WorldWideScience

Sample records for chlorine dioxide oxidation

  1. Chlorine dioxide as an oxidant for organoboron compounds

    International Nuclear Information System (INIS)

    Practicability of using chlorine dioxide aqueous solution as an oxidant for terpene organoboron compounds prepared by hydroborating (+)α-pinene (1) and (-)β-pinene (2) is studied. By the methods of IR spectroscopy and 13C NMR it is shown that products of 1 and 2 oxidation are (-)-isopinocampheol and (-)-cis-myrtanol, which are formed with a high yield. In terms of its efficiency chlorine dioxide is no worse than hydrogen peroxide in reactions of organoboric compounds oxidation

  2. Oxidation of pharmaceuticals by chlorine dioxide in wastewater effluent.

    OpenAIRE

    Alcalá Borao, Raquel

    2015-01-01

    The presence of pharmaceuticals in the environment has raised an emerging interest due to the fact that they pose negative environmental impact and health hazards related to long-term toxicity effects. As conventional treatments are not able to totally remove these substances it is necessary to seek for alternative advanced technologies such as oxidation with chlorine dioxide (ClO2). The objective of this master thesis is thus to find the most optimal dose – reaction time of ClO2 for the oxid...

  3. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.;

    2012-01-01

    nitrogen removal (low COD) and one without (high COD). About one third of the tested APIs resisted degradation even at the highest ClO2 dose (20mg/L), while others were reduced by more than 90% at the lowest ClO2 level (0.5mg/L). In the low COD effluent, more than half of the APIs were oxidized at 5mg/L Cl......Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  4. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    OpenAIRE

    Hey, G.; Grabic, R.; Ledin, A.; la Cour Jansen, J; Andersen, H R

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended nitrogen removal (low COD) and one without (high COD). About one third of the tested APIs resisted degradation even at the highest ClO2 dose (20mg/L), while others were reduced by more than 90% at the l...

  5. An investigation of the oxidative potential of potassium permanganate and chlorine dioxide during the oxidation of reduced manganese

    OpenAIRE

    Hair, David Hayne

    1987-01-01

    This project determined the thermodynamic potentials for various reactions between reduced manganese (Mn+2), manganese oxide (MnO2(s)), chlorine dioxide (C102), and potassium permanganate (KMnO4). Based on these findings, laboratory analyses were performed to determine if these reactions would occur under simulated water treatment plant conditions. In addition, a speciation procedure was developed to quantify the various species of manganese and chlorine dioxide present in a...

  6. Effect of sulfur dioxide on indium (3) oxide chlorination

    International Nuclear Information System (INIS)

    On the basis of thermodynamic calculations and kinetic investigations, it is established that in the temperature range from 550 to 800 deg C in the In2O3-Cl2-SO2 system coupled reactions of InCl3 and In2(SO4)3 formation accompanying by further In2(SO4)3 chlorination with gaseous chlorine are main processes, SO2 accelerates considerably In2O3 chlorination at a temperature below 800 deg C, its influence on the process of chloride sublimation at a temperature higher than 800 deg C is not so noticeable

  7. Chlorine dioxide and by-products in water distribution systems

    OpenAIRE

    Ferreira, Francisco Cardoso

    1991-01-01

    Chlorine dioxide is used as both a pre-oxidant and/or a post-disinfectant in several water treatment plants in the United States. Chlorine dioxide is associated with its byproducts chlorite and chlorate. Chlorine dioxide, chlorine, chlori te and chlorate were sampled in four distribution systems where chlorine dioxide is used for disinfection purposes: Charleston, WV, Columbus, GA, New Castle, PA, and Skagit, WA. The fate of chlorine dioxide and its by-products in dist...

  8. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties.

    Science.gov (United States)

    Wenk, Jannis; Aeschbacher, Michael; Salhi, Elisabeth; Canonica, Silvio; von Gunten, Urs; Sander, Michael

    2013-10-01

    In water treatment dissolved organic matter (DOM) is typically the major sink for chemical oxidants. The resulting changes in DOM, such as its optical properties have been measured to follow the oxidation processes. However, such measurements contain only limited information on the changes in the oxidation states of and the reactive moieties in the DOM. In this study, we used mediated electrochemical oxidation to quantify changes in the electron donating capacities (EDCs), and hence the redox states, of three different types of DOM during oxidation with chlorine dioxide (ClO2), chlorine (as HOCl/OCl(-)), and ozone (O3). Treatment with ClO2 and HOCl resulted in comparable and prominent decreases in EDCs, while the UV light absorbances of the DOM decreased only slightly. Conversely, ozonation resulted in only small decreases of the EDCs but pronounced absorbance losses of the DOM. These results suggest that ClO2 and HOCl primarily reacted as oxidants by accepting electrons from electron-rich phenolic and hydroquinone moieties in the DOM, while O3 reacted via electrophilic addition to aromatic moieties, followed by ring cleavage. This study highlights the potential of combined EDC-UV measurements to monitor chemical oxidation of DOM, to assess the nature of the reactive moieties and to study the underlying reaction pathways. PMID:23978074

  9. Reaction products of chlorine dioxide.

    OpenAIRE

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxi...

  10. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    International Nuclear Information System (INIS)

    In this study, chlorine dioxide (ClO2) instead of chlorine (Cl2) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO2 was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO2 doses of 10 mg ClO2/g dry sludge which was much lower than that obtained using Cl2 based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO2/g dry sludge for 40 min. ClO2 oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO2 oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  11. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism

    International Nuclear Information System (INIS)

    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO2) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO2 ingestion, it seems that ClO2 does not cause iodide deficiency of sufficient magnitude to account for the decease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrient, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen

  12. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    OpenAIRE

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the ...

  13. UV Irradiation Chlorine Dioxide Photocatalytic Oxidation of Simulated Fuchsine Wastewater by UV-Vis and Online FTIR Spectrophotometric Method

    OpenAIRE

    Jie Liu; Chunlei Huai; Na Li; Xiaomei Wang; Laishun Shi

    2012-01-01

    The photocatalyst TiO2/SiO2 was prepared and used for chlorine dioxide photocatalytic oxidation of simulated fuchsine wastewater under UV irradiation. The removal efficiency of fuchsine treated by photocatalytic oxidation process is higher than that of chemical oxidation process. By using UV-Vis and online FTIR analysis technique, the intermediates during the degradation process were obtained. The benzene ring in fuchsine was degraded into quinone and carboxylic acid and finally changed into ...

  14. Reduction of tri halomethanes in drinking water using chlorine dioxide as a pre oxidant; Rduccion de trihalometanos en agua potable mediante preoxidacion con dioxido de cloro

    Energy Technology Data Exchange (ETDEWEB)

    Marcian Cervera, V. J.; Monforte Monleon, L.; Ribera Orts, R.; Alvarez Alondiga, I.; Garcia Garrido, J.

    2007-07-01

    The object of the present study is to verify the suitability of using chlorine dioxide as a pre oxidant in the Water Treatment Plant of La Presa (Manises) and El Realon (Picassent), in order to minimize the tri halomethanes formation. To prove the effectiveness of chlorine dioxide, on the tri halomethanes precursors removal by oxidation, many controls and analytics have been done on the two water treatment plants. On the other hand this study also shows the chlorine dioxide generation method used, as well as its high disinfection efficiency, higher than the chlorine. (Author)

  15. Enhanced chlorine dioxide decay in the presence of metal oxides: Relevance to drinking water distribution systems

    KAUST Repository

    Liu, Chao

    2013-07-19

    Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (α-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 μM). At lower initial ClO2 concentrations (13-31 μM), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 × 10 6 M-2 s-1 in the presence of 0.1 g L -1 CuO at 21 ± 1 C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO 2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO 2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH- is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes. © 2013 American Chemical Society.

  16. Sulfur dioxide effect on cadmium and zinc oxide interaction with chlorine

    International Nuclear Information System (INIS)

    Comparison of electrophysical properties of cadmium and zinc oxides with kinetic regularities of their interaction with Cl2 and SO2 was conducted. It is shown that SO2 presence in gas phase leads to retardation of chlorination of both oxides. In the case of CdO the effect of SO2 is manifested more clearly

  17. Oxidation of diclofenac with chlorine dioxide in aquatic environments: influences of different nitrogenous species.

    Science.gov (United States)

    Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai; Ni, Tianjun

    2015-06-01

    The oxidation of diclofenac (DCF), a non-steroidal anti-inflammatory drug and emerging water pollutant, with chlorine dioxide was investigated under simulated water disinfection conditions. The reaction kinetics as functions of the initial concentrations of DCF, different nitrogenous species, and different pE values were experimentally determined. The results demonstrated that DCF reacted rapidly with ClO2, where more than 75 % of DCF (≤3.00 μM) was removed by 18.94 μM ClO2 within 60 s. All of the reactions followed pseudo first-order kinetics with respect to DCF, and the rate constant, k obs, exhibited a significant decrease from 4.21 × 10(-2) to 8.09 × 10(-3) s(-1), as the initial DCF concentration was increased from 1.00 to 5.00 μM. Furthermore, the degradation kinetics of DCF was clearly dependent on nitrogen-containing ion concentrations in the reaction solution. Ammonium and nitrite ions inhibited the DCF degradation by ClO2, whereas nitrate ion clearly initiated its promotion. In contrast, the inhibitory effect of NO2 (-) was more robust than that of NH4 (+). When the values of pE were gradually increased, the transformation of NH4 (+) to NO2 (-), and subsequently to NO3 (-), would occur, the rate constants were initially decreased, and then increased. When NH4 (+) and NO2 (-) coexisted, the inhibitory effect on the DCF degradation was less than the sum of the partial inhibitory effect. However, when NO2 (-) and NO3 (-) coexisted, the actual inhibition rate was greater than the theoretical estimate. These results indicated that the interaction of NH4 (+) and NO2 (-) was antagonistic, while the coexistence of NO2 (-) and NO3 (-) was observed to have a synergistic effect in aqueous environments. PMID:25604564

  18. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    OpenAIRE

    Taylor, Robert H.; Joseph O. Falkinham; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains wer...

  19. Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis

    OpenAIRE

    Kaur, Simran

    2013-01-01

    Chlorine dioxide is a selective oxidant and powerful antimicrobial agent. Previous work has shown that treatment of cantaloupe with chlorine dioxide gas at 5 mg/L for 10 minutes results in a 4.6 and 4.3 log reduction of E. coli O157:H7 and L. monocytogenes respectively. A significant reduction (p Current analytical methods for chlorine dioxide and chloroxyanions are only applicable to aqueous samples. Some of these methods have been used to determine surface residues in treated products by...

  20. Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide.

    Science.gov (United States)

    Guo, Yingming; Huang, Tinglin; Wen, Gang; Cao, Xin

    2015-08-01

    To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone (O3), hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) were examined to peel off the film from the quartz sand surface in four pilot-scale columns. An optimized oxidant dosage and oxidation time were determined by batch tests. Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33 (H2O2) and to 53.67 hr (ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments. Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation; but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal (from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling. PMID:26257342

  1. Removal effect on Mesocyclops leukarti and mutagenicity with chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    ZUO Jin-long; CUI Fu-yi; QU Bo; ZHU Gui-bing

    2006-01-01

    Mesocyclops leukarti of zooplankton propagates excessively in eutrophic water body and it cannot be effectively inactivated by the conventional drinking water treatment process. In order to tackle this problem, a study of removal effect on Mesocyclops leukarti with chlorine dioxide in a waterworks was performed. The results showed that Mesocyclops leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation combined with the conventional drinking water treatment process.Higher oxidizability and molecular state of chlorine dioxide in water is the key to the inactivation of Mesocyclops leukarti. The chlorite, disinfection by-products (DBPs) of chlorine dioxide, was stable at 0.45 mg/L, which is lower than that critical value of the USEPA. GC-MS examination showed that the quantity of organic substance in the water treated by chlorine dioxide obviously decreased. Ames test further revealed that the mutagenicity was reduced by chlorine dioxide with respect to prechlorine. The propagation ofMesocyclops leukarti can be inactivated effectively and safely by chlorine dioxide pre-oxidation.

  2. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    OpenAIRE

    Ci, Ying; Wang, Lin; Guo, YanChuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scatte...

  3. 21 CFR 173.300 - Chlorine dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chlorine dioxide. 173.300 Section 173.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.300 Chlorine...

  4. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Kumar, Sunil; Park, Jiyeong; Kim, Eunseong; Na, Jahyun; Chun, Yong Shik; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2015-10-01

    A novel fumigant, chlorine dioxide (ClO2) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its mode of action to kill insects is yet to be understood. This study set up a hypothesis that an oxidative stress induced by ClO2 is a main factor to kill insects. The Indian meal moth, Plodia interpunctella, is a lepidopteran insect pest infesting various stored grains. Larvae of P. interpunctella were highly susceptible to ClO2 gas, which exhibited an acute toxicity. Physiological damages by ClO2 were observed in hemocytes. At high doses, the larvae of P. interpunctella suffered significant reduction of total hemocytes. At low doses, ClO2 impaired hemocyte behaviors. The cytotoxicity of ClO2 was further analyzed using two insect cell lines, where Sf9 cells were more susceptible to ClO2 than High Five cells. The cells treated with ClO2 produced reactive oxygen species (ROS). The produced ROS amounts increased with an increase of the treated ClO2 amount. However, the addition of an antioxidant, vitamin E, significantly attenuated the cytotoxicity of ClO2 in a dose-dependent manner. To support the oxidative stress induced by ClO2, two antioxidant genes (superoxide dismutase (SOD) and thioredoxin-peroxidase (Tpx)) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Tpx were expressed in larvae of P. interpunctella especially under oxidative stress induced by bacterial challenge. Exposure to ClO2 gas significantly induced the gene expression of both SOD and Tpx. RNA interference of SOD or Tpx using specific double stranded RNAs significantly enhanced the lethality of P. interpunctella to ClO2 gas treatment as well as to the bacterial challenge. These results suggest that ClO2 induces the production of insecticidal ROS, which results in a fatal oxidative stress in P. interpunctella. PMID:26453230

  5. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.

    Science.gov (United States)

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Lin, Lin; Zhang, Tian-Yang; Gao, Nai-Yun

    2013-06-01

    This study was to explore the formation of iodinated disinfection by-products (I-DBPs), including iodoform (CHI3), iodoacetic acid (IAA) and triiodoacetic acid (TIAA), when iodide-containing artificial synthesized waters and raw waters are in contact with chlorine dioxide (ClO2). Among the investigated I-DBPs, CHI3 was the major species during ClO2 oxidation in artificial synthesized waters. Impact factors were evaluated, including the concentrations of ClO2, iodide (I(-)), dissolved organic carbon (DOC) and pH. Formation of CHI3, IAA and TIAA followed an increasing and then decreasing pattern with increased ClO2 or DOC concentration. I-DBPs yield was significantly affected by solution pH. High concentrations of I-DBPs were generated under circumneutral conditions with the maximum formation at pH 8. The increase of I(-) concentration can increase I-DBPs yields, but the increment was suppressed when I(-) concentration was higher than 50 μM. When 100 μg/L I(-)and ClO2 (7.5-44.4 μM) were spiked to the raw water samples from Yangshupu and Minhang drinking water treatment plant, certain amounts of CHI3 and IAA were found under pH 7 and the concentrations were strongly correlated with ClO2 dosage and water qualities, however, no TIAA was detected. Finally, we investigated I-DBPs formation of 18 model compounds, including 4 carboxylic acids, 5 phenols and 8 amino acids, treating with ClO2 when I(-) was present. Results showed that most of these model compounds could form a considerable amount of I-DBPs, especially for propanoic acid, butanoic acid, resorcinol, hydroquinone, alanine, glutamic acid, phenylalanine and serine. PMID:23561492

  6. The continuous chlorination of plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, M.J.

    1959-08-14

    Previous reports on the chlorination of plutonium dioxide describe numerous small-scale experiments and a few fair-sized batch preparations. The chemistry of chlorination by numerous reagents is covered, but no process had received sufficient study for large-scale preparation of anhydrous plutonium trichloride. The literature search revealed no extensive studies on chlorination rates, exhaust gas filtering, atmospheric requirements, reactor materials, etc. A program was undertaken to select a chlorination process, to develop the necessary information for defining operating conditions and equipment specifications, and then to demonstrate the operation of the process.

  7. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. PMID:24534637

  8. Review of chlorination of zirconium dioxide

    International Nuclear Information System (INIS)

    A review of chlorination zirconium dioxide is presented.used semi batch process with vertical reactor, horizontal reactor and fluidized reactor. The feed were zircon dioxide from Aldrich, direct zircon sand and briquette of zircon sand. From the study it is obtained that the best reactor is vertical reactor.It needs modification of chlorination reactor and sublimator to obtain the larger conversion. It is come to reality that zirconium tetrachloride preparation by process is significant with zirconium tetrachloride from Aldrich. It needs the sequel research to get the best result of process. (author)

  9. Plant physiological response of strawberry fruit to chlorine dioxide gas treatment during postharvest storage

    Science.gov (United States)

    Chlorine dioxide, a strong oxidizing and sanitizing agent, is used as a postharvest sanitizer for fruits and vegetables and generally applied on a packing line using a chlorine dioxide generator. The objective of this research was to study the physiological responses of strawberries to ClO2 when app...

  10. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.

    OpenAIRE

    Korich, D G; Mead, J R; Madore, M S; Sinclair, N. A.; Sterling, C R

    1990-01-01

    Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactiv...

  11. Treatment of algae-induced tastes and odors by chlorine, chlorine dioxide and permanganate

    OpenAIRE

    Buffin, Lisa Webster

    1992-01-01

    Chlorine (C12(sq»' chlorine dioxide (Cl02 ) and potassium permanganate (KMn04) were evaluated as oxidants for the removal of grassy and cucumber odors associated with the pure compounds, cis-3-hexenol and trans-2, cis-6-nonadienal, respectively, and for the removal of fishy odors associated with a culture of an alga, Synura petersenii. The effects of the oxidants on the pure compounds were assessed both by Flavor Profile Analysis (FPA) and gas chromatography/mass spectrometry (GC/MS). The ef...

  12. [Action modes of chlorine dioxide--a review].

    Science.gov (United States)

    Wei, Mingken; Lai, Jieling; Zhan, Ping

    2012-04-01

    Chlorine dioxide (ClO2) is a highly effective disinfectant for food and potable water treatment. Till now, the action mode of ClO2 is still unclear. ClO2, can denature proteins by oxidizing tyrosine, tryptophan, and cysteine. We reviewed the pathways by which ClO02 reacts with important bio-molecules, as well as the primary target sites at individual cellular level of ClO2-induced biocidal effects. PMID:22799207

  13. The removal of phenols from oily wastewater by chlorine dioxide

    OpenAIRE

    Hsu, Chung-Jung

    1988-01-01

    Treatability studies were performed on oily wastewaters produced by petroleum and canning industries. Chlorine dioxide was used for the removal of phenolic compounds from these oily wastewaters. Most of phenolic compounds can be destroyed by chlorine dioxide within 15 minutes if CI02-to-phenol ratios of higher than 5.0 are provided. Factors such as pH, temperature, and COD have little effect on phenol removal. The effectiveness of chlorine dioxide treatment depends critic...

  14. Mechanisms of inactivation of poliovirus by chlorine dioxide and iodine.

    OpenAIRE

    Alvarez, M E; O'Brien, R T

    1982-01-01

    Chlorine dioxide and iodine inactivated poliovirus more efficiently at pH 10.0 than at pH 6.0. Sedimentation analyses of viruses inactivated by chlorine dioxide and iodine at pH 10.9 showed that viral RNA separated from the capsids, resulting in the conversion of virions from 156S structures to 80S particles. The RNAs release from both chlorine dioxide- and iodine-inactivated viruses cosedimented with intact 35S viral RNA. Both chlorine dioxide and iodine reacted with the capsid proteins of p...

  15. Water Quality Impacts of Pure Chlorine Dioxide Pretreatment at the Roanoke County (Virginia) Water Treatment Plant

    OpenAIRE

    Ellenberger, Christine Spada

    1999-01-01

    WATER QUALITY IMPACTS OF PURE CHLORINE DIOXIDE PRETREATMENT AT THE ROANOKE COUNTY (VIRGINIA) WATER TREATMENT PLANT by Christine S. Ellenberger Dr. Robert C. Hoehn, Chairman (ABSTRACT) Chlorine dioxide (ClO2) was included in the Spring Hollow Water Treatment Plant (Roanoke County, Virginia) to oxidize manganese and iron, prevent tastes and odors, and avoid the formation of excessive halogenated disinfection by-products. A state-of-the-art, gas:solid ClO2 generation system ...

  16. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    Science.gov (United States)

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  17. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine.

    OpenAIRE

    Berman, D.; Hoff, J C

    1984-01-01

    The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s...

  18. Electric plasma discharge combustion synthesis of chlorine dioxide

    International Nuclear Information System (INIS)

    A process for the production of chlorine dioxide comprises feeding an inert gas to a reaction zone and applying an electrical discharge to the inert gas to produce a high temperature plasma. Chlorine gas and oxygen gas are supplied simultaneously to the reaction zone and reacted in the plasma to produce a gaseous mixture comprised of chlorine dioxide, chlorine, oxygen and inert gas, the molar ratio of oxygen to chlorine in the reaction zone being at least about 2.5;1. The gaseous mixture is recovered from the reaction zone. Chlorine dioxide, which may be recovered as a gas or reacted to produce an alkali metal chlorite, is employed as a bleaching agent and a water treatment agent

  19. Full-scale study of removal effect on Cyclops of zooplankton with chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    LIN Tao; CUI Fu-yi; LIU Dong-mei; AN Dong

    2004-01-01

    Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this paper, a full-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Cyclops removal was conducted in a waterworks. The experimental results were compared with that of the existing prechlorination process in several aspects: including the Cyclops removal efficiencies of water samples taken from the outlets of sedimentation tank and sand filter and the security of drinking water etc. The results showed that chlorine dioxide might be more effective to inactivate Cyclops than chlorine and Cyclops could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that of prechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.

  20. Pilot-scale study of removal effect on Chironomid larvae with chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Chironomid larvae propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfection process like chlorination due to its stronger resistance to oxidation. In this paper, a pilot-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Chironomid larvae removal was conducted in Shenzhen Waterworks in Guangdong Province, China. The experimental results were compared with that of the existing prechlorination process in several aspects, including the Chironomid larvae removal efficiencies of water samples taken from the outlets of sedimentation tank, sand filter, the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Chironomid larvae than chlorine and Chironomid larvae could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that ofprechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.

  1. Effect of Chlorine Dioxide Gas on Polymeric Packaging Materials

    Science.gov (United States)

    Permeability, solubility and diffusion coefficients of chlorine dioxide for high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyvinyl chloride (PVC), polystyrene (PS), polyethylene terephthalate (PET), nylon, and multilayer of ethylene viny...

  2. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  3. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfectant byproducts (DNPS) at a pilot plant in Evansville, IN, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high- and low-resolu...

  4. Kinetic studies on dissolution of UO2 powders in acid solutions by using cerium (IV) or chlorine dioxide as oxidants

    International Nuclear Information System (INIS)

    The UO2 powders of 100-150, 150-212, 212-250, and 250-300 μm were dissolved in HNO3 or HCl solutions containing strong oxidants to examine their effect on the dissolution rates. Cerium(IV) species and ClO2 were used as oxidants in HNO3 and HCl solutions, respectively. The Ce(IV) species were prepared by bubbling O3 gas into HNO3 solutions containing Ce(NO3)3. All dissolution experiments were carried out under rapid stirring conditions which make it possible to neglect the diffusion effect. Dissolution reactions were analyzed on the assumptions that the UO2 powders are spherical particles and homogeneously dissolved from their external surface. Dissolution rate constants (Φ) in mol·cm-2·min-1 were measured at various concentrations of oxidants and temperatures. Furthermore, the effect of acid concentrations on the dissolution rate was also examined. As a result, the dissolution rate constants Φ were found to be expressed as Φ=kN[Ce(IV)][H+]0.6 for HNO3 solution([HNO3]=1-5M, Temp.≤30degC) and Φ=kH[ClO2][H+]-0.3 for HCl solution([HCl]=1-5M, Temp.≤30degC), respectively. Activation energies(kJ·mol-1) for the apparent dissolution rate constants are 44.1±1.9 for the HNO3 solution system and 33.5±2.8 for the HCl solution system, respectively. (author)

  5. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    OpenAIRE

    Taylor, G R; Butler, M

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the ...

  6. Mass Transfer Study of Chlorine Dioxide Gas Through Polymeric Packaging Materials

    Science.gov (United States)

    A continuous system for measuring the mass transfer of gaseous chlorine dioxide (ClO2), a strong oxidizing agent and used in food and pharmaceutical packaging, through 10 different types of polymeric packaging material was developed utilizing electrochemical sensor as a detector. Permeability, diff...

  7. Removal of pharmaceuticals in biologically treated wastewater by chlorine dioxide or peracetic acid

    DEFF Research Database (Denmark)

    Hey, G.; Ledin, Anna; La Cour Jansen, Jes;

    2012-01-01

    Removal of six active pharmaceutical ingredients in wastewater was investigated using chlorine dioxide (ClO2) and peracetic acid (PAA) as chemical oxidants. Four non-steroidal anti -inflammatory drugs (ibuprofen, naproxen, diclofenac, and mefenamic acid) and two l ipid regulating agents (gemfibro...

  8. Immobilization of chlorine dioxide modified cells for uranium absorption

    International Nuclear Information System (INIS)

    There has been a trend towards the use of microorganisms to recover metals from industrial wastewater, for which various methods have been reported to be used to improve microorganism adsorption characteristics such as absorption capacity, tolerance and reusability. In present study, chlorine dioxide(ClO2), a high-efficiency, low toxicity and environment-benign disinfectant, was first reported to be used for microorganism surface modification. The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. FTIR analysis indicated that several cell surface groups are involved in the uranium adsorption and cell surface modification. The modified cells were further immobilized on a carboxymethylcellulose (CMC) matrix to improve their reusability. The cell-immobilized adsorbent could be employed either in a high concentration system to move vast UO22+ ions or in a low concentration system to purify UO22+ contaminated water thoroughly, and could be repeatedly used in multiple adsorption-desorption cycles with about 90% adsorption capacity maintained after seven cycles. - Highlights: • Chlorine dioxide was first reported to be used for microorganism surface modification. • The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. • The chlorine dioxide modified cells were further immobilized by carboxymethylcellulose to improve their reusability

  9. Inactivation of human and simian rotaviruses by chlorine dioxide.

    OpenAIRE

    Chen, Y.S.(China Institute of Atomic Energy, P.O. Box 275 (10), Beijing 102413, PR China); Vaughn, J M

    1990-01-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4 degrees C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10(5)-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa a...

  10. The Health Effects of Chlorine Dioxide as a Disinfectant in Potable Water: A Literature Survey

    Science.gov (United States)

    Calabrese, Edward J.; And Others

    1978-01-01

    The use of chlorine dioxide as a disinfectant in water is being considered by the EPA. This article presents a summary of the known published reports concerning health effects of chlorine dioxide on animal and human populations. (Author/MA)

  11. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    OpenAIRE

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested o...

  12. Kinetic study of neodymium oxide chlorination with gaseous chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Marta V., E-mail: marta.bosco@cab.cnea.gov.ar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Fouga, Gaston G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Complejo Tecnologico Pilcaniyeu, Comision Nacional de Energia Atomica, Avenida Bustillo 9500, CP 8400 San Carlos de Bariloche (Argentina); Bohe, Ana E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Complejo Tecnologico Pilcaniyeu, Comision Nacional de Energia Atomica, Avenida Bustillo 9500, CP 8400 San Carlos de Bariloche (Argentina); Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, CP 8400 San Carlos de Bariloche (Argentina)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer We analyze the kinetics of the neodymium oxide chlorination reactions. Black-Right-Pointing-Pointer For temperatures below 425 Degree-Sign C the system is under chemical control. Black-Right-Pointing-Pointer The formation of oxychloride progresses through a nucleation and growth mechanism. Black-Right-Pointing-Pointer A reaction order of 0.40 with respect to chlorine partial pressure was determined. Black-Right-Pointing-Pointer An activation energy of 161 {+-} 4 kJ mol{sup -1} was determined. - Abstract: The kinetics of the chlorination of neodymium oxide has been investigated by thermogravimetry between 312 Degree-Sign C and 475 Degree-Sign C, and for partial pressures of chlorine ranging from 10 kPa to 50 kPa. The starting temperature for the reaction of neodymium oxide with chlorine was determined to be about 250 Degree-Sign C, leading to neodymium oxychloride as product. The results showed that, for temperatures below 425 Degree-Sign C, the system is under chemical control and the formation of the oxychloride progresses through a nucleation and growth mechanism. The influence of chlorine mass transport through the bulk gas phase and through the boundary layer on the overall reaction rate was analyzed. In the absence of these two mass-transfer steps, a reaction order of 0.39 with respect to chlorine partial pressure, and an activation energy of 161 {+-} 4 kJ mol{sup -1} were determined. A complete rate equation has been successfully developed.

  13. Degradation of microcystin-RR in water by chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    JI Ying; HUANG Jun-li; FU Jiao; WU Ming-song; CUI Chong-wei

    2008-01-01

    Due to the potent hepatotoxicity and tumor-promoting activity of microcystins, a successful removal of these toxins during drinking water treatment processes is of increasing concern. The oxidation kinetics of MC-RR by chlorine dioxide (C1O2)was studied with HPLC and characterization of the reacdon products was performed with UV-spectrometry, TOC and LC-MS. Our experimental results show that the oxidation process is a second order overall and a first order with respect to C1O2 and MC-RR.The activation energy of MC-RR degradation by C1O2 is 53.07 kJ/mol. The rate constant k of the action can be increased by increasing temperature and decreasing pH value and ranged from 6. 11x102 L/(mol.min) to 5.29x 102 L/(mol-min) at pH from 3.44 to 10.41 at 10 ℃. Reaction products were determined to be organic and volatile, because they could be almost removed from aqueous solution by heating for 15 min at 60 ℃. In addition, the main oxidation products have m/z values of 1072 and are identified as dihydroxy isomers of MC-RR.

  14. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    International Nuclear Information System (INIS)

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water

  15. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability.

    Science.gov (United States)

    Xue, Bin; Jin, Min; Yang, Dong; Guo, Xuan; Chen, Zhaoli; Shen, Zhiqiang; Wang, Xinwei; Qiu, Zhigang; Wang, Jingfeng; Zhang, Bin; Li, Junwen

    2013-06-15

    Despite the health risks posed by waterborne human rotavirus (HRV), little information is available concerning the effectiveness of chlorine or chlorine dioxide (ClO2), two common disinfectants of public water sources, against HRV and their effects on its genome remain poorly understood. This study investigated the effects of chlorine and ClO2 on purified HRV by using cell culture and RT-PCR to assess virus infectivity and genetic integrity, respectively. The disinfection efficacy of ClO2 was found to be higher than that of chlorine. According to the efficiency factor Hom model, Ct value (mg/L min) ranges required for a 4-log reduction of HRV at 20 °C by chlorine and ClO2 were 5.55-5.59 and 1.21-2.47 mg/L min, respectively. Detection of the 11 HRV genome segments revealed that damage to the 1227-2354 bp of the VP4 gene was associated with the disappearance of viral infectivity by chlorine. However, no complete accordance between culturing and RT-PCR assays was observed after treatment of HRV with ClO2. These results collectively indicate that the current practice of chlorine disinfection may be inadequate to manage the risk of waterborne HRV infection, and offer the potential to monitor the infectivity of HRV adapting PCR-based protocols in chlorine disinfection. PMID:23591108

  16. Thermal and under irradiation diffusion of chlorine in uranium dioxide

    International Nuclear Information System (INIS)

    This work concerns the study of the thermal and radiation enhanced diffusion of 36Cl in uranium dioxide. We simulated the presence of 36Cl by implanting a quantity of 37Cl comparable to the impurity content of chlorine in UO2. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments: - the influence of the temperature was studied by carrying out thermal annealings in the temperature range 900 - 1300 C; we showed that implanted chlorine was mobile from temperatures as low as 1000 C and determined a thermal diffusion coefficient D1000 C around 10-16 cm2s-1 - the influence of the irradiation by fission products were studied by irradiating the samples with 127I (energy of 63.5 MeV). We could determine that the diffusion of the implanted chlorine under irradiation and in the range of temperature 30 - 250 C was not purely athermal. We calculated a diffusion coefficient under irradiation D250 C of about 0-14 cm2.s-1. We showed the importance of the implantation and irradiation defects as preferential paths for a fast chlorine transport. We carried out ab initio calculations showing that chlorine is preferentially located in a substitutional site. This is in favour of a Frank-Turnbull diffusion mechanism or a vacancy/chlorine. (author)

  17. The effect of chlorine dioxide on the formation of trihalomethanes; Dioxido de cloro y su efecto en la formacion de trihalometanos

    Energy Technology Data Exchange (ETDEWEB)

    Ciurana de Gay, C.

    2000-07-01

    The chlorine dioxide presents a high reactivity with certain organic and inorganic compounds. In the process of making water fit to drink, one of the most valued characteristics of the chlorine dioxide is the oxidation of the precursors of trihalomethanes, that allows their decrease in the drinking water. The generation of the chlorine dioxide is the oxidation of the precursors of trihalomethanes, that allows their decrease in the drinking water. The generation of the chlorine dioxide must be made at the dosage point. Both, the generation and its control can be made in an easy way. Since a few years ago, in the ETAP, in Montfulla, some researches are being carried out in order to decrease the concentration of trihalomethanes. In this work it is exposed the generation the dosage control and the reduction of trihalomethanes obtained through the dosage of the chlorine dioxide at different doses. (Author) 8 refs.

  18. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  19. THM reduction on water distribution network with chlorine dioxide as disinfectant

    International Nuclear Information System (INIS)

    A disinfectant change on water distribution network, by chlorine dioxide in that case, avoids THM formation. In the other hand it creates big doubts about utilization and analytical determination of another oxidant different to chlorine. Just a need to comply the current legislation points us to make a change as the one mentioned above and carried out in DWTP Rio Verde, being managed by Acosol, where the THM formation is been reduced to 80%, according to the new limit of 100μg/l, along the 200 km of the supply network. (Author) 13 refs.

  20. On normalization of chlorine content in the nitrogen dioxide based coolant

    International Nuclear Information System (INIS)

    From the viewpoint of thermodynamics ways to transform chlorine-containing impurities in nitrogen dioxide into nitrosyl chloride are analyzed. The effect of the impurities on coolant corrosion activity in case of their content up to 0.07 % in terms of chlorine is studied experimentally. The conclusion is made on the admissible content of chlorine compounds in nitrogen dioxide within 0.01-0.03 %. When the admissible content of chloride in the coolant subjected to high-temperature treatment is exceeded, the rectification purification is possible. Lines of phase equilibria in systems nitrogen dioxide-nitrosyl chloride and nitrogen dioxide-nitrogen oxide in the range of low concentration of highly volatile component practically coincide in liquid content-vapor content coordinates. A twofold decrease in nitrosyl chloride concentration in still bottoms is accompanied by the twofold decrease in nitrogen oxide concentration. For twofold decrease in nitrosyl chloride concentration in the process of degassing during boiling the evaporation of 30 % of coolant is required

  1. Examination of the potential of chlorine dioxide for use in zebra mussel veliger control

    Energy Technology Data Exchange (ETDEWEB)

    Rusznak, L.; Smolik, N.; Hale, L.; Freymark, S. [Ashland Chemical Company, Drew Division, Boonton, NJ (United States)

    1995-06-01

    Dreissena polymorpha (zebra mussel) veligers were treated with various concentrations of chlorine dioxide and exposed at several time intervals to determine the effectiveness of this oxidant as a veliger control agent. The direction of this testing was based on previous studies which determined the effectiveness of chlorine dioxide as a molluscicide for adult zebra mussel control. Zebra mussel veligers were collected from the Niagara River shoreline at an untreated site and tested using filtered river water from the same source. All testing was conducted on site at an industrial plant in order to insure the integrity of veligers collected for this study. The plankton wheel method was used to examine the effects of chlorine dioxide. This methodology involves intense microscopic examination of the test organism prior to and after chemical exposure todeterminen molluscicidal efficacy. Veliger mortality was determined based on observations of veliger movement. Typical criteria for the determination of mortality was expanded to include four categories; veliger actively swimming, internal musculature movement, no internal musculature movement observed, however not necessarily indicating a mortality and obviously a mortality. The treatment levels ranged from 0.75 ppm - 2.0 ppm which are considered to simulate treatment levels in actual applications. Mortality levels ranged on average from 16%-42% based on 30 minute or 60 minute exposure times. The determination exposure time was based on water flow time intervals in actural applications. Sodium hypochlorite was also evaluated in order to compare the effectiveness of chlorine dioxide against this known veliger control agent. Testing resulted in chlorine dioxide providing significantly better veliger control than sodium hypochlorite under similar conditions.

  2. Study on metal corrosion caused by chlorine dioxide of various purities

    Institute of Scientific and Technical Information of China (English)

    崔崇威; 黄君礼; 许晶

    2004-01-01

    Weight lost method was used to comparatively study the corrosion behavior of four different metals under the dosage of chlorine dioxide, chlorine and their mixture respectively. The experimental results indicated that chlorine causes the most serious corrosion of carbon steel, and the higher the concentration of chlorine, the more serious the corrosion. On the contras, metals corrosion is the least serious in the case of chlorine dioxide.The results further revealed that chlorine dioxide is the most effective water treatment reagent, making it the best choice to use extensively in circulated cooling water disinfection and corrosion control.

  3. Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation

    OpenAIRE

    Meneghin, Silvana Perissatto; Reis, Fabricia Cristina; de Almeida, Paulo Garcia; Ceccato-Antonini, Sandra Regina

    2008-01-01

    The ethanol production in Brazil is carried out by fed-batch or continuous process with cell recycle, in such way that bacterial contaminants are also recycled and may be troublesome due to the substrate competition. Addition of sulphuric acid when inoculum cells are washed can control the bacterial growth or alternatively biocides are used. This work aimed to verify the effect of chlorine dioxide, a well-known biocide for bacterial decontamination of water and equipments, against contaminant...

  4. Comparative Analytical Methods for the Measurment of Chlorine Dioxide

    OpenAIRE

    Desai, Unmesh Jeetendra

    2002-01-01

    Four commercially available methods used for the analysis of low-level Chlorine Dioxide (ClO2) concentrations in drinking water were evaluated for accuracy and precision and ranked according to cost, efficiency and ease of the methods under several conditions that might be encountered at water treatment plants. The different analytical methods included: 1.The DPD (N, N-diethyl-p-phenylenediamine) method 2.Lissamine Green B (LGB) wet-chemical method 3.Palintest® kit LGB 4.A...

  5. Chlorine Dioxide Gas Sterilization under Square-Wave Conditions

    OpenAIRE

    Jeng, David K.; Woodworth, Archie G.

    1990-01-01

    Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. ni...

  6. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter.

    Science.gov (United States)

    Yang, Xin; Guo, Wanhong; Lee, Wontae

    2013-06-01

    Chlorine dioxide (ClO2) is often used as an oxidant to remove taste, odor and color during water treatment. Due to the concerns of the chlorite formation, chlorination or chloramination is often applied after ClO2 preoxidation. We investigated the formation of regulated and emerging disinfection byproducts (DBPs) in sequential ClO2-chlorination and ClO2-chloramination processes. To clarify the relationship between the formation of DBPs and the characteristics of natural organic matter (NOM), changes in the properties of NOM before and after ClO2 oxidation were characterized by fluorescence, Fourier transform infrared spectroscopy (FTIR), and size and resin fractionation techniques. ClO2 preoxidation destroyed the aromatic and conjugated structures of NOM and transformed large aromatic and long aliphatic chain organics to small and hydrophilic organics. Treatment with ClO2 alone did not produce significant amount of trihalomethanes (THMs) and haloacetic acids (HAAs), but produced chlorite. ClO2 preoxidation reduced THMs, HAAs, haloacetonitriles (HANs) and chloral hydrate (CH) during subsequent chlorination, but no reduction of THMs was observed during chloramination. Increasing ClO2 doses enhanced the reduction of most DBPs except halonitromethanes (HNMs) and haloketones (HKs). The presence of bromide increased the formation of total amount of DBPs and also shifted DBPs to more brominated ones. Bromine incorporation was higher in ClO2 treated samples. The results indicated that ClO2 preoxidation prior to chlorination is applicable for control of THM, HAA and HAN in both pristine and polluted waters, but chlorite formation is a concern and HNMs and HKs are not effectively controlled by ClO2 preoxidation. PMID:23312737

  7. Effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chlorine content and position of chlorinated phenols have many significant effects on the reactivity of oxido-reduction. The effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate were evaluated through different kinetics studies. Since chlorine was an electron withdrawing atom, the substitution of chlorine on the aromatic ring decreased the oxidation rate constant by σ-electron withdrawing conductive effect; at the same time, the substitution of chlorine at ortho or para position on the aromatic ring increased the oxidation rate constant by π-electron donating conjugative effect, and the conjugative effect could counteract the negative impact of the conductive effect to some extent. On the other hand, the substitution of chlorine at ortho position on the aromatic ring decreased the oxidation rate constant by steric hindrance effect. The oxidation rate constants of phenol and chlorinated phenols studied decreased as follow order: 4-chlorophenol>2,4-dichlorophenol>phenol>2,6-dichlorophenol.

  8. Comparative efficacy of chlorine and chlorine dioxide regimes for condenser slime control in seawater cooled heat exchangers

    International Nuclear Information System (INIS)

    Chlorination has long been used as an effective and economic biocide for biofouling control in seawater cooling systems. However, the efficacy of chlorine is reduced in the presence of organic content of seawater and the inability of chlorine to effectively penetrate biofilms. Chlorine dioxide is being projected as a possible alternative to chlorine. Experiments were carried out with the help of a seawater circulating facility, in which direct comparison of the efficacy of the two biocides was possible using test condenser tube assemblies. The test condenser tubes made of titanium, SS 316L and Cu-Ni 90/10 were dosed with chlorine and chlorine dioxide. Each dose was evaluated for 30 days. Continuous and intermittent additions of chlorine (0.38 - 0.45 mg L-1 TRO) and chlorine dioxide (0.4 - 0.5 mg L-1) were used, along with control. The flow velocity in the tubes was maintained at 1.5 m/s. Results of the study showed that the efficacy of the biocide to control biofilms depended on the biocide and the material. Continuous chlorination resulted in 75% reduction of viable counts on titanium, followed by 24% reduction on CuNi and 6% reduction on SS 316L surfaces, as compared to the control. When compared to continuous chlorination, increase in bacterial density in the tubes was observed at different regimes of intermittent chlorination. On SS 316L and Cu-Ni surfaces, intermittent chlorination for 1h, once every 3 h, appeared to give adequate protection. Continuous addition of chlorine dioxide resulted in 99% reduction of viable counts on titanium surfaces, followed by 28% reduction on SS 316 L surfaces and 52% reduction on Cu-Ni surfaces, as compared to the controls. The data indicate that the efficacy of biocides to control biofilms depend on not only the biocide and its frequency of application but also the material of construction. (author)

  9. Comparative efficacy of chlorine and chlorine dioxide regimes for condenser slime control in seawater cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.S.; Veeramani, P.; Ershath, M.; Rajamohan, R.; Harinath, Y.V.; Mohan, T.V.K.; Venugopalan, V.P. [BARC Facilities, Water and Steam Chemistry Div., Kalpakkam, Tamil nadu (India)

    2010-07-01

    Chlorination has long been used as an effective and economic biocide for biofouling control in seawater cooling systems. However, the efficacy of chlorine is reduced in the presence of organic content of seawater and the inability of chlorine to effectively penetrate biofilms. Chlorine dioxide is being projected as a possible alternative to chlorine. Experiments were carried out with the help of a seawater circulating facility, in which direct comparison of the efficacy of the two biocides was possible using test condenser tube assemblies. The test condenser tubes made of titanium, SS 316L and Cu-Ni 90/10 were dosed with chlorine and chlorine dioxide. Each dose was evaluated for 30 days. Continuous and intermittent additions of chlorine (0.38 - 0.45 mg L{sup -1} TRO) and chlorine dioxide (0.4 - 0.5 mg L{sup -1}) were used, along with control. The flow velocity in the tubes was maintained at 1.5 m/s. Results of the study showed that the efficacy of the biocide to control biofilms depended on the biocide and the material. Continuous chlorination resulted in 75% reduction of viable counts on titanium, followed by 24% reduction on CuNi and 6% reduction on SS 316L surfaces, as compared to the control. When compared to continuous chlorination, increase in bacterial density in the tubes was observed at different regimes of intermittent chlorination. On SS 316L and Cu-Ni surfaces, intermittent chlorination for 1h, once every 3 h, appeared to give adequate protection. Continuous addition of chlorine dioxide resulted in 99% reduction of viable counts on titanium surfaces, followed by 28% reduction on SS 316 L surfaces and 52% reduction on Cu-Ni surfaces, as compared to the controls. The data indicate that the efficacy of biocides to control biofilms depend on not only the biocide and its frequency of application but also the material of construction. (author)

  10. Chlorine Dioxide Inactivation of Cryptosporidium parvum Oocysts and Bacterial Spore Indicators

    OpenAIRE

    Chauret, Christian P.; Radziminski, Chris Z.; Lepuil, Michael; Creason, Robin; Andrews, Robert C.

    2001-01-01

    Cryptosporidium parvum, which is resistant to chlorine concentrations typically used in water treatment, is recognized as a significant waterborne pathogen. Recent studies have demonstrated that chlorine dioxide is a more efficient disinfectant than free chlorine against Cryptosporidium oocysts. It is not known, however, if oocysts from different suppliers are equally sensitive to chlorine dioxide. This study used both a most-probable-number–cell culture infectivity assay and in vitro excysta...

  11. SIMULTANEOUS DETERMINATION OF CHLORINE DIOXIDE AND HYPOCHLOROUS ACID IN BLEACHING SYSTEM

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2011-04-01

    Full Text Available This study has demonstrated a rapid spectroscopic method for the determination of chlorine dioxide and hypochlorous acid concentrations in the pulp bleaching processes. It was found that chlorine dioxide and hypochlorous acid have an isosbestic wavelength of 295 nm. The soluble lignin in such a system is the main interference, but can be corrected by determining the absorbances at 295 nm, 380 nm, and 480 nm. Thus, based on the spectroscopic measurements at 295 nm (the isosbestic point wavelength for chlorine dioxide and hypochlorous acid, 380 nm (absorbance wavelength of chlorine dioxide and 480 nm (the acid soluble lignin absorbance wavelength, the chlorine dioxide and hypochlorous acid concentrations in the bleaching process can be quantified. However, hypochlorous acid was not detected in the real bleaching effluent for its low content. The present method is simple, rapid, accurate, and has the potential for on-line monitoring of the chlorine dioxide bleaching process.

  12. The use of chlorine dioxide for zebra mussel control - A perspective of treatment histories

    Energy Technology Data Exchange (ETDEWEB)

    Smolik, N.; Rusznak, L.; Anderson, J.; Hale, L. [Ashland Chemical Coman, Drew Division, Booton, NJ (United States)

    1995-06-01

    It is of utmost importance to provide updated performance results of various chemical treatments presently being utilized for zebra mussel control. Zebra mussels have a distinctive ability to endure environmental changes by reproducing effectively and attaching to various hard surfaces. These traits are cause for concern and have resulted in some operating difficulties for industries bordering infested waterways. Various methods are being employed by industries to deal with the problems associated with these species. One of the options is control via chemical treatment. Prior field test studies showed that chlorine dioxide was determined to be an effective molluscicidal agent for adult zebra mussel eradication. Continuous feed of chlorine dioxide at treatment levels ranging from 0.25 - 5.0 ppm above the oxidant demand provided 100% adult zebra mussel mortality which required between 2.9 - 8.8 days of treatment. Previous studies also showed that water temperature was an essential parameter in determining the time required to achieve 100% mortality of adult zebra mussels. Further field applications were undertaken at three electric utility sites located in the midwest. These facilities were concerned with the potential for zebra mussels to reduce efficiency and availability by blocking water flow or plugging equipment. Treatment applications at these facilities consisted of a continuous feed of chlorine dioxide ranging from 0.15 - 0.5 ppm above the oxidant demand. Significant mortality was achieved in monitored mussels tested at each utility in a period ranging from two to four days. This time period was directly related to a number of parameters, with the predominant one being water temperature. Data from these field applications is presented in this paper and confirms that chlorine dioxide is an effective molluscicide for adult zebra mussel control.

  13. Oxidation of plutonium dioxide.

    Science.gov (United States)

    Korzhavyi, Pavel A; Vitos, Levente; Andersson, David A; Johansson, Börje

    2004-04-01

    The physics and chemistry of the actinide elements form the scientific basis for rational handling of nuclear materials. In recent experiments, most unexpectedly, plutonium dioxide has been found to react with water to form higher oxides up to PuO(2.27), whereas PuO(2) had always been thought to be the highest stable oxide of plutonium. We perform a theoretical analysis of this complicated situation on the basis of total energies calculated within density functional theory combined with well-established thermodynamic data. The reactions of PuO(2) with either O(2) or H(2)O to form PuO(2+delta) are calculated to be endothermic: that is, in order to occur they require a supply of energy. However, our calculations show that PuO(2+delta) can be formed, as an intermediate product, by reactions with the products of radiolysis of water, such as H(2)O(2). PMID:15034561

  14. Reversed flow injection spectrophotometric determination of low residuals of chlorine dioxide in water using chlorophenol red

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel,simple,rapid,sensitive and highly selective flow injection procedure for the spectrophotometrie determination of chlorine dioxide in the presence of other chlorine species,viz,free chlorine,chlorite,chlorate and hypoehlorite,is developed.The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct speetrophotometrie determination for chlorine dioxide owing to the serious interference of free and combined chlorine.The procedure gave a linear calibration graph over the range 0-0.71 mg/L of chlorine dioxide.With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.

  15. Flash photolysis of chlorine dioxide in aqueous solution

    International Nuclear Information System (INIS)

    The primary process when aqueous solutions of chlorine dioxide are flash photo-lysed by light with a wave length greater than 270 nm is: OClO →hν ClO (2Π) + O (3P). The photochemical decomposition is characterized by the formation of small quantities of O (3P) atoms and of equal amounts of chlorine atoms and molecular oxygen, the latter originating in the reaction: ClOO → Cl + O2. The isomer ClOO is formed by the germinate recombination of ClO and O, a process which is twice as important as diffusion of the fragments into the mass of the solution and one which represents 30 per cent of the decomposition of the chlorine dioxide. Under our experimental conditions, the lifetime of the ClOO is less than one microsecond. Chlorine atoms are precursors of Cl2O2, whose UV absorption spectrum has been determined, and which is formed by the reactions: Cl + OClO → Cl2O2; Cl + Cl- → Cl2-; Cl2- + OClO → Cl2O2 + Cl- k = (1,0 ±0,1) 109 M-1s-1. Cl2O2 disappears by a first-order process which leads to the formation of the ions Cl- and ClO3-. Competition between the reactions: O (3P) + O2 → O3; O (3P) + OClO → ClO3. (kOClO + O)/(kO2 + O) = 1.85±0.25 has been studied and the molar extinction coefficient of ClO3 determined at its absorption maximum (255 nm): ε255nm = (920 ± 90) M-1 cm-1. (author)

  16. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    OpenAIRE

    Zoeteman, B C; Hrubec, J.; De Greef, E; Kool, H J

    1982-01-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutageni...

