WorldWideScience

Sample records for chlorine complexes

  1. Chlorine

    Science.gov (United States)

    ... your clothing, rapidly wash your entire body with soap and water, and get medical care as quickly as possible. Removing and disposing of clothing: Quickly take off clothing that has liquid chlorine on it. Any clothing that has to ...

  2. Determination of non-metallic elements in actinide complexes by oxygen flask combustion (OFC): chlorine and fluorine

    International Nuclear Information System (INIS)

    Ruikar, P.B.; Nagar, M.S.; Subramanian, M.S.

    1989-01-01

    The oxygen flask combustion followed by ion selective electrode measurement has been found to be the most suitable from the point of view of elegance and simplicity for the determination of chlorine and fluorine in actinide complexes. The method has been found to be particularly suitable for glove box adaptation. This report describes the determination of chlorine and fluorine in several uranium complexes, some plutonium complexes and organic analytical standards by this method. The precision and accuracy of the measurements in the milligram level has been found to be quite satisfactory. (author). 16 refs., 11 tabs

  3. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site

    Science.gov (United States)

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50 years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in 13C (-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, 13C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  4. Impact of vegetation and ecosystems on chlorine(-36) cycling and its modeling: from simplified approaches towards more complex biogeochemical tools

    Science.gov (United States)

    Thiry, Yves; Redon, Paul-Olivier; Gustafsson, Malin; Marang, Laura; Bastviken, David

    2013-04-01

    Chlorine is very soluble at a global scale with chloride (Cl-), the dominating form. Because of its high mobility, chlorine is usually perceived as a good conservative tracer in hydrological studies and by analogy as little reactive in biosphere. Since 36Cl can be considered to have the same behaviour than stable Cl, a good knowledge of chlorine distribution between compartments of terrestrial ecosystems is sufficient to calibrate a specific activity model which supposes rapid dilution of 36Cl within the large pool of stable Cl and isotopic equilibrium between compartments. By assuming 36Cl redistribution similar to that of stable Cl at steady-state, specific activity models are simplified interesting tools for regulatory purposes in environmental safety assessment, especially in case of potential long term chronic contamination of agricultural food chain (IAEA, 2010). In many other more complex scenarios (accidental acute release, intermediate time frame, and contrasted natural ecosystems), new information and tools are necessary for improving (radio-)ecological realism, which entails a non-conservative behavior of chlorine. Indeed observed dynamics of chlorine in terrestrial ecosystems is far from a simple equilibrium notably because of natural processes of organic matter (SOM) chlorination mainly occurring in surface soils (Öberg, 1998) and mediated by microbial activities on a large extent (Bastviken et al. 2007). Our recent studies have strengthened the view that an organic cycle for chlorine should now be recognized, in addition to its inorganic cycle. Major results showed that: organochlorine (Clorg) formation occurs in all type of soils and ecosystems (culture, pasture, forest), leading to an average fraction of the total Cl pool in soil of about 80 % (Redon et al., 2012), chlorination in more organic soils over time leads to a larger Clorg pool and in turn to a possible high internal supply of inorganic chlorine (Clin) upon dechlorination. (Gustafsson et

  5. Analysis of Chlorine Gas Incident Simulation and Dispersion Within a Complex and Populated Urban Area Via Computation Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Eslam Kashi

    2015-04-01

    Full Text Available In some instances, it is inevitable that large amounts of potentially hazardous chemicals like chlorine gas are stored and used in facilities in densely populated areas. In such cases, all safety issues must be carefully considered. To reach this goal, it is important to have accurate information concerning chlorine gas behaviors and how it is dispersed in dense urban areas. Furthermore, maintaining adequate air movement and the ability to purge ambient from potential toxic and dangerous chemicals like chlorine gas could be helpful. These are among the most important actions to be taken toward the improvement of safety in a big metropolis like Tehran. This paper investigates and analyzes chlorine gas leakage scenarios, including its dispersion and natural air ventilation  effects on how it might be geographically spread in a city, using computational  fluid dynamic (CFD. Simulations of possible hazardous events and solutions for preventing or reducing their probability are presented to gain a better insight into the incidents. These investigations are done by considering hypothetical scenarios which consist of chlorine gas leakages from pipelines or storage tanks under different conditions. These CFD simulation results are used to investigate and analyze chlorine gas behaviors, dispersion, distribution, accumulation, and other possible hazards by means of a simplified CAD model of an urban area near a water-treatment facility. Possible hazards as well as some prevention and post incident solutions are also suggested.

  6. Chlorine poisoning

    Science.gov (United States)

    ... gas) Gas released when opening a partially filled industrial container of chlorine tablets that have been sitting ... change in acid level of the blood (pH balance), which leads to damage in all of the ...

  7. Chlorination and ozonation differentially reduced the microcystin content and tumour promoting activity of a complex cyanobacterial extract

    Czech Academy of Sciences Publication Activity Database

    Sovadinová, I.; Babica, Pavel; Adamovský, O.; Alpatova, A.; Tarabara, V.; Upham, B. L.; Bláha, L.

    2017-01-01

    Roč. 8, č. 1 (2017), s. 107-120 ISSN 1947-573X Institutional support: RVO:67985939 Keywords : microcystin * chlorination * ozonation * water treatment * toxicity Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7)

  8. Quantifying Short-Chain Chlorinated Paraffin Congener Groups

    NARCIS (Netherlands)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A.; Alsberg, Tomas; Wit, de Cynthia A.

    2017-01-01

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are

  9. Removal of free cyanide in waste water through complexation with Fe(II) iron followed by alkaline chlorination. Tetsu (II) ion ni yoru sakka hanno wo maeshori to suru haisuichu no yuri sian no shori

    Energy Technology Data Exchange (ETDEWEB)

    Nishikubo, N; Tanihara, K; Yasuda, S [Government Industrial Research Institute, Kyushu, Fukuoka (Japan)

    1991-11-01

    The removal treatment of free cyanide in waste water was tested by complexation with Fe(2) ion followed by alkaline chlorination and precipitation of residual iron cyano complex to study saving of sodium hypochlorite (NaClO) for alkaline chlorination. The complexation with Fe(2) ion was studied in batch treatment under the coexistence with zinc ion assuming plating waste water, while the relation between the complexation and effective chlorine consumption in alkaline chlorination was studied in continuous treatment. As a result, the effective chlorine consumption was greatly decreased by pretreatment, and a cyanic acid ion (CNO{sup {minus}}) concentration was also lower than that in conventional methods. In the case of free cyanide with lower initial concentration, the total cyanide concentration in final treated water offered sufficiently low values only by adding zinc salt, while in higher initial concentration, it reached 1 ppm or less through precipitation by adding a reductant together with zinc salt. 9 refs., 7 figs., 2 tabs.

  10. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J

    International Nuclear Information System (INIS)

    Shen Shaobo; Pan Tonglin; Liu Xinqiang; Yuan Lei; Wang Jinchao; Zhang Yongjian; Guo Zhanchen

    2010-01-01

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K d ) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q max based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 deg. C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  11. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  12. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis

    Science.gov (United States)

    Courbet, Christelle; Rivière, Agnès; Jeannottat, Simon; Rinaldi, Sandro; Hunkeler, Daniel; Bendjoudi, Hocine; de Marsily, Ghislain

    2011-11-01

    This work describes the use of different complementing methods (mass balance, polymerase chain reaction assays and compound-specific stable isotope analysis) to demonstrate the existence and effectiveness of biodegradation of chlorinated solvents in an alluvial aquifer. The solvent-contaminated site is an old chemical factory located in an alluvial plain in France. As most of the chlorinated contaminants currently found in the groundwater at this site were produced by local industries at various times in the past, it is not enough to analyze chlorinated solvent concentrations along a flow path to convincingly demonstrate biodegradation. Moreover, only a few data were initially available to characterize the geochemical conditions at this site, which were apparently complex at the source zone due to (i) the presence of a steady oxygen supply to the groundwater by irrigation canal losses and river infiltration and (ii) an alkaline pH higher than 10 due to former underground lime disposal. A demonstration of the existence of biodegradation processes was however required by the regulatory authority within a timeframe that did not allow a full geochemical characterization of such a complex site. Thus a combination of different fast methods was used to obtain a proof of the biodegradation occurrence. First, a mass balance analysis was performed which revealed the existence of a strong natural attenuation process (biodegradation, volatilization or dilution), despite the huge uncertainty on these calculations. Second, a good agreement was found between carbon isotopic measurements and PCR assays (based on 16S RNA gene sequences and functional genes), which clearly indicated reductive dechlorination of different hydrocarbons (Tetrachloroethene—PCE-, Trichloroethene—TCE-, 1,2- cisDichloroethene— cis-1,2-DCE-, 1,2- transDichloroethene— trans-1,2-DCE-, 1,1-Dichloroethene—1,1-DCE-, and Vinyl Chloride—VC) to ethene. According to these carbon isotope measurements

  14. Chlorine in the stratosphere

    OpenAIRE

    VON CLARMANN, T.

    2013-01-01

    This paper reviews the various aspects of chlorine compounds in the stratosphere, both their roles as reactants and as tracers of dynamical processes. In the stratosphere, reactive chlorine is released from chlorofluorocarbons and other chlorine-containing organic source gases. To a large extent reactive chlorine is then sequestered in reservoir species ClONO2 and HCl. Re-activation of chlorine happens predominantly in polar winter vortices by heterogeneous reaction in combination with sunlig...

  15. Spectroscopic methods for aqueous cyclodextrin inclusion complex binding measurement for 1,4-dioxane, chlorinated co-contaminants, and ozone

    Science.gov (United States)

    Khan, Naima A.; Johnson, Michael D.; Carroll, Kenneth C.

    2018-03-01

    Recalcitrant organic contaminants, such as 1,4-dioxane, typically require advanced oxidation process (AOP) oxidants, such as ozone (O3), for their complete mineralization during water treatment. Unfortunately, the use of AOPs can be limited by these oxidants' relatively high reactivities and short half-lives. These drawbacks can be minimized by partial encapsulation of the oxidants within a cyclodextrin cavity to form inclusion complexes. We determined the inclusion complexes of O3 and three common co-contaminants (trichloroethene, 1,1,1-trichloroethane, and 1,4-dioxane) as guest compounds within hydroxypropyl-β-cyclodextrin. Both direct (ultraviolet or UV) and competitive (fluorescence changes with 6-p-toluidine-2-naphthalenesulfonic acid as the probe) methods were used, which gave comparable results for the inclusion constants of these species. Impacts of changing pH and NaCl concentrations were also assessed. Binding constants increased with pH and with ionic strength, which was attributed to variations in guest compound solubility. The results illustrate the versatility of cyclodextrins for inclusion complexation with various types of compounds, binding measurement methods are applicable to a wide range of applications, and have implications for both extraction of contaminants and delivery of reagents for treatment of contaminants in wastewater or contaminated groundwater.

  16. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: mass balance, PCR and compound-specific stable isotope analysis.

    OpenAIRE

    Courbet Christelle; Rivière Agnès; Jeannottat Simon; Rinaldi Sandro; Hunkeler Daniel; Bendjoudi Hocine; De Marsily Ghislain

    2011-01-01

    This work describes the use of different complementing methods (mass balance polymerase chain reaction assays and compound specific stable isotope analysis) to demonstrate the existence and effectiveness of biodegradation of chlorinated solvents in an alluvial aquifer. The solvent contaminated site is an old chemical factory located in an alluvial plain in France. As most of the chlorinated contaminants currently found in the groundwater at this site were produced by local industries at vario...

  17. Simultaneous treatment of chlorinated organics and removal of metals and radionuclides with bimetals and complexing acids - application to surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Gu, B. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Currently available methods for separation and treatment of radioactive mixed waste are typically energy-intensive, and often require high temperatures. Passive methods that operate at ambient temperatures are needed. The purpose of this task is to develop bimetallic substrates, using a base metal such as iron and a promoter metal such as palladium (Pd), to provide a passive, low-energy solution to a substantial portion of DOE`s mixed-waste problem. This technology consists of a porous medium that can simultaneously dechlorinate hazardous organics such as TCE and polychlorinated biphenyls (PCBs) at the same time that it removes metallic and hazardous wastes from a solvent/surfactant solution. The porous medium consists of a bimetallic substrate such as palladized iron (Pd/Fe). Palladium is readily chemically plated on iron and preliminary studies suggest that only 0.05 to 0.1% Pd is needed for an efficient reaction. Thus, the cost of the material is reasonable especially is it is long-lived or can be regenerated. Field implementation would consist of the passage of a surfactant-laden, mixed waste through a column or bed of the bimetallic substrate. The organic component of this mixed waste may contain semivolatile compounds such as PCBs or pesticides and herbicides. The bimetal simultaneously removes radionuclides and metals and degrades halogenated hydrocarbons. Virtually any concentration can be treated. Following reaction of the bimetal with the waste stream, the resulting effluent will consist of an uncontaminated aqueous solution of surfactant or solvent that can be reused. The bimetal would then be rinsed with a dilute mineral acid or a mild complexing acid (e.g., oxalic or citric acid) to regenerate the surface and to remove sorbed metals and non-hazardous organic residue. The latter effluent would be low-level radioactive waste in some cases, but it would now be much easier to manage and be of a lower volume than the original mixed waste.

  18. Iodinated chlorin p6 copper complex induces anti-proliferative effect in oral cancer cells through elevation of intracellular reactive oxygen species.

    Science.gov (United States)

    Sarbadhikary, Paromita; Dube, Alok

    2017-11-01

    We investigated the anticancer chemotoxicity of previously reported iodinated chlorin p 6 copper complex (ICp 6 -Cu), a novel chlorophyll derivative in which copper is attached to the side chain carboxylate groups via coordination. Human oral carcinoma cells NT8e, 4451 and the non-cancerous keratinocyte HaCaT cells were treated with ICp 6 -Cu for 48 h in dark and cell viability, proliferation and morphological alterations were examined. ICp 6 -Cu showed pronounced cytotoxicity in cancer cells with IC 50 ∼40 μM, whereas, the viability of HaCaT cells was not affected. Cell proliferation assay revealed that ICp 6 -Cu at IC 50 concentration led to complete inhibition of cell proliferation in both the cell lines. Cell morphology studied by confocal microscopy showed absence of cell death via necrosis or apoptosis. Instead, the treated cells displayed distinct features of non-apoptotic death such as highly vacuolated cytoplasm, lysosomal membrane permeabilization and damage to cytoskeleton F-actin filaments. In addition, ICp 6 -Cu treatment led to time dependent increase in the intracellular level of reactive oxygen species (ROS) and the cytotoxicity of ICp 6 -Cu was significantly inhibited by pre-treatment of cells with antioxidants (glutathione and trolox). These findings revealed that ICp 6 -Cu is a potent chemotoxic agent which can induce cytotoxic effect in cancer cells through elevation of intracellular ROS. It is suggested that ICp 6 -Cu may provide tumor selective chemotoxicity by exploiting difference of redox environment in normal and cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Technology assessment: Chlorine chemistry

    International Nuclear Information System (INIS)

    Wolff, H.; Alwast, H.; Buttgereit, R.

    1994-01-01

    Chlorine is not just one of many chemical feedstocks which is used in a few definitely harmful products like PVC or CFC but is irrelevant in all other respects. Just the opposite is true: There is hardly any product line of the chemical industry that can do without chlorine, from herbicides and pesticides to dyes, plastics, pharmaceuticals, photographic atricles, and cosmetics. Chlorine is not only a key element of chemical production but also an ubiquitous element of everyday life in civilisation. There are even many who would agree that the volume of chlorine production is an indicator of the competitive strength and national wealth of a modern society. By now, however, it has become evident that the unreflected use of chlorine is no longer ecologically acceptable. The consequences of a chlorine phase-out as compared to the continued chlorine production at the present level were investigated scientifically by a PROGNOS team. They are presented in this book. (orig.) [de

  20. Alternative methods for chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Fiessinger, F; Rook, J J; Duguet, J P

    1985-12-01

    Existing disinfectants are oxidative agents which all present negative effects on subsequent treatment processes. None of them has decisive advantages over chlorine, although chlorine-dioxide and chloramines might at times be preferable. Optimum treatment practices will improve the removal of organic precursors before final disinfection which could then consist in a light chlorine addition. A philosophy of radical change in water treatment technology encompassing physical treatment without chemicals such as membrane filtration, solid disinfectants is presented.

  1. Chlorination and chloramines formation

    International Nuclear Information System (INIS)

    Yee, Lim Fang; Mohd Pauzi Abdullah; Sadia Ata; Abbas Abdullah; Basar IShak; Khairul Nidzham

    2008-01-01

    Chlorination is the most important method of disinfection in Malaysia which aims at ensuring an acceptable and safe drinking water quality. The dosing of chlorine to surface water containing ammonia and nitrogen compounds may form chloramines in the treated water. During this reaction, inorganic and organic chloramines are formed. The recommended maximum acceptable concentration (MAC) for chloramines in drinking water is 3000 μg/L. The production of monochloramine, dichloramine and trichloramine is highly dependent upon pH, contact time and the chlorine to ammonia molar ratio. The purpose of this study is to examine the formation of chloramines that occur upon the chlorination during the treatment process. Chloramines were determined using the N,N-diethyl-p-phenylenediamine (DPD) colorimetric method. The influences of ammonia, pH and chlorine dosage on the chloramines formation were also studied. This paper presents a modeling approach based on regression analysis which is designed to estimate the formation of chloramines. The correlation between the concentration of chloramines and the ammonia, pH and chlorine dosage was examined. In all cases, the quantity of chloramines formed depended linearly upon the amount of chlorine dosage. On the basis of this study it reveals that the concentration of chloramines is a function of chlorine dosage and the ammonia concentration to the chlorination process. PH seems to not significantly affect the formation of chloramines. (author)

  2. Chlorine solar neutrino experiment

    International Nuclear Information System (INIS)

    Rowley, J.K.; Cleveland, B.T.; Davis, R. Jr.

    1984-01-01

    The chlorine solar neutrino experiment in the Homestake Gold Mine is described and the results obtained with the chlorine detector over the last fourteen years are summarized and discussed. Background processes producing 37 Ar and the question of the constancy of the production rate of 37 Ar are given special emphasis

  3. Inactivation of viruses in municipal effluent by chlorine.

    OpenAIRE

    Hajenian, H. G.; Butler, M.

    1980-01-01

    The influence of pH and temperature on the efficiency of chlorine inactivation of two unrelated picornaviruses in a typical urban wastewater effluent was examined. Temperature, unlike pH, had relatively little effect on the rate of inactivation. The pH effect was complex and the two viruses differed. The f2 coliphage was more sensitive to chlorine at low pH, but at all values there was a threshold above which additional chlorine resulted in very rapid inactivation. The amount of chlorine requ...

  4. Zirconia concentrate chlorination

    International Nuclear Information System (INIS)

    Costa, N.G.; Albuquerque Brocchi, E. de

    1990-01-01

    Chlorination experiments were conducted in order to study the kinetics of gasification of the zirconium oxide present in the zirconia concentrate. The variables studied are temperature (1173 to 1373 K), percentage of reducing agent (12 to 36%) and porosity (22 to 30%). The results indicated a greater influence of temperature and percentage of reducing agent as well as allowed the conclusion that a balance between the levels of these variables is an important factor in the appropriate chlorination conditions. (author)

  5. Chlorine trifluoride (1963)

    International Nuclear Information System (INIS)

    Vincent, L.M.; Gillardeau, J.

    1963-01-01

    This monograph on chlorine trifluoride may be considered as a working tool useful in gaseous diffusion research. It consists of data gathered from the literature and includes furthermore a certain amount of original data. This monograph groups together the physical, chemical and physiological properties of chlorine trifluoride, as well as the preparation and analytical methods. It has been thought wise to add some technological information, and the safety regulations governing its use. (authors) [fr

  6. Chlorine transportation risk assessment

    International Nuclear Information System (INIS)

    Lautkaski, Risto; Mankamo, Tuomas.

    1977-02-01

    An assessment has been made on the toxication risk of the population due to the bulk rail transportation of liquid chlorine in Finland. Fourteen typical rail accidents were selected and their probability was estimated using the accident file of the Finnish State Railways. The probability of a chlorine leak was assessed for each type of accident separately using four leak size categories. The assessed leakage probability was dominated by station accidents, especially by collisions of a chlorine tanker and a locomotive. Toxication hazard areas were estimated for the leak categories. A simple model was constructed to describe the centring of the densely populated areas along the railway line. A comparison was made between the obtained risk and some other risks including those due to nuclear reactor accidents. (author)

  7. Chlorination leaching of cadmium

    International Nuclear Information System (INIS)

    Lach, E.; Pajak, I.; Bojanowska, A.

    1978-01-01

    The results of the investigations on chlorination leaching of cadmium from dust coming from dry dust collector of sinter belt, that is leaching with water saturated with gaseous chlorine and leaching with solutions of ammonium chloride and sodium chloride were given. The optimum conditions for these processes were established. It was found, that the method of leaching in the presence of gaseous chlorine is more effective, as it allows to report into the solution over 90% cadmium contained in dust. Owing to technical difficulties, environmental protection and safety conditions more advantageous seems to be the use as leaching agent of the ammonium chloride solutions. When applying 20% NH 4 Cl and temperature of 60 0 C, the time of 2 hours and the ratio of solid to liquid of 1:5, 70% cadmium contained in the dust can be reported into the solution. (auth.)

  8. Where does Chlorine-36 go?

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Chlorine-36 and Iodine-129 are the unique long-life radionuclides in the halogen family and halogens are known to be very mobile in the environment. Chlorine-36 is present in slight quantities in radioactive wastes containing carbon or issued from spent fuel reprocessing. The migration of Chlorine-36 in the environment has been very little studied, so a collaboration between the French institute of protection and nuclear safety (IPSN) and the Ukrainian institute for agricultural radioecology (UIAR) has been launched. IPSN will study the migration of Chlorine-36 in soils and UIAR will be in charge of studying the transfer of Chlorine-36 from soil to plants. (A.C.)

  9. Thermodynamic stability of complexes of BF3, PF5 and AsF5 with chlorine fluorides, oxyfluorides, and related compounds

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    1996-07-01

    The recent discovery of solid, water sensitive, arsenic-containing deposits in auxiliary process piping in the PGDP led to a search for explanations that could account for such accumulated material. A plausible explanation for the deposits is the formation of complexes of AsF 5 with one or more gases that may have been present as a result of cascade equipment cleanup activities. A literature search was performed. The target of the search was literature that would provide information on the dissociation pressure of complexes of AsF 5 or its hydrolysis products with any gases that may be (at least intermittently) present in the cascade location where the deposits were found. While the precise information sought (namely reliable, accurate dissociation pressures of such complexes at cascade temperatures) was not found in the detail desired. other information on these or similar complexes was obtained which permits prediction of the conditions under which the complexes might form, dissociate, or migrate, and how they might behave in the presence of atmospheric moisture. Information was gathered on potential AsF 5 complexes with ClF, ClF 3 , ClF 5 , ClF 3 O, ClO 2 F, and ClO 3 F. Information was also collected on many other related complexes as it was encountered, particularly for series of complexes which could assist in predicting chemical trends. Thermodynamic analysis and property estimation methods have been used to generate provisional estimates of the dissociation pressures of the two complexes ClF 3 *AsF 5 and ClO 2 F*AsF 5 . In addition, several hydrolysis species have been identified, and stability properties of the most relevant such complex (H 3 O*AsF 6 ) have similarly been estimated. While the predicted dissociation pressures are somewhat uncertain. they do lead to a tentative picture of the formation and behavior of such complexes in a cascade cleanup environment

  10. A systemic study of stepwise chlorination-chemical vapor transport characteristics of pure rare earth oxides from Sc2O3 to Lu2O3 mediated by alkaline chlorides as complex former

    International Nuclear Information System (INIS)

    Sun Yanhui; He Peng; Chen Huani

    2007-01-01

    A systematic study has been carried out for the stepwise chlorination-chemical vapor transport (SC-CVT) characteristics of pure rare earth oxides from Sc 2 O 3 to Lu 2 O 3 mediated by the vapor complexes KLnCl 4 and NaLnCl 4 (Ln = Sc, Y and La-Lu) used NaCl and KCl as complex former, respectively. The results showed that the SC-CVT characteristics are similarly for NaCl and KCl as complex former, the main deposition temperature of the rare earth chlorides LnCl 3 is in the increasing order ScCl 3 3 3 , and then with a systematically decreasing trend from the early lanthanide chlorides to the end one. The results also showed that the total transported amount of the produced chlorides is YCl 3 > ScCl 3 , and they are much higher than that of most lanthanoid chlorides. For lanthanoids, the total transported amount of chloride increases systematically from the early lanthanoid chlorides to the end one except for EuCl 3 and GdCl 3 mediated by KCl and NaCl as complex former, respectively, which showed the divergence effect of Gd in the total transport efficiency. But there are some differences in SC-CVT characteristics of pure rare earth oxide mediated by KCl and NaCl as complex former, that is the main deposition temperature region for the same rare earth element was lower for KCl than that for NaCl as complex former except for LaCl 3 , CeCl 3 , YbCl 3 and LuCl 3 , while the total transport amount of rare earth chloride for KCl as complex former is higher than that for NaCl except for LaCl 3 and EuCl 3 . More over, the discussion was carried out for Sc and Y on the one hand and the lanthanides contain 4f electron as another hand based on the 4f electron hybridization assumption. Further more, the transport characteristics of rare earth oxides with alkaline chlorides as complex former in this study were compared to that with AlCl 3 as complex former

  11. Chlorination of zirconyte concentrate

    International Nuclear Information System (INIS)

    Costa, N.G.

    1988-01-01

    Chlorination experiments with zirconyte concentrate were carried out in order to study the effects of temperature, percentage of reducing agent and porosity on the gasification of ZrO 2 for 10 and 20 minutes of reaction. Factorial analysis was applied and the results indicated that temperature and percentage of reducing agent were the two only variables effecting the ZrO 2 gasification. (author) [pt

  12. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy.

    Science.gov (United States)

    Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P

    2013-02-13

    Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  13. Quantifying Short-Chain Chlorinated Paraffin Congener Groups.

    Science.gov (United States)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A; Alsberg, Tomas; de Wit, Cynthia A

    2017-09-19

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are referred to as a "congener group" C n Cl m . Recently, we resolved individual C n Cl m by mathematically deconvolving soft ionization high-resolution mass spectra of SCCP mixtures. Here we extend the method to quantifying C n Cl m by introducing C n Cl m specific response factors (RFs) that are calculated from 17 SCCP chain-length standards with a single carbon chain length and variable chlorination level. The signal pattern of each standard is measured on APCI-QTOF-MS. RFs of each C n Cl m are obtained by pairwise optimization of the normal distribution's fit to the signal patterns of the 17 chain-length standards. The method was verified by quantifying SCCP technical mixtures and spiked environmental samples with accuracies of 82-123% and 76-109%, respectively. The absolute differences between calculated and manufacturer-reported chlorination degrees were -0.9 to 1.0%Cl for SCCP mixtures of 49-71%Cl. The quantification method has been replicated with ECNI magnetic sector MS and ECNI-Q-Orbitrap-MS. C n Cl m concentrations determined with the three instruments were highly correlated (R 2 > 0.90) with each other.

  14. Studies with solid chlorine chemical for chlorination of sea water systems

    International Nuclear Information System (INIS)

    Sankar, N.; Kumaraswamy, P.; Santhanam, V.S.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chlorination is one of the conventional methods to control biofouling of condenser cooling water systems using either river water, reservoir water or sea water. However, there are many safety concerns associated with handling, storage and application of gaseous chlorine. Studies were carried out with suitable alternative chlorine chemical compounds which do not involve majority of these concerns but meet the functional requirement of gas chlorine. Trichloroisocyanuric Acid (TCCA) is one of the suitable alternatives to Gas chlorine. TCCA is a chlorine stabilized compound, stabilized with Cyanuric acid, thus similar to Gas Chlorine in its functions except that it is available in solid form. Release of chlorine is a gradual process in TCCA unlike Gaseous chlorine. Field studies with TCCA indicated gradual and near uniform release rate of chlorine, for longer duration with the requisite free residual chlorine levels (FRC). Thus, use of TCCA could be considered as a suitable alternative for gas chlorine for regular chlorination requirements. (author)

  15. Chapter 6. Uranium extraction possibilities from natural uranium-bearing waters of complex salt composition. 6.2. Technology for uranium extraction from brine with a high content of ion-chlorine

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Present article is devoted to technology for uranium extraction from brine with a high content of ion-chlorine. The content of basic anions and cations in lake waters of Sasik-Kul deposit was defined. Results of X-ray spectral analysis of salt residual after water evaporation from Sasik-Kul lake was discussed. Investigations revealed that uranium extraction from brines containing ion-chlorine is possible. The developed basic process flow diagram of uranium extraction from Sasik-Kul Lake' brine consists of the following basic stages: evaporation, leaching, catching of formed gases (HCl), sorption, desorption, deposition, drying and tempering.

  16. Chapter 6. Uranium extraction possibilities from natural uranium-bearing waters of complex salt composition. 6.2. Technology for uranium extraction from brine with a high content of ion-chlorine

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2011-01-01

    Present article is devoted to technology for uranium extraction from brine with a high content of ion-chlorine. The content of basic anions and cations in lake waters of Sasik-Kul deposit was defined. Results of X-ray spectral analysis of salt residual after water evaporation from Sasik-Kul lake was discussed. Investigations revealed that uranium extraction from brines containing ion-chlorine is possible. The developed basic process flow diagram of uranium extraction from Sasik-Kul Lake' brine consists of the following basic stages: evaporation, leaching, catching of formed gases (HCl), sorption, desorption, deposition, drying and tempering.

  17. Thermal diffusion of chlorine in uranium dioxide

    International Nuclear Information System (INIS)

    Pipon, Y.; Toulhoat, N.; Moncoffre, N.; Jaffrezic, H.; Gavarini, S.; Martin, P.; Raimbault, L.; Scheidegger, A.M.

    2006-01-01

    In a nuclear reactor, isotopes such as 35 Cl present as impurities in the nuclear fuel are activated by thermal neutron capture. During interim storage or geological disposal of nuclear fuel, the activation products such as 36 Cl may be released from the fuel to the geo/biosphere and contribute to the ''instant release fraction'' as they are likely to migrate in defects and grain boundaries. In order to differentiate diffusion mechanisms due to ''athermal'' processes during irradiation from thermally activated diffusion, both irradiation and thermal effects must be assessed. This work concerns the measurement of the thermal diffusion coefficient of chlorine in UO 2 . 37 Cl was implanted at a 10 13 at/cm 2 fluence in depleted UO 2 samples which were then annealed in the 900-1200 C temperature range and finally analyzed by secondary ion mass spectrometry (SIMS) to obtain 37 Cl depth profiles. The migration process appears to be rather complex, involving mechanisms such as atomic, grain boundary, directed diffusion along preferential patterns as well as trapping into sinks before successive effusion. However, using a diffusion model based on general equation of transport, apparent diffusion coefficients could be calculated for 1000 and 1100 C and a mean activation energy of 4.3 eV is proposed. This value is one of the lowest values compared to those found in literature for other radionuclides pointing out a great ability of chlorine to migrate in UO 2 at relatively low temperatures. In order to unequivocally determine the diffusion behaviour of both implanted and pristine chlorine before and after thermal annealing, the structural environment of chlorine in UO 2 was examined using micro X-ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS). (orig.)

  18. Photodynamic tissue adhesion with chlorin(e6) protein conjugates.

    Science.gov (United States)

    Khadem, J; Veloso, A A; Tolentino, F; Hasan, T; Hamblin, M R

    1999-12-01

    To test the hypothesis that a photodynamic laser-activated tissue solder would perform better in sealing scleral incisions when the photosensitizer was covalently linked to the protein than when it was noncovalently mixed. Conjugates and mixtures were prepared between the photosensitizer chlorin(e6) and various proteins (albumin, fibrinogen, and gelatin) in different ratios and used to weld penetrating scleral incisions made in human cadaveric eyes. A blue-green (488-514 nm) argon laser activated the adhesive, and the strength of the closure was measured by increasing the intraocular pressure until the wound showed leakage. Both covalent conjugates and noncovalent mixtures showed a light dose-dependent increase in leaking pressure. A preparation of albumin chlorin(e6) conjugate with additional albumin added (2.5 protein to chlorin(e6) molar ratio) showed significantly higher weld strength than other protein conjugates and mixtures. This is the first report of dye-protein conjugates as tissue solders. These conjugates may have applications in ophthalmology.

  19. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  20. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  1. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  2. Process for producing chlorinated polyethylene

    International Nuclear Information System (INIS)

    Nose, Shinji; Takayama, Shin-ichi; Kodama, Takashi.

    1970-01-01

    A process for chlorinated polyethylene by the chlorination of an aqueous suspension of polyethylene without the use catalysts is given, using 5-55% by gel content of cross-linked polyethylene powders. The products have favorable material workability, transparency, impact strength and tensile properties. In the case of peroxide cross-linking, a mixture of peroxides with polyethylene must be ground after heat treatment. The polyethylene may preferably have a gel content of 5-55%. The chlorination temperature may be 40 0 C or more, preferably 60 0 to 160 0 C. In one example, high pressure polymerized fine polyethylene powders of 15μ having a density of 0.935 g/cc, a softening point of 114 0 C, an average molecular weight of 35,000 were irradiated in air with 40 Mrad electron beams from a 2 MV Cockcroft-Walton type accelerator at room temperature. The thus irradiated polyethylene had a gel content of 55% and a softening point of 119 0 C. It was chlorinated upto a chlorine content of 33% at 100 0 C. Products were white crystals having a melting point of 122 0 C and a melting heat value of 32 mcal/mg. A sheet formed from this product showed a tensile strength of 280 kg/cm 2 , an elongation of 370% and a hardness of 90. (Iwakiri, K.)

  3. Detection of chlorinated aromatic compounds

    Science.gov (United States)

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  4. Effects of Chlorine on Enterovirus RNA Degradation

    Science.gov (United States)

    The primary mechanism of disinfection of waterborne pathogens by chlorine has always been believed to be due to the alteration of proteins by free chlorine and subsequent disruption of their biological structure.

  5. Kinetics of molybdenum and chlorine interaction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Nazarov, Yu.N.; Sarkarov, T.Eh.; Tulyakov, N.V.

    1977-01-01

    The kinetics is studied of molybdenite chlorination with gaseous chlorine. The time dependences of the depth and degree of molybdenite chlorination are given along with the dependence on chlorine concentration of molybdenite chlorination rate. Active interaction is shown to take place at 450-470 deg C. At 350-435 deg C, chlorination occurs in the kinetic range, the apparent activation energy being equal to 22.2 kcal/mole and the order of reaction by chlorine to 0.77. At 435-610 deg C, the process takes place in the diffusion range and is restricted by dissipation of the reaction products (activation energy - 4.05 kcal/mole; order of reaction by chlorine - 0.6)

  6. Formation of aryl-chlorinated aromatic acids and precursors for chloroform in chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Galan, L.

    1985-01-01

    The formation of chloroform when humic substances are chlorinated is well known. Other chlorinated products that may be formed are chloral, di- and trichloroacetic acid, chlorinated C-4 diacids, and α-chlorinated aliphatic acids. Several of these compounds are formed in molar yields comparable

  7. Direct Chlorination of Zircon Sand

    International Nuclear Information System (INIS)

    Dwiretnani Sudjoko; Budi Sulistyo; Pristi Hartati; Sunardjo

    2002-01-01

    It was investigated the direct chlorination of zircon sand in a unit chlorination equipment. The process was in semi batch. The product gas was scrubbed in aqueous NaOH. It was search the influence of time, ratio of reactant and size of particle sand to the concentration of Zr and Si in the product. From these research it was found that as the times, ratio of reactant increased, the concentration of Zr increased, but the concentration of Si decreased, while as grain size of zircon sand decreased the concentration of Zr decreased, but the concentration of Si increased. (author)

  8. Experimental cancer studies of chlorinated by-products

    International Nuclear Information System (INIS)

    Komulainen, Hannu

    2004-01-01

    Chlorinated drinking water contains a number of different by-products formed during the chlorination process from organic matter. The carcinogenicity of only a fraction of them have been evaluated in experimental animals. The focus has been on compounds and groups of compounds that are most abundant in chlorinated drinking water or the in vitro toxicity data have suggested genotoxic potential. From trihalomethanes, chloroform causes liver tumors in mice and female rats and renal tumors in male mice and rats. Tumor formation by chloroform is strongly associated with cytotoxicity and regenerative cell proliferation in tissues and that has been considered to be one determinant of its carcinogenicity. From halogenic acetic acids, dichloroacetic acid (DCA) and trichlotoacetic acid (TCA) are hepatocarcinogenic in mice and DCA in male rats. Their genotoxicity is equivocal and nongenotoxic mechanisms, such as peroxisome proliferation and hypomethylation of DNA in the liver, likely contribute to tumor development. From chlorinated furanones (CHFs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) is a multisite carcinogen in rats (e.g. in thyroid glands and liver) and it has caused DNA damage in vivo. MX may be a complete carcinogen because it also has promoter properties in vitro. Chlorinated drinking water may also contain brominated by-products providing the raw water contains bromide. At least some of them (bromodichloromethane, bromoform) have been shown to be carcinogenic in laboratory animals. Altogether, although several by-products have been shown to have carcinogenic potential in laboratory animals, it not yet possible to state which compounds or groups of by-products cause the cancer risk in chlorinated drinking water. The cellular mechanisms of their effects and these effects at low concentrations are still poorly understood. The few studies with mixtures of these by-products suggest that the mixture effects may be complex and unpredictable (inhibitory

  9. Chlorinated hydrocarbons in a pelagic community

    International Nuclear Information System (INIS)

    Elder, D.; Fowler, S.W.

    1976-01-01

    For several years data have been accruing on the distribution of chlorinated hydrocarbon pollutants in marine ecosystems. An overall picture of ambient levels in biota, water and sediments is now emerging however, despite the vast amount of data collected to date, questions still arise as to whether certain pollutants such as chlorinated hydrocarbons are indeed magnified through the marine food web. Evidence both for and against trophic concentration of PCB and DDT compounds has been cited. The answer to this question remains unclear due to lack of adequate knowledge on the relative importance of food and water in the uptake of these compounds as well as the fact that conclusions are often confounded by comparing pollutant concentrations in successive links in the food chain sampled at different geographical locations and/or at different points in time. The situation is further complicated by complex prey-predator relationships that exist in many marine communities. In the present study we have tried to eliminate some of these problems by examining PCB and DOT concentrations in species belonging to a relatively well-defined pelagic food chain sampled at one point in space and time

  10. Detection of chlorine in water

    Czech Academy of Sciences Publication Activity Database

    Kašík, Ivan; Mrázek, Jan; Podrazký, Ondřej; Seidl, Miroslav; Aubrecht, Jan; Tobiška, Petr; Pospíšilová, Marie; Matějec, Vlastimil; Kovács, B.; Markovics, A.; Szili, M.

    2009-01-01

    Roč. 139, č. 1 (2009), s. 139-142 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GA102/05/0948 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fiber sensor * chlorine Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.083, year: 2009

  11. Chlorination separation of uranium, thorium, and radium from low-grade ores

    International Nuclear Information System (INIS)

    Sastri, V.S.; Perumareddi, J.R.

    1995-01-01

    Low-temperature chlorination of low-grade uranium ores containing uranium in the 0.02 to 0.06% range, thorium in the 0.036 to 0.12% range, and radium in the 70 to 200 pci/g range resulted in the extraction of >90% of the constituents. The residue left after chlorination was found to be innocuous and suitable for disposal as a waste acceptable to the environment. Use of sodium chloride in the charge was useful in reducing the chlorination temperature and in the formation of nonvolatile anionic chloro complexes of the metal ions in the ore

  12. Chlorination Revisited: Does Cl- Serve as a Catalyst in the Chlorination of Phenols?

    Science.gov (United States)

    Lau, Stephanie S; Abraham, Sonali M; Roberts, A Lynn

    2016-12-20

    The aqueous chlorination of (chloro)phenols is one of the best-studied reactions in the environmental literature. Previous researchers have attributed these reactions to two chlorine species: HOCl (at circum-neutral and high pH) and H 2 OCl + (at low pH). In this study, we seek to examine the roles that two largely overlooked chlorine species, Cl 2 and Cl 2 O, may play in the chlorination of (chloro)phenols. Solution pH, chloride concentration, and chlorine dose were systematically varied in order to assess the importance of different chlorine species as chlorinating agents. Our findings indicate that chlorination rates at pH pH 6.0 and a chlorine dose representative of drinking water treatment, Cl 2 O is predicted to have at best a minor impact on chlorination reactions, whereas Cl 2 may contribute more than 80% to the overall chlorination rate depending on the (chloro)phenol identity and chloride concentration. While it is not possible to preclude H 2 OCl + as a chlorinating agent, we were able to model our low-pH data by considering Cl 2 only. Even traces of chloride can generate sufficient Cl 2 to influence chlorination kinetics, highlighting the role of chloride as a catalyst in chlorination reactions.

  13. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    Energy Technology Data Exchange (ETDEWEB)

    Vacchi, Francine Inforcato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil); Ormond, Alexandra B.; Freeman, Harold S. [Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Zocolo, Guilherme Juliao; Zanoni, Maria Valnice Boldrin [Departamento de Quimica Analitica, Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Quimica de Araraquara, Araraquara, SP 14801-970 (Brazil); Umbuzeiro, Gisela, E-mail: giselau@ft.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil)

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: Black-Right-Pointing-Pointer Aqueous solutions of Disperse Red 1 were treated with chlorine. Black-Right-Pointing-Pointer The chlorination products of Disperse Red 1 were identified using LC-ESI-MS/MS. Black-Right-Pointing-Pointer Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. Black-Right-Pointing-Pointer The chlorinated dye was more mutagenic

  14. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  15. Determination of Short-Chain Chlorinated Paraffins by Carbon Skeleton Gas Chromatography

    OpenAIRE

    PELLIZZATO FRANCESCA; RICCI MARINA; HELD ANDREA; EMONS HENDRIK

    2008-01-01

    Short-Chain Chlorinated Paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with a chlorination degree between 50 and 70 % by mass, and a linear carbon chain length from C10 to C13, constituted by thousands of homologues, diastereomers and enantiomers. They have been used in many different applications, such as extreme pressure additives in lubricants and cutting fluids, plasticizers in PVC, and flame retardants in paints, adhesives and sealants. SCCPs are tox...

  16. Water Chlorination for human consumption

    International Nuclear Information System (INIS)

    Innocenti, A.; Giacosa, D.; Segatori, M.

    1999-01-01

    Beginning from this issue, an initiative of Federgasacqua (Federal association dealing with the gas and the water) takes place through the activities of the Task Forces Water Quality Control and Materials and Processes, which aim is to offer to the water industry operators and updated information concerning some main subjects, emphasizing in particular the technical and management applied topics. The paper deals with the chlorination processes in drinking water treatment. An overview of the italian situation is presented, concerning disinfection as well as other oxidation processes, together with an historical background on chlorination. Concerning the applications, the chemical technologies and the main processes, the disinfectant effectiveness and the byproducts formation have been described. Further, the regulations in force have been reported and discussed on national and international bases [it

  17. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    Science.gov (United States)

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  18. Metabolic fate of chlorinated paraffins

    International Nuclear Information System (INIS)

    Darnerud, P.O.; Biessmann, A.; Brandt, I.

    1982-01-01

    The disposition of three [1- 14 C]-chlorododecanes (MCDD, PCDD I and PCDD II; 17.4%, 55.9%, and 68.5% chlorination) was studied in C57Bl mice. [1- 14 C]-lauric acid (LA) was studied as reference compound. Fifty-two percent (MCDD), 32% (PCDD I), and 8% (PCDD II) of the radioactive doses were exhaled as 14 CO 2 during 12 h after i.v. injection. Similar results were obtained after p.o. administration. In addition to a marked labelling of the liver and fat, the distribution patterns observed at 24 h after administration revealed an uptake of radioactivity in tissues with high cell turnover/high metabolic activity, e.g., intestinal mucosa, bone marrow, salivary glands and thymus. The concentration of radioactivity in these sites and the exhalation of 14 CO 2 , which were inverse to the degree of chlorination, indicate that the chloroalkanes are degraded to metabolites which can be utilized in the intermediary metabolism. A similar, although more pronounced, distribution pattern and 14 CO 2 -exhalation (70% of i.v. dose) was observed after LA administration. The long time retention of heptane-soluble radioactivity in liver and fat (indicating unmetabolized substance) increased with degree of chlorination. On the contrary, the administration of LA and the chlorododecanes MCDD and PCDD I, but not of PCDD II, resulted in a selective labelling of the central nervous system 30-60 days after injection. (orig.)

  19. Factorial analysis of the trihalomethanes formation in water disinfection using chlorine

    International Nuclear Information System (INIS)

    Rodrigues, Pedro M.S.M.; Esteves da Silva, Joaquim C.G.; Antunes, Maria Cristina G.

    2007-01-01

    The factors that affect trihalomethane (THM) (chloroform, bromodichloromethane, chlorodibromomethane and bromoform) formation from the chlorination of aqueous solutions of hydrophobic fulvic acids (FA) were investigated in a prototype laboratorial simulation using factorial analysis. This strategy involved a fractional factorial design (16 plus 5 center experiments) of five factors (fulvic acids concentration, chlorine dose, temperature, pH and bromide concentration) and a Box Behnken design (12 plus 3 center experiments) for the detailed analysis of three factors (FA concentration, chlorine dose and temperature). The concentration of THM was determined by headspace analysis by GC-ECD. The most significant factors that affect the four THM productions were the following: chloroform-FA concentration and temperature; bromodichloromethane-FA concentration and chlorine dose; chlorodibromomethane-chlorine dose; and, bromoform-chlorine dose and bromide concentration. Moreover, linear models were obtained for the four THM concentrations in the disinfection solution as function of the FA concentration, chlorine dose and temperature, and it was observed that the complexity of the models (number of significant factors and interactions) increased with increasing bromine atoms in the THM. Also, this study shows that reducing the FA concentration the relative amount of bromated THM increases

  20. Study on removing chlorin by conversion-aborption of chlorin resin

    International Nuclear Information System (INIS)

    Huang Yunbai; Zhao Jinfang; Tang Zhijuan; Huang Qijin; Deng Jianguo

    2012-01-01

    Theon version of chlorin resin and the reclamation of acid and uranium in converting solution were investigated. The results indicated the residual chlorin can meet the requirement after converting, acid and uranium in converting solution can be reclaimed. (authors)

  1. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  2. Chlorine-36 investigations of salt lakes

    International Nuclear Information System (INIS)

    Chivas, A.R.; Kiss, E.

    1987-01-01

    The first chlorine-36 measurements are reported for surficial halite in lakes from a west-to-east traverse in Western Australia and from Lake Amadeus NT. Measurements of chlorine-36 were made using a 14 MV tandem accelerator. Isotopic chlorine ratios ranged from 8 to 53 x 10 exp-15, with no clear evidence for bomb-spike chlorine-36. The Western Australian samples have values close to secular equilibrium values for typical granite and groundwaters in this rock type. Studies are aimed at calculating the residence time of chloride in the surficial environment. 1 tab

  3. Chlorination of cooling water: a source of chlorine-containing organic compounds with possible environmental significance

    International Nuclear Information System (INIS)

    Jolley, R.L.; Gehrs, C.W.; Pitt, W.W. Jr.

    1976-01-01

    Chlorination of cooling waters may be a source of environmentally significant pollutants. Many water-soluble chlorine-containing organic compounds of low volatility were found in a sample of cooling water chlorinated to a 2-mg/l chlorine concentration in the laboratory. The compounds were separated and detected using a coupled 36 Cl-tracer--high-resolution liquid chromatographic technique developed at the Oak Ridge National Laboratory for determination of chlorinated organics in process effluents. For a chlorination contact time of 75 min at 25 0 C, the yield of chlorine in the form of chloro-organics amounted to 0.78% of the chlorine dosage. It is estimated that the yield is about 0.5% under typical reaction conditions in the electric power plant cooling system chosen for study. Because chlorine is commonly used to remove slime films from the cooling systems of electric power plants, as a means of maintaining high operational efficiency, it is estimated that several hundred tons of chlorinated organics are produced annually in the nation by this antifoulant process. The chromatographic elution positions of some of the separated constituents correspond to those of compounds separated and partially identified from chlorinated sewage treatment plant effluents. The results of this study indicate the formation of chloro-organics during the chlorination of cooling waters should be thoroughly examined, particularly with respect to their identification and determination of possible toxicological properties

  4. Data for comparison of chlorine dioxide and chlorine disinfection power in a real dairy wastewater effluent

    Directory of Open Access Journals (Sweden)

    Maliheh Akhlaghi

    2018-06-01

    Full Text Available Disinfection of water refers to a special operation that is doing to kill or disable causative organisms (i.e. Pathogens and in particular, intestinal bacteria. The aim of this pilot study is comparison of disinfection power of Chlorine dioxide and chlorine in a real dairy wastewater effluent. In this regard, firstly prepared two 220-l tanks made of polyethylene as reaction tanks and filled by effluent of a dairy wastewater treatment plant. Both tanks were equipped with mechanical stirrer. Then a Diaphragm dosing pumps with the maximum capacity of 3.9 l per hour were used for the chlorine dioxide and chlorine (Calcium hypochlorite 0.5 up to 3 ppm injection. Residual level of Chlorine dioxide and Chlorine were measured by portable photometric method DT4B kit, Germany. Finally, the Multiple-Tube Fermentation, Brilliant Green Bile Broth (BGB and Eosin methylene blue Agar (EMB technique was used for microbial analysis and the results were reported as the most probable number index (MPN respectively. The data showed that the residual of chlorine dioxide could stood more active than residual of chlorine in the aqueous environment significantly. Therefore, Use of chlorine dioxide is more effective than chlorine for removal fecal and total coliform from dairy wastewater effluent. Keywords: Disinfection, Chlorine dioxide, Chlorine, Total coliform, Fecal coliform

  5. Behavior of chlorine in lake water

    International Nuclear Information System (INIS)

    Sriraman, A.K.

    2006-01-01

    Water from monsoon fed Sagre lake is being used as a source of raw water for Tarapur Atomic Power Station (TAPS--1 and 2). The raw water from the lake is initially pumped to Sagre water treatment plant (SWTP) operated by Maharashtra Industrial Development Corporation (MIDC) from where, the processed water is sent to cater the needs of both the units of TAPS-1 and 2, townships of TAPS and MIDC, and the nearby villages. At the SWTP the raw water is treated with alum to remove the turbidity, filtered and chlorinated using bleaching powder. All these years the raw water is chlorinated in such a way whereby a residual chlorine level of 0.5-1.0 mg/l, is maintained at the outlet of water treatment plant. The adequacy of the current chlorination practice was investigated, at the request of the NPC-500 MWe group during 1990, so that the future requirements of raw water for TAPP-3 and 4, can be met from the expanded SWTP. In this connection experiments on chlorine dose -- residual chlorine relationship and the decay pattern of chlorine with time was carried out in the lake water (with low value of total dissolved solids and total hardness 3 sample at the site. The total bacterial count in the raw water observed to be 10 7 counts/ml originally came down to 10 3 counts/ml at the end of one-hour exposure time to chlorine. It was found that the chlorine demand of the water was around 6 mg/l. In addition Jar test to evaluate the aluminum dose was also carried out. Based on these experiments a chlorine dose of 6 mg/l for one hour contact time was arrived at. The experimental findings were in agreement with the current chlorination practices. (author)

  6. Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps.

    NARCIS (Netherlands)

    Vidal, G.; Soto, M.; Field, J.; Mendez-Pampin, R.; Lema, J.M.

    1997-01-01

    Chlorine bleaching effluents are problematic for anaerobic wastewater treatment due to their high methanogenic toxicity and low biodegradability. Presently, alternative bleaching processes are being introduced, such as elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. The

  7. Chlorine demand and residual chlorine decay kinetics of Kali river water at Kaiga project area

    International Nuclear Information System (INIS)

    Krishna Bhat, D.; Prakash, T.R.; Thimme Gowda, B.; Sherigara, B.S.; Khader, A.M.A.

    1995-01-01

    The nuclear power plant at Kaiga would use Kali river water for condenser cooling. This necessitated studies on the chemistry of chlorination such as chlorine demand, kinetics of chlorination and other water characteristics aimed at obtaining base line data. The study revealed significant seasonal variation of chlorine demand ranging from 0.5 ppm to 1.7 ppm (3.0 ppm dose, 30 min contact time) and total consumption of 5.0 ppm (10.0 ppm dose, 48 hours contact time). The reaction follows first order kinetics in chlorine. High correlation of chlorine demand with chlorophyll a, suspended matter, turbidity, silica, nitrite, phosphate and sulphate indicated that chlorine demand is greatly influenced by water quality. (author). 3 refs., 1 tab

  8. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  9. Monitoring chlorination practices during operation at TAPS

    International Nuclear Information System (INIS)

    Sriraman, A.K.; Wani, B.N.; Gokhale, A.S.; Yuvaraju, B.

    1995-01-01

    Chlorination of cooling waters is aimed at the condenser surfaces to minimize the biogrowth, while the residual oxidants in the effluents are negligible. This paper describes the fulfillment of the above criteria, as observed during the monitoring of chlorination practices at Tarapur Atomic Power Station (TAPS) during 1990. (author). 4 refs., 2 tabs

  10. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  11. The Synthesis of Carbon Nanomaterials using Chlorinated ...

    African Journals Online (AJOL)

    The effect of chlorine on the morphology of carbon nanotubes (CNTs) prepared from a Fe-Co/CaCO3 catalyst was investigated using chlorobenzene (CB), dichlorobenzene (DCB), trichlorobenzene (TCB), dichloroethane (DCE), trichloroethane (TCE) and tetrachloroethane (TTCE) as chlorine sources using a catalytic ...

  12. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  13. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Minimization of zirconium chlorinator residues

    International Nuclear Information System (INIS)

    Green, G.K.; Harbuck, D.D.

    1995-01-01

    Zirconium chlorinator residues contain an array of rare earths, scandium, unreacted coke, and radioactive thorium and radium. Because of the radioactivity, the residues must be disposed in special waste containment facilities. As these sites become more congested, and with stricter environmental regulations, disposal of large volumes of wastes may become more difficult. To reduce the mass of disposed material, the US Bureau of Mines (USBM) developed technology to recover rare earths, thorium and radium, and unreacted coke from these residues. This technology employs an HCl leach to solubilize over 99% of the scandium and thorium, and over 90% of the rare earths. The leach liquor is processed through several solvent extraction stages to selectively recover scandium, thorium, and rare earths. The leach residue is further leached with an organic acid to solubilize radium, thus allowing unreacted coke to be recycled to the chlorinator. The thorium and radium waste products, which comprise only 2.1% of the original residue mass, can then be sent to the radioactive waste facility

  15. Radiochemical analysis of chlorine-36

    International Nuclear Information System (INIS)

    Rodriguez, M.; Pina, G.; Lara, E.

    2006-01-01

    The radioactive chlorine isotope, 36 Cl, decays with a half-life of 3x10 5 years by emitting a beta particle (98 %) and by electron capture. The aim of this paper is to propose a radiochemical separation method of 36 Cl from the other beta-gamma emitters present in low and medium radioactive wastes such as spent ion exchange resins and evaporator concentrates, that arise from Nuclear Power Plants and particularly in the wastes that come from decommissioning activities of graphite reactors, in order to provide data for 36 Cl inventory calculations. The separation method proposed is based on an oxidation technique where chlorine is trapped by NaOH. 36 Cl beta emissions are measured by liquid scintillation counting by the dual label technique in order to avoid the contamination produced by 14 C which is also trapped by NaOH and which is the main contaminant present in graphite samples. The sensitivity of this method is sufficient to achieve the needed thresholds for the radiological characterization of the radioactive materials to which this method can be applied. (author)

  16. Chlorination of irradiated polyethylene single crystals

    International Nuclear Information System (INIS)

    Grimm, H.J.

    1978-01-01

    The chlorination of electron beam-irradiation polyethylene (PE) single crystals was studied for a range of irradiation doses, temperatures, and chlorine interaction times. The results presented show that PE chlorination was quite extensive, even in unirradiated PE single crystals at 25 0 C in the dark. Electron Spin Resonance (ESR, EPR) was used in this study in order to determine the alkyl radical concentration, decay constant, and diffusivity for (unchlorinated) specimens. An alkyl radical diffusivity D/sub a/ = 1.6 x 10 -17 cm 2 /sec at 25 0 C was estimated from ESR data and alkyl radical migration as one-dimensional unsteady-state diffusion process. In irradiated PE, chlorination occurred mainly via chain reactions which were initiated by the irradiation-produced free radicals. Chlorine content values were determined by X-ray Energy Spectroscopy (XES). It was found that the magnitude of the chlorine uptake increased with increasing dose, and decreased with decreasing temperature at constant dose. Otherwise the observed PE chlorination phenomena was quite similar for all of the doses and temperatures studied here, consisting of a two step mechanism: a fast uptake which occurred between time tCl 2 = 0 - 5 minutes and a slower, approximately first-order rate of uptake which occurred between times tCl 2 = 5 - 120 minutes. Chlorination was essentially complete by time tCl 2 = 120 minutes. The rapid uptake probably occurred in the amorphous surface zones where Cl 2 is relatively high and the second, slower step was probably attributable to Cl 2 diffusion into the crystalline regions and subsequent chlorination there. Inasmuch as the PE density decreases with increasing dose (for 1-600 Mrad), Cl 2 diffusivity was enhanced, resulting in higher chlorine uptake values at higher doses

  17. Chlorinated Flavonoids Modulate the Inflammatory Process in Human Blood.

    Science.gov (United States)

    Proença, Carina; Ribeiro, Daniela; Soares, Tânia; Tomé, Sara M; Silva, Artur M S; Lima, José L F C; Fernandes, Eduarda; Freitas, Marisa

    2017-08-01

    Flavonoids are known to react with neutrophil-generated hypochlorous acid (HOCl) at inflammation loci to form stable mono- and dichlorinated products. Some of these products have been shown to retain or even enhance their inflammatory potential, but further information is required in a broader approach to inflammatory mechanisms. In that sense, we performed an integrated evaluation on the anti-inflammatory potential of a panel of novel chlorinated flavonoids and their parent compounds, in several steps of the complex inflammatory cascade, namely, in the activity of cyclooxygenase (COX)-1 and COX-2, and in the production of cytokines [interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)], and the chemokine, IL-8, as well as in the production of reactive species, using human whole blood as a representative in vitro model, establishing, whenever possible, a structure-activity relationship. Although luteolin was the most active compound, chlorinated flavonoids demonstrated a remarkable pattern of activity for the resolution of the inflammatory processes. Our results demonstrated that 6-chloro-3',4',5,7-tetrahydroxyflavone deserves scientific attention due to its ability to modulate the reactive species and cytokines/chemokine production. In this regard, the therapeutic potential of flavonoids' metabolites, and in this particular case the chlorinated flavonoids, should not be neglected.

  18. Hydrogen/Chlorine exchange reactions of gaseous carbanions.

    Science.gov (United States)

    Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N

    2005-12-01

    Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.

  19. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  20. Studies on chlorinated bromide salt for microfouling control

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Rajmohan, R.; Rao, T.S.; Nair, K.V.K.; Mathur, P.K.

    1995-01-01

    The Fast Breeder Test reactor (FBTR) at Kalpakkam has been facing various problems in cooling water systems in spite of intermittent chlorination.Effects of chlorinated-bromide mixture was evaluated against heterotrophic bacteria (TVC) and iron oxidising bacteria (IOB) vis-a-vis chlorine. Results indicated that chlorinated-bromide mixture was far superior (2 orders of magnitude for TVC and 2 times for IOB) to chlorine in microfouling control. Results also showed that at bromide to chlorine ratio of one effectiveness of chlorinated-bromide was at its maximum. (author). 9 refs., 1 tab

  1. Reductive dechlorination of chlorinated solvents in landfills

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wu, C.

    2002-01-01

    The use of landfills as an in situ biological treatment system represents an alternative for source area remediation with a significant cost saving. The specific objective of this research is to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples excavated from a landfill were tested in laboratory bioreactors designed and operated to facilitate refuse decomposition under landfilling conditions. Each bioreactor was operated with leachate recirculation and gas collection. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at 20 μM each in leachate to simulate the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Results of this study suggest that landfills have an intrinsic reductive dechlorination capacity for PCE and TCE. The decomposition of refuse, a source of complex organics, enhances reductive dechlorination by the refuse cultures tested in this study. In addition, the test results suggest that it may be possible to develop engineering strategies to promote both CAHs degradation and refuse decomposition in landfills. (author)

  2. Chlorine isn't Just for Swimming Pools Anymore... Chlorination of Organic Compounds in the Arctic

    Science.gov (United States)

    Han, A.; Raab, T. K.

    2013-12-01

    The cycling of chlorine between its organic and inorganic forms is known to occur in forest soils, but little is known about the generality of this mechanism, which soil components chlorine attaches to, and at what rate chlorination occurs. The study uses peat-rich tundra soils from Barrow, Alaska varying in age since formation of 50 yrs - 5500 yrs BP, and seeks to measure the rate at which organic molecules are chlorinated and to understand what changes those molecules undergo once chlorinated. Soil abundance of chlorine and bromine was estimated in soils of varying age using X-ray fluorescence, and org-Cl levels were measured using pyro-hydrolysis [Table 1]. We considered activity of the enzyme Chloroperoxidase, and data was gathered using absorbance scans of the organic molecule monochlorodimedone to determine whether it had been chlorinated and if so, at what rate. Additional information was gathered from the chlorination of small organic components of the macromolecule lignin, whose constituent molecules make up a large portion of humic materials critical to soil health, through emission scans and fluorescence scans. The results showed that the enzyme chloroperoxidase, which is found in nature and is associated with fungi or bacteria, attaches a chlorine atom to monochlorodimedone and that similar enzymes found in Arctic soils act on it, as well as the lignin model subunits cinnamaldehyde ((2E)-3-phenylprop-2-enal) and naringenin-7-rhamnoglucoside. The results may provide more information on chlorination rates in the Arctic and may contribute to an understanding of how and at what rate chlorine changes form in nature, and answer questions about ozone deterioration or anthropogenic chlorine impact(s) on the environment.Average Halogen Abundance in Arctic Soils xrf=Energy Dispersive X-Ray Fluorescencepyro= TOX Pyro-Hydrolysis

  3. Determination of chlorine in nuclear-grade uranium compounds

    International Nuclear Information System (INIS)

    Yang Chunqing; Liu Fuyun; Huang Dianfan

    1988-01-01

    The determination of chlorine in nuclear-grade uranium compounds is discribed. Chlorine is separated from uranium oxide pyrohydrolytically with stream of wet oxygen in a furnace at 800 ∼ 900 deg C. Chlorine is volatilized as hydrochloric acid, absorbed in a dilute alkaline solution and measured with chlorine-selective electrode. This method covers the concentration range of 10 ∼ 500 pm chlorine in uranium oxide. Precision of at least ± 10% and recovery of 85 ∼ 108% have been reported

  4. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    2003-12-11

    three to five times, leading to a more rapid clean-up of the DNAPL zone. The most favored electron donor to add is one which partitions well with the chlorinated solvent or can be concentrated near it. Unfortunately, an ideal electron donor, such as vegetable oil, is difficult to introduce and mix with DNAPL in the ground, doing this properly remains an engineering challenge. Numerical model studies have indicated that several factors may significantly influence the rate and extent of enhancement, including the inhibitory effects of PCE and cDCE, the level of ED concentration, DNAPL configuration, and competition for ED. Such factors need to be considered when contemplating engineered DNAPL bioremediation. Pseudomonas stuzeri KC is an organism that transforms CT to carbon dioxide and chloride without the formation of the hazardous intermediate, chloroform. This is accomplished by production and secretion of a molecule called PDTC. This study was direct ed towards determining how PDTC works. Cu (II) at a ratio of 1:1 Cu to PDTC was found to result in the most rapid CT transformation, confirming that the PDTC-Cu complex is both a reactant and a catalyst in CT transformation. CT degradation requires that the PDTC be in a reduced form, which is generated by contact with cell components. Fe(II) inhibits CT transformation by PDTC. Studies indicated that this inhibition is enhanced by some compound or factor in the supernatant with molecular weight greater than 10,000 Da. We have made progress in determining what this factor might be, but have not yet been able to identify it. In related studies, we found that CT transformation by another organism, Shewanella oneidensis MR1, also involves an excreted factor, but this factor is different from PDTC and results in chloroform transformation as an intermediate. Our studies have indicated that this factor is similar to vitamin K2, and we have also confirmed that vitamin K2 does transform C T into chloroform.

  5. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    International Nuclear Information System (INIS)

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig S.

    2003-01-01

    three to five times, leading to a more rapid clean-up of the DNAPL zone. The most favored electron donor to add is one which partitions well with the chlorinated solvent or can be concentrated near it. Unfortunately, an ideal electron donor, such as vegetable oil, is difficult to introduce and mix with DNAPL in the ground, doing this properly remains an engineering challenge. Numerical model studies have indicated that several factors may significantly influence the rate and extent of enhancement, including the inhibitory effects of PCE and cDCE, the level of ED concentration, DNAPL configuration, and competition for ED. Such factors need to be considered when contemplating engineered DNAPL bioremediation. Pseudomonas stuzeri KC is an organism that transforms CT to carbon dioxide and chloride without the formation of the hazardous intermediate, chloroform. This is accomplished by production and secretion of a molecule called PDTC. This study was direct ed towards determining how PDTC works. Cu (II) at a ratio of 1:1 Cu to PDTC was found to result in the most rapid CT transformation, confirming that the PDTC-Cu complex is both a reactant and a catalyst in CT transformation. CT degradation requires that the PDTC be in a reduced form, which is generated by contact with cell components. Fe(II) inhibits CT transformation by PDTC. Studies indicated that this inhibition is enhanced by some compound or factor in the supernatant with molecular weight greater than 10,000 Da. We have made progress in determining what this factor might be, but have not yet been able to identify it. In related studies, we found that CT transformation by another organism, Shewanella oneidensis MR1, also involves an excreted factor, but this factor is different from PDTC and results in chloroform transformation as an intermediate. Our studies have indicated that this factor is similar to vitamin K2, and we have also confirmed that vitamin K2 does transform C T into chloroform

  6. Microbial transformation of chlorinated aromatics in sediments

    NARCIS (Netherlands)

    Beurskens, J.E.M.

    1995-01-01

    Numerous contaminants like heavy metals, polycyclic aromatic hydrocarbons (PAHs), chlorinated benzenes (CBs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo- p -dioxins (PCDDs) and polychlorinated furans (PCDFs) are detected in the major rivers in the

  7. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  8. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  9. Dehalogenation of Chlorinated Hydroxybiphenyls by Fungal Laccase

    Science.gov (United States)

    Schultz, Asgard; Jonas, Ulrike; Hammer, Elke; Schauer, Frieder

    2001-01-01

    We have investigated the transformation of chlorinated hydroxybiphenyls by laccase produced by Pycnoporus cinnabarinus. The compounds used were transformed to sparingly water-soluble colored precipitates which were identified by gas chromatography-mass spectrometry as oligomerization products of the chlorinated hydroxybiphenyls. During oligomerization of 2-hydroxy-5-chlorobiphenyl and 3-chloro-4-hydroxybiphenyl, dechlorinated C—C-linked dimers were formed, demonstrating the dehalogenation ability of laccase. In addition to these nonhalogenated dimers, both monohalogenated and dihalogenated dimers were identified. PMID:11526052

  10. Radiolytic removal of trihalomethane in chlorinated seawater

    International Nuclear Information System (INIS)

    Rajamohan, R.; Rajesh, Puspalata; Venugopalan, V.P.; Rangarajan, S.; Natesan, Usha

    2015-01-01

    Biofouling is one of the major operational problems in seawater cooling systems. It is controlled by application of chlorine based biocides in the range of 0.5-2.0 mg L -1 . The bromide in seawater reacts with the added chlorine and forms hypobromous acid. The brominated residual biocides react with natural organic matter present in the seawater, resulting in the formation of trihalomethanes (THM) such as bromoform (CHBr 3 ), dibromochloromethane (CHBr 2 Cl) bromodichloromethane (CHBrCl 2 ). Though THMs represent a small fraction of the added chlorine, they are relatively more persistent than residual chlorine, and hence pose a potential hazard to marine life because of their reported mutagenicity. There have been few reports on removal of THMs from chlorinated seawater. In this work, the efficacy of gamma irradiation technique for the removal of THMs from chlorine-dosed seawater was investigated. Experiments were carried out using seawater collected from Kalpakkam. Irradiation study was conducted in chlorinated (1, 3, and 5 mg L -1 of Cl 2 ) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation using a 60 Co Gamma Chamber 5000. Bromoform showed a faster rate of degradation as compared to other halocarbons like bromodichloromethane and dibromochloromethane. This shows the change in total THM concentration with variation in the radiation dose and initial Cl 2 dosing. When the percentage degradation of all the three trihalomethane species was compared with applied doses, it was found that the maximum reduction occurred at a dose of 2.5 kGy. The reduction was almost similar for all the three doses (1, 3, 5 ppm of Cl 2 ) used for chlorination. With a further increase in radiation dose to 5.0 kGy, a slight increase in reduction was observed

  11. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1994-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  12. Stratospheric chlorine: Blaming it on nature

    International Nuclear Information System (INIS)

    Taube, G.

    1993-01-01

    Much of the bitter public debate over ozone depletion has centered on the claim that chlorofluorocarbons (CFCs) pale into insignificance alongside natural sources of chlorine in the stratosphere. If so, goes the argument, chlorine could not be depleting ozone as atmospheric scientists claim, because the natural sources have been around since time immemorial, and the ozone layer is still there. The claim, put forward in a book by Rogelio Maduro and Ralf Schauerhammer, has since been touted by former Atomic Energy Commissioner Dixy Lee Ray and talk-show host Rush Limbaugh, and it forms the basis of much of the backlash now being felt by atmospheric scientists. The argument is simple: Maduro and Schauerhammer calculate that 600 million tons of chlorine enters the atmosphere annually from seawater, 36 million tons from volcanoes, 8.4 million tons from biomass burning, and 5 million tons from ocean biota. In contrast, CFCs account for a mere 750,000 tons of atmospheric chlorine a year. Besides disputing the numbers, scientists have both theoretical and observational bases for doubting that much of this chlorine is getting into the stratosphere, where it could affect the ozone layer. Linwood Callis of the National Aeronautics and Space Administration's (NASA) Langley Research Center points out one crucial problem with the argument: Chlorine from natural sources is soluble, and so it gets rained out of the lower atmosphere. CFCs, in contrast, are insoluble and inert and thus make it to the stratosphere to release their chlorine. What's more, observations of stratospheric chemistry don't support the idea that natural sources are contributing much to the chlorine there

  13. Chlorinated drinking water for lightweight laying hens

    Directory of Open Access Journals (Sweden)

    A.F. Schneider

    Full Text Available ABSTRACT The study aimed to evaluate the effect of different levels of chlorine in drinking water of laying hens on zootechnical performance, eggs shell quality, hemogasometry levels and calcium content in tibia. 144 Hy-Line laying hens, 61 weeks old, were used distributed in 24 metabolism cages. They were subjected to water diets, for a period of 28 days, using sodium hypochlorite as a chlorine source in order to obtain the following concentrations: 5ppm (control, 20ppm, 50ppm, and 100ppm. Their performance was evaluated through water consumption, feed intake, egg production and weight, egg mass, feed conversion. Shell quality was measured by specific gravity. At the end of the experiment, arterial blood was collected for blood gas level assessment and a poultry of each replicate was sacrificed to obtain tibia and calcium content measurement. There was a water consumption reduction from 20ppm of chlorine and feed intake reduction in poultry receiving water with 100ppm of chlorine. The regression analysis showed that the higher the level of chlorine in water, the higher the reduction in consumption. There were no differences in egg production and weight, egg mass, feed conversion, specific gravity, tibia calcium content, and hemogasometry levels (hydrogenionic potential, carbon dioxide partial pressure, oxygen partial pressure, sodium, potassium, chloride, bicarbonate, carbon dioxide total concentration, anion gap and oxygen saturation. The use of levels above 5ppm of chlorine is not recommended in the water of lightweight laying hens.

  14. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Uptake, turnover and distribution of chlorinated fatty acids in aquatic biota

    Energy Technology Data Exchange (ETDEWEB)

    Bjoern, Helena

    1999-09-01

    Chlorinated fatty acids (CIFAs) are the major contributors of extractable, organically bound chlorine in fish lipids. A known anthropogenic source of CIFAs is chlorine bleached pulp production. Additional anthropogenic sources may exist, e.g., chlorine-containing discharge from industrial and household waste and they may also occur naturally. CIFAs have a wide geographic distribution. They have, for instance, been identified in fish both from Alaskan and Scandinavian waters. In toxicological studies of CIFAs, the most pronounced effects have been found in reproductive related processes. CIFAs have also been shown to disrupt cell membrane functions. The present study was carried out to further characterise the ecotoxicological properties of CIFAs and their presence in biota. To investigate the biological stability of CIFAs, two experiments were carried out using radiolabelled chlorinated and non-chlorinated fatty acids. In both experiments, CIFAs were taken up from food by fish and assimilated to lipids. From the first experiment it was concluded that the chlorinated fatty acid investigated was turned over in the fish to a lower degree than the non-chlorinated analogue. In the second experiment, the transfer of a chlorinated fatty acid was followed over several trophic levels and the chlorinated fatty acid was transferred to the highest trophic level. In samples with differing loads of persistent organic pollutants (POPs) from both fish and marine mammals, high concentrations and diversity of CIFAs were detected. This was also observed in samples with low POP concentration. Chlorