of similar Cl molality, higher Cl concentrations are observed in peralkaline phonolitic melts compared with peraluminous phonolitic melts; overall the Cl concentrations observed in phonolitic and trachytic melts are approximately twice those found in calcalkaline rhyolitic melts under similar conditions. The observed negative pressure dependence of Cl solubility implies that Cl contents of melts may actually increase during magma decompression if the magma coexists with aqueous fluid and Cl-rich brine (assuming melt-vapor equilibrium is maintained. The high Cl contents (approaching 1 wt% Cl observed in some melts/glasses from the Vesuvius and Campi Flegrei areas suggest saturation with a Cl-rich brine prior to eruption.

  19. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O3), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O3) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  20. Rapid Determination of HAAs Formation Potential of the Reaction of Humic Acid with Chlorine or Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhi-liang; GE Yuan-xin; ZHANG Rong-hua; MA Hong-mei; HAO Jian-fu

    2007-01-01

    On the basis of gas chromatography(GC) coupled with a short capillary column and an electron capture detector(ECD), a simple and rapid method for the determination of five haloacetic acids(HAAs) in drinking water was developed by the optimization of derivation conditions and the modification of gas chromatographic program. HAAs formation potential(HAAFP) of the reaction of humic acid with chlorine was determined via this method. The major advantages of the method are the simplicity of chromatographic temperature program and the short run time of GC. Dichloroacetic acid(DCAA) and Trichloroacetic acid(TCAA), which were detected in the determination of HAAFP, were rapidly formed in the first 72 h of the reaction of humic acid with chlorine. HAAFP of the reaction of humic acid with chlorine increased with the increase in the concentrations of humic acid and chlorine. The average HAAFP of the reaction of humic acid with chlorine was 39.9 μg/mg TOC under the experimental conditions. When the concentration of humic acid was 4 mg/L, the concentration of HAAs, which were produced in the reaction of humic acid with chorine, may exceed MCL of 60 μg/L HAAs as the water quality standards for urban water supply of China and the first stage of US EPA disinfection/disinfection by-products(D/DBP) rule; when the concentration of humic acid was 2 mg/L, the concentration of HAAs may exceed MCL of 30 μg/L HAAs for the second stage of US EPA D/DBP rule. When humic acid was reacted with chlorine dioxide, only DCAA was detected with a maximum concentration of 3.3 μg/L at a humic acid content of 6 mg/L. It was demonstrated that the substitution of chlorine dioxide for chorine may entirely or partly control the formation of HAAs and effectively reduce the health risk associated with disinfected drinking water.

  1. Bacterial repopulation of drinking water pipe walls after chlorination.

    Science.gov (United States)

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water. PMID:27483985

  2. Immobilization of chlorine dioxide modified cells for uranium absorption

    International Nuclear Information System (INIS)

    There has been a trend towards the use of microorganisms to recover metals from industrial wastewater, for which various methods have been reported to be used to improve microorganism adsorption characteristics such as absorption capacity, tolerance and reusability. In present study, chlorine dioxide(ClO2), a high-efficiency, low toxicity and environment-benign disinfectant, was first reported to be used for microorganism surface modification. The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. FTIR analysis indicated that several cell surface groups are involved in the uranium adsorption and cell surface modification. The modified cells were further immobilized on a carboxymethylcellulose (CMC) matrix to improve their reusability. The cell-immobilized adsorbent could be employed either in a high concentration system to move vast UO22+ ions or in a low concentration system to purify UO22+ contaminated water thoroughly, and could be repeatedly used in multiple adsorption-desorption cycles with about 90% adsorption capacity maintained after seven cycles. - Highlights: • Chlorine dioxide was first reported to be used for microorganism surface modification. • The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. • The chlorine dioxide modified cells were further immobilized by carboxymethylcellulose to improve their reusability

  3. Coagulation properties of anelectrochemically prepared polyaluminum chloride containing active chlorine

    Institute of Scientific and Technical Information of China (English)

    HU Chengzhi; LIU Huijuan; QU Jiuhui

    2006-01-01

    With high content of the Al13 species and the active chloride, an electrochemically prepared polyaluminum chloride (E-PACl) presents integrated efficiency of coagulation and oxidation. The coagulation properties of E-PACl were systemically investigated through jar tests in the various water quality conditions. The active chlorine in E-PACl can significantly influence the coagulation behavior due to the active chlorine preoxidation, which can change the surface charge characteristic of organic matter (OM) in water. The active chlorine preoxidation could improve the E-PACl coagulation efficiency if the water possessed the characteristics of relatively low OM content (2 mg/L) and high hardness (278 mg CaCO3/L). In the water with medium content of OM (5 mg/L), dosage would be a crucial factor to decide whether the active chlorine in E-PACl aided coagulation process or not. Comparing with alkaline condition, active chlorine would show a more significant influence on the coagulation process in acidic region.

  4. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    International Nuclear Information System (INIS)

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl2–N2 flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al2O3 (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl2 atmosphere of the MgO–Al2O3 mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C

  5. Chlorinated organic pesticides in marketed food: Barcelona, 2001-06

    Energy Technology Data Exchange (ETDEWEB)

    Fontcuberta, M. [Agencia de Salut Publica de Barcelona, ASPB, Public Health Agency of Barcelona, Av Drassanes 13, 08001 Barcelona (Spain)], E-mail: mfontcub@aspb.es; Arques, J.F.; Villalbi, J.R.; Martinez, M.; Centrich, F.; Serrahima, E.; Pineda, L.; Duran, J.; Casas, C. [Agencia de Salut Publica de Barcelona, ASPB, Public Health Agency of Barcelona, Av Drassanes 13, 08001 Barcelona (Spain)

    2008-01-15

    This paper reports concentration levels of 22 chlorinated organic compounds (both primary compounds and metabolites) in food marketed in the city of Barcelona (Catalonia, Spain) in 2001-06. Samples included meat products, fish and seafood, eggs, milk and dairy, vegetal oils, cereal products and derivates, vegetables, fresh fruits, dry fruits, spices, formula and baby food, tea and wine. Levels of chlorinated organic compounds were determined by gas chromatography with selective detectors: electron capture (ECD), flame photometric (FPD) and confirmation with mass-spectrometry. Chlorinated organic pesticides were detected in 7 of the 1,484 samples analyzed in the 2001-06 period (0.5%): 1 dairy product, 1 fruit, 1 olive oil and 4 vegetables. Specific pesticides detected are lindane and endosulfan {alpha}, {beta} or sulphate. A decrease in both the proportion of samples with detectable residues and in the variety of chlorinated pesticides found is visible when comparing these results with those of the previous 1989-2000 period. These results suggest the gradual disappearance of regulated chlorinated organic pesticides as a consequence of the growing worldwide implementation of current regulatory agreements.

  6. Biofilm formation by Pseudoalteromonas ruthenica and its removal by chlorine.

    Science.gov (United States)

    Saravanan, Periasamy; Nancharaiah, Y Venkata; Venugopalan, Vayalam P; Rao, T Subba; Jayachandran, Seetharaman

    2006-01-01

    The distribution of a recently described marine bacterium, SBT 033 GenBank Accession No. AY723742), Pseudoalteromonas ruthenica, at the seawater intake point, outfall and mixing point of an atomic power plant is described, and its ability to form biofilm was investigated. The effectiveness of the antifouling biocide chlorine in the inactivation of planktonic as well as biofilm cells of P. ruthenica was studied in the laboratory. The results show that the planktonic cells were more readily inactivated than the cells enclosed in a biofilm matrix. Viable counting showed that P. ruthenica cells in biofilms were up to 10 times more resistant to chlorine than those in liquid suspension. Using confocal laser scanning microscopy it was shown that significant detachment of P. ruthenica biofilm developed on a glass substratum could be accomplished by treatment with a dose of 1 mg l-1 chlorine. Chlorine-induced detachment led to a significant reduction in biofilm thickness (up to 69%) and substratum coverage (up to 61%), after 5-min contact time. The results show that P. ruthenica has a remarkable ability to form biofilms but chlorine, a common biocide, can be used to effectively kill and detach these biofilms. PMID:17178570

  7. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina); Barbosa, Lucía [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo Parque General San Martín, Mendoza (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Chacabuco y Pedernera, San Luis (Argentina)

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  8. Chlorinated organic pesticides in marketed food: Barcelona, 2001-06

    International Nuclear Information System (INIS)

    This paper reports concentration levels of 22 chlorinated organic compounds (both primary compounds and metabolites) in food marketed in the city of Barcelona (Catalonia, Spain) in 2001-06. Samples included meat products, fish and seafood, eggs, milk and dairy, vegetal oils, cereal products and derivates, vegetables, fresh fruits, dry fruits, spices, formula and baby food, tea and wine. Levels of chlorinated organic compounds were determined by gas chromatography with selective detectors: electron capture (ECD), flame photometric (FPD) and confirmation with mass-spectrometry. Chlorinated organic pesticides were detected in 7 of the 1,484 samples analyzed in the 2001-06 period (0.5%): 1 dairy product, 1 fruit, 1 olive oil and 4 vegetables. Specific pesticides detected are lindane and endosulfan α, β or sulphate. A decrease in both the proportion of samples with detectable residues and in the variety of chlorinated pesticides found is visible when comparing these results with those of the previous 1989-2000 period. These results suggest the gradual disappearance of regulated chlorinated organic pesticides as a consequence of the growing worldwide implementation of current regulatory agreements

  9. MECHANISM OF CHLORATE FORMATION IN CHLORINE DIOIXDE DELIGNIFICATION

    Institute of Scientific and Technical Information of China (English)

    Byung-Ho Yoon; Li-Jun Wang; Se-Jong Kim

    2004-01-01

    The effect of pH on chlorate formation during chlorine dioxide delignification of oxygen delignified kraft pulp was studied. Chlorate formation was found to increase slightly when pH was increased from 1.8 to 2.5, further increase of pH decreased chlorate formation.The above phenomenon is explained by the combination of two mechanisms, one by the reaction between hypochlorous acid and chlorite, another by the effect of chlorine on the regeneration of chlorine dioxide. The first mechanism suggests that chlorate formation is highly dependent on HCIO concentration which decreases with increasing pH and causes chlorate formation to behave in the same trend. The second mechanism suggests that chlorine favors the regeneration of chlorine dioxide while HCIO favors chlorate formation, thus lowering the pH from about 4 to the acidic end should decreases chlorate formation. The two opposite effects lead to the maximum formation of chlorate at around pH 2.5.

  10. Isotopic geology; Geologie isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Allegre, C. [Paris-7 Univ. Denis Diderot, 75 (France); Institut de physique du globe de Paris, 75 - Paris (France)

    2005-07-01

    Born from the application to geology of nuclear physics techniques, the isotopic geology has revolutionized the Earth's sciences. Beyond the dating of rocks, the tracer techniques have permitted to reconstruct the Earth's dynamics, to measure the temperatures of the past (giving birth to paleoclimatology) and to understand the history of chemical elements thanks to the analysis of meteorites. Today, all domains of Earth sciences appeal more or less to the methods of isotopic geology. In this book, the author explains the principles, methods and recent advances of this science: 1 - isotopes and radioactivity; 2 - principles of isotope dating; 3 - radio-chronological methods; 4 - cosmogenic isotope chronologies; 5 - uncertainties and radio-chronological results; 6 - geochemistry of radiogenic isotopes; 7 - geochemistry of stable isotopes; 8 - isotopic geology and dynamical analysis of reservoirs. (J.S.)

  11. Optical isotope shifts for unstable samarium isotopes

    International Nuclear Information System (INIS)

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144Sm and 154Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  12. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Al-Gabr, Hamid Mohammad [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Laboratory of Environmental Sciences, and Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Zheng, Tianling [State Key Laboratory of Environmental Sciences, and Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Yu, Xin, E-mail: xyu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2013-10-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log{sub 10} control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log{sub 10} reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. - Highlights: • As a disinfectant, chlorine is more effective than UV in inactivating Aspergillus flavus. • As a combined method, UV irradiation followed by chlorination shows high efficiency. • UV irradiation can improve effectiveness of chlorination in reducing Aspergillus flavus.

  13. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination

    International Nuclear Information System (INIS)

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log10 control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log10 reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. - Highlights: • As a disinfectant, chlorine is more effective than UV in inactivating Aspergillus flavus. • As a combined method, UV irradiation followed by chlorination shows high efficiency. • UV irradiation can improve effectiveness of chlorination in reducing Aspergillus flavus

  14. Laser isotope separation: Non-uranium applications. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search

    International Nuclear Information System (INIS)

    The bibliography contains citations concerning isotope separation by laser irradiation of elements other than uranium. Among the topics examined are variations in gas lasers for selective infrared dissociation of molecules, high-power laser applications, selectivity considerations, laser isotope separation apparatus and layouts for large facilities, temperature influence on selectivity, and efficiency of processing. Applications for boron, tritium, chlorine, and deuterium are included. (Contains a minimum of 156 citations and includes a subject term index and title list.)

  15. Statistical clumped isotope signatures.

    Science.gov (United States)

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  16. Chlorination and oxidation of sulfonamides by free chlorine: Identification and behaviour of reaction products by UPLC-MS/MS.

    Science.gov (United States)

    Gaffney, Vanessa de Jesus; Cardoso, Vitor Vale; Benoliel, Maria João; Almeida, Cristina M M

    2016-01-15

    Sulfonamides (SAs) are one class of the most widely used antibiotics around the world and have been frequently detected in municipal wastewater and surface water in recent years. Their transformation in waste water treatment plants (WWTP) and in water treatment plants (WTP), as well as, their fate and transport in the aquatic environment are of concern. The reaction of six sulfonamides (sulfamethoxazole, sulfapyridine, sulfamethazine, sulfamerazine, sulfathiazole and sulfadiazine) with free chlorine was investigated at a laboratory scale in order to identify the main chlorination by-products. A previously validated method, liquid chromatography/mass spectrometry, was used to analyse SAs and their chlorination by-products. At room temperature, pH 6-7, reaction times of up to 2 h and an initial concentration of 2 mg/L of free chlorine, the majority of SAs suffered degradation of around 65%, with the exception of sulfamethoxazole and sulfathiazole (20%). The main reaction of SAs with free chlorine occurred in the first minute. PMID:26560639

  17. Electronic diffraction study of the chlorination of nickel

    International Nuclear Information System (INIS)

    A study has been made of the chlorination of the (100), (110) and (111) crystal faces of nickel using high energy electron diffraction and electron microscopy. Two methods have been used: bombardment with chlorine ions having an energy of between 10 and 30 keV, and direct chlorination in a diffractor at pressures of about 10-4 torr. It has thus been possible to show the very special properties of nickel chloride (CdBr2 type, space group R 3-bar m) which is always formed along the (0001) plane, whatever the orientation of the substrate. It has also been possible to attain the metal-halide interface and to show the existence of two-dimensional chemisorbed films which are ordered or disordered according to the crystal orientation. (author)

  18. Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2013-01-01

    Full Text Available In this paper, a chlorination method is proposed for simultaneous purification and functionalization of carbon nanotubes, thus increasing their ability to use. Carbon nanotubes were obtained by CVD method through ethylene decomposition on the nanocrystalline iron or cobalt or bimetallic iron-cobalt catalysts. The effects of temperature (50, 250, and 450°C in the case of carbon nanotubes obtained on the Fe-Co catalyst and type of catalyst (Fe, Co, Fe/Co on the effectiveness of the treatment and functionalization were tested. The phase composition of the samples was determined using the X-ray diffraction method. The quantitative analysis of metal impurity content was validated by means of the thermogravimetric analysis. Using X-ray Photoelectron Spectroscopy (XPS, Energy Dispersive Spectroscopy (EDS analysis, and also Mohr titration method, the presence of chlorine species on the surface of chlorinated samples was confirmed.

  19. Radiation enhanced thermal diffusion of chlorine in uranium dioxide

    International Nuclear Information System (INIS)

    This work concerns the study of the thermal and radiation enhanced diffusion of 36Cl in uranium dioxide. It is a contribution to PRECCI programme (research programme on the long-term behaviour of the spent nuclear fuel). 36Cl is a long lived volatile activation product (T = 300 000 years) able to contribute significantly to the instant release fraction in geological disposal conditions. We simulated the presence of 36Cl by implanting a quantity of 37Cl comparable to the impurity content of chlorine in UO2. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments: - the influence of the temperature was studied by carrying out thermal annealings in the temperature range 900 - 1300 deg. C; we showed that implanted chlorine was mobile from temperatures as low as 1000 deg. C and determined a thermal diffusion coefficient D1000deg.C around 10-16 cm2s-1 and deduced an activation energy of 4.3 eV. This value is one of lowest compared to that of volatile fission products such as iodine or the xenon. These parameters reflect the very mobile behaviour of chlorine; - the irradiation effects induced by fission products were studied by irradiating the samples with 127I (energy of 63.5 MeV). We showed that the implanted chlorine diffusion in the temperature range 30 - 250 deg. C is not purely athermal. In these conditions, the diffusion coefficient D250deg.C for the implanted chlorine is around 10-14 cm2s-1 and the activation energy is calculated to be 0.1 eV. Moreover, at 250 deg. C, we observed an important transport of the pristine chlorine from the bulk towards the surface. This chlorine comes from a zone where the defects are mainly produced by the nuclear energy loss process at the end of iodine range. We showed the importance of the implantation and irradiation defects as preferential paths for a fast chlorine transport. We carried out ab initio

  20. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (< 0.1 microgram/g), followed by ringed seal, (0.1-1 microgram/g range). Levels are an order of magnitude higher in beluga and narwhal (1-10 micrograms/g range). It appears that metabolism and excretion of S-DDT and PCBs may be less efficient in cetaceans, leading to greater biomagnification. Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St

  1. Integrated characterization of natural attenuation of a PCE plume after thermal remediation of the source zone - incl. dual isotope and microbial techniques

    DEFF Research Database (Denmark)

    Broholm, Mette Martina

    redox, chlorinated ethenes, non-chlorinated degradation products, carbon and chlorine stable isotope composition, as well as specific degraders and their activity was conducted in 2014. The source remediation has, in addition to direct reduction of the concentration level in and flux from the source...... have changed, suggesting an evolution in natural attenuation at significant distance (>1 km down-gradient) from the treated source area. Stable carbon isotopic fractionation revealed significant changes (increase) in the degree of degradation of cDCE in particular both near the source area and > 1 km...... down-gradient which co-inside with the reduction in redox conditions. The findings document a significant increase in cDCE degradation without accumulation of VC. This reduces the risk posed by the contaminant plume to the drinking water resource. This project is unique in the integrated...

  2. Experimental cancer studies of chlorinated by-products

    International Nuclear Information System (INIS)

    Chlorinated drinking water contains a number of different by-products formed during the chlorination process from organic matter. The carcinogenicity of only a fraction of them have been evaluated in experimental animals. The focus has been on compounds and groups of compounds that are most abundant in chlorinated drinking water or the in vitro toxicity data have suggested genotoxic potential. From trihalomethanes, chloroform causes liver tumors in mice and female rats and renal tumors in male mice and rats. Tumor formation by chloroform is strongly associated with cytotoxicity and regenerative cell proliferation in tissues and that has been considered to be one determinant of its carcinogenicity. From halogenic acetic acids, dichloroacetic acid (DCA) and trichlotoacetic acid (TCA) are hepatocarcinogenic in mice and DCA in male rats. Their genotoxicity is equivocal and nongenotoxic mechanisms, such as peroxisome proliferation and hypomethylation of DNA in the liver, likely contribute to tumor development. From chlorinated furanones (CHFs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) is a multisite carcinogen in rats (e.g. in thyroid glands and liver) and it has caused DNA damage in vivo. MX may be a complete carcinogen because it also has promoter properties in vitro. Chlorinated drinking water may also contain brominated by-products providing the raw water contains bromide. At least some of them (bromodichloromethane, bromoform) have been shown to be carcinogenic in laboratory animals. Altogether, although several by-products have been shown to have carcinogenic potential in laboratory animals, it not yet possible to state which compounds or groups of by-products cause the cancer risk in chlorinated drinking water. The cellular mechanisms of their effects and these effects at low concentrations are still poorly understood. The few studies with mixtures of these by-products suggest that the mixture effects may be complex and unpredictable (inhibitory

  3. Oxidation of synthetic phenolic antioxidants during water chlorination.

    Science.gov (United States)

    Rodil, Rosario; Quintana, José Benito; Cela, Rafael

    2012-01-15

    The degradation of seven phenolic antioxidants and metabolites during chlorination was investigated. Under strong chlorination conditions (10 mg L(-1) chlorine, 24h), five of the target compounds were significantly degraded, while only BHT-Q (2,6-di-tert-butylcyclohexa-2,5-diene-1,4-dione) and BHT-CHO (3,5-di-tert-butyl-4-hydroxybenzaldehyde) were stable. The effect of the presence of bromide to the sample was only significant for BHA (butylated hydroxyanisole) resulting in increased disappearance rate as it is increased. Moreover, the disappearance kinetics were investigated at different concentrations of chlorine and pH of sample using a factorial experimental design. It was observed that the pH of the sample was a significant factor for BHT (butylated hydroxytoluene) and BHA, and chlorine concentration was significant for BHT, resulting in increased disappearance kinetics as they are increased. The degradation of these compounds has revealed two main processes: hydroxylation and oxidation of the aromatic system. The hydroxylated derivatives in some cases (e.g. from BHT-OH (2,6-di-tert-butyl-4-(hydroxymethyl)phenol) and BHT-COOH (3,5-di-tert-butyl-4-hydroxybenzoic acid)) are formed via the chlorinated and/or brominated intermediate. Moreover, the oxidation of the aromatic system leads to the quinone derivatives. The investigation of these by-products in real samples by solid-phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS) showed that derivatives of BHT, BHT-OH and/or BHT-COOH occurred in wastewater and drinking water samples analysed. PMID:22093692

  4. Transformation of phenazone-type drugs during chlorination.

    Science.gov (United States)

    Rodil, Rosario; Quintana, José Benito; Cela, Rafael

    2012-05-01

    Chlorination is one of the most popular disinfection steps for water treatment in Europe. However, chlorine can react with pharmaceuticals and other micropollutants leading to either their elimination or by-products being formed. These by-products are frequently not identified and therefore the consequences of chlorination can be underestimated. In this work, the degradation of two analgesics and antipyretics, phenazone (antipyrine) and propyphenazone, during chlorination was investigated by liquid chromatography-mass spectrometry (LC-MS). A quadrupole-time-of-flight (Q-TOF) system was used to follow the time course of the pharmaceuticals, and also used in the identification of the by-products. The degradation kinetics was investigated at different concentrations of chlorine (1-10 mg/L), bromide (0-100 μg/L) and sample pH (5.7-8.3) by means of a Box-Behnken experimental design. Depending on these factors, half-lives were in the ranges: 0.9-295 s for phenazone and 0.4-173 s for propyphenazone. Also, it was observed that chlorine concentration was a significant factor for propyphenazone, resulting in increased degradation rate as it is increased. The transformation path of these drugs consisted mainly of halogenations, hydroxylations and dealkylations. After several days of reaction two derivatives remained stable for phenazone: chloro-hydroxy-phenazone and N-demethyl-chloro-hydroxy-phenazone and two for propyphenazone: N-demethyl-hydroxy-propyphenazone and N-demethyl-chloro-hydroxy-propyphenazone. Moreover, experiments conducted with real water matrices, tap and surface water, showed that reaction, and formation of by-products, can take place both at the emission source point (household) and during drinking water production. PMID:22381982

  5. The Health Effects of Chlorine Dioxide as a Disinfectant in Potable Water: A Literature Survey

    Science.gov (United States)

    Calabrese, Edward J.; And Others

    1978-01-01

    The use of chlorine dioxide as a disinfectant in water is being considered by the EPA. This article presents a summary of the known published reports concerning health effects of chlorine dioxide on animal and human populations. (Author/MA)

  6. Project Summary. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    Science.gov (United States)

    This project evaluated the potential of an innovative approach to aquifer restoration: enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (...

  7. Chlorine release from biomass. Part 6; Kloravgaang fraan biobraenslen. Del 6

    Energy Technology Data Exchange (ETDEWEB)

    Zintl, Frank; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    Chlorine release from model compounds and different biomass fuels has been studied during thermal treatment in an electric oven in inert atmosphere (N{sub 2}) and with addition of 10% O{sub 2}. The amount of chlorine in all investigated materials has been kept to 2% with addition of KCl solution in methanol. The amount of chlorine was analysed before and after treatment in the decided atmosphere and to the temperature chosen. The influence from different functional groups on the chlorine release at low temperatures has been studied in pyrolysis experiments of simple model compounds with different structures. A good correlation between the chlorine release and the functional groups in the model substances was achieved. Results from the experiments shows that the early chlorine release, is most likely to occur in all biofuels, since all biomass fuels contains biological material with significant amounts of functional groups which can interact with fuel chlorine ( inorganic chlorine)

  8. Supplying sodium and chlorine is effective on patients with congestive heart failure

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Changcong Cui

    2005-01-01

    Objective: To analyze the relationship of severity of heart failure and the concentration of serum sodium(Na + ) and chlorine(Cl- ) and to explore the effect of supplying sodium and chlorine on patients with Congestive heart failure. Methods: 80 patients with congestive heart failure were divided into two groups, namely supplying and control group. Serum sodium and chlorine were measured in all these patients. All treatments but supplying sodium and chlorine were same between the supplying and control groups. Results:According to NYHA, patients who were in class Ⅳ had lower level of serum sodium and chlorine than those in class Ⅱ ( P < 0.05). The heart function was improved after the level of serum sodium and chlorine were raised. Conclusions: The concentration of serum sodium and chlorine relates to the severity of heart failure. The therapy of supplying sodium and chlorine is an effective way to decrease death rate.

  9. The use of chlorine isotope measurements to trace water movements at Yucca Mountain

    International Nuclear Information System (INIS)

    The rates of water movements in the tuffs at Yucca Mountain are important for assessing the performance of a potential high-level nuclear waste repository. Measurements of cosmogenic 3.0 x 105 yr 36Cl in tuff from the unsaturated zone and in water from the saturated zone can provide information about water movements over times of 1015 to 106 years. The data derived from the analysis of cuttings from a dry-drilled hole at Yucca Mountain indicate the presence of a 36Cl background that must be taken into account for proper interpretation of the 36Cl interpretation of the 36Cl results. Similarly, the 36Cl measured in water from the saturated zone requires additional work for correct interpretation. Fallout of 36Cl from nuclear weapons tests between 1952 and 1962 provided a tracer for an infiltration study. Measurements of the 36Cl bomb pulse in tuffs from the unsaturated zone show potential for tracing recent water flow in faults and fractures. 5 refs

  10. Boron and chlorine isotopic signatures of seawater in the Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Hai, L.

    d11B values of seawater within the thermocline in the upper 300 m layer gave an average d11B value of 38.14‰ whereas below the thermocline the average d11B value was 39.3‰. The release of boron from remineralized organic matter and other unknown...

  11. Inactivation of human and simian rotaviruses by chlorine dioxide.

    OpenAIRE

    Chen, Y.S.(China Institute of Atomic Energy, P.O. Box 275 (10), Beijing 102413, PR China); Vaughn, J M

    1990-01-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4 degrees C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10(5)-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa a...

  12. Chlorination of commercial molybdenite concentrate in a fluidized bed reactor

    Science.gov (United States)

    Nair, K. U.; Sathiyamoorthy, D.; Bose, D. K.; Sundaresan, M.; Gupta, C. K.

    1987-06-01

    Studies on recovery of molybdenum from commercial grade molybdenite using the technique of fluidized bed chlorination in the presence of oxygen are presented. Molybdenum recovery above 99 pct at a chlorine utilization efficiency of 84 pct has been achieved for a fluidizing gas flow-rate of 3 L/min of the gases Cl2, O2, and N2 mixed in the proportion of 2∶5∶23, respectively, at 300 °C. The investigations on kinetics showed that the overall oxychlorination reaction is controlled by chemical reaction and is of first order with respect to particle surface area.

  13. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    Chlorinated solvents are among the most frequently found contaminants in groundwater. In fractured media, chlorinated ethenes and ethanes are transported downwards through preferential pathways with subsequent diffusion into the sediment matrix. Due to slow back diffusion it can serve as a long...... the potential for development of degradation throughout the entire clay matrix. When ERD is applied in a low permeability settings one of the major constraints is to obtain the necessary contact between electron donor, bacteria and contaminants to achieve reasonable remediation timeframes. Two injection methods...

  14. Sonochemical Treatment of Water Polluted by Chlorinated Organocompounds. A Review

    Directory of Open Access Journals (Sweden)

    Olivier Louisnard

    2010-02-01

    Full Text Available As one of several types of pollutants in water, chlorinated compounds have been routinely subjected to sonochemical analysis to check the environmental applications of this technology. In this review, an extensive study of the influence of the initial concentration, ultrasonic intensity and frequency on the kinetics, degradation efficiency and mechanism has been analyzed. The sonochemical degradation follows a radical mechanism which yields a very wide range of chlorinated compounds in very low concentrations. Special attention has been paid to the mass balance comparing the results from several analytical techniques. As a conclusion, sonochemical degradation alone is not an efficient treatment to reduce the organic pollutant level in waste water.

  15. Chlorine international thermodynamic tables of the fluid state

    CERN Document Server

    Angus, S; de Reuck, K M

    1985-01-01

    Chlorine: International Thermodynamic Tables of the Fluid State-8 is a four-chapter book that covers available and estimated data on chlorine; estimation of the element's properties; the correlating equations for the element; and how the tabulated properties are calculated from chosen equation. The tables in this book give the volume, entropy, enthalpy, isobaric heat capacity, compression factor, fugacity/pressure ratio, Joule-Thomson coefficient, ratio of the heat capacities, and speed of sound as a function of pressure and temperature. Given in the tables as well are the pressure, entropy, i

  16. Total oxidation of chlorinated VOCs on supported oxide catalysts

    OpenAIRE

    Bertinchamps, Fabrice

    2005-01-01

    Biomass-fed cogeneration units and waste incinerators have the advantages of producing efficiently heat and power and of reducing the amount of CO2 emitted per produced energy. However, they produce toxic polychlorinated VOCs (dioxins), CO and NOx. This thesis aims at developing a catalytic system for the total oxidation of chlorinated VOCs that: i) convert efficiently chlorinated VOCs below 250 °C and ii) resist to the exhaust co-pollutants (H2O, CO, NOx). Moreover, this thesis aims at havin...

  17. Zirconium tetrachloride production using the fluidized bed chlorination technique

    International Nuclear Information System (INIS)

    In this paper the results of a study of the process for production nuclear grade zirconium tetrachloride by fluidized bed chlorination technique are presented. A reactor with a gas distributor has been developed and this permitted to establish a procedure of zirconium tetrachloride production with adequate purity, satisfactories efficiency of reaction and reproducible results. Some relevant parameters of the kinetics of chlorination process such as: time and temperature of reaction, size and minimum fluidizing velocity of microspheres and percentage of the reducing agent have been studied. (author). 15 refs., 5 figs

  18. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  19. Chlorine Dioxide Inactivation of Cryptosporidium parvum Oocysts and Bacterial Spore Indicators

    OpenAIRE

    Chauret, Christian P.; Radziminski, Chris Z.; Lepuil, Michael; Creason, Robin; Andrews, Robert C.

    2001-01-01

    Cryptosporidium parvum, which is resistant to chlorine concentrations typically used in water treatment, is recognized as a significant waterborne pathogen. Recent studies have demonstrated that chlorine dioxide is a more efficient disinfectant than free chlorine against Cryptosporidium oocysts. It is not known, however, if oocysts from different suppliers are equally sensitive to chlorine dioxide. This study used both a most-probable-number–cell culture infectivity assay and in vitro excysta...

  20. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    OpenAIRE

    Ci, Ying; Wang, Lin; Guo, YanChuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scatte...

  1. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    OpenAIRE

    Kunio Yoshikawa; Pandji Prawisudha; Bayu Indrawan

    2012-01-01

    An experimental study on converting municipal solid waste (MSW) into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine conten...

  2. Metals releases and disinfection byproduct formation in domestic wells following shock chlorination

    OpenAIRE

    Walker, M.; Newman, J.

    2010-01-01

    Shock chlorination is used for rapid disinfection to control pathogens and nuisance bacteria in domestic wells. A typical shock chlorination procedure involves adding sodium hypochlorite in liquid bleach solutions to achieve concentrations of free chlorine of up to 200 ppm in the standing water of a well. The change in pH and oxidation potential may bring trace metals from aquifer materials into solution and chlorine may react with dissolved organic carbon to form disinfection byproducts. We ...

  3. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon

    OpenAIRE

    Ikari, Mariya; Matsui, Yoshihiko; Suzuki, Yuta; Matsushita, Taku; Shirasaki, Nobutaka

    2015-01-01

    Chlorine oxidation followed by treatment with activated carbon was studied as a possible method for removing radioactive iodine from water. Chlorination time, chlorine dose, the presence of natural organic matter (NOM), the presence of bromide ion (Br-), and carbon particle size strongly affected iodine removal. Treatment with superfine powdered activated carbon (SPAC) after 10-min oxidation with chlorine (1 mg-Cl-2/L) removed 90% of the iodine in NOM-containing water (dissolved organic carbo...

  4. Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-03-01

    This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Much of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.

  5. Stable isotope applications

    International Nuclear Information System (INIS)

    The following domains of stable isotope applications are presented: - isotope dilution analyses as in trace analyses or volume and mass determinations; - stable isotopes as tracers as applied in environmental studies, agricultural research, products and objects authentification, transport phenomena, reaction mechanisms, determinations of structure and complex biological function, metabolism studies, diagnostic respiration tests, positron emission tomography; - equilibrium isotopic effects as investigated in measurements of effects, studies of equilibrium conditions, the mechanism of drug action, study of natural processes, water circuit, temperature measurements; - kinetic isotopic effects, as, for instance, reaction rates and mechanisms, solvent isotopic effects; - stable isotopes for advanced nuclear reactors as, for instance, uranium nitride with 15 N as nuclear fuel or 157 Gd for reactivity control. In spite of the difficulties regarding stable isotope use and first of all, of the difficult and costly analytical techniques, a continuous growth of the number of stable isotope applications in different fields is registered. The number of works and scientific meetings on the subject, as organized by the International Society of Isotopes and IAEA-Vienna, Gordon Conferences, regional meetings in Germany, France, etc. increase continuously. Development of the stable isotope application on a larger scale requires improving both their production technologies as well as those of labelled substances and, at the same time, the analytical methods

  6. Chromium isotope variations

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary

    Chromium (Cr) stable isotopes are a useful tracer of changes in redox conditions because changes in its oxidation state are accompanied by an isotopic fractionation. For this reason the Cr isotope system is being developed as a potential tool for paleo-redox reconstruction. Dissolved Cr in seawater...... is incorporated into carbonates. Hence, ancient carbonates can potentially record the Cr isotopic composition (δ53Cr ‰) of seawater in the geological past. Reliable application and interpretation of this proxy requires a detailed knowledge about processes that fractionate Cr on the Earth’s surface......, and the quantification the Cr isotope composition of major Cr fluxes into and out of ocean. This thesis adds to the current knowledge of the Cr isotope system and is divided into two studies. The focus of the first study was to determine what processes control the Cr isotopic compositionof river...

  7. Coal and coke - Analysis and testing - Coal and coke - Chlorine - High-temperature combustion method

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-29

    This Standard sets out a method for the liberation of the chlorine from coal and coke by high-temperature combustion, and its subsequent determination by titrimetry. The presence of residual halogen-bearing organic float-and-sink liquids in coal samples will affect the determination of chlorine. This Standard is applicable to coal and coke containing less than 0.3% chlorine.

  8. Chlorine-36 and the initial value problem

    Science.gov (United States)

    Davis, Stanley N.; Cecil, DeWayne; Zreda, Marek; Sharma, Pankaj

    Chlorine-36 is a radionuclide with a half-life of 3.01×105a. Most 36Cl in the hydrosphere originates from cosmic radiation interacting with atmospheric gases. Large amounts were also produced by testing thermonuclear devices during 1952-58. Because the monovalent anion, chloride, is the most common form of chlorine found in the hydrosphere and because it is extremely mobile in aqueous systems, analyses of both total Cl- as well as 36Cl have been important in numerous hydrologic studies. In almost all applications of 36Cl, a knowledge of the initial, or pre-anthropogenic, levels of 36Cl is useful, as well as essential in some cases. Standard approaches to the determination of initial values have been to: (a) calculate the theoretical cosmogenic production and fallout, which varies according to latitude; (b) measure 36Cl in present-day precipitation and assume that anthropogenic components can be neglected; (c) assume that shallow groundwater retains a record of the initial concentration; (d) extract 36Cl from vertical depth profiles in desert soils; (e) recover 36Cl from cores of glacial ice; and (f) calculate subsurface production of 36Cl for water that has been isolated from the atmosphere for more than one million years. The initial value from soil profiles and ice cores is taken as the value that occurs directly below the depth of the easily defined bomb peak. All six methods have serious weaknesses. Complicating factors include 36Cl concentrations not related to cosmogenic sources, changes in cosmogenic production with time, mixed sources of chloride in groundwater, melting and refreezing of water in glaciers, and seasonal groundwater recharge that does not contain average year-long concentrations of 36Cl. Résumé Le chlore-36 est un radionucléide de période 3.01×105a. Pour l'essentiel, le 36Cl dans l'hydrosphère provient des effets du rayonnement cosmique sur les gaz atmosphériques. De grandes quantités de 36Cl ont aussi été produites au cours des

  9. Isotopic contamination in electromagnetic isotope separators

    International Nuclear Information System (INIS)

    The mechanisms producing isotopic contamination in the electromagnetic separation of isotopes are studied with the aid of the Separator of Saclay and an electrostatic analyzer in cascade. After a separate investigation the result of which is that no contamination comes from the spreading of initial energies of ions, two principal mechanisms are emphasized; scattering and instability of the regime of the sources. The characters of each type of contamination arising from both mechanisms are described in some detail. An unique scheme of isotopic contamination is then derived from the partial ones. This scheme is successfully verified in several experimental separations. The applications concern principally the performances of magnetic cascades and more complex apparatus. It is found that the isotopic purities that such machines can deliver are extremely high. (author)

  10. A marine sink for chlorine in natural organic matter

    Science.gov (United States)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Northrup, Paul A.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-08-01

    Chloride--the most abundant ion in sea water--affects ocean salinity, and thereby seawater density and ocean circulation. Its lack of reactivity gives it an extremely long residence time. Other halogens are known to be incorporated into marine organic matter. However, evidence of similar transformations of seawater chloride is lacking, aside from emissions of volatile organochlorine by marine algae. Here we report high organochlorine concentrations from 180 to 700 mg kg-1 in natural particulate organic matter that settled into sediment traps at depths between 800 and 3,200 m in the Arabian Sea, taken between 1994 and 1995. X-ray spectromicroscopic imaging of chlorine bonding reveals that this organochlorine exists primarily in concentrated aliphatic forms consistent with lipid chlorination, along with a more diffuse aromatic fraction. High aliphatic organochlorine in particulate material from cultured phytoplankton suggests that primary production is a source of chlorinated organic matter. We also found that particulate algal detritus can act as an organic substrate for abiotic reactions involving Fe2+, H2O2 or light that incorporate chlorine into organic matter at levels up to several grams per kilogram. We conclude that transformations of marine chloride to non-volatile organochlorine through biological and abiotic pathways represent an oceanic sink for this relatively unreactive element.

  11. Effect of sulfur dioxide on indium(3) sulfate chlorination

    International Nuclear Information System (INIS)

    The results of thermodynamic calculations and kinetic investigations of In2(SO4)3 interaction with gaseous Cl2 and equimolar Cl2 and SO2 mixture at 127-800 deg C are presented. It is found that acceleration of chlorination rate takes place in the presence of SO2, while the temperature of its beginning and activation energy decrease

  12. Processing of molybdenite concentrates by low-temprature chlorination roasting

    OpenAIRE

    Александров, Павло Володимирович

    2012-01-01

    Prospects of low-temperature chlorination roasting with chlorides of alkaline metals application for processing of molybdenite concentrate are shown. General benefits of it are reduction of evolving of dioxide of sulfur in the atmosphere, reduction of roasting temperature to 450 ºС and formation of water-soluble compounds of molybdenum during roasting

  13. Electrochemical chlorine evolution at rutile oxide (110) surfaces

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Man, Isabela Costinela; Studt, Felix;

    2010-01-01

    function of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution...

  14. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Flensborg, Julie Pauline; Shoulaifar, Tooran Khazraie;

    2014-01-01

    The release of chlorine (Cl) and sulfur (S) during biomass torrefaction and pyrolysis has been investigated via experiments in two laboratory-scale reactors: a rotating reactor and a fixed bed reactor. Six biomasses with different chemical compositions covering a wide range of ash content and ash...

  15. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    OpenAIRE

    Ni, Z

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and aquifer thermal energy storage (ATES) appears attractive because such integration provides a promising solution for redevelopment of urban areas in terms of improving the local environmental quality as well as achieving ...

  16. Chlorinated Iridoid Glucosides from Veronica longifolia and their Antioxidant Activity

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Gotfredsen, Charlotte Held; Harput, U. Sebnem;

    2010-01-01

    From Veronica longifolia were isolated three chlorinated iridoid glucosides, namely asystasioside E (6) and its 6-O-esters 6a and 6b, named longifoliosides A and B, respectively. The structures of 6a and 6b were proved by analysis of their spectroscopic data and by conversion to the catalpol este......), superoxide (SO), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals....

  17. Chlorine decay under steady and unsteady-state hydraulic conditions

    DEFF Research Database (Denmark)

    Stoianov, Ivan; Aisopou, Angeliki

    2014-01-01

    This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...

  18. EFFECTS OF CONTINUOUS CHLORINATION ON ENTRAINED ESTUARINE PLANKTON

    Science.gov (United States)

    The effects of continuous chlorination on entrained plankton are investigated in tests using running sea water and adenosine triphosphate (ATP) as an indicator of biomass. Effects were measured by bioluminescence with the use of luciferin-luciferase reagents from firefly lanterns...

  19. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  20. The role of natural chlorinated hydroquinone metabolites in ligninolytic fungi

    NARCIS (Netherlands)

    Teunissen, P.J.M.

    1999-01-01

    Ligninolytic Basidiomycetes have been reported to produce a wide variety of chloroaromatic compounds as secondary metabolites, which are structurally similar to environmental pollutants. Among these are chlorinated hydroquinone metabolites (CHM), such as 2-chloro-1,4-dimethoxybenzene (2Cl-14DMB), 2,

  1. Chlorine in the Forest Ecosystem (a Radiotracer Study)

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav

    New York: Nova Science Pub Inc, 2007 - (Lyman, E.), s. 317-331 ISBN 978-1-60021-903-0 R&D Projects: GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : radiotracer * chlorine * forest ecosystem Subject RIV: DF - Soil Science

  2. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    Science.gov (United States)

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  3. Macrokinetic relationships between anodic processes in chlorine electrolysis on ruthenium-titanium oxide anodes

    International Nuclear Information System (INIS)

    Effect of porosity on kinetics of the main (chlorine evolution) and side (oxygen evolution and anodic dissolution of ruthenium dioxide) reactions for chlorine electrolysis conditions has been analyzed. Making allowance for chlorine hydrolysis secondary reaction, the distribution of chlorine concentration, solution pH and current densities of the main and side processes over the porous anode depth, have been found. It is shown that solution acidification in the anode pores due to chlorine hydrolysis can bring about replacement of oxygen evolution and ruthenium dioxide dissolution side reactions toward the porous anode external sides thus affecting its selectivity and corrosion resistance

  4. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures. PMID:24506252

  5. Session 6: The catalytic oxidation of selected chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Oszczudlowski, J. [Institute of Chemistry, Swietokrzyska Academy, Kielce (Poland)

    2004-07-01

    The catalytic oxidation of selected chlorinated hydrocarbons was investigated in the presence of natural zeolites modified with 3M HCl and chromium and lanthanum from aqueous solutions. Natural zeolites of the structure of clinoptilolite or mordenite possess unique physical and chemical properties such as high sorptive capacity and ion-exchange selectivity, relatively high heat and mechanical resistance. The activation of samples of natural zeolites was carried out in a 3M aqueous solution of HCl using a Soxhlet apparatus, whereas the ion exchange from aqueous solutions of chromium (III) and lanthanum (III) nitrates. Samples of activated zeolites were calcinated at 500 C with a programmable temperature increase within 4 hours The amounts of Cr and La on zeolite were 3,0 % wt and 4,5 % wt, respectively. Catalytic tests were conducted in a micro-reactor coupled with a gas chromatograph. The conditions of reaction were as follows: temperature range: 473-723 K, substrate composition: chlorinated hydrocarbon (1000-10000 ppm), steam (0-10000 ppm) and air. Under standard conditions volatile chlorinated hydrocarbons were introduced into a gas flux as vapours, whereas low-volatile ones in a mixture with n-hexane or cyclohexane. The quantity of the deposits on the surface of a catalyst was analysed by the thermogravimetric and GC-MS methods. The composition of oxidation products of chlorinated hydrocarbons was chromatographically analysed indirectly with the techniques SPME-GC-ECD and SPME-GCFID. The total quantity of the products was stored in gas containers-Tedlars and the quantitative and qualitative composition was analysed by the method SPME-HS-GC-ECD (solid phase micro-extraction-headspace-gas chromatography-electron capture detector). The total oxidation of CCl{sub 4} and C{sub 2}Cl{sub 6} in the presence of the Cr/zeolite catalyst occurs at 400 C. The conversion of the catalytic oxidation of chloro-olefins in the presence of the La/zeolite catalyst increases within

  6. Isotope enrichment systems

    International Nuclear Information System (INIS)

    This invention provides a system in which both phases of the countercurrent contact isotope exchange concentration process are recycled continuously and an isotope depleted liquid phase substance thereof has its prior content of the desired isotope of hydrogen and/or oxygen replenished in an isotope regenerator by direct contact isotope exchange with a flow of steam from a source external to the concentrating process, whereby such replenished liquid serves as the feed liquid for the concentration process. As the supply of steam is gaseous, all problems incident to mineral solids in solution in liquid water are eliminated. As the elevated temperature corresponds to that of the steam, the isotope replenishment of the process feed liquid may be conducted without materially altering the characteristics of the steam for use as an energy source in any system

  7. Simultaneous Control of Microorganisms and Disinfection By-products by Sequential Chlorination

    Institute of Scientific and Technical Information of China (English)

    CHAO CHEN; XIAO-JIAN ZHANG; WEN-JIE HE; HONG-DA HAN

    2007-01-01

    Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus)inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process.The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination.Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.

  8. Reversed flow injection spectrophotometric determination of low residuals of chlorine dioxide in water using chlorophenol red

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel,simple,rapid,sensitive and highly selective flow injection procedure for the spectrophotometrie determination of chlorine dioxide in the presence of other chlorine species,viz,free chlorine,chlorite,chlorate and hypoehlorite,is developed.The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct speetrophotometrie determination for chlorine dioxide owing to the serious interference of free and combined chlorine.The procedure gave a linear calibration graph over the range 0-0.71 mg/L of chlorine dioxide.With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.

  9. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.

    1983-06-01

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  10. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.

    Science.gov (United States)

    Wu, Qianyuan; Li, Yue; Wang, Wenlong; Wang, Ting; Hu, Hongying

    2016-03-01

    Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation. PMID:26969069

  11. Occurence of chlorinated aromatic compounds in filter deposits of an incinerator plant for radioactive waste. Pt. 2

    International Nuclear Information System (INIS)

    The catalytic chlorination of chrysene, pyrene and fluoranthene yields complex mixtures of partly isomeric chlorine substituted PAHs. Their distribution resembles that of chlorine compounds previously found in filter deposits of an incineration plant for radioactive waste. In the micro fluctuation test these chlorinated products are strong mutagens to Salmonella typhimurium even without enzymatic activation. Frameshift mutations as well as basepair alterations take place. (Author)

  12. Uses of stable isotopes

    International Nuclear Information System (INIS)

    The most important fields of stable isotope use with examples are presented. In isotope dilution analysis the stable isotopes are used in trace analysis, measurements of volumes and masses. In the field of stable isotope use as tracers the following applications are encountered: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic. In the domain of isotope equilibrium effects applications in the study of mechanism of drug action, study of natural processes, investigation of equilibrium conditions and water cycle as well as in temperature measurements are encountered. Stable isotopes are also used in advanced nuclear reactors, particularly, the uranium nitride with 15 N as nuclear fuel and 157 Gd for reactor control. In spite of some difficulties of stable isotope use, especially related to analytical techniques, which are slow and expensive, the number of papers reporting this subject is steadily growing as well the number of scientific meetings organized by International Isotope Society and IAEA, Gordon Conferences, and regional meetings in Germany, France, etc. Stable isotope application development on large scale is ensured by improving their production technologies, as well as by development of new labelled compounds and of analytical techniques. (author)

  13. Isotopes in hydrogeology

    International Nuclear Information System (INIS)

    Questions of the application of radioactive isotopes in hydrogeology and seismology are considered, as well as their physico-chemical and geochemical properties and the regularities of their occurrence and migration in natural waters. The possibility of application of these isotopes in calculating the age of waters and in solving paleohydrogeological problems is studied. Elucidated are questions of utilization of helium and uranium isotope content in determining the effect of faults on the hydrogeological conditions of regions and in selecting burial sites for industrial wastes. Utilization of changes in the isotopic and gas composition of underground waters during the activization of tectonic movements for earthquake forecasts is considered

  14. PRINCIPAL ISOTOPE SELECTION REPORT

    International Nuclear Information System (INIS)

    Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM)

  15. The isotope breathe test

    International Nuclear Information System (INIS)

    The foundations of the breath diagnostic test, based on application of the carbon compounds, labeled with the stable (13C) or radioactive isotope are presented. The methodology for conducting the breath isotope test and the apparatuses, making it possible to determine under clinical conditions the isotope composition of the carbon, contained in the expired air, depending on the introduced tracer type, is briefly described. The safety of the method and prospects of its application are discussed. The examples of the breath isotope test practical application are presented

  16. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter.

    Science.gov (United States)

    Yang, Xin; Guo, Wanhong; Lee, Wontae

    2013-06-01

    Chlorine dioxide (ClO2) is often used as an oxidant to remove taste, odor and color during water treatment. Due to the concerns of the chlorite formation, chlorination or chloramination is often applied after ClO2 preoxidation. We investigated the formation of regulated and emerging disinfection byproducts (DBPs) in sequential ClO2-chlorination and ClO2-chloramination processes. To clarify the relationship between the formation of DBPs and the characteristics of natural organic matter (NOM), changes in the properties of NOM before and after ClO2 oxidation were characterized by fluorescence, Fourier transform infrared spectroscopy (FTIR), and size and resin fractionation techniques. ClO2 preoxidation destroyed the aromatic and conjugated structures of NOM and transformed large aromatic and long aliphatic chain organics to small and hydrophilic organics. Treatment with ClO2 alone did not produce significant amount of trihalomethanes (THMs) and haloacetic acids (HAAs), but produced chlorite. ClO2 preoxidation reduced THMs, HAAs, haloacetonitriles (HANs) and chloral hydrate (CH) during subsequent chlorination, but no reduction of THMs was observed during chloramination. Increasing ClO2 doses enhanced the reduction of most DBPs except halonitromethanes (HNMs) and haloketones (HKs). The presence of bromide increased the formation of total amount of DBPs and also shifted DBPs to more brominated ones. Bromine incorporation was higher in ClO2 treated samples. The results indicated that ClO2 preoxidation prior to chlorination is applicable for control of THM, HAA and HAN in both pristine and polluted waters, but chlorite formation is a concern and HNMs and HKs are not effectively controlled by ClO2 preoxidation. PMID:23312737

  17. Durability of Selected Membrane Materials when Exposed to Chlorine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Marianne Soerflaten

    2001-03-01

    This thesis is focusing on the durability of selected membrane materials when exposed to chlorine gas in the temperature range 30-100{sup o}C. Studies of the changes of membrane separation properties and the mechanisms promoting these changes have been studied. The selected membrane materials were poly(dimethylsioxane) (PDMS), Fluorel, fluorosilicone, and blends of PDMS and Fluorel. The thesis is organised in seven chapters. The first chapter gives an introduction to the background of the work. The second chapter presents the theory for gas separation using dense rubbery membranes. The properties of the selected membrane materials are presented in chapter three. The fourth chapter describes degradation mechanisms for polymeric materials in general and for the selected membrane materials in particular. Presentation of the experimental work is given in chapter five, while the results with discussions are presented in chapter six. The conclusions and recommendations for further studies are given in chapter seven. Five appendixes are attached: Appendix A describes the calculations of permeability and solubility coefficients and the accuracy of the experimental measurements. Appendix B summarises the measured values in tables and Appendix C describes the analytical methods. Appendix D gives the properties of the gases used in the experiments. Appendix E is the article ''Durability of Poly(dimethylsiloxane) when Exposed to Chlorine Gas'', submitted to the Journal of Applied Polymer Science. Highly crosslinked PDMS was found to have an initial high permeability for chlorine gas and a high Cl{sub 2}/O{sub 2} selectivity. However when exposed to chlorine gas the permeability decreased significantly. Crosslinking of the PDMS polymer chain and chlorination of the polymer gave a denser polymer structure and thus lower permeability. Fluorel showed very low permeabilities and selectivities for the gases in question and was thus not interesting for this

  18. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers

    Science.gov (United States)

    Meckenstock, Rainer U.; Morasch, Barbara; Griebler, Christian; Richnow, Hans H.

    2004-12-01

    The assessment of biodegradation in contaminated aquifers has become an issue of increasing importance in the recent years. To some extent, this can be related to the acceptance of intrinsic bioremediation or monitored natural attenuation as a means to manage contaminated sites. Among the few existing methods to detect biodegradation in the subsurface, stable isotope fractionation analysis (SIFA) is one of the most promising approaches which is pronounced by the drastically increasing number of applications. This review covers the recent laboratory and field studies assessing biodegradation of contaminants via stable isotope analysis. Stable isotope enrichment factors have been found that vary from no fractionation for dioxygenase reactions converting aromatic hydrocarbons over moderate fractionation by monooxygenase reactions ( ɛ=-3‰) and some anaerobic studies on microbial degradation of aromatic hydrocarbons ( ɛ=-1.7‰) to larger fractionations by anaerobic dehalogenation reactions of chlorinated solvents ( ɛ=between -5‰ and -30‰). The different isotope enrichment factors can be related to the respective biochemical reactions. Based on that knowledge, we discuss under what circumstances SIFA can be used for a qualitative or even a quantitative assessment of biodegradation in the environment. In a steadily increasing number of cases, it was possible to explain biodegradation processes in the field based on isotope enrichment factors obtained from laboratory experiments with pure cultures and measured isotope values from the field. The review will focus on the aerobic and anaerobic degradation of aromatic hydrocarbons and chlorinated solvents as the major contaminants of groundwater. Advances in the instrumental development for stable isotope analysis are only mentioned if it is important for the understanding of the application.

  19. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  20. Mass independent isotope separations

    International Nuclear Information System (INIS)

    Mass independent separations between isotopes of an element were first observed by Clayton on 17 O and 18 O from the Allende meteorite and attributed then to nucleosynthesis. Anomalous ratios of isotope abundance known at that time were due to nuclear processes. Later, atmospheric ozone and stratospheric CO2 were shown to exhibit mass independent isotope composition of oxygen. Several formation mechanisms of these 'anomalous' molecules have been proposed, none being completely satisfactory. In the laboratory, these mass independent chemical separation effects were eventually reproduced. Anomalous separations were also obtained between isotopes of uranium, and even of light elements such as magnesium. These were first connected with irregularities in atomic nucleus volumes. Such effects are not recorded on natural terrestrial samples. Two main reasons prevent such observations from having been made. Firstly, laboratories investigating isotope compositions of elements, publish almost exclusively deltas of one isotope only. But, to look for possible anomalies, one needs to compare each isotope abundance in a sample similar to that in the standard used as origin of deltas. An example of such calculation will be given. Secondly, deltas of isotopes published by different laboratories are usually not comparable to better than a few per mil. The reason is that, to calculate deltas, most laboratories use working standards whose absolute values may not be exactly established as they are not crucial to their work. Several per mil differences will be shown to be implied between the 'absolute' isotope abundance of 13 C of standards, reputedly the same, used by different laboratories. Laboratories making surveys of natural samples should be encouraged, e.g. by IUPAC, to cover every isotope of multiple isotope elements, and to make, at not infrequent intervals, a close comparison of their working standards with internationally distributed ones. (author)

  1. Discovery of the Mercury Isotopes

    CERN Document Server

    Meierfrankenfeld, D

    2009-01-01

    Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Discovery of the Einsteinium Isotopes

    OpenAIRE

    Bury, A.; Fritsch, A; Ginepro, J. Q.; Heim, M; Schuh, A.; Shore, A.; Thoennessen, M.

    2009-01-01

    Seventeen einsteinium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  3. Discovery of the Titanium Isotopes

    OpenAIRE

    Meierfrankenfeld, D.; Thoennessen, M.

    2009-01-01

    Twentyfive titanium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  4. Discovery of the Scandium Isotopes

    CERN Document Server

    Meierfrankenfeld, D

    2010-01-01

    Twenty-three scandium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  5. Discovery of the Tungsten Isotopes

    OpenAIRE

    A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-five tungsten isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  6. Discovery of the Vanadium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Twenty-four vanadium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  7. Discovery of the Arsenic Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  8. Discovery of the Barium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Thirty-eight barium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  9. Discovery of the Silver Isotopes

    OpenAIRE

    Schuh, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-eight silver isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  10. Discovery of the Cadmium Isotopes

    OpenAIRE

    Amos, S.; Thoennessen, M

    2009-01-01

    Thirty-seven cadmium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  11. Discovery of the Krypton Isotopes

    OpenAIRE

    Heim, M.; A. Fritsch; Schuh, A.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-two krypton isotopes have been observed so far; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  12. Discovery of the Iron Isotopes

    OpenAIRE

    Schuh, A.; A. Fritsch; Heim, M.; SHORE, A.; Thoennessen, M

    2009-01-01

    Twenty-eight iron isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  13. Discovery of the Gold Isotopes

    OpenAIRE

    Schuh, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-six gold isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  14. Discovery of the Cobalt Isotopes

    OpenAIRE

    Szymanski, T; Thoennessen, M

    2009-01-01

    Twenty-six cobalt isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  15. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  16. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  17. (Carbon isotope fractionation inplants)

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  18. Maximum abundant isotopes correlation

    International Nuclear Information System (INIS)

    The neutron excess of the most abundant isotopes of the element shows an overall linear dependence upon the neutron number for nuclei between neutron closed shells. This maximum abundant isotopes correlation supports the arguments for a common history of the elements during nucleosynthesis. (Auth.)

  19. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs

  20. Highly chlorinated unintentionally produced persistent organic pollutants generated during the methanol-based production of chlorinated methanes: A case study in China.

    Science.gov (United States)

    Zhang, Lifei; Yang, Wenlong; Zhang, Linli; Li, Xiaoxiu

    2015-08-01

    The formation of unintentionally produced persistent organic pollutants (POPs) may occur during various chlorination processes. In this study, emissions of unintentionally produced POPs during the methanol-based production of chlorinated methanes were investigated. High concentrations of highly chlorinated compounds such as decachlorobiphenyl, octachloronaphthalene, octachlorostyrene, hexachlorobutadiene, hexachlorocyclopentadiene, hexachlorobenzene, and pentachlorobenzene were found in the carbon tetrachloride byproduct of the methanol-based production of chlorinated methanes. The total emission amounts of hexachlorocyclopentadiene, hexachlorobutadiene, polychlorinated benzenes, polychlorinated naphthalenes, octachlorostyrene, and polychlorinated biphenyls released during the production of chlorinated methanes in China in 2010 were estimated to be 10080, 7350, 5210, 427, 212, and 167 kg, respectively. Moreover, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) were formed unintentionally during chlorinated methanes production, the emission factor for PCDDs/DFs was 364 μg toxic equivalency quotient (TEQ) t(-1) product for residues, which should be added into the UNEP toolkit for updating. It was worth noting that a high overall toxic equivalency quotient from polychlorinated naphthalenes and PCDDs/DFs was generated from the chlorinated methanes production in China in 2010. The values reached 563 and 32.8 g TEQ, respectively. The results of the study indicate that more research and improved management systems are needed to ensure that the methanol-based production of chlorinated methanes can be achieved safely. PMID:25777670

  1. Principles of stable isotope distribution

    CERN Document Server

    Criss, Robert E

    1999-01-01

    1. Abundance and Measurement of Stable Isotopes 1.1. Discovery of Isotopes 1.2. Nuclide Types, Abundances, and Atomic Weights 1.3. Properties and Fractionation of Isotopic Molecules 1.4. Material Balance Relationships 1.5. Mass Spectrometers 1.6. Notation and Standards 1.7. Summary 1.8. Problems References 2. Isotopic Exchange and Equilibrium Fractionation 2.1. Isotopic Exchange Reactions 2.2. Basic Equations 2.3. Molecular Models 2.4. Theory of Isotopic Fractionation 2.5. Temperature Dependence of Isotopic Fractionation Factors 2.6. Rule of the Mean 2.7. Isotopic Thermometers

  2. Synthesis and properties of new chlorin and bacteriochlorin photosensitizers

    Science.gov (United States)

    Mironov, Andrei F.

    1996-01-01

    A series of novel sensitizers, which absorb in the range of 660 - 820 nm, derived from natural occurring chlorophyll and bacteriochlorophyll was synthesized. Biomass of blue-green algae Spirulina platensis was used to prepare chlorophyll a derivatives, and biomass of purple bacteria Rhodobacter capsulatus was applied for preparation of bacteriochlorophyll a. The influence of different substituents on spectral characteristics and the amphipility of the sensitizer was investigated. The route for the synthesis of porphyrin macrocycle with the spacer that bears the isothiocyanate group capable for binding with proteins was proposed. Photophysical properties of chlorin p6, purpurin 18 and their esters in different solvents are investigated. Accumulation of two chlorins in the model Erlich tumor was studied.

  3. Second-generation photosensitizers based on natural chlorines and bacteriochlorines

    Science.gov (United States)

    Mironov, Andrei F.

    1996-01-01

    New sensitizers for photodynamic therapy were synthesized on the base of biologically generated chlorins and bacteriochlorins. Derivatives of chlorophyll a and bacteriochlorophyll were prepared from the biomass of blue-green algae Spirulina Platensis and purple bacteria Rhodobacter Capsulatus, generated using specially designed photobioreactor. The strategy for chemical transformation of natural chlorophylls and bacteriochlorophyll has been discussed. Purpurin 18 and its dihydroanalogue bacteriopurpurin were chosen as the key intermediates. Modifications of peripheral substituents, such as introducing the new functional groups, hydrogenation of the B-pyrrolic ring, and insertion of amino acid residues gave the series of novel sensitizers, including water soluble chlorin p6 analogues, and derivatives with graded amphiphility for the studies of tumor accumulation in the malignant tissues.

  4. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    International Nuclear Information System (INIS)

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  5. Environmental Behavior, Sources, and Effects of Chlorinated Polycyclic Aromatic Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Takeshi Ohura

    2007-01-01

    Full Text Available The environmental sources and behaviors of chlorinated 2- to 5-ring polycyclic aromatic hydrocarbons (ClPAHs. ClPAHs are ubiquitous contaminants found in urban air, vehicle exhaust gas, snow, tap water, and sediments. The concentrations of ClPAHs in each of these environments are generally higher than those of dioxins but markedly lower than the concentrations of the parent compounds, PAHs. Environmental data and emission sources analysis for ClPAHs reveal that the dominant process of generation is by reaction of PAHs with chlorine in pyrosynthesis. This secondary reaction process also occurs in aquatic environments. Certain ClPAHs show greater toxicity, such as mutagenicity and aryl hydrocarbon receptor activity, than their corresponding parent PAHs. Investigation of the sources and environmental behavior of ClPAHs is of great importance in the assessment of human health risks.

  6. Effect of odd hydrogen on ozone depletion by chlorine reactions

    Science.gov (United States)

    Donahue, T. M.; Cicerone, R. J.; Liu, S. C.; Chameides, W. L.

    1976-01-01

    The present paper discusses how the shape of the ozone layer changes under the influence of injected ClX for several choices of two key HOx reaction rates. The two HOx reactions are: OH + HO2 yields H2O + O2 and O + HO2 yields OH + O2. Results of calculations are presented which show that the two reaction rates determine the stratospheric concentrations of OH and HO2, and that these concentrations regulate the amount by which the stratospheric ozone column can be reduced due to injections of odd chlorine. It is concluded that the amount of ozone reduction by a given mixing ratio of ClX will remain very uncertain until the significance of several possible feedback effects involving HOx in a chlorine-polluted atmosphere are determined and measurements of the reaction rates and HOx concentrations are made at the relevant temperatures.

  7. Field-usable portable analyzer for chlorinated organic compounds

    International Nuclear Information System (INIS)

    In 1992, a chemical sensor was developed which showed almost perfect selectivity to vapors of chlorinated solvents. When interfaced to an instrument, a chemical analyzer will be produced that has near- absolute selectivity to vapors of volatile chlorinated organic compounds. TRI has just completed the second of a 2-phase program to develop this new instrument system, which is called the RCL MONITOR. In Phase II, this instrument was deployed in 5 EM40 operations. Phase II applications covered clean-up process monitoring, environmental modeling, routine monitoring, health and safety, and technology validation. Vapor levels between 0 and 100 ppM can be determined in 90 s with a lower detection limit of 0.5 ppM using the hand-portable instrument. Based on the favorable performance of the RCL MONITOR, the commercial instrument was released for commercial sales on Sept. 20, 1996

  8. Intrinsic bioremediation of chlorinated hydrocarbons at cold temperatures

    International Nuclear Information System (INIS)

    This paper describes a study of the viability of intrinsic bioremediation of chlorinated aromatic hydrocarbons at cold temperatures, at a former landfill site, some 300 km northeast of Edmonton. The landfill was also used for disposing of various hydrocarbon-based products of environmental concern.The project was conducted in four phases, i. e. site investigation, analysis of contaminant concentration, microbial study in the laboratory, and computer fate and transport modeling, with the primary focus being on the effect of cold temperatures on the rate of reductive dechlorination. Preliminary analysis of the results shows considerable evidence for the biodegradation of chlorinated hydrocarbons and confirms intrinsic bioremediation as a viable option for cold temperature sites. 20 refs., 7 figs

  9. Chlorine trifluoride (1963); Le trifluorure de chlore (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, L.M.; Gillardeau, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This monograph on chlorine trifluoride may be considered as a working tool useful in gaseous diffusion research. It consists of data gathered from the literature and includes furthermore a certain amount of original data. This monograph groups together the physical, chemical and physiological properties of chlorine trifluoride, as well as the preparation and analytical methods. It has been thought wise to add some technological information, and the safety regulations governing its use. (authors) [French] Cette monographie sur le trifluorure de chlore doit etre consideree comme un instrument de travail dans le cadre des recherches sur la diffusion gazeuse. Il etait necessaire de grouper les donnees eparses dans la litterature. Elle comprend en outre un certain nombre de donnees originales. Cette monographie groupe les proprietes physiques, chimiques et physiologiques du trifluorure de chlore, ainsi que ses methodes de preparation et d'analyse. On a juge utile de joindre des indications technologiques et les consignes de securite concernant son emploi. (auteurs)

  10. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    2003-12-11

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  11. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...... sulfur chemistry important for the SO2/SO3 ratio under combustion conditions has been updated. The uncertainties of the important rate constants have been minimized. Modeling predictions with a revised reaction mechanism for SO2/SO3 chemistry are in a good agreement with a range of experimental data from...

  12. MECHANISM OF CHLORATE FORMATION IN CHLORINE DIOIXDE DELIGNIFICATION

    Institute of Scientific and Technical Information of China (English)

    Byung-HoYoon; Li-JunWangI; Se-JongKim

    2004-01-01

    The effect of pH on chlorate formation duringchlorine dioxide delignification of oxygen delignifiedkraft pulp was studied. Chlorate formation was foundto increase slightly when pH was increased from 1.8to 2.5, further increase of pH decreased chlorateformation.The above phenomenon is explained by thecombination of two mechanisms, one by the reactionbetween hypochlorous acid and chlorite, another bythe effect of chlorine on the regeneration of chlorinedioxide. The first mechanism suggests that chlorateformation is highly dependent on HC10concentration which decreases with increasing pHand causes chlorate formation to behave in the sametrend. The second mechanism suggests that chlorinefavors the regeneration of chlorine dioxide whileHCIO favors chlorate formation, thus lowering thepH from about 4 to the acidic end should decreaseschlorate formation. Thethe maximum formation2.5.two opposite effects lead toof chlorate at around pH

  13. Isotopes in Greenland Precipitation

    DEFF Research Database (Denmark)

    Faber, Anne-Katrine

    Greenland ice cores offer a unique opportunity to investigate the climate system behaviour. The objective of this PhD project is to investigate isotope modelling of present- day conditions and conduct model-data comparison using Greenland ice cores. Thus this thesis investigates how the integration...... of model and data can be used to improve the understanding of climate changes. This is done through analysis of isotope modelling, observations and ice core measurements. This dissertation comprises three projects: (1) Modelling the isotopic response to changes in Arctic sea surface conditions, (2......) Constructing a new Greenland database of observations and present-day ice core measurements, and (3) Performance test of isotope-enabled CAM5 for Greenland. The recent decades of rapid Arctic sea ice decline are used as a basis for an observational-based model experiment using the isotope-enabled CAM model 3...

  14. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  15. Synthesis and spectral properties of novel chlorinated pH fluorescent probes

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xianglong [Key Laboratory For Space Bioscience and Biotechnology, Faculty of Life Sciences, Northwestern Polytechnical University, Xi' an 710072 (China); Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Materials Science, Northwest University, Tai Bai Bei Lu 229, Xi' an 710069, Shaanxi (China); Jin Xilang; Wang Yunxia [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Materials Science, Northwest University, Tai Bai Bei Lu 229, Xi' an 710069, Shaanxi (China); Mei Qibing [Key Laboratory For Space Bioscience and Biotechnology, Faculty of Life Sciences, Northwestern Polytechnical University, Xi' an 710072 (China); Li Jianli, E-mail: lijianli@nwu.edu.c [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Materials Science, Northwest University, Tai Bai Bei Lu 229, Xi' an 710069, Shaanxi (China); Shi Zhen, E-mail: gahpyudx@163.co [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Materials Science, Northwest University, Tai Bai Bei Lu 229, Xi' an 710069, Shaanxi (China)

    2011-04-15

    Eight chlorinated fluoresceins have been synthesized by the reaction of chlorinated resorcinols with 4, 5, 6, 7-tetrachlorophthalic anhydride or 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. The spectral properties of the chlorinated fluoresceins were studied. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. pH-dependent properties of chlorinated fluoresceins were studied in detail. These compounds showed a strongly pH-sensitive range of 3.0-7.0. These chlorinated fluoresceins will be used as pH probes for pH measurement of the cell because of the high quantum yield and strong pH-sensitivity. - Research highlights: Eight chlorinated fluoresceins have been synthesized in the presence of methanesulfonic acid. Emission spectra of these compounds shifted towards long wavelength with increase in chlorine. Eight chlorinated fluoresceins showed a strongly pH-sensitive range of 3.0-7.0. They have emission maxima at long wavelengths and high fluorescence quantum yields.

  16. Effects of combined UV and chlorine treatment on chloroform formation from triclosan.

    Science.gov (United States)

    Ben, Weiwei; Sun, Peizhe; Huang, Ching-Hua

    2016-05-01

    The co-exposure to UV irradiation and free chlorine may occur in certain drinking water and wastewater treatment systems. This study investigated the effects of simultaneous low pressure ultraviolet (LPUV) irradiation and free chlorination on the formation of chloroform from triclosan which is a commonly used antibacterial agent. Different treatment systems (i.e., combined UV/chlorine, UV alone, and chlorine alone) were applied to examine the degradation of triclosan and formation of chloroform. The fate of representative intermediates, including chlorinated triclosan, dechlorinated triclosan intermediates and 2,4-dichlorophenol, were tracked to deduce the effect of combined UV/chlorine on the transformation of chloroform formation precursors. The relation between intermediates degradation and chloroform formation was investigated in depth by conducting stepwise experiments with UV and chlorine in different sequences. Results indicate that the combined UV/chlorine notably enhanced the chloroform formation from triclosan. From the reaction mechanism perspective the combined UV/chlorine, where the direct photolysis may play an important role, could accelerate the decay of intermediates and facilitate the generation of productive chloroform precursors. The radicals had modest influence on the degradation of triclosan and intermediates and partly hindered the formation of chloroform. These results emphasize the necessity of considering disinfection by-products formation in the application of combined UV/chlorine technology during water treatment. PMID:26746417

  17. Heat inactivation of Escherichia coli O157:H7 in apple juice exposed to chlorine.

    Science.gov (United States)

    Folsom, J P; Frank, J F

    2000-08-01

    Exposure of Escherichia coli O157:H7 to chlorine before heat treatment results in increased production of heat shock proteins. Current heating regimens for pasteurizing apple cider do not account for chlorine exposure in the wash water. This research determined the effect of sublethal chlorine treatment on thermal inactivation of E. coli O157:H7. D58-values were calculated for stationary-phase cells exposed to 0.6 mg/liter of total available chlorine and unchlorinated cells in commercial shelf-stable apple juice (pH 3.6). D58-values for unchlorinated and chlorine-exposed cells in buffer were 5.45 and 1.65 min, respectively (P D58-values calculated from these populations are 0.77 min for unexposed cells and 1.19 min for chlorine-exposed cells (P = 0.05). This indicates that a subpopulation of chorine-treated cells is possibly more resistant to heat because of chlorine treatment. The effect of chlorine treatment, however, is insignificant when compared with the effect of losing the shoulder. This is illustrated by the time required to kill the initial 90% of the cell population. This is observed to be 3.14 min for unchlorinated versus 0.3 min for chlorine-exposed cells (P < 0.001). These observations indicate that current heat treatments need not be adjusted for the effect of chlorine treatment. PMID:10945574

  18. Pandora's Poison: Chlorine, Health, and a New Environmental Strategy

    OpenAIRE

    THORNTON, J.

    2002-01-01

    This book focuses on a group of chemicals, organochlorines, that tops the list of all global and environmental contaminants. The author analyzes the cause and effects of problems associated with producing chlorine-based substances. The book examines organochlorines by looking at major sources, the health impacts on humans and wildlife, and its relation to cancer. The author concludes by suggesting policies and alternatives that can reduce the negative impact of organochlorines.

  19. Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation

    OpenAIRE

    Meneghin, Silvana Perissatto; Reis, Fabricia Cristina; de Almeida, Paulo Garcia; Ceccato-Antonini, Sandra Regina

    2008-01-01

    The ethanol production in Brazil is carried out by fed-batch or continuous process with cell recycle, in such way that bacterial contaminants are also recycled and may be troublesome due to the substrate competition. Addition of sulphuric acid when inoculum cells are washed can control the bacterial growth or alternatively biocides are used. This work aimed to verify the effect of chlorine dioxide, a well-known biocide for bacterial decontamination of water and equipments, against contaminant...

  20. Flash photolysis of chlorine dioxide in aqueous solution

    International Nuclear Information System (INIS)

    The primary process when aqueous solutions of chlorine dioxide are flash photo-lysed by light with a wave length greater than 270 nm is: OClO →hν ClO (2Π) + O (3P). The photochemical decomposition is characterized by the formation of small quantities of O (3P) atoms and of equal amounts of chlorine atoms and molecular oxygen, the latter originating in the reaction: ClOO → Cl + O2. The isomer ClOO is formed by the germinate recombination of ClO and O, a process which is twice as important as diffusion of the fragments into the mass of the solution and one which represents 30 per cent of the decomposition of the chlorine dioxide. Under our experimental conditions, the lifetime of the ClOO is less than one microsecond. Chlorine atoms are precursors of Cl2O2, whose UV absorption spectrum has been determined, and which is formed by the reactions: Cl + OClO → Cl2O2; Cl + Cl- → Cl2-; Cl2- + OClO → Cl2O2 + Cl- k = (1,0 ±0,1) 109 M-1s-1. Cl2O2 disappears by a first-order process which leads to the formation of the ions Cl- and ClO3-. Competition between the reactions: O (3P) + O2 → O3; O (3P) + OClO → ClO3. (kOClO + O)/(kO2 + O) = 1.85±0.25 has been studied and the molar extinction coefficient of ClO3 determined at its absorption maximum (255 nm): ε255nm = (920 ± 90) M-1 cm-1. (author)

  1. [Action modes of chlorine dioxide--a review].

    Science.gov (United States)

    Wei, Mingken; Lai, Jieling; Zhan, Ping

    2012-04-01

    Chlorine dioxide (ClO2) is a highly effective disinfectant for food and potable water treatment. Till now, the action mode of ClO2 is still unclear. ClO2, can denature proteins by oxidizing tyrosine, tryptophan, and cysteine. We reviewed the pathways by which ClO02 reacts with important bio-molecules, as well as the primary target sites at individual cellular level of ClO2-induced biocidal effects. PMID:22799207

  2. Comparative Analytical Methods for the Measurment of Chlorine Dioxide

    OpenAIRE

    Desai, Unmesh Jeetendra

    2002-01-01

    Four commercially available methods used for the analysis of low-level Chlorine Dioxide (ClO2) concentrations in drinking water were evaluated for accuracy and precision and ranked according to cost, efficiency and ease of the methods under several conditions that might be encountered at water treatment plants. The different analytical methods included: 1.The DPD (N, N-diethyl-p-phenylenediamine) method 2.Lissamine Green B (LGB) wet-chemical method 3.Palintest® kit LGB 4.A...

  3. Plasma chemical etching of gallium arsenide in chlorine

    International Nuclear Information System (INIS)

    One of the most promising methods, used for the examination of the kinetics and determination of the moments of the start and completion of the processes of plasma chemical etching of a wide range of inorganic materials is optical emission spectroscopy. Therefore, the aim of this work was to examine the kinetic relationships of etching of gallium arsenide in chlorine plasma and determine the possibilities of the optical emission spectroscopy for examination and control of the process

  4. Chlorine Dioxide Gas Sterilization under Square-Wave Conditions

    OpenAIRE

    Jeng, David K.; Woodworth, Archie G.

    1990-01-01

    Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. ni...

  5. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C. von; Struis, R.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  6. The pool chlorine hypothesis and asthma among boys.

    LENUS (Irish Health Repository)

    Cotter, A

    2012-01-31

    Swimming pool sanitation has largely been concerned with the microbiological quality of pool water, which is normally treated using a number of chlorine products. Recent studies have pointed to the potential hazards of chlorine by-products to the respiratory epithelium, particularly in indoor, poorly ventilated, pools. The aim of our study was to elucidate whether chronic exposure to indoor chlorinated swimming pools was associated with an increased likelihood of the development of asthma in boys. METHODS: The subjects were boys aged between 6 and 12 years. Data was collected by means of parental responses to a standardized asthma questionnaire (ISAAC: International Study of Asthma and Allergies in Childhood), supplemented with additional questions regarding frequency of attendance, number of years attendance, whether the child is a swimming team member. The questionnaire return rate was 71\\/% (n = 121). 23 boys were excluded on the basis that they had asthma before they started swimming (n = 97). There was a significant association between number of years a boy had been swimming and the likelihood of wheezing in the last 12 months (p = 0.009; OR = 1.351; 95% CI = 1.077-1.693) and diagnosed asthma (p = 0.046; OR = 1.299; 95% CI = 1.004-1.506). The greater the number the number of years a boy had been attending an indoor, chlorinated pool, the greater the likelihood of wheezing in the last 12 months or "had asthma". Age, parental smoking habits and being a swimming team member had no association with any of the asthma variables examined. Swimming pool attendance may be a risk factor in asthma in boys.

  7. The role of natural chlorinated hydroquinone metabolites in ligninolytic fungi

    OpenAIRE

    Teunissen, P.J.M.

    1999-01-01

    Ligninolytic Basidiomycetes have been reported to produce a wide variety of chloroaromatic compounds as secondary metabolites, which are structurally similar to environmental pollutants. Among these are chlorinated hydroquinone metabolites (CHM), such as 2-chloro-1,4-dimethoxybenzene (2Cl-14DMB), 2,6-dichloro-1,4-dimethoxybenzene (26DCl-14DMB), tetrachloro-1,4-dimethoxybenzene and tetrachloro-4-methoxyphenol, which are synthesized by 11 genera of Basidiomycetes.The biosynthesis of these chlor...

  8. Solubility of chlorine in aqueous hydrochloric acid solutions.

    Science.gov (United States)

    Alkan, Mahir; Oktay, Münir; Kocakerim, M Muhtar; Copur, Mehmet

    2005-03-17

    The solubility of chlorine in aqueous hydrochloric acid solutions was studied. The effects of HCl concentration and temperature on the solubility were evaluated, and the thermodynamic parameters of the dissolution were calculated. It was found that the solubility isotherms had a minimum at about 0.5M HCl concentration at all the temperatures studied and that solubility decreased with the increase of temperature at all the HCl concentration range investigated. PMID:15752843

  9. Assessment of In-Situ Reductive Dechlorination Using Compound-Specific Stable Isotopes, Functional-Gene Pcr, and Geochemical Data

    OpenAIRE

    Carreón-Diazconti, Concepción; Santamaría, Johanna; Berkompas, Justin; Field, James A.; Brusseau, Mark L.

    2009-01-01

    Isotopic analysis and molecular-based bioassay methods were used in conjunction with geochemical data to assess intrinsic reductive dechlorination processes for a chlorinated-solvent contaminated site in Tucson, Arizona. Groundwater samples were obtained from monitoring wells within a contaminant plume comprising tetrachloroethene and its metabolites trichloroethene, cis-1,2-dichloroethene, vinyl chloride, and ethene, as well as compounds associated with free-phase diesel present at the site....

  10. Congener-specific accumulation and trophic transfer of polychlorinated biphenyls in spider crab food webs revealed by stable isotope analysis

    OpenAIRE

    Bodin, Nathalie; Le Loc'H, François; Caisey, X.; Le Guellec, A. M.; Abarnou, A.; Loizeau, V.; Latrouite, D.

    2008-01-01

    Polychlorobiphenyls (PCB) and stable isotopes (delta N-15 and delta C-13) were analyzed in the spider crab (Maja brachydactyla) food web from the Iroise Sea (Western Brittany) and the Seine Bay (Eastern English Channel). PCB concentrations were all significantly higher in organisms from the Seine Bay than those from the Iroise Sea. PCB patterns were strongly related to the feeding mode of the species, and increased influence of higher chlorinated congeners was highlighted with trophic positio...

  11. Manganese chlorins immobilized on silica as oxidation reaction catalysts.

    Science.gov (United States)

    Castro, Kelly A D F; Pires, Sónia M G; Ribeiro, Marcos A; Simões, Mário M Q; Neves, M Graça P M S; Schreiner, Wido H; Wypych, Fernando; Cavaleiro, José A S; Nakagaki, Shirley

    2015-07-15

    Synthetic strategies that comply with the principles of green chemistry represent a challenge: they will enable chemists to conduct reactions that maximize the yield of products with commercial interest while minimizing by-products formation. The search for catalysts that promote the selective oxidation of organic compounds under mild and environmentally friendly conditions constitutes one of the most important quests of organic chemistry. In this context, metalloporphyrins and analogues are excellent catalysts for oxidative transformations under mild conditions. In fact, their reduced derivatives chlorins are also able to catalyze organic compounds oxidation effectively, although they have been still little explored. In this study, we synthesized two chlorins through porphyrin cycloaddition reactions with 1.3-dipoles and prepared the corresponding manganese chlorins (MnCHL) using adequate manganese(II) salts. These MnCHL were posteriorly immobilized on silica by following the sol-gel process and the resulting solids were characterized by powder X-ray diffraction (PXRD), UVVIS spectroscopy, FTIR, XPS, and EDS. The catalytic activity of the immobilized MnCHL was investigated in the oxidation of cyclooctene, cyclohexene and cyclohexane and the results were compared with the ones obtained under homogeneous conditions. PMID:25841060

  12. Rapid infrared determination of the potency of chlorinated bactericides.

    Science.gov (United States)

    Spagnolo, F; Cestaro, J P

    1971-06-01

    A rapid infrared reflectance method for evaluating the germicidal potency of synthetic materials containing various amounts of two chlorinated bactericides was developed. The dimeric product 2,2'-methylenebis (4,6-dichlorophenol) exhibited a characteristic C=C skeletal inplane stretching infrared absorption band at 1,640 cm(-1). The monomeric 2,4-dichlorophenol precursor showed a characteristic absorption band at 1,579 cm(-1). These characteristic infrared absorptions may be used for analysis of the potency of the manufactured chlorinated bactericide. For a series of samples known to vary in dimer content, the micrograms per milliliter required for a 100% bacterial kill is first determined by a standard American Petroleum Institute method. Then the area ratio of the infrared absorption bands characteristic of the chlorinated bactericides is measured for each sample and plotted versus the microgram per milliliter required for 100% bacterial kill. The potency of subsequent samples is simply and rapidly determined by measuring this ratio from the infrared absorption curve and calculating micrograms per milliliter required for 100% kill from the calibration curve. Analysis time is approximately 1 hr compared to biocidal tests in current use requiring approximately a 1-month incubation period. PMID:5564677

  13. A new formulation of equivalent effective stratospheric chlorine (EESC

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2007-03-01

    Full Text Available Equivalent effective stratospheric chlorine (EESC is a convenient parameter to quantify the effects of halogens (chlorine and bromine on ozone depletion in the stratosphere. We show and discuss a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. Using this EESC formulation, we estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties in the estimated time of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air, and the assumption that the mean age-of-air and fractional release values are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be accelerated from 2041 to 2031.

  14. Behavior and control of chlorine in dyestuff residue incineration

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-hua; TAN Zhong-xin; JIANG Xue-guang; CHI Yong; CEN Ke-fa

    2006-01-01

    Dyestuff residue, a type of hazardous waste, is incinerated in the tubular furnace, and thermodynamic equilibrium model is used to calculate and analyze the chlorine behavior. The HCl emission and its effects on the behaviors of heavy metals are studied.Meanwhile, the effects of three dechlorine reagents are predicted at a high temperature. Results show that HCl emission is dependent on incineration temperature. The HCl evaporated mainly derives from the organic chlorine. Under the working condition of 500--900℃, the main products of Hg, Pb, Cu, Ni, Zn, and Mn in reaction with HCl are HgCl2 (g), PbCl4(g), PbCl2 (g), (CuCl)3 (g), NiCl2 (s),NiCl2 (g), ZnCl2 (s), ZnCl2 (g), Zn (g), MnCl2 (s), and MnCl2 (g), respectively. Among the three dechlorine reagents, CaCO3 is optimal to remove chlorine at high temperature, little of HCl is released below 800℃, whereas Fe3O4 is unstable at high temperature.

  15. SOME ASPECTS REGARING CHLORINE DECAY IN WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    LIANA IOANA VUŢĂ

    2011-03-01

    Full Text Available A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. The quality of drinking water delivered to the customer’s tap is influenced by a number of processes; namely water treatment, disinfection and changes during transport of treated water via the distribution system. All natural waters and even treated drinking water exerts disinfectant demand due to the reactions with NOM and other constituents in water. Therefore, the applied disinfectant dose must be sufficient to meet the inherent demand in the treated water, to provide sufficient protection against microbial infection. Thus, controlling free residual chlorine properly is definitely important to ensure meeting regulatory requirements and satisfying customer needs.This paper presents the main aspects regarding chlorine decay in drinking-water distribution networks and, also a free chlorine decay simulation with EPANET2 on Ramnicu Valcea water distribution system.

  16. Depletion of chlorine into HCl ice in a protostellar core

    CERN Document Server

    Kama, M; Lopez-Sepulcre, A; Wakelam, V; Dominik, C; Ceccarelli, C; Lanza, M; Lique, F; Ochsendorf, B B; Lis, D C; Caballero, R N; Tielens, A G G M

    2014-01-01

    The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances $<10^{-5}$ has not yet been well studied. Our aim here is to study the depletion of chlorine in the protostellar core, OMC-2 FIR 4. We observed transitions of HCl and H2Cl+ towards OMC-2 FIR 4 using the Herschel Space Observatory and Caltech Submillimeter Observatory facilities. Our analysis makes use of state of the art chlorine gas-grain chemical models and newly calculated HCl-H$_{2}$ hyperfine collisional excitation rate coefficients. A narrow emission component in the HCl lines traces the extended envelope, and a broad one traces a more compact central region. The gas-phase HCl abundance in FIR 4 is 9e-11, a factor of only 0.001 that of volatile elemental chlorine. The H2Cl+ lines are detected in absorption and trace a tenuous fo...

  17. Detection of chlorinated methanes by tin oxide gas sensors.

    Science.gov (United States)

    Park, S H; Son, Y C; Shaw, B R; Creasy, K E; Suib, S L

    2001-08-01

    Tin oxide thin films prepared by thermal oxidation of Sn films were used for the detection of chlorinated methanes (CH2Cl2, CHCl3 and CCl4). This resulted in better chemical selectivity, sensitivity, response speed and detection limit than seen with previous detectors. The temperature dependence of the sensing of 1% CCl4 gas was studied and the best sensing behavior was observed at 300 degrees C. The films showed different chemical selectivity in both speed and direction of sensing response to each gas and were stable for more than 3 weeks under operating conditions. The films showed rapid gas sensing (<40 s to reach 90% of full response) and low detection limits (< 4 ppm CCl4). The role of oxygen in the detection of chlorinated methanes and in resistance changes without chlorinated methanes was also studied. The changes at the surface of the film after gas sensing were examined using scanning electron microscopy with energy-dispersive X-ray spectrometry. PMID:11534610

  18. Sem-edx and ftir studies of chlorinated rubber coating

    International Nuclear Information System (INIS)

    Summary: Anticorrosive performance of chlorinated rubber coating has been investigated by visual examination, Scanning electron microscopy (SEM)/Energy dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) spectroscopy. After surface preparation, commercially available coating system based on chlorinated rubber (primer)/chlorinated rubber (topcoat) formulation was applied on mild steel test panels (10cm x 15cm sizes). Prepared coated panels were exposed at marine, industrial and urban test sites located in Karachi, Pakistan according to ISO 8565 norm. Accelerated testing was performed by using a salt spray chamber (ASTM B117 norm). Accelerated weathering methods are the methods in which the factors responsible for the degradation of coatings are artificially intensified in order to achieve the rapid degradation of coatings. Visual examination of blistering and rusting as well as SEM micrographs indicated a more severe degradation of the coating surface characteristics at natural exposure testing sites (particularly at marine test site) than for accelerated (salt spray) testing. EDX determination of the Oxygen/Carbon (O/C) ratios also indicated increased degradation at natural test sites compared to the accelerated (salt spray) testing. Photooxidation of the binder results in the formation of carbonyl compounds as revealed by FTIR spectroscopy which also indicated dehydrochlorination. (author)

  19. Isotope and trace element patterns below the Merensky Reef, Bushveld Complex, South Africa: evidence for fluids?

    International Nuclear Information System (INIS)

    Mineralization in the Merensky Reef of the Bushveld Complex has recently been attributed to the ingress of fluids, possible via channels beneath depressions in the foot of the Reef referred to as potholes. Samples from immediately below three potholes and from the same horizon under the normal reef have been analyzed for oxygen and strontium isotopes, chlorine, and noble metals to investigate this possibility. Results from one pothole are interpreted as retaining the primary magmatic oxygen isotope signature. These results from the western lobe of the Bushveld Complex are practically identical to those already established for the laterally equivalent horizons in the eastern lobe. A second pothole showed more variability. The secondary alteration of the foot wall was accompanied by the introduction of chlorine. Gold contents also appear to be slightly enriched in the foot wall under the pothole reef. The sporadic nature of the secondary alteration, the interaction with low δ18 O fluids, and the enrichment in volatile elements such as chlorine is emphasized. 40 refs., 7 figs., 5 tabs

  20. Position-specific isotope modeling of organic micropollutants transformations through different reaction pathways

    Science.gov (United States)

    Jin, Biao; Rolle, Massimo

    2016-04-01

    ., 2013. Integrated carbon and chlorine isotope modeling: Applications to chlorinated aliphatic hydrocarbons dechlorination. Environ. Sci. Technol. 47, 1443-1451. doi:10.1021/es304053h. [3] Jin, B., Rolle, M., 2014. Mechanistic approach to multi-element isotope modeling of organic contaminant degradation. Chemosphere 95, 131-139. doi:10.1016/j.chemosphere.2013.08.050.

  1. Mass spectrometry and isotopes: a century of research and discussion.

    Science.gov (United States)

    Budzikiewicz, Herbert; Grigsby, Ronald D

    2006-01-01

    In 1815, the British physician William Prout had advanced the theory that the molecular masses of elements were multiples of the mass of hydrogen. This "whole number rule" (and especially deviations from it) played an important role in the discussion whether elements could be mixtures of isotopes. F. Soddy's discovery (1910) that lead obtained by decay of uranium and of thorium differed in mass was considered a peculiarity of radioactive materials. The question of the existence of isotopes came up when the instruments developed by J.J. Thomson and by W. Wien to study cathode and canal rays by deflection in electric and magnetic fields were steadily improved. In 1913, Thomson mentioned a weak line at mass 22 accompanying the expected one at mass 20 when he analyzed the mass spectrum of neon. Subsequently Aston obtained the mass spectrum of chlorine with masses at 35 and 37. Still in 1921, Thomson objected heavily to the idea of isotopes. The isotope problem was finally settled, but more accurate mass measurements showed that even isotopic weights differed to some extent from the whole numbers. Based on earlier ideas of P. Langevin and J.-L. Costa, F.W. Aston and A.J. Dempster developed the idea of packing fractions and mass defects due to the transformation of a portion of the matter comprising the atomic nucleus into energy. While the determination of the exact isotopic masses had improved over the years, the accurate determination of isotopic abundances remained a problem as long as photographic recording was used. Here especially A.O. Nier pioneered using dual collectors and compensation measurements. This was the prerequisite for the discovery that isotopic ratios varied somewhat in nature. M. Dole discovered the fractionation of oxygen isotopes by photosynthesis and respiration. Today 13C/12C-ratios are employed to detect adulterations of food and in doping analysis, and 14C/13C-ratios obtained by accelerator mass spectrometry are used for dating historical

  2. SIMULTANEOUS DETERMINATION OF CHLORINE DIOXIDE AND HYPOCHLOROUS ACID IN BLEACHING SYSTEM

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2011-04-01

    Full Text Available This study has demonstrated a rapid spectroscopic method for the determination of chlorine dioxide and hypochlorous acid concentrations in the pulp bleaching processes. It was found that chlorine dioxide and hypochlorous acid have an isosbestic wavelength of 295 nm. The soluble lignin in such a system is the main interference, but can be corrected by determining the absorbances at 295 nm, 380 nm, and 480 nm. Thus, based on the spectroscopic measurements at 295 nm (the isosbestic point wavelength for chlorine dioxide and hypochlorous acid, 380 nm (absorbance wavelength of chlorine dioxide and 480 nm (the acid soluble lignin absorbance wavelength, the chlorine dioxide and hypochlorous acid concentrations in the bleaching process can be quantified. However, hypochlorous acid was not detected in the real bleaching effluent for its low content. The present method is simple, rapid, accurate, and has the potential for on-line monitoring of the chlorine dioxide bleaching process.

  3. Fate of chlorinated fatty acids in migrating sockeye salmon and their transfer to arctic grayling

    DEFF Research Database (Denmark)

    Mu, Huiling; Ewald, G.; Nilsson, E.; Sundin, P.; Wesen, C.

    2004-01-01

    that of the unchlorinated fatty acids. Lipids of the Arctic grayling (Thymallus arcticus), a fish resident to the spawning lake of the salmon, contained higher concentrations of chlorinated fatty acids than grayling in a lake without migratory salmon. This may reflect a food-chain transfer of the...... organohalogen compounds in the salmon were halogenated fatty acids, predominantly chlorinated species that accounted for up to 35% of the extractable, organically bound chlorine (EOCl) in the fish tissues. The amount of chlorinated fatty acids in the salmon muscle decreased as a result of spawning migration....... The decrease was correlated with that of triacylglycerols in the salmon muscle, indicating the chlorinated fatty acids to be mobilized and metabolized to approximately the same extent as the other fatty acids. Chlorinated fatty acids were also transferred to the maturing roe in a manner similar to...

  4. Research of chemical induction unit on mixing effect and chlorine saving

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi; Chen Zhonglin; Li ZuoLiang; Xue Zhu; Yuan Xing; Li Guibai

    2007-01-01

    Rapid mixing and chlorine saving are two important problems that most drinking water industries ale focus on, and this paper adopts chemical induction unit to compare with water jet injector to study what merits chemical induction unit has. The experiment chose coefficient of variability of chlorine concentration to evaluate the mix effect and used chlorine consumption to compare the two equipments. Distribution reservoir experiments show that chemical induction unit can completely mix chlorine less than 6. 2 seconds and water jet injector can not completely mix in 3 minutes. Mixing pool experiments show that chemical induction unit can save chlorine compared with water jet injector, and Can save mole if mole chlorine is consumed.

  5. Increased toxicity of textile effluents by a chlorination process using sodium hypochlorite.

    Science.gov (United States)

    Chen, C M; Shih, M L; Lee, S Z; Wang, J S

    2001-01-01

    Chlorinated textile effluents were tested for their toxicity using different bioassays. These assays were the Microtox assay, daphnia (Daphnia similis) 48-hr survival test, medaka embryo 14-day and juvenile 96-hr survival tests, and tilapia (Oreochromis mossambicus) juvenile 96-hr survival test. By comparing the results of toxicity tests on water samples collected at the instream prior to the chlorination process and at the outlet of the wastewater treatment facility, we found that wastewater toxicity was obviously increased by chlorination using NaOCl as the oxidant, as evidenced by the different bioassays used. Because no significant difference was observed in water chemistry, such as pH, DO, and conductivity, the induced-toxicity may be partially attributable to residue chlorine or other chlorinated compounds generated by chlorination. Future studies are warranted to identify the cause of the increase in the textile wastewater toxicity. PMID:11380166

  6. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    Science.gov (United States)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  7. Rotational-isotopic symmetries

    International Nuclear Information System (INIS)

    In this note we submit a nonlocal (integral) generalization of the rotational-isotopic symmetries O-circumflex(3) introduced in preceding works for nonlinear and nonhamiltonian systems in local approximation. By recalling that the Lie-isotopic theory naturally admits nonlocal terms when all embedded in the isounit, while the conventional symplectic geometry is strictly local-differential, we introduce the notion of symplectic-isotopic two-forms, which are exact symplectic two-forms admitting a factorization into the Kronecker product of a canonical two-form time the isotopic element of an underlying Euclidean-isotopic space. Topological consistency is then achieved by embedding all nonlocal terms in the isounit of the iso-cotangent bundle, while keeping the local topology for the canonical part. In this way, we identify the symplectic-isotopic geometry as being the natural geometrical counterpart of the Lie-isotopic theory. The results are used for the introduction of the notion of Birkhoffian angular momentum, that is, the generalization of the conventional canonical angular momentum which is applicable to Birkhoffian systems with generally nonlinear, nonlocal and nonhamiltonian internal forces. The generators J (and the parameters θ) coincide with the conventional quantities. Nevertheless, the quantity J is defined on the underlying Euclidean-isotopic space, by therefore acquiring a generalized magnitude. The isocommutation rules and isoexponentiation of the Birkhoffian angular momentum are explicitly computed and shown to characterize the most general known nonlinear and nonlocal realization of the isorotational symmetry. The local isomorphisms between the infinitely possible isotopes O-circumflex(3) and the conventional symmetry O(3) is proved. Finally the isosymmetries O-circumflex(3) are used to characterize the conserved, total, Birkhoffian angular momentum of closed nonselfadjoint systems. (author). 4 refs

  8. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  9. Some kinetics aspects of chlorine-solids reactions

    Directory of Open Access Journals (Sweden)

    Kanari, N.

    2010-02-01

    Full Text Available The present paper describes detailed kinetics investigations on some selected chlorine-solid reactions through thermogravimetric measurements. The solids studied in this article include chemical pure oxides and sulfides as well as their natural bearing materials. The chlorinating agents employed are gaseous mixtures of Cl2+N2 (chlorination, Cl2+O2 (oxychlorination, and Cl2+CO (carbochlorination. Results are presented as effects of various parameters on the reaction rate of these solids with these chlorinating agents. It was observed that the reactivity of these solids towards different chlorinating agents varied widely. Sulfides could be chlorinated at room temperature, while carbochlorination of chromium (III oxide was possible only above 500 °C. The variation of the chlorination rate of these complex materials with respect to gas velocity, composition and temperature enabled us to focus some light on the plausible reaction mechanisms and stoichiometries. The obtained results were used for selective removal of iron from chromite concentrates, extraction of valuable metals from sulfide materials, purification of MgO samples, etc.

    Este trabajo describe detalladas investigaciones cinéticas en algunas reacciones seleccionadas de cloro-sólido a través de medidas termogravimétricas. Los sólidos estudiados en este artículo incluyen óxidos químicos puros y sulfuros, así como sus materiales naturales de soporte. Los agentes de cloración empleados son mezclas de gases de Cl2+N2 (cloración, Cl2+O2 (oxicloración y Cl2+O2 (carbocloración. Los resultados se presentan como efecto de varios parámetros en el porcentaje de reacción de estos sólidos con los agentes de cloración. Se ha observado que la reactividad de estos sólidos a través de diferentes agentes de cloración varía ampliamente. Los sulfuros se pudieron

  10. New ORP/pH based control strategy for chlorination and dechlorination of wastewater: pilot scale application.

    Science.gov (United States)

    Kim, H; Kwon, S; Han, S; Yu, M; Kim, J; Gong, S; Colosimo, M F

    2006-01-01

    Due to its efficiency and low capital demands, chlorination has been widely used for disinfection in many wastewater treatment plants. Since the oxidation power of free chlorine is bigger than combined chlorines which are formed from the reaction between chlorine and reducing agents in water (especially, NH4+ and organic nitrogen), for effective disinfection, excess amount of chlorine is added until all the reducing agents are oxidized and free chlorine is available. After chlorination, chlorine residues in wastewater are usually reduced with SO2 or sulfites before the treated wastewater is discharged, since they are toxic to aquatic life. Addition of excess amount of SO2 or sulfite should be avoided. Otherwise, they consume dissolved oxygen in a river or stream and may have adverse impact on the aquatic life. Determination of wastewater chlorine demand and of sulfite dosages for dechlorination has been a challenge to WWTP operators, due to the dynamic characteristics of wastewater. Recently, a new ORP/pH based approach to determine chlorine demand and sulfite dosage was proposed. The method utilizes significant points occurring on the pH and ORP profiles during chlorination and dechlorination titrations. In this study, the proposed automatic titration system has been implemented into a control system to optimize chlorine and sulfite doses for a pilot scale chlorination/dechlorination system. In short, the disinfection system with the pH/ORP based controller showed very successful results; complete inactivation of total coliforms, and almost zero residual chlorines and high DO in its effluent. PMID:16749451

  11. Oxygen isotopes and lakes

    OpenAIRE

    Leng, Melanie; Dean, Jonathan

    2014-01-01

    Isotopes are variations of a particular chemical element. It is all to do with the number of neutrons. Oxygen has two main isotopes: 18O which has 10 neutrons and 8 protons; and 16O which has 8 neutrons and 8 protons. Although these variants have a different number of neutrons (and therefore a different atomic mass), the number of protons remains the same, and they are still classed as the same element. Isotopes are analysed in terms of ratios such as 18O/16O which is shortened to δ18O (δ...

  12. Carbon isotope techniques

    International Nuclear Information System (INIS)

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The 11C, 12C, 13C, and 14C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations

  13. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.

    OpenAIRE

    LeChevallier, M. W.; Evans, T. M.; Seidler, R J

    1981-01-01

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were performed to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Experiments were conducted on the surface water supplies for communities which practice chlorination as the only treatment. Therefore, the conclusions of this study apply only to such systems. Results indicated that disinfection efficiency (log10 of the de...

  14. Investigation of chlorination of zirconium and hafnium and their compounds in discharge from hollow cathode

    International Nuclear Information System (INIS)

    The possibility is investigated of chlorinating various zirconium and hafnium compounds (metal, oxide, carbide) in a hot discharge from a hollow cathode with various chlorinating reagents: copper monochloride, nickel chloride, magnesium chloride, for the purpose of accelerating their entrance into the excitation zone. It has been shown thermodynamically and experimentally that chlorination of metal zirconium and hafnium and their carbides with copper monochloride in hot hollow cathode conditions provides a sharp increase in the intensity of the lines of these elements

  15. The role of bound chlorine in the brightness reversion of bleached hardwood kraft pulp

    OpenAIRE

    Kátia Maria Morais Eiras; Jorge Luiz Colodette; Vanessa Lopes Silva

    2009-01-01

    Our previous paper showed fragmentary evidence that pulp brightness reversion may be negatively affected by its organically bound chlorine (OX) content. A thorough investigation on eucalyptus kraft pulp led to the conclusion that OX increases reversion of certain pulps but this trend is not universal. Alkaline bleaching stages decrease reversion regardless of pulp OX content. Pulps bleached with high temperature chlorine dioxide revert less than those bleached with conventional chlorine dioxi...

  16. Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere

    OpenAIRE

    Drdla, K.; Müller, R.

    2012-01-01

    Low stratospheric temperatures are known to be responsible for heterogeneous chlorine activation that leads to polar ozone depletion. Here, we discuss the temperature threshold below which substantial chlorine activation occurs. We suggest that the onset of chlorine activation is dominated by reactions on cold binary aerosol particles, without the formation of polar stratospheric clouds (PSCs), i.e. without any significant uptake of HNO3 from the gas phase. Using...

  17. Chlorine dioxide by-products in drinking water and their control by powdered activated carbon

    OpenAIRE

    Grabeel, Margaret N.

    1992-01-01

    The concentrations of chlorine dioxide (CI02), chlorine, chlorite (CIO2), and chlorate (CI03) were evaluated following pretreatment of raw water by CI02 at water treatment plants in New Castle, Pennsylvania; Charleston, West Virginia; Skagit, Washington; and Columbus, Georgia. Chlorite and chlorate concentrations were unaffected by any of the water treatment processes and did not vary as a function of time of travel in the distribution system. Chlorine dioxide, which was ana...

  18. The role of bound chlorine in the brightness reversion of bleached hardwood kraft pulp

    Directory of Open Access Journals (Sweden)

    Kátia Maria Morais Eiras

    2009-01-01

    Full Text Available Our previous paper showed fragmentary evidence that pulp brightness reversion may be negatively affected by its organically bound chlorine (OX content. A thorough investigation on eucalyptus kraft pulp led to the conclusion that OX increases reversion of certain pulps but this trend is not universal. Alkaline bleaching stages decrease reversion regardless of pulp OX content. Pulps bleached with high temperature chlorine dioxide revert less than those bleached with conventional chlorine dioxide in sequences ending with a chlorine dioxide stage but similarly in sequences ending with a final peroxide stage. The use of secondary condensate for pulp washing decreases reversion.

  19. Dealing with the chlorinated solvent situation at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Recent events regarding health and environmental problems associated with the use of chlorinated solvents have prompted the Oak Ridge Y-12 Plant to investigate substitutes for these materials. Since 1987, the purchase of chlorinated solvents at the Y-12 Plant has been reduced by 92%. This has been accomplished by substituting chlorinated solvent degreasing with ultrasonic aqueous detergent cleaning and by substituting chlorinated solvents with less toxic, environmentally friendly solvents for hand-wiping applications. Extensive studies of cleaning ability, compabitility, and effects on welding, bonding, and painting have been conducted to gain approval for use of these solvents. Toxicity and waste disposal were also assessed for the solvents

  20. Safety and environmental aspects of zinc--chlorine hydrate batteries for electric-vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, S.; Henriksen, G.L.; Whittlesey, C.C.; Warde, C.J.; Carr, P.; Symons, P.C.

    1978-03-01

    Public acceptance of high-performance cost-effective zinc--chlorine hydrate batteries for the random-use electric-vehicle application will require meeting stringent safety and environmental requirements. These requirements revolve mainly around the question of accidental release and spread of toxic amounts of chlorine gas, the only potential hazard in this battery system. Available information in the areas of physiological effects, environmental impact, and governmental regulation of chlorine were reviewed. The design, operation, and safety features of a first commercial electric-vehicle battery were conceived and analyzed from the chlorine release aspect. Two types of accident scenarios were analyzed in terms of chlorine release rates, atmospheric dispersion, health hazard, and possible clean-up operations. The worst-case scenario, a quite improbable accident, involves the spillage of chlorine hydrate onto the ground, while the other scenario, a more probable accident, involves the release of chlorine gas from a ruptured battery case. Heat-transfer and chlorine-dispersion models, developed to analyze these scenarios, establish a firm basis for a comprehenive and factual position statement on this topic. The results of this preliminary study suggest that electric vehicles powered by appropriately designed zinc--chlorine hydrate batteries will pose negligible health or environmental hazards on the nation's streets and highways. 8 figures, 14 tables.

  1. Chlorination of pyrene in soil components with sodium chloride under xenon irradiation

    International Nuclear Information System (INIS)

    It was previously reported that chlorinated pyrenes (1-chloropyrene and dichloropyrene) were produced from pyrene in soil under sunlight irradiation. It was suggested that pyrene reacted with chlorine ion under sunlight. In this work, the formation of chlorinated pyrenes is investigated on 9 metallic oxides as soil components with pyrene and sodium chloride under xenon lamp irradiation. The chlorinated pyrenes as the reaction products were extracted with benzene:ethanol (4:1), and analyzed by GC/MS (SIM). The chlorinated pyrenes were produced in high amounts on 5 metallic oxides [silicon dioxides (quartz, silicic anhydride and silica gel forms) and titanium dioxides (rutile and anatase forms)] and in small amounts in 3 sorts of metallic oxides (aluminium oxide, magnesium oxide and ferric oxide), whereas they were not produced on calcium oxide. It was found that the yields of chlorinated pyrenes depended on the amounts of pyrene and chlorine ions in metallic oxides. In silicon dioxides, the yields of chlorinated pyrenes increased as the irradiation time was extended. In the titanium dioxides, the yields of chlorinated pyrenes had a peak at 0.5 – 1 hours irradiation of xenon lamp, and decreased as the irradiation time elapsed. (author)

  2. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    International Nuclear Information System (INIS)

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure

  3. Chlorine dioxide as biocide to prevent biofouling in the hydro technical structures at KKNPP

    International Nuclear Information System (INIS)

    Chlorination is envisaged in the sea water systems of KKNPP to control macro and micro bio-fouling of underwater structures and equipments. KKNPP intake and the fore bay structures are shown in detail. The sodium hypo chlorite required for chlorination is produced in the electro chlorination plant at site by the electrolysis of sea water. It is added in the sea water at the intake structure, tunnels and fore bay on continuous as well as periodic basis. The sea water to chlorination plant is supplied by the pumps located at the main pump house. Chlorination of sea water system by electro-chlorination is possible only after pump house flooding and commissioning of electro-chlorination plant. So for the period from breach of temporary dyke till commissioning of electro chlorination plant, chlorination by temporary method has to be done to prevent the bio-fouling of underwater structures and equipments. The flooding of the pump house subsequent to breach of temporary dyke is done

  4. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  5. Method for isotope separation

    International Nuclear Information System (INIS)

    The inventor proposes a method for separating isotopes from gaseous compounds by selective excitation by means of laser beams for such cases where the reaction partners each consist of several isotopes. For example, separation of 235U and 238U in the form of UCl6 is mentioned with 35Cl and 37Cl existing in the natural composition of 76:24. According to the invention, after isolating the reaction product obtained in a way already known, the remaining fraction of the compound mixture is brought together with the reaction partner present in the natural isotope composition, in a heated flow path. Thereby by isotope exchange of the latter regeneration will take place, and the mixture can pass again through the separation plant in initial composition. (orig./PW)

  6. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  7. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  8. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado

    Science.gov (United States)

    Enders, S.K.; Pagani, M.; Pantoja, S.; Baron, J.S.; Wolfe, A.P.; Pedentchouk, N.; Nunez, L.

    2008-01-01

    Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ???60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60??? excursion in the hydrogen isotope composition of algal-derived palmitic acid, are coincident with changes in nitrogen cycling. The confluence of these trends is attributed to an increase in biologically available nitrogenous compounds caused by an expansion of anthropogenic influences and temporal changes in catchment hydrology and nutrient delivery associated with meltwater dynamics. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  9. Isotopes in everyday life

    International Nuclear Information System (INIS)

    Isotopes represent a tool which can do certain jobs better, easier, quicker, more simply and cheaper than competitive methods. Some measurements could not be done at all without the use of isotopes as there are no alternative methods available. A short review of these tools of science in their different fields is given: food and agriculture, human health applications, industry, hydrology, geology, geochemistry, geophysics and dating, environment, basic scientific research

  10. Canada's medical isotope strategy

    International Nuclear Information System (INIS)

    This paper details Canada's medical isotope strategy and the role of the Canadian Government in the security of the isotope supply chain. The government's role is to promote health and safety of Canadians, establish appropriate regulatory framework, allow the markets to work, facilitate international collaboration, fund high-risk early stage research and development, encourage private sector investment in innovation and support and respect environmental and non-proliferation goals.

  11. Separating isotopes by laser

    International Nuclear Information System (INIS)

    Isotope separation by laser radiation is proving a very promising method for obtaining large scale isotope production at low cost and is particularly relevant to the enrichment of 235U for the nuclear power industry. Various methods for laser separation, differing mainly in the way the selectively excited atoms or molecules are extracted, are discussed. The efficiency of the various methods, which is the controlling factor in determining their practical viability and some of the problems encountered are examined. (UK)

  12. Isotope toolbox turns 10

    DEFF Research Database (Denmark)

    Wenander, Fredrik; Riisager, Karsten

    2012-01-01

    REX-ISOLDE, one of CERN’s most compact accelerators, has just celebrated its 10th anniversary. The machine’s versatility provides radioactive ion beams across the range of nuclear isotopes.......REX-ISOLDE, one of CERN’s most compact accelerators, has just celebrated its 10th anniversary. The machine’s versatility provides radioactive ion beams across the range of nuclear isotopes....

  13. Isotopes in environmental research

    International Nuclear Information System (INIS)

    Radioactive and stable isotopes have long been considered a very efficient tool for studying physical and biological aspects of how the global ecosystem functions. Their applications in environmental research are numerous, embracing research at all levels. This article looks at only a few of the approaches to environmental problems that involve the use of isotopes. Special attention is given to studies of the Amazon Basin. Environmental isotopes are very efficient tools in water cycle studies. Tritium, a radioactive tracer, is especially useful in studying dynamics of water movement in different compartments of the hydrosphere, both on the local and global scales. Heavy stable isotopes of hydrogen and oxygen (deuterium and oxygen-18) provide information about steady-state characteristics of the water cycle. Isotope methods, some relatively new, have a major role in site-specific studies. Some indicative examples include: Studying turnover of organic matter. Changes in the carbon-13/carbon-12 isotopic ratio of organic matter were used to determine the respective contributions of organic carbon derived from forest and pasture. Studying biological nitrogen fixation. One of the ways nitrogen levels in soil can be maintained for productivity is by biological nitrogen fixation. Studying nitrogen availability and losses. The experimental use of nitrogen-15 is invaluable for defining losses of soil nitrogen to the atmosphere and to groundwater. Studies can similarly be done with stable and radioactive sulphur isotopes. This article indicates some potential uses of isotopes in environmental research. While the major problem of global climate change has not been specifically addressed here, the clearing of the Amazon forest, one focus of the IAEA's environmental programme, may have serious consequences for the global climate. These include substantial reduction of the amount of latent heat transported to the regions outside the tropics and acceleration of the greenhouse

  14. Perchlorate in the Great Lakes: isotopic composition and origin.

    Science.gov (United States)

    Poghosyan, Armen; Sturchio, Neil C; Morrison, Candice G; Beloso, Abelardo D; Guan, Yunbin; Eiler, John M; Jackson, W Andrew; Hatzinger, Paul B

    2014-10-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean. PMID:25171443

  15. Isotope heated thermal batteries

    International Nuclear Information System (INIS)

    A deferred action thermal battery is described that includes a quantity of radioactive isotope normally positioned so that only a small part of the thermal energy generated by the isotope is received by the battery, but adapted, when the battery is rendered active, to be moved automatically to a position where a large part of the thermal energy is received. The battery may comprise a chamber containing its cells and a second chamber part of which is remote from the cells for normal storage of the isotope and part of which is adjacent to the cells; the isotope is moved to the latter part when the battery is activated. The cell chamber is preferably toroidal and surrounds the second portion of the isotope chamber. The isotope may be contained in a carriage held by a retaining means adapted for release when the battery is activated, resilient means then moving the carriage to the active position. The retaining means may be a wire that disintegrates on the passage of electric current, the current also igniting a combustible composition to activate the battery. The object is to provide thermal batteries having an extended life. (U.K.)

  16. Stable isotope enrichment techniques and ORNL separation status

    International Nuclear Information System (INIS)

    The isotope separation program is described, emphasizing present state-of-the-art techniques utilized to achieve specific isotopic requirements. An interesting problem addressed here is the calutron enrichment of rare-earth isotopes where small quantities of feed (<5g) are available, and the unresolved feed is to be recovered and recycled. Conventional ion-source units using graphite and stainless steel deteriorate in the halogenating atmosphere or are permeable to rare-earth compounds, reducing the process efficiency. An ion source has been developed using boron nitride for containing the halogenating agent and rare-earth compounds. Tests have been successfully conducted using Lu/sub 2/O/sub 3/ and the in situ chlorinating technique with CCl/sub 4/. Collectively, 166 mg of /sup 176/Lu were recovered from two runs using 2.95 and 1.10 g of 44.5% /sup 176/Lu. Process efficiency of 10.5% was achieved, and 1.2 g of the unresolved feed were recovered. Material compatibility of the boron nitride, carbon tetrachloride, and lutetium compounds has been established

  17. Transfer of chlorine from the environment to agricultural foodstuffs

    International Nuclear Information System (INIS)

    The factors governing chlorine transfer from Phaeozem and Greyzem soils to various important crop species (foodstuff and forage) were determined in natural conditions in the Kiev region of Ukraine. The stable chlorine concentration ratio (CR) values were the lowest in apple (0.5 ± 0.3) and strawberry (2 ± 1), higher in vegetables (5 ± 3), seeds (15 ± 7) and reached a maximum in straw (187 ± 90). The average CR values of 36Cl were estimated for the most important crops using all experimental data on 36Cl and stable chlorine transfer into plants from various soils. It was experimentally shown that boiling potatoes in water leads to an equilibrium between 36Cl specific content in the water and moisture in the cooked potato. The 36Cl processing factor (PF) for boiling various foodstuffs is equal to the ratio of water mass in the cooked foodstuff to the total water mass (in the food and the decoction). 36Cl PF for cereal flour can be estimated as 1. The 36Cl processing factor for dairy products is equal to the ratio of residual water mass in the product to initial water mass in milk. At a 36Cl specific activity in soil of 1 Bq kg-1, the estimated annual dietary 36Cl intake into human organism (adult man) is about 10 kBq. Sixty to seventy percent of the above amount will be taken in via milk and dairy products, 7-16% via meat, 14-16% via bread and bakery items and 8-12% via vegetables. The highest annual 36Cl intake, 10.7 kBq, is predicted for 1-year-old children. The expected effective doses from annual 36Cl intake are higher for younger age groups, increasing from 0.008 mSv in adults to 0.12 mSv in 1-year-old children

  18. A new formulation of equivalent effective stratospheric chlorine (EESC

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2007-09-01

    Full Text Available Equivalent effective stratospheric chlorine (EESC is a convenient parameter to quantify the effects of halogens (chlorine and bromine on ozone depletion in the stratosphere. We show, discuss, and analyze a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This EESC can be more appropriately applied to various parts of the stratosphere because of this dependence on mean age-of-air. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. In this paper, we first provide a detailed description of the EESC calculation. We then use this EESC formulation to estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties and possible problems in the estimated times of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air and fractional release values, and the assumption that these quantities are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be significantly accelerated.

  19. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-07-01

    Full Text Available We examine the effect of nm-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T > 210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (< 210 K we isolate two effects which efficiently reduce the aircraft-induced perturbation: (1 background particles growth due to H2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and ozone depletion. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  20. Suppression of chlorine activation on aviation-produced volatile particles

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger

    2002-01-01

    Full Text Available We examine the effect of nanometer-sized aircraft-induced aqueous sulfuric acid (H2SO4/H2O particles on atmospheric ozone as a function of temperature. Our calculations are based on a previously derived parameterization for the regional-scale perturbations of the sulfate surface area density due to air traffic in the North Atlantic Flight Corridor (NAFC and a chemical box model. We confirm large scale model results that at temperatures T>210 K additional ozone loss -- mainly caused by hydrolysis of BrONO2 and N2O5 -- scales in proportion with the aviation-produced increase of the background aerosol surface area. However, at lower temperatures (2O and HNO3 uptake enhance scavenging losses of aviation-produced liquid particles and (2 the Kelvin effect efficiently limits chlorine activation on the small aircraft-induced droplets by reducing the solubility of chemically reacting species. These two effects lead to a substantial reduction of heterogeneous chemistry on aircraft-induced volatile aerosols under cold conditions. In contrast we find contrail ice particles to be potentially important for heterogeneous chlorine activation and reductions in ozone levels. These features have not been taken into consideration in previous global studies of the atmospheric impact of aviation. Therefore, to parameterize them in global chemistry and transport models, we propose the following parameterisation: scale the hydrolysis reactions by the aircraft-induced surface area increase, and neglect heterogeneous chlorine reactions on liquid plume particles but not on ice contrails and aircraft induced ice clouds.

  1. UV enhanced gas-solid synthesis of chlorinated poly vinyl chloride characterized by a UV-Vis online analysis method☆

    Institute of Scientific and Technical Information of China (English)

    Qianli Yang; Wei Lu; Lin Bai; Binhang Yan; Yi Cheng

    2015-01-01

    Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as soon as UV light was affiliated, which demonstrated the intensified effect of UV radiation on PVC chlorination directly. Different affiliation methods of UV light were then studied, proving that continuous UV radiation could enhance the chlorination process significantly while intermittent UV radiation was able to initiate the chlorination reac-tion once it was conducted. Besides, experiments were carried out to study the influences of parameters on the chlorination process such as UV wavelength, chlorination temperature, partial pressure of chlorine gas and PVC raw materials. Among all the parameters, chlorination temperature and partial pressure of chlorine gas were testified as two key factors to determine the chlorination performance. Thermal analysis of CPVC products showed that their corresponding properties such as the glass transition temperature (Tg) and the homogeneity of chlorine distribution in polymer phase were improved with the increase of chlorine content.

  2. Bromination vis-a-vis chlorination as a biocide feasibility study

    International Nuclear Information System (INIS)

    Water is used extensively as a cooling medium in various heat transfer equipment's of a power industry such as condenser, heat exchangers and cooling towers. At elevated temperature, the breeding of microbiological growth can form slimes, underneath of this, accelerated corrosion can take place resulting into sudden and catastrophic failure of equipment's. The microbiological growth unchecked in the various systems especially in low velocity areas can lead to large growth of micro organisms such as algae which can even reduce the flow of the fluid thus affecting the efficiency of plant equipment's. Therefore, chlorination is a mandatory requirement in industrial cooling water to reduce biofouling in heat transfer equipment's. The chlorination in drinking water produces germicidal effect and thus reduces the bacterial counts. At NAPS the water quality is good and mild doses of chlorine (5 ppm) two times a day, as envisaged in design is noticed to be satisfactory. The chlorination of recirculating condenser cooling water presently is being done with the established doses for a fixed time twice a day. Some of the problems noticed with the chlorination process are : Corrosion of constructional material of chlorination plant and equipment's and pipelines causing large input of efforts on maintenance for keeping high availability of the chlorination plant. In addition to this, the leakages in the equipment could be a potential safety hazard. The effectiveness of chlorine is observed to be less in alkaline pH (above 9.0) as encountered at NAPS. This results is large quantities of chlorine injection for extended periods. The cost of chlorine and bleaching powder keeps fluctuating in the market as noticed in past few years. Many a times this results in scarcity of chlorine/bleaching powder causing interruption in biofouling control programme. Hence it was felt prudent to work on the alternative biocides which could be cost effective, non-polluting and nature and user

  3. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M.; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-03-15

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  4. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    International Nuclear Information System (INIS)

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  5. Metals releases and disinfection byproduct formation in domestic wells following shock chlorination

    Directory of Open Access Journals (Sweden)

    M. Walker

    2010-06-01

    Full Text Available Shock chlorination is used for rapid disinfection to control pathogens and nuisance bacteria in domestic wells. A typical shock chlorination procedure involves adding sodium hypochlorite in liquid bleach solutions to achieve concentrations of free chlorine of up to 200 ppm in the standing water of a well. The change in pH and oxidation potential may bring trace metals from aquifer materials into solution and chlorine may react with dissolved organic carbon to form disinfection byproducts. We carried out experiments with four wells to observe and determine the persistence of increased concentrations of metals and disinfection byproducts. Water samples from shock chlorinated wells were analyzed for Pb, Cu, As, radionuclides and disinfection byproducts (haloacetic acids and trihalomethanes, immediately prior to treatment, after sufficient contact time with chlorine had elapsed, and at intervals determined by the number of casing volumes purged, for up to four times the well casing volume.

    Elevated concentrations of lead and copper dissipated in proportion to free chlorine (measured semi-quantitatively during the purging process. Trihalomethanes and haloacetic acids were formed in wells during disinfection. In one of two wells tested, disinfection byproducts dissipated in proportion to free chlorine during purging. However, one well retained disinfection byproducts and free chlorine after four well volumes had been purged. Although metals returned to background concentrations in this well, disinfection byproducts remained elevated, though below the MCL, likely because purging volume was insufficient. Simple chlorine test strips may be a useful method for indicating when purging is adequate to remove metals and disinfection by-products mobilized and formed by shock chlorination.

  6. Metals releases and disinfection byproduct formation in domestic wells following shock chlorination

    Directory of Open Access Journals (Sweden)

    M. Walker

    2011-01-01

    Full Text Available Shock chlorination is used for rapid disinfection to control pathogens and nuisance bacteria in domestic wells. A typical shock chlorination procedure involves adding sodium hypochlorite in liquid bleach solutions to achieve concentrations of free chlorine of up to 200 mg L−1 in the standing water of a well. The change in pH and oxidation potential may bring trace metals from aquifer materials into solution and chlorine may react with dissolved organic carbon to form disinfection byproducts. We carried out experiments with four wells to observe and determine the persistence of increased concentrations of metals and disinfection byproducts. Water samples from shock chlorinated wells were analyzed for Pb, Cu, As, radionuclides and disinfection byproducts (haloacetic acids and trihalomethanes, immediately prior to treatment, after sufficient treatment time with chlorine had elapsed, and at intervals determined by the number of casing volumes purged, for up to four times the well casing volume.

    Elevated concentrations of lead and copper dissipated in proportion to free chlorine (measured semi-quantitatively during the purging process. Trihalomethanes and haloacetic acids were formed in wells during disinfection. In one of two wells tested, disinfection byproducts dissipated in proportion to free chlorine during purging. However, one well retained disinfection byproducts and free chlorine after 4 WV had been purged. Although metals returned to background concentrations in this well, disinfection byproducts remained elevated, though below the MCL. This may have been due to well construction characteristics and interactions with aquifer materials. Simple chlorine test strips may be a useful method for indicating when purging is adequate to remove metals and disinfection by-products mobilized and formed by shock chlorination.

  7. Reduction chlorination of slag containing niobium, tantalum and titanium

    International Nuclear Information System (INIS)

    Reduction chlorination experiments were carried out with slag containing niobium, tantalum in order to evaluate the effects of some variables on the behaviour of the material. Kinetic curves were obtained with the main variables being temperature and percentage of reducing agent. The results showed a greater effect of temperature as well as indicated the formation of the non-volatile chlorides (CaCl2) as a factor reducing the reaction rate. Quantitative analyses of the material collected in the condenser indicated the viability of the method to recover the valuable metals. (Author)

  8. Oxidation of pharmaceuticals by chlorine dioxide in wastewater effluent.

    OpenAIRE

    Alcalá Borao, Raquel

    2015-01-01

    The presence of pharmaceuticals in the environment has raised an emerging interest due to the fact that they pose negative environmental impact and health hazards related to long-term toxicity effects. As conventional treatments are not able to totally remove these substances it is necessary to seek for alternative advanced technologies such as oxidation with chlorine dioxide (ClO2). The objective of this master thesis is thus to find the most optimal dose – reaction time of ClO2 for the oxid...

  9. Hydrothermal Synthesis of Indium Tin Oxide Nanoparticles without Chlorine Contamination

    International Nuclear Information System (INIS)

    Indium tin oxide (In2Sn1-xO5-y) nanoparticles were synthesized by hydrothermal method from stable indium tin acetylacetone complexes and post annealing at 600 .deg. C. The absence of chlorine ions shortened the synthesis process, decreased the particle agglomeration and improved the particle purity. The introduced complexing ligand acetylacetone decreased the obtained nanoparticle size. The improved powder properties accelerated the sintering of the In2Sn1-xO5-y nanoparticles and reached a relative density of 96.4% when pressureless sintered at 1400 .deg. C

  10. Chlorine-based plasma etching of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Shul, R.J.; Briggs, R.D. [Sandia National Labs., Albuquerque, NM (United States); Pearton, S.J.; Vartuli, C.B.; Abernathy, C.R.; Lee, J.W. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Constantine, C.; Baratt, C. [Plasma-Therm, Inc., Saint Petersburg, FL (United States)

    1997-02-01

    The wide band gap group-III nitride materials continue to generate interest in the semiconductor community with the fabrication of green, blue, and ultraviolet light emitting diodes (LEDs), blue lasers, and high temperature transistors. Realization of more advanced devices requires pattern transfer processes which are well controlled, smooth, highly anisotropic and have etch rates exceeding 0.5 {micro}m/min. The utilization of high-density chlorine-based plasmas including electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) systems has resulted in improved GaN etch quality over more conventional reactive ion etch (RIE) systems.

  11. Phytoscreening of BTEX and chlorinated solvents by tree coring

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Broholm, Mette Martina; Trapp, Stefan;

    chlorinated solvents. The method was applied at various European sites contaminated with PCE/TCE or BTEXs due to former site activities (industrial production, gas stations, air base or gas plant). Tree core samples were collected in fall 2013 and analyzed by HS-GC/MS. Results were used to map the plume...... level in the subsurface and plumes may be mapped. Various plants can be used for phytoscreening, however trees are preferable to smaller plants as their large root system can absorb chemicals from a broader and deeper area. Approach/Activities. In this study tree coring is tested for fuel components and...

  12. BEAM-FOIL SPECTROSCOPY OF CHLORINE AND SULFUR IONS

    OpenAIRE

    Frot, D.; Barchewitz, R.; Cukier, M.; Dei-Cas, R.; Bruneau, J

    1987-01-01

    We report on the measurement of spectra of highly stripped chlorine and sulfur ions in the energy ranges of, respectively, 2900 - 3500 eV and 2300 - 2600 eV. The spectra have been obtained after excitation of ions travelling through a thin carbon foil . X-rays emitted by the emerging beam are analyzed with a Johanntype bent crystal spectrometer. The observation angle with respect to the beam axis is 54°. The interpretation of the spectra is performed by comparing experimental results with Mul...

  13. Two new chlorinated amides from Nicotiana glauca R. Graham.

    Science.gov (United States)

    Backheet, E Y; Sayed, H M

    2002-03-01

    Two new chlorinated amides, N-(2',6'-diethyl phenyl)-2-chloroacetamide (1) and N-(butyloxymethyl)-N-(2',6'-diethyl phenyl)-2-chloroacetamide (2) were isolated for the first time from the ethanolic extract of the leaves of Nicotiana glauca R. Graham in addition to triacontanol (3), scopoletin (4) and stigmasterol-3-beta-O-D-gluco-pyranoside (5). The structures of the isolated compounds were elucidated by spectroscopic analysis (1D, 2D NMR, EIMS, HR-EIMS, IR and UV). PMID:11933854

  14. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    OpenAIRE

    Hey, G.; Grabic, R.; Ledin, A.; la Cour Jansen, J; Andersen, H R

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended nitrogen removal (low COD) and one without (high COD). About one third of the tested APIs resisted degradation even at the highest ClO2 dose (20mg/L), while others were reduced by more than 90% at the l...

  15. Future chlorine-bromine loading and ozone depletion

    Science.gov (United States)

    Prather, Michael J.; Ibrahim, Abdel Moneim; Sasaki, Toru; Stordal, Frode; Visconti, Guido

    1991-01-01

    The prediction of future ozone requires three elements: (1) a scenario for the net emissions of chemically and radiatively active trace gases from the land and oceans; (2) a global atmospheric model that projects the accumulation of these gases; and (3) a chemical transport model that describes the distribution of ozone for a prescribed atmospheric composition and climate. This chapter, of necessity, presents models for all three elements and focuses on the following: (1) atmospheric abundance of chlorine and bromine in the form of halocarbons; and (2) the associated perturbations to stratospheric ozone.

  16. Supported metal nanoparticles for the remediation of chlorinated hydrocarbons

    Science.gov (United States)

    Schrick, Bettina

    Zero valent iron filings are currently being used in pilot scale field studies to dehalogenate toxic chlorinated hydrocarbons from contaminated surface- and groundwater. Iron filings reduce trichloroethylene (TCE), a model contaminant, via two interconnected degradation pathways: (a) reductive beta-elimination and (b) sequential hydrogenolysis, in which each chlorine atom is sequentially replaced by hydrogen. For the latter pathway, problems arise because the dehalogenation rate decreases as the number of chlorine atoms in the molecule decreases. Therefore, some of the products formed, such as vinyl chloride (VC), are more toxic than the parent compound (TCE), and are only slowly reduced by iron. To improve the rate, cost and technique of remediation for chlorinated hydrocarbons, zero valent nickel-iron (Ni-Fe) nanoparticles have been developed. To elucidate the dehalogenation reaction and particularly the product distributions from a mechanistic standpoint, the roles that nickel and iron play in the dehalogenation of TCE were studied. On the bimetallic particles, the reaction occurs by nickel-catalyzed hydrodechlorination. As the iron actively corrodes, the cathodically protected nickel surface chemisorbs hydrogen ions, and TCE adsorbed to the Ni surface is thus hydrogenated. This reaction competes kinetically with the evolution of molecular hydrogen. Hydrogenolysis of the C-Cl bond results in the formation of linear, as well as branched saturated and unsaturated hydrocarbons. Dispersing the nanometals onto high surface area supports, such as hydrophilic carbon or polyacrylic acid (PAA), provides a delivery vehicle for the reactive nanoparticles. The support acts as a nanometal carrier, and may also help preconcentrate the toxins, and provide a conductive pathway for electron transfer. In general, supports are expected to stabilize the nanoparticles and give an increased surface to volume ratio. The carbon- and PAA-supported nanometals form a permanent suspension

  17. Biodegradation of chlorinated solvents in a water unsaturated topsoil

    DEFF Research Database (Denmark)

    Borch, T.; Ambus, P.; Laturnus, F.;

    2003-01-01

    In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl3), 1,1,1-trichloroethane (CH3CCl3), tetrachloromethane (CCl4), trichloroethene (C2HCl3) and tetrachloroethene (C2Cl4) was studied in anoxic laboratory...... after 16 days. Based on the results in this study, we conclude that anaerobic topsoils are potential sinks for these contaminants, and that a natural attenuation potential exists, even in water unsaturated topsoils. (C) 2003 Elsevier Science Ltd. All rights reserved....

  18. Application of environmental isotopes in studies of biodegradation of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Groundwater contamination by organic contaminants is of major concern for implementing efficient water management strategies in aquifers used for domestic and industrial uses. Monitored natural attenuation (MNA) has been chosen as a method to manage groundwater contamination at many sites. Biodegradation is usually the main process limiting the spreading of dissolved contaminants and protocols are required to assess biodegradation. Successful implementation of monitored natural attenuation (MNA) requires a monitoring strategy that does not only demonstrate diminishing contaminant concentrations but also provides insight into the processes responsible for contaminant attenuation. Analysis of compound-specific isotope ratios is a new approach to gain such process-specific information. During microbial and chemical transformations, the reaction rate is often faster for molecules with light isotopes compared to molecules with heavy isotopes. This leads to a characteristic pattern of isotope ratios of reactants and transformation products. Stable isotope ratios can provide information on predominant biodegradation pathways in two ways: A degradation pathway may be identified based on an enrichment of heavy isotopes in the reactant as the reaction proceeds. Or, an intermediate of a degradation pathway can have a distinct isotopic composition, which makes it possible to distinguish it from other sources of the compound. Most of the isotope research has concentrated on BTEX (benzene, toluene, ethylbenzene and xylenes) and chlorinated compounds, the two more important groups of compounds commonly found in groundwater. Several studies have been carried out under laboratory conditions (microcosm experiments) to evaluate carbon isotope fractionation during aerobic and anaerobic biodegradation of organic contaminants. These studies have shown the occurrence of large carbon isotope fractionation for biodegradation of chlorinated compounds such as cis-1,2-dichloroethene (cis

  19. Accumulation of chlorinated and brominated persistent toxic substances (PTS) and their relationship to testosterone suppression in Norway rats from Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takasuga, T.; Senthilkumar, K. [Shimadzu Techno-Research Inc. (Japan); Ishizuka, M.; Fujita, S. [Graduate School of Veterinary Medicine, Hokkaido Univ. (Japan); Tanikawa, R. [Inst. of Tech., Ikari Corp. (Japan)

    2004-09-15

    Contamination of chlorinated/brominated persistent toxic substances (PTS) such as polychlorinated, -dibenzo-p-dioxins (PCDDs), -dibenzofurans (PCDFs), -biphenyls (PCBs), - organochlorine pesticides (OCPs) {l_brace}e.g., aldrin, dieldrin, endrin, chlordane compounds [cis/transchlordane, cis/trans-nonachlor, oxychlordane, heptachlor, heptachlor epoxide], hexachlorobenzene (HCB), 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDTs) and its metabolities [o,p/p,p'-DDD and DDE] and hexachlorocyclohexane (HCHs){r_brace} and -brominated diphenyl ethers (PBDEs) are considered to important class of chemicals due to persistence in nature, bioaccumulation potential and adverse health effects in wildlife and humans. Among South East Asian countries, Japan reported to contaminated with aforesaid chemicals with considerable amounts. There is no document reports contamination of PTS in wild animals, which in-habit near humans. Norway rat (NR) inhabits not only near human environment but also distributed worldwide. Especially, NR feeds on human waste and shelter in and around human environment and thus exposure of toxic contaminants in this animal considered to similar with those in humans. In addition, rats have unique physiology that match with humans (e.g., they have similar pathogens as humans have). Therefore, analysis of toxic contaminants in NR considered as indirect measure in humans. Considering those facts, in this study, we analyzed NR collected from urban area, rural area, waste dumping or land fill site and isolated remote island from Japan. Particularly several chlorinated and brominated organic contaminants such as PCDDs, PCDFs, PCBs, DDTs, HCHs, chlordane compounds, heptachlor, heptachlor epoxide, HCB, aldrin, dieldrin, endrin and PBDEs were analyzed in rat livers by isotope dilution technique using HRGC-HRMS. In addition, laboratory Wistar rats (WR) were used as control.

  20. Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios

    Science.gov (United States)

    Wunsch, Carl

    2016-06-01

    An earlier analysis of pore-water salinity (chlorinity) in two deep-sea cores, using terminal constraint methods of control theory, concluded that although a salinity amplification in the abyss was possible during the LGM, it was not required by the data. Here the same methodology is applied to δ18Ow in the upper 100 m of four deep-sea cores. An ice volume amplification to the isotopic ratio is, again, consistent with the data but not required by it. In particular, results are very sensitive, with conventional diffusion values, to the assumed initial conditions at -100 ky and a long list of noise (uncertainty) assumptions. If the calcite values of δ18O are fully reliable, then published enriched values of the ratio in seawater are necessary to preclude sub-freezing temperatures, but the seawater δ18O in pore fluids does not independently require the conclusion.

  1. Chapter 3. Chloric decomposition of aluminosilicate ores. 3.1. Features of chlorination of aluminium containing ores

    International Nuclear Information System (INIS)

    The features of chlorination of aluminium containing ores are considered in this article. Theoretical aspects of metals, oxides and natural compounds chlorination, specific features of synthesis of various chlorides are considered as well.

  2. The formation and fate of chlorinated organic substances in temperate and boreal forest soils

    Czech Academy of Sciences Publication Activity Database

    Clarke, N.; Fuksová, Květoslava; Gryndler, Milan; Lachmanová, Z.; Liste, H. H.; Rohlenová, Jana; Schroll, R.; Schröder, P.; Matucha, Miroslav

    2009-01-01

    Roč. 16, č. 2 (2009), s. 127-143. ISSN 0944-1344 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : Carbon cycle * Chlorination * Chlorine biogeochemistry Subject RIV: GK - Forestry Impact factor: 2.411, year: 2009

  3. Organocatalytic Asymmetric α-Chlorination of 1,3-Dicarbonyl Compounds Catalyzed by 2-Aminobenzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Daniel Serrano Sánchez

    2016-01-01

    Full Text Available Bifunctional chiral 2-aminobenzimidazole derivatives 1 and 2 catalyze the enantioselective stereodivergent α-chlorination of β-ketoesters and 1,3-diketone derivatives with up to 50% ee using N-chlorosuccinimide (NCS or 2,3,4,4,5,6-hexachloro-2,5-cyclohexadien-1-one as electrophilic chlorine sources.

  4. Fluorine and chlorine determination in oxides and metals by ion chromatography

    International Nuclear Information System (INIS)

    Method for simultaneous determination of fluorine and chlorine microquantitie in tantalum, uranium and plutonium oxides, based on combined methods of pyrohydrolysis (1000-1100 deg C) and two-column ion chromatography with conductometric detection is suggested. The relative root-mean-square deviation of determination error is 0.2, the fluorine and chlorine content being 5·10-4 mass%

  5. Plant physiological response of strawberry fruit to chlorine dioxide gas treatment during postharvest storage

    Science.gov (United States)

    Chlorine dioxide, a strong oxidizing and sanitizing agent, is used as a postharvest sanitizer for fruits and vegetables and generally applied on a packing line using a chlorine dioxide generator. The objective of this research was to study the physiological responses of strawberries to ClO2 when app...

  6. Application of Chlorine Dioxide to Lessen Bacterial Contamination during Broiler Defeathering

    Science.gov (United States)

    Due to escape of contaminated gut contents, the number of Campylobacter spp. recovered from broiler carcasses increases during feather removal. Chlorine dioxide (ClO2) is approved for use as an antimicrobial treatment during poultry processing. A chlorine dioxide generator was placed in a commerci...

  7. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  8. Chlorination and dechlorination rates in a forest soil - A combined modelling and experimental approach.

    Science.gov (United States)

    Montelius, Malin; Svensson, Teresia; Lourino-Cabana, Beatriz; Thiry, Yves; Bastviken, David

    2016-06-01

    Much of the total pool of chlorine (Cl) in soil consists of naturally produced organic chlorine (Clorg). The chlorination of bulk organic matter at substantial rates has been experimentally confirmed in various soil types. The subsequent fates of Clorg are important for ecosystem Cl cycling and residence times. As most previous research into dechlorination in soils has examined either single substances or specific groups of compounds, we lack information about overall bulk dechlorination rates. Here we assessed bulk organic matter chlorination and dechlorination rates in coniferous forest soil based on a radiotracer experiment conducted under various environmental conditions (additional water, labile organic matter, and ammonium nitrate). Experiment results were used to develop a model to estimate specific chlorination (i.e., fraction of Cl(-) transformed to Clorg per time unit) and specific dechlorination (i.e., fraction of Clorg transformed to Cl(-) per time unit) rates. The results indicate that chlorination and dechlorination occurred simultaneously under all tested environmental conditions. Specific chlorination rates ranged from 0.0005 to 0.01 d(-1) and were hampered by nitrogen fertilization but were otherwise similar among the treatments. Specific dechlorination rates were 0.01-0.03d(-1) and were similar among all treatments. This study finds that soil Clorg levels result from a dynamic equilibrium between the chlorination and rapid dechlorination of some Clorg compounds, while another Clorg pool is dechlorinated more slowly. Altogether, this study demonstrates a highly active Cl cycling in soils. PMID:26950634

  9. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    Science.gov (United States)

    This project evaluated the potential of enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (TCE), cis-and trans-1,2-dichloroethene (DCE), an...

  10. [Inactivation of the chlorine-resistant bacteria isolated from the drinking water distribution system].

    Science.gov (United States)

    Chen, Yu-Qiao; Duan, Xiao-Di; Lu, Pin-Pin; Wang, Qian; Zhang, Xiao-Jian; Chen, Chao

    2012-01-01

    Inactivation experiments of seven strains of chlorine-resistant bacteria, isolated from a drinking water distribution system, were conducted with four kinds of disinfectants. All the bacteria showed high resistance to chlorine, especially for Mycobacterium mucogenicum. The CT value of 99.9% inactivation for M. mucogenicum, Sphingomonas sanguinis and Methylobacterium were 120 mg x (L x min)(-1), 7 mg x (L x min)(-1) and 4 mg x (L x min)(-1), respectively. The results of inactivation experiments showed that chlorine dioxide and potassium monopersulfate could inactive 5 lg of M. mucogenicum within 30 min, which showed significantly higher efficiency than free chlorine and monochloramine. Free chlorine was less effective because the disinfectant decayed very quickly. Chloramination needed higher concentration to meet the disinfection requirements. The verified dosage of disinfectants, which could effectively inactivate 99.9% of the highly chlorine-resistant M. mucogenicum within 1 h, were 3.0 mg/L monochloramine, 1.0 mg/L chlorine dioxide (as Cl2), and 1.0 mg/L potassium monopersulfate (as Cl2). It was suggested that the water treatment plants increase the concentration of monochloramine or apply chlorine dioxide intermittently to control the disinfectant-resistant bacteria. PMID:22452196

  11. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. PMID:24534637

  12. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yingxue; Wu Qianyuan [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu Hongying, E-mail: hyhu@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian Jie [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  13. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    International Nuclear Information System (INIS)

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5–2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously

  14. Feasibility study of the separation of chlorinated films from plastic packaging wastes

    International Nuclear Information System (INIS)

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0 g/cm3 and floated in water even though the true density was more than 1.0 g/cm3. However, the apparent density of the PS and the PET films increased with agitation to more than 1.0 g/cm3, whereas that of chlorinated plastic films was kept less than 1.0 g/cm3. The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10 wt.% of the chlorinated films and real PPW films with 9 wt.% of the chlorinated films. About 76 wt.% of the artificial PPW films and 75 wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7 wt.% and 3.0 wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films.

  15. POPULATION DIVERSITY IN MODEL DRINKING WATER BIOFILMS RECEIVING CHLORINE OR MONOCHLORAMINE RESIDUAL

    Science.gov (United States)

    Most water utilities add monochloramine or chlorine as a residual disinfectant in potable water distribution systems (WDS) to control bacterial regrowth. While monochloramine is considered more stable than chlorine, little is known about the fate of this disinfectant or the effec...

  16. Inactivation of Spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by Chlorination

    OpenAIRE

    Rice, E W; Adcock, N. J.; Sivaganesan, M; Rose, L. J.

    2005-01-01

    Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.

  17. Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development

    Science.gov (United States)

    Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...

  18. Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A

    NARCIS (Netherlands)

    Andra, Syam S; Charisiadis, Pantelis; Arora, Manish; van Vliet-Ostaptchouk, Jana V; Makris, Konstantinos C

    2015-01-01

    The high reactivity of bisphenol A (BPA) with disinfectant chlorine is evident in the instantaneous formation of chlorinated BPA derivatives (ClxBPA) in various environmental media that show increased estrogen-activity when compared with that of BPA. The documented health risks associated with BPA e

  19. Sodium and chlorine concentrations in mixed saliva of healthy and cystic fibrosis children

    International Nuclear Information System (INIS)

    Sodium and chlorine concentrations in mixed saliva were simultaneously measured by neutron activation analysis in nine normal children and in nine patients with cystic fibrosis. Sodium levels showed a significant difference (P < 0.01) between patients and controls. The concentration of chlorine was similar in both the control and the cystic fibrosis groups. (author)

  20. The Dutch secret: how to provide safe drinking water without chlorine in the Netherlands

    NARCIS (Netherlands)

    Smeets, P.W.M.H.; Medema, G.J.; Van Dijk, J.C.

    2009-01-01

    The Netherlands is one of the few countries where chlorine is not used at all, neither for primary disinfection nor to maintain a residual disinfectant in the distribution network. The Dutch approach that allows production and distribution of drinking water without the use of chlorine while not comp