  17. Effects of chlorine or chlorine dioxide during immersion chilling on recovery of bacteria from broiler carcasses and chiller water

    Science.gov (United States)

    A study was conducted to determine the microbiological impact of immersion chilling broiler carcasses with chlorine or chlorine dioxide. Eviscerated, pre-chill commercial broiler carcasses were cut into left and right halves along the keel bone, and each half was rinsed (HCR) in 100 mL of 0.1% pept...

  18. Radiation enhanced thermal diffusion of chlorine in uranium dioxide

    International Nuclear Information System (INIS)

    This work concerns the study of the thermal and radiation enhanced diffusion of 36Cl in uranium dioxide. It is a contribution to PRECCI programme (research programme on the long-term behaviour of the spent nuclear fuel). 36Cl is a long lived volatile activation product (T = 300 000 years) able to contribute significantly to the instant release fraction in geological disposal conditions. We simulated the presence of 36Cl by implanting a quantity of 37Cl comparable to the impurity content of chlorine in UO2. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments: - the influence of the temperature was studied by carrying out thermal annealings in the temperature range 900 - 1300 deg. C; we showed that implanted chlorine was mobile from temperatures as low as 1000 deg. C and determined a thermal diffusion coefficient D1000deg.C around 10-16 cm2s-1 and deduced an activation energy of 4.3 eV. This value is one of lowest compared to that of volatile fission products such as iodine or the xenon. These parameters reflect the very mobile behaviour of chlorine; - the irradiation effects induced by fission products were studied by irradiating the samples with 127I (energy of 63.5 MeV). We showed that the implanted chlorine diffusion in the temperature range 30 - 250 deg. C is not purely athermal. In these conditions, the diffusion coefficient D250deg.C for the implanted chlorine is around 10-14 cm2s-1 and the activation energy is calculated to be 0.1 eV. Moreover, at 250 deg. C, we observed an important transport of the pristine chlorine from the bulk towards the surface. This chlorine comes from a zone where the defects are mainly produced by the nuclear energy loss process at the end of iodine range. We showed the importance of the implantation and irradiation defects as preferential paths for a fast chlorine transport. We carried out ab initio

  19. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP. PMID:25465650

  20. Structural modeling and intermolecular correlation of liquid chlorine dioxide

    International Nuclear Information System (INIS)

    Chlorine dioxide (ClO2) is water-soluble yellow gas at room temperature. It has long been used as a disinfectant of tap water and various commodities owing to its strong oxidizing activity against various microbial proteins. The oxidizing activity is believed to be due to the presence of unpaired electron in its molecular orbital. Despite wealth of physicochemical studies of gaseous ClO2, little is known about liquid ClO2, especially about fine molecular structure and intermolecular interactions of liquid ClO2. The purpose of this study is to elucidate the fine structure and intermolecular orientations of ClO2 molecules in its liquid state using a high-energy X-ray diffraction technique. The measurements of liquid ClO2 were carried out at -50 to 0 degree Celsius using a two-axis diffractometer installed at the BL04B2 beamline in the third-generation synchrotron radiation facility SPring-8 (Hyogo, Japan). The incident X-ray beamline was 113.4 keV in energy and 0.1093 Armstrong in wavelength from a Si(111) monochromator with the third harmonic reflection. Liquid ClO2 held in a quartz capillary tube was placed in a temperature-controlled vacuum chamber. We obtained a structure factor S(Q) to a range of Q = 0.3-30 Amstrong-1 and a pair distribution function g(r) upon Fourier transform of the S(Q). The total g(r) showed peaks at 1.46, 2.08, 2.48, 3.16 and 4.24 Armstrong. From intramolecular bond lengths of 1.46 Armstrong for Cl-O and 2.48 Armstrong for O-O, O-Cl-O bond angle was estimated to be 116.1 degrees. Peaks at 3.16 and 4.24 Armstrong in the total g(r) strongly indicate presence of specific intermolecular orientations of ClO2 molecules that are distinct from those observed as a dimer in the solid phase ClO2. This view was further supported by molecular simulation using a reverse Monte Carlo method (RMC). (author)

  1. Chlorine dioxide reaction with selected amino acids in water

    International Nuclear Information System (INIS)

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO2 with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO2 were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO2 creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO2 with ubiquitous amino acids present in natural waters.

  2. Application of Chlorine Dioxide to Lessen Bacterial Contamination during Broiler Defeathering

    Science.gov (United States)

    Due to escape of contaminated gut contents, the number of Campylobacter spp. recovered from broiler carcasses increases during feather removal. Chlorine dioxide (ClO2) is approved for use as an antimicrobial treatment during poultry processing. A chlorine dioxide generator was placed in a commerci...

  3. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  4. Chlorine dioxide by-products in drinking water and their control by powdered activated carbon

    OpenAIRE

    Grabeel, Margaret N.

    1992-01-01

    The concentrations of chlorine dioxide (CI02), chlorine, chlorite (CIO2), and chlorate (CI03) were evaluated following pretreatment of raw water by CI02 at water treatment plants in New Castle, Pennsylvania; Charleston, West Virginia; Skagit, Washington; and Columbus, Georgia. Chlorite and chlorate concentrations were unaffected by any of the water treatment processes and did not vary as a function of time of travel in the distribution system. Chlorine dioxide, which was ana...

  5. 40 CFR 141.535 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Science.gov (United States)

    2010-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.535 Section 141.535 Protection of Environment... § 141.535 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone, or chlorine dioxide for primary disinfection, you must...

  6. 40 CFR 141.544 - What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection?

    Science.gov (United States)

    2010-07-01

    ..., ozone, or chlorine dioxide for primary disinfection? 141.544 Section 141.544 Protection of Environment... Benchmark § 141.544 What if my system uses chloramines, ozone, or chlorine dioxide for primary disinfection? If your system uses chloramines, ozone or chlorine dioxide for primary disinfection your system...

  7. Chlorination of calcium tungstate by mixture of chlorine and sulfur dioxide

    International Nuclear Information System (INIS)

    Results of thermodynamic calculations and experimental investigations of interaction of calcium tungstate with Cl2+SO2 mixture at 400-850 deg C are presented. It is shown that the processes passes through several sequential and parallel stages with formation of tungsten (6) oxide and calcium chloride as intermediate products. Peculiarities of the process are determined by the ratio of rates of WO3 formation and chlorination stages

  8. Efficacy of Nucleic Acid Probes for Detection of Poliovirus in Water Disinfected by Chlorine, Chlorine Dioxide, Ozone, and UV Radiation

    OpenAIRE

    Moore, Norman J.; Margolin, Aaron B.

    1994-01-01

    MilliQ water was inoculated with poliovirus type 1 strain LSc-1 and was treated with disinfectants, including chlorine, chlorine dioxide, ozone, and UV light. No relationship between probes and plaque assays were seen, demonstrating that viral nucleic acids were not destroyed. These findings suggest that nucleic acid probes cannot distinguish between infectious and noninfectious viruses and cannot be used in the evaluation of treated waters.

  9. Bench and Full Scale Study of Removal Effect and Mutagenicity on Mesocyclops Leukarti with Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZUO Jin-long; YANG Wei; LIU Yan-an; LIN Tao

    2006-01-01

    Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In this paper, a study of removal efficiency on Mesocyclops Leukarti with chlorine dioxide in a drinking waterworks was performed.Bench scale results showed that chlorine dioxide is more effective against Mesocyclops Leukarti. And Mesocyclops Leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation cooperated with the conventional process during the full scale study. The chlorite, by-preduct of prechlorine dioxide, was constant at 0.45 mg/L after filtration, which was lower than the critical value of the USEPA. GC-MS examination and Ames test showed that the quantity of organics and the mutagenicity in the water treated by chlorine dioxide is obviously less than that of prechlorination.

  10. Chlorination and Carbochlorination of Cerium Oxide

    International Nuclear Information System (INIS)

    The chlorination and carbochlorination of cerium oxide were studied by thermogravimetry under controlled atmosphere (TG) in the 7000C 9500C temperature range.Both reactants and products were analyzed by X-ray diffraction (RX), scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). Thermodynamic calculations were performed by computer assisted software.The chlorination starts at a temperature close to 8000C.This reaction involves the simultaneous formation and evaporation of CeCl3.Both processes control the reaction rate and their kinetic may not be easily separated.The apparent chlorination activation energy in the 8500C-9500C temperature range is 172 to 5 kJ/ mole.Carbon transforms the CeO2-Cl2 into a more reactive system: CeO2-C-Cl2, where the effects of the carbon content, total flow rate and temperature were analyzed.The carbochlorination starting temperature is 7000C.This reaction is completed in one step controlled by mass transfer with an apparent activation energy of 56 to 5 kJ/mole in the 8500C-9500C temperature range

  11. Antimicrobial effect of chlorine dioxide on Actinobacillus actinomycetemcomitans in diabetes mellitus rats treated with insulin

    Directory of Open Access Journals (Sweden)

    Tantin Ermawati

    2012-03-01

    Full Text Available Background: Periodontitis is a chronic inflammatory disease of periodontal tissues. Etiology of periodontal disease includes Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans which is the most predominant disease-causing bacteria found in the gingival sulcus. Periodontitis can be exacerbated by the systemic disease, such as diabetes mellitus considered as a metabolic disease characterized by hyperglycemia due to insulin deficiency. Treatment of periodontitis is then required in patients with type I diabetes to avoid radical reaction that can not only cause bleeding, but can also prevent infection, as a result, topical antimicrobial therapy and blood glucose control are required. Topical antimicrobial chlorine dioxide is a disinfectant that is effective in killing A. actinomycetemcomitans. Purpose: This study is aimed to determine the effects of topical antimicrobial chlorine dioxide gel or rinse on the number of A. actinomycetemcomitans in DM rats treated with insulin. Methods: 20 three month old male Wistar rats with weight of 170–200 grams were divided into four groups. First, periodontitis and DM were manipulated into all groups through aloksan injection with dose of 170 mg/kg. Those rats in group I were treated with insulin and chlorine dioxide gel, those in group II were treated with insulin and chlorine dioxide rinse, those in group III were treated with insulin only, and those in group IV were without treatment. In the third and seventh weeks, the number of A. actinomycetemcomitans was measured. The data was tested by using One-Way ANOVA test followed by LSD test. Results: The study showed that chlorine dioxide gel has a greater ability in reducing the number of A. actinomycetemcomitans than chlorine dioxide rinse although both are antimicrobials. Conclusion: It can be concluded that the use of chlorine dioxide gel can more effective to decrease the number of A. actinomycetemcomitans than chlorine dioxide rinse in DM rats

  12. Evaluation of Chlorine Dioxide Irrigation Solution on the Microhardness and Surface Roughness of Root Canal Dentin.

    Science.gov (United States)

    Ballal, Nidambur Vasudev; Khandewal, Deepika; Karthikeyan, Saravana; Somayaji, Krishnaraj; Foschi, Federico

    2015-12-01

    The aim of this study was to evaluate the effect of chlorine dioxide and various other more common irrigation solutions on the microhardness and surface roughness of root canal dentin. Fifty human maxillary central incisors were sectioned longitudinally and treated for 1 minute with 5 ml of the following aqueous solutions (v/v%): Group 1: 13.8% chlorine dioxide, Group 2: 17% ethylene diamine tetraacetic acid (EDTA). Group 3: 7% maleic acid, Group 4: 2.5% sodium hypochlorite (5 ml/min), Group 5: Saline (control). Specimens were subjected to microhardness and surface roughness testing. Chlorine dioxide and sodium hypochlorite reduced the microhardness more than other test agents. The highest surface roughness was produced with maleic acid. Chlorine dioxide should be used cautiously during chemomechanical preparation of the root canal system in order to prevent untoward damage to the teeth. PMID:26767238

  13. SUSCEPTIBILITY OF CHEMOSTAT-GROWN 'YERSINIA ENTEROCOLITICA' AND 'KLEBSIELLA PNEUMONIAE' TO CHLORINE DIOXIDE

    Science.gov (United States)

    The resistance of bacteria to antimicrobial agents could be influenced by growth environment. The susceptibility of two enteric bacteria, Yersinia enterocolitica and Klebsiella pneumoniae, to chlorine dioxide was investigated. These organisms were grown in a defined medium in a c...

  14. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  15. Chlorine dioxide as phenol and H2S scavenger - formation of halogenated phenols and subsequent environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Melbye, Alf G.; Faksness, Liv-Guri; Knudsen, Boerre Leif

    2006-03-15

    Formation of halogenated phenols as side products from treatment of produced water with aqueous chlorine dioxide has been investigated. The literature describes formation of halogenated hydrocarbons in effluent treatment using chlorine, hypochlorite and chlorine dioxide. A new chlorine dioxide product, originally intended as a H2S scavenger in the oil and gas industry, has been tested both as a phenol scavenger and H2S-scavenger for produced water applications. The concern about the possible formation of halogenated by-products initiated laboratory testing of chlorine dioxide as phenol and H2S scavenger for produced water applications. The tests also included synthetic matrixes containing phenols, and the tests show that halogenated phenols, mainly brominated species, are found in produced water after treatment with chlorine dioxide. Due to potential environmental risk from halogenated organic contaminants, the use of chlorine dioxide as phenol and H2S scavenger is not recommended. (Author)

  16. Chloroxyanion Residue Quantification in Cantaloupes Treated with Chlorine Dioxide Gas.

    Science.gov (United States)

    Kaur, Simran; Smith, David J; Morgan, Mark T

    2015-09-01

    Previous studies show that treatment of cantaloupes with chlorine dioxide (ClO2) gas at 5 mg/liter for 10 min results in a significant reduction (P chlorine dioxide ((36)ClO2) gas was used to describe the identity and distribution of chloroxyanion residues in or on cantaloupe subsequent to fumigation with ClO2 gas at a mean concentration of 5.1 ± 0.7 mg/liter for 10 min. Each treated cantaloupe was separated into rind, flesh, and mixed (rind and flesh) sections, which were blended and centrifuged to give the corresponding sera fractions. Radioactivity detected, ratio of radioactivity to mass of chlorite in initial ClO2 gas generation reaction, and distribution of chloroxyanions in serum samples were used to calculate residue concentrations in flesh, rind, and mixed samples. Anions detected on the cantaloupe were Cl(-) (∼ 90%) and ClO3(-) (∼ 10%), located primarily in the rind (19.3 ± 8.0 μg of Cl(-)/g of rind and 4.8 ± 2.3 μg of ClO3(-)/g of rind, n = 6). Cantaloupe flesh (∼ 200 g) directly exposed to(36)ClO2 gas treatment showed the presence of only Cl(-) residues (8.1 ± 1.0 μg of Cl(-)/g of flesh, n = 3). Results indicate chloroxyanion residues Cl(-) and ClO3(-) are only present on the rind of whole cantaloupes treated with ClO2 gas. However during cutting, residues may be transferred to the fruit flesh. Because Cl(-) is not toxic, only ClO3(-) would be a toxicity concern, but the levels transferred from rind to flesh are very low. In the case of fruit flesh directly exposed to ClO2 gas, only nontoxic Cl(-) was detected. This indicates that ClO2 gas that comes into contact with edible flesh would not pose a health concern. PMID:26319725

  17. Chloroxyanion residues in cantaloupe and tomatoes after chlorine dioxide gas sanitation

    Science.gov (United States)

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but few data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tom...

  18. Disinfection of football protective equipment using chlorine dioxide produced by the ICA TriNova system

    OpenAIRE

    DuBois John D; Newsome Anthony L; Tenney Joel D

    2009-01-01

    Abstract Backround Community-associated methicillin-resistant Staphylococcus aureus outbreaks have occurred in individuals engaged in athletic activities such as wrestling and football. Potential disease reduction interventions include the reduction or elimination of bacteria on common use items such as equipment. Chlorine dioxide has a long history of use as a disinfectant. The purpose of this investigation was to evaluate the ability of novel portable chlorine dioxide generation devices to ...

  19. Evaluation of possible use of disinfectant based on chlorine dioxide in dairy plant

    OpenAIRE

    Rakić-Martinez Mira; Katić Vera

    2009-01-01

    Poor sanitation of food contact surfaces has been a contributing factor in food borne disease outbreaks, especially those involving Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus etc. The objectives of this study were therefore to: 1. Determine the efficiency of a disinfectant based on chlorine dioxide in suspension in a closed system in a dairy plant. 2. Evaluate the possibility of disinfection of working surfaces with a disinfectant based on chlorine dioxid...

  20. Effect of Chlorine Dioxide Gas on Fungi and Mycotoxins Associated with Sick Building Syndrome

    OpenAIRE

    Wilson, S. C.; Wu, C; Andriychuk, L. A.; Martin, J. M.; Brasel, T. L.; Jumper, C. A.; Straus, D C

    2005-01-01

    The growth of indoor molds and their resulting products (e.g., spores and mycotoxins) can present health hazards for human beings. The efficacy of chlorine dioxide gas as a fumigation treatment for inactivating sick building syndrome-related fungi and their mycotoxins was evaluated. Filter papers (15 per organism) featuring growth of Stachybotrys chartarum, Chaetomium globosum, Penicillium chrysogenum, and Cladosporium cladosporioides were placed in gas chambers containing chlorine dioxide ga...

  1. Susceptibility of chemostat-grown Yersinia enterocolitica and Klebsiella pneumoniae to chlorine dioxide.

    OpenAIRE

    Harakeh, M S; Berg, J D; Hoff, J C; Matin, A.

    1985-01-01

    The resistance of bacteria to antimicrobial agents could be influenced by growth environment. The susceptibility of two enteric bacteria, Yersinia enterocolitica and Klebsiella pneumoniae, to chlorine dioxide was investigated. These organisms were grown in a defined medium in a chemostat and the influence of growth rate, temperature, and cell density on the susceptibility was studied. All inactivation experiments were conducted with a dose of 0.25 mg of chlorine dioxide per liter in phosphate...

  2. SIMULTANEOUS DETERMINATION OF CHLORINE DIOXIDE AND HYPOCHLOROUS ACID IN BLEACHING SYSTEM

    OpenAIRE

    Qiang Wang; Kefu Chen; Jun Li Mail; Jun Xu; Shanshan Liu Mail

    2011-01-01

    This study has demonstrated a rapid spectroscopic method for the determination of chlorine dioxide and hypochlorous acid concentrations in the pulp bleaching processes. It was found that chlorine dioxide and hypochlorous acid have an isosbestic wavelength of 295 nm. The soluble lignin in such a system is the main interference, but can be corrected by determining the absorbances at 295 nm, 380 nm, and 480 nm. Thus, based on the spectroscopic measurements at 295 nm (the isosbestic point wavelen...

  3. Effect of unbleached pulp kappa number on the kinetics of chlorine dioxide delignification

    OpenAIRE

    Simões, Rogério Manuel dos Santos; Barroca, Maria J. M. C.; Castro, José Almiro A. M.

    2010-01-01

    Chlorine dioxide delignification of different unbleached kraft pulps from Eucalyptus globulus, having Kappa numbers of 12 to 18, was studied in the temperature range of 285 K to 358 K. The effect of the unbleached pulp Kappa number on the initial fast phase of delignification was investigated with respect to the depletion factors for Kappa number and chlorine dioxide concentration, as proposed by Barroca et al. Furthermore, the behaviour of the floor lignin content of the pulp, or the floor K...

  4. Total oxidation of chlorinated VOCs on supported oxide catalysts

    OpenAIRE

    Bertinchamps, Fabrice

    2005-01-01

    Biomass-fed cogeneration units and waste incinerators have the advantages of producing efficiently heat and power and of reducing the amount of CO2 emitted per produced energy. However, they produce toxic polychlorinated VOCs (dioxins), CO and NOx. This thesis aims at developing a catalytic system for the total oxidation of chlorinated VOCs that: i) convert efficiently chlorinated VOCs below 250 °C and ii) resist to the exhaust co-pollutants (H2O, CO, NOx). Moreover, this thesis aims at havin...

  5. The synergistic effect of Escherichia coli inactivation by sequential disinfection with low level chlorine dioxide followed by free chlorine.

    Science.gov (United States)

    Yang, Wu; Yang, Dong; Zhu, Sui-Yi; Chen, Bo-Yan; Huo, Ming-Xin; Li, Jun-Wen

    2012-12-01

    To the best of our knowledge, there was little information available on pathogen removal using low level disinfectant followed by free chlorine in sequential disinfection (SD). This study investigated Escherichia coli inactivation by four types of disinfection: single step disinfection (SSD), SD, traditional sequential disinfection (TSD) and mixed disinfectant disinfection (MDD). Results indicated that SD had higher ability to inactivate E. coli than the others, indicating there was a positive synergistic effect on chlorine disinfection by prior dosing with a low level of chlorine dioxide (ClO(2)). The ONPG assay suggested that the permeability of cell wall rather than the viability of E. coli were changed under 0.02 mg/l ClO(2) treatment. The coexistence of residual ClO(2) and free chlorine also plays an active synergistic effect. Additionally, temperature had a positive effect on E. coli inactivation in SD, while inactivation was reduced in alkaline compared to neutral and acidic conditions. PMID:23165713

  6. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves

    Science.gov (United States)

    This study compared the efficacy of chlorine (20 – 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 – 200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20 – 200 ppm chlorite ion concentration, TriNova) washes in reducing population...

  7. Chloroxyanion Residues in Cantaloupe and Tomatoes after Chlorine Dioxide Gas Sanitation.

    Science.gov (United States)

    Smith, D J; Ernst, W; Herges, G R

    2015-11-01

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but little data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tomato and cantaloupe treatment with chlorine dioxide gas. Treatments delivered 50 mg of chlorine dioxide gas per kg of tomato (2-h treatment) and 100 mg of gas per kg of cantaloupe (6-h treatment) in sealed, darkened containers. Chlorate residues in tomato and cantaloupe edible flesh homogenates were less than the LC-MS/MS limit of quantitation (60 and 30 ng/g respectively), but were 1319 ± 247 ng/g in rind + edible flesh of cantaloupe. Perchlorate residues in all fractions of chlorine dioxide-treated tomatoes and cantaloupe were not different (P > 0.05) than perchlorate residues in similar fractions of untreated tomatoes and cantaloupe. Data from this study suggest that chlorine dioxide sanitation of edible vegetables and melons can be conducted without the formation of unwanted residues in edible fractions. PMID:26496046

  8. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    Science.gov (United States)

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX. PMID:26263004

  9. TOXICITY RESPONSES OF HERBACEOUS AND WOODY ORNAMENTAL PLANTS TO CHLORINE AND HYDROGEN DIOXIDES

    Science.gov (United States)

    To determine potential toxicity problems associated with foliar applications, chlorine dioxide (ClO2), at 2, 5, 20, 50, 100, 200, 1000, and 2000 and hydrogen dioxide (H2O2), at 900, 2700, 5400, and 10200 ppm, were sprayed five times at 3 day intervals on eight bedding plants and nine shrub species. ...

  10. Novel Lead dioxide-Graphite-Polymer composite anode for electrochemical chlorine generation

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: • Synthesis of tetragonal β-PbO2 impregnated graphite powder (G-PbO2). • Fabrication of polymer composite disc (G-PbO2-PMMA). • G-PbO2-PMMA electrode surface containing catalytic amounts of β-PbO2. • Better performance of G-PbO2-PMMA anode vs. Pt for chlorine evolution. • Efficient, low-cost anode for indirect oxidation of pollutants. -- Abstract: Lead dioxide coated graphite powder (G-PbO2) was synthesized using in-situ wet chemical synthesis method. Phase identification by X-ray diffraction (XRD) revealed the successful synthesis of G-PbO2 powder, containing β-PbO2. This powder was mixed with poly-methyl methacrylate (PMMA) and molded into circular discs for use as electrodes conveniently. The surface morphology and composition of the polymer composite (G-PbO2-PMMA) electrodes was characterized using SEM, EDXA and XPS. Electron transfer dynamics at the G-PbO2-PMMA electrode were examined using standard ferro-ferricyanide redox couple, Fe(CN)63−/4−, which displayed peak-to-peak separation of ∼71 mV. The electrochemical evolution of chlorine at G-PbO2-PMMA anode was also studied which showed favorableshift in the value of oxidation peak potential by ∼ 116 mV relative to Pt electrode. The concentration of total chlorine in solution was determined as a function of number of cyclic voltammetric scans at different scan rates. The observed concentration of the dissolved Cl2 was 23 mg L−1 (G-PbO2-PMMA, 5 mVs−1, 50CV cycles) and 15 mg L−1(Pt, 5 mVs−1, 50CV cycles). The performance of G-PbO2-PMMA with respect to chlorine evolution was found to be better compared with that of Pt electrode. The electron transfer at the lead dioxide coated graphite is found to be facile and the G-PbO2-PMMA is inferred to be good anode material for efficient Cl2 evolution

  11. Final chlorine dioxide stage at near-neutral pH for bleaching eucalypt pulp

    Directory of Open Access Journals (Sweden)

    Robisnéa A. Ribeiro

    2014-01-01

    Full Text Available It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be explained by the generation of sodium bicarbonate in situ upon adding carbon dioxide at this stage.

  12. Rapid Determination of HAAs Formation Potential of the Reaction of Humic Acid with Chlorine or Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhi-liang; GE Yuan-xin; ZHANG Rong-hua; MA Hong-mei; HAO Jian-fu

    2007-01-01

    On the basis of gas chromatography(GC) coupled with a short capillary column and an electron capture detector(ECD), a simple and rapid method for the determination of five haloacetic acids(HAAs) in drinking water was developed by the optimization of derivation conditions and the modification of gas chromatographic program. HAAs formation potential(HAAFP) of the reaction of humic acid with chlorine was determined via this method. The major advantages of the method are the simplicity of chromatographic temperature program and the short run time of GC. Dichloroacetic acid(DCAA) and Trichloroacetic acid(TCAA), which were detected in the determination of HAAFP, were rapidly formed in the first 72 h of the reaction of humic acid with chlorine. HAAFP of the reaction of humic acid with chlorine increased with the increase in the concentrations of humic acid and chlorine. The average HAAFP of the reaction of humic acid with chlorine was 39.9 μg/mg TOC under the experimental conditions. When the concentration of humic acid was 4 mg/L, the concentration of HAAs, which were produced in the reaction of humic acid with chorine, may exceed MCL of 60 μg/L HAAs as the water quality standards for urban water supply of China and the first stage of US EPA disinfection/disinfection by-products(D/DBP) rule; when the concentration of humic acid was 2 mg/L, the concentration of HAAs may exceed MCL of 30 μg/L HAAs for the second stage of US EPA D/DBP rule. When humic acid was reacted with chlorine dioxide, only DCAA was detected with a maximum concentration of 3.3 μg/L at a humic acid content of 6 mg/L. It was demonstrated that the substitution of chlorine dioxide for chorine may entirely or partly control the formation of HAAs and effectively reduce the health risk associated with disinfected drinking water.

  13. Selectivity Studies of Oxygen and Chlorine Dioxide in the Pre-Delignification Stages of a Hardwood Pulp Bleaching Plant

    OpenAIRE

    Barroca, Maria J. M. C.; Marques, Pedro J. T. S.; Seco, Isabel M.; Castro, José Almiro A. M.

    2001-01-01

    This work is concerned with the role of oxygen on the selectivity of chlorine dioxide in the pre-delignification stage of a E. globulus pulp bleaching plant. Its main purpose is to study the selectivity of chlorine dioxide when applied to an oxygen pre-delignified hardwood kraft pulp and to compare it to that of a conventional pre-delignification with chlorine dioxide (D). The intrinsic viscosity and kappa number were used to follow the polysaccharides degradation and the delignification rate...

  14. Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol

    International Nuclear Information System (INIS)

    Increasingly, there are severe environmental controls in the mining industry. Because of lack of technological advances, waste management practices are severely limited. Most of the wastes in the milling industrial effluents are known to contain cyanides and it is recognized that after extraction and recovery of precious metals, substantial amounts of cyanide are delivered to tailings ponds. The toxicity of cyanide creates serious environmental problems. In this paper we describe several methods for the treatment of cyanide solutions. These include: (1) cyanide destruction by oxidation with chlorine dioxide (ClO2) in a Gas-Sparged Hydrocyclone (GSH) reactor; (2) destruction of cyanide by ozone (O3) using a stirred batch reactor, and finally, (3) the photolysis of cyanide with UV light in presence of titania sol. In all cases excellent performance were observed as measured by the extent and of the destruction

  15. Study on application of chlorine dioxide in oilfield sewage treatment%二氧化氯在油田污水处理中的应用研究

    Institute of Scientific and Technical Information of China (English)

    叶兴平

    2012-01-01

    Due to its good oxidative bactericidal action, chlorine dioxide could effectively remove the reduction chemicals such as iron and sulfur, which led to corrosion and scaling, and the bacteria in the oilfield sewage. Practical use of chlorine dioxide in oilfield water injection enhanced oil recovery was summarized and it showed that chlorine dioxide could have a well application prospect in this field.%由于二氧化氯具有良好的氧化杀菌作用,可以有效地去除油田污水中铁、硫等具有腐蚀性和结垢性的还原性物质,以及杀灭油田污水中的细菌微生物.考察了它在油田注水采油中应用情况,展示了它在油田注水采油中应用前景.

  16. Analysis of the sporicidal activity of chlorine dioxide disinfectant against Bacillus anthracis (Sterne strain)

    OpenAIRE

    Chatuev, B.A.; Peterson, J W

    2010-01-01

    Routine surface decontamination is an essential hospital and laboratory procedure, but the list of effective, noncorrosive disinfectants that kill spores is limited. We investigated the sporicidal potential of an aqueous chlorine dioxide solution and encountered some unanticipated problems. Quantitative bacteriological culture methods were used to determine the log10 reduction of Bacillus anthracis (Sterne strain) spores following 3 min exposure to various concentrations of aqueous chlorine d...

  17. The chlorination kinetics of zirconium dioxide mixed with carbon black

    International Nuclear Information System (INIS)

    In this research, the effects of chlorine gas at different chlorine partial pressures and carbon concentrations on the carbochlorination of zirconia were studied. It was found that in briquettes containing 18.7 %wt carbon, in a chlorine partial pressure range of 0.25-0.75 atm and for a reacted fraction of less than 0.7, the chemical reaction model was dominant for the carbochlorination process of zirconia. The order of reaction into chlorine gas (n) in this situation was 0.57. Moreover, the best weight ratio of carbon to zirconia was 40/60. In this case, the activation energy of the reaction was 209.9 kJ mol-1 in a temperature range of 1023-1223 K, and the dominant model was the chemical reaction model.

  18. Evaluation of possible use of disinfectant based on chlorine dioxide in dairy plant

    Directory of Open Access Journals (Sweden)

    Rakić-Martinez Mira

    2009-01-01

    Full Text Available Poor sanitation of food contact surfaces has been a contributing factor in food borne disease outbreaks, especially those involving Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus etc. The objectives of this study were therefore to: 1. Determine the efficiency of a disinfectant based on chlorine dioxide in suspension in a closed system in a dairy plant. 2. Evaluate the possibility of disinfection of working surfaces with a disinfectant based on chlorine dioxide. In order to determine the germicidal effect of the disinfectant based on chlorine dioxide by suspension test (BSEN 1276:1997; the following test organisms were used: Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa clinical isolate. The corrosive properties of the disinfectant based on chlorine dioxide were tested by IDF 077:1977 standard. The efficacy of this disinfectant was investigated in a closed system in a dairy plant. Results indicated a 100% reduction of >108 cfu/ml L. monocytogenes, E. coli, Proteus mirabilis, Pseudomonas aeruginosa, S. aureus, viable count after 1 minute of exposure to 100 ppm of the disinfectant based on chlorine dioxide and 400 ppm for Bacillus cereus. In the presence of 2% skim milk and 4 % skim milk concentrations of 200 and 250 ppm resulted in 100% reduction in numbers of the five of six test microorganisms, respectively. The spore former, Bacillus cereus is less susceptible to the disinfectant. Therefore, the efficient concentration for 100% reduction in viable count after 1 minute exposure was 500 ppm. The corrosive properties of the disinfectant were not determined. In the case of closed system disinfection in a dairy plant, reduction in viable count after 15 minute exposure to 100 ppm of disinfectant based on chlorine dioxide ranged from 80 to 100%.

  19. Oxidation of manganese(II) during chlorination: role of bromide.

    Science.gov (United States)

    Allard, S; Fouche, L; Dick, J; Heitz, A; von Gunten, U

    2013-08-01

    The oxidation of dissolved manganese(II) (Mn(II)) during chlorination is a relatively slow process which may lead to residual Mn(II) in treated drinking waters. Chemical Mn(II) oxidation is autocatalytic and consists of a homogeneous and a heterogeneous process; the oxidation of Mn(II) is mainly driven by the latter process. This study demonstrates that Mn(II) oxidation during chlorination is enhanced in bromide-containing waters by the formation of reactive bromine species (e.g., HOBr, BrCl, Br2O) from the oxidation of bromide by chlorine. During oxidation of Mn(II) by chlorine in bromide-containing waters, bromide is recycled and acts as a catalyst. For a chlorine dose of 1 mg/L and a bromide level as low as 10 μg/L, the oxidation of Mn(II) by reactive bromine species becomes the main pathway. It was demonstrated that the kinetics of the reaction are dominated by the adsorbed Mn(OH)2 species for both chlorine and bromine at circumneutral pH. Reactive bromine species such as Br2O and BrCl significantly influence the rate of manganese oxidation and may even outweigh the reactivity of HOBr. Reaction orders in [HOBr]tot were found to be 1.33 (±0.15) at pH 7.8 and increased to 1.97 (±0.17) at pH 8.2 consistent with an important contribution of Br2O which is second order in [HOBr]tot. These findings highlight the need to take bromide, and the subsequent reactive bromine species formed upon chlorination, into account to assess Mn(II) removal during water treatment with chlorine. PMID:23859083

  20. The Erosion Properties of Chlorine Dioxide and Hydrogen Peroxide on Bovine Teeth

    OpenAIRE

    Ablal MA; Jarad FD; Adeyemi AA

    2015-01-01

    Objectives: The aim of this study was to assess the erosion potential of chlorine dioxide and hydrogen peroxide on bovine teeth. Methods: Sixty bovine crowns were ground and polished to give flat surfaces. The crowns were subjected to heavy staining cycles then equally divided into 3 treatment groups; chlorine dioxide (ClO2), hydrogen peroxide (H2O2), and deionised water (H2O). Specimens in each group were immersed in 150 ml of the treatment for seven 2 min cycle in addition...

  1. Final chlorine dioxide stage at near-neutral pH for bleaching eucalypt pulp

    OpenAIRE

    Robisnéa A. Ribeiro; Fernando J. B. Gomes; José N. Floriani; Renato A. P. Damásio; Iara F. Demuner; Jorge L. Colodette

    2014-01-01

    It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be expla...

  2. Exposure to Chlorine Dioxide Gas for 4 Hours Renders Syphacia Ova Nonviable

    OpenAIRE

    Czarra, Jane A; Adams, Joleen K; Carter, Christopher L; Hill, William A; Coan, Patricia N.

    2014-01-01

    The purpose of our study was to evaluate the efficacy of chlorine dioxide gas for environmental decontamination of Syphacia spp. ova. We collected Syphacia ova by perianal cellophane tape impression of pinworm-infected mice. Tapes with attached ova were exposed to chlorine dioxide gas for 1, 2, 3, or 4 h. After gas exposure, ova were incubated in hatching medium for 6 h to promote hatching. For controls, tapes with attached ova were maintained at room temperature for 1, 2, 3, and 4 h without ...

  3. CHLORINE DIOXIDE BLEACHING OF SODA-ANTHRAQUINONE JUTE PULP TO A VERY HIGH BRIGHTNESS

    OpenAIRE

    M. Sarwar Jahan; Yonghao Ni,; Zhibin He

    2010-01-01

    Bleaching of soda-anthraquinone jute pulp by chlorine dioxide (ClO2) was studied to reach a target brightness of above 88% for the purpose of using less bleaching chemicals. The performance of either chlorine dioxide or peroxide in the final bleaching to boost brightness was also studied. The experimental results revealed that the final brightness depended on ClO2 charge in the Do and D1 stages. The brightness reversion was lower when the final stage brightening was done by peroxide. The use ...

  4. Process Development and Design of Chlorine Dioxide Production Based on Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    陈赟; 江燕斌; 钱宇

    2004-01-01

    This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization of process conditions, selection of equipment, and experiment of recycle of waste acid are carried out. The process design is realized in consideration of several aspects such as operation, material, equipment design and safety. An industrialized process flowsheet is developed according to experiment. A pilot testing is carried out to confirm the lab results. Process design of chlorine dioxide production based on hydrogen peroxide is realized.

  5. Effect of sulfur dioxide on indium(3) sulfate chlorination

    International Nuclear Information System (INIS)

    The results of thermodynamic calculations and kinetic investigations of In2(SO4)3 interaction with gaseous Cl2 and equimolar Cl2 and SO2 mixture at 127-800 deg C are presented. It is found that acceleration of chlorination rate takes place in the presence of SO2, while the temperature of its beginning and activation energy decrease

  6. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce

    Science.gov (United States)

    A feasibility study was conducted to develop chlorine dioxide releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amount of PLA (100 & 300 mg), percentage of reactant (5-60...

  7. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries

    Science.gov (United States)

    The effect of chlorine dioxide (ClO2) on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 water direct contact killed food pathogen bacterium, Escherichia coli and fruit decay pathogen fungus, Colletotrichum acutatum. In vivo studies...

  8. Comparison of commercial analytical techniques for measuring chlorine dioxide in urban desalinated drinking water.

    Science.gov (United States)

    Ammar, T A; Abid, K Y; El-Bindary, A A; El-Sonbati, A Z

    2015-12-01

    Most drinking water industries are closely examining options to maintain a certain level of disinfectant residual through the entire distribution system. Chlorine dioxide is one of the promising disinfectants that is usually used as a secondary disinfectant, whereas the selection of the proper monitoring analytical technique to ensure disinfection and regulatory compliance has been debated within the industry. This research endeavored to objectively compare the performance of commercially available analytical techniques used for chlorine dioxide measurements (namely, chronoamperometry, DPD (N,N-diethyl-p-phenylenediamine), Lissamine Green B (LGB WET) and amperometric titration), to determine the superior technique. The commonly available commercial analytical techniques were evaluated over a wide range of chlorine dioxide concentrations. In reference to pre-defined criteria, the superior analytical technique was determined. To discern the effectiveness of such superior technique, various factors, such as sample temperature, high ionic strength, and other interferences that might influence the performance were examined. Among the four techniques, chronoamperometry technique indicates a significant level of accuracy and precision. Furthermore, the various influencing factors studied did not diminish the technique's performance where it was fairly adequate in all matrices. This study is a step towards proper disinfection monitoring and it confidently assists engineers with chlorine dioxide disinfection system planning and management. PMID:26608759

  9. Controlling Mold on Library Materials with Chlorine Dioxide: An Eight-Year Case Study.

    Science.gov (United States)

    Weaver-Meyers, Pat L.; Kowaleski, Barbara; Stolt, Wilbur A.

    1998-01-01

    Discusses problems associated with mold growth at the University of Oklahoma libraries and describes the results of using chlorine dioxide in aqueous and gaseous forms. Highlights include toxicity compared to other preservation treatments; environmental controls; and explanations of a preference for the use of a self-activating gas packet.…

  10. Distribution and chemical fate of chlorine dioxide gas during sanitation of tomatoes and cantaloupe

    Science.gov (United States)

    A series of studies was conducted to establish the 1) distribution and chemical fate of 36-ClO2 on tomatoes and cantaloupe; and 2) the magnitude of residues in kilogram quantities of tomatoes and cantaloupe sanitized with a slow-release chlorine dioxide formulation. Tomatoes and cantaloupe were resp...

  11. Novel Lead dioxide-Graphite-Polymer composite anode for electrochemical chlorine generation

    Czech Academy of Sciences Publication Activity Database

    Gedam, N.; Neti, R.N.; Kormunda, M.; Šubrt, Jan; Bakardjieva, Snejana

    2015-01-01

    Roč. 169, JUL (2015), s. 109-116. ISSN 0013-4686 Institutional support: RVO:61388980 Keywords : beta-Lead dioxide * Graphite * Polymer composite anode * Chlorine generation * Cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 4.504, year: 2014

  12. Influences of packaging design on antimicrobial effects of gaseous chlorine dioxide

    Science.gov (United States)

    Chlorine dioxide (ClO2) gas is an effective surface disinfectant, for it has the ability to reach and inactivate bacterial cells in biofilms which are attached to inaccessible sites on produce surfaces. One of the most promising applications of gaseous ClO2 is to be included in the headspace of foo...

  13. New packaging design for fresh produce with effective distribution of antimicrobial gaseous chlorine dioxide

    Science.gov (United States)

    In the last decade, the potential use of chlorine dioxide (ClO2) as an antimicrobial agent for vapor-phase decontamination to extend the shelf-life of fresh produce has been widely studied. Most of the works focused on the dose of gaseous ClO2 for particular food product and/or specific microorganis...

  14. Selective Chlorine Evolution Catalysts Based on Mg-Doped Nanoparticulate Ruthenium Dioxide

    Czech Academy of Sciences Publication Activity Database

    Abbott, D. F.; Petrykin, Valery; Okube, Maki; Bastl, Zdeněk; Mukerjee, S.; Krtil, Petr

    2015-01-01

    Roč. 162, č. 1 (2015), H23-H31. ISSN 0013-4651 EU Projects: European Commission(XE) 214936 Institutional support: RVO:61388955 Keywords : chlorine * electrochemistry * nanocrystalline Mg-doped ruthenium dioxide Subject RIV: CG - Electrochemistry Impact factor: 3.266, year: 2014

  15. Standard test methods for analysis of sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 These test methods cover procedures for the analysis of sintered gadolinium oxide-uranium dioxide pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Section Carbon (Total) by Direct CombustionThermal Conductivity Method C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Chlorine and Fluorine by Pyrohydrolysis Ion-Selective Electrode Method C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Gadolinia Content by Energy-Dispersive X-Ray Spectrometry C1456 Test Method for Determination of Uranium or Gadolinium, or Both, in Gadolinium Oxide-Uranium Oxide Pellets or by X-Ray Fluorescence (XRF) Hydrogen by Inert Gas Fusion C1457 Test Method for Determination of Total Hydrogen Content of Uranium Oxide Powders and Pellets by Carrier Gas Extraction Isotopic Uranium Composition by Multiple-Filament Surface-Ioni...

  16. THM reduction on water distribution network with chlorine dioxide as disinfectant; Reduccion de THM en red de distribucion utilizando dioxido de cloro como desinfectante

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, G.; Gorriz, D.; Pascual, E.; Romero, M.

    2009-07-01

    A disinfectant change on water distribution network, by chlorine dioxide in that case, avoids THM formation. In the other hand it creates big doubts about utilization and analytical determination of another oxidant different to chlorine. Just a need to comply the current legislation points us to make a change as the one mentioned above and carried out in DWTP Rio Verde, being managed by Acosol, where the THM formation is been reduced to 80%, according to the new limit of 100{mu}g/l, along the 200 km of the supply network. (Author) 13 refs.

  17. Macrokinetic relationships between anodic processes in chlorine electrolysis on ruthenium-titanium oxide anodes

    International Nuclear Information System (INIS)

    Effect of porosity on kinetics of the main (chlorine evolution) and side (oxygen evolution and anodic dissolution of ruthenium dioxide) reactions for chlorine electrolysis conditions has been analyzed. Making allowance for chlorine hydrolysis secondary reaction, the distribution of chlorine concentration, solution pH and current densities of the main and side processes over the porous anode depth, have been found. It is shown that solution acidification in the anode pores due to chlorine hydrolysis can bring about replacement of oxygen evolution and ruthenium dioxide dissolution side reactions toward the porous anode external sides thus affecting its selectivity and corrosion resistance

  18. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    OpenAIRE

    Laishun Shi; Xiaomei Wang; Na Li; Jie Liu; Chunying Yan

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and...

  19. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Vineet Jeena; Robinson, Ross S.

    2009-01-01

    The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding α-hydroxyketones.

  20. Control of Legionella pneumophila in a hospital water system by chlorine dioxide.

    Science.gov (United States)

    Walker, J T; Mackerness, C W; Mallon, D; Makin, T; Williets, T; Keevil, C W

    1995-10-01

    Immuno-compromised patients are particularly susceptible to Legionnaires' Disease. After three cases of the disease occurred in a hospital, a continuous dosing regime using chlorine dioxide was initiated to replace chlorination of the water system. This study identified a number of factors which may have resulted in conditions that would encourage the growth of the water-borne pathogen Legionella pneumophila. The residual chlorination was inadequate for microbial control at the taps furthest from the four storage tanks, of which two were found to be in excess for demand. The temperature of the water in the storage tanks was also found to be above 20 degrees C; a temperature that would encourage microbial growth. A back-up calorifier was present and was found to contain L. pneumophila, and linseed oil-based sealants that provide nutrients for microbial growth were also prevalent as jointing compounds in the water circuit. Although the shower heads were routinely disinfected, a requirement was identified to also disinfect the shower hoses. No L. pneumophila were recovered from the water system after the chlorine reduced dioxide disinfection trial. Biofilm was also dramatically reduced after disinfection; however, small microcolonies were identified and proved to be metabolically active when tested with a metabolic indicator. Using light and fluorescence microscopy, the pipe samples removed from the water system were rapidly analysed for biofouling, complementing existing microbiological methods. PMID:8605076

  1. Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide

    OpenAIRE

    Friedline, Anthony; Zachariah, Malcolm; Middaugh, Amy; Heiser, Matt; Khanna, Neeraj; Vaishampayan, Parag; Rice, Charles V.

    2015-01-01

    Bacillus pumilus SAFR-032 spores isolated from a clean room environment are known to exhibit enhanced resistance to peroxide, desiccation, UV radiation and chemical disinfection than other spore-forming bacteria. The survival of B. pumilus SAFR-032 spores to standard clean room sterilization practices requires development of more stringent disinfection agents. Here, we report the effects of a stabilized chlorine dioxide-based biocidal agent against spores of B. pumilus SAFR-032 and Bacillus s...

  2. Chlorine dioxide: An ideal preprocedural mouthrinse in dental set-up

    OpenAIRE

    Rajiv Saini

    2015-01-01

    Background: Aerosols generated during ultrasonic scaling is a potential risk factor for cross-contamination in dental settings. The aim of this study is to evaluate and compare the efficacy of commercially available chlorine dioxide as preprocedural mouthrinses in reducing the level of viable bacteria in aerosols. Materials and Methods : This single-center clinical double-blinded study was conducted over a period of 4 months. A total of 80 patients were divided randomly into two groups (A and...

  3. Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction

    OpenAIRE

    Mínguez, David G.; Alonso Muñoz, Sergio; Muñuzuri, A. P.; Sagués i Mestre, Francesc

    2006-01-01

    The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model ...

  4. Investigating the Environment-dependent Photophysics of Chlorine Dioxide With Resonance Raman Intensities

    OpenAIRE

    Esposito, Anthony P.; Foster, Catherine E.; Reid, Philip J.

    1999-01-01

    The condensed-phase excited-state reaction dynamics of chlorine dioxide are investigated using resonance Raman intensity analysis. Absolute Raman intensities are measured on resonance with the 2B2–2A2 electronic transition and used to establish the excited-state structural evolution which occurs on the 2A2 surface following photoexcitation. Analysis of the intensities demonstrates that excited-state relaxation occurs along all three normal coordinates; however, only modest evolution is observ...

  5. Chlorine Dioxide for Reduction of Postharvest Pathogen Inoculum during Handling of Tree Fruits

    OpenAIRE

    Roberts, Rodney G.; Reymond, Stephen T.

    1994-01-01

    Alternatives to hypochlorous acid and fungicides are needed for treatment of fruit and fruit-handling facilities. Chlorine dioxide was evaluated and found effective against common postharvest decay fungi and against filamentous fungi occurring on fruit packinghouse surfaces. In vitro tests with conidial or sporangiospore suspensions of Botrytis cinerea, Penicillium expansum, Mucor piriformis, and Cryptosporiopsis perennans demonstrated >99% spore mortality within 1 min when the fungi were exp...

  6. Temperature dependence and mechanism of the reaction between O(3P) and chlorine dioxide

    Science.gov (United States)

    Colussi, A. J.; Sander, S. P.; Fiedl, R. R.

    1992-01-01

    Second-order rate constants for the decay of O(3P) in excess chlorine dioxide, k(II), were measured as a function of total pressure (20-600 Torr argon) and temperature (248-312 K), using flash photolysis-atomic resonance fluorescence. Results indicate that k(II) is pressure dependent with a value, K(b), that is nonzero at zero pressure, and both the third-order rate constant and k(b) have negative temperature dependences.

  7. Effect of antecedent growth conditions on sensitivity of Escherichia coli to chlorine dioxide.

    OpenAIRE

    1982-01-01

    Bacterial resistance to inactivation by antibacterial agents that is induced by the growth environment was studied. Escherichia coli was grown in batch culture and in a chemostat, and the following parameters were varied: type of substrate, growth rate, temperature, and cell density during growth. Low doses (0.75 mg/liter) of chlorine dioxide were used to inactivate the cultures. The results demonstrated that populations grown under conditions that more closely approximated natural aquatic en...

  8. Application of gaseous disinfectants ozone and chlorine dioxide for inactivation of Bacillus subtilis spores

    OpenAIRE

    Aydogan, Ahmet

    2006-01-01

    A terrorist attack involving chemical and/or biological warfare agents is a growing possibility. Since anthrax is considered as an immediate public-health threat that can be created by a warfare agent, it is imperative to investigate the potential remediation technologies effective against this threat. In this study, the effectiveness of two gaseous disinfectants, ozone and chlorine dioxide, to inactivate B.subtilis spores - as surrogate to B.anthracis that can cause the infectious anthrax di...

  9. MECHANISM OF FUSARIUM TRICINCTUM (CORDA) SACC. SPORE INACTIVATION BY CHLORINE DIOXIDE

    OpenAIRE

    Zhao Chen

    2015-01-01

    The mechanism of Fusarium tricinctum (Corda) Sacc. spore inactivation by chlorine dioxide (ClO2) was investigated. During F. tricinctum spore inactivation by ClO2, protein, DNA, and metal ion leakage, enzyme activity, and cell ultrastructure were examined. Protein and DNA leakages were not detected, while there were metal ion leakages of K+, Ca2+, and Mg2+, which were well-correlated with the inactivation rate. The enzyme activities of glucose-6-phosphate dehydrogenase, citrate synthase, and ...

  10. On the cause of the tailing phenomenon during virus disinfection by chlorine dioxide

    OpenAIRE

    Sigstam, Anne Thérèse; Rohatschek, Andreas; Zhong, Qingxia; Brennecke, Moritz; Kohn, Tamar

    2014-01-01

    This study investigates the mechanisms underlying the deviation from Chick-Watson kinetics, namely a tailing curve, during the disinfection of viruses by chlorine dioxide (ClO2). Tailing has been previously reported, but is typically attributed to the decay in disinfectant concentration. Herein, it is shown that tailing occurs even at constant ClO2 concentrations. Four working hypothesis to explain the cause of tailing were tested, namely changes in the solution’s disinfecting capacity, aggre...

  11. Chlorine dioxide: An ideal preprocedural mouthrinse in dental set-up

    Directory of Open Access Journals (Sweden)

    Rajiv Saini

    2015-01-01

    Full Text Available Background: Aerosols generated during ultrasonic scaling is a potential risk factor for cross-contamination in dental settings. The aim of this study is to evaluate and compare the efficacy of commercially available chlorine dioxide as preprocedural mouthrinses in reducing the level of viable bacteria in aerosols. Materials and Methods : This single-center clinical double-blinded study was conducted over a period of 4 months. A total of 80 patients were divided randomly into two groups (A and B of 40 patients each to receive the chlorine dioxide mouthwash and water as preprocedural rinse. The aerosol produced by the ultrasonic unit was collected at five standardized location with respect to the reference point, that is, the mouth of the patient. The blood agar plates were incubated at 37°C for 48 h, and total number of colony-forming units (CFUs was counted and statistically analyzed. Results: The results showed that CFUs in test group A were significantly reduced compared with control group B, P < 0.001 (analysis of variance. The numbers of CFUs were highest in the patient chest area and lowest at the patient front, that is, 6 o′ clock position. Conclusion: This study proves that a regular preprocedural mouthrinse with chlorine dioxide could significantly reduce aerosols generated during professional oral prophylaxis.

  12. Session 6: The catalytic oxidation of selected chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Oszczudlowski, J. [Institute of Chemistry, Swietokrzyska Academy, Kielce (Poland)

    2004-07-01

    The catalytic oxidation of selected chlorinated hydrocarbons was investigated in the presence of natural zeolites modified with 3M HCl and chromium and lanthanum from aqueous solutions. Natural zeolites of the structure of clinoptilolite or mordenite possess unique physical and chemical properties such as high sorptive capacity and ion-exchange selectivity, relatively high heat and mechanical resistance. The activation of samples of natural zeolites was carried out in a 3M aqueous solution of HCl using a Soxhlet apparatus, whereas the ion exchange from aqueous solutions of chromium (III) and lanthanum (III) nitrates. Samples of activated zeolites were calcinated at 500 C with a programmable temperature increase within 4 hours The amounts of Cr and La on zeolite were 3,0 % wt and 4,5 % wt, respectively. Catalytic tests were conducted in a micro-reactor coupled with a gas chromatograph. The conditions of reaction were as follows: temperature range: 473-723 K, substrate composition: chlorinated hydrocarbon (1000-10000 ppm), steam (0-10000 ppm) and air. Under standard conditions volatile chlorinated hydrocarbons were introduced into a gas flux as vapours, whereas low-volatile ones in a mixture with n-hexane or cyclohexane. The quantity of the deposits on the surface of a catalyst was analysed by the thermogravimetric and GC-MS methods. The composition of oxidation products of chlorinated hydrocarbons was chromatographically analysed indirectly with the techniques SPME-GC-ECD and SPME-GCFID. The total quantity of the products was stored in gas containers-Tedlars and the quantitative and qualitative composition was analysed by the method SPME-HS-GC-ECD (solid phase micro-extraction-headspace-gas chromatography-electron capture detector). The total oxidation of CCl{sub 4} and C{sub 2}Cl{sub 6} in the presence of the Cr/zeolite catalyst occurs at 400 C. The conversion of the catalytic oxidation of chloro-olefins in the presence of the La/zeolite catalyst increases within

  13. Oxidation of synthetic phenolic antioxidants during water chlorination.

    Science.gov (United States)

    Rodil, Rosario; Quintana, José Benito; Cela, Rafael

    2012-01-15

    The degradation of seven phenolic antioxidants and metabolites during chlorination was investigated. Under strong chlorination conditions (10 mg L(-1) chlorine, 24h), five of the target compounds were significantly degraded, while only BHT-Q (2,6-di-tert-butylcyclohexa-2,5-diene-1,4-dione) and BHT-CHO (3,5-di-tert-butyl-4-hydroxybenzaldehyde) were stable. The effect of the presence of bromide to the sample was only significant for BHA (butylated hydroxyanisole) resulting in increased disappearance rate as it is increased. Moreover, the disappearance kinetics were investigated at different concentrations of chlorine and pH of sample using a factorial experimental design. It was observed that the pH of the sample was a significant factor for BHT (butylated hydroxytoluene) and BHA, and chlorine concentration was significant for BHT, resulting in increased disappearance kinetics as they are increased. The degradation of these compounds has revealed two main processes: hydroxylation and oxidation of the aromatic system. The hydroxylated derivatives in some cases (e.g. from BHT-OH (2,6-di-tert-butyl-4-(hydroxymethyl)phenol) and BHT-COOH (3,5-di-tert-butyl-4-hydroxybenzoic acid)) are formed via the chlorinated and/or brominated intermediate. Moreover, the oxidation of the aromatic system leads to the quinone derivatives. The investigation of these by-products in real samples by solid-phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS) showed that derivatives of BHT, BHT-OH and/or BHT-COOH occurred in wastewater and drinking water samples analysed. PMID:22093692

  14. Interaction of indium and tin oxides mixture with chloride in the presence of sulfur dioxide

    International Nuclear Information System (INIS)

    Investigation into chemical sublimation of indium and tin chlorides from equimolar mixture of the respective oxides under the atmosphere of chloride and mixture of chlorine and sulfur dioxide at 550-700 deg C is carried out. Mutual effect of indium and tin oxides conducted via gas phase is shown to result in growth of the rate of chloridosublimation of both metals. 6 refs.; 4 figs.; 1 tab

  15. Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide.

    Science.gov (United States)

    Cha, Hyung-Gon; Seo, Min-Ho; Lee, Heon-Young; Lee, Ji-Hyun; Lee, Dong-Sup; Shin, Kyoungsoon; Choi, Keun-Hyung

    2015-06-15

    We examined the synergistic effects of CO2 injection on electro-chlorination in disinfection of plankton and bacteria in simulated ballast water. Chlorination was performed at dosages of 4 and 6ppm with and without CO2 injection on electro-chlorination. Testing was performed in both seawater and brackish water quality as defined by IMO G8 guidelines. CO2 injection notably decreased from the control the number of Artemia franciscana, a brine shrimp, surviving during a 5-day post-treatment incubation (1.8 and 2.3 log10 reduction in seawater and brackish water, respectively at 6ppm TRO+CO2) compared with water electro-chlorinated only (1.2 and 1.3 log10 reduction in seawater and brackish water, respectively at 6ppm TRO). The phytoplankton Tetraselmis suecica, was completely disinfected with no live cell found at >4ppm TRO with and without CO2 addition. The effects of CO2 addition on heterotrophic bacterial growth was not different from electro-chlorination only. Total residual oxidant concentration (TRO) more rapidly declined in electro-chlorination of both marine and brackish waters compared to chlorine+CO2 treated waters, with significantly higher amount of TRO being left in waters treated with the CO2 addition. Total concentration of trihalomethanes (THMs) and haloacetic acids (HAAs) measured at day 0 in brackish water test were found to be 2- to 3-fold higher in 6ppm TRO+CO2-treated water than in 6ppm TRO treated water. The addition of CO2 to electro-chlorination may improve the efficiency of this sterilizing treatment of ballast water, yet the increased production of some disinfection byproducts needs further study. PMID:25841887

  16. Manganese chlorins immobilized on silica as oxidation reaction catalysts.

    Science.gov (United States)

    Castro, Kelly A D F; Pires, Sónia M G; Ribeiro, Marcos A; Simões, Mário M Q; Neves, M Graça P M S; Schreiner, Wido H; Wypych, Fernando; Cavaleiro, José A S; Nakagaki, Shirley

    2015-07-15

    Synthetic strategies that comply with the principles of green chemistry represent a challenge: they will enable chemists to conduct reactions that maximize the yield of products with commercial interest while minimizing by-products formation. The search for catalysts that promote the selective oxidation of organic compounds under mild and environmentally friendly conditions constitutes one of the most important quests of organic chemistry. In this context, metalloporphyrins and analogues are excellent catalysts for oxidative transformations under mild conditions. In fact, their reduced derivatives chlorins are also able to catalyze organic compounds oxidation effectively, although they have been still little explored. In this study, we synthesized two chlorins through porphyrin cycloaddition reactions with 1.3-dipoles and prepared the corresponding manganese chlorins (MnCHL) using adequate manganese(II) salts. These MnCHL were posteriorly immobilized on silica by following the sol-gel process and the resulting solids were characterized by powder X-ray diffraction (PXRD), UVVIS spectroscopy, FTIR, XPS, and EDS. The catalytic activity of the immobilized MnCHL was investigated in the oxidation of cyclooctene, cyclohexene and cyclohexane and the results were compared with the ones obtained under homogeneous conditions. PMID:25841060

  17. Removal of Microcystin-LR in Water by Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    JI Ying; HUANG Jun-li; FU Jiao; WU Ming-song; SU Li-qiang; CUI Chong-wei

    2007-01-01

    Microcystins(MCs)are well known as hepatotoxins produced by blooms of toxic cyanobacteria(blue-green algae) abundant in surface water used as drinking water resource and have drawn attention of environmentalists world over by leading to adverse health effects.A study on efficiency and reaction kinetics of microcystin-LR(MC-LR)degradation by ClO2 was performed. Experimental results indicated that MC-LR was removed by ClO2 effectively and the residual concentration of MC-LR could meet the national guideline(GB5749-2006)(1.0 μg·L-1 ),the efficiency of removal was in positive correlation to ClO2 dosage and reaction time and in negative correlation to initial concentration of MC-LR and pH value, whereas it was affected by temperature slightly.ClO2 dosage was the most important reaction factor on base of the orthogonal test results.The reaction was second order overall and first order with respect to both ClO2 and MC-LR,and had an activation energy of 78.81 kJ · mol-1.The reaction rate constant was 4.74×102 L/(mol·min) at 10 ℃.Therefore, oxidation of ClO2 could be taken as an effective technology for removing MC-LR from drinking water resources in traditional drinking water supplies.

  18. The Effects of Oxy-firing Conditions on Gas-phase Mercury Oxidation by Chlorine and Bromine

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula; Silcox, Geoffrey

    2010-06-30

    Bench-scale experiments were conducted in a quartz-lined, natural gas-fired reactor with the combustion air replaced with a blend of 27 mole percent oxygen, with the balance carbon dioxide. Quench rates of 210 and 440 K/s were tested. In the absence of sulfur dioxide, the oxy-firing environment caused a remarkable increase in oxidation of mercury by chlorine. At 400 ppm chlorine (as HCl equivalent), air-firing results in roughly 5 percent oxidation. At the same conditions with oxy-firing, oxidation levels are roughly 80 percent. Oxidation levels with bromine at 25 and 50 ppm (as HBr equivalent) ranged from 80 to 95 percent and were roughly the same for oxy- and air-firing conditions. Kinetic calculations of levels of oxidation at air- and oxy-conditions captured the essential features of the experimental results but have not revealed a mechanistic basis for the oxidative benefits of oxy-firing conditions. Mixtures of 25 ppm bromine and 100 and 400 ppm chlorine gave more than 90 percent oxidation. At all conditions, the effects of quench rate were not significant. The presence of 500 ppm SO2 caused a dramatic decline in the levels of oxidation at all oxy-fired conditions examined. This effect suggests that SO2 may be preventing oxidation in the gas phase or preventing oxidation in the wetconditioning system that was used in quantifying oxidized and elemental mercury concentrations. Similar effects of SO2 have been noted with air-firing. The addition of sodium thiosulfate to the hydroxide impingers that are part of wet conditioning systems may prevent liquid-phase oxidation from occurring.

  19. Chlorine

    Science.gov (United States)

    ... chlorine gas are inhaled. Fluid in the lungs (pulmonary edema) that may be delayed for a few hours ... health problems such as fluid in the lungs (pulmonary edema) following the initial exposure. How people can protect ...

  20. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts

    OpenAIRE

    Nishikiori, Ryo; Nomura, Yuji; Sawajiri, Masahiko; Masuki, Kohei; Hirata, Isao; Okazaki, Masayuki

    2008-01-01

    Objectives: The effects of chlorine dioxide (ClO2), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2) on cell death and the cell cycle of human gingival fibroblast (HGF) cells were examined. Methods: The inhibition of HGF cell growth was evaluated using a Cell Counting Kit-8. The cell cycle was assessed with propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases) using flow cytometry. The patterns of cell death (necrosis and apoptosis) were analyzed using f...

  1. Detection of chlorinated methanes by tin oxide gas sensors.

    Science.gov (United States)

    Park, S H; Son, Y C; Shaw, B R; Creasy, K E; Suib, S L

    2001-08-01

    Tin oxide thin films prepared by thermal oxidation of Sn films were used for the detection of chlorinated methanes (CH2Cl2, CHCl3 and CCl4). This resulted in better chemical selectivity, sensitivity, response speed and detection limit than seen with previous detectors. The temperature dependence of the sensing of 1% CCl4 gas was studied and the best sensing behavior was observed at 300 degrees C. The films showed different chemical selectivity in both speed and direction of sensing response to each gas and were stable for more than 3 weeks under operating conditions. The films showed rapid gas sensing (<40 s to reach 90% of full response) and low detection limits (< 4 ppm CCl4). The role of oxygen in the detection of chlorinated methanes and in resistance changes without chlorinated methanes was also studied. The changes at the surface of the film after gas sensing were examined using scanning electron microscopy with energy-dispersive X-ray spectrometry. PMID:11534610

  2. Thermal Oxidation of Structured Silicon Dioxide

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Jensen, Jørgen Arendt;

    2014-01-01

    The topography of thermally oxidized, structured silicon dioxide is investigated through simulations, atomic force microscopy, and a proposed analytical model. A 357 nm thick oxide is structured by removing regions of the oxide in a masked etch with either reactive ion etching or hydrofluoric acid....... Subsequent thermal oxidation is performed in both dry and wet ambients in the temperature range 950◦C to 1100◦C growing a 205 ± 12 nm thick oxide in the etched mask windows. Lifting of the original oxide near the edge of the mask in the range 6 nm to 37 nm is seen with increased lifting for increasing...... mainly by diffusion and the geometry of the oxide. Simulations also predict the oxide topography quantitatively, with an average root mean square deviation of 1.2 nm and a maximum deviation of 13 nm (39%) from the mean of the measured values....

  3. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    OpenAIRE

    Thorn, R. M. S.; G.M. Robinson; Reynolds, D M

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard micro...

  4. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.

    Science.gov (United States)

    Wu, Qianyuan; Li, Yue; Wang, Wenlong; Wang, Ting; Hu, Hongying

    2016-03-01

    Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation. PMID:26969069

  5. Sulfur Dioxide Capture by Heterogeneous Oxidation on Hydroxylated Manganese Dioxide.

    Science.gov (United States)

    Wu, Haodong; Cai, Weimin; Long, Mingce; Wang, Hairui; Wang, Zhiping; Chen, Chen; Hu, Xiaofang; Yu, Xiaojuan

    2016-06-01

    Here we demonstrate that sulfur dioxide (SO2) is efficiently captured via heterogeneous oxidation into sulfate on the surface of hydroxylated manganese dioxide (MnO2). Lab-scale activity tests in a fluidized bed reactor showed that the removal efficiency for a simulated flue gas containing 5000 mg·Nm(-3) SO2 could reach nearly 100% with a GHSV (gas hourly space velocity) of 10000 h(-1). The mechanism was investigated using a combination of experimental characterizations and theoretical calculations. It was found that formation of surface bound sulfate proceeds via association of SO2 with terminal hydroxyls. Both H2O and O2 are essential for the generation of reactive terminal hydroxyls, and the indirect role of O2 in heterogeneous SO2 oxidation at low temperature was also revealed. We propose that the high reactivity of terminal hydroxyls is attributed to the proper surface configuration of MnO2 to adsorb water with degenerate energies for associative and dissociative states, and maintain rapid proton dynamics. Viability analyses suggest that the desulfurization method that is based on such a direct oxidation reaction at the gas/solid interface represents a promising approach for SO2 capture. PMID:27123922

  6. A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide

    Science.gov (United States)

    Lowenstern, J. B.

    2000-01-01

    Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts.

  7. Effect of carry-over on the kinetics of chlorine dioxide delignification of an unbleached hardwood kraft pulp

    OpenAIRE

    Simões, Rogério Manuel dos Santos; Barroca, Maria J. M. C.; Castro, José Almiro A. M.

    2010-01-01

    This work is concerned with the kinetics of the prebleaching stage of a kraft pulp of Eucalyptus globulus with chlorine dioxide. Its main purpose is to discuss the influence of the degree of washing, expressed as the COD of the pulp, on the kinetics and stoichiometry of chlorine dioxide delignification. The effect of the carry-over on the rate of delignification of a Do stage was studied over time for pulps with different initial organic charges (COD). A set of experiments was specially desig...

  8. Hydrothermal Synthesis of Indium Tin Oxide Nanoparticles without Chlorine Contamination

    International Nuclear Information System (INIS)

    Indium tin oxide (In2Sn1-xO5-y) nanoparticles were synthesized by hydrothermal method from stable indium tin acetylacetone complexes and post annealing at 600 .deg. C. The absence of chlorine ions shortened the synthesis process, decreased the particle agglomeration and improved the particle purity. The introduced complexing ligand acetylacetone decreased the obtained nanoparticle size. The improved powder properties accelerated the sintering of the In2Sn1-xO5-y nanoparticles and reached a relative density of 96.4% when pressureless sintered at 1400 .deg. C

  9. 二氧化氯去除污染物及其动力学研究进展%Research Progress on Kinetics of PoUutants Removal by Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    曹向禹

    2012-01-01

    二氧化氯在消毒杀菌、饮用水净化、工业废水处理和纸浆漂白等领域的应用广泛,是一种极具潜力的绿色氧化剂。本文介绍目前国内外二氧化氯对无机和有机污染物去除的研究现状,并对二氧化氯氧化水中污染物反应动力学的研究进展进行了全面综述,为二氧化氯的应用提供理论指导。%Chlorine dioxide, as a potential green oxidant, is increasingly be used in disinfection, drinking water puritication, industrial wastewater treatment and pulp bleaching process. In the paper, the current research situations of chlorine dioxide in both organic and inorganic pollutants removal were introduced. The internal and external research progress on oxidation kinetics of pollutants in water by chlorine dioxide is summarized comprehensively, which can provide theoretical instruction for application of chlorine dioxide in the furore.

  10. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    International Nuclear Information System (INIS)

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl4) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO2) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl4-UO2 shows a reaction to form uranium oxychloride (UOCl2) that has a good solubility in molten UCl4. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl4, ZrCl4, SiCl4, ThCl4) by reaction of oxides with chlorine (Cl2) and carbon has application to the preparation of UCl4

  11. Preparation and Evaluation of Novel Solid Chlorine Dioxide-based Disinfectant Powder in Single-pack

    Institute of Scientific and Technical Information of China (English)

    MIN ZHU; LI-SHI ZHANG; XIAO-FANG PEI; XIN XU

    2008-01-01

    Objective To prepare and evaluate novel chlorine dioxide-based disinfectant powder in single-pack that is more convenient for use and iransportation.Methods Orthogonal experiment was performed to determine the recipe of the disinfectant powder.Stability test,suspension quantitative bactericidal test,simulation neld trial,and animal toxicity test were carried out to observe its bactericidal and toxicological effects.Results The orthogonal experiment showed thatthe type of water solution had no effect on the disinfectant powder and the best ratio of sodium chlorite to solid acid was 1:3.Ten grams of the disinfectant powder was fully dissolved in 20 mL water for 2 mill,and diluted to 500 mL in water.After 5-10 min,the concentration of chlorine dioxide(ClO2)solution was 266 mg/L to 276 mg/L.After stored at 54℃ for 14 d,the average concentration of ClO2 was decreased by 5.03%.Suspension quantitative bactericidal test showed that the average killing logarithm(KL)value for both Staphylococcus aureus and Escherichia coli in 100 mg/L ClO2 solution for 2 min was over 5.00.In simulation field trial,the average descending KL value for Escherichia coli in the solution containing 100 mg/L ClO2 for 5min was ovcr 3.00.The mouse acute LD50 in the solution 5 times exceeded 5000 mg/kg.The disinfectant powder was not toxic and irritativeto rabbit skin and had nomutagenic effect on mouse marrow polychrornafic erythrocytes(PCE).Conclusion The stability and bactericidal efficacy of solid chlorine dioxide-based disinfectant powder in single-pack are good.The solution containing 100mg/L ClO2 can kill vegetative forms of bacteria.The concenwation of ClO2 on the disinfecting surface of objects is 100mg/L.The disinfectant powder is not toxic and irritative.

  12. Novel pod for chlorine dioxide generation and delivery to control aerobic bacteria on the inner surface of floor drains

    Science.gov (United States)

    Floor drains in poultry processing and further processing plants are a harborage site for bacteria both free swimming and in biofilms. This population can include Listeria monocytogenes which has been shown to have potential for airborne spreading from mishandled open drains. Chlorine dioxide (ClO...

  13. Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of p[olymeric packaging materials

    Science.gov (United States)

    In the first part of our study we determined permeability, diffusion, and solubility coefficients of gaseous chlorine dioxide (ClO2) through the following packaging material: biaxial-oriented polypropylene (BOPP); polyethylene terephthalate (PET); poly lactic acid (PLA); multilayer structure of ethy...

  14. MECHANISM OF FUSARIUM TRICINCTUM (CORDA SACC. SPORE INACTIVATION BY CHLORINE DIOXIDE

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2015-06-01

    Full Text Available The mechanism of Fusarium tricinctum (Corda Sacc. spore inactivation by chlorine dioxide (ClO2 was investigated. During F. tricinctum spore inactivation by ClO2, protein, DNA, and metal ion leakage, enzyme activity, and cell ultrastructure were examined. Protein and DNA leakages were not detected, while there were metal ion leakages of K+, Ca2+, and Mg2+, which were well-correlated with the inactivation rate. The enzyme activities of glucose-6-phosphate dehydrogenase, citrate synthase, and phosphofructokinase were inhibited and were also well-correlated with the inactivation rate. Electron micrographs showed the ultrastructural modifications of spores and demonstrated that spores were heavily distorted and collapsed from their regular structure. Spore surface damage and disruption in inner components was also severe. The metal ion leakage, the inhibition of enzyme activities, and the damage of spore structure were significant in F. tricinctum spore inactivation by ClO2.

  15. Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection

    OpenAIRE

    2014-01-01

    This research aimed to develop an electrolysis method to generate high-concentration chlorine dioxide (ClO2) for tilapia fillet disinfection. The designed generator produced up to 3500 ppm of ClO2 at up to 99% purity. Tilapia fillets were soaked in a 400 ppm ClO2 solution for 5, 10, and 25 min. Results show that total plate counts of tilapia, respectively, decreased by 5.72 to 3.23, 2.10, and 1.09 log CFU/g. In addition, a 200 ppm ClO2 solution eliminated coliform bacteria and Escherichia col...

  16. Monitoring of Legionella pneumophila viability after chlorine dioxide treatment using flow cytometry.

    Science.gov (United States)

    Mustapha, Pascale; Epalle, Thibaut; Allegra, Séverine; Girardot, Françoise; Garraud, Olivier; Riffard, Serge

    2015-04-01

    The viability of three Legionella pneumophila strains was monitored after chlorine dioxide (ClO2) treatment using a flow cytometric assay. Suspensions of L. pneumophila cells were submitted to increasing concentrations of ClO2. Culturable cells were still detected when using 4 mg/L, but could no longer be detected after exposure to 6 mg/L of ClO2, although viable but not culturable (VBNC) cells were found after exposure to 4-5 mg/L of ClO2. When testing whether these VBNC were infective, two of the strains were resuscitated after co-culture with Acanthamoeba polyphaga, but neither of them could infect macrophage-like cells. PMID:25725384

  17. Femtosecond pump-probe studies of actinic-wavelength dependence in aqueous chlorine dioxide photochemistry

    International Nuclear Information System (INIS)

    The actinic or photolysis-wavelength dependence of aqueous chlorine dioxide (OClO) photochemistry is investigated using femtosecond pump-probe spectroscopy. Following photoexcitation at 310, 335, and 410 nm the photoinduced evolution in optical density is measured from the UV to the near IR. Analysis of the optical-density evolution illustrates that the quantum yield for atomic chlorine production (ΦCl) increases with actinic energy, with ΦCl=0.16±0.02 for 410 nm excitation and increasing to 0.25±0.01 and 0.54±0.10 for 335 and 310 nm excitations, respectively. Consistent with previous studies, the production of Cl occurs through two channels, with one channel corresponding to prompt (2A2 surface decrease with an increase in actinic energy suggesting that the excited-state decay dynamics are also actinic energy dependent. The studies presented here provide detailed information on the actinic-wavelength dependence of OClO photochemistry in aqueous solution.

  18. Conversion of uranium oxide into nitrate with nitrogen dioxide

    International Nuclear Information System (INIS)

    In order to decrease the amount of aqueous liquid waste discharged from nuclear fuel reprocessing, the conversion of uranium dioxide into its nitrate using liquefied nitrogen dioxide was studied. Uranium dioxide powder was immersed in liquefied nitrogen dioxide at 313 K after a pretreatment by the oxidation of the uranium dioxide with nitrogen dioxide and air at 523 K. Seventy-nine % of the uranium dioxide, whose initial feed amount was 0.3 g, was converted into a water soluble compound. Based on an XRD analysis, uranyl nitrate trihydrate (UO2(NO3)2)·3H2O) was confirmed as the product. (author)

  19. Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity.

    Science.gov (United States)

    Garg, Shikha; Rong, Hongyan; Miller, Christopher J; Waite, T David

    2016-04-01

    The kinetics of oxidative dissolution of silver nanoparticles (AgNPs) by chlorine is investigated in this work, with results showing that AgNPs are oxidized in the presence of chlorine at a much faster rate than observed in the presence of dioxygen and/or hydrogen peroxide. The oxidation of AgNPs by chlorine occurs in air-saturated solution in stoichiometric amounts with 2 mol of AgNPs oxidized for each mole of chlorine added. Dioxygen plays an important role in OCl(-)-mediated AgNP oxidation, especially at lower OCl(-) concentrations, with the mechanism shifting from stoichiometric oxidation of AgNPs by OCl(-) in the presence of dioxygen to catalytic removal of OCl(-) by AgNPs in the absence of dioxygen. These results suggest that the presence of chlorine will mitigate AgNP toxicity by forming less-reactive AgCl(s) following AgNP oxidation, although the disinfection efficiency of OCl(-) may not be significantly impacted by the presence of AgNPs because a chlorine-containing species is formed on OCl(-) decay that has significant oxidizing capacity. Our results further suggest that the antibacterial efficacy of nanosilver particles embedded on fabrics may be negated when treated with detergents containing strong oxidants, such as chlorine. PMID:26986484

  20. Fluorine and chlorine determination in oxides and metals by ion chromatography

    International Nuclear Information System (INIS)

    Method for simultaneous determination of fluorine and chlorine microquantitie in tantalum, uranium and plutonium oxides, based on combined methods of pyrohydrolysis (1000-1100 deg C) and two-column ion chromatography with conductometric detection is suggested. The relative root-mean-square deviation of determination error is 0.2, the fluorine and chlorine content being 5·10-4 mass%

  1. Neutron-activated determination of chlorine, using the 35Cl(n,p)35S reaction as the basis, in thin coatings of silicon dioxide

    International Nuclear Information System (INIS)

    The neutron-activation determination of chlorine in thin coatings of silicon dioxide on silicon has been shown to be possible through the use of the 55Cl(n, P)35S reaction. The detection limit of chlorine is 3 x 10-9 g (5 x 1013 atoms)

  2. Efficacy of gaseous chlorine dioxide as a sanitizer against Cryptosporidium parvum, Cyclospora cayetanensis, and Encephalitozoon intestinalis on produce.

    Science.gov (United States)

    Ortega, Ynes R; Mann, Amy; Torres, Maria P; Cama, Vitaliano

    2008-12-01

    The efficacy of gaseous chlorine dioxide to reduce parasite and bacterial burden in produce was studied. Basil and lettuce leaves were inoculated with Cryptosporidium parvum and Cyclospora cayetanensis oocysts, Encephalitozoon intestinalis spores, and a cocktail of two isolates of nalidixic acid-resistant Escherichia coli O157:H7. The inoculated samples were then treated for 20 min with gaseous chlorine dioxide at 4.1 mg/liter. Cryptosporidium had a 2.6 and 3.31 most-probable-number log reduction in basil and lettuce, respectively. Reduction of Encephalitozoon in basil and lettuce was 3.58 and 4.58 CFU/g respectively. E. coli loads were significantly reduced (2.45 to 3.97 log), whereas Cyclospora sporulation was not affected by this treatment. PMID:19244892

  3. Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts.

    OpenAIRE

    Peeters, J E; Mazás, E A; Masschelein, W J; Villacorta Martiez de Maturana, I; Debacker, E

    1989-01-01

    Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce ...

  4. Differential oscillator strengths for chlorine dioxide, OClO, produced by electron impact energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Electron impact spectroscopy has been used for the first time to obtain energy-loss spectra for chlorine dioxide, OC10, over an energy range 2.5 → 12.5 eV. The differential oscillator strength (DOS) obtained from the energy-loss spectrum is compared with the DOS obtained from optical measurements. Oscillator strengths for several transitions have been calculated from a summation of the DOS and comparisons are also made with previous optical data. (author)

  5. A Comparison of Wound Healing Rate Following Treatment with Aftamed and Chlorine Dioxide Gels in Streptozotocin-Induced Diabetic Rats

    OpenAIRE

    Fouad Al-Bayaty; Mahmood Ameen Abdulla

    2012-01-01

    Background and Purpose. This study aimed to evaluate the wound healing activities of Aftamed and chlorine dioxide gels in streptozotocin-induced diabetic rats. Experimental Approach. Forty-eight Sprague Dawley rats were chosen for this study, divided into 4 groups. Diabetes was induced. Two-centimeter-diameter full-thickness skin excision wounds were created. Animals were topically treated twice daily. Groups 1, the diabetic control group, were treated with 0.2 mL of sterile distilled water. ...

  6. Vitamin C in blanched vegetables: effect of chlorine dioxide and peracetic acid used as disinfectants during cooling

    OpenAIRE

    Jooken, Etienne; Smedts, Annelies; Desmidt, Evelyn; Monballiu, Annick; Amery, Ruis; Meesschaert, Boudewijn

    2013-01-01

    The production of frozen vegetables generally includes a heat treatment (a blanching) to denaturate cellular enzymes. The water used for cooling after this blanching is disinfected to prevent microbial growth and to ensure a microbiologically qualitative end product. In this study the possible influence of the disinfectants chlorine dioxide (ClO2) and peracetic acid (PAA) on the vitamin C content of the processed vegetables was investigated. The vitamin C content was measured using a High Per...

  7. The Effect of Predisinfection with Chlorine Dioxide on the Formation of Haloacetic Acids and Trihalomethanes in a Drinking Water Supply

    OpenAIRE

    Harris, Charissa Larine

    2001-01-01

    In an effort to maintain compliance with current and future United States Environmental Protection Agency regulations governing haloacetic acids (HAAs) and trihalomethanes (THMs), the Blacksburg, Christiansburg, VPI (BCVPI) Water Authority in Radford, Virginia elected to eliminate prechlorination and replace it with preoxidation using chlorine dioxide (ClO2). Prior to full-scale application at the BCVPI Water Treatment Plant, jar testing was done to determine the effects of ClO2 on the forma...

  8. Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats

    OpenAIRE

    Akamatsu Akinori; Lee Cheolsung; Morino Hirofumi; Miura Takanori; Ogata Norio; Shibata Takashi

    2012-01-01

    Abstract Background Chlorine dioxide (CD) gas has a potent antimicrobial activity at extremely low concentration and may serve as a new tool for infection control occupationally as well as publicly. However, it remains unknown whether the chronic exposure of CD gas concentration effective against microbes is safe. Therefore, long-term, low concentration CD gas inhalation toxicity was studied in rats as a six-month continuous whole-body exposure followed by a two-week recovery period, so as to...

  9. Monochloramine and chlorine dioxide for controlling Legionella pneumophila contamination: biocide levels and disinfection by-product formation in hospital water networks.

    Science.gov (United States)

    Marchesi, Isabella; Ferranti, Greta; Bargellini, Annalisa; Marchegiano, Patrizia; Predieri, Guerrino; Stout, Janet E; Borella, Paola

    2013-12-01

    Legionella colonization in hospital hot water distribution networks was evaluated following 36 months of continuous treatment with monochloramine and compared with chlorine dioxide. Nitrite, nitrate, chlorite, chlorate, bromide, trihalomethanes and haloacetic acids as well as the biocide concentration at sampled points were measured. Only 8/84 samples treated with monochloramine were found contaminated and after the first 8 months of treatment no Legionella was isolated. Chlorine dioxide was associated with a strong reduction in Legionella contamination compared to pre-treatment, but differences according to the device were observed. Monochloramine between 2 and 3 mg l(-1) and chlorine dioxide between 0.50 and 0.70 mg l(-1) were needed to control Legionella colonization. Comparing no- and post-flush samples, a higher frequency of no-flush positive samples was noted using chlorine dioxide, suggesting an increased risk for patients when they open the tap. No increase in chlorite levels and no water nitrification occurred by using monochloramine. Chlorite at levels exceeding the limit requested for drinking water was measured when chlorine dioxide was applied. In conclusion, we highlight that continuous injection of monochloramine should be considered as an effective alternative to chlorine dioxide in controlling legionellae contamination inside hospital water distribution systems. PMID:24334848

  10. Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection

    Directory of Open Access Journals (Sweden)

    Chen-Hsing Yu

    2014-01-01

    Full Text Available This research aimed to develop an electrolysis method to generate high-concentration chlorine dioxide (ClO2 for tilapia fillet disinfection. The designed generator produced up to 3500 ppm of ClO2 at up to 99% purity. Tilapia fillets were soaked in a 400 ppm ClO2 solution for 5, 10, and 25 min. Results show that total plate counts of tilapia, respectively, decreased by 5.72 to 3.23, 2.10, and 1.09 log CFU/g. In addition, a 200 ppm ClO2 solution eliminated coliform bacteria and Escherichia coli in 5 min with shaking treatment. Furthermore, ClO2 and trihalomethanes (THMs residuals on tilapia fillets were analyzed by GC/MS and were nondetectable (GC-MS detection limit was 0.12 ppb. The results conform to Taiwan’s environmental protection regulations and act governing food sanitation.

  11. The use of chlorine dioxide for the inactivation of copepod zooplankton in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Chen, Wei; Cai, Bo

    2014-01-01

    The presence of zooplankton in drinking water treatment system may cause a negative effect on the aesthetic value of drinking water and may also increase the threat to human health due to they being the carriers of bacteria. Very little research has been done on the effects of copepod inactivation and the mechanisms involved in this process. In a series of bench-scale experiments we used a response surface method to assess the sensitivity of copepod to inactivation when chlorine dioxide (ClO₂) was used as a disinfectant. We also assessed the effects of the ClO₂dosage, exposure time, organic matter concentration and temperature. Results indicated that the inactivation rate improved with increasing dosage, exposure time and temperature, whereas it decreased with increasing organic matter concentration. Copepod inactivation was more sensitive to the ClO₂dose than that to the exposure time, while being maintained at the same Ct-value conditions. The activation energy at different temperatures revealed that the inactivation of copepods with ClO₂was temperature-dependent. The presence of organic matter resulted in a lower available dose as well as a shorter available exposure time, which resulted in a decrease in inactivation efficiency. PMID:25176489

  12. Chlorine dioxide as a treatment for ballast water to control invasive species: shipboard testing.

    Science.gov (United States)

    Maranda, Lucie; Cox, Annie M; Campbell, Robert G; Smith, David C

    2013-10-15

    The efficacy of chlorine dioxide (ClO2) in eliminating organisms present in estuarine ballast water of a containership was determined under actual operating conditions by comparing the survival of planktonic communities present in waters of treated and control ballast tanks. Sampling was via ballast-tank hatches. The treatment (5 mg L(-1)ClO2 without pre-filtration) delivered by a prototype ClO2-generating system was generally effective against planktonic assemblages, although bacterial communities rebounded after a few days. Regardless of temperature, ClO2 was very effective against phytoplankton; the effect was immediate, without resurgence. Some zooplankters in the ≥ 50-μm fraction may survive the biocide, especially those able to find refuge within a protective coating (e.g., cysts, resting eggs, and shells) or in sediment. In order to boost efficacy, a pre-filtration step is recommended (now installed as standard equipment) to lower the intake of the ≥ 50-μm fraction and lessen the challenge posed by this size class. PMID:23987094

  13. On the cause of the tailing phenomenon during virus disinfection by chlorine dioxide.

    Science.gov (United States)

    Sigstam, Thérèse; Rohatschek, Andreas; Zhong, Qingxia; Brennecke, Moritz; Kohn, Tamar

    2014-01-01

    This study investigates the mechanisms underlying the deviation from Chick-Watson kinetics, namely a tailing curve, during the disinfection of viruses by chlorine dioxide (ClO2). Tailing has been previously reported, but is typically attributed to the decay in disinfectant concentration. Herein, it is shown that tailing occurs even at constant ClO2 concentrations. Four working hypothesis to explain the cause of tailing were tested, specifically changes in the solution's disinfecting capacity, aggregation of viruses, resistant virus subpopulations, and changes in the virus properties during disinfection. In experiments using MS2 as a model virus, it was possible to rule out the solution's disinfecting capacity, virus aggregation and the resistant subpopulation as reasons for tailing. Instead, the cause for tailing is the deposition of an adduct onto the virus capsid over the course of the experiment, which protects the viruses. This adduct could easily be removed by washing, which restored the susceptibility of the viruses to ClO2. This finding highlights an important shortcoming of ClO2, namely its self-limiting effect on virus disinfection. It is important to take this effect into account in treatment applications to ensure that the water is sufficiently disinfected before human consumption. PMID:24139105

  14. Environmental monitoring and bactericidal efficacy of chlorine dioxide gas in a dental office.

    Science.gov (United States)

    Kuroyama, Iwao; Osato, Shigeo; Nakajima, Shigeki; Kubota, Ryoichi; Ogawa, Takahiro

    2010-09-01

    We monitored the quantity of airborne microorganisms at 11 points (points A to K) in a dental office on a routine day of use, and tested the bactericidal efficacy of chlorine dioxide (ClO₂) gas in the dental operatory after consulting hours. Fallen airborne microorganisms were collected under air-conditioning (AC) in the dental office, and under four conditions in the operatory. Specimens of the microbes were cultivated on nutrient and Sabouraud agar media (NAM and SAM). Many colonies were observed at the entrance hall and on the cabinet in a disinfection room in the NAM and SAM tests, respectively, while no colony was observed at the foot position of the operating table and treatment bed, and above the head position of the operating room in the NAM and SAM tests, respectively. In the bactericidal efficacy test using ClO₂ gas, the dental operatory could be kept clean by the use of 4 mg/L-ClO₂ gas in addition to the use of an AC with a plasma filter and the HEPA filter. PMID:20938095

  15. Effectiveness of a high purity chlorine dioxide solution in eliminating intracanal Enterococcus faecalis biofilm.

    Science.gov (United States)

    Herczegh, Anna; Ghidan, Agoston; Friedreich, Dóra; Gyurkovics, Milán; Bendő, Zsolt; Lohinai, Zsolt

    2013-03-01

    We investigated the effectiveness of chlorine dioxide (ClO2) solution in comparison to sodium hypochlorite (NaOCl) and chlorhexidine gluconate (CHX) in the elimination of intracanal Enterococcus faecalis biofilm. Extracted human teeth were inoculated with E. faecalis. After preparation the canals were irrigated with ClO2, NaOCl, CHX or physiologic saline for control. Two and five days later bacterial samples were collected and streaked onto Columbia agar. CFU/mL were counted. The canal walls were investigated by scanning electron microscopy (SEM). The gas phase was investigated in an upside down Petri dish where E. faecalis was inoculated onto blood agar. The irrigants were placed on absorbent paper into the cover. Bacteria were detectable in the control group, but not in any of the irrigants groups. There was a massive reinfection 2 or 5 days after irrigation in the control group. The lowest reinfection was found after the ClO2 treatment. These findings were confirmed by SEM images. We observed an antibacterial effect of ClO2 and NaOCl gas phases on E. faecalis growth, but not of CHX. ClO2 eliminates intracanal biofilm and keeps canal nearly free from bacteria. We suggest the use of high purity ClO2 as a root canal irrigant in clinical practice. PMID:23529300

  16. Investigation of polonium dioxide - zirconium, hafnium and strontium oxides systems

    International Nuclear Information System (INIS)

    Interaction of vaporous polonium dioxide with zirconium, hafnium and strontium oxides has been studied. Using thermal method of direct synthesis in oxygen medium it has been established radiometrically that vapourous polonium dioxide does not react with zirconium dioxide in the range studied (up to 1050 deg C) and it is absorbed by hafnium dioxide at .o30 deg C to the mole ratio of polonium dioxide-hafnium oxide 0.14+-0.03. Using the method of direct synthesis in oxygen medium and radiotensimetric method it is shown that strontium oxide at 840-880 and 900-920 deg absorbs polonium dioxide to the mole ratio of polonium dioxide-strontium oxide (0.48-0.55)+-0.15 and (0.95-1.02)+-0.23 repectively with the formation of Sr2PoO4 and SrPoO3. With heating (above 880 deg C) in oxygen medium SrPoO3 separates polonium oxide to the mole ratio of polonium dioxide-strontium oxide 0.51+-0.15 with the formation of Sr2PoO4, which dissociates during heating above 980 deg. Temperature dependences of vapour pressure of polonium dioxide during dissociation of the compounds prepared are determined and heats of the processes are calculated

  17. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation.

    Science.gov (United States)

    Park, Sang Hyuck; Padhye, Lokesh P; Wang, Pei; Cho, Min; Kim, Jae-Hong; Huang, Ching-Hua

    2015-01-23

    Recent studies show that cationic amine-based water treatment polymers may be important precursors that contribute to formation of the probable human carcinogen N-nitrosodimethylamine (NDMA) during water treatment and disinfection. To better understand how water treatment parameters affect NDMA formation from the polymers, the effects of in situ chloramination, breakpoint chlorination, and pre-oxidation on the NDMA formation from the polymers were investigated. NDMA formation potential (NDMA-FP) as well as dimethylamine (DMA) residual concentration were measured from poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) solutions upon reactions with oxidants including free chlorine, chlorine dioxide, ozone, and monochloramine under different treatment conditions. The results supported that dichloramine (NHCl2) formation was the critical factor affecting NDMA formation from the polymers during in situ chloramination. The highest NDMA formation from the polymers occurred near the breakpoint of chlorination. Polymer chain breakdown and transformation of the released DMA and other intermediates were important factors affecting NDMA formation from the polymers in pre-oxidation followed by post-chloramination. Pre-oxidation generally reduced NDMA-FP of the polymers; however, the treatments involving pre-ozonation increased polyDADMAC's NDMA-FP and DMA release. The strategies for reducing NDMA formation from the polymers may include the avoidance of the conditions favorable to NHCl2 formation and the avoidance of polymer exposure to strong oxidants such as ozone. PMID:25112551

  18. Chlorination of niobium oxide in the presence of carbon monoxide

    International Nuclear Information System (INIS)

    The chlorination kinetics of niobium pentoxide in the presence of carbon monoxide between 500-8000C of temperature is studied. The following variable that influences on the reaction rate are analysed: gas flow, geometry and volume of the Nb2O5 samples, reaction temperature and composition of the chlorinated mixture. At the same time, two other materials were studied: the CaO.Nb2O5 (synthetized in laboratory) and pyrochlorine concentrates. The three materials are compared for the chlorination method used. (M.A.C.)

  19. Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas.

    Science.gov (United States)

    Yeap, Jia Wei; Kaur, Simran; Lou, Fangfei; DiCaprio, Erin; Morgan, Mark; Linton, Richard; Li, Jianrong

    2016-01-01

    Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 10(7) PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces. PMID:26475110

  20. Gas purification from nitrogen oxide and sulphur dioxide

    International Nuclear Information System (INIS)

    A technique of cytolytic reduction of stack disposal of sulfur dioxide by nitrogen oxides is developed. Its advantages are the increasing of efficiency and economic feasibility in the result of the decreasing in consumption of oxidizer SO. This decreasing is due to the using the oxidizing properties of nitrogen oxides. The technique gives possibility to remove nitrogen oxides from gases. And simultaneously it is enabling to reduce the nitrogen and sulfur dioxide oxidizing SO to sulfuric acid. The technique is used as basis for the technology of purification of fume gases of thermal power plants, boilers houses, and boiler units. (author)

  1. Inactivation of Airborne Bacteria and Viruses Using Extremely Low Concentrations of Chlorine Dioxide Gas.

    Science.gov (United States)

    Ogata, Norio; Sakasegawa, Miyusse; Miura, Takanori; Shibata, Takashi; Takigawa, Yasuhiro; Taura, Kouichi; Taguchi, Kazuhiko; Matsubara, Kazuki; Nakahara, Kouichi; Kato, Daisuke; Sogawa, Koushirou; Oka, Hiroshi

    2016-01-01

    Infectious airborne microbes, including many pathological microbes that cause respiratory infections, are commonly found in medical facilities and constitute a serious threat to human health. Thus, an effective method for reducing the number of microbes floating in the air will aid in the minimization of the incidence of respiratory infectious diseases. Here, we demonstrate that chlorine dioxide (ClO2) gas at extremely low concentrations, which has no detrimental effects on human health, elicits a strong effect to inactivate bacteria and viruses and significantly reduces the number of viable airborne microbes in a hospital operating room. In one set of experiments, a suspension of Staphylococcus aureus, bacteriophage MS2, and bacteriophage ΦX174 were released into an exposure chamber. When ClO2 gas at 0.01 or 0.02 parts per million (ppm, volume/volume) was present in the chamber, the numbers of surviving microbes in the air were markedly reduced after 120 min. The reductions were markedly greater than the natural reductions of the microbes in the chamber. In another experiment, the numbers of viable airborne bacteria in the operating room of a hospital collected over a 24-hour period in the presence or absence of 0.03 ppm ClO2 gas were found to be 10.9 ± 6.7 and 66.8 ± 31.2 colony-forming units/m3 (n = 9, p < 0.001), respectively. Taken together, we conclude that ClO2 gas at extremely low concentrations (≤0.03 ppm) can reduce the number of viable microbes floating in the air in a room. These results strongly support the potential use of ClO2 gas at a non-toxic level to reduce infections caused by the inhalation of pathogenic microbes in nursing homes and medical facilities. PMID:26926704

  2. Disinfection of herbal spa pool using combined chlorine dioxide and sodium hypochlorite treatment.

    Science.gov (United States)

    Hsu, Ching-Shan; Huang, Da-Ji

    2015-02-01

    The presence of pathogenic microorganisms in public spa pools poses a serious threat to human health. The problem is particularly acute in herbal spas, in which the herbs and microorganisms may interact and produce undesirable consequences. Accordingly, the present study investigated the effectiveness of a combined disinfectant containing chlorine dioxide and sodium hypochlorite in improving the water quality of a public herbal spa in Taiwan. Water samples were collected from the spa pool and laboratory tests were then performed to measure the variation over time of the microorganism content (total CFU and total coliforms) and residual disinfectant content given a single disinfection mode (SDM) with disinfectant concentrations of 5.2 × 10, 6.29 × 10, 7.4 × 10, and 11.4 × 10(-5) N, respectively. Utilizing the experience gained from the laboratory tests, a further series of on-site investigations was performed using three different disinfection modes, namely SDM, 3DM (once every 3 h disinfection mode), and 2DM (once every 2 h disinfection mode). The laboratory results showed that for all four disinfectant concentrations, the CFU concentration reduced for the first 6 h following SDM treatment, but then increased. Moreover, the ANOVA results showed that the sample treated with the highest disinfectant concentration (11.4 × 10(-5) N) exhibited the lowest rate of increase in the CFU concentration. In addition, the on-site test results showed that 3DM and 2DM treatments with disinfectant concentrations in excess of 9.3 × 10 and 5.5 × 10(-5) N, respectively, provided an effective reduction in the total CFU concentration. In conclusion, the experimental results presented in this study provide a useful source of reference for spa businesses seeking to improve the water quality of their spa pools. PMID:25632897

  3. Disinfection of indoor air microorganisms in stack room of university library using gaseous chlorine dioxide.

    Science.gov (United States)

    Hsu, Ching-Shan; Lu, Ming-Chun; Huang, Da-Ji

    2015-02-01

    As with all indoor public spaces in Taiwan, the stack rooms in public libraries should meet the air quality guidelines laid down by the Taiwan Environmental Protection Administration. Accordingly, utilizing a university library in Taiwan for experimental purposes, this study investigates the efficiency of gaseous chlorine dioxide (ClO2) as a disinfection agent when applied using three different treatment modes, namely a single-daily disinfection mode (SIM), a twice-daily disinfection mode (TWM), and a triple-daily disinfection mode (TRM). For each treatment mode, the ClO2 is applied using an ultrasonic aerosol device and is performed both under natural lighting conditions and under artificial lighting conditions. The indoor air quality is evaluated before and after each treatment session by measuring the bioaerosol levels of bacteria and fungi. The results show that for all three disinfection modes, the application of ClO2 reduces the indoor bacteria and fungi concentrations to levels lower than those specified by the Taiwan EPA (i.e., bacteria <1500 CFU/m(3), fungi <1000 CFU/m(3)), irrespective of the lighting conditions under which the disinfection process is performed. For each disinfection mode, a better disinfection efficiency is obtained under natural lighting conditions since ClO2 readily decomposes under strong luminance levels. Among the three treatment modes, the disinfection efficiencies of the TWM and TRM modes are very similar under natural lighting conditions and are significantly better than that of the SIM mode. Thus, overall, the results suggest that the TWM treatment protocol represents the most cost-effective and efficient method for meeting the indoor air quality requirements of the Taiwan EPA. PMID:25626564

  4. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries.

    Science.gov (United States)

    Sun, Xiuxiu; Bai, Jinhe; Ference, Christopher; Wang, Zhe; Zhang, Yifan; Narciso, Jan; Zhou, Kequan

    2014-07-01

    The effect of chlorine dioxide (ClO2) gas on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 direct contact in water killed food pathogen bacterium Escherichia coli and fruit decay pathogen fungus Colletotrichum acutatum. In vivo studies were conducted using noninoculated berries and berries inoculated with postharvest decay and foodborne pathogens. Berries were inoculated with either E. coli (5.2 log CFU/g) or C. acutatum (3.9 log CFU/g). Inoculated fruit were dried for 2 h at room temperature in a climate-controlled laboratory and packed in perforated commercial clamshells, with or without ClO2 pads, and stored at 10°C for up to 9 days. The effects of ClO2 on microbial populations and fruit firmness were monitored during storage. In the inoculation experiment, treatment with ClO2 reduced populations of E. coli and C. acutatum by 2.2 to 3.3 and 1.3 to 2.0 log CFU/g, respectively. For the noninoculated blueberries, the initial total aerobic bacteria count and the yeast and mold count were 4.2 and 4.1 log CFU/g, respectively. ClO2 treatment reduced total aerobic bacteria count and yeast and mold count by 1.5 to 1.8 and 1.3 to 1.7 log CFU/g, respectively. The firmness of both inoculated and noninoculated blueberries was maintained by ClO2 treatment. Thus, controlled-release ClO2 gas fumigation technology shows promise as an effective and practical antimicrobial agent in commercial clamshell packaging of blueberry and other fruits. PMID:24988018

  5. Decontamination of Bacillus subtilis var.niger spores on selected surfaces by chlorine dioxide gas

    Institute of Scientific and Technical Information of China (English)

    Yan-ju LI; Neng ZHU; Hai-quan JIA; Jin-hui WU; Ying YI; Jian-cheng QI

    2012-01-01

    Objective:Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories.In this study,some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS),painted steel (PS),polyvinyl chlorid (PVC),polyurethane (PU),glass (GS),and cotton cloth (CC)] by CD gas.The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy.Methods:Material coupons (1.2 cm diameter of SS,PS,and PU; 1.0 cm×1.0 cm for PVC,GS,and CC) were contaminated with 10 μl of Bacillus subtilis var.niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h.The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min.Results:The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio,v/v) for 3 h]were in the range of from 1.80 to 6.64.Statistically significant differences were found in decontamination efficacies on test material coupons of SS,PS,PU,and CC between with and without a 1-h prehumidification treatment.With the extraction method,there were no statistically significant differences in the recovery ratios between the porous and non-porous materials.Conclusions:The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.

  6. Chlorine dioxide as biocide to prevent biofouling in the hydro technical structures at KKNPP

    International Nuclear Information System (INIS)

    Chlorination is envisaged in the sea water systems of KKNPP to control macro and micro bio-fouling of underwater structures and equipments. KKNPP intake and the fore bay structures are shown in detail. The sodium hypo chlorite required for chlorination is produced in the electro chlorination plant at site by the electrolysis of sea water. It is added in the sea water at the intake structure, tunnels and fore bay on continuous as well as periodic basis. The sea water to chlorination plant is supplied by the pumps located at the main pump house. Chlorination of sea water system by electro-chlorination is possible only after pump house flooding and commissioning of electro-chlorination plant. So for the period from breach of temporary dyke till commissioning of electro chlorination plant, chlorination by temporary method has to be done to prevent the bio-fouling of underwater structures and equipments. The flooding of the pump house subsequent to breach of temporary dyke is done

  7. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.

    Science.gov (United States)

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G

    2016-05-17

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory). PMID:27074054

  8. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.

    Science.gov (United States)

    Stehouwer, Peter Paul; Buma, Anita; Peperzak, Louis

    2015-01-01

    The spread of aquatic invasive species through ballast water is a major ecological and economical threat. Because of this, the International Maritime Organization (IMO) set limits to the concentrations of organisms allowed in ballast water. To meet these limits, ballast water treatment systems (BWTSs) were developed. The main techniques used for ballast water treatment are ultraviolet (UV) radiation and electrochlorination (EC). In this study, phytoplankton regrowth after treatment was followed for six BWTSs. Natural plankton communities were treated and incubated for 20 days. Growth, photosystem II efficiency and species composition were followed. The three UV systems all showed similar patterns of decrease in phytoplankton concentrations followed by regrowth. The two EC and the chlorine dioxide systems showed comparable results. However, UV- and chlorine-based treatment systems showed significantly different responses. Overall, all BWTSs reduced phytoplankton concentrations to below the IMO limits, which represents a reduced risk of aquatic invasions through ballast water. PMID:25704551

  9. 二氧化氯杀灭拟柱孢藻的研究%Killing Cylindrosperrnopsis with Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    李绍秀; 夏文琴; 赵德骏; 袁秀丽; 王志红; 李冬梅; 谢葆红

    2012-01-01

    对于来自某饮用供水水库的拟柱孢藻,研究二氧化氯投加量、藻的初始浓度、pH值、有机物含量和氨氮含量对二氧化氯杀灭拟柱孢藻的效果的影响,探讨二氧化氯氧化与混凝工艺结合的去除拟柱孢藻的最佳工艺条件.结果表明,拟柱孢藻的杀灭率随着二氧化氯投加量增大而提高,随着pH的升高及有机物含量的增大而下降;杀藻量随着藻初始浓度的增大而增大.氨氮对二氧化氯杀灭拟柱孢藻基本没有影响.对于以拟柱孢藻为优势藻的某饮用供水水库原水,二氧化氯氧化与混凝工艺结合除藻的最佳工艺条件为:二氧化氯投加量0.5 mg/L,聚合氯化铝15 mg/L,二氧化氯与混凝剂一起投加.在此条件下,除藻率为98.90%,余浊为1.59NTU.工艺条件正交试验的直观分析说明影响除藻率的因素依次为:二氧化氯投加量>混凝剂投加量>投加顺序.%Cylindrospermopsis breeding in water bodies such as reservoir and lakes due to eutrophication negatively affects tap water production process. This paper reports the use of chlorine dioxide to remove Cylindrospermopsis from tap water at a bench-scale test, in which factors of dosage of chlorine dioxide, initial algal concentration, pH, organism, and ammonia nitrogen concentration were investigated. Result showed that removal rate of Cylindrospermopsis increased with increased dosage of chlorine dioxide, and decreased with increased pH value and organism concentration; but the existence of ammonia nitrogen had no influence on Cylindrospermopsis removal. In addition, optimum condition of coagulation process combined with addition of chlorine dioxide was studied using polymeric aluminum chloride (PAC) as a coagulant The best result achieved 98.90% of Cylindrospermopsis removal and 1.59 NTU of residual turbidity. Analysis with orthogonal experiment indicated that the magnitude order affecting the removal of Cylindrospermopsis was dosage of chlorine

  10. Comparative evaluation of 15% ethylenediamine tetra-acetic acid plus cetavlon and 5% chlorine dioxide in removal of smear layer: A scanning electron microscope study

    Directory of Open Access Journals (Sweden)

    Sandeep Singh

    2013-01-01

    Full Text Available Aims: The purpose of this study was to compare the efficacy of smear layer removal by 5% chlorine dioxide and 15% Ethylenediamine Tetra-Acetic Acid plus Cetavlon (EDTAC from the human root canal dentin. Materials >and Methods : Fifty single rooted human mandibular anterior teeth were divided into two groups of 20 teeth each and control group of 10 teeth. The root canals were prepared till F3 protaper and initially irrigated with 2% Sodium hypochlorite followed by 1 min irrigation with 15% EDTAC or 5% Chlorine dioxide respectively. The control group was irrigated with saline. The teeth were longitudinally split and observed under Scanning electron microscope SEM (×2000. Statistical Analysis Used: The statistical analysis was done using General Linear Mixed Model. Results : At the coronal thirds, no statistically significant difference was found between 15% EDTAC and 5% Chlorine dioxide in removing smear layer. In the middle and apical third region 15% EDTAC showed better smear layer removal ability than 5% Chlorine dioxide. Conclusion : Final irrigation with 15% EDTAC is superior to 5% chlorine dioxide in removing smear layer in the middle and apical third of radicular dentin.

  11. Formation Rule of Chlorine Dioxide Disinfection By-products%二氧化氯消毒副产物的生成规律研究

    Institute of Scientific and Technical Information of China (English)

    张盛军; 张大钰; 董燕; 王永芳

    2013-01-01

    According to chlorite excessive phenomenon in chlorine dioxide sterilization of drinking water, Xiaoqinghe River and Darning Lake water were selected to study the relationship between chlorine dioxide consumption and chlorite production in the disinfection process. The removal of COD by chlorine dioxide was assessed. The results showed that chlorite production was positively correlated with chlorine dioxide consumption, and had no direct relation with chlorine dioxide dosage and COD concentration in water.%针对二氧化氯在饮用水消毒过程中出现的副产物亚氯酸盐超标现象,以小清河水和大明湖水为处理对象,研究了在消毒过程中二氧化氯的消耗量与亚氯酸盐的产生量之间的关系,同时测定了二氧化氯对COD的去除情况.结果表明,副产物亚氯酸盐的产生量与二氧化氯的消耗量呈正相关关系,而与二氧化氯的投加量及水体中的COD浓度没有直接关系.

  12. 二氧化氯在饮用水消毒工艺中的应用%Application of Chlorine Dioxide in Disinfect Drinking Water

    Institute of Scientific and Technical Information of China (English)

    方火明

    2012-01-01

    As a disinfectant for drinking water, chlorine dioxide was widely applied in drinking water treatment. The properties and disinfection mechanisms of chlorine dioxide were introduced. Application scope and advantages of chlorine dioxide in drinking water treatment were analyzed. The problems of chlorine dioxide as a disinfectant were also discussed. The result showed that chlorine dioxide as a new type of disinfectant in drinking water treatment had a wide application prospect.%二氧化氯作为饮用水消毒剂应用越来越广泛。介绍了二氧化氯的理化性质、消毒机理;分析了其在饮用水处理领域的应用范围和优缺点,讨论了二氧化氯作为水消毒剂时存在的问题。研究结果表明二氧化氯作为一种新型的消毒剂在饮用水处理中有广阔的应用前景。

  13. Inactivation effect and mechanism of chlorine dioxide on adult T. tubifex%二氧化氯对颤蚓成虫灭活效果及灭活作用机制

    Institute of Scientific and Technical Information of China (English)

    黄廷林; 李晓钰; 聂小保; 张金松; 李伟; 张爽

    2011-01-01

    The fluctuation of ~ OH concentration in T. tubifex exposed to chlorine dioxide was investigated by fluorospeetrophotometry using terephthalic acid (TA) as · OH trapping agent. Catalase (CAT) activity in T. tubifex was quantified after 10 minutes contact with chlorine dioxide. Inactivation effect and lipid peroxidation produce malondialderhyde (MDA) of adult T. tubifex were also studied. Results showed that chlorine dioxide had significant inactivation effect on adult T. tubifex. Significant · OH inductive effect, which has direct correlation with T. tubifex inactivation effect, was observed when chlorine dioxide level was high than 0.4 mg/L. The fluctuation of CAT indicated that T. tubifex was suffering from oxidative stress and chlorine dioxide damaged the antioxidant defense system of T. tubifex. The variation of MAD showed that chlorine dioxide does not have a sig- nificant lipid peroxidation effect on adult T. tubifex and can permeate the worm' s cuticular layer easily. Such results confirmed that one of the inactivation mechanisms of chlorine dioxide is inducing · OH increase, which results in oxidative stress on adult T. tubifex. Moreover, chlorine dioxide can damage antioxidant defense system of T. tubifex and permeate worm' s euticular layer easily, which will strengthen its inactivation effect on T. tubifex.%采用对苯二甲酸(terephthalic acid,TA)作为羟基自由基(hydroxyl radical,·OH)捕捉剂,利用荧光分光光度法测定了二氧化氯(CIO2)接触后颤蚓体内-OH浓度变化,结合颤蚓灭活率、过氧化氢酶(catalase,CAT)和丙二醛(malondi.alderhyde,MDA)等指标的测试结果,研究了CIO2对颤蚓成虫的灭活效果及灭活机理。结果表明,ClO2对颤蚓成虫灭活效果显著。当C1O2投加浓度超过0.4mg/L,可对颤蚓体内·OH产生明显的诱导效应,并且·OH诱导效应与颤蚓灭活率直接相关。接触条件下CAT变化情况表明,

  14. Preparation of disinfectant containing both chlorine dioxide and chlorine for safe urban reuse%复合二氧化氯的制备及其用于城市污水回用消毒

    Institute of Scientific and Technical Information of China (English)

    樊金红; 王红武; 马鲁铭

    2012-01-01

    在酸性环境中通过NaCl电解协同NaClO2化学氧化方法制备的复合二氧化氯溶液中ClO2和自由氯浓度分别达到70%和20%左右,系统地研究了电流密度(A)、NaClO2与NaCl质量比(B)、电解时间(C)对复合溶液中组分浓度和质量百分数的影响,并将复合溶液用于城市污水二级处理出水的消毒.结果表明,复合溶液中自由氯的浓度主要受因素C和A的影响,ClO2的浓度主要受因素C和B的影响,而A对副产物ClO-2和ClO-3的影响最大.总大肠菌群数在105~108个?L-1的城市污水二级处理出水采用复合溶液消毒时,当其中ClO2投加量为4mg? L-1,自由氯含量不低于1.20 mg?L-1,经30 min接触后出水生物学指标满足GB/T 18920-2002的要求.既降低了消毒剂的使用量,又减少了消毒副产物ClO-2的生成.%To achieve simultaneously maximum disinfection and minimum toxicity a mix disinfectant of chlorine dioxide and chlorine are found to be efficient for disinfection of drinking water and urban reused waste-water. However, transportation and reservation of the mixture may threat to environmental safety. Therefore, on-site preparation is necessary for field use. At present, preparation methods of the mix disinfectant have chemical reduction of sodium chlorate and electrolysis of sodium chloride, and the content of chlorine dioxide in mixture obtained is usually below 30%. To get high chlorine dioxide content, a method for the preparation of the mix disinfectant was proposed : electrolyzing sodium chloride (NaCl) was followed by a chemical oxidation of sodium chlorite (NaClC2) in an undivided electrolysis reactor, in which the content of C1O2 in the mix disinfectant can be controlled. The effect of current density (A), mass ratio of NaCIO2: NaCl (B), electrolysis time (C) on the concentration and mass percentage of CIO2, free chlorine, ClO-2 and C1O-3 was investigated systematically. Under the electrolysis conditions: current density 41. 67-83. 33 A

  15. The mechanism for free chlorine oxidation of reduced manganese in mixed-media filters

    OpenAIRE

    Occiano, Suzanne

    1988-01-01

    The removal mechanisms of soluble manganese [Mn (1l)] through mixed-media filters were investigated. Experimentation was directed toward the continuous supply of an oxidant during column filter studies. Free chlorine (HOCl, OC1â ) was chosen to increase soluble manganese removal efficiency because chlorine is readily available and inexpensive. Filter media from four different water treatment plants were used in this study. Continuous-flow filter columns were operated in the presence and a...

  16. 复合二氧化氯消毒剂有效含量的定义%Definition of Available Disinfectant Concentration of Composite Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    陈飒; 李志梅; 苏子行; 郑燕琼

    2012-01-01

    复合二氧化氯在饮用水消毒方面的应用越来越广泛,但消毒剂含量定义的问题一直争论不休.该文提出“总有效氯”为复合二氧化氯作为消毒剂中有效氯含量的定义,即pH在中性条件下,二氧化氯折算成氯的质量浓度乘以1(从ClO2还原到ClO-2,氧化价态变化值为1),再加上氯气质量浓度.“总有效氯”可用国标推荐五步碘量法的第一步(pH=7),方法应用简单、结果稳定、可靠.测定饮用水中余氯用DPD分光光度法比碘量法更好.如果二氧化氯与氯比值为1.0,则国标中的“有效氯”是“总有效氯”的2.3倍.%Application of composite chlorine dioxide in drinking water is wide spread in recent years, but argument about the definition of the concentration of composite chlorine dioxide exists in the circle of water treatment. In the paper, total available chlorine is defined as the sum of the concentration of chlorine and that of chlorine dioxide calculated as Cl because in water, pH=7, ClO2 reduced to ClO2- the change of valence is equal to 1. Total available chlorine of composite chlorine dioxide may be determined with the first step of the five steps iodometric titration method. This procedure is simple, stable and reliable. Residual chlorine in drinking water could be determined by spectrophotometric method with DPD better than by iodometric titration. The effective resident chlorine defined by national standard is 2.3 times of total effective chlorine if the ratio of chlorine dioxide to chlorine is 1.0.

  17. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A.; Jayakumar, D.A.; George, M.D.; Narvekar, P.V.; DeSousa, S.N.

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  18. Chlorination of pyrene in soil components with sodium chloride under xenon irradiation

    International Nuclear Information System (INIS)

    It was previously reported that chlorinated pyrenes (1-chloropyrene and dichloropyrene) were produced from pyrene in soil under sunlight irradiation. It was suggested that pyrene reacted with chlorine ion under sunlight. In this work, the formation of chlorinated pyrenes is investigated on 9 metallic oxides as soil components with pyrene and sodium chloride under xenon lamp irradiation. The chlorinated pyrenes as the reaction products were extracted with benzene:ethanol (4:1), and analyzed by GC/MS (SIM). The chlorinated pyrenes were produced in high amounts on 5 metallic oxides [silicon dioxides (quartz, silicic anhydride and silica gel forms) and titanium dioxides (rutile and anatase forms)] and in small amounts in 3 sorts of metallic oxides (aluminium oxide, magnesium oxide and ferric oxide), whereas they were not produced on calcium oxide. It was found that the yields of chlorinated pyrenes depended on the amounts of pyrene and chlorine ions in metallic oxides. In silicon dioxides, the yields of chlorinated pyrenes increased as the irradiation time was extended. In the titanium dioxides, the yields of chlorinated pyrenes had a peak at 0.5 – 1 hours irradiation of xenon lamp, and decreased as the irradiation time elapsed. (author)

  19. Electrochemical chlorine evolution at rutile oxide (110) surfaces

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Man, Isabela Costinela; Studt, Felix;

    2010-01-01

    function of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution...

  20. Controlled clinical evaluations of chlorine dioxide, chlorite and chlorate in man.

    OpenAIRE

    Lubbers, J R; Chauan, S; Bianchine, J. R.

    1982-01-01

    To assess the relative safety of chronically administered chlorine water disinfectants in man, a controlled study was undertaken. The clinical evaluation was conducted in the three phases common to investigational drug studies. Phase I, a rising dose tolerance investigation, examined the acute effects of progressively increasing single doses of chlorine disinfectants to normal healthy adult male volunteers. Phase II considered the impact on normal subjects of daily ingestion of the disinfecta...

  1. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Laishun Shi

    2012-01-01

    Full Text Available In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  2. A comparison of wound healing rate following treatment with aftamed and chlorine dioxide gels in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Al-Bayaty, Fouad; Abdulla, Mahmood Ameen

    2012-01-01

    Background and Purpose. This study aimed to evaluate the wound healing activities of Aftamed and chlorine dioxide gels in streptozotocin-induced diabetic rats. Experimental Approach. Forty-eight Sprague Dawley rats were chosen for this study, divided into 4 groups. Diabetes was induced. Two-centimeter-diameter full-thickness skin excision wounds were created. Animals were topically treated twice daily. Groups 1, the diabetic control group, were treated with 0.2 mL of sterile distilled water. Group 2 served as a reference standard were treated with 0.2 mL of Intrasite gel. Groups 3 and 4 were treated with 0.2 mL of Aftamed and 0.2 mL of chlorine dioxide gels respectively. Granulation tissue was excised on the 10th day and processed for histological and biochemical analysis. The glutathione peroxidase ,superoxide dismutase activities and the malondialdehyde (MDA) levels were determined. Results. Aftamed-treated wounds exhibited significant increases in hydroxyproline, cellular proliferation, the number of blood vessels, and the level of collagen synthesis. Aftamed induced an increase in the free radical-scavenging enzyme activity and significantly reduced the lipid peroxidation levels in the wounds as measured by the reduction in the MDA level. Conclusions. This study showed that Aftamed gel is able to significantly accelerate the process of wound healing in diabetic rats. PMID:22666291

  3. Oxidation Behavior and Chlorination Treatment to Improve Oxidation Resistance of Nb-Mo-Si-B Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vikas Behrani

    2004-12-19

    This thesis is written in an alternate format. The thesis is composed of a general introduction, two original manuscripts, and a general conclusion. References cited within each chapter are given at the end of each chapter. The general introduction starts with the driving force behind this research, and gives an overview of previous work on boron doped molybdenum silicides, Nb/Nb{sub 5}Si{sub 3} composites, boron modified niobium silicides and molybdenum niobium silicides. Chapter 2 focuses on the oxidation behavior of Nb-Mo-Si-B alloys. Chapter 3 contains studies on a novel chlorination technique to improve the oxidation resistance of Nb-Mo-Si-B alloys. Chapter 4 summarizes the important results in this study.

  4. SIMULATING THE IN-SITU OXIDATIVE TREATMENT OF CHLORINATED ETHYLENES BY POTASSIUM PERMANGANATE

    Science.gov (United States)

    In recent years, MnO{sub}4 oxidation of chlorinated ethylenes (PCE, TCE, and DCE) has emerged as a potentially useful approach for destroying these componds in water. Recently, more applied studies have looked at whether KMnO{sub}4 could be used in remediating sites contaminated ...

  5. Sequential disinfection of E. coli O157:H7 on shredded lettuce leaves by aqueous chlorine dioxide, ozonated water, and thyme essential oil

    Science.gov (United States)

    Singh, Nepal; Singh, Rakesh K.; Bhunia, Arun K.; Stroshine, Richard L.; Simon, James E.

    2001-03-01

    There have been numerous studies on effectiveness of different sanitizers for microbial inactivation. However, results obtained from different studies indicate that microorganism cannot be easily removed from fresh cut vegetables because of puncture and cut surfaces with varying surface topographies. In this study, three step disinfection approach was evaluated for inactivation of E. coli O157:H7 on shredded lettuce leaves. Sequential application of thyme oil, ozonated water, and aqueous chlorine dioxide was evaluated in which thyme oil was applied first followed by ozonated water and aqueous chlorine dioxide. Shredded lettuce leaves inoculated with cocktail culture of E. coli O157:H7 (C7927, EDL 933 and 204 P), were washed with ozonated water (15 mg/l for 10min), aqueous chlorine dioxide (10 mg/l,for 10min) and thyme oil suspension (0.1%, v/v for 5min). Washing of lettuce leaves with ozonated water, chlorine dioxide and thyme oil suspension resulted in 0.44, 1.20, and 1.46 log reduction (log10 cfu/g), respectively. However, the sequential treatment achieved approximately 3.13 log reductions (log10 cfu/g). These results demonstrate the efficacy of sequential treatments in decontaminating shredded lettuce leaves containing E. coli O157:H7.

  6. Chlorination of UO2, PuO2 and rare earth oxides using ZrCl4 in LiCl-KCl eutectic melt

    International Nuclear Information System (INIS)

    A new chlorination method using ZrCl4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La2O3, CeO2, Nd2O3 and Y2O3) and actinide oxides (UO2 and PuO2) were allowed to react with ZrCl4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl4 chlorination method, free from corrosive gas, was very simple and useful

  7. Corrosion behavior of silicon nitride, magnesium oxide, and several metals in molten calcium chloride with chlorine

    International Nuclear Information System (INIS)

    In this paper corrosion studies are described in a molten calcium chloride environment sparged with chlorine gas at 850 degrees C, both in the melt and in the gas phase above the salt, in support of efforts at Westinghouse Savannah River Company to develop more resistant materials of construction for molten salt processing of plutonium. Corrosion rates and electron microscope analyses are reported for Inconel alloys 601 and 617, tantalum, tungsten, magnesium oxide, and silicon nitride. Silicon nitride exhibited the greatest resistance, showing 2 · h loss in both melt and vapor None of the metallic coupons withstood the chlorine vapor environment, although Inconel indicated resistance immersed in the melt if protected from chlorine gas

  8. Method and equipment to eliminate gaseous sulphur dioxide and chlorine components from a gas stream

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstrom, D.A.; Ellison, W.S.; Wilhelm, J.H.

    1977-10-27

    The known method to clean waste gases from coal combustion which besides SO/sub 2/ still contain chlorine compounds by treatment with aqueous washing solutions is improved upon. A combination of two wash systems is suggested which are particularly economical as the washing solutions can be regenerated and recycled into the system. Calcium compounds and sodium sulphite are used, the solids formed are removed from the system. The apparatus is described.

  9. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    Science.gov (United States)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  10. SUSCEPTIBILITY OF WOODY PLANTS TO SULFUR DIOXIDE AND PHOTOCHEMICAL OXIDANTS

    Science.gov (United States)

    This report presents the result of a detailed review of European and United States literature regarding the sensitivity of woody vegetation to sulfur dioxide, ozone, peroxyacetyl nitrate (PAN), or nitrogen oxides. Reference is made to Russian, Japanese and Austrian literature onl...

  11. Aerobic Oxidation of Methyl Vinyl Ketone in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    OUYANG,Xiao-Yue(欧阳小月); JIANG,Huan-Feng(江焕峰); CHENG,Jin-Sheng(程金生); ZHANG,Qun-Jian(张群健)

    2002-01-01

    Aerobic oxidation of methyl vinyl ketone to acetal in supercritical carbon dioxide are achieved in high conversion and high selectivity when oxygen pressure reaches 0.5MPa. The effects of cocatalysts,additive, pressure and temperature of the reaction are studied in detail.

  12. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl− led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins

  13. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  14. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators respectively... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL...

  15. Impact of Chlorine dioxide Gas on the Barrier Properties of Polymeric Packaging Materials

    Science.gov (United States)

    One important criterion of polymeric material selection and packaging design for fresh produce is choosing the material with suitable ratio of carbon dioxide and oxygen permabilities (PCO2/P O2), to the respiratory proportion of the targeted produce. The ratio of [O2] and [CO2] in the head space var...

  16. 二氧化氯在工业废水处理中的应用%The Application of Chlorine Dioxide in Industrial Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    马风哪; 程伟琴

    2011-01-01

    二氧化氯(ClO2)因其特殊的氧化性质,在油田废水、医药废水、印染废水、含酚废水、含氰废水及垃圾渗滤液等难处理有机有害废水处理中得到广泛研究。本文重点介绍了ClO2在废水处理行业中所表现出的优势,最终说明二氧化氯一水处理高级氧化技术在高浓度、难降解废水行业具有很大的应用前景。%Because of special oxidized nature of chlorine dioxide ( ClO2 ) , it was widely applied in the oilfield wastewater, pharmaceutical wastewater, printing and dyeing wastewater, the wastewater containing phenol and cyanide, landfill leachate and other refrac

  17. A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium).

    Science.gov (United States)

    Crowe, Kristi M; Bushway, Alfred A; Bushway, Rodney J; Davis-Dentici, Katherine; Hazen, Russell A

    2007-05-01

    Advanced oxidation processes and single chemical oxidants were evaluated for their antimicrobial efficacy against common spoilage bacteria isolated from lowbush blueberries. Predominant bacterial flora were identified using biochemical testing with the assessment of relative abundance using non-selective and differential media. Single chemical oxidants evaluated for postharvest processing of lowbush blueberries included 1% hydrogen peroxide, 100 ppm chlorine, and 1 ppm aqueous ozone while advanced oxidation processes (AOPs) included combinations of 1% hydrogen peroxide/UV, 100 ppm chlorine/UV, and 1 ppm ozone/1% hydrogen peroxide/UV. Enterobacter agglomerans and Pseudomonas fluorescens were found to comprise 90-95% of the bacterial flora on lowbush blueberries. Results of inoculation studies reveal significant log reductions (pagglomerans and P. fluorescens on all samples receiving treatment with 1% hydrogen peroxide, 1% hydrogen peroxide/UV, 1 ppm ozone, or a combined ozone/hydrogen peroxide/UV treatment as compared to chlorine treatments and unwashed control berries. Although population reductions approached 2.5 log CFU/g, microbial reductions among these treatments were not found to be significantly different (p< or 5) from each other despite the synergistic potential that should result from AOPs; furthermore, as a single oxidant, UV inactivation of inoculated bacteria was minimal and did not prove effective as a non-aqueous bactericidal process for fresh pack blueberries. Overall, results indicate that hydrogen peroxide and ozone, as single chemical oxidants, are as effective as AOPs and could be considered as chlorine-alternatives in improving the microbiological quality of lowbush blueberries. PMID:17350128

  18. Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling

    OpenAIRE

    Honavar, Jaideep; Samal, Andrey A.; Bradley, Kelley M.; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L.; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M.; Matalon, Sadis; Patel, Rakesh P.

    2010-01-01

    Chlorine gas (Cl2) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl2 exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl2 promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl2 for 30 minutes, and eNOS-depe...

  19. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Joseph P., E-mail: wood.joe@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, MC-E343-06, Research Triangle Park, NC 27711 (United States); Blair Martin, G., E-mail: martin.blair@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, MC-E340-C, Research Triangle Park, NC 27711 (United States)

    2009-05-30

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO{sub 2}) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO{sub 2} introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24 h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO{sub 2} was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO{sub 2} levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO{sub 2} emissions below the limit. Numerous lessons were learned in the field trials of this ClO{sub 2} decontamination technology.

  20. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis

    International Nuclear Information System (INIS)

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO2) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO2 introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24 h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO2 was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO2 levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO2 emissions below the limit. Numerous lessons were learned in the field trials of this ClO2 decontamination technology.

  1. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm;

    2000-01-01

    The effect of electrochemical polarization on the catalytic SO2 oxidation in the molten V2O5-K2S2O7 system has been studied using a gold working electrode in the temperature range 400-460 degrees C. A similar experiment has been performed with the industrial catalyst VK-58. The aim of the present...

  2. Occurrence of by-products of strong oxidants reacting with drinking water contaminants--scope of the problem.

    OpenAIRE

    Rice, R G; Gomez-Taylor, M

    1986-01-01

    This paper describes results of a detailed literature review of the organic and inorganic by-products that have been identified as being formed in aqueous solution with four of the strong oxidizing/disinfecting agents commonly employed in drinking water treatment. These agents are: chlorine, chlorine dioxide, chloramine, and ozone. Significant findings include the production of similar nonchlorinated organic oxidation products from chlorine, chlorine dioxide, and ozone. In addition, all three...

  3. Experimental studies on oxidizing removal of Cyclops of zooplankton

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The inactivation of Cyclops with currently available oxidants such as chlorine, chlorine dioxide,ozone and potassium permanganate was investigated and reported under various working conditions of different oxidant dosage, organic substance content and pH value. The removal efficiency of Cyclops by predosing chlorine dioxide in water treatment process was comprehensively compared with that of the conventional prechlorination process. The results showed that chlorine dioxide might be most effective to inactivate Cyclops than other oxidants and its effect was less influenced by external conditions. Cyclops could be effectively inactivated by chlorine dioxide preoxidation and be thoroughly removed from water by chlorine dioxide preoxidation cooperating with routine clarification process, i.e. flocculation, sedimentation and filtration.

  4. Standard specification for sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification is for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors. It applies to gadolinium oxide-uranium dioxide pellets containing uranium of any 235U concentration and any concentration of gadolinium oxide. 1.2 This specification recognizes the presence of reprocessed uranium in the fuel cycle and consequently defines isotopic limits for gadolinium oxide-uranium dioxide pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated uranium. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design. 1.3 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aw...

  5. CHLORINE DIOXIDE TREATMENT OF SISAL FIBRE: SURFACE LIGNIN AND ITS INFLUENCES ON FIBRE SURFACE CHARACTERISTICS AND INTERFACIAL BEHAVIOUR OF SISAL FIBRE/PHENOLIC RESIN COMPOSITES

    OpenAIRE

    Linxin Zhong; Shiyu Fu; Feng Li; Huaiyu Zhan

    2010-01-01

    This paper describes an investigation of the influences of chlorine dioxide treatment on fibre surface lignin. The fibre surface characteristics and the interfacial behaviour of the sisal fibre/phenolic resin composites were also studied by SEM, AFM, and XPS. The results show that the surface of the untreated fibre contains a large amount of lignin with granular structure and non-granular structure. The surface lignin concentration is up to 51% for the untreated fibre, and then it decreases t...

  6. Survival of lactic acid and chlorine dioxide treated Campylobacter jejuni under suboptimal conditions of pH, temperature and modified atmosphere

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Nielsen, Dennis Sandris;

    2010-01-01

    Campylobacter jejuni cells treated with lactic acid (LA, 3% lactic acid, pH 4.0, 2 min) or chlorine dioxide (ClO(2), 20 ppm, 2 min) were inoculated in Bolton broth (pH 6.0) and incubated under 80% O(2)/20% N(2), 80% CO(2)/20% N(2), air or micro-aerophilic (10% CO(2)/85% N(2)/5% O(2)) atmosphere, at 4 degrees C...

  7. On heteromolecular insertion of sulfur dioxide and acetonitrile into molybdenum-chlorine bond

    International Nuclear Information System (INIS)

    Bubbling of sulfur dioxide through MoCl5 suspension in acetonitrile enabled to perform for the first time the introduction of these ligands by Mo-Cl bonds. The addition proceeds rapidly with heat liberation at room temperature. Data of element analysis and IR-spectroscopy show, that addition product is characterized by the formula MoCl3[O2S(N = C(Me)Cl)2]MeCN. Complex of MoCl2[O2S(N = C(Me)Cl)2]MeCN composition forms during boiling. Magnetic moments testify to the fact, that these compounds are dimers

  8. Chlorination of UO2, PuO2, and rare-earth oxides using ZrCl4

    International Nuclear Information System (INIS)

    A new chlorination method using ZrCl4, which has a high reactivity with oxygen, has been investigated for more efficient oxide treatment. After actinide oxides are chlorinated and dissolved in a molten salt bath, actinide metals can be selectively collected using the electrorefining process. This process is well suited for pyrochemical reprocessing of metallic fuels. In LiCl-KCI eutectic melts, rare-earth oxides (Y2O3, La2O3, CeO2, and Nd2O3) and actinide oxides (UO2 and PuO2) were chlorinated by adding ZrCl4. As a result, rare-earth and actinide elements were dissolved into the salt as trivalent ions and ZrO2 was precipitated. When an excess of ZrCI4 was added, oxides in powder form were completely chlorinated in five hours. It was demonstrated that the ZrCI4 chlorination method, free from corrosive gas such as chlorine, was very simple and useful. (author)

  9. CHLORINE DIOXIDE TREATMENT OF SISAL FIBRE: SURFACE LIGNIN AND ITS INFLUENCES ON FIBRE SURFACE CHARACTERISTICS AND INTERFACIAL BEHAVIOUR OF SISAL FIBRE/PHENOLIC RESIN COMPOSITES

    Directory of Open Access Journals (Sweden)

    Linxin Zhong

    2010-11-01

    Full Text Available This paper describes an investigation of the influences of chlorine dioxide treatment on fibre surface lignin. The fibre surface characteristics and the interfacial behaviour of the sisal fibre/phenolic resin composites were also studied by SEM, AFM, and XPS. The results show that the surface of the untreated fibre contains a large amount of lignin with granular structure and non-granular structure. The surface lignin concentration is up to 51% for the untreated fibre, and then it decreases to 24% and 20% for fibres treated with 1.5 % and 2.0% chlorine dioxide, respectively. The removal of lignin from the fibre surface can enhance the interfacial strength of the composites, giving rise to increases by 36% and 28% in tensile strength and internal bonding strength. These results indicate that the surface properties of single sisal fibres can be tailored to improve the fibre/resin interface. Chlorine dioxide treatment has potential for surface modification of sisal fibre in engineering the interfacial behaviour of composites.

  10. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants.

    Science.gov (United States)

    Sichel, C; Garcia, C; Andre, K

    2011-12-01

    UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs. PMID:22000058

  11. Oxidation of plutonium dioxide: an X-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy experiments were conducted in order to characterise plutonium dioxide oxidation. It is shown that the sample preparation adopted does not enable elaboration of hyperstoichiometric plutonium dioxide. These results could mean that plutonium dioxide oxidation only occurs under very specific conditions

  12. Experimental Study of Closed System in the Chlorine Dioxide-Iodide-Sulfuric Acid Reaction by UV-Vis Spectrophotometric Method

    Directory of Open Access Journals (Sweden)

    Na Li

    2011-01-01

    Full Text Available The mole ratio r(r=[I−]0/[ClO2]0 has great influence on ClO2-I−-H2SO4 closed reaction system. By changing the initiate concentration of potassium iodide, the curve of absorbance along with the reaction time was obtained at 350 nm and 297 nm for triiodide ion, and 460 nm for iodine. The changing point of the absorbance curve's shape locates at r=6.00. For the reaction of ClO2-I− in the absence of H2SO4, the curve of absorbance along with the reaction time can be obtained at 350 nm for triiodide ion, 460 nm for iodine. The mole ratio r is equal to 1.00 is the changing point of the curve's shape no matter at which wavelength to determine the reaction. For the reaction of ClO2-I−-H+ in different pH buffer solution, the curve of absorbance along with the reaction time was recorded at 460 nm for iodine. When r is greater than 1.00, the transition point of the curve's shape locates at pH 2.0, which is also the point of producing chlorite or chloride for chlorine dioxide at different pH. When r is less than 1.00, the transition point locates at pH 7.0.

  13. Combined effect of aqueous chlorine dioxide and modified atmosphere packaging on inhibiting Salmonella Typhimurium and Listeria monocytogenes in mungbean sprouts.

    Science.gov (United States)

    Jin, H-H; Lee, S-Y

    2007-11-01

    This study was conducted to investigate the effect of chlorine dioxide (ClO2) combined with modified atmosphere packaging (MAP) on inhibiting total mesophilic microorganisms, Salmonella Typhimurium, and Listeria monocytogenes in mungbean sprouts during refrigerated storage. Mungbean sprouts were packaged using 4 different methods (air, vacuum, CO2 gas, and N2 gas) following treatment with water or 100 ppm ClO2 for 5 min and stored at 5 +/- 2 degrees C. The population of total mesophilic microorganisms in mungbean sprouts was about 8.4-log(10) CFU/g and this level was not significantly reduced by treatment with water or ClO2 (P > 0.05). However, when samples were packaged under vacuum, N2 gas, or CO2 gas following treatment with ClO2, the populations of total mesophilic microorganisms were significantly reduced during storage (P 0.05). However, treatment with ClO2 significantly reduced populations of S. Typhimurium and L. monocytogenes by 3.0- and 1.5-log CFU/g, respectively (P < 0.05), and these reduced cell levels were maintained or decreased in samples packaged under vacuum or in N2 or CO2 gas during storage. These results suggest that the combination of ClO2 treatment and MAP such as CO2 gas packaging may be useful for inhibiting microbial contamination and maintaining quality in mungbean sprouts during storage. PMID:18034740

  14. The photolysis of chlorine in the presence of ozone, nitric acid and nitrogen dioxide

    Science.gov (United States)

    Stuper, W. W.

    1979-01-01

    The following three systems were investigated: the Cl2-O3 system, the Cl2-O2-NO system and the Cl2-NO2-M system. In the first system, the reaction between ClO and O3, the reaction between OClO and O3, and the mechanism of the Cl2-O3 system were studied. In the second system, the reaction between ClOO and NO was investigated. In the last system, the reaction between Cl and NO2 was investigated as well as the kinetics of the chemiluminescence of the Cl-NO2-O3 reaction. In the first system, Cl2 was photolyzed at 366 nm in the presence of O3 within the temperature range 254-297 K. O3 was removed with quantum yields of 5.8 + or - 0.5, 4.0 + or - 0.3, 2.9 + or - 0.3 and 1.9 + or - 0.2 at 297, 283, 273, and 252 K respectively, invariant to changes in the initial O3 or Cl2 concentration, the extent of conversion or the absorbed intensity, I sub a. The addition of nitrogen had no effect on -phi(03). The Cl2 removal quantum yields were 0.11 + or - 0.02 at 297 K for Cl2 conversions of about 30%, much higher than expected from mass balance considerations based on the initial quantum yield of 0.089 + or - 0.013 for OClO formation at 297 K. The final chlorine-containing product was Cl2O7. It was produced at least in part through the formation of OClO as an intermediate which was also observed with an initial quantum yield of phi sub i(OClO) = 2500 exp(-(3025 + or - 625)/T) independent of (O3) or I sub a.

  15. Chlorination and oxidation of sulfonamides by free chlorine: Identification and behaviour of reaction products by UPLC-MS/MS.

    Science.gov (United States)

    Gaffney, Vanessa de Jesus; Cardoso, Vitor Vale; Benoliel, Maria João; Almeida, Cristina M M

    2016-01-15

    Sulfonamides (SAs) are one class of the most widely used antibiotics around the world and have been frequently detected in municipal wastewater and surface water in recent years. Their transformation in waste water treatment plants (WWTP) and in water treatment plants (WTP), as well as, their fate and transport in the aquatic environment are of concern. The reaction of six sulfonamides (sulfamethoxazole, sulfapyridine, sulfamethazine, sulfamerazine, sulfathiazole and sulfadiazine) with free chlorine was investigated at a laboratory scale in order to identify the main chlorination by-products. A previously validated method, liquid chromatography/mass spectrometry, was used to analyse SAs and their chlorination by-products. At room temperature, pH 6-7, reaction times of up to 2 h and an initial concentration of 2 mg/L of free chlorine, the majority of SAs suffered degradation of around 65%, with the exception of sulfamethoxazole and sulfathiazole (20%). The main reaction of SAs with free chlorine occurred in the first minute. PMID:26560639

  16. EVALUATING ARSENIC AND MANGANESE REMOVAL FROM WATER BY CHLORINE OXIDATION FOLLOWED BY CLARIFICATION

    Directory of Open Access Journals (Sweden)

    V. G. R. Pires

    2015-06-01

    Full Text Available AbstractThis paper investigates the simultaneous removal of arsenic [As(V or As(III] and manganese [Mn(II] from natural waters of low and high turbidity by clarification (with polyaluminum chloride and aluminum sulfate as primary coagulants associated or not with chlorine pre-oxidation. The results showed that the clarification process exhibited low Mn(II removal, that varied from 6% to 18% and from 19% to 27% for natural waters of low and high turbidity, respectively. The use of chlorine as pre-oxidant increased Mn(II removal up to 77% and was associated with the formation of birnessite. Regarding As(V removal by clarification, particularly for high turbidity water, a concentration lower than that established by the National Drinking Water Quality Standards (10 μg.L-1 was achieved in almost all tests. Oxidation preceding the clarification led to AsIII removal efficiencies from 80% to 90% for both coagulants and types of water.

  17. Reduction of Salmonella enterica on the surface of eggshells by sequential treatment with aqueous chlorine dioxide and drying.

    Science.gov (United States)

    Choi, Seonyeong; Park, Sunhyung; Kim, Yoonsook; Kim, Byeong-sam; Beuchat, Larry R; Hoikyung, Kim; Ryu, Jee-Hoon

    2015-10-01

    The synergistic effects of sequential treatments with chlorine dioxide (ClO2) and drying in killing Salmonella enterica on the surface of chicken eggshells were investigated. Initial experiments were focused on comparing lethalities of sodium hypochlorite (NaOCl) and ClO2. Eggs surface-inoculated with S. enterica in chicken feces as a carrier were immersed in water, NaOCl (50 or 200 μg/mL), or ClO2 (50 or 200 μg/mL) for 1 or 5 min. For 1-min treatments, lethal activities of sanitizers were not significantly different (P>0.05). However, after treatment with ClO2 for 5 min, reductions of S. enterica were significantly greater (P≤0.05) than reductions after treatment with water or NaOCl. The effect of treatment of eggs with ClO2 or NaOCl, followed by drying at 43% relative humidity and 25 °C for 24 and 48 h, were determined. Populations of S. enterica decreased during drying, regardless of the type of sanitizer treatment. ClO2 treatment, compared to water or NaOCl treatments, resulted in additional reductions of ca. >1.3 log CFU/egg during drying. This indicates that sequential treatments with ClO2 and drying induced synergistic lethal effects against S. enterica on the surface of eggshells. These observations will be useful when selecting a sanitizer to control S. enterica on the surface of eggshells and designing an effective egg sanitization system exploiting the synergistic lethal effects of sanitizer and drying. PMID:26114591

  18. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    Science.gov (United States)

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. PMID:26001524

  19. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  20. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  1. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an... to or greater than 0.005 ppm shall be rounded up). (c) Sulfur oxides shall be measured in the...

  2. Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Mogensen, Mogens Bjerg

    2009-01-01

    Carbon dioxide electrolysis was studied in Ni/YSZ electrode supported Solid Oxide Electrolysis Cells (SOECs) consisting of a Ni-YSZ support, a Ni-YSZ electrode layer, a YSZ electrolyte, and a LSM-YSZ O2 electrode (YSZ = Yttria Stabilized Zirconia). The results of this study show that long term CO2...... current density and irreversible when operated at conditions that would oxidise carbon. This clearly shows that the passivation was not caused by coke formation. On the other hand, the passivation was partly reversible when introducing hydrogen. The passivation may be a consequence of impurities in the...

  3. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  4. Radiation enhanced thermal diffusion of chlorine in uranium dioxide; Diffusion thermique et sous irradiation du chlore dans le dioxyde d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Yves [Ecole doctorale de physique et d' astrophysique, Universite Claude Bernard Lyon-I, Lyon (France)

    2006-12-15

    This work concerns the study of the thermal and radiation enhanced diffusion of {sup 36}Cl in uranium dioxide. It is a contribution to PRECCI programme (research programme on the long-term behaviour of the spent nuclear fuel). {sup 36}Cl is a long lived volatile activation product (T = 300 000 years) able to contribute significantly to the instant release fraction in geological disposal conditions. We simulated the presence of {sup 36}Cl by implanting a quantity of {sup 37}Cl comparable to the impurity content of chlorine in UO{sub 2}. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments: - the influence of the temperature was studied by carrying out thermal annealings in the temperature range 900 - 1300 deg. C; we showed that implanted chlorine was mobile from temperatures as low as 1000 deg. C and determined a thermal diffusion coefficient D{sub 1000} {sub deg.} {sub C} around 10{sup -16} cm{sup 2}s{sup -1} and deduced an activation energy of 4.3 eV. This value is one of lowest compared to that of volatile fission products such as iodine or the xenon. These parameters reflect the very mobile behaviour of chlorine; - the irradiation effects induced by fission products were studied by irradiating the samples with {sup 127}I (energy of 63.5 MeV). We showed that the implanted chlorine diffusion in the temperature range 30 - 250 deg. C is not purely athermal. In these conditions, the diffusion coefficient D{sub 250} {sub deg.} {sub C} for the implanted chlorine is around 10{sup -14} cm{sup 2}s{sup -1} and the activation energy is calculated to be 0.1 eV. Moreover, at 250 deg. C, we observed an important transport of the pristine chlorine from the bulk towards the surface. This chlorine comes from a zone where the defects are mainly produced by the nuclear energy loss process at the end of iodine range. We showed the importance of the

  5. Thermal diffusion of chlorine in uranium dioxide studied by secondary ion mass spectrometry and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    In a nuclear reactor, 35Cl present as an impurity in the nuclear fuel is activated by thermal neutron capture. During interim storage or geological disposal of the nuclear fuel, 36Cl may be released from the fuel to the geo/biosphere and contribute significantly to the 'instant release fraction'. In order to elucidate the diffusion mechanisms, both irradiation and thermal effects must be assessed. This paper deals with the thermal diffusion of chlorine in depleted UO2. For this purpose, sintered UO2 pellets were implanted with 37Cl at an ion fluence of 1013cm-2 and successively annealed in the 1175-1475K temperature range. The implanted chlorine is used to simulate the behaviour of the displaced one due to recoil and to interactions with the fission fragments during reactor operation. The behaviour of the pristine and the implanted chlorine was investigated during thermal annealing. SIMS and μ-XAS (at the Cl-K edge) analyses show that: (1) the thermal migration of implanted chlorine becomes significant at 1275K; this temperature and the calculated activation energy of 4.3eV points out the great ability of chlorine to migrate in UO2 at relatively low temperatures; (2) the behaviour of the implanted chlorine which aggregates into 'hot spots' during annealing before its effusion is clearly different from that of the pristine one which remains homogenously distributed after annealing; (3) the 'hot spot' and the pristine chlorine seem to be in different structural environments. Both types of chlorine are assumed to have a valence state of -I; (4) the comparison between an U2O2Cl5 reference compound and the pristine chlorine environment shows a contribution of the U2O2Cl5 to the pristine chlorine

  6. Differential effects of chlorinated and oxidized phospholipids in vascular tissue: implications for neointima formation.

    Science.gov (United States)

    Greig, Fiona H; Hutchison, Lisa; Spickett, Corinne M; Kennedy, Simon

    2015-05-01

    The presence of inflammatory cells and MPO (myeloperoxidase) in the arterial wall after vascular injury could increase neointima formation by modification of phospholipids. The present study investigates how these phospholipids, in particular oxidized and chlorinated species, are altered within injured vessels and how they affect VSMC (vascular smooth muscle cell) remodelling processes. Vascular injury was induced in C57BL/6 mice and high fat-fed ApoE-/- (apolipoprotein E) mice by wire denudation and ligation of the left carotid artery (LCA). Neointimal and medial composition was assessed using immunohistochemistry and ESI-MS. Primary rabbit aortic SMCs (smooth muscle cells) were utilized to examine the effects of modified lipids on VSMC proliferation, viability and migration at a cellular level. Neointimal area, measured as intima-to-media ratio, was significantly larger in wire-injured ApoE-/- mice (3.62±0.49 compared with 0.83±0.25 in C57BL/6 mice, n=3) and there was increased oxidized low-density lipoprotein (oxLDL) infiltration and elevated plasma MPO levels. Relative increases in lysophosphatidylcholines and unsaturated phosphatidylcholines (PCs) were also observed in wire-injured ApoE-/- carotid arteries. Chlorinated lipids had no effect on VSMC proliferation, viability or migration whereas chronic incubation with oxidized phospholipids stimulated proliferation in the presence of fetal calf serum [154.8±14.2% of viable cells at 1 μM PGPC (1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine) compared with control, n=6]. In conclusion, ApoE-/- mice with an inflammatory phenotype develop more neointima in wire-injured arteries and accumulation of oxidized lipids in the vessel wall may propagate this effect. PMID:25524654

  7. Thermal Property Evaluation of Cerium Dioxide and Cerium Dioxide Magnesium Oxide Powders for Testing Plutonium

    International Nuclear Information System (INIS)

    Ceric oxide (CeO2) and mixtures of CeO2 -magnesium oxide (MgO) have been utilized at the Plutonium Finishing Plant (PFP) as surrogate materials to represent plutonium dioxide (PuO2) and impure PuO2 containing impurities such as MgO during verification tests on PFP's stabilization furnaces. Magnesium oxide was selected during furnace testing as the impurity of interest since much of the impure PuO2 to be stabilized and packaged at the PFP contains significant amounts of MgO from solution stabilization work. The issue being addressed in this study is whether or not heating the surrogate materials to 950 C adequately simulates heating PuO2 powders to 950 C. This paper evaluates some of the thermal properties of these oxides, as related to the heating of powders of these materials where heat transfer within the powders is governed primarily by conduction. Detailed heat transfer modeling was outside the scope of this paper

  8. Comparative evaluation of 15% ethylenediamine tetra-acetic acid plus cetavlon and 5% chlorine dioxide in removal of smear layer: A scanning electron microscope study

    OpenAIRE

    Sandeep Singh; Vimal Arora; Inderpal Majithia; Rakesh Kumar Dhiman; Dinesh Kumar; Amber Ather

    2013-01-01

    Aims: The purpose of this study was to compare the efficacy of smear layer removal by 5% chlorine dioxide and 15% Ethylenediamine Tetra-Acetic Acid plus Cetavlon (EDTAC) from the human root canal dentin. Materials >and Methods : Fifty single rooted human mandibular anterior teeth were divided into two groups of 20 teeth each and control group of 10 teeth. The root canals were prepared till F3 protaper and initially irrigated with 2% Sodium hypochlorite followed by 1 min irrigation with 15% ED...

  9. Influence of ultrasound enhancement on chlorine dioxide consumption and disinfection by-products formation for secondary effluents disinfection.

    Science.gov (United States)

    Zhou, Xiaoqin; Zhao, Junyuan; Li, Zifu; Lan, Juanru; Li, Yajie; Yang, Xin; Wang, Dongling

    2016-01-01

    Chlorine dioxide (ClO2) has been promoted as an alternative disinfectant because of its high disinfection efficiency and less formation of organic disinfection by-products (DBPs). However, particle-associated microorganisms could be protected during the disinfection process, which decreases the disinfection efficiency or increases the required dosage. Besides, the formation of inorganic disinfection by-products is a significant concern in environment health. Ultrasound (US)-combined disinfection methods are becoming increasingly attractive because they are efficient and environmentally friendly. In this study, US was introduced as an enhancement method to identify its influence on ClO2 demand reduction and to minimize the production of potential DBPs for secondary effluents disinfection. Fecal coliform was used as an indicator, and DBPs, including trichloromethane (TCM), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), chlorite (ClO2(-)), and chlorate (ClO3(-)), were analyzed to observe the potential DBPs formation. Results show that US pretreatment could reduce half of ClO2 dosage compared with ClO2 disinfection alone for the same disinfection efficiency, and that an input power density of 2.64 kJ/L pretreatment with the 1.5mg/L ClO2 was enough to meet the discharge requirement in China (i.e., fecal coliform below 1000 CFU/L for Class 1A) for secondary effluent disinfection, and the ClO2(-) concentration in the disinfection effluent was only 1.37 mg/L at the same time. Furthermore, the different effects of US on the two processes (US as pretreatment and simultaneous US/ClO2 disinfection) were also analyzed, including deagglomerating, cell damage, and synergistic disinfection as well as degasing/sonolysis. It was proved that the production of TCM, DCAA, and TCAA was insignificantly influenced with the introduction of US, but US pretreatment did reduce the production of ClO2(-) and ClO3(-) effectually. In general, US pretreatment could be a better option for

  10. Six-month low level chlorine dioxide gas inhalation toxicity study with two-week recovery period in rats

    Directory of Open Access Journals (Sweden)

    Akamatsu Akinori

    2012-02-01

    Full Text Available Abstract Background Chlorine dioxide (CD gas has a potent antimicrobial activity at extremely low concentration and may serve as a new tool for infection control occupationally as well as publicly. However, it remains unknown whether the chronic exposure of CD gas concentration effective against microbes is safe. Therefore, long-term, low concentration CD gas inhalation toxicity was studied in rats as a six-month continuous whole-body exposure followed by a two-week recovery period, so as to prove that the CD gas exposed up to 0.1 ppm (volume ratio is judged as safe on the basis of a battery of toxicological examinations. Methods CD gas at 0.05 ppm or 0.1 ppm for 24 hours/day and 7 days/week was exposed to rats for 6 months under an unrestrained condition with free access to chow and water in a chamber so as to simulate the ordinary lifestyle in human. The control animals were exposed to air only. During the study period, the body weight as well as the food and water consumptions were recorded. After the 6-month exposure and the 2-week recovery period, animals were sacrificed and a battery of toxicological examinations, including biochemistry, hematology, necropsy, organ weights and histopathology, were performed. Results Well regulated levels of CD gas were exposed throughout the chamber over the entire study period. No CD gas-related toxicity sign was observed during the whole study period. No significant difference was observed in body weight gain, food and water consumptions, and relative organ weight. In biochemistry and hematology examinations, changes did not appear to be related to CD gas toxicity. In necropsy and histopathology, no CD gas-related toxicity was observed even in expected target respiratory organs. Conclusions CD gas up to 0.1 ppm, exceeding the level effective against microbes, exposed to whole body in rats continuously for six months was not toxic, under a condition simulating the conventional lifestyle in human.

  11. Chapter 21. chlorine dioxide

    Science.gov (United States)

    Submerging terminal leafy cuttings of Rhododendron L. 'Gumpo White' ('Gumpo White' azalea) in 50 °C water for 21 min was previously shown to eliminate binucleate Rhizoctonia species, the cause of azalea web blight, from plant tissues. Prior to considering commercial use of this practice, a better un...

  12. STUDY OF THE EFFECT OF CHLORINE ADDITION ON MERCURY OXIDATION BY SCR CATALYST UNDER SIMULATED SUBBITUMINOUS COAL FLUE GAS

    Science.gov (United States)

    An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...

  13. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying.

    Science.gov (United States)

    Bang, Jihyun; Hong, Ayoung; Kim, Hoikyung; Beuchat, Larry R; Rhee, Min Suk; Kim, Younghoon; Ryu, Jee-Hoon

    2014-11-17

    We investigated the efficacy of sequential treatments of aqueous chlorine and chlorine dioxide and drying in killing Escherichia coli O157:H7 in biofilms formed on stainless steel, glass, plastic, and wooden surfaces. Cells attached to and formed a biofilm on wooden surfaces at significantly (P ≤ 0.05) higher levels compared with other surface types. The lethal activities of sodium hypochlorite (NaOCl) and aqueous chlorine dioxide (ClO₂) against E. coli O157:H7 in a biofilm on various food-contact surfaces were compared. Chlorine dioxide generally showed greater lethal activity than NaOCl against E. coli O157:H7 in a biofilm on the same type of surface. The resistance of E. coli O157:H7 to both sanitizers increased in the order of wood>plastic>glass>stainless steel. The synergistic lethal effects of sequential ClO₂ and drying treatments on E. coli O157:H7 in a biofilm on wooden surfaces were evaluated. When wooden surfaces harboring E. coli O157:H7 biofilm were treated with ClO₂ (200 μg/ml, 10 min), rinsed with water, and subsequently dried at 43% relative humidity and 22 °C, the number of E. coli O157:H7 on the surface decreased by an additional 6.4 CFU/coupon within 6 h of drying. However, when the wooden surface was treated with water or NaOCl and dried under the same conditions, the pathogen decreased by only 0.4 or 1.0 log CFU/coupon, respectively, after 12 h of drying. This indicates that ClO₂ treatment of food-contact surfaces results in residual lethality to E. coli O157:H7 during the drying process. These observations will be useful when selecting an appropriate type of food-contact surfaces, determining a proper sanitizer for decontamination, and designing an effective sanitization program to eliminate E. coli O157:H7 on food-contact surfaces in food processing, distribution, and preparation environments. PMID:25261831

  14. 基于过氧化氢制备生产二氧化氯的过程开发研究%Process Development and Design of Chlorine Dioxide Production Based on Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    陈赟; 江燕斌; 钱宇

    2004-01-01

    This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization of process conditions, selection of equipment, and experiment of recycle of waste acid are carried out. The process design is realized in consideration of several aspects such as operation, material, equipment design and safety. An industrialized process flowsheet is developed according to experiment. A pilot testing is carried out to confirm the lab results. Process design of chlorine dioxide production based on hydrogen peroxide is realized.

  15. A randomized double blind crossover placebo-controlled clinical trial to assess the effects of a mouthwash containing chlorine dioxide on oral malodor

    Directory of Open Access Journals (Sweden)

    Yokoyama Sayaka

    2008-12-01

    Full Text Available Abstract Background Previous research has shown the oxidizing properties and microbiological efficacies of chlorine dioxide (ClO2, however, its clinical efficacies on oral malodor have been evaluated only with organoleptic measurements (OM or sulphide monitors. No clinical studies have investigated the inhibitory effects of ClO2 on volatile sulfur compounds (VSCs using gas chromatography (GC. The aim of this study was to assess the inhibitory effects of a mouthwash containing ClO2 on morning oral malodor using OM and GC. Methods A randomized, double blind, crossover, placebo-controlled clinical trial was conducted among 15 healthy male volunteers, who were divided into 2 groups. In the first test phase, the group 1 subjects (N = 8 were instructed to rinse with the experimental mouthwash containing ClO2, and those in group 2 (N = 7 to rinse with the placebo mouthwash without ClO2. In the second test, phase after a one week washout period, each group used the opposite mouthwash. Oral malodor was evaluated before rinsing, right after rinsing and every 30 minutes up to 4 hours with OM, and concentrations of hydrogen sulfide (H2S, methyl mercaptan (CH3SH and dimethyl sulfide ((CH32S, the main VSCs of human oral malodor, were evaluated with GC. Results The baseline oral condition in the subjects in the 2 groups did not differ significantly. The mouthwash containing ClO2 improved morning bad breath according to OM and reduced concentrations of H2S, CH3SH and (CH32S according to GC up to 4 hours after rinsing. OM scores with ClO2 were significantly lower than those without ClO2 at all examination times. Significant reductions in the concentrations of the three kinds of VSCs measured by GC were also evident at all examination times. The concentrations of the three gases with ClO2 were significantly lower than those without ClO2 at most examination times. Conclusion In this explorative study, ClO2 mouthwash was effective at reducing morning malodor for 4

  16. Effects of a mouthwash with chlorine dioxide on oral malodor and salivary bacteria: a randomized placebo-controlled 7-day trial

    Directory of Open Access Journals (Sweden)

    Ohnuki Mari

    2010-02-01

    Full Text Available Abstract Background Previous research has shown the oxidizing properties and microbiological efficacies of chlorine dioxide (ClO2. Its clinical efficacies on oral malodor have been evaluated and reported only in short duration trials, moreover, no clinical studies have investigated its microbiological efficacies on periodontal and malodorous bacteria. Thus, the aim of this study was to assess the inhibitory effects of a mouthwash containing ClO2 used for 7 days on morning oral malodor and on salivary periodontal and malodorous bacteria. Methods/Design A randomized, double blind, crossover, placebo-controlled trial was conducted among 15 healthy male volunteers, who were divided into 2 groups. Subjects were instructed to rinse with the experimental mouthwash containing ClO2 or the placebo mouthwash, without ClO2, twice per day for 7 days. After a one week washout period, each group then used the opposite mouthwash for 7 days. At baseline and after 7 days, oral malodor was evaluated with Organoleptic measurement (OM, and analyzed the concentrations of hydrogen sulfide (H2S, methyl mercaptan (CH3SH and dimethyl sulfide ((CH32S, the main VSCs of human oral malodor, were assessed by gas chromatography (GC. Clinical outcome variables included plaque and gingival indices, and tongue coating index. The samples of saliva were microbiologically investigated. Quantitative and qualitative analyses were performed using the polymerase chain reaction-Invader method. Results and Discussion The baseline oral condition in healthy subjects in the 2 groups did not differ significantly. After rinsing with the mouthwash containing ClO2 for 7 days, morning bad breath decreased as measured by the OM and reduced the concentrations of H2S, CH3SH and (CH32S measured by GC, were found. Moreover ClO2 mouthwash used over a 7-day period appeared effective in reducing plaque, tongue coating accumulation and the counts of Fusobacterium nucleatum in saliva. Future research is

  17. Dissolution of actinide oxides in supercritical fluid carbon dioxide, containing various organic ligands

    International Nuclear Information System (INIS)

    The dissolution of actinide oxides in supercritical fluid carbon dioxide containing a complex of tri-n-butyl phosphate with nitric acid was investigated. It was shown for the first time that milligram amounts of uranium dioxide can be quantitatively dissolved in supercritical carbon dioxide containing this reagent and efficiently separated from plutonium, neptunium, and thorium on its supercritical fluid extraction from a mixture of their oxides. The quantitative dissolution of milligram amounts of uranium trioxide in supercritical carbon dioxide containing thenoyltrifluoroacetone and tri-n-butyl phosphate was first performed using ultrasonication. (author)

  18. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  19. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    International Nuclear Information System (INIS)

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  20. Quantification of chlorine in zirconium oxide and biological samples by instrumental NAA utilizing PCF of Dhruva reactor

    International Nuclear Information System (INIS)

    Recently studies on chlorine contents in various samples are being pursued due to its corrosive nature. Chlorine present at trace level in various finished products as well as powder is used as a raw material for production of different types of zircaloys used as structural materials in nuclear technology. As a part of quality assurance program, it is necessary to quantify chlorine accurately with suitable and simple technique. In the present work we have applied instrumental neutron activation analysis (INAA) utilizing its short-lived activation product (38Cl, 37 min, 1642 and 2168 keV) for its estimation. Pneumatic Carrier Facility (PCF) of Dhruva reactor, BARC was used sample irradiation of zirconium oxide dry powder, synthetic wax and IAEA RMs 1515 (Apple leaves) and Lichen 336. (author)

  1. Study of the systems polonium dioxide-oxides of zirconium, hafnium, and strontium

    International Nuclear Information System (INIS)

    It was proved by direct thermal synthesis in an oxygen medium and radiometric means that polonium dioxide vapor does not react with zirconium dioxide in the studied temperature range (up to 10500C) and is absorbed by hafnium dioxide at 9300C at polonium dioxide:hafnium oxide molar ratios of up to 0.14 +/- 0.03. It was also shown by direct synthesis in an oxygen medium and radiotensimetric technique that at 840-880 and 900-9200C strontium oxide absorbs polonium dioxide at polonium dioxide:strontium oxide molar ratios of up to (0.48-0.55) +/- 0.15 and (0.95-1.02) +/- 0.23 respectively to give the compounds Sr2PoO4 and SrPoO3. Upon heating in an oxygen medium above 8800C the compound SrPoO3 releases polonium dioxide at polonium:dioxide strontium oxide molar ratios of up to 0.51 +/- 0.15, yielding the compound SrPoO4 which dissociates upon heating above 9800C. The temperature dependences of polonium dioxide vapor pressure of dissociation of the compounds obtained are determined and the heats of these processes are calculated

  2. Investigation on preparation of uranium tetrachloride from chlorinating uranium dioxide by carbon tetrachloride and its mixing reagents

    International Nuclear Information System (INIS)

    By studying the change of the temperature for gaseous space and solid layer within the reactor and improving structure of reactor and types of feed material stocked in the boat pan, it is possible to reduce the volatilization loss of uranium, allowing the uranium yield to rise above 97%. A further study found that chlorination of UO2 by using a mixture of CHCl3 + CCl4 can markedly reduce the volatilization loss of uranium chlorides, and the uranium yield is above 99%. The content of free carbon is less than 100 ppm in the product. A new chlorination process has been developed

  3. 二氧化氯与氯联合消毒对饮用水中消毒副产物的影响%EFFECT OF COMBINED DISINFECTION WITH CHLORINE AND CHLORINE DIOXIDE ON THE FORMATION OF DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Institute of Scientific and Technical Information of China (English)

    叶必雄; 王五一; 杨林生; 王小龙; 魏建荣

    2011-01-01

    In an effect to explore the production mechanisms and characteristics of the by-products in different water disinfection processes,and to investigate the effect of chlorine dioxide on the formation of chlorine by-products,water samples from 4 water plants in a city in China were analyzed.Compared with the water disinfected with chlorine alone,the amount of THMs and HAAs decreased by 74.39% and 40.65%,respectively,in water samples disinfected with both chlorine dioxide and chlorine.Likewise,the amounts of chlorate and chlorite produced by the chlorine dioxide chemical generator was higher than that of the pure chlorine dioxide generator.%为了研究二氧化氯与氯联合消毒工艺过程中消毒副产物的形成规律以及特点,探讨二氧化氯对氯化消毒副产物的控制效果,对我国北方某市使用同一水源的4家水厂消毒工艺进行全面的采样与检测,并对各项消毒副产物检测结果进行了全面的分析.结果表明,二氧化氯与氯联合消毒比单纯液氯消毒形成的三卤甲烷平均降低74.39%,卤乙酸平均降低40.65%.在控制氯酸盐及亚氯酸盐生成方面,使用纯二氧化氯发生器生成的氯酸盐要显著低于化学法复合二氧化氯发生器.

  4. Oxidation of bisphenol F (BPF) by manganese dioxide

    International Nuclear Information System (INIS)

    Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO2. At pH 5.5, about 90% of BPF was oxidized in 20 min in a solution containing 100 μM MnO2 and 4.4 μM BPF. The reaction was pH-dependent, following an order of pH 4.5 > pH 5.5 > pH 8.6 > pH 7.5 > pH 6.5 > pH 9.6. Humic acids inhibited the reaction at low (≤pH 5.5) and high pH (≥pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn2+ > Ca2+ > Mg2+ > Na+ and HPO42- > Cl- > NO3- ∼ SO42-, respectively. A total of 5 products were identified, from which a tentative pathway was proposed. - Highlights: → Manganese dioxide oxidizes bisphenol F rapidly at ambient temperature. → pH and co-solutes such as humic acids, metal ions and anions affect the reaction. → Identification of 5 reaction intermediates points to a tentative pathway involving free radicals. → The commonly occurring MnO2 may be important in the natural attenuation of bisphenol F or used for its decontamination. - The commonly occurring MnO2 shows a high reactivity toward bisphenol F, which may account for its natural attenuation and suggest a beneficial use of MnO2 for managed removal of bisphenol F.

  5. Oxidation of uranium dioxide by hydrogen peroxide in sulfuric acid medium

    International Nuclear Information System (INIS)

    The oxidation of uranium dioxide by hydrogen peroxide in sulfuric acid medium was studied. It was found that in the UO2-H2O2-Fe/sup (II,III)/-H2SO4 system, the value of the oxidation potential (OP) is determined by the amount of Fe/sup (III)/ ions formed as the result of the oxidation of ferrous oxide by hydrogen peroxide. At normal temperature, H2O2 displays its oxidizing activity with respect to uranium dioxide at OP values of 500-550 mV, and at elevated temperature (40-600C) and in the presence of iron ions, at 400-450 mV. In a wide range of pH values, hydrogen peroxide as oxidizing agent considerably surpasses oxidizing agents such as nitrous acid, manganese dioxide, manganates, and permanganates. The process proceeds vigorously not only with the participation of iron ions, but also in their absence

  6. Protein turnover in the breast muscle of broiler chicks and studies addressing chlorine dioxide sanitation of hatching eggs, poultry leg problems and wheat middling diets for laying hens

    International Nuclear Information System (INIS)

    Developmental changes occurred in breast muscle Ks measured by 14C-tyrosine incorporation at 10, 16, 22 and 34 days of age. Protein synthesis rates decreased as the birds matures: 30 to 11.2%/d between 10 and 34 days of age. In a second study birds fed diets low in lysine or protein-energy had reduced fractional rates of protein synthesis and free tyrosine, branched chain and large neutral amino acid concentrations as compared to control birds the same body weight. Artificial weight loading and reduced dietary protein levels were used to study the effects of body weight on the severity of leg deformities in chicks and poults. Experiments investigating the practicality of wheat middlings as an alternate feedstuff for laying hens suggested that high levels in the diet will reduce egg production, feed conversion, hen livability and egg yolk color. Lastly, chlorine dioxide foam and dipping solutions were compared with formaldehyde fumigation for sanitizing hatching eggs

  7. Effect of One-methylcyclopropene (1-MCP) and chlorine dioxide (ClO2) on preservation of green walnut fruit and kernel traits

    OpenAIRE

    Jiang, Liuqing; Feng, Wenyu; Li, Fang; Xu, Jingying; Ma, Yanping; Ma, Huiling

    2013-01-01

    The effect of the ethylene receptor competitor 1-methylcyclopropene (1-MCP) and the legally approved disinfectant chlorine dioxide (ClO2) on preservation of the green walnut fruit during storage was investigated. Green Chinese walnut fruit cv. Xilin No.2 was harvested on commercial maturity and stored at 0–1 °C after the fruit was treated by water (control), 80 mg L−1ClO2 (ClO2), 0.5 μL L−11-MCP (1-MCP), or combination treatment of 80 mg L−1 ClO2 with either 0.1 μL L−1 1-MCP (0.1 1-MCP+ ClO2)...

  8. 稳定性二氧化氯手消毒液的毒效应研究%Research on Toxic Effects of Stable Chlorine Dioxide Hand Disinfectant

    Institute of Scientific and Technical Information of China (English)

    李立; 尹晓晨; 胡余明

    2011-01-01

    Objective To study the toxic effects of chlorine dioxide hand disinfectant, and to know about the biosafety of using stable chlorine dioxide. Methods Acute oral toxicity, several times of skin irritation test and subacute toxicity test were conducted for the study. Results Acute oral LD50 of Kunming male and female mice was greater than 5,000 mg/kgbw in this study. The stable chlorine dioxide hand disinfectant had no irritation to intact skin of rabbits. In the subacute toxicity test, after 28 days feeding, growth and development of animals in each dose group were good, there was no statistically significant difference compared with normal control group. The routine blood test and blood biochemical indices of animals in each dose group showed no statistically significant difference compared with the control group. The organs of experimental animals showed no obvious pathological changes. Conclusions Through acute oral toxicity test, skin irritation test, and subacute toxicity test in mice, the stable chlorine dioxide hand disinfectant belonged to actual non - toxic level substance, and non - irritant substance, and a substance with no subacute toxicity. The results suggest that the normal use of the disinfectant is safe.%目的 研究二氧化氯手消毒剂的毒性效应,了解稳定性二氧化氯使用的生物安全性.方法 采用急性经口毒性、多次完整皮肤刺激试验和亚急性毒性试验进行观察.结果 本研究中昆明种雌、雄小鼠的急性经口LD50均大于5 000 mg/kg·bw;在兔多次完整皮肤刺激试验中,稳定性二氧化氯手消毒剂多次接触动物完整皮肤未引起动物皮肤刺激反应;在亚急性毒性试验中,动物经过28 d喂养后,试验各剂量组实验动物生长发育良好,体重增加正常,与正常对照组相比较,差异无统计学意义;各剂量组实验动物血常规和血生化指标与对照组比较,差异均无统计学意义;实验动物各脏器均未

  9. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Sonali Taneja

    2014-01-01

    Full Text Available Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl, 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl 2 , 10% Ca(OCl 2 , 5%chlorine dioxide (ClO 2 and 13% ClO 2 . Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml according to their specified subgroup time interval: 30 minutes (Subgroup A and 60 minutes (Subgroup B. The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl 2 and 13% ClO 2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl 2 and 5% ClO 2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl 2 and ClO 2 gradually increased with time and with their increase in concentration.

  10. Development of Combined Dry Heat and Chlorine Dioxide Gas Treatment with Mechanical Mixing for Inactivation of Salmonella enterica Serovar Montevideo on Mung Bean Seeds.

    Science.gov (United States)

    Annous, Bassam A; Burke, Angela

    2015-05-01

    Foodborne outbreaks have been associated with the consumption of fresh sprouted beans. The sprouting conditions of mung bean seeds provide optimal conditions of temperature and relative humidity for any potential pathogenic contaminant on the seeds to grow. The lack of a kill step postsprouting is a major safety concern. Thus, the use of a kill step on the seeds prior to a sprouting step would enhance the safety of fresh sprouts. The objective of this work was to evaluate the effectiveness of the combined thermal and chlorine dioxide gas (3.5 mg/liter of air) treatment with mechanical mixing (tumbling) to eliminate Salmonella on artificially inoculated mung bean seeds. Although no viable Salmonella was recovered from seeds treated in hot water at 60°C for 2 h, these treated seeds failed to germinate. Dry heat treatments (55, 60, or 70°C) for up to 8 h reduced Salmonella populations in excess of 3 log CFU/g. The use of tumbling, while treating the seeds, resulted in up to 1.6 log CFU/g reduction in Salmonella populations compared with no tumbling. Dry heat treatment at 65°C for 18 h with tumbling resulted in a complete inactivation of Salmonella populations on inoculated seeds with low inoculum levels (2.83 log CFU/g) as compared with high inoculum levels (4.75 log CFU/g). The increased reductions in pathogenic populations on the seeds with the use of tumbling could be attributed to increased uniformity of heat transfer and exposure to chlorine dioxide gas. All treated seeds were capable of germinating, as well as the nontreated controls. These results suggest that this combined treatment would be a viable process for enhancing the safety of fresh sprouts. PMID:25951379

  11. The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: novel chlorine dioxide decontamination technologies for the military.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Setlow, Peter; Malkin, Alexander J; Leighton, Terrence J

    2014-01-01

    There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, 'clean and green' chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination(6,15). Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments(3). As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed "Bertha" in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft(3)), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves. PMID:24998679

  12. The behavior of SiC and Si3N4 ceramics in mixed oxidation/chlorination environments

    Science.gov (United States)

    Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.

    1989-01-01

    The behavior of silicon-based ceramics in mixed oxidation/chlorination environments was studied. High pressure mass spectrometry was used to quantitatively identify the reaction products. The quantitative identification of the corrosion products was coupled with thermogravimetric analysis and thermodynamic equilibrium calculations run under similar conditions in order to deduce the mechanism of corrosion. Variations in the behavior of the different silicon-based materials are discussed. Direct evidence of the existence of silicon oxychloride compounds is presented.

  13. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    Science.gov (United States)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  14. Chlorine-doped reduced graphene oxide nanosheets as an efficient and stable electrode for supercapacitor in acidic medium.

    Science.gov (United States)

    Kakaei, Karim; Hamidi, Milad; Husseindoost, Somayeh

    2016-10-01

    We demonstrate the efficient doping of reduced graphene oxide (RGO) by Chlorine and its capacitive performance was calculated by cyclic voltammetry and charge-discharge cycling in 1M H2SO4 solution. In this regard, we are prepared RGO nanosheets through a simple, eco-friendly and efficient electrochemical method, with selectively functionalized edges by chlorine which involves added the RGO to the halogen-containing acid solution and dispersed by ultrasonic. After synthesis, Cl-RGO is characterized using X-ray diffraction, Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, Energy-dispersive X-ray (EDX) spectroscopy and tunneling electron microscopy. FTIR spectra show the chlorine-containing functional groups. Energy-dispersive X-ray spectroscopy analysis confirmed the presence of doped chlorine in RGO. Raman spectroscopy shows a high density of defects in the RGO layer. Electrochemical characteristics of Cl-RGO are characterized by cyclic voltammetery, galvanostatic charge/discharge and electrochemical impedance spectroscopy. According to the galvanostatic charge/discharge analysis, Cl-RGO represents specific capacitance (Cs) of 178.4Fg(-1) at current density of 1Ag(-1), which is higher than that of RGO (100.5Fg(-1)) in H2SO4 solution. PMID:27388125

  15. Desinfecção de efluentes sanitários através de dióxido de cloro Disinfection of domestic wastewater using chlorine dioxide

    Directory of Open Access Journals (Sweden)

    Flávio Rubens Lapolli

    2005-09-01

    disinfection of municipal sewage previously treated by an activate sludge with extended aeration process, evaluating the fecal coliform inactivation and the remaining residual chlorine dioxide. Essays were carried out for different ClO2 doses and different contact times. The results showed that the most adequate dose for sewage disinfection was 2,0 mg ClO2/L in 20 min of contact time. Under this condition, 100% coliform removal is attained, the remaining organic matter is partially oxidized and pH and residual ClO2 values of effluent are maintained in the range determined by the Brazilian and USA regulations. It was concluded, from the economical study carried out, that disinfection of municipal sewage using chlorine dioxide is economically viable.

  16. Control effects of pε and pH on the generation and stability of chlorine dioxide

    Institute of Scientific and Technical Information of China (English)

    PEI Yuan-sheng; WU Xiao-qiang; LUAN Zhao-kun; WANG Tong

    2003-01-01

    A new method, without assistance of activity ratio diagram, was applied to construct the pε-pH diagrams for chlorine system. The optimal pH range for generation of ClO2 by contacting Cl2(g) directly with ClO2- solution is within pH 1.35-1.94, particularly within pH 1.35-4.00 only if minimizing the formation of Cl2. It is unachievable to synthesize pure ClO2 from the reaction of Cl2 and ClO2-. Conversely, ClO2 may be present a variation of stability in different waters owing to the changed pε and pH. ClO2 could be relatively stable if not disproportionate into ClO3-, coexisting with ClO2- (pε17.63 and pH>9.68), Cl2 (pH≤0.92) or Cl- (pH 0.92-9.68). When chlorine system has already reached the ultimate equilibria, ClO2 is a stable species in strongly acid media. As the acidity decreases, ClO2 disproportionates into ClO3- and Cl2. Aqueous ClO2 is unstable within the normal pH range. This work initially, theoretically elucidates the generation and stability of ClO2 by way of the pε-pH diagrams.

  17. On systems of vaporous polonium dioxide-zinc, cadmium and barium oxides

    International Nuclear Information System (INIS)

    Using the thermal method of the direct synthesis in oxygen medium and radiometrically it has been established that vaporous polonium dioxide does not interact with zinc and cadmium oxides during their heating up to 1050 deg C. Using the method of the direct synthesis in oxygen medium and radiotensimetric method it is shown that barium oxides at 900 and 950 deg C absorb polonium dioxide to the mole ratio of polonium dioxide-barium oxide (0.71-0.77)+-0.15 and (1.04-1.25)+-0.25 respectively with the formation of Ba4Po3O10 and BaPoO3. During heating in oxygen medium up to 1000 deg C these compounds separate polonium dioxide to the mole ratio of polonium dioxide-barium oxide 0.54+-0.11 with the formation of Ba2PoO4. Temperature dependences of vapour pressure of polonium dioxide in the process of dissociation of the compounds prepared are determined and the heats of the processes are calculated

  18. Photocatalytic oxidation mechanism of isobutane in contact with titanium dioxide (TiO2)

    Science.gov (United States)

    Formenti, M.; Juillet, F.; Teichner, S. J.

    1977-01-01

    The photocatalytic oxidation of isobutane to acetone in the presence of irradiated ultraviolet irradiated titanium dioxide was found to occur in several steps. Insertion of an oxygen atom onto the tertiary carbon transforming the isobutane into tertiary butanol occurred first. This step implied the photonic formation of the 02- species and its reaction with positive holes. The tertiary butanol was then dehydrated to isobutene which is oxidized acetone and carbon dioxide. Insertion of an oxygen atom onto the primary carbon led to isobutanal after oxidation to the alcohol. An analogous reaction scheme was proposed for all alkanes.

  19. Electrochemical and Integrated Process Opportunities for On-Site/On-Demand Generation of Chlorine Dioxide - Final Report - 08/02/1996 - 08/01/1999; FINAL

    International Nuclear Information System (INIS)

    Due to continued evidence of environmental harm from elemental chlorine bleaching, the nation's paper industry continues to search for cost effective alternative bleaching. A practical and cost effective bleaching alternative is chlorine dioxide manufactured entirely from sodium chlorate. Sodium chlorate is produced by the electrolysis of brine in an undivided cell with steel plate cathodes and dimensionally stable anodes. Although the overpotential at the anode is only 50 mV, the cathodic overpotential is 940 mV. Thus, nearly one volt of electricity is wasted in driving hydrogen evolution at the cathode. Auburn University's Center for Microfibrous Materials Manufacturing has demonstrated that high performance, three dimensional, microfibrous electrodes can improve the performance of capacitors, batteries, hybrid power cells, and electrolysis electrodes in a variety of applications. The goal of this research was to apply this technology to a chlorate cell's cathode and reduce the overpotential between 200 and 400 mV. An economic analysis of the industry has shown that for every 100 mV reduction in overpotential,$100 per square meter of electrode can be saved annually. Due to their enhanced surface area over plates, corrosion of microfibrous electrodes is a major issue in this research. Samples based on chromium protection (i.e. stainless steel) have proved unfeasible for chlorate application. However, samples based on stainless steel and nickel show dramatic performance improvements over industry status quo in chlor-alkali application. Building microfibrous electrodes on a titanium base protected with a silver coating alleviates the corrosion problem and provides 100 mV or more of overpotential reduction. Further reduction is realized by impregnating silver-titanium microfibrous mesh with a PVDF binder and dispersed platinum on activated carbon. The resulting electrodes are mechanically sound, active towards hydrogen evolution, and hold promise for practical

  20. Electrochemical and Integrated Process Opportunities for On-Site/On-Demand Generation of Chlorine Dioxide - Final Report - 08/02/1996 - 08/01/1999

    Energy Technology Data Exchange (ETDEWEB)

    Tatarchuk, Bruce J.; Krishnagopalan, G.; Nickell, Ryan A.

    2000-01-30

    Due to continued evidence of environmental harm from elemental chlorine bleaching, the nation's paper industry continues to search for cost effective alternative bleaching. A practical and cost effective bleaching alternative is chlorine dioxide manufactured entirely from sodium chlorate. Sodium chlorate is produced by the electrolysis of brine in an undivided cell with steel plate cathodes and dimensionally stable anodes. Although the overpotential at the anode is only 50 mV, the cathodic overpotential is 940 mV. Thus, nearly one volt of electricity is wasted in driving hydrogen evolution at the cathode. Auburn University's Center for Microfibrous Materials Manufacturing has demonstrated that high performance, three dimensional, microfibrous electrodes can improve the performance of capacitors, batteries, hybrid power cells, and electrolysis electrodes in a variety of applications. The goal of this research was to apply this technology to a chlorate cell's cathode and reduce the overpotential between 200 and 400 mV. An economic analysis of the industry has shown that for every 100 mV reduction in overpotential, $100 per square meter of electrode can be saved annually. Due to their enhanced surface area over plates, corrosion of microfibrous electrodes is a major issue in this research. Samples based on chromium protection (i.e. stainless steel) have proved unfeasible for chlorate application. However, samples based on stainless steel and nickel show dramatic performance improvements over industry status quo in chlor-alkali application. Building microfibrous electrodes on a titanium base protected with a silver coating alleviates the corrosion problem and provides 100 mV or more of overpotential reduction. Further reduction is realized by impregnating silver-titanium microfibrous mesh with a PVDF binder and dispersed platinum on activated carbon. The resulting electrodes are mechanically sound, active towards hydrogen evolution, and hold promise for

  1. Feasibility of water disinfection with stabilized chlorine dioxide in small rural drinking water safety project of Guangxi%小型农村安全饮水工程使用稳定二氧化氯进行消毒的可行性

    Institute of Scientific and Technical Information of China (English)

    陆清; 庄健君

    2014-01-01

    An introduction was made on the physical and chemical characteristics of chlorine dioxide, the method and features of water disinfection with chlorine dioxide. The authors analyze the reasons for chlorine dioxide genera-tor not applicable for the small drinking water safety project of Guangxi, and also analyze the feasibility of adopting stabilized chlorine dioxide.%论述了二氧化氯的物理和化学特性及其用于饮水消毒的方法和特点。分析了二氧化氯发生器不适用我区小型农村饮水安全工程的原因,对使用稳定二氧化氯进行了可行性分析。

  2. Kinetics of the Benzaldehyde-Inhibited Oxidation of Sulfite by Chlorine Dioxide.

    Science.gov (United States)

    Pan, Changwei; Gao, Qingyu; Stanbury, David M

    2016-01-01

    There has been steady interest in the aqueous reaction of ClO2• with sulfur(IV) since the 1950s, and a wide variety of rate laws and mechanisms have been proposed. In neutral-to-alkaline media, the reaction is challenging to study because of its great rate. Here it is shown that benzaldehyde can be used as an additive to slow the reaction and make its rates more amenable to study. The rates can be quantitatively modeled by a mechanism that includes reversible binding of sulfur(IV) by benzaldehyde and a rate-limiting mixed second-order reaction of ClO2• with SO3(2-). The latter reaction occurs through parallel electron transfer from SO3(2-) to ClO2• and oxygen-atom transfer from ClO2• to SO3(2-). PMID:26678913

  3. Fabrication and Characterization of a SPR Based Fiber Optic Sensor for the Detection of Chlorine Gas Using Silver and Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Sruthi P. Usha

    2015-04-01

    Full Text Available A fiber optic chlorine gas sensor working on surface plasmon resonance (SPR technique fabricated using coatings of silver and zinc oxide films over unclad core of the optical fiber is reported. The sensor probe is characterized using wavelength interrogation and recording SPR spectra for different concentrations of chlorine gas around the probe. A red shift is observed in the resonance wavelength on increasing the concentration of the chlorine gas. The thickness of the zinc oxide film is optimized to achieve the maximum sensitivity of the sensor. In addition to wavelength interrogation, the sensor can also work on intensity modulation. The selectivity of the sensor towards chlorine gas is verified by carrying out measurements for different gases. The sensor has various advantages such as better sensitivity, good selectivity, reusability, fast response, low cost, capability of online monitoring and remote sensing.

  4. Discussion of the determination of chlorine dioxide in drinking water with colorimetric method%比色法测定饮用水中二氧化氯的含量

    Institute of Scientific and Technical Information of China (English)

    张颖清

    2012-01-01

    The method of chlorine dioxide determination in drinking water with colorimetry is suitable for the measurement above 0. 25mg/L. Because of a good accuracy, it is pretty suitable for the determination of chlorine dioxide in water.%采用比色法测定饮用水中二氧化氯的含量。该方法适合于质量浓度在0.25mg/L以上的测量,且在该质量浓度以上的测定精度更高,因此适合于饮用水中二氧化氯含量的测定。

  5. Application of in situ chemical oxidation technique with potassium permanganate for the remediation of a shallow aquifer contaminated with chlorinated solvents

    OpenAIRE

    Alaine Santos da Cunha; Reginaldo Antonio Bertolo

    2012-01-01

    In situ chemical oxidation is a method that is frequently being used for the remediation of contaminated areas, since it presents an adequate efficiency in the reduction of the contaminant mass, particularly chlorinated ethenes, in a relatively short period of time. This manuscript presents the results of the application of this method, using the injection of potassium permanganate as the remediation agent, in an impacted area with chlorinated organic compounds, especially 1,1-dichloroethene....

  6. Palladium-Catalyzed Oxidation of Dihydromyrcene to Citronellal in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    RAN, Xue-Guang(冉学光); JIANG, Huan-Feng(江焕峰); ZHU, Xin-Hai(朱新海)

    2004-01-01

    Citronellal was the major product of catalytic oxidation of dihydromyrcene with oxygen using the catalyst comprised of (MeCN)2PdClNO2 and CuCl2 in a tertiary alcohol in supercritical carbon dioxide. It was found that the chemoselectivity of the reaction and the yield of citronellal were greatly affected by the pressure of carbon dioxide, the reaction temperature and the molar ratio of Pd/Cu.

  7. Effect of chlorination and ozone pre-oxidation on the photobacteria acute toxicity for dissolved organic matter from sewage treatment plants

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effect of chlorination and ozone pre-oxidation on the photobacteria acute toxicity for dissolved organic matter(DOM) from sewage treatment plants was investigated in this study.The results show that ozone pre-oxidation enhanced the photobacteria acute toxicity of the water samples.DOM before and after ozone pre-oxidation was fractionated by resins into six kinds of hydrophobic and hydrophilic organics.The six fractions were chlorinated individually and the photobacteria acute toxicity before and after chlorination was tested.It was found that the percentage of hydrophilic organics in DOM significantly increased after ozone pre-oxidation and hydrophilic organics exhibited remarkably higher acute toxicity than hydrophobic organics.In view of potentiometric titration and fourier transform infrared(FTIR) analysis,the hydrophilic organics showed a rather higher content of ph-OH structures than hydrophobic organics.

  8. Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation.

    Science.gov (United States)

    Miranda, Andreza Costa; Lepretti, Marilena; Rizzo, Luigi; Caputo, Ivana; Vaiano, Vincenzo; Sacco, Olga; Lopes, Wilton Silva; Sannino, Diana

    2016-06-01

    The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0mgL(-1)) was the faster process (2.5min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45min treatment. Total inactivation was not observed (4.5 Log), also after 120min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability. PMID:26945469

  9. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.

    2008-01-01

    Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

  10. Photocatalytic oxidation mechanism of alkanes in contact with titanium dioxide

    Science.gov (United States)

    Formenti, M.; Juillet, F.; Teichner, S. J.

    1977-01-01

    Isobutane was photooxidized on titanium dioxide between -16 and +180 C in tertiary butanol and acetone. The formation of tertiary butanol preceded the formation of acetone. Above 20 C the latter compound became clearly predominant. The reaction kinetics obeyed a steady state model of oxygen chemisorption with the involvement of isobutane in the physisorbed phase.

  11. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires.

    Science.gov (United States)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-12-12

    A supercritical carbon dioxide (CO(2)) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively. PMID:20442477

  12. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    A supercritical carbon dioxide (CO2) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  13. Selenium dioxide catalysed oxidation of acetic acid hydrazide by bromate in aqueous hydrochloric acid medium

    Indian Academy of Sciences (India)

    R S Yalgudre; G S Gokavi

    2012-07-01

    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant. The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the proposed mechanism.

  14. Sludge reduction by direct addition of chlorine dioxide into a sequencing batch reactor under operational mode of repeatedly alternating aeration/non-aeration.

    Science.gov (United States)

    Peng, Hong; Liu, Weiyi; Li, Yuanmei; Xiao, Hong

    2015-01-01

    The effect of direct addition of chlorine dioxide (ClO2) into a repeatedly alternating aeration/non-aeration sequencing batch reactor (SBR) on its sludge reduction and process performance was investigated. The experimental results showed that the sludge reduction efficiency was 32.9% and the observed growth yield (Yobs) of SBR was 0.11 kg VSS (volatile suspended solids) /kg COD (chemical oxygen demand) for 80 days' operation at the optimum ClO2 dosage of 2.0 mg/g TSS (total suspended solids). It was speculated that cell lysis and cryptic growth, uncoupled metabolism and endogenous metabolism were jointly responsible for the sludge reduction in this study. COD, NH3-N, total nitrogen (TN) and total phosphorus (TP) in the effluent increased on average 29.47, 4.44, 1.97 and 0.05 mg/L, respectively. However, the effluent quality still satisfied the first-class B discharge standards for municipal wastewater treatment plants in China. In that case, the sludge maintained fine viability with the specific oxygen uptake rate (SOUR) being 14.47 mg O2/(g VSS·h) and demonstrated good settleability with the sludge volume index (SVI) being 116 mL/g. The extra cost of sludge reduction at the optimum ClO2 dosage was estimated to be 2.24 CNY (or 0.36 dollar)/kg dry sludge. PMID:26524444

  15. Application of Chlorine Dioxide in the Disinfection of Drinking Water%二氧化氯在饮用水消毒应用的探讨

    Institute of Scientific and Technical Information of China (English)

    王欣玮

    2012-01-01

    It is well known that chlorine dioxide, with high quality, is one kind of disinfectant for drinking water. In this paper, the author introduced ClO2 characteristic function, disinfection principle and the advantages of disinfection. Then, the author emphasized on preparation methods of ClO2, inhibition of detrimental by-products generation, as well as elimination of detrimental byproducts above-mentioned. In addition, the author also analyzed the automation control issue of water application.%二氧化氯(ClO2)是一种性能优越的饮用水消毒剂.本文对二氧化氯的特性、消毒原理和消毒的优点进行了介绍,着重阐述二氧化氯的制备方法,二氧化氯有害副产物的生成抑制和消除,分析了二氧化氯在水厂应用中自动化控制的问题.

  16. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence ofsynthetic metal oxides and deposits formed indrinking water distribution systems

    KAUST Repository

    Liu, Chao

    2013-09-01

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate>>sulfate>bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. © 2013 Elsevier Ltd.

  17. Materials Design using Correlated Oxides: Optical Properties of Vanadium Dioxide

    OpenAIRE

    Tomczak, Jan M.; Biermann, Silke

    2008-01-01

    Materials with strong electronic Coulomb interactions play an increasing role in modern materials applications. "Thermochromic" systems, which exhibit thermally induced changes in their optical response, provide a particularly interesting case. The optical switching associated with the metal-insulator transition of vanadium dioxide (VO2), for example, has been proposed for use in "intelligent" windows, which selectively filter radiative heat in hot weather conditions. In this work, we develop...

  18. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 15990C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10-4 to 10-18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  19. Oxidation of iron and steels by carbon dioxide under pressure (1962)

    International Nuclear Information System (INIS)

    After having developed one of the first thermo-balances to operate under pressure, we have studied the influence of the pressure on the corrosion of iron and steels by carbon dioxide. The corrosion was followed by three different methods simultaneously: by the oxidation kinetics, by micrographs, and by radiocrystallography. We have been able to show that the influence of the pressure is not negligible and we have provided much experimental evidence: oxidation kinetics, micrographic aspects, surface precipitation of carbon, metal carburization, the texture of the magnetite layer. All these phenomena are certainly modified by changes in the carbon dioxide pressure. In order to interpret most of our results we have been led to believe that the phenomenon of corrosion by CO2 depends on secondary reactions localised at the oxide-gas interface. This would constitute a major difference between the oxidation by CO2 and that by oxygen. (author)

  20. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  1. Laboratory tests using chlorine trifluoride in support of deposit removal at MSRE

    International Nuclear Information System (INIS)

    Experimental trials were conducted to investigate some unresolved issues regarding the use of chlorine trifluoride (ClF3) for removal of uranium-bearing deposits in the Molten Salt Reactor Experiment (MSRE) off-gas system. The safety and effectiveness of operation of the fixed-bed trapping system for removal of reactive gases were the primary focus. The chief uncertainty concerns the fate of chlorine in the system and the potential for forming explosive chlorine oxides (primarily chlorine dioxide) in the trapping operation. Tests at the MSRE Reactive Gas Removal System reference conditions and at conditions of low ClF3 flow showed that only very minor quantities of reactive halogen oxides were produced before column breakthrough. Somewhat larger quantities accompanied breakthrough. A separation test that exposed irradiated MSRE simulant salt to ClF3 confirmed the expectation that the salt is basically inert for brief exposures to ClF3 at room temperature

  2. Laboratory tests using chlorine trifluoride in support of deposit removal at MSRE

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.; Rudolph, J.C.; Del Cul, G.D.; Loghry, S.L.; Simmons, D.W.; Toth, L.M.

    1997-04-01

    Experimental trials were conducted to investigate some unresolved issues regarding the use of chlorine trifluoride (ClF{sub 3}) for removal of uranium-bearing deposits in the Molten Salt Reactor Experiment (MSRE) off-gas system. The safety and effectiveness of operation of the fixed-bed trapping system for removal of reactive gases were the primary focus. The chief uncertainty concerns the fate of chlorine in the system and the potential for forming explosive chlorine oxides (primarily chlorine dioxide) in the trapping operation. Tests at the MSRE Reactive Gas Removal System reference conditions and at conditions of low ClF{sub 3} flow showed that only very minor quantities of reactive halogen oxides were produced before column breakthrough. Somewhat larger quantities accompanied breakthrough. A separation test that exposed irradiated MSRE simulant salt to ClF{sub 3} confirmed the expectation that the salt is basically inert for brief exposures to ClF{sub 3} at room temperature.

  3. Kinetics of the oxidation of Pu(IV) by manganese dioxide

    International Nuclear Information System (INIS)

    The kinetics of the oxidation of plutonium(IV) by manganese dioxide were studied in 1.0 M NaCl over the pH range from 2.5 to 8.2 with variable concentrations of manganese dioxide from 0.01 m2/L to 4.97 m2/L at a constant temperature of 19±2 C. The concentration of plutonium in solution was 6.0(±1.0) x 10-10 M. Fractions of Pu(IV), (V) and (VI) as a function of time were determined by removal of plutonium from the solid phase followed by an ultrafiltration/solvent extraction procedure using TTA and HDEHP as extractants. Appropriate removal conditions were established for Pu(IV), Pu(V) and Pu(VI) using Th(IV), Np(V) and U(VI) as oxidation state analogs. In the pH range from 2.0 to 3.5, the oxidation of Pu(IV) by manganese dioxide was first order with respect to the concentration of manganese dioxide and -0.21 with respect to the hydrogen ion concentration. Consequently, assuming a first order dependence with respect to the concentration of Pu(IV), the oxidation reaction can be described by the following rate equation: -d[Pu(IV)]/dt = k . [Pu(IV)] . [MnO2(s)] . [H+]-0.21 with k = 3.72(±0.13) x 10-3 (m-2 L)(mol-1 L)-0.21(min)-1. Using the kinetic data determined in this study, the influence of manganese dioxide on the oxidation state distribution of plutonium under various environmental conditions as well as in waste solutions can be estimated. (orig.)

  4. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Chang BYS

    2012-07-01

    Full Text Available Betty Yea Sze Chang,1 Nay Ming Huang,1 Mohd Nor An' amt,2 Abdul Rahman Marlinda,1 Yusoff Norazriena,1 Muhamad Rasat Muhamad,3 Ian Harrison,4 Hong Ngee Lim,5 Chin Hua Chia61Low Dimensional Materials Research Center, Physics Department, University of Malaya, Kuala Lumpur; 2Faculty of Agro Industry and Natural Resources (FASA, Universiti Malaysia Kelantan, Kota Bharu, Kelantan; 3The Chancellery Building, Multimedia University, Persiaran Multimedia, Cyberjaya, Selangor; 4School of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Semenyih, Selangor; 5Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 6School of Applied Physics, Universiti Kebangsaan Malaysia, Bangi, Selangor, MalaysiaAbstract: A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm. Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II ions in potassium chloride electrolyte.Keywords: graphene oxide, titanium oxide, hydrothermal, nanocomposite

  5. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    Science.gov (United States)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  6. Chemistry and electronics of oxides from carbon dioxide to perovskite

    International Nuclear Information System (INIS)

    Oxides are thermodynamic stable form of materials in terrestrial conditions to exist as final products of energy consumption proceeding in nature as well as in civilization. The accumulation of heat capacitive CO2 in atmosphere is becoming a serious environmental problem. Solid oxides as minerals in the earth shell had been used mainly for heat resistant structural materials as well as for raw materials of metals, but recent advanced chemistry and physics have been manifesting new electronic and chemical potentials hidden in oxides. Current interest and studies on oxides are directed towards two main areas: (1) prevention of CO2 increase in atmosphere by its fixation and/or by saving the consumption of fossil fuels and (2) discovery and utilization of superfunctionality in oxides. Triggered by Bednorz and Muller's discovery of high Tc superconductor, the latter topics have been attracting rapidly growing interest from viewpoints of both fundamental research and practical application. In commemoration of WOE homecoming to the place of inauguration, a founder of WOE appreciates much to the program committee for providing him with this opportunity of briefing the workshop motivation and of reviewing his research career on oxide materials

  7. Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal: chloroform destruction in oxidative conditions.

    Science.gov (United States)

    Kamgang-Youbi, Georges; Poizot, Karine; Lemont, Florent

    2013-01-15

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ~4kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl(3) feed rates up to 400 g h(-1) with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g kWh(-1). The conversion end products were identified and assayed by online FTIR spectroscopy (CO(2), HCl and H(2)O) and redox titration (Cl(2)). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (<1 g h(-1)) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO(2) and H(2)O have been found in the final off-gases composition. PMID:23246953

  8. Alleviation of membrane fouling in a submerged membrane bioreactor with electrochemical oxidation mediated by in-situ free chlorine generation.

    Science.gov (United States)

    Chung, Chong Min; Tobino, Tomohiro; Cho, Kangwoo; Yamamoto, Kazuo

    2016-06-01

    The control of membrane fouling is still the biggest challenge that membrane bioreactor (MBR) for wastewater treatment faces with. In this report, we evince that an in-situ electrochemical free chlorine generation is effective for membrane fouling mitigation. An electrochemical oxidation (EO) apparatus with perforated Ti/IrO2 anodes and Ti/Pt cathodes was integrated into a conventional MBR with microfiltration module (EO-MBR). The membrane fouling characteristics of EO-MBR fed with synthetic wastewater were monitored for about 2 months in comparison to control MBRs. In the EO-MBR at a direct current density of 0.4 mA/cm(2), the frequency of membrane fouling when the trans-membrane pressure (TMP) reached 30 kPa was effectively reduced by 40% under a physical membrane cleaning regime. The evolution patterns of TMP together with hydraulic resistance analysis based on resistance-in-series model indicated that the electrochemically generated active chlorine alleviated the physically irremovable membrane fouling. Further analysis on extracellular polymeric substances (EPS) of sludge cake layer (SCL) revealed significant reductions of protein contents in soluble EPS and fluorescence emission intensities from humic acids and other fluorophores in bound EPS, which in-turn would decrease the hydrophobic accumulation of organic foulants on membrane pores. The chlorine dosage from the EO apparatus was estimated to be 4.7 mg Cl2/g MLVSS/day and the overall physicochemical properties (bio-solids concentration, floc diameter, zeta-potential) as well as the microbial activity in terms of specific oxygen utilization rate and removal efficiency of dissolved organic carbon (>97%) were not affected significantly. A T-RFLP (terminal restriction fragment length polymorphism) analysis suggested noticeable shifts in microbial community both in mixed liquor and sludge cake layer. Consequently, our electrochemical chlorination would be an efficient fouling control strategy in membrane

  9. Sensitivity of nitrogen dioxide concentrations to oxides of nitrogen controls in the United Kingdom

    International Nuclear Information System (INIS)

    There is a possibility of further controls on emissions to the atmosphere of nitrogen dioxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the responses non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial fits have been developed for the empirical ratio NO2:NOx (the 'yield'). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than about 50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control. (Author)

  10. Fluid phase equilibria during propylene carbonate synthesis from propylene oxide in carbon dioxide medium

    DEFF Research Database (Denmark)

    Gharnati, Loubna; Musko, Nikolai; Jensen, Anker Degn;

    2013-01-01

    In the present study the influence of the amount of carbon dioxide on the catalytic performance during the propylene carbonate synthesis from propylene oxide and CO2 was investigated. The reaction was performed in high-pressure batch autoclaves using immobilized 1-hydroxyethyl-9-propyl......-phase region where a CO2-expanded reactant/product phase (larger volume due to the dissolution of carbon dioxide in the liquid phase) is present. Optimal conditions for performing the reaction have been derived which requires consideration not only of the phase behavior of the starting phase but also of the...

  11. IN-SITU DUOX™ CHEMICAL OXIDATION TECHNOLOGY TO TREAT CHLORINATED ORGANICS AT THE ROOSEVELT MILLS SITE, VERNON, CT: SITE CHARACTERIZATION AND TREATABILITY STUDY

    Science.gov (United States)

    A study was performed investigating the feasibility of applying the DUOX™ chemical oxidation technology to chlorinated solvent contaminated media at the Roosevelt Mills site in Vernon, Connecticut. The Roosevelt Mills site is a former woolen mill that included dry cleaning operat...

  12. Complete coverage of reduced graphene oxide on silicon dioxide substrates

    Science.gov (United States)

    Huang, Jingfeng; Melanie, Larisika; Chen, Hu; Steve, Faulkner; Myra, A. Nimmo; Christoph, Nowak; Alfred Tok Iing, Yoong

    2014-08-01

    Reduced graphene oxide (RGO) has the advantage of an aqueous and industrial-scale production route. No other approaches can rival the RGO field effect transistor platform in terms of cost (deviations in the electrical resistivity of this fabricated material prevent it from being used widely. After an ethanol chemical vapor deposition (CVD) post-treatment to graphene oxide with ethanol, carbon islets are deposited preferentially at the edges of existing flakes. With a 2-h treatment, the standard deviation in electrical resistance of the treated chips can be reduced by 99.95%. Thus this process could enable RGO to be used in practical electronic devices.

  13. Compositional and structural evolution of the titanium dioxide formation by thermal oxidation

    Institute of Scientific and Technical Information of China (English)

    Su Wei-Feng; Gnaser Hubert; Fan Yong-Liang; Jiang Zui-Min; Le Yong-Kang

    2008-01-01

    Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambi-ent. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs+-mode secondary ion mass spectrometry (MCs+-SIMS) and atomic force microscopy (AFM) were employed, respectively, for the structural, com-positional and morphological characterization of the obtained films. For temperatures below 875 K, titanium films could not be fully oxidized within one hour. Above that temperature, the completely oxidized films were found to be rutile in structure. Detailed studies on the oxidation process at 925 K were carried out for the understanding of the underlying mechanism of titanium dioxide (TiO2) formation by thermal oxidation. It was demonstrated that the formation of crystalline TiO2 could be divided into a short oxidation stage, followed by crystal forming stage. Relevance of this recognition was further discussed.

  14. THERMAL DESTRUCTION OF HIGHLY CHLORINATED MIXED WASTES WITHOUT GENERATING CORROSIVE OFF-GASES USING MOLTEN SALT OXIDATION (1,2)

    International Nuclear Information System (INIS)

    A pilot-scale MSO (Molten Salt Oxidation) system was used to process 45-gallons of a halogenated mixed waste that is difficult to treat with other thermal systems. The mixed waste was a halogenated solvent that consisted mostly of methylchloroform. The 80 weight percent of waste consisting of highly corrosive chlorine was captured in the first process vessel as sodium chloride. The sodium chloride leached chrome from that process vessel and the solidified salt exhibited the toxicity characteristic for chrome as measured by TCLP (Toxicity Characteristic Leaching Procedure) testing. The operating ranges for parameters such as salt bed temperature, off-gas temperature, and feed rate that enable sustained operation were identified. At feed rates below the sustainable limit, both processing capacity and maintenance requirements increased with feed rate. Design and operational modifications to increase the sustainable feed rate limit and reduce maintenance requirements reduced both salt carryover and volumetric gas flows

  15. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de...

  16. On interaction of vapo ous polonjum dioxide with iron, chromium and tunsten oxides

    International Nuclear Information System (INIS)

    Using the thermal method of direct synthesis in the oxygen medium it is established, that vaporous polonium dioxide does not react with 1.5 iron and chromium oxides in the temperature range 800-1050 deg C. Tungsten trioxide reacts with polonium dioxide vapour at 880-920 deg C with the forming of the PoO2 x WO3 compound, which dissolves polonium dioxide vapors at 920-950 deg C. The temperature dependence of the PoO2 x WO3 vapor pressure in the oxygen medium at 788-900 deg C is expressed with equation, vaporisation heat 75.7 +- 0.3 kcal-mol. At the temperatures higher than 750 deg C in the vacuum PoO2 x WO3 is the thermally unstable compound

  17. Emissions to air in Sweden: carbon dioxide, methane, nitrous oxide, nitrogen oxides, carbon monoxide, volatile organic compounds and sulphur dioxide 1990-2000

    International Nuclear Information System (INIS)

    Greenhouse gases - Carbon dioxide from combustion and motor fuels, Methane and Laughing gas from agriculture Carbon dioxide (CO2) emissions in Sweden amounted to 56 million tonnes in 2000, which is minor decrease since 1990. Combustion of fossil fuels and the use of fuels in vehicles are the major sources of CO2 emissions. Methane is the second most important greenhouse gas, and it is emitted when bacteria degrade organic matter. In Sweden the main source is enteric fermentation from cattle. The emissions of methane were 324 000 tonnes 1990. In 2000 the emissions amounted to 280 000 tonnes, or a 14 per cent decrease. The third greenhouse gas, N2O is mostly emitted from agriculture. N2O emissions have fallen somewhat. Total emissions of sulphur dioxide (SO2) and nitrogen oxides (NOx, counted as NO2) in Sweden were 58,000 and 247,000 tonnes respectively in 2000. International air and maritime traffic is not included. The major source of SO2 emissions is combustion of fossil fuels. Road traffic is the major source of NOX emissions. Emissions of carbon monoxide (CO) and non-methane volatile organic compounds (NMVOCs) are also presented in this report. The main source of CO is road traffic, while NMVOCs come from household combustion and road traffic. Emission trends for fluoride carbon greenhouse gases HFCs, PFCs and SF6 are also presented. These gases mainly emit from refrigerators, freezing and air conditioning equipment (e.g. in cars and buildings) and from heat pumps

  18. Inductively coupled plasma torch efficiency at atmospheric pressure for organo-chlorine liquid waste removal: Chloroform destruction in oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamgang-Youbi, Georges, E-mail: kamyougeo@yahoo.fr [French Atomic Commission-CEA, Marcoule-DTCD/SCDV/LPIC, BP 17171, 30207 Bagnols-Sur-Cèze Cedex (France); Department of Inorganic Chemistry, The University of Yaounde I, P.O Box, 812 Yaounde (Cameroon); Poizot, Karine; Lemont, Florent [French Atomic Commission-CEA, Marcoule-DTCD/SCDV/LPIC, BP 17171, 30207 Bagnols-Sur-Cèze Cedex (France)

    2013-01-15

    Highlights: ► Inductively plasma torch is used for the decomposition of organochlorine molecule. ► We examine the impact of liquid water substitution by oxygen gas as oxidant. ► Complete and safe decomposition is achieved with the presence of oxygen. ► The energy efficiency and capabilities of process are better with O{sub 2} than H{sub 2}O. -- Abstract: The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ∼4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl{sub 3} feed rates up to 400 g h{sup −1} with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g kWh{sup −1}. The conversion end products were identified and assayed by online FTIR spectroscopy (CO{sub 2}, HCl and H{sub 2}O) and redox titration (Cl{sub 2}). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (<1 g h{sup −1}) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO{sub 2} and H{sub 2}O have been found in the final off-gases composition.

  19. Metal loaded zeolitic media for the storage and oxidative destruction of chlorinated VOCs

    Science.gov (United States)

    Chintawar, Prashant Shiodas

    Industrial solvents such as trichloroethylene (TCE), perchloroethylene (PCE), etc. are suspected carcinogens and are linked to atmospheric and groundwater pollution. Therefore, the destruction and/or safe disposal of these chlorinated volatile organic compounds (CVOCs) is an immediate national need. The objective of this dissertation was to study transition metal (TM) loaded zeolites for adsorption (storage) and subsequent catalytic destruction of CVOCs present in humid air streams. In this study, zeolite Y, ZSM-5 and ETS-10 were modified by introduction of a TM cation to make them suitable as dual function sorbent/catalyst (S/C) media. In order to develop these S/C media, five investigations were carried out. In the first investigation, the activity and selectivity of three catalysts viz., Cr-Y, Co-Y, Co/Alsb2Osb3, was compared for the destruction of CVOCs. Cr-Y was the most promising catalyst with its activity decreasing with an increase in the chlorine content of the CVOC molecule. In the second investigation, in order to elucidate the pathways involved in the destruction of CVOCs, in situ FT-IR studies were carried out on active Cr-Y surfaces at 25, 100 (or 130) and 300sp°C which showed that CVOC destruction proceeded through the formation of oxygenated intermediates (carbonyl, carboxylate, etc.). These investigations showed the necessity of chromium for destruction of CVOCs. However, chromium residues in the spent catalysts are an environmental concern. Therefore, in the third investigation, attempts were made to stabilize low levels of chromium on ZSM-5 zeolites. Thus, Cr-ZSM-5 media of varying SiOsb2/Alsb2Osb3 ratio were evaluated for sorption and destruction of TCE. This investigation led to the development of a Cr-ZSM-5 (SiOsb2/Alsb2Osb3=80,\\ {˜}0.5 wt% chromium) as an efficient S/C medium for TCE destruction. In the fourth investigation, deactivation experiments were carried out on four Cr-ZSM-5 catalysts. Under the conditions used, all the catalysts

  20. Complete coverage of reduced graphene oxide on silicon dioxide substrates

    International Nuclear Information System (INIS)

    Reduced graphene oxide (RGO) has the advantage of an aqueous and industrial-scale production route. No other approaches can rival the RGO field effect transistor platform in terms of cost (oxide with ethanol, carbon islets are deposited preferentially at the edges of existing flakes. With a 2-h treatment, the standard deviation in electrical resistance of the treated chips can be reduced by 99.95%. Thus this process could enable RGO to be used in practical electronic devices. (special topic — international conference on nanoscience and technology, china 2013)

  1. Complete Enzymatic Oxidation of Methanol to Carbon Dioxide

    OpenAIRE

    Kara, Selin; Schrittwieser, J.H.; Gargiulo, Serena; Ni, Yan; Yanase, Hideshi; Opperman, D.J.; Berkel, van, G.; Hollmann, Frank

    2015-01-01

    The inside back cover picture, provided by Selin Kara et al., illustrates an in situ NADH regeneration cascade comprising alcohol dehydrogenase, formaldehyde dismutase and formate dehydrogenase. This system principally enables complete oxidation of methanol to CO2 thereby yielding 3 equivalents on NADH per mole of methanol employed, thereby representing a very atom efficient regeneration system (artwork designed by Verena A. Resch). Details can be found in the communication on pages XXXX-XXXX...

  2. Observation of disinfectant effect of chlorine dioxide reactor on drinking water%一种二氧化氯发生器对饮用水的消毒实验观察

    Institute of Scientific and Technical Information of China (English)

    王晓; 杨宁; 赖发伟

    2012-01-01

    OBJECTIVE To observe the disinfectant effect of chlorine dioxide reactor in drinking water and its influencing factors. METHODS The quantitative suspension method, the membrane filter method were used to detect disinfectant effect a-gainst e. Coli in 30 min by the chlorine dioxide reactor. RESULTS When chlorine dioxide content was 0.3 mg/L, e. Coli decreased to 0 cfu/100 ml in 30min in artificial water; For natural water in 30m in, it also decreased to 0 cfu/100 ml, and the bacterial colony, coli groups and fecal coli groups were in line with (GB/T5750.12-2006) "Standard Microbiology Indicators of Living and Drinking Water"; pH of 5.0-9.0, and temperature of 10℃-30℃ had no influence on the results. CONCLUSION Low concentrations of chlorine dioxide in the water have good disinfectant effect against e.coli and are not influenced by pH and temperature.%目的 观察二氧化氯发生器产生的二氧化氯对饮用水中大肠杆菌的杀灭效果及影响因素.方法 悬液定量法、滤膜抽滤法,对二氧化氯发生器运行30 min后产生的二氧化氯消毒液杀灭水中大肠杆菌的效果及影响因素进行了实验室观察.结果 二氧化氯含量为0.3 mg/L时,对人工染菌水样作用30 min,其中大肠杆菌下降至0 cfu/100 ml;对天然水样作用30 min,大肠菌群下降0 cfu/100 ml,且作用后天然水样的菌落总数、大肠菌群和粪大肠菌群均符合《生活饮用水标准检验方法微生物指标》(GB/T5750.12-2006);pH值在5.0~9.0时,温度10℃~30℃对其杀菌结果无影响.结论 水体中二氧化氯在低浓度下,具有良好的杀灭大肠杆菌效果,不受pH、温度值影响.

  3. Zirconia concentrate chlorination

    International Nuclear Information System (INIS)

    Chlorination experiments were conducted in order to study the kinetics of gasification of the zirconium oxide present in the zirconia concentrate. The variables studied are temperature (1173 to 1373 K), percentage of reducing agent (12 to 36%) and porosity (22 to 30%). The results indicated a greater influence of temperature and percentage of reducing agent as well as allowed the conclusion that a balance between the levels of these variables is an important factor in the appropriate chlorination conditions. (author)

  4. Reactivity of lignin and problems of its oxidative destruction with peroxy reagents

    International Nuclear Information System (INIS)

    Published data on reactivity and oxidation of lignin and model compounds with hydrogen peroxide, ozone and chlorine dioxide as well as on oxidative destruction of the sulfate pulp lignin with various reagents during bleaching are systematised and generalised. Concepts of lignin activation towards its selective oxidation and kinetic features of sulfate pulp oxidative delignification are considered. The bibliography includes 157 references.

  5. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces.

    Science.gov (United States)

    Wolfrum, Edward J; Huang, Jie; Blake, Daniel M; Maness, Pin-Ching; Huang, Zheng; Fiest, Janene; Jacoby, William A

    2002-08-01

    We report carbon mass balance and kinetic data for the total oxidation of cells, spores, and biomolecules deposited on illuminated titanium dioxide surfaces in contact with air. Carbon dioxide formation by photocatalytic oxidation of methanol, glucose, Escherichia coli, Micrococcus luteus, Bacillus subtilis (cells and spores), Aspergillus niger spores, phosphatidylethanolamine, bovine serum albumin, and gum xanthan was determined as a function of time. The quantitative data provide mass balance and rate information for removal of these materials from a photocatalytic surface. This kind of information is importantfor applications of photocatalytic chemistry in air and water purification and disinfection, self-cleaning surfaces, and the development of self-cleaning air filters. PMID:12188373

  6. Emissions to air in Sweden: sulphur dioxide, nitrogen oxides, carbon dioxide, methane, nitrous oxide, carbon monoxide and volatile organic compounds, 1999

    International Nuclear Information System (INIS)

    The method for calculating emissions to air has been revised, which has led to adjustments. Because of this, emissions in 1999 cannot yet be compared with previous years. Emissions in 1990 - 1998 are being recalculated now using the new method and are expected to be ready during 2001. Emissions to air of carbon dioxide (CO2) in Sweden was 56.58 million tonnes in 1999, not including emissions from biofuels and international bunkers. The major sources of CO2 emissions are the combustion of fossil fuels and the use of fuels for mobile sources. Total emissions to air of sulphur dioxide (SO2) and nitrogen oxides (NOx, counted as NO2) in Sweden was 66 000 and 263 000 tonnes respectively in 1999. International bunkers are not included. The major source of SO2 emissions is combustion of fossil fuels. Road traffic is the major source of NOx emissions. Emissions to air of methane (CH4), nitrous oxide (N2O), carbon monoxide (CO) and volatile organic compounds (NMVOC) in 1999 were 253 000, 26 000, 924 000 and 430 000 tonnes respectively, not including international bunkers. Agriculture is the major source of CH4 and N2O emissions. CO mainly derives from road traffic and NMVOC mainly derives from household combustion and road traffic

  7. Development and Electrochemical Studies of Ruthenium Based Mixed Oxide Catalyst Electrodes for Chlorine Evolution

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Experimental results are presented which allow comparison of the electrochemical performance of RuO2/Ti, Ru0.3Sn0.7O2/Ti and Ru0.3V0.7O2/Ti catalysts prepared on a titanium substrate by thermal decomposition from respective precursors. The highest activity for chlorine evolution is observed on the Ru0.3V0.7O2/Ti electrode, lower on Ru0.3Sn0.7O2/Ti and least on RuO2/Ti. Voltammograms obtained in the polarisable region are used to characterize the different electrodes. Further more an analysis of the catalytic activity and reaction kinetics of the developed electrodes in NaCl are presented.

  8. Defensive mechanism in cholangiocarcinoma cells against oxidative stress induced by chlorin e6-based photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Lee HM

    2014-09-01

    Full Text Available Hye Myeong Lee,1,* Chung-Wook Chung,2,* Cy Hyun Kim,1,3 Do Hyung Kim,1,3 Tae Won Kwak,1 Young-Il Jeong,1 Dae Hwan Kang1,3 1National Research and Development Center for Hepatobiliary Cancer, Research Institute for Convergence of Biomedical Science and Technology, Yangsan, Republic of Korea; 2Department of Biological Sciences, Andong National University, Andong, Republic of Korea; 3School of Medicine, Pusan National University, Yangsan, Republic of Korea *Both authors contributed equally to this work Abstract: In this study, the effect of chlorin e6-based photodynamic therapy (Ce6-PDT was investigated in human intrahepatic (HuCC-T1 and extrahepatic (SNU1196 cholangiocarcinoma (CCA cells. The amount of intracellular Ce6 increased with increasing Ce6 concentration administered, or with incubation time, in both cell lines. The ability to take up Ce6 and generate reactive oxygen species after irradiation at 1.0 J/cm2 did not significantly differ between the two CCA cell types. However, after irradiation, marked differences were observed for photodamage and apoptotic/necrotic signals. HuCC-T1 cells are more sensitive to Ce6-PDT than SNU1196 cells. Total glutathione (GSH levels, glutathione peroxidase and glutathione reductase activities in SNU1196 cells were significantly higher than in HuCC-T1 cells. With inhibition of enzyme activity or addition of GSH, the phototoxic effect could be controlled in CCA cells. The intracellular level of GSH is the most important determining factor in the curative action of Ce6-PDT against tumor cells. Keywords: cholangiocarcinoma, chlorin e6, photodynamic therapy, reactive oxygen species, glutathione, heme oxygenase-1

  9. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    Science.gov (United States)

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of

  10. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration

    OpenAIRE

    Cho, Wan-Seob; Kang, Byeong-Cheol; Lee, Jong Kwon; Jeong, Jayoung; Che, Jeong-Hwan; Seok, Seung H

    2013-01-01

    BACKGROUND:The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated.METHODS:Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sam...

  11. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies.

    Science.gov (United States)

    Kim, Wooyul; McClure, Beth Anne; Edri, Eran; Frei, Heinz

    2016-06-01

    The reduction of carbon dioxide by water with sunlight in an artificial system offers an opportunity for utilizing non-arable land for generating renewable transportation fuels to replace fossil resources. Because of the very large scale required for the impact on fuel consumption, the scalability of artificial photosystems is of key importance. Closing the photosynthetic cycle of carbon dioxide reduction and water oxidation on the nanoscale addresses major barriers for scalability as well as high efficiency, such as resistance losses inherent to ion transport over macroscale distances, loss of charge and other efficiency degrading processes, or excessive need for the balance of system components, to mention a few. For the conversion of carbon dioxide to six-electron or even more highly reduced liquid fuel products, introduction of a proton conducting, gas impermeable separation membrane is critical. This article reviews recent progress in the development of light absorber-catalyst assemblies for the reduction and oxidation half reactions with focus on well defined polynuclear structures, and on novel approaches for optimizing electron transfer among the molecular or nanoparticulate components. Studies by time-resolved optical and infrared spectroscopy for the understanding of charge transfer processes between the chromophore and the catalyst, and of the mechanism of water oxidation at metal oxide nanocatalysts through direct observation of surface reaction intermediates are discussed. All-inorganic polynuclear units for reducing carbon dioxide by water at the nanoscale are introduced, and progress towards core-shell nanotube assemblies for completing the photosynthetic cycle under membrane separation is described. PMID:27121982

  12. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm−1

    Directory of Open Access Journals (Sweden)

    R. L. Aggarwal

    2016-02-01

    Full Text Available Raman spectra of ammonia (NH3, chlorine (Cl2, hydrogen sulfide (H2S, phosgene (COCl2, and sulfur dioxide (SO2 toxic gases have been measured in the fingerprint region 400-1400 cm−1. A relatively compact (<2′x2′x2′, sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm−1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm−1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm−1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10−32 cm2/sr (3.68 ± 0.26x10−36 m2/sr, 1.37 ± 0.10x10−30 cm2/sr (1.37 ± 0.10x10−34 m2/sr, 3.25 ± 0.23x10−31 cm2/sr (3.25 ± 0.23x10−35 m2/sr, 1.63 ± 0.14x10−30 cm2/sr (1.63 ± 0.14x10−34 m2/sr, and 3.08 ± 0.22x10−30 cm2/sr (and 3.08 ± 0.22x10−34 m2/sr were determined for the differential Raman cross section of the 967 cm−1 mode of NH3, sum of the 554, 547, and 539 cm−1 modes of Cl2, 870 cm−1 mode of H2S, 570 cm−1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10−31 cm2/sr (3.56 ± 0.14x10−35 m2/sr for the 1285 cm−1 mode of CO2 as the reference.

  13. Effect of One-methylcyclopropene (1-MCP) and chlorine dioxide (ClO2) on preservation of green walnut fruit and kernel traits.

    Science.gov (United States)

    Jiang, Liuqing; Feng, Wenyu; Li, Fang; Xu, Jingying; Ma, Yanping; Ma, Huiling

    2015-01-01

    The effect of the ethylene receptor competitor 1-methylcyclopropene (1-MCP) and the legally approved disinfectant chlorine dioxide (ClO2) on preservation of the green walnut fruit during storage was investigated. Green Chinese walnut fruit cv. Xilin No.2 was harvested on commercial maturity and stored at 0-1 °C after the fruit was treated by water (control), 80 mg L(-1)ClO2 (ClO2), 0.5 μL L(-1)1-MCP (1-MCP), or combination treatment of 80 mg L(-1) ClO2 with either 0.1 μL L(-1) 1-MCP (0.1 1-MCP+ ClO2) or 0.5 μL L(-1) 1-MCP (0.5 1-MCP+ ClO2). During storage, respiration, ethylene production, phenolics content, antioxidative activity, weight changes, decay of the fruit and kernel traits of acid value, peroxide value,free fatty were measured. All treatments decreased postharvest respiration intensity in different degrees and inhibited ethylene production peak. ClO2 increased the total phenol and flavonoid content of the green fruit compared with other treatments and the control (P treatment. After 42-day storage, ClO2 remained higher fresh weight and lower decay index than control, while 1-MCP increased the fruit decay index. Final acid values of kernel from ClO2, control and 0.1 1-MCP+ ClO2 were not different from their initial values, which from 0.5 1-MCP increased. Final peroxide value for kernel from ClO2 showed no change during storage but increased at least 1.0-fold for other treatments. ClO2 preserved 99.9 % of initial free fatty acid, similar to that for the control (99.8 %), whereas 0.5 1-MCP preserved only 95.7 %. ClO2 is of potential in decay retardation and kernel traits maintenance of green walnut fruit, whereas the 1-MCP has a negative effect for decay control on walnut. PMID:25593369

  14. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

    Science.gov (United States)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Jeys, T. H.

    2016-02-01

    Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (<2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm-1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.

  15. Emission of sulphur dioxide by thermo oxidation of Estonian oil shale and coal

    International Nuclear Information System (INIS)

    The article describes the dynamics of sulphur dioxide during the thermo oxidation of Estonian oil shale and coal and their mixtures with the mass ratio 1:1 as well as the influence of soil ash addition on the dynamics. Thermogravimetric equipment developed for absorption of the emitted gases and titration of the solution was used. It was established that the share of emitted SO2 decreases from 35-75% by the thermo oxidation of coal and its mixtures with oil shale to 7-35% for samples with oil shale ash addition. (author)

  16. Catalytic Formation of Propylene Carbonate from Supercritical Carbon Dioxide/Propylene Oxide Mixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylammon-ium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.

  17. Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment

    OpenAIRE

    Lee, Yunho; VON GUNTEN, Urs

    2012-01-01

    Various oxidants such as chlorine, chlorine dioxide, ferrateVI, ozone, and hydroxyl radicals can be applied for eliminating organic micropollutant by oxidative transformation during water treatment in systems such as drinking water, wastewater, and water reuse. Over the last decades, many second-order rate constants (k) have been determined for the reaction of these oxidants with model compounds and micropollutants. Good correlations (quantitative structure–activity relationships or QSARs) ar...

  18. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I.; Fu, Shanlin;

    2015-01-01

    and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity...... toward oxidants compared to the analogous sulfur compounds, and are known to be efficient scavengers of HOCl and other hypohalous acids produced by MPO. In this study, we examined the efficacy of a number of sulfur and selenium compounds to scavenge a range of biologically relevant N-chloramines and...... oxidants produced by both isolated MPO and activated neutrophils and characterized the resulting selenium-derived oxidation products in each case. A dose-dependent decrease in the concentration of each N-chloramine was observed on addition of the sulfur compounds (cysteine, methionine) and selenium...

  19. Preparation of Stable Chlorine Dioxide Solution and Its Application in Treatment of Waste Organic Gas Mixtures%稳态二氧化氯溶液的制备及其在废气处理中的应用

    Institute of Scientific and Technical Information of China (English)

    李东

    2012-01-01

    提出了一种二氧化氯溶液制备方法,制作了一新型废气处理装置,并将两者结合应用于有机废气处理.实例表明,生产中产生的废气经稳态二氧化氯溶液和等规不锈钢波纹填料在改进型废气处理塔中处理后:粉尘含量下降90%左右,非甲烷总烃含量也下降90%左右.%The propose application was combination of a kind of chlorine dioxide solution preparation method and specially-designed absorption tower for waste organic combination gas treatment. Examples showed that after the waste gas had been treated by chlorine dioxide and isotactic stainless steel corrugated filler in the improved waste gas treatment tower, the dust content reduced by about 90% , the total hydrocarbon ( non-methane) content also reduced about by 90%.

  20. Reactions of silicon-based ceramics in mixed oxidation chlorination environments

    Science.gov (United States)

    Marra, John E.; Kreidler, Eric R.; Jacobson, Nathan S.; Fox, Dennis S.

    1988-01-01

    The reaction of silicon-based ceramics with 2 percent Cl2/Ar and 1 percent Cl2/1 percent to 20 percent O2/Ar at 950 C was studied with thermogravimetric analysis and high-pressure mass spectrometry. Pure Si, SiO2, several types of SiC, and Si3N4 were examined. The primary corrosion products were SiCl4(g) and SiO2(s) with smaller amounts of volatile silicon oxychlorides. The reactions appear to occur by chlorine penetration of the SiO2 layer, and gas-phase diffusion of the silicon chlorides away from the sample appears to be rate limiting. Pure SiO2 shows very little reaction with Cl2, SiC with excess Si is more reactive than the other materials with Cl2, whereas SiC with excess carbon is more reactive than the other materials with Cl2/O2. Si3N4 shows very little reaction with Cl2. These differences are explained on the basis of thermodynamic and microstructural factors.

  1. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    OpenAIRE

    Triboulet, Sarah,; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at ...

  2. Study of removal effect on Mesocyclops leukarti with oxidants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cyclops of zooplankton propagates prolifically in eutrophic waterbody and it cannot be exterminated by conventional disinfection process. The mutagenicity of Mesocyclops leukarti and its extermination with oxidants in a drinking waterworks in China were studied. Among five oxidants for use in bench-scale, chlorine dioxide is the most effective and the potassium permanganate is the weakest against Mesocyclops leukarti under the same conditions. Full-scale results showed that Mesocyclops leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation combined with conventional removal physical process. After filtration, chlorite, a by-product of prechlorine dioxide, is stable at 0.45 mg/L, which is lower than the critical value of the USEPA. GC-MS examination and Ames test further showed that the quantity of organic substance and the mutagenicity in water treated by chlorine dioxide preoxidation are obviously less than those of prechlorination.

  3. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology

    Energy Technology Data Exchange (ETDEWEB)

    Moo Been Chang; How Ming Lee; Feeling Wu; Chi Ren Lai [National Central University (Taiwan). Graduate Institute of Environmental Engineering

    2004-08-01

    Nitrogen oxides (NOx)and sulfur dioxide (SO{sub 2}) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for the simultaneous removal of SO{sub 2} and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO{sub 2}. The water-soluble NO{sub 2} then can be removed by wet scrubbing accompanied with SO{sub 2} removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO{sub 2}. More than 90% removal of NO, NOx, and SO{sub 2} can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO{sub 2} and SO{sub 2} absorption. Energy efficiencies for NOx and SO{sub 2} removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO{sub 2}, and SO{sub 2} from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product is found and should be considered. 57 refs., 7 figs., 7 tabs.

  4. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency. - Highlights: • Chlorine in iron oxide is measured by LIBS with LOD = 440 ppm and LOQ = 720 ppm. • The LOD of Cl is among the best values achieved on solid samples by LIBS. • Enhanced emission of Cl is observed by orthogonal UV laser re-excitation of plasma. • Cl signals are enhanced at long interpulse delays and short detector gate delays. • Measured LIBS signals of Cl and Fe qualitatively agree with calculated emissions

  5. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Haslinger, M.J.; Bodea, M.A.; Huber, N. [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Wolfmeir, H. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe{sub 2}O{sub 3} powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe{sub 2}O{sub 3} pellets and Fe{sub 3}O{sub 4} ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λ{sub L}). The UV pulses (λ{sub L} = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λ{sub L} = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of t{sub d} ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency. - Highlights: • Chlorine in iron oxide is measured by LIBS with LOD = 440 ppm and LOQ = 720 ppm. • The LOD of Cl is among the best values achieved on solid samples by LIBS. • Enhanced emission of Cl is observed by orthogonal UV laser re-excitation of plasma. • Cl signals are enhanced at long interpulse delays and short detector gate delays. • Measured LIBS signals of Cl and Fe qualitatively agree with calculated emissions.

  6. Thermal oxidation-grown vanadium dioxide thin films on FTO (Fluorine-doped tin oxide) substrates

    Science.gov (United States)

    Tong, Guoxiang; Li, Yi; Wang, Feng; Huang, Yize; Fang, Baoying; Wang, Xiaohua; Zhu, Huiqun; Li, Liu; Shen, Yujian; Zheng, Qiuxin; Liang, Qian; Yan, Meng; Qin, Yuan; Ding, Jie

    2013-11-01

    By deposition of metallic vanadium on FTO substrate in Argon atmosphere at room temperature, the sample was then annealed in furnace for 2 h at the temperature of 410 °C in air ambient. (1 1 0) -orientated vanadium dioxide films were prepared on the FTO surface. A maximum transmittance of ˜40% happened at 900-1250 nm region at room temperature. The change of optical transmittance at this region was ˜25% between semiconducting and metallic states. In particular, vanadium dioxide thin films on FTO exhibit semiconductor-metal phase transition at ˜51 °C, the width of the hysteresis loop is ˜8 °C.

  7. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate

    Science.gov (United States)

    Henderson, Thomas H.; Mayer, K. Ulrich; Parker, Beth L.; Al, Tom A.

    2009-05-01

    A popular method for the treatment of aquifers contaminated with chlorinated solvents is chemical oxidation based on the injection of potassium permanganate (KMnO 4). Both the high density (1025 gL - 1 ) and reactivity of the treatment solution influence the fate of permanganate (MnO 4) in the subsurface and affect the degree of contaminant treatment. The MIN3P multicomponent reactive transport code was enhanced to simulate permanganate-based remediation, to evaluate the pathways of MnO 4 utilization, and to assess the role of density contrasts for the delivery of the treatment solution. The modified code (MIN3P-D) provides a direct coupling between density-dependent fluid flow, solute transport, contaminant treatment, and geochemical reactions. The model is used to simulate a field trial of TCE oxidation in a sandy aquifer that is underlain by an aquitard. Three-dimensional simulations are conducted for a coupled reactive system comprised of ten aqueous components, two mineral phases, TCE (dissolved, adsorbed, and NAPL), reactive organic matter, and including ion exchange reactions. Model parameters are constrained by literature data and a detailed data set from the field site under investigation. The general spatial and transient evolution in observed concentrations of the oxidant, dissolved TCE, and reaction products are adequately reproduced by the simulations. The model elucidates the important role of density-induced flow and transport on the distribution of the treatment solution into NAPL containing regions located at the aquifer-aquitard interface. Model results further suggest that reactions that do not directly affect the stability of MnO 4 have a negligible effect on solution density and MnO 4 delivery.

  8. A thermodynamic approach of the mechano-chemical coupling during the oxidation of uranium dioxide

    CERN Document Server

    Creton, Nicolas; Montesin, Tony; Garruchet, Sébastien; Desgranges, Lionel; 10.4028/www.scientific.net/DDF.289-292.447

    2009-01-01

    The aim of the present work is to introduce a thermodynamic model to describe the growth of an oxide layer on a metallic substrate. More precisely, this paper offers a study of oxygen dissolution into a solid, and its consequences on the apparition of mechanical stresses. They strongly influence the oxidation processes and may be, in some materials, responsible for cracking. To realize this study, mechanical considerations are introduced into the classical diffusion laws. Simulations were made for the particular case of uranium dioxide, which undergoes the chemical fragmentation. According to our simulations, the hypothesis of a compression stress field into the oxidised UO2 compound near the internal interface is consistent with the interpretation of the mechanisms of oxidation observed experimentally.

  9. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. 1998 annual progress report

    International Nuclear Information System (INIS)

    'This report summarizes the results of work done during the first 1.3 years of a three year project. During the first nine months effort focussed on the design, construction and testing of a closed recirculating system that can be used to study photochemistry in supercritical carbon dioxide at pressures up to 5,000 psi and temperatures up to about 50 C. This was followed by a period of work in which the photocatalytic oxidation of benzene and acetone in supercritical, liquid, and gaseous carbon dioxide containing dissolved oxygen was demonstrated. The photocatalyst was titanium dioxide supported on glass spheres. This was the first time it was possible to observe photocatalytic oxidation in a supercritical fluid and to compare reaction in the three fluid phases of a solvent. This also demonstrated that it is possible to purify supercritical and liquid carbon dioxide using photochemical oxidation with no chemical additions other than oxygen. The oxidation of benzene produced no intermediates detectable using on line spectroscopic analysis or by gas chromatographic analysis of samples taken from the flow system. The catalyst surface did darken as the reaction proceeded indicating that oxidation products were accumulating on the surface. This is analogous to the behavior of aromatic compounds in air phase photocatalytic oxidation. The reaction of acetone under similar conditions resulted in the formation of low levels of by-products. Two were identified as products of the reaction of acetone with itself (4-methyl-3-penten-2-one and 4-hydroxy-4-methyl-2-pentanone) using gas chromatography with a mass spectrometer detector. Two other by-products also appear to be from the self-reaction of acetone. By-products of this type had not been observed in prior studies of the gas-phase photocatalytic oxidation of acetone. The by-products that have been observed can also be oxidized under the treatment conditions. The above results establish that photocatalytic oxidation of

  10. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    Science.gov (United States)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the

  11. Enhanced photocatalytic activity of degrading short chain chlorinated paraffins over reduced graphene oxide/CoFe2O4/Ag nanocomposite.

    Science.gov (United States)

    Chen, Xin; Zhao, Qidong; Li, Xinyong; Wang, Dong

    2016-10-01

    Short chain chlorinated paraffins have recently attracted great attention because of their environmental persistence and biological toxicity as an important organic pollutant. In this work, reduced graphene oxide/CoFe2O4/Ag (RGO/CoFe2O4/Ag) nanocomposite was prepared and employed for photocatalytic degradation of short chain chlorinated paraffins. The process of photocatalytic degradation of short chain chlorinated paraffins over RGO/CoFe2O4/Ag under visible light (λ>400nm) was investigated by in situ Fourier transform infrared spectroscopy and the related mechanisms were proposed. An apparent degradation ratio of 91.9% over RGO/CoFe2O4/Ag could be obtained under visible light illumination of 12h, while only about 21.7% was obtained with commercial P25 TiO2 under the same experimental conditions, which demonstrates that the RGO/CoFe2O4/Ag nanocomposite is a potential candidate for effective photocatalytic removal of short chain chlorinated paraffins. PMID:27376973

  12. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  13. Contribution to the study of oxygen self-diffusion in refractory oxides: application to uranium dioxide

    International Nuclear Information System (INIS)

    An original method is described for oxygen self-diffusion profile determination in solid uranium dioxide samples, with a possible extension to other refractory oxides. A thin (10 to 20 microns) layer of enriched oxide U18O2 (18O/16O + 18O = 75 %), is allowed to diffuse into a semi infinite medium of natural oxide UO2; upon grinding successive layers of definite thickness, the isotope concentration ratio is determined by spark source mass spectrometry analysis on the surface of the massive sample; the spark trace does not exceed a depth of 10 microns; the diffusion zone covers more than 50 microns, corresponding to a variation of the concentration ratio C(x=0)/C(x=∞) larger than 100. This method has thus allowed the first determination of an oxygen-18 self-diffusion profile in stoichiometric uranium dioxide solid samples; two sets of experiments have given the following results: D1 = (1,3 ± 0,2) 10-10 cm2/sec, D2 (3,4 ± 0,9) 10-10 cm2/sec at 1020 ± 1 deg. C. (author)

  14. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy.

    Science.gov (United States)

    Li, Zhiwei; Wang, Chao; Cheng, Liang; Gong, Hua; Yin, Shengnan; Gong, Qiufang; Li, Yonggang; Liu, Zhuang

    2013-12-01

    Magnetic targeting that utilizes a magnetic field to specifically delivery theranostic agents to targeted tumor regions can greatly improve the cancer treatment efficiency. Herein, we load chlorin e6 (Ce6), a widely used PS molecule in PDT, on polyethylene glycol (PEG) functionalized iron oxide nanoclusters (IONCs), obtaining IONC-PEG-Ce6 as a theranostic agent for dual-mode imaging guided and magnetic-targeting enhanced in vivo PDT. Interestingly, after being loaded on PEGylated IONCs, the absorbance/excitation peak of Ce6 shows an obvious red-shift from ~650 nm to ~700 nm, which locates in the NIR region with improved tissue penetration. Without noticeable dark toxicity, Ce6 loaded IONC-PEG (IONC-PEG-Ce6) exhibits significantly accelerated cellular uptake compared with free Ce6, and thus offers greatly improved in vitro photodynamic cancer cell killing efficiency under a low-power light exposure. After demonstrating the magnetic field (MF) enhanced PDT using IONC-PEG-Ce6, we then further test this concept in animal experiments. Owing to the strong magnetism of IONCs and the long blood-circulation time offered by the condensed PEG coating, IONC-PEG-Ce6 shows strong MF-induced tumor homing ability, as evidenced by in vivo dual modal optical and magnetic resonance (MR) imaging. In vivo PDT experiment based magnetic tumor targeting using IONC-PEG-Ce6 is finally carried out, achieving high therapeutic efficacy with dramatically delayed tumor growth after just a single injection and the MF-enhanced photodynamic treatment. Considering the biodegradability and non-toxicity of iron oxide, our IONC-PEG-Ce6 presented in this work may be a useful multifunctional agent promising in photodynamic cancer treatment under magnetic targeting. PMID:24008045

  15. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  16. Oxidation of elemental mercury by chlorine: Gas phase, Surface, and Photo-induced reaction pathways

    OpenAIRE

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-01-01

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of ...

  17. Oxidizing behavior of some platinum metal fluorides. [Xe complexes with Pt, Pd fluorides; Chlorine-2 oxidation by transition metal hexafluorides

    Energy Technology Data Exchange (ETDEWEB)

    Graham, L.

    1978-10-01

    The previously known compounds Xe/sub 2/F/sub 3//sup +/PtF/sub 6//sup -/, XeF/sup +/PtF/sub 6//sup -/ and XeF/sub 2/.2PtF/sub 4/(XePt/sub 2/F/sub 10/) were prepared by the interaction of XeF/sub 2/ with PtF/sub 4/. The new compounds XeF/sub 2/.PdF/sub 4/ and XeF/sub 2/.2PdF/sub 4/(XePd/sub 2/F/sub 10/) were produced by interaction of XeF/sub 2/ with either PdF/sub 4/ or Pd/sub 2/F/sub 6/. A weight loss-versus-time curve indicated the presence of 4:1, 3:1 and 2:1 XeF/sub 2//PdF/sub 4/ complexes. The thermal decomposition of XeFPtF/sub 6/ or XePd/sub 2/F/sub 10/ yields highly pure XeF/sub 4/. Thus the interaction of XeF/sub 2/ with platinum fluorides (PtF/sub 4/ or PtF/sub 5/) or palladium fluorides (Pd/sub 2/F/sub 6/ or PdF/sub 4/) provides for the conversion of XeF/sub 2/ to XeF/sub 4/. The compound XePd/sub 2/F/sub 10/ is a close structural relative of XePt/sub 2/F/sub 10/, and spectroscopic evidence suggests that both are salts of XeF/sup +/ and a polymeric (M/sub 2/F/sub 9/)/sub x//sup x-/ ion. A Xe:PtF/sub 6/ material of approximately 1:1 stoichiometry has been prepared and compared with XePdF/sub 6/(XeF/sub 2/.PdF/sub 4/). The interaction of chlorine with the third-series transition metal hexafluorides has been investigated. Gravimetric and tensimetric evidence indicate that the initial product of the Cl/sub 2/ plus IrF/sub 6/ reaction is a solid of composition Cl/sub 2/IrF/sub 6/. Vibrational spectroscopic and other evidence indicates that this solid yields a sequence of products, of which Cl/sub 3//sup +/IrF/sub 6//sup -/, Cl/sub 3//sup +/Ir/sub 2/F/sub 11//sup -/ and Ir/sub 4/F/sub 20/ have been identified, the last being the ultimate solid product of the room temperature decomposition of the adduct. A new chlorine fluoride generated in the room temperature decomposition of Cl/sub 2/IrF/sub 6/ has been tentatively formulated as Cl/sub 3/F from infrared evidence.

  18. Carbon dioxide electrolysis with solid oxide electrolyte cells for oxygen recovery in life support systems

    Science.gov (United States)

    Isenberg, Arnold O.; Cusick, Robert J.

    1988-01-01

    The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.

  19. Dermal Absorption of Nanomaterials Titanium Dioxide and Zinc Oxide Based Sunscreen

    DEFF Research Database (Denmark)

    Beer, Christiane; Dokkedahl, Karin Stenderup; Wang, Jing;

    of nanomaterials in products on the Danish market and their consequences on consumers and the environment. Furthermore, the aim is to clarify possible risks that might be associated with nanomaterials for consumers and the environment. The current project ’Dermal Absorption of Nanomaterials Titanium...... Dioxide and Zinc Oxide in Sunscreen’ is part of this ”Better control of nano” initiative and was started in March 2014 and ended in June 2015. The aim of this project was to generate new knowledge on physicochemical properties that may influence dermal absorption of nanomaterials. The project was carried...

  20. Fully Converting Graphite into Graphene Oxide Hydrogels by Preoxidation with Impure Manganese Dioxide.

    Science.gov (United States)

    Sun, Jiaojiao; Yang, Ningxin; Sun, Zhe; Zeng, Mengqi; Fu, Lei; Hu, Chengguo; Hu, Shengshui

    2015-09-30

    Potassium permanganate (KMnO4) has been proved to be an efficient oxidant for converting graphite into graphite oxide, but its slow diffusion in the interlayer of graphite seriously restricts the production of graphene oxide (GO). Here, we demonstrate that the preoxidation of graphite by impure manganese dioxide (MnO2) in a mixture of concentrated sulfuric acid (H2SO4) and phosphorus pentoxide (P2O5) can efficiently improve the synthesis of GO when KMnO4 is employed as the oxidant. The prepared honey-like GO hydrogels possess a high yield of single-layer sheets, large sizes (average lateral size up to 20 μm), wide ranges of stable dispersion concentrations (from dilute solutions, viscous hydrogels, to dry films), and good conductivity after reduction (~2.9 × 10(4) S/m). The mechanism for the improved synthesis of GO by impure MnO2 was explored. The enhanced exfoliation and oxidation of graphite by oxidative Mn ions (mainly Mn(3+)), which are synergistically produced by the reaction of impure MnO2 with H2SO4 and P2O5, are found to be responsible for the improved synthesis of such GO hydrogels. Particularly, preoxidized graphite (POG) can be partially dispersed in water with sonication, which allows the facile construction of flexible and highly conductive graphene nanosheet film electrodes with excellent electrochemical sensing properties. PMID:26352992

  1. Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays

    International Nuclear Information System (INIS)

    We report on the kinetics of photoelectrochemical oxidation of salicylic acid (SA) and salicylaldehyde (SH) on titanium dioxide nanotube arrays. The TiO2 nanotubes were prepared by the electrochemical oxidation of titanium substrates in a nonaqueous electrolyte (DMSO/HF). Scanning electron microscopy (SEM) was employed to examine the morphology of the formed nanotubes. Linear voltammetry was used to study the electrochemical and photoelectrochemical behavior of the synthesized TiO2 nanotube arrays. The photoelectrochemical oxidation of SA and SH on the TiO2 nanotubes was monitored by in situ UV-vis spectroscopy, showing that the kinetics of the photoelectrochemical oxidation of SA and SH follows pseudo first-order and that the rate constant of SH oxidation is 1.5 times larger than that of SA degradation. Quantum chemical calculations based on the DFT method were performed on SA and SH to address the large difference in kinetics. The relatively higher ELUMO - EHOMO makes SA more stable and thus more difficult to be oxidized photoelectrochemically. The impact of temperature and initial concentrations on the kinetics of SA and SH photoelectrochemical degradation was also investigated in the present work.

  2. Comparative study of the oxidation of various qualities of uranium in carbon dioxide at high temperatures

    International Nuclear Information System (INIS)

    Uranium samples of six different qualities were subjected, in the temperature range 400 - 1000 C, to the action of carbon dioxide carefully purified to eliminate oxygen and water vapour; the resulting oxidation was followed micro-graphically and also (but only in the range 400 - 700 C) gravimetrically using an Ugine-Eyraud microbalance. A comparison of the results leads to the following 3 observations. First, the oxidation of the six uraniums studied obeys a linear law, (followed at 700 C by an accelerating law). The rates of reaction differ by a maximum of 100 per cent, the higher purity grades being oxidized more slowly except at 700 C when the reverse is true. Secondly, simultaneously with the growth, of an approximately uniform film of uranium dioxide on the metal, there occurs a localized attack in the form of blisters in the immediate neighbourhood of the monocarbide inclusions in the uranium. The relative importance of this attack is greater for lower oxidation temperatures and for a larger size, number and inequality of distribution of the inclusions, that is to say for higher carbon concentrations in the uranium (which have values from 7 to 1000 ppm in our tests). Thirdly, for oxidation temperatures above 600 C blistering is much less pronounced, but at 700 C the beginning of a general deformation of the sample occurs, which, above 750 C, becomes much greater; this leads to an acceleration of the reaction rate with respect to the linear law. In view of the over-heating, the sample must already be in the γ-phase which is particularly easily deformed; furthermore this expansion phenomenon is more pronounced when the sample is more plastic and therefore purer. (authors)

  3. Interaction of vaporous polonium dioxide with oxides of titanium, germanium, tin and tantalum

    International Nuclear Information System (INIS)

    Interaction of vaporous polonium-210 dioxide with oxides of titanium, germanium, tin, and tantalum has been studied by the thermal method of direct synthesis. To inhibit PoO2 dissociation, the oxygen pressure inside the reaction ampoule has been maintained at 153 Torr. In the working temperature range from 700 to 1000 deg C the pressure has been increased up to 490-650 Torr. The moving the PoO2 vapour inside the ampoule has been detected by polonium gamma radiation. It has been established that vaporous PoO2 does not interact with TiO2, GeO2 and SnO2 on heating up to 1000 deg C. Tantalum pentoxide sorbs PoO2 to mole ratios of Ta2O5:PoO2=S at 950-960 deg C. The vapour pressure of PoO2 over Ta2O5 containig PoO2 in an oxygen medium at 800-900 deg C is expressed by the equation of lg Psub(mm)=8.2942+-0.1440-(10305+-199)/T. The heat of the process is 47.1+-0.9 kcal/mol. Tantalum pentoxide containing polonium dioxide in vacuum to 10-2 Torr at 630 deg C liberates polonium dioxide which dissociates into polonium and oxygen

  4. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.

    2013-09-18

    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mechanisms of the rapid dissolution of plutonium dioxide in acidic media under oxidizing or reducing conditions

    International Nuclear Information System (INIS)

    Until recently plutonium dioxide was known to be among the metallic oxides most difficult to dissolve. This property is understandable given the free energy of the dissolution reaction (ΔG0) in acidic noncomplexing media (ΔG0 = 32.04 kJ/mol). Thermodynamic calculations predict that PuO2 will dissolve under oxidizing or reducing conditions. The oxidizing dissolution, leading to Pu(VI) ion in solution, is easy to perform with a strong oxidant like Ag(II). The mechanism of the oxidizing dissolution of PuO2 was investigated by using carbon paste electrochemistry (CPE) and 18 O labeling. PuO2 can also be dissolved in acidic solution if the redox potential of the mixture is low (e.g., Cr2+, V2+, or U3+ as reducing agents). The kinetics of the heterogeneous reducing dissolution of PuO2 with Cr2+ were investigated and the reaction mechanism was determined by 18 O labeling. All the results will be presented and discussed in the context of minimizing the amount of plutonium-contaminated solid wastes in the nuclear fuel cycle. 9 figs., 17 refs

  6. Mechanisms of the rapid dissolution of plutonium dioxide in acidic media under oxidizing or reducing conditions

    International Nuclear Information System (INIS)

    Until recently plutonium dioxide was known to be among the metallic oxides most difficult to dissolve. This property is understandable given the free energy of the dissolution reaction (ΔG0) in acidic noncomplexing media (ΔG0 = 32.04 kJ/mol). Thermodynamic calculations predict that PuO2 will dissolve under oxidizing or reducing conditions. The oxidizing dissolution, leading to Pu(VI) ion in solution, is easy to perform with a strong oxidant like Ag(II). The mechanism of the oxidizing dissolution of PuO2 was investigated by using carbon paste electrochemistry (CPE) and 18O labeling. PuO2 can also be dissolved in acidic solution if the redox potential of the mixture is low (e.g., Cr2+, V2+, or U3+ as reducing agents). The kinetics of the heterogeneous reducing dissolution of PuO2 with Cr2+ were investigated and the reaction mechanism was determined by 18O labeling. In this paper all the results are presented and discussed in the context of minimizing the amount of plutonium-contaminated solid wastes in the nuclear fuel cycle

  7. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming

    International Nuclear Information System (INIS)

    Highlights: ► A 2D model is developed for solid oxide fuel cells (SOFCs). ► CH4 reforming by CO2 (MCDR) is included. ► SOFC with MCDR shows comparable performance with methane steam reforming SOFC. ► Increasing CO electrochemical oxidation greatly enhances the SOFC performance. ► Effects of potential and temperature on SOFC performance are also discussed. - Abstract: A two-dimensional model is developed to simulate the performance of solid oxide fuel cells (SOFCs) fed with CO2 and CH4 mixture. The electrochemical oxidations of both CO and H2 are included. Important chemical reactions are considered in the model, including methane carbon dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam reforming (MSR). It’s found that at a CH4/CO2 molar ratio of 50/50, MCDR and reversible WGSR significantly influence the cell performance while MSR is negligibly small. The performance of SOFC fed with CO2/CH4 mixture is comparable to SOFC running on CH4/H2O mixtures. The electric output of SOFC can be enhanced by operating the cell at a low operating potential or at a high temperature. In addition, the development of anode catalyst with high activity towards CO electrochemical oxidation is important for SOFC performance enhancement. The model can serve as a useful tool for optimization of the SOFC system running on CH4/CO2 mixtures

  8. Chemical Processing for Sol-Gel Derived Metal Oxide Thin Films using Supercritical Carbon Dioxide Fluid

    International Nuclear Information System (INIS)

    Chemical processing using supercritical carbon dioxide fluid (scCO2) was demonstrated for lowering processing temperature of sol-gel-derived metal oxide thin films. The film processing was performed in a hot-wall closed vessel filled with scCO2 fluid. Precursor films of titanium dioxide (TiO2) on soda-glass substrates prepared by sol-gel coating using Ti-alkoxide solution were converted to crystalline TiO2 (anatase) films successfully by the scCO2 treatment at a fluid pressure of 15 MPa and a substrate temperature of 300deg. C whereas no crystallization was occurred by conventional heat treatment at 400 deg. C. XPS analysis indicated that the interface reaction related to Si element was suppressed successfully by scCO2 treatment at 300 deg. C. These results suggest that the sol-gel synthesis using scCO2 fluid would be a cadidate for low-temperature processing of crystalline oxide films, which is more preferable than conventional techniques based on the heat treatment.

  9. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.

    Science.gov (United States)

    Rajeshwar, Krishnan; de Tacconi, Norma R; Ghadimkhani, Ghazaleh; Chanmanee, Wilaiwan; Janáky, Csaba

    2013-07-22

    Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two-step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one-dimensional nanostructures on copper substrates. The first step consisted in the growth of CuO nanorods by thermal oxidation of a copper foil at 400 °C. In the second step, controlled electrodeposition of p-type Cu2O crystallites on the CuO walls was performed. The resulting nanorod morphology with controllable wall thickness by adjusting the Cu2O electrodeposition time as well as their surface/bulk chemical composition were probed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Photoelectrosynthesis of methanol from carbon dioxide was demonstrated at -0.2 V vs SHE under simulated AM1.5 solar irradiation on optimized hybrid CuO/Cu2O nanorod electrodes and without assistance of any homogeneous catalyst (such as pyridine or imidazole) in the electrolyte. The hybrid composition, ensuring double pathway for photoelectron injection to CO2, along with high surface area were found to be crucial for efficient performance in methanol generation under solar illumination. Methanol formation, tracked by gas chromatography/mass spectrometry, indicated Faradaic efficiencies of ~95%. PMID:23712877

  10. The impact of Southwest Airline's contribution to atmospheric Carbon Dioxide and Nitrous Oxide totals

    Science.gov (United States)

    Wilkerson, Cody L.

    Over the last century, aviation has grown to become an economical juggernaut. The industry creates innovation, connects people, and maintains a safety goal unlike any other field. However, as the world becomes more populated with technology and individuals, a general curiosity as to how human activity effects the planet is becoming of greater interest. This study presents what one domestic airline in the United States, Southwest Airlines, contributes to the atmospheric make-up of the planet. Utilizing various sources of quantifiable data, an outcome was reached that shows the amount of Carbon Dioxide and Nitrous Oxide produced by Southwest Airlines from 2002 to 2013. This topic was chosen due to the fact that there are no real quantifiable values of emission statistics from airlines available to the public. Further investigation allowed for Southwest Airlines to be compared to the overall Carbon Dioxide and Nitrous Oxide contributions of the United States for the year 2011. The results showed that with the absence of any set standard on emissions, it is vital that one should be established. The data showed that the current ICAO standard emission values showed a higher level of emissions than when Southwest Airline's fleet was analyzed using their actual fleet mix.

  11. The oxidation of moderator graphites irradiated in carbon dioxide containing carbon monoxide, methane and water

    International Nuclear Information System (INIS)

    The Advanced Gas Cooled Reactor (AGR) was introduced for the second generation of British nuclear power stations. It was recognised that problems of compatibility between the carbon dioxide coolant and the moderator graphite would arise because of the increased power rating of the reactor compared with the first generation MAGNOX system. This led to the realisation that it would be necessary to reduce the rate of oxidation of the moderator to acceptable levels by the addition of inhibitors to the coolant and to this end carbon monoxide and methane were chosen. This paper describes experiments which have been made in a materials testing reactor at AERE Harwell in which moderator graphite reaction rates have been measured in carbon dioxide containing carbon monoxide at concentrations between 0.03% and 2% and methane concentrations up to 600 vpm. The effect of impressing a flow of coolant through the graphite structure, the so-called ventilation effect, and the role of coolant temperature and pressure have also been assessed. The results confirm the inhibiting power of methane and carbon monoxide on the graphite/CO2 reaction and demonstrate that the application of ventilation in the presence of these inhibitors enhances their effect. A minimum or 'terminal' oxidation rate may be achieved by the CAGR Gilso carbon graphites when irradiated in the presence of 200 vpm methane, or more, under appropriate conditions. (author)

  12. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  13. Ultrathin, epitaxial cerium dioxide on silicon

    International Nuclear Information System (INIS)

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce2O3 film may very effectively be converted at room temperature to almost fully oxidized CeO2 by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness

  14. Ultrathin, epitaxial cerium dioxide on silicon

    OpenAIRE

    Flege, Jan Ingo; Kaemena, Björn; Höcker, Jan; Bertram, Florian; Wollschläger, Joachim; Schmidt, Thomas; Falta, Jens

    2014-01-01

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce2O3 film may very effectively be converted at room temperature to almost fully oxidized CeO2 by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film cryst...

  15. Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Highlights: ► Fabrication of TiO2 nanotube arrays. ► Photoelectrochemical deposition of PbO2 nanoparticles. ► Electrochemical oxidation of lignin at the TiO2-supported PbO2 nanoparticles to value-added products. - Abstract: In this study, we have successfully fabricated lead dioxide (PbO2) nanoparticles supported on TiO2 nanotubes (TiO2NT/PbO2) for the treatment of kraft lignin. The TiO2 nanotubes were grown directly on Ti substrates by electrochemical anodization and the PbO2 nanoparticles were formed by the combination of photochemical and electrochemical deposition. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) were employed to study the surface morphology and composition of the fabricated Ti/TiO2NT/PbO2 electrodes. The resulting electrode was utilized as a novel approach for the oxidation and modification of lignin. UV–vis spectroscopy was employed to monitor the lignin oxidation process in situ. The effects of concentration, current and temperature on the oxidation of lignin have been investigated, as well as post-oxidation changes in the chemical oxygen demand (COD) of the lignin solution. Fourier transform Infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) were used to characterize the oxidized lignin as well as the resulting products. Our study shows that the electrochemical oxidation of lignin via the fabricated Ti/TiO2NT/PbO2 electrode is a promising approach for the remediation of lignin wastewater and the generation of lignin-derived value-added products.

  16. Study on technology for laboratory scale production of Zirconium Chloride (ZrCl4) by chlorinating Zirconium dioxide (ZrO2)

    International Nuclear Information System (INIS)

    ZrCl4 is used as a main material for producing metallic zirconium. There are four methods for obtaining ZrCl4. The method of chlorination of ZrO2 was selected and some instruments have been made for the study (to produce ZrCl4 in laboratory scale). A procedure of preparing ZrCl4 on the obtained instruments was set up and a small amount of ZrCl4 was successfully obtained. (author)

  17. Comprehensive screening study of pesticide degradation via oxidation and hydrolysis.

    Science.gov (United States)

    Chamberlain, Evelyn; Shi, Honglan; Wang, Tongwen; Ma, Yinfa; Fulmer, Alice; Adams, Craig

    2012-01-11

    This comprehensive study focused on the reactivity of a set of 62 pesticides via oxidization by free chlorine, monochloramine, chlorine dioxide, hydrogen peroxide, ozone, and permanganate; photodegradation with UV(254); and hydrolysis at pH 2, 7, and 12. Samples were analyzed using direct injection liquid chromatography-mass spectrometry detection or gas chromatography-electron capture detection after liquid-liquid extraction. Many pesticides were reactive via hydrolysis and/or chlorination and ozonation mechanisms under typical drinking water treatment conditions, with less reactivity exhibited on average for chlorine dioxide, monochloramine, hydrogen peroxide, and UV(254). The pyrazole and organophosphorous pesticides were most reactive in general, whereas carbamates and others were less reactive. The screening study provides guidance for the pesticide/oxidation systems that are most likely to lead to degradates in water treatment and the environment. PMID:22141915

  18. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    Science.gov (United States)

    Hoyle, C. R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Tröstl, J.; Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Corbin, J. C.; Craven, J.; Donahue, N. M.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Höppel, N.; Heinritzi, M.; Kristensen, T. B.; Molteni, U.; Nichman, L.; Pinterich, T.; Prévôt, A. S. H.; Simon, M.; Slowik, J. G.; Steiner, G.; Tomé, A.; Vogel, A. L.; Volkamer, R.; Wagner, A. C.; Wagner, R.; Wexler, A. S.; Williamson, C.; Winkler, P. M.; Yan, C.; Amorim, A.; Dommen, J.; Curtius, J.; Gallagher, M. W.; Flagan, R. C.; Hansel, A.; Kirkby, J.; Kulmala, M.; Möhler, O.; Stratmann, F.; Worsnop, D. R.; Baltensperger, U.

    2016-02-01

    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and -10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion - pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and -10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.

  19. Reduction of titanium dioxide and other metal oxides by electro-deoxidation

    International Nuclear Information System (INIS)

    Titanium dioxide and other reactive metal compounds are reduced by more reactive metals to form pure metals. These, are expensive and time consuming processes which makes these metals very expensive. Many of these metals and alloys have excellent properties, high strength, low density and very good corrosion resistance, but their use is restricted by its high cost. Electro-deoxidation is a very simple technique where an oxide is made cathodic in a fused salt of an alkaline earth chloride. By applying a voltage, below the decomposition potential of the salt, it has been found that the cathodic reaction is the ionization of oxygen from the oxide to leave a pure metal, rather than the reduction of the ion alkaline earth ion element. Laboratory experiments have shown that this approach can be applied to the reduction of a large number of metal oxides. Another important observation is that when a mixture of oxides is used as the cathode, the product is an alloy of uniform composition. This is a considerable advantage for many alloys that are difficult to prepare using conventional technology. (Original)

  20. Comparison between aesthetic and thermal performances of copper oxide and titanium dioxide nano-particulate coatings

    International Nuclear Information System (INIS)

    Nano-particulate coatings with high reflectance against solar irradiation can control undesirable thermal heating by sunlight absorption. It can reduce the energy consumption for air conditioning of houses and cars. For the objects covered by these coatings and subjected to human sight, e.g. roofing surfaces, high dazzle of reflected visible light can offend the human eyes and spoil the fine view of covered objects. The authors introduced a new optimization method in designing pigmented coatings which considers both thermal and aesthetic effects in previous studies. The optimization is possible by controlling the material, size and concentration of pigment particles. The proposed coatings maximize the reflectance of near infrared (NIR) region to care the thermal effects and minimize the visible (VIS) reflected energy to keep the dark tone because of aesthetic appeal. Two different types of copper oxide pigment particles namely cupric oxide (CuO) and cuprous oxide (Cu2O) were considered in this study. The optimum characteristics and performances are obtained and compared with titanium dioxide (TiO2) particle as a typical cool pigment. The results show that cupric oxide has much better performance for our objective.

  1. Stannic Oxide-Titanium Dioxide Coupled Semiconductor Photocatalyst Loaded with Polyaniline for Enhanced Photocatalytic Oxidation of 1-Octene

    Directory of Open Access Journals (Sweden)

    Hadi Nur

    2007-01-01

    Full Text Available Stannic oxide-titanium dioxide (SnO2–TiO2 coupled semiconductor photocatalyst loaded with polyaniline (PANI, a conducting polymer, possesses a high photocatalytic activity in oxidation of 1-octene to 1,2-epoxyoctane with aqueous hydrogen peroxide. The photocatalyst was prepared by impregnation of SnO2 and followed by attachment of PANI onto a TiO2 powder to give sample PANI-SnO2–TiO2. The electrical conductivity of the system becomes high in the presence of PANI. Enhanced photocatalytic activity was observed in the case of PANI-SnO2–TiO2 compared to PANI-TiO2, SnO2–TiO2, and TiO2. A higher photocatalytic activity in the oxidation of 1-octene on PANI-SnO2–TiO2 than SnO2–TiO2, PANI-TiO2, and TiO2 can be considered as an evidence of enhanced charge separation of PANI-SnO2–TiO2 photocatalyst as confirmed by photoluminescence spectroscopy. It suggests that photoinjected electrons are tunneled from TiO2 to SnO2 and then to PANI in order to allow wider separation of excited carriers.

  2. Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction

    Science.gov (United States)

    Lee, Kyungmi; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-08-01

    We have prepared a reduced graphene oxide (rGO)-supported silver (Ag) and manganese dioxide (MnO2) deposited porous-like catalyst (denoted as rGO/MnO2/Ag) through a facile electrochemical deposition route and have been used as a cathode catalyst for oxygen reduction reaction (ORR) in alkaline fuel cells. The physical properties of rGO/MnO2/Ag have been investigated via several instrumental methods. This material exhibits a polycrystalline structure characterized by Ag/MnO2 microsphere formation as a result of Ostwald ripening. The X-ray diffraction and X-ray photoelectron spectroscopy data reveal that the MnO2 and Ag have been slightly alloyed and Mn presents with the dioxide form on rGO. The electrochemical properties of the electrocatalyst have been studied via several voltammetric methods. The results demonstrated that the rGO/MnO2/Ag has an excellent catalytic activity for ORR in alkaline media compared to the other tested electrodes. Particularly, it shows 1.2 times higher current density and better electron transfer rate at 0.3 V per O2 than that of 20 wt% Pt/C. The other kinetic analysis reveals that the O2 has reduced directly to H2O through a nearly four-electron pathway with better anodic fuel tolerance and duration performance than that of 20% Pt/C.

  3. Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the NDSC radiometer at the Plateau de Bure

    OpenAIRE

    Ricaud, P.; P. Baron; Noë, J.

    2004-01-01

    A ground-based microwave radiometer dedicated to chlorine monoxide (ClO) measurements around 278GHz has been in operation from December 1993-June 1996 at the Plateau de Bure, France (45° N, 5.9° E, 2500m altitude). It belongs to the international Network for the Detection of Stratospheric Change. A detailed study of both measurements and retrieval schemes has been undertaken. Although dedicated to the measurements of ClO, simultaneous profiles of O3, ClO...

  4. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    Science.gov (United States)

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-01

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. PMID:27529608

  5. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  6. Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer

    International Nuclear Information System (INIS)

    The atmospheric levels of human-produced chlorocarbons and bromocarbons are projected to make only small contributions to ozone depletion by 2100. Increases in carbon dioxide (CO2) and nitrous oxide (N2O) will become increasingly important in determining the future of the ozone layer. N2O increases lead to increased production of nitrogen oxides (NOx), contributing to ozone depletion. CO2 increases cool the stratosphere and affect ozone levels in several ways. Cooling decreases the rate of many photochemical reactions, thus slowing ozone loss rates. Cooling also increases the chemical destruction of nitrogen oxides, thereby moderating the effect of increased N2O on ozone depletion. The stratospheric ozone level projected for the end of this century therefore depends on future emissions of both CO2 and N2O. We use a two-dimensional chemical transport model to explore a wide range of values for the boundary conditions for CO2 and N2O, and find that all of the current scenarios for growth of greenhouse gases project the global average ozone to be larger in 2100 than in 1960. (letter)

  7. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation.

    Science.gov (United States)

    Petrick, Lauren; Rosenblat, Mira; Paland, Nicole; Aviram, Michael

    2016-06-01

    Nanoparticle research has focused on their toxicity in general, while increasing evidence points to additional specific adverse effects on atherosclerosis development. Arterial macrophage cholesterol and triglyceride (TG) accumulation and foam cell formation are the hallmark of early atherogenesis, leading to cardiovascular events. To investigate the in vitro atherogenic effects of silicon dioxide (SiO2 ), J774.1 cultured macrophages (murine cell line) were incubated with SiO2 nanoparticle (SP, d = 12 nm, 0-20 µg/mL), followed by cellular cytotoxicity, oxidative stress, TG and cholesterol metabolism analyses. A significant dose-dependent increase in oxidative stress (up to 164%), in cytotoxicity (up to 390% measured by lactate dehydrogenase (LDH) release), and in TG content (up to 63%) was observed in SiO2 exposed macrophages compared with control cells. A smaller increase in macrophage cholesterol mass (up to 22%) was noted. TG accumulation in macrophages was not due to a decrease in TG cell secretion or to an increased TG biosynthesis rate, but was the result of attenuated TG hydrolysis secondary to decreased lipase activity and both adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein expression (by 42 and 25%, respectively). Overall, SPs showed pro-atherogenic effects on macrophages as observed by cytotoxicity, increased oxidative stress and TG accumulation. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 713-723, 2016. PMID:25448404

  8. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO2)/FTO bilayer films. Large and densely arranged grains were observed on all TiO2/FTO bilayer films. The presence of TiO2 tetragonal rutile phase in the TiO2/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO2/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10−2 Ω−1, higher than 1.78 × 10−2 Ω−1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO2/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10−2 Ω−1, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  9. Vanadium dioxide - Reduced graphene oxide composite as cathode materials for rechargeable Li and Na batteries

    Science.gov (United States)

    Mahadi, Nurulhuda Binti; Park, Jae-Sang; Park, Jae-Ho; Chung, Kyung Yoon; Yi, Su Youl; Sun, Yang-Kook; Myung, Seung-Taek

    2016-09-01

    In this study, a metastable form of vanadium dioxide, denoted as VO2(B), has been successfully synthesized under solvothermal condition. However, the as-received VO2(B) suffers from fast capacity fading and poor high-rate performance. In order to overcome these problems, the as-received VO2(B) is solvothermally treated with reduced graphene oxide (rGO) to produce VO2(B)/rGO composite. As a result, the resulting electric conductivity of the VO2(B)/rGO composite is improved to ∼10-4 cm S-1 (from ∼10-7 S cm-1 for the as-received VO2(B)). Electrochemical data of the VO2(B)/rGO composite, tested in both Li and Na cells, shows markedly enhanced electrochemical performance compared to bare VO2(B). The effect of electro-conducting rGO is more evident at high rates.

  10. Microstructure and high temperature compatibility of composite consisting of magnesium oxide matrix and zirconium dioxide filaments

    International Nuclear Information System (INIS)

    Presented are the investigation results of interface interaction between the filament (ZrO2) and matrix (MgO) as well as peculiarities of its microstructure independence on the content of reinforcing phase. Investigation of composition microstructure and high-temperature compatibility of its components has been carried out by methods of light and electron microscopy, X-ray phase and micro X-ray spectral analyses. It is shown that reinforcing of magnium oxide with zirconium dioxide filaments is accompanied by two competitive phenomena. On one side, formation of solid solution zone (of limited coherence) promotes curing of different structural imperfections in matrix, decelerates crack propagation. On other side, solid solution zone presence at the interface filament-matrix slightly decreases the reinforcing effect, because the interface becomes more permeable for the propagation of defects of different kind in comparison with compositions, where filament and matrix do not interact with each other

  11. Dehydrogenation of propane in the presence of carbon dioxide over chromium and gallium oxides catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Agafonov, Yu.A.; Gaidai, N.A.; Nekrasov, N.V.; Menshova, M.V.; Kunusova, R.M. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry

    2011-07-01

    Effective chromium and gallium oxides supported catalysts were prepared and tested in longduration experiments for propane dehydrogenation in the presence of CO{sub 2}. The optimal concentrations of active metals were found. It was shown that the activity, selectivity and stability of chromium oxides catalysts were higher than these parameters for gallium ones. Mechanism of propane oxidative dehydrogenation was studied over both catalysts using unstationary and spectroscopic methods. The employment of these methods allowed to establish the differences in process mechanism. It was shown that surface hydroxides took participation in propene formation over Cr-catalysts and hydrides - over Ga-ones. Propane and carbon dioxide participated in the reaction from the adsorbed state over both catalysts but they were differed by the adsorption capacity of the reaction components: CO2 was tied more firmly than C{sub 3}H{sub 6} over both catalysts, CO{sub 2} and C{sub 3}H{sub 6} were tied more strongly with Cr-catalysts than with Ga-ones. It was shown that CO{sub 2} took active participation in reverse watergas shift reaction and in oxidation of catalyst surface over chromium oxides catalysts. The main role of CO{sub 2} in propane dehydrogenation over gallium catalysts consisted in a decrease of coke formation. Step-schemes of propene and cracking products formation were proposed on the basis of literature and obtained data: via the redox mechanism over Cr-catalysts and through a heterolytic dissociation reaction pathway over Ga-ones. (orig.)

  12. Kinetic model for simultaneous leaching of zinc sulfide and manganese dioxide in the presence of iron-oxidizing bacteria

    OpenAIRE

    KAI, Takami; Suenaga, Yo-ich; Migita, Atsuko; TAKAHASHI, Takeshige

    2000-01-01

    The effect of iron-oxidizing bacteria on the simultaneous leaching of zinc sulfide and manganese dioxide was studied. Some researchers have reported the enhancement of the leaching rate during the simultaneous leaching of metal oxides and metal sulfides. In the present study, we examined the effect of the presence of Thiobacillus ferrooxidans in the simultaneous leaching. We also examined the reaction rates during the simultaneous leaching in the presence of the bacteria in order to study the...

  13. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  14. Characterization of metal doped-titanium dioxide and behaviors on photocatalytic oxidation of nitrogen oxides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of nanosized ion-doped TiO2 catalysts with different ion content (between 0.1 and 1.0 at.%) have been prepared by wet impregnation method and investigated with respect to their behaviour for UV photocatalytic oxidation of nitric oxide. The catalytic activity had been correlated with structural, electronic and surface examinations of the catalysts using X-ray diffraction analysis (XRD), ultraviolet-visible (UV-Vis) absorption spectroscopy, transmission electron microscopy (TEM), energy disperse spectrometer (EDS) and high resolution-transmission electron microscopy (HR-TEM) techniques. An enhancement of the photocatalytic activity was observed for Zn2+ doping catalyst ranged from 0.1 to 1.0 at.% which was attributed to the lengthened lifetime of electrons and holes. The improvement in photocatalytic activity could be also observed with the low doping concentration of Cr3+ (0.1 at.%). However, the doping of Fe3+, Mo6+, Mn2+ and the high doping concentration of Cr3+ had no good contribution to photocatalytic activity of nitric oxide.

  15. Radiochemical analysis of chlorine-36

    International Nuclear Information System (INIS)

    The aim of this paper is to propose a radiochemical separation method of chlorine-36 from other beta-gamma emitters based on an oxidation technique where chlorine is trapped by NaOH. Chlorine-36 beta emissions are measured by liquid scintillation counting by the dual label technique in order to avoid the contamination produced by carbon-14 which is also trapped by NaOH and it is the main contaminant present in graphite samples. The sensitivity of this radiochemical method is high enough to achieve the needed thresholds for the radiological characterization of the radioactive materials in which this method can be applied

  16. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Y. Wu

    2011-01-01

    Full Text Available The heterogeneous oxidations of sulfur dioxide by ozone on CaCO3 were studied as a function of temperature (230 to 298 K at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS to obtain kinetics and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidations and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition state was observed at temperatures range from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in the model studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidations at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. Mechanism of temperature dependence was proposed and the atmospheric implications were discussed.

  17. Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Y. Wu

    2011-07-01

    Full Text Available The heterogeneous oxidation of sulfur dioxide by ozone on CaCO3 was studied as a function of temperature (230 to 298 K at ambient pressure. Oxidation reactions were followed in real time using diffuse reflectance infrared Fourier transform spectrometry (DRIFTS to obtain kinetic and mechanistic data. From the analysis of the spectral features, the formation of sulfate was identified on the surface in the presence of O3 and SO2 at different temperatures from 230 to 298 K. The results showed that the heterogeneous oxidation and the rate of sulfate formation were sensitive to temperature. An interesting stage-transition region was observed at temperatures ranging from 230 to 257 K, but it became ambiguous gradually above 257 K. The reactive uptake coefficients at different temperatures from 230 to 298 K were acquired for the first time, which can be used directly in atmospheric chemistry modeling studies to predict the formation of secondary sulfate aerosol in the troposphere. Furthermore, the rate of sulfate formation had a turning point at about 250 K. The sulfate concentration at 250 K was about twice as large as that at 298 K. The rate of sulfate formation increased with decreasing temperature at temperatures above 250 K, while there is a contrary temperature effect at temperatures below 250 K. The activation energy for heterogeneous oxidation at temperatures from 245 K to 230 K was determined to be 14.63 ± 0.20 kJ mol−1. A mechanism for the temperature dependence was proposed and the atmospheric implications were discussed.

  18. APPLICATION OF CHLORINE DIOXIDE FOR PRE-MILKING TREATMENT OF COW UDDER AND DEVELOPMENT OF MEDICATION FOR POST-MILKING TREATMENT OF DUGS OF COW UDDER

    Directory of Open Access Journals (Sweden)

    Komarov V. Y.

    2015-09-01

    Full Text Available In the present article the main research results of investigation of the means of pre-milking and postmilking treatment of cow udder and dugs are presented. The treatment of cow udder dugs produces great effect on the milk quality, the incidence level of mastitis of cows in the herd, extension and pathogenic agents transmission from sick to healthy animals; and also udder treatment provides hygienic protection of udder dugs. Tree concentrations of detergent of chloride dioxide were tested. Whereof, dilution of detergent with concentration of 90 mg/l chloride dioxide proved effective disinfective effect in pre-milking treatment of udder dugs. The developed medication for post-milking treatment of cow udder dugs presented high preventive efficiency against mastitis and provided longer hygienic protection of cow udder dugs after milking

  19. 二氧化氯消毒饮用水中亚氯酸盐污染的初步研究%Priliminary Study on Chlorite Pollution of Drinking Water Disinfected by Chlorine Dioxide

    Institute of Scientific and Technical Information of China (English)

    施小平; 周明浩

    2000-01-01

    [Objective] To explore the status of chlorite pollution in drinking water due to chlorine dioxide , aswell as its causes and counter measures. [Methods]A water plant collecting surface water as raw water slightly pol-luted by organic compounds and B water plant collecting ground water without organic compounds pollution wereselected as observed objectives. Chlorine dioxide generators were used in both of A and B water plants, their rawmaterials was chlorite for A plant and chlorate for B plant. The levels of chlorite in treated water from these twowater plants were determined by amperometric titration. [Results]The levels of chlorite in treated water of A waterplant ranged 0.530~0.760 mg/L, 2.6~3.8 times of the standard value, with a over standard rate of 100%, thelevels of B water plant range 0.257~0.733 mg/L, 1.3~3.7 times of the standard value, with a over standard rateof 83.3%. [Conclusion] The treated water of A and B water plants presented higher pollution by chlorite, the by-product of chlorine dioxide disinfection.%[目的]了解二氧化氯消毒饮用水产生的亚氯酸盐(ClO2-)污染现状,并探讨其成因和对策。[方法]选择2个自来水厂,其中甲水厂以受轻度有机物污染的地面水为水源,乙水厂以未受有机物污染的地下水为水源,两个水厂均使用二氧化氯发生器,主要原料甲厂为亚氯酸盐,乙厂为氯酸盐。采用电流滴定仪法测定这2个水厂出厂水中ClO2-浓度。[结果]出厂水ClO2-浓度:甲厂0.530~0.760 mg/L,为标准值的2.6~3.8倍,超标率100%;乙厂0.100~0.733 mg/L,其中超标浓度值范围0.257~0.733 mg/L,为标准值的1.3~3.7倍,超标率83.3%。[结论]甲、乙自来水厂出厂水中由二氧化氯消毒产生的消毒副产物亚氯酸盐污染较严重。

  20. APPLICATION OF CHLORINE DIOXIDE FOR PRE-MILKING TREATMENT OF COW UDDER AND DEVELOPMENT OF MEDICATION FOR POST-MILKING TREATMENT OF DUGS OF COW UDDER

    OpenAIRE

    Komarov V. Y.

    2015-01-01

    In the present article the main research results of investigation of the means of pre-milking and postmilking treatment of cow udder and dugs are presented. The treatment of cow udder dugs produces great effect on the milk quality, the incidence level of mastitis of cows in the herd, extension and pathogenic agents transmission from sick to healthy animals; and also udder treatment provides hygienic protection of udder dugs. Tree concentrations of detergent of chloride dioxide were tested. Wh...

  1. Effect of modification with scandium oxide on the hydroxyl coating and acid-base properties of the zirconium dioxide surface

    International Nuclear Information System (INIS)

    Physicochemical properties of Sc2O3 - ZrO2 system surface were studied by the method of IR spectroscopy, surface properties of the samples prepared by coprecipitation and by impregnation method were compared. Influence of scandium oxide concentration as a modifying component on hydroxylic coating and acid-base properties of zirconium dioxide surface was ascertained. It is shown that zirconium dioxide modification by scandium does not give rise to the appearance of new types of Lewis acid centers. Modifying effect of scandium was compared to that of yttrium and lanthanum

  2. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  3. Electrochemical and corrosion behavior of electrode materials on the basis of compositions of ruthenium dioxide and base metal oxides

    International Nuclear Information System (INIS)

    The effect of the active coating composition on the electrochemical and corrosion behavior of the electrode materials on the basis of the metal oxides (M = Ru, Ti, Ta, Nb, Cr, Co, W, Mo and Zr) under the conditions of the chlorine electrolysis is studied with the purpose of improving and developing new anode materials. It is shown, that certain ternary systems on the basis of the ruthenium oxide ad oxides of the studied transition metals are not second by their electrochemical and corrosion characteristics to the ruthenium-titanium anodes of the standard composition (30 mol% RuO2 + 70 mol% TiO2), though the RuO2 content therein may be by three times lesser

  4. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    International Nuclear Information System (INIS)

    chemical polishing operation can reduce the release of CO2 from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO2. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO2 should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  5. Preparation and electrochemical performance of composite oxide of alpha manganese dioxide and Li-Mn-O spinel

    International Nuclear Information System (INIS)

    Nano-sized composite powder which consisted of two manganese-based oxides, alpha manganese dioxide (α-MnO2) and spinel Li-Mn-O, was successfully formed by intergrowth of the spinel phase inside α-MnO2. This composite oxide was synthesized by precipitation and heat treatment in air; α-manganese dioxide powder was firstly prepared by oxidative precipitation of Mn(II) with K2S2O8 in an aqueous solution, and then a mixture of the obtained manganese oxide powder and LiOH methanol solution was heat-treated in air. Electron microscopy and diffraction observations confirmed that the manganese oxide composite consisted of nano-sized grains of the spinel LiMn2O4 and α-MnO2 phases. It was found that this α-MnO2/spinel LiMn2O4 composite electrode exhibited highly reversible lithium insertion compared to the pristine α-MnO2 and conventional LiMn2O4, that is, the composite demonstrated high discharge capacity of 148 mAh g-1 as a cathode material of lithium cells in the potential range of 2.5-4.3 V with no significant capacity fading. It was thought that the intimately mixing of two oxides on a nanometer scale helped to maintain structural integrity on charge-discharge cycling, which leads to excellent capacity retention for both of the spinel and alpha-type manganese oxide

  6. Influence of oxidation on fulvic acids composition and biodegradability.

    Science.gov (United States)

    Kozyatnyk, Ivan; Świetlik, Joanna; Raczyk-Stanisławiak, Ursula; Dąbrowska, Agata; Klymenko, Nataliya; Nawrocki, Jacek

    2013-08-01

    Oxidation is well-known process of transforming natural organic matter during the treatment of drinking water. Chlorine, ozone, and chlorine dioxide are common oxidants used in water treatment technologies for this purpose. We studied the influence of different doses of these oxidants on by-products formation and changes in biodegradable dissolved organic carbon (BDOC) and molecular weight distribution (MWD) of fulvic acids (FA) with different BDOC content. Chlorination did not significantly change the MWD of FA and disinfection by-products formation. However, higher molecular weight compounds, than those in the initial FA, were formed. It could be a result of chlorine substitution into the FA structure. Chlorine dioxide oxidized FA stronger than chlorine. During ozonation of FA, we found the highest increase of BDOD due to the formation of a high amount of organic acids and aldehydes. FA molecules were transformed into a more biodegradable form. Ozonation is the most preferable process among those observed for pre-treatment of FA before biofiltration. PMID:23746389

  7. Stability and effectiveness of chlorine disinfectants in water distribution systems.

    Science.gov (United States)

    Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K

    1986-11-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min. PMID:3028767

  8. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis.

    Science.gov (United States)

    Khan, Shams Tabrez; Ahmad, Javed; Ahamed, Maqusood; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-06-01

    Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene. PMID:26837748

  9. Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation Dióxido de cloro contra bactérias e leveduras da fermentação alcoólica

    Directory of Open Access Journals (Sweden)

    Silvana Perissatto Meneghin

    2008-06-01

    Full Text Available The ethanol production in Brazil is carried out by fed-batch or continuous process with cell recycle, in such way that bacterial contaminants are also recycled and may be troublesome due to the substrate competition. Addition of sulphuric acid when inoculum cells are washed can control the bacterial growth or alternatively biocides are used. This work aimed to verify the effect of chlorine dioxide, a well-known biocide for bacterial decontamination of water and equipments, against contaminant bacteria (Bacillus subtilis, Lactobacillus plantarum, Lactobacillus fermentum and Leuconostoc mesenteroides from alcoholic fermentation, through the method of minimum inhibitory concentration (MIC, as well as its effect on the industrial yeast inoculum. Lower MIC was found for B. subtilis (10 ppm and Leuconostoc mesenteroides (50 ppm than for Lactobacillus fermentum (75 ppm and Lactobacillus plantarum (125 ppm. Additionally, these concentrations of chlorine dioxide had similar effects on bacteria as 3 ppm of Kamoran® (recommended dosage for fermentation tanks, exception for B. subtilis, which could not be controlled at this Kamoran® dosage. The growth of industrial yeasts was affected when the concentration of chlorine dioxide was higher than 50 ppm, but the effect was slightly dependent on the type of yeast strain. Smooth yeast colonies (dispersed cells seemed to be more sensitive than wrinkled yeast colonies (clustered cells/pseudohyphal growth, both isolated from an alcohol-producing unit during the 2006/2007 sugar cane harvest. The main advantage in the usage of chlorine dioxide that it can replace antibiotics, avoiding the selection of resistant populations of microorganisms.A produção de etanol no Brasil é atualmente realizada pelo processo de fermentação em batelada alimentada ou contínuo, com reciclo de células de leveduras, de forma que contaminantes bacterianos são também reciclados e podem causar problemas devido à competição pelo

  10. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  11. VUV/UV/Chlorine as an Enhanced Advanced Oxidation Process for Organic Pollutant Removal from Water: Assessment with a Novel Mini-Fluidic VUV/UV Photoreaction System (MVPS).

    Science.gov (United States)

    Li, Mengkai; Qiang, Zhimin; Hou, Pin; Bolton, James R; Qu, Jiuhui; Li, Peng; Wang, Chen

    2016-06-01

    Vacuum ultraviolet (VUV) and ultraviolet (UV)/chlorine processes are regarded as two of many advanced oxidation processes (AOPs). Because of the similar cost of VUV/UV and UV lamps, a combination of VUV and UV/chlorine (i.e., VUV/UV/chlorine) may enhance the removal of organic pollutants in water but without any additional power input. In this paper, a mini-fluidic VUV/UV photoreaction system (MVPS) was developed for bench-scale experiments, which could emit both VUV (185 nm) and UV (254 nm) or solely UV beams with a nearly identical UV photon fluence. The photon fluence rates of UV and VUV output by the MVPS were determined to be 8.88 × 10(-4) and 4.93 × 10(-5) einstein m(-2) s(-1), respectively. The VUV/UV/chlorine process exhibited a strong enhancement concerning the degradation of methylene blue (MB, a model organic pollutant) as compared to the total performance of the VUV/UV and UV/chlorine processes, although the photon fluence of the VUV only accounted for 5.6% of that of the UV. An acidic pH favored MB degradation by the VUV/UV/chlorine process. The synergistic mechanism of the VUV/UV/chlorine process was mainly ascribed to the effective use of (•)OH for pollutant removal through formation of longer-lived secondary radicals (e.g., (•)OCl). This study demonstrates that the new VUV/UV/chlorine process, as an enhanced AOP, can be applied as a highly effective and energy-saving technology for small-scale water and wastewater treatment. PMID:27187747

  12. Photocatalytic removal of phenol over titanium dioxide- reduced graphene oxide photocatalyst

    Science.gov (United States)

    Shuhada Alim, Nor; Lintang, Hendrik O.; Yuliati, Leny

    2016-02-01

    Titanium dioxide (TiO2) has been one of the most investigated semiconductors due to its high activity for the removal of organic pollutants. In order to improve the efficiency of the TiO2, series of TiO2-reduced graphene oxide (rGO) composites with various loading amounts of graphene oxide (GO), which were 0.5, 1, 3 and 5 wt% were prepared by UV- assisted photocatalytic reduction method. The X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FTIR) spectra confirmed that all the TiO2-rGO composites samples were successfully synthesized without disrupting the structure of the TiO2. Fluorescence spectroscopy revealed the role of the rGO to reduce the electron-hole recombination on the TiO2, while the transmission electron microscopy-energy dispersive X- ray spectroscopy (TEM-EDS) confirmed the morphology and the presence of both TiO2 and rGO. In the photocatalytic removal of phenol, all the TiO2-rGO composites showed better photocatalytic activities than the TiO2 under UV light irradiation. The activity of the TiO2 was enhanced by more than two times with the addition of the GO with the optimum amount (3 wt%). It was proposed that the good photocatalytic performance obtained on the composites were caused by the successful suppression of electron-hole recombination by the rGO on the TiO2.

  13. Bioavailability of Silica, Titanium Dioxide, and Zinc Oxide Nanoparticles in Rats.

    Science.gov (United States)

    Kim, Mi-Kyung; Lee, Jeong-A; Jo, Mi-Rae; Choi, Soo-Jin

    2016-06-01

    Inorganic nanoparticles have been widely applied to various industrial fields and biological applications. However, the question as to whether nanoparticles are more efficiently absorbed into the systemic circulation than bulk-sized materials remains to be unclear. In the present study, the physico-chemical and dissolution properties of the most extensively developed inorganic nanoparticles, such as silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO), were analyzed, as compared with bulk-sized particles. Furthermore, the bioavailability of nanoparticles versus their bulk counterparts was evaluated in rats after a single oral administration and intravenous injection, respectively. The results demonstrated that all bulk materials had slightly higher crystallinity than nanoparticles, however, their dissolution properties were not affected by particle size. No significant difference in oral absorption and bioavailability of both SiO2 and TiO2 was found between nano- and bulk-sized materials, while bulk ZnO particles were more bioavailable in the body than ZnO nanoparticles. These finding will provide critical information to apply nanoparticles with high efficiency as well as to predict their toxicity potential. PMID:27427756

  14. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    International Nuclear Information System (INIS)

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO2) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO2 concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O2) production rates, increased with increasing operating temperature. The highest CO and O2 production rates of 1.24 and 0.64 μmol/min cm2, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO2 electrolysis/iron production facility was estimated

  15. Electrolysis of carbon dioxide for carbon monoxide production in a tubular solid oxide electrolysis cell

    International Nuclear Information System (INIS)

    Highlights: • An experimental study for the CO regeneration was demonstrated. • Higher current densities at higher temperatures were obtained. • The scale of the combined system was estimated experimentally at 800 °C. • The required surface area of the cells was estimated to be 65.6 km2/BF unit. • The combined system may contribute to establishing a low-carbon society. - Abstract: An active carbon recycling energy system (ACRES) based on carbon recycling has been proposed as a new energy transformation system. This energy transformation system reduces the carbon dioxide (CO2) emissions in the atmosphere during the iron-making process. An experimental study for electrochemical CO production by CO2 electrolysis based on the ACRES concept was carried out using a tubular solid oxide electrolysis cell. Experimental results show that the CO and oxygen (O2) production rates at 800, 850, and 900 °C were almost proportional to the current passing through the cell. Both ionic conductivity and the chemical kinetics of CO2 decomposition increased with increasing temperature. The highest current density and CO production rate at 900 °C were 2.97 mA/cm2 and 0.78 μmol/(min cm2), respectively. On the basis of the electrolytic characteristics of the cell, the scale of the combined ACRES CO2 electrolysis/iron-making system was estimated

  16. Cardiac oxidative damage in mice following exposure to nanoparticulate titanium dioxide.

    Science.gov (United States)

    Sheng, Lei; Wang, Xiaochun; Sang, Xuezi; Ze, Yuguan; Zhao, Xiaoyang; Liu, Dong; Gui, Suxin; Sun, Qingqing; Cheng, Jie; Cheng, Zhe; Hu, Renping; Wang, Ling; Hong, Fashui

    2013-11-01

    Nanoparticulate titanium dioxide (nano-TiO2 ) is a widely used powerful nanoparticulate material with high stability, anticorrosion, and photocatalytic property. However, it is possible that during nano-TiO2 exposure, there may be negative effects on cardiovascular system in intoxicated mice. The present study was therefore undertaken to determine nano-TiO2 -induced oxidative stress and to determine whether nano-TiO2 intoxication alters the antioxidant system in the mouse heart exposed to 2.5, 5, and 10 mg/kg body weight nano-TiO2 for 90 consecutive days. The findings showed that long-term exposure to nano-TiO2 resulted in obvious titanium accumulation in heart, in turn led to sparse cardiac muscle fibers, inflammatory response, cell necrosis, and cardiac biochemical dysfunction. Nano-TiO2 exposure promoted remarkably reactive oxygen species production such as superoxide radicals, hydrogen peroxide, and increased malondialdehyde, carbonyl and 8-OHdG levels as degradation products of lipid, protein, and DNA peroxidation in heart. Furthermore, nano-TiO2 exposure attenuated the activities of antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, glutathione-S-transferase, and levels of antioxidants including ascorbic acid, glutathione, and thiol in heart. Therefore, TiO2 NPs exposure may impair cardiovascular system in mice, and attention should be aroused on the application of nano-TiO2 and their potential long-term exposure effects especially on human beings. PMID:23553934

  17. Activity Enhancement of Vanadium Catalysts with Ultrasonic Preparation Process for the Oxidation of Sulfur Dioxide

    Institute of Scientific and Technical Information of China (English)

    Zhenxing Chen; Honggui Li; Lingsen Wang

    2003-01-01

    The effect of ultrasonic cavitations on the activity of vanadium catalysts at low temperatures for the oxidation of sulfur dioxide, in which refined carbonized mother liquor had been added, was investigated.Twenty minutes were needed to produce obvious cavitations when the catalyst raw material was treated in the 50 W ultrasonic generator. However, only 10 minutes would be needed in a 150 W ultrasonic generator.The higher the temperature of the wet material, the less time was needed to produce cavitations, and the optimal temperature was 60 ℃. The water content in the wet material mainly affected the quantity of cavitations. Ls-8 catalyst was prepared using ultrasonic. Its activity for conversion of SO2 reached to 52.5% at 410 ℃ and 4.2% at 350 ℃. The differential thermal analyses indicate that both endothermic peaks and exothermic peaks noticeably shifted forward compared with Ls catalyst prepared without ultrasonic, and SEM results show a uniform pore size distribution for Ls-8 catalyst.

  18. Management of industrial sulfur dioxide and nitrogen oxides emissions in Alberta - description of the existing system

    International Nuclear Information System (INIS)

    In addition to being key primary air contaminants, sulfur dioxide and nitrogen oxides are also major contributors to acidic deposition. The current management system for controlling industrial sources of SO(2) and NO(x) emissions in Alberta was developed in the late 1960s/early 1970s. The focus is on control of point source emissions through the use of appropriate technology. The approach taken for managing SO(2) and NO(x) emissions is similar to the approach taken to other industrial air and wastewater pollutants in Alberta. It is a command and control regulatory system. There are three main industry categories in Alberta which emit SO(2): sour gas processing, oil sand plants and thermal power plants. For NO(x) emissions, the two main categories with emissions: are natural gas production and thermal power plants. The two main goals of the existing industrial air quality management systems are to ensire that: (1) emissions from industrial facilities are minimized through the use of best available demonstrated technology, and (2) ambient levels of air contaminants in the vicinity of industrial facilities do not exceed Alberta guidelines. The four main policies which support these two goals of the existing management system are described. There are a number of key components of the existing management system including: ambient guideline levels, source emission standards, plume dispersion modelling, ambient air and source emission monitoring, environmental reporting, emission inventories, and approvals. 32 refs., 13 figs

  19. Carbon dioxide reduction in a tubular solid oxide electrolysis cell for a carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Dipu, Arnoldus Lambertus, E-mail: dipu.a.aa@m.titech.ac.jp [Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ujisawa, Yutaka [Nippon Steel and Sumitomo Metal Corporation, 16-1, Sunayama, Kamisu, Ibaraki 314-0255 (Japan); Ryu, Junichi; Kato, Yukitaka [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-05-01

    A new energy transformation system based on carbon recycling is proposed called the active carbon recycling energy system (ACRES). A high-temperature gas reactor was used as the main energy source for ACRES. An experimental study based on the ACRES concept of carbon monoxide (CO) regeneration via high-temperature reduction of carbon dioxide (CO{sub 2}) was carried out using a tubular solid oxide electrolysis cell employing Ni-LSM cermet|YSZ|YSZ-LSM as the cathode|electrolyte|anode. The current density increased with increasing CO{sub 2} concentration at the cathode, which was attributed to a decrease in cathode activation and concentration overpotential. Current density, as well as the CO and oxygen (O{sub 2}) production rates, increased with increasing operating temperature. The highest CO and O{sub 2} production rates of 1.24 and 0.64 μmol/min cm{sup 2}, respectively, were measured at 900 °C. Based on the electrolytic characteristics of the cell, the scale of a combined ACRES CO{sub 2} electrolysis/iron production facility was estimated.

  20. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil

    International Nuclear Information System (INIS)

    Nitrous oxide (N2O) and carbon dioxide (CO2) fluxes were measured in a boreal forest during two growing seasons with soil gradient and chamber methods. N2O fluxes obtained by these two techniques varied from small emission to small uptake. N2O fluxes were of the same order of magnitude, however, the fluxes measured by the soil gradient method were higher and more variable than the fluxes measured with chambers. The highest soil gradient N2O fluxes were measured in the late summer and the lowest in the autumn and spring. In the autumn, litter fall induced a peak in N2O concentration in the organic O-horizon, whereas in the spring N2O was consumed in the O-horizon. Overall, the uppermost soil layer was responsible for most of the N2O production and consumption. Soil gradient and chamber methods agreed well with CO2 fluxes. Due to the very small N2O fluxes and the sensitivity of the flux to small concentration difference between the soil and the ambient air, the flux calculations from the O-horizon to the atmosphere were considered unreliable. N2O fluxes calculated between the soil A- and O-horizons agreed relatively well with the chamber measurements

  1. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    International Nuclear Information System (INIS)

    This report presents estimates of monthly sulfur dioxide (SO2), nitrogen oxides (NOx), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment

  2. Microcalorimetric Adsorption of Alumina Oxide Catalysts for Combination of Ethylbenzene dehydrogenation and carbon Dioxide Shift-reaction

    Institute of Scientific and Technical Information of China (English)

    GE Xin; SHEN Jian-yi

    2004-01-01

    Styrene (STY) is now produced industrially in fairly large quantities by the dehydrogenation of ethylbenzene (EB) using promoted iron oxide catalyst with superheated steam.In this case, small amount of carbon dioxide formed as a by-product was known to inhibit the catalytic activity of commercial catalyst. Recently, there have been some reports which carbon dioxide showed positive effects to promote catalytic activities on the reaction over several catalysts.In this study, we attempted to combine the dehydrogenation of EB to STY with the carbon dioxide shift-reaction. The combine reaction (EB + CO2 → STY + H2O + CO) can be considered as one of the ways of using CO2 resources and can yield simultaneously STY and Carbon oxide.Alumina oxide catalysts such as Al2O3, Na2O/Al2O3 and K2O/Al2O3 were prepared by the usual impregnation method with an aqueous solution of NaNO3 and KNO3, and then calcined at 650℃ for 5 h in a stream of air. The reaction condition is 600℃, flow of CO2 38ml/mon and space velocity (EB) 1.28h-1.

  3. Surface Reduction of Neptunium Dioxide and Uranium Mixed Oxides with Plutonium and Thorium by Photocatalytic Reaction with Ice

    OpenAIRE

    CAKIR PELIN; ELOIRDI Rachel; Huber, Frank; KONINGS Rudy; GOUDER Thomas

    2014-01-01

    The surface reductions of neptunium dioxide (NpO2) and two mixed oxides of uranium (U−Pu−O2 and U−Th−O2) with adsorbed water ice were studied by ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS, respectively). The oxides were produced as thin films by reactive sputter deposition. Water was condensed as a thick ice overlayer on the surface at low temperature. Subsequent warming led to desorption of the ice. When warmed up under ultraviolet light (UV light, HeI and HeII radiatio...

  4. Bimetallic electrocatalysts on titanium dioxide-based supports for methanol oxidation and oxygen evolution

    Science.gov (United States)

    Fuentes, Roderick Eliel

    Electrocatalysts are essential for the development of active and durable fuel cells and hydrogen production technologies. Generally, electrochemical processes of energy conversion and hydrogen generation in a Proton Exchange Membrane (PEM) utilize precious metals, such as platinum, iridium and ruthenium, as electrocatalysts. For the methanol oxidation and oxygen evolution reaction, a bimetallic structure can be used to enhance kinetics and increase stability. It is desired to support electrocatalysts to disperse nanoparticles on the surface and promote better catalyst utilization. Traditionally, carbon has been used as an electrochemical support because it has a high surface area and high electrical conductivity. The problem with carbon is that it is not a very stable material and can corrode at voltages more than 0.9 V, affecting performance of the electrochemical reaction. Therefore, it would be useful to support electrocatalysts in a stable material with suitable conductivity. Using titanium dioxide as a support can be advantageous due to its corrosion-resistant capability. TiO2 exhibit different crystalline structures, such as anatase and rutile, which can have an effect on catalytic activity. Unfortunately, it is not conductive; hence, it is not used in electrochemical applications. However, it can be doped with niobium to increase electronic conductivity; but, it usually come at the expense of surface area. In this work, TiO 2 and Nb-TiO2 were studied as platinum/ruthenium and iridium/ruthenium nanoparticles supports for the electrochemical oxidation of methanol and oxygen evolution, respectively. Even though the conductivity of our supports was very low, adding a considerable loading of nanoparticles increased conductivity of the composite material (support + catalyst) to acceptable levels. Using cyclic voltammetry (CV) and direct methanol fuel cell tests creating a membrane electrode assembly (MEA), Pt-Ru supported on Nb-TiO2 and TiO 2 showed superior

  5. Application of in situ chemical oxidation technique with potassium permanganate for the remediation of a shallow aquifer contaminated with chlorinated solvents

    Directory of Open Access Journals (Sweden)

    Alaine Santos da Cunha

    2012-12-01

    Full Text Available In situ chemical oxidation is a method that is frequently being used for the remediation of contaminated areas, since it presents an adequate efficiency in the reduction of the contaminant mass, particularly chlorinated ethenes, in a relatively short period of time. This manuscript presents the results of the application of this method, using the injection of potassium permanganate as the remediation agent, in an impacted area with chlorinated organic compounds, especially 1,1-dichloroethene. The effectiveness of this remediation method is related to the complexity of the conceptual model of the contaminated site and to the conduction of specific studies in laboratory and pilot tests in field scale, prior to the accomplishment of the full-scale remediation. Therefore, this work contributes presenting a description of the procedures that are commonly used for conducting this kind of studies. In the case under study, it was estimated that the mass of 1.1-dichloroethene (1.1-DCE was reduced from 15.53 to 1.81 kg in groundwater 22 months after the injection of potassium permanganate in the aquifer. The average concentrations of 1.1-DCE in groundwater decreased from 200 to 24 g/L, which value is lower than the environmental standard limit and also to the calculated target of remediation based on human-health risk assessment. Significant contamination rebounds were not identified in the aquifer after the injection of the chemical oxidant. The suitable results of the remediation in this case may be related to the relatively low aquifer heterogeneity and low original concentrations of the contaminant.

  6. Investigation of the oxidation of hydrochloric acid in scrubbing solutions containing hydrogen peroxide

    International Nuclear Information System (INIS)

    Oxidation and absorption of nitrogen oxides by a solution containing sulphuric, nitric acids and hydrogen peroxide have been investigated. The oxidation of nitric oxide is dependent among others on hydrogen peroxide concentration total acidity and temperature. The absorption of N O2 by the scrubbing solution (H2 S O4,H N O3 and H2 O2) in all cases studied is not less than 98%. The oxidation of chloride into chlorine gas increases as the concentration of each of hydrochloric acid, nitric oxide and nitric acid increases. On the other hand as the concentration of hydrogen peroxide increases the amount of chlorine gas decreases. The results show that the oxidation of chloride into chlorine gas is mainly due to nitrogen dioxide. 7 fig., 2 tab

  7. Effects of different parameters on the densities of uranium dioxide and uranium dioxide-gadolinium oxide fuels produced by the sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Guenduez, G.; Uslu, I.; Oenal, I.; Durmazucar, H.H.; Oeztuerk, T. [Orta Dogu Teknik Univ., Ankara (Turkey); Aksit, A.A.; Kopuz, B.; Can, F.; Can, S.; Uzmen, R. [Cekmece Nuekleer Arastirma ve Egitim Merkezi, Istanbul (Turkey)

    1995-07-01

    Uranium dioxide-gadolinium oxide fuel was produced by the sol-gel technique. The effects of different parameters such as calcination and reduction temperature, compaction pressure, particle size of powder, type of binder, sintering temperature, sintering atmosphere, and duration of sintering on pore size distribution were investigated. The experiments were carried out on three different fuels, (a) pure urania, (b) urania-gadolinia (10%), and (c) urania-gadolinia (10%)-titania (0.1%) doped fuel. It was observed that compaction pressure as low as 200 MPa is sufficient to obtain high-density pellets, while the use of binder or grinding the powder below 400 mesh does not affect densities. Reduction of powder at 1,000 K always gives lower density fuels than the powder reduced at 873 K. Sintering at high temperature and the use of a wet atmosphere each independently increases the fuel density.

  8. Effects of different parameters on the densities of uranium dioxide and uranium dioxide-gadolinium oxide fuels produced by the sol-gel technique

    International Nuclear Information System (INIS)

    Uranium dioxide-gadolinium oxide fuel was produced by the sol-gel technique. The effects of different parameters such as calcination and reduction temperature, compaction pressure, particle size of powder, type of binder, sintering temperature, sintering atmosphere, and duration of sintering on pore size distribution were investigated. The experiments were carried out on three different fuels, (a) pure urania, (b) urania-gadolinia (10%), and (c) urania-gadolinia (10%)-titania (0.1%) doped fuel. It was observed that compaction pressure as low as 200 MPa is sufficient to obtain high-density pellets, while the use of binder or grinding the powder below 400 mesh does not affect densities. Reduction of powder at 1,000 K always gives lower density fuels than the powder reduced at 873 K. Sintering at high temperature and the use of a wet atmosphere each independently increases the fuel density

  9. Quality assessment of ground-based microwave measurements of chlorine monoxide, ozone, and nitrogen dioxide from the NDSC radiometer at the Plateau de Bure

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    2004-06-01

    Full Text Available A ground-based microwave radiometer dedicated to chlorine monoxide (ClO measurements around 278GHz has been in operation from December 1993-June 1996 at the Plateau de Bure, France (45° N, 5.9° E, 2500m altitude. It belongs to the international Network for the Detection of Stratospheric Change. A detailed study of both measurements and retrieval schemes has been undertaken. Although dedicated to the measurements of ClO, simultaneous profiles of O3, ClO and NO2, together with information about the instrumental baseline, have been retrieved using the optimal estimation method. The vertical profiles have been compared with other ground-based microwave data, satellite-borne data and model results. Data quality shows: 1 the weak sensitivity of the instrument that obliges to make time averages over several hours; 2 the site location where measurements of good opacities are possible for only a few days per year; 3 the baseline undulation affecting all the spectra, an issue common to all the microwave instruments; 4 the slow drift of some components affecting frequencies by 3-4MHz within a couple of months. Nevertheless, when temporally averaging data over a few days, ClO temporal variations (diurnal and over several weeks in winter 1995 from 35-50km are consistent with model results and satellite data, particularly at the peak altitude around 40km, although temporal coincidences are infrequent in winter 1995. In addition to ClO, it is possible to obtain O3 information from 30-60km whilst the instrument is not optimized at all for this molecule. Retrievals of O3 are reasonable when compared with model and another ground-based data set, although the lowermost layers are affected by the contamination of baseline remnants. Monthly-averaged diurnal variations of NO2 are detected at 40km and appear in agreement with photochemical model results and satellite zonally-averaged data, although the amplitude

  10. The effect of pre-oxidation on NDMA formation and the influence of pH.

    Science.gov (United States)

    Selbes, Meric; Kim, Daekyun; Karanfil, Tanju

    2014-12-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated drinking water systems. Pre-oxidation of the NDMA precursors prior to chloramination can be a viable approach for water utilities to control the NDMA levels. This study examined the effects of (i) commonly used oxidants (i.e., chlorine, chlorine dioxide and ozone) in water treatment, (ii) oxidant concentration and contact time (CT), and (iii) pre-oxidation pH on the formation of NDMA from subsequent chloramination. Fifteen model precursors with NDMA molar yields ranging from approximately 0.1%-90% were examined. Pre-chlorination reduced NDMA formation from most precursors by 10%-50% except quaternary amine polymers (i.e., PolyDADMAC, PolyACRYL, PolyAMINE). Pre-oxidation with chlorine dioxide and ozone achieved the same or higher deactivation of NDMA precursors (e.g., ranitidine) while increasing NDMA formation for some other precursors (e.g., daminozid). The increases with chlorine dioxide exposure were attributed to the release of oxidation products with dimethylamine (DMA) moiety, which may form more NDMA upon chloramination than the unoxidizied parent compound. On the other hand, chlorine dioxide was effective, if a precursors NDMA yield were higher than DMA. The ozone-triggered increases could be related to direct NDMA formation from DMA which are released by ozonation of amines with DMA moiety, amides or hydrazines. However, hydroxyl radicals formed from the decomposition of ozone would be also involved in decomposition of formed NDMA, reducing the overall NDMA levels at longer contact times. pH conditions influenced significantly the effectiveness of deactivation of precursors depending on the type of precursor and oxidant used. PMID:25203542

  11. Heterogeneous catalytic oxidative dehydrogenation of ethylbenzene to styrene with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Badstube, T.; Papp, H. [Leipzig Univ. (Germany). Inst. fuer Technische Chemie; Kustrowski, P.; Dziembaj, R. [Jagiellonian Univ., Crakow (Poland). Faculty of Chemistry

    1998-12-31

    Alkaline promoted active carbon supported iron catalysts are very active in the oxidative dehydrogenation of ethylbenzene to styrene in the presence of carbon dioxide. The best results were obtained at 550 C for a Li-promoted catalyst with a conversion of ethylbenzene of 75% and a selectivity towards styrene of nearly 95%. These results are better than those obtained with industrial catalysts which perform the dehydrogenation process with an excess of water. The main product of the dehydrogenation reaction with CO{sub 2} was styrene, but the following by-products were detected - benzene and toluene. The selectivity towards toluene was always higher than towards benzene. We observed also the formation of carbon monoxide and water, which were produced with a constant molar ratio of about 0.8. The weight of the catalysts increased up to 20% during the reaction due to deposition of carbon. Using a too large excess of CO{sub 2} (CO{sub 2}/EB>10) was harmful for the styrene yield. The most favorable molar ratio of CO{sub 2} to EB was 10:1. No correlation between the molar ratios of reactants and the amount of deposited coke on the surface of catalysts was observed. The highest catalytic activity showed iron loaded D-90 catalysts which were promoted with alkali metals in a molar ratio of 1:10. Iron, nickel and cobalt loaded carbonized PPAN, PC, inorganic supports like Al{sub 2}O{sub 3}, SiO{sub 2}/ZrO{sub 2} or TiO{sub 2} respectively and commercial iron catalysts applied for styrene production did not show comparable catalytic activity in similar conditions. (orig.)

  12. Benzyl alcohol oxidation in supercritical carbon dioxide: spectroscopic insight into phase behaviour and reaction mechanism.

    Science.gov (United States)

    Caravati, Matteo; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2005-01-21

    Selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over an alumina-supported palladium catalyst was performed with high rate at about 95% selectivity in supercritical carbon dioxide. The experiments in a continuous flow fixed-bed reactor showed that the pressure has a strong influence on the reaction rate. A marked increase of the rate (turnover frequency) from 900 h(-1) to 1800 h(-1) was observed when increasing the pressure from 140 to 150 bar. Video monitoring of the bulk fluid phase behavior and the simultaneous investigation by transmission and attenuated total reflection (ATR) infrared spectroscopy at two positions of the view cell showed that the sharp increase in activity is correlated to a transition from a biphasic to a monophasic reaction mixture. In the single phase region, both oxygen and benzyl alcohol are dissolved in the supercritical CO2 phase, which leads to a reduction of the mass transport resistances (both in the external fluid film and in the catalyst pores) and thus to the high reaction rate measured in the catalytic experiments. The phase transition could be effectively and easily monitored by transmission and ATR-IR spectroscopy despite the small concentration of the dense liquid like phase. Deposition of the Pd/Al2O3 catalyst on the ATR-crystal at the bottom of the view cell allowed to gain insight into the chemical changes and mass transfer processes occurring in the solid/liquid interface region during reaction. Analyzing the shift of the upsilon2 bending mode of CO2 gave information on the fluid composition in and outside the catalyst pores. Moreover, the catalytic reaction could be investigated in situ in this spectroscopic batch reactor cell by monitoring simultaneously the reaction progress, the phase behaviour and the catalytic interface. PMID:19785149

  13. The role of bound chlorine in the brightness reversion of bleached hardwood kraft pulp

    Directory of Open Access Journals (Sweden)

    Kátia Maria Morais Eiras

    2009-01-01

    Full Text Available Our previous paper showed fragmentary evidence that pulp brightness reversion may be negatively affected by its organically bound chlorine (OX content. A thorough investigation on eucalyptus kraft pulp led to the conclusion that OX increases reversion of certain pulps but this trend is not universal. Alkaline bleaching stages decrease reversion regardless of pulp OX content. Pulps bleached with high temperature chlorine dioxide revert less than those bleached with conventional chlorine dioxide in sequences ending with a chlorine dioxide stage but similarly in sequences ending with a final peroxide stage. The use of secondary condensate for pulp washing decreases reversion.

  14. Attacks of Asthma due to Chlorinized Water: Case Report

    OpenAIRE

    Murat Eyup Berdan; Ercan Gocgeldi; Sami Ozturk; Ali Kutlu

    2008-01-01

    The presence of a high prevalence of bronchial hyperresponsiveness and asthma-like symptoms in swimmers has been reported. But, attacks of asthma which is related to chlorinized water is rare. Chlorine, a strong oxidizing agent, is an important toxic gas that the swimmer can breath during swimming and a worker can exposed to chlorine while he or she was using water with chlorine at home. We describe a persistent increase in nonspecific bronchial hyperresponsiveness following chronic exposure ...

  15. Efficacy of preprocedural mouth rinse containing chlorine dioxide in reduction of viable bacterial count in dental aerosols during ultrasonic scaling: A double-blind, placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Rajiv Saini

    2015-01-01

    Full Text Available Background: The risk to dentists, dental assistants, and patients of infectious diseases through aerosols has long been recognized. The aim of this study was to evaluate and compare the efficacy of commercially available preprocedural mouthrinses containing 0.2% chlorhexidine (CHX gluconate, chlorine dioxide (ClO 2 mouthwash, and water in reducing the levels of viable bacteria in aerosols. Materials and Methods: This single-center, double-blind, placebo-controlled, three-group parallel-designed study was conducted over a period of 4 months. One hundred twenty patients with chronic periodontitis were divided randomly into three groups (A, B, and C of 40 patients each to receive the ClO 2 mouthwash, water, and 0.2% CHX gluconate respectively as preprocedural rinse. The aerosol produced by the ultrasonic unit was collected at five standardized locations with respect to the reference point, i.e., the mouth of the patient. The blood agar plates were incubated at 37°C for 48 h, and the total number of colony-forming units (CFUs was counted and statistically analyzed. Results: The results showed that CFUs in groups A and C were significantly reduced compared to group B, and P 0.05. The numbers of CFUs were the highest at the patient′s chest area and lowest at the patient′s front i.e., the 6 o′clock position. Conclusion: This study proves that a regular preprocedural mouthrinse could significantly eliminate the majority of aerosols generated by the use of an ultrasonic unit, and that ClO 2 mouthrinse was found to be statistically equally effective in reducing the aerosol contamination to 0.2% CHX gluconate.

  16. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    spectra indicate that the red characteristic emission of TiO{sub 2}: Eu{sup 3+} due to electric dipole {sup 5}D{sub 0} {yields}{sup 7} F{sub 2} transition occurring after ultraviolet excitation is the strongest. The decay time of the phosphorescence after UV excitation with a Nd:YAG laser (355 nm, f=10Hz) is temperature dependent in the range from 200 C up to 400 C. Finally, it has been found that the lifetime show a significant dependency on europium concentration. The development of rutile phase of titanium dioxide films on stainless steel substrates as protective coatings were investigated. Generally the rutile phases of TiO{sub 2} thin films do not adhere well on stainless steel substrates. In order to improve the adhesion, stainless steel substrates were first coated with titanium films using cathodic vacuum arc deposition. Then these titanium coatings were partially transformed to the rutile phase of titanium dioxide by thermal oxidation. The presence of the rutile phase of titanium dioxide and metallic titanium were confirmed by XRD. Cavitation erosion was used for the first time to investigate the adhesion properties of these coatings. Cavitation erosion tests confirmed that rutile films with a Ti inter layer are well adherent to stainless steel substrates and protect the substrate from erosion. The total mass loss of the thermally oxidized samples of Ti coated stainless steel was found around 3.5 times lower than of the uncoated samples. (orig.)

  17. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    Science.gov (United States)

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking. PMID:20359023

  18. Theoretical study on the reaction mechanism and thermodynamics of tin oxidation by oxygen species and chlorine species

    Science.gov (United States)

    Li, Lai-Cai; Deng, Ping; Zhu, Yuan-Qiang; Zha, Dong; Tian, An-Min; Xu, Ming-Hou; Wong, Ning-Bew

    In this work ab initio molecular orbital methods were employed to study the coal combustion reaction mechanisms of tin oxidized by different oxidants, including HOCl, HCl, ClO, ClO2, NO3, CO2, and O2. Eleven reaction pathways were identified. The results show that Sn can react with HCl, ClOO, CO2, O2, and NO3 to form SnO and SnCl. SnO can be oxidized into SnCl by HOCl and HCl. SnCl can be further oxidized into a soluble compound, SnCl2.

  19. Comparative study of arsenic removal efficiency from water by adsorption and photocatalytic oxidation with titanium dioxide

    OpenAIRE

    Kocabaş, Özlem Züleyha; Kocabas, Ozlem Zuleyha; YÜRÜM, YUDA; Yurum, Yuda

    2010-01-01

    Titanium dioxide, a well-known adsorbent material, has been extensively tested in environmental applications, especially in separation technologies. In the present study, TiO2 nanoparticles were synthesized by using sol-gel method for removing arsenic ions from water. Several water/titanium molar ratios were prepared in order to obtain optimum crystalline structure, morphology, and particle size of titanium dioxide nanoparticles. Two types of TiO2 minerals which were rutile and anatese were m...

  20. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    OpenAIRE

    Ali Nickheslat; Mohammad Mehdi Amin; Hassan Izanloo; Ali Fatehizadeh; Seyed Mohammad Mousavi

    2013-01-01

    Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The ef...

  1. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.

    Science.gov (United States)

    Mittal, Moti L; Sharma, Chhemendra; Singh, Richa

    2014-10-01

    This study aims to estimate the emissions of carbon dioxide (CO₂), sulfur dioxide (SO₂), and nitric oxide (NO) for coal combustion in thermal power plants in India using plant-specific emission factors during the period of 2001/02 to 2009/10. The mass emission factors have been theoretically calculated using the basic principles of combustion under representative prevailing operating conditions in the plants and fuel composition. The results show that from 2001/02 to 2009/10 period, total CO₂ emissions have increased from 324 to 499 Mt/year; SO₂ emissions have increased from 2,519 to 3,840 kt/year; and NO emissions have increased from 948 to 1,539 kt/year from the Indian coal-fired power plants. National average emissions per unit of electricity from the power plants do not show a noticeable improvement during this period. Emission efficiencies for new plants that use improved technology are found to be better than those of old plants. As per these estimates, the national average of CO₂ emissions per unit of electricity varies between 0.91 and 0.95 kg/kWh while SO₂ and NO emissions vary in the range of 6.9 to 7.3 and 2.8 to 2.9 g/kWh, respectively. Yamunagar plant in Haryana state showed the highest emission efficiencies with CO₂ emissions as 0.58 kg/kWh, SO₂ emissions as 3.87 g/kWh, and NO emissions as 1.78 g/kWh, while the Faridabad plant has the lowest emission efficiencies with CO₂ emissions as 1.5 kg/kWh, SO₂ emissions as 10.56 g/kWh, and NO emissions as 4.85 g/kWh. Emission values at other plants vary between the values of these two plants. PMID:25004854

  2. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension

    DEFF Research Database (Denmark)

    Wang, Qian; Paulson, O B; Lassen, N A

    1992-01-01

    The importance of nitric oxide (NO) for CBF variations associated with arterial carbon dioxide changes was investigated in halothane-anesthetized rats by using an inhibitor of nitric oxide synthase, NG-nitro-L-arginine (NOLAG). CBF was measured by intracarotid injection of 133Xe. In normocapnia...

  3. Diffusion and segregation properties of iron in silicon dioxide

    Science.gov (United States)

    Ramappa, Deepak Arabagatte

    1999-09-01

    Iron contamination often originates at the surface of a wafer during processing in the IC fabrication line and is diffused into the wafer during subsequent thermal processing. Since the silicon wafer surface is often passivated with a silicon dioxide layer, comprehensive understanding of iron transport in silicon dioxide is necessary. The goal of this research is to advance the fundamental and practical knowledge of the diffusion properties of iron in silicon dioxide. This dissertation evaluates, for the first time, the diffusion parameters of iron in electronic grade silicon dioxide and presents a quantitative analysis of iron transport in silicon dioxide. A source of iron applied on the surface of thermally oxidized silicon wafers was diffused at temperatures ranging from 700 to 1100°C under oxygen, nitrogen, forming gas and chlorinated ambients to diffuse the iron impurity through the oxide and into the silicon. The iron concentration profile in the oxide and silicon was measured using the techniques of Total Reflection X-Ray Fluorescence (TXRF), Deep Level Transient Spectroscopy (DLTS) and Surface Photovoltage (SPV). A two-boundary diffusion model was applied to the experimental data to determine the diffasivity and segregation coefficient of iron in SiO 2. Iron diffusivity in Si02 was observed to obey the Arrhenius relationship and has a thermal activation energy of 1.51eV. Results showed, that processing factors such as oxide thickness, nature of oxide, temperature, time and ambient affect the transport of iron in SiO2. The minimum oxide thickness required to mask iron contaminate diffusion into the wafer was empirically determined using the diffusivity data. Iron was found to diffuse faster in wet oxides and under an annealing ambient of hydrogen. Chlorine ambients reduce the amount of iron transported to the silicon wafer through the oxide. Iron exhibits a strong tendency to preferentially segregate to the SiO2 side of the SiO2-Si interface and has

  4. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness

    Directory of Open Access Journals (Sweden)

    Smijs TG

    2011-10-01

    Full Text Available Threes G Smijs1–3, Stanislav Pavel4 1Faculty of Science, Open University in The Netherlands, Rotterdam, The Netherlands; 2University of Leiden, Leiden Amsterdam Center for Drug Research, Leiden, The Netherlands; 3Erasmus MC, Center for Optical Diagnostics and Therapy, Rotterdam, The Netherlands; 4Charles University, Faculty of Medicine, Department of Dermatology, Pilsen, Czech Republic Abstract: Sunscreens are used to provide protection against adverse effects of ultraviolet (UVB (290–320 nm and UVA (320–400 nm radiation. According to the United States Food and Drug Administration, the protection factor against UVA should be at least one-third of the overall sun protection factor. Titanium dioxide (TiO2 and zinc oxide (ZnO minerals are frequently employed in sunscreens as inorganic physical sun blockers. As TiO2 is more effective in UVB and ZnO in the UVA range, the combination of these particles assures a broad-band UV protection. However, to solve the cosmetic drawback of these opaque sunscreens, microsized TiO2 and ZnO have been increasingly replaced by TiO2 and ZnO nanoparticles (NPs (<100 nm. This review focuses on significant effects on the UV attenuation of sunscreens when microsized TiO2 and ZnO particles are replaced by NPs and evaluates physicochemical aspects that affect effectiveness and safety of NP sunscreens. With the use of TiO2 and ZnO NPs, the undesired opaqueness disappears but the required balance between UVA and UVB protection can be altered. Utilization of mixtures of micro- and nanosized ZnO dispersions and nanosized TiO2 particles may improve this situation. Skin exposure to NP-containing sunscreens leads to incorporation of TiO2 and ZnO NPs in the stratum corneum, which can alter specific NP attenuation properties due to particle–particle, particle–skin, and skin–particle–light physicochemical interactions. Both sunscreen NPs induce (photocyto- and genotoxicity and have been sporadically observed in viable

  5. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  6. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  7. High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area

    Czech Academy of Sciences Publication Activity Database

    Hynšt, Jaroslav; Šimek, Miloslav; Brůček, Petr; Petersen, S. O.

    2007-01-01

    Roč. 120, 2-4 (2007), s. 269-279. ISSN 0167-8809 R&D Projects: GA ČR GA526/04/0325 Grant ostatní: Evropská unie(XE) EVK2-CT-2000-00096; MŠMT(CZ) 21-1072/2004 Institutional research plan: CEZ:AV0Z60660521 Source of funding: R - rámcový projekt EK ; V - iné verejné zdroje Keywords : nitrous oxide * carbon dioxide * denitrification Subject RIV: EH - Ecology, Behaviour Impact factor: 2.308, year: 2007

  8. Partial oxidation of methane to methanol with nitrogen dioxide in dielectric barrier discharge plasma: experimental and molecular modeling

    Science.gov (United States)

    Indarto, Antonius

    2016-04-01

    Non-catalytic conversion of methane (CH4) and nitrogen dioxide (NO2) into methanol (CH3OH) has been conducted and presented in this paper. Experiments were carried out using dielectric barrier discharge as the reaction medium in atmospheric pressure and temperature conditions. High yield production of methanol was achieved (18-20% mol) by single-stage plasma reaction with maximum selectivity of 32% mol. Compared to other oxidants, such as O2, the presence of NO2 in the plasma reaction resulted in higher methanol selectivity. For better understanding of the reactions, density functional theory calculations were also performed and discussed.

  9. Determination of trace impurities in uranium dioxide and uranium uranic oxide powders by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A method for determination of B, Ti, V, Zn, Cr, Mo and Cd in uranium dioxide and uranium-uranic oxide powders by inductively coupled plasma mass spectrometry (ICP-MS) is presented and described. The extraction chromatograph separation using CL-TBP resin column to separate the matrix from trace elements is used for the samples. The analytics have been determined with the determination limits lower than 10-9 g·g-1, and the relative standard deviations less than 15%, for concentrations greater than the determination limit. Comparison of analytical results between 14 laboratories shows that the method is highly accurate and reliable

  10. Kinetics of reactions of oxidation of carbon by carbon dioxide and water steam at high temperatures and low pressures

    International Nuclear Information System (INIS)

    The first objective of this research thesis was to obtain new and reliable experimental results about the reaction kinetics of the oxidation of carbon by carbon dioxide and water steam, and to avoid some disturbing phenomena, for example and more particularly the appearance of electric discharges beyond 1900 K initiated by the filament thermoelectric emission. The author tried to identify the mechanism of the accelerating effect. It appears that previous experiments had been performed only in these disturbed conditions. At the lowest temperatures, the author highlighted the existence of a surface contamination by the desorption products from the apparatus

  11. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  12. Fluxes of nitrous oxide and carbon dioxide over four potential biofuel crops in Central Illinois

    Science.gov (United States)

    Zeri, M.; Hickman, G. C.; Bernacchi, C.

    2009-12-01

    Nitrous oxide (N2O) and carbon dioxide (CO2) are important greenhouse gases that contribute to global climate change. Agriculture is a significant source of N2O to the atmosphere due to the use of nitrogen-based fertilizers. Fluxes of N2O and CO2 are measured using the flux-gradient technique over four different crops at the Energy Farm, a University of Illinois research facility in Urbana, Illinois. Measurements started in June of 2009 and are part of a project that aims to assess the impacts of potential biofuel crops on the carbon, water and nitrogen cycles. The species chosen are Maize (Zea mays), Miscanthus (Miscanthus x giganteus), Switchgrass (Panicum virgatum) and Prairie (a mix of several native species). The choice of species was based on their potential for the production of second-generation biofuels, i.e., fuels derived from the decomposition of the cellulosic material in the plant biomass. The use of corn residue for cellulosic biofuels might impact the carbon cycle through the reduction of soil organic content. Miscanthus is a perennial grass with great potential for biomass production. However, the total water used during the growing season and its water use efficiency might impose limits on the regions where this biofuel crop can be sustainably planted on a large scale. Switchgrass and the prairie species are less productive but might be suited for being well adapted and easy to establish. This study is the first side-by-side comparison of fluxes of N2O for these agro-ecosystems. The measurements are performed at micrometeorological towers placed at the center of 4 ha plots. The air is sampled at two heights over the vegetation and is analyzed in a tunable diode laser (TDL) installed nearby. A valve system cycles the TDL measurements trough all the intakes in the plots. The fluxes are calculated using the flux-gradient method, which requires the knowledge of the scalar vertical gradient as well as of the friction velocity (u*) and the Monin

  13. Surface oxidation of vanadium dioxide films prepared by radio frequency magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    Wang Xue-Jin; Liang Chun-Jun; Guan Kang-Ping; Li De-Hua; Nie Yu-Xin; Zhu Shi-Oiu; Huang Feng; Zhang Wei-Wei; Cheng Zheng-Wei

    2008-01-01

    This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering,and then aged under circumstance for years.Samples were characterized with several different techniques such as x-ray diffraction,x-ray photoelectron spectroscopy,and Raman,when they were fresh from sputter chamber and aged after years,respectively,in order to determine their structure and composition.It finds that a small amount of sodium occurred on the surface of vanadium dioxide films,which was probably due to sodium ion diffusion from soda-lime glass when sputtering was performed at high substrate temperature.It also finds that aging for years significantly affected the noustoichiometry of vanadium dioxide films,thus inducing much change in Raman modes.

  14. Study of removal effect on Mesocyclops leukarti with oxidants*

    OpenAIRE

    Zuo, Jin-Long; Cui, Fu-Yi; Lin, Tao

    2006-01-01

    Cyclops of zooplankton propagates prolifically in eutrophic waterbody and it cannot be exterminated by conventional disinfection process. The mutagenicity of Mesocyclops leukarti and its extermination with oxidants in a drinking waterworks in China were studied. Among five oxidants for use in bench-scale, chlorine dioxide is the most effective and the potassium permanganate is the weakest against Mesocyclops leukarti under the same conditions. Full-scale results showed that Mesocyclops leukar...

  15. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  16. Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Ryan; Whitmore, Laura M.; Moran, James J.; Kreuzer, Helen W.; Inskeep, William P.

    2014-05-01

    The fixation of inorganic carbon (as carbon dioxide) has been documented in all three domains of life and results in the biosynthesis of a diverse suite of organic compounds that support the growth of heterotrophic organisms. The primary aim of this study was to assess the importance of carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of one of the dominant Fe(II)-oxidizing organisms (Metallosphaera yellowstonensis strain MK1) present in situ. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon fixation pathway were identified in pure-cultures of M. yellowstonensis strain MK1. Metagenome sequencing from the same environments also revealed genes for the 3-HP/4-HB pathway belonging to M. yellowstonensis populations, as well as genes for a complete reductive TCA cycle from Hydrogenobaculum spp. (Aquificales). Stable isotope (13CO2) labeling was used to measure the fixation of CO2 by M. yellowstonensis strain MK1, and in ex situ assays containing live Fe(III)-oxide microbial mats. Results showed that M. yellowstonensis strain MK1 fixes CO2 via the 3-HP/4-HB pathway with a fractionation factor of ~ 2.5 ‰. Direct analysis of the 13C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C and microbial mat C showed that mat C is comprised of both DIC and non-DIC sources. The estimated contribution of DIC carbon to biomass C (> ~ 35%) is reasonably consistent with the relative abundance of known chemolithoautotrophs and corresponding CO2 fixation pathways detected in metagenome sequence. The significance of DIC as a major source of carbon for Fe-oxide mat communities provides a foundation for examining microbial interactions in these systems that are dependent on the activity of autotrophic organisms such as Hydrogenobaculum and Metallosphaera spp.

  17. Beryllium Project: developing in CDTN of uranium dioxide fuel pellets with addition of beryllium oxide to increase the thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Alberto Neto; Camarano, Denise das Merces; Miranda, Odair; Grossi, Pablo Andrade; Andrade, Antonio Santos; Queiroz, Carolinne Mol; Gonzaga, Mariana de Carvalho Leal, E-mail: ranf@cdtn.br, E-mail: dmc@cdtn.br, E-mail: odairm@cdtn.br, E-mail: pabloag@cdtn.br, E-mail: antdrade@gmail.com, E-mail: carolmol@gmail.com, E-mail: mari_clgonzaga@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Pampulha, MG (Brazil)

    2013-07-01

    Although the nuclear fuel currently based on pellets of uranium dioxide be very safe and stable, the biggest problem is that this material is not a good conductor of heat. This results in an elevated temperature gradient between the center and its lateral surface, which leads to a premature degradation of the fuel, which restricts the performance of the reactor, being necessary to change the fuel before its full utilization. An increase of only 5 to 10 percent in its thermal conductivity, would be a significant increase. An increase of 50 percent would be a great improvement. A project entitled 'Beryllium Project' was developed in CDTN - Centro de Desenvolvimento da Tecnologia Nuclear, which aimed to develop fuel pellets made from a mixture of uranium dioxide microspheres and beryllium oxide powder to obtain a better heat conductor phase, filling the voids between the microspheres to increase the thermal conductivity of the pellet. Increases in the thermal conductivity in the range of 8.6% to 125%, depending on the level of addition employed in the range of 1% to 14% by weight of beryllium oxide, were obtained. This type of fuel promises to be safer than current fuels, improving the performance of the reactor, in addition to last longer, resulting in great savings. (author)

  18. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle

    DEFF Research Database (Denmark)

    Salieri, Beatrice; Righi, Serena; Pasteris, Andrea;

    2015-01-01

    continued when performing Life Cycle Impact Assessment, where characterization models and consequently characterization factors (CFs) for ENPs are missing. This paper aims to provide the freshwater ecotoxicity CF for titanium dioxide nanoparticles (nano-TiO2). The USEtox™ model has been selected as a...

  19. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes.

    Science.gov (United States)

    Wert, Eric C; Dong, Mei Mei; Rosario-Ortiz, Fernando L

    2013-07-01

    Depending on drinking water treatment conditions, oxidation processes may result in the degradation of cyanobacteria cells causing the release of toxic metabolites (microcystin), odorous metabolites (MIB, geosmin), or disinfection byproduct precursors. In this study, a digital flow cytometer (FlowCAM(®)) in combination with chlorophyll-a analysis was used to evaluate the ability of ozone, chlorine, chlorine dioxide, and chloramine to damage or lyse cyanobacteria cells added to Colorado River water. Microcystis aeruginosa (MA), Oscillatoria sp. (OSC) and Lyngbya sp. (LYN) were selected for the study due to their occurrence in surface water supplies, metabolite production, and morphology. Results showed that cell damage was observed without complete lysis or fragmentation of the cell membrane under many of the conditions tested. During ozone and chlorine experiments, the unicellular MA was more susceptible to oxidation than the filamentous OSC and LYN. Rate constants were developed based on the loss of chlorophyll-a and oxidant exposure, which showed the oxidants degraded MA, OSC, and LYN according to the order of ozone > chlorine ~ chlorine dioxide > chloramine. Digital and binary images taken by the digital flow cytometer provided qualitative insight regarding cell damage. When applying this information, drinking water utilities can better understand the risk of cell damage or lysis during oxidation processes. PMID:23726712

  20. Comparison measurements of sulphur dioxide emissions, nitrogen oxide emissions, and flue gas flow in a coal-fired power plant in Finland

    International Nuclear Information System (INIS)

    National comparison measurements of sulphur dioxide emissions, nitrogen oxide emissions, and flue gas flow were arranged in a coal-fired power plant in Finland. The measurements were a part of a project financed by the ministery of environment to build up a national emission measurement quality assurance system in which comparison measurements will be used as a quality control tool. Nine groups took part in the measurements. The results showed good agreement in flue gas flow measurements and nitrogen oxide measurements. Some groups had difficulties in determining low concentrations of sulphur dioxide. (orig.)

  1. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, Cristina [Institute for Environmental Assessment and Water Research (IDAEA)—Spanish National Research Council (CID-CSIC), Barcelona (Spain); Richardson, Susan D., E-mail: richardson.susan@sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H{sub 2}O{sub 2}. • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment.

  2. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H2O2. • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment

  3. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    Science.gov (United States)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  4. High contrast thermochromic switching in vanadium dioxide (VO{sub 2}) thin films deposited on indium tin oxide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Beydaghyan, Gisia, E-mail: gisia.beydaghyan@umoncton.ca; Basque, Vincent; Ashrit, P.V.

    2012-11-01

    Vanadium dioxide thin films with excellent thermochromic switching properties were deposited on indium tin oxide (ITO)-coated glass substrates with the RF magnetron sputtering technique. Reversible transmission switching of these films from as much as 65% to near zero at 2500 nm, with contrast ratios of more than 3000, was observed. These films compare favorably to those deposited on glass slides, and, in particular, show a resistivity drop of nearly 2 orders of magnitude upon switching to the metallic state. Inducing the metal-insulator transition by electrical current through the ITO layer lowers the transition temperature by 4-7 Degree-Sign C, as compared to traditional heating of the sample by a heating plate. The presence of an ITO sublayer also seems to result in smaller grain size and slightly broader hysteresis in VO{sub 2} films. - Highlights: Black-Right-Pointing-Pointer Vanadium dioxide (VO{sub 2}) films deposited on transparent conductive substrates (ITO). Black-Right-Pointing-Pointer Excellent thermochromic switching with contrast ratios of 3000 or better. Black-Right-Pointing-Pointer Lower transition temperatures obtained via Joule heating. Black-Right-Pointing-Pointer Effect of Frankel-Poole mechanism on transition temperature.

  5. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses.

    Science.gov (United States)

    Giraud, Estelle; Ivanova, Aneta; Gordon, Colin S; Whelan, James; Considine, Michael J

    2012-02-01

    The grape and wine industries are heavily reliant on sulphite preservatives. However, the view that sulphites act directly on bacterial and fungal pathogens may be simplistic. Mechanisms of sulphur-enhanced defences are largely unknown; many sulphur-rich compounds enhance plant defences and sulphite can also have oxidative consequences via production of H(2)O(2) or sulphitolysis. To investigate the effects of sulphur dioxide (SO(2) ) on fresh table grapes (Vitis vinifera L. 'Crimson Seedless'), transcriptome analysis was carried out on berries treated with SO(2) under commercial conditions for 21 d. We found a broad perturbation of metabolic processes, consistent with a large-scale stress response. Transcripts encoding putative sulphur-metabolizing enzymes indicated that sulphite was directed towards chelation and conjugation, and away from oxidation to sulphate. The results indicated that redox poise was altered dramatically by SO(2) treatment, evidenced by alterations in plastid and mitochondrial alternative electron transfer pathways, up-regulation of fermentation transcripts and numerous glutathione S-transferases, along with a down-regulation of components involved in redox homeostasis. Features of biotic stress were up-regulated, notably signalling via auxin, ethylene and jasmonates. Taken together, this inventory of transcriptional responses is consistent with a long-term cellular response to oxidative stress, similar to the effects of reactive oxygen species. PMID:21689113

  6. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels

    Science.gov (United States)

    Yan, Jingbo; Chen, Hao; Dogdibegovic, Emir; Stevenson, Jeffry W.; Cheng, Mojie; Zhou, Xiao-Dong

    2014-04-01

    Electrochemical reduction of carbon dioxide in the intermediate temperature region was investigated by utilizing a reversible solid oxide electrolysis cell (SOEC). The current-potential (i-V) curve exhibited a nonlinear characteristic at low current density. Differentiation of i-V curves revealed that the cell area specific resistance (ASR) was current-dependent and had its maximum in electrolysis mode and minimum in fuel cell mode. Impedance measurements were performed under different current densities and gas compositions, and the results were analyzed by calculating the distribution of relaxation times. The ASR variation resulted from the difference in electrochemical reactions occurring on the Ni-YSZ electrode, i.e., Ni-YSZ is a better electrode for CO oxidation than for CO2 reduction. Coke formation on Ni-YSZ played a crucial role in affecting its electrolysis performance in the intermediate temperature region. The ASR apex was associated with a decrease in cell temperature during electrolysis due to the endothermic nature of CO2 reduction reaction. It was postulated that such a decrease in temperature and rise in CO concentration led to coke formation. As a consequence, higher temperature (>700 °C), higher CO2 concentration (>50%), and the presence of hydrogen or steam are recommended for efficient CO2 reduction in solid oxide electrochemical cells.

  7. Advanced Electrochemical Oxidation of 1,4-Dioxane via Dark Catalysis by Novel Titanium Dioxide (TiO2) Pellets.

    Science.gov (United States)

    Jasmann, Jeramy R; Borch, Thomas; Sale, Tom C; Blotevogel, Jens

    2016-08-16

    1,4-dioxane is an emerging groundwater contaminant with significant regulatory implications. Because it is resistant to traditional groundwater treatments, remediation of 1,4-dioxane is often limited to costly ex situ UV-based advanced oxidation. By varying applied voltage, electrical conductivity, seepage velocity, and influent contaminant concentration in flow-through reactors, we show that electrochemical oxidation is a viable technology for in situ and ex situ treatment of 1,4-dioxane under a wide range of environmental conditions. Using novel titanium dioxide (TiO2) pellets, we demonstrate for the first time that this prominent catalyst can be activated in the dark even when electrically insulated from the electrodes. TiO2-catalyzed reactors achieved efficiencies of greater than 97% degradation of 1,4-dioxane, up to 4.6 times higher than noncatalyzed electrolytic reactors. However, the greatest catalytic enhancement (70% degradation versus no degradation without catalysis) was observed in low-ionic-strength water, where conventional electrochemical approaches notoriously fail. The TiO2 pellet's dark-catalytic oxidation activity was confirmed on the pharmaceutical lamotrigine and the industrial solvent chlorobenzene, signifying that electrocatalytic treatment has tremendous potential as a transformative remediation technology for persistent organic pollutants in groundwater and other aqueous environments. PMID:27420906

  8. Titanium dioxide use (TiO2) in cement matrix as a photocatalyst of nitrogen oxides (NOx)

    International Nuclear Information System (INIS)

    The use of titanium dioxide (TiO2) in the photodegradation of nitrogen oxides (NOx) is a technology that can contribute against to environmental pollution. This work shows the feasibility of using TiO2 in mortars for photocatalysis. The Degussa P25 titania were characterized chemically and physically, revealing that the sample consists of nanoparticles, but has become crowded. Tests Samples (TS) were manufactured with added titania and the NOx tests at 28, 60 and 120 days of age of TSs, showing that it was 3% capable of degrading 100% of the NOx gas flow. Proved that conditions like relative humidity, flow and radiation intensity are relevant when it comes to efficiency in photocatalysis, altering the efficiency by varying these conditions. The photocatalysis with titania in cement matrix was efficient in NOx degradation, presenting itself as a promising technique to control environmental pollution

  9. Breakaway oxidation of 9Cr-1Mo steel in pressurized carbon dioxide

    International Nuclear Information System (INIS)

    The oxide layers formed on this and other alloy steels at elevated temperatures under a pressure of CO2 show a tendency to break off under certain conditions, particularly in mild steel, when more extensive oxidation occurs in the narrow exposed area. This phenomenon is investigated over a range of compositions, temperatures and pressures and some tentative explanations are advanced. (author)

  10. Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Knibbe, Ruth; Mogensen, Mogens Bjerg

    2012-01-01

    Reduction of H2O and CO2 as well as oxidation of H2 and CO was studied in a Ni/YSZ electrode supported Solid Oxide Cell (SOC) produced at DTU Energy conversion (former Risø DTU). Even though these Ni/YSZ based SOCs were developed and optimized for fuel cell use, they can work as reversible SOCs i...

  11. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2001-01-01

    Oxidation of pyrite (FeS2) under anaerobic conditions in marine sediments is experimentally shown for the first time. In slurry experiments with (FeS2)-Fe-55 and a MnO2 rich marine sediment an oxidation of (FeS2)-Fe-55 was detected which decreased with depth and decreasing concentration of MnO2 i...

  12. INVESTIGATION OF PROCESSES THAT TAKE PLACE UNDER THE WARMING OF TITANIUM DIOXIDE, RECEIVED VIA HYDROLYSIS OF VARIOUS TITANIUM ALCO-OXIDES

    OpenAIRE

    Potapov, I.; Onorin, S.; Poylov, V.; Smirnov, S.; Puzanov, A.

    2011-01-01

    Processes that take place under the warming of titanium dioxide pre-cursors, received via hydrolysis of various titanium alco-oxides have been studied. Temperature intervals have been investigated within which processes of dehydration, deposition, and crystallization take place, as well as a phase composition of products that form under pre-cursors thermal processing.

  13. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon

    OpenAIRE

    Ikari, Mariya; Matsui, Yoshihiko; Suzuki, Yuta; Matsushita, Taku; Shirasaki, Nobutaka

    2015-01-01

    Chlorine oxidation followed by treatment with activated carbon was studied as a possible method for removing radioactive iodine from water. Chlorination time, chlorine dose, the presence of natural organic matter (NOM), the presence of bromide ion (Br-), and carbon particle size strongly affected iodine removal. Treatment with superfine powdered activated carbon (SPAC) after 10-min oxidation with chlorine (1 mg-Cl-2/L) removed 90% of the iodine in NOM-containing water (dissolved organic carbo...

  14. Technology assessment: Chlorine chemistry

    International Nuclear Information System (INIS)

    Chlorine is not just one of many chemical feedstocks which is used in a few definitely harmful products like PVC or CFC but is irrelevant in all other respects. Just the opposite is true: There is hardly any product line of the chemical industry that can do without chlorine, from herbicides and pesticides to dyes, plastics, pharmaceuticals, photographic atricles, and cosmetics. Chlorine is not only a key element of chemical production but also an ubiquitous element of everyday life in civilisation. There are even many who would agree that the volume of chlorine production is an indicator of the competitive strength and national wealth of a modern society. By now, however, it has become evident that the unreflected use of chlorine is no longer ecologically acceptable. The consequences of a chlorine phase-out as compared to the continued chlorine production at the present level were investigated scientifically by a PROGNOS team. They are presented in this book. (orig.)

  15. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  16. Effect of carbon oxide and carbon dioxide atmosphere on ther rate of yttrium oxalate thermal decomposition

    International Nuclear Information System (INIS)

    The kinetics of yttrium oxalate thermal decomposition in carbon monoxide and dioxide atmosphere is studied. It is shown that yttrium oxalate pyrolysis proceeds in two stages and each stage is characterized by a certain rate and activation energy. The rate constant of the first stage of the process has higher values for CO atmosphere than for CO2 atmosphere in the whole range of investigated temperatures (400-1000 deg C). But the difference is not considerable and, thus, the effect of atmosphere composition on the rate of the first stage of the process is insignificant. Carbon dioxide atmosphere slows down the second stage of the process and increases the total time required for yttrium oxalate complete decomposition. However, the composition of the atmosphere does not affect the activation energy of the both stages of the process. The activation energy of the first stage equals 18.2 kJ/mol, and that of the second stage - 33.3 kJ/mol

  17. Photocatalytic oxidation activity of titanium dioxide film enhanced by Mn non-uniform doping

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai-jian; XU Wei; LI Xin-jun; ZHENG Shao-jian; XU Gang; WANG Jian-hua

    2006-01-01

    The thin films of TiO2 doped by Mn non-uniformly were prepared by sol-gel method under process control. Each film was characterized by XPS, SEM, UV-vis spectrophotometry and electrochemistry workstation analysis.The activity of the photocatalyst was evaluated by the kinetics of photocatalytic degradation of aqueous methyl orange under the UV radiation. The results show that Mn non-uniform doping evidently enhances the photocatalytic activity of TiO2 thin film. In 80 min, the degradation rates of aqueous methyl orange are 62%, 12% and 34% for Mn non-uniformly doped film (0.7%), the uniformly doped film (0.7%) and pure titanium dioxide film, respectively. The characteristic of PN junction in the film was proved by electrochemical characterization. A mechanism for enhanced photocatalytic activity of Mn non-uniformly doped titanium dioxide film was discussed based on the effective separation of the photon-generated carrier because of the existence of the PN junction.

  18. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  19. Performance enhancement of a plasmonic structure comprising of indium oxide-zirconium dioxide-silver-zinc oxide intermediate layers working in visible and infrared wavelength region

    Science.gov (United States)

    Brahmachari, Kaushik; Ray, Mina

    2016-07-01

    Modeling of a fused silica (SiO2) glass prism-based plasmonic structure comprising of indium oxide (In2O3)-zirconium dioxide (ZrO2)-silver (Ag)-zinc oxide (ZnO) intermediate layers showing enhancement in sensitivity and figure-of-merit (FOM) in visible and infrared regime has been reported in this paper. Performance of the proposed plasmonic structure has been demonstrated in terms of sensitivity, half width (HW), detection accuracy (DA), and FOM parameters in visible (632.8 nm) and infrared (1200 nm) wavelength of light. High sensitivity of fused silica glass material, In2O3, ZnO films along with high DA and high FOM of Ag and inclusion of ZrO2 as an oxidation protective layer in between In2O3 and Ag have been the most exciting and advantageous features of our proposed structure. Simulated sensitivity values of our proposed structure were found to be 73.8 deg/RIU at 632.8 nm wavelength and it was found enhanced to 109.6 deg/RIU at 1200 nm wavelength and simulated FOM values were also found enhanced from 23.3544 RIU-1 at 632.8 nm to 62.6285 RIU-1 at 1200 nm wavelength for change in sensing layer refractive indices from 1.30 RIU to 1.35 RIU.

  20. Preparation and characterization of titanium dioxide nanotube array supported hydrated ruthenium oxide catalysts

    Science.gov (United States)

    Giang, Thi Phuong Ly; Tran, Thi Nhu Mai; Le, Xuan Tuan

    2012-03-01

    This work aimed at preparing and characterizing TiO2 nanotube supported hydrated ruthenium oxide catalysts. First of all, we succeeded in preparing TiO2 nanotube arrays by electrochemical anodization of titanium metal at 20 V for 8 h in a 1M H3PO4+0.5 wt% HF solution as evidenced from scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) results. The hydrated ruthenium oxide was then deposited onto TiO2 nanotubes by consecutive exchange of protons by Ru3+ ions, followed by formation of hydrated oxide during the alkali treatment. Further XPS measurements showed that the modified samples contain not only hydrated ruthenium oxide but also hydrated ruthenium species Ru(III)-OH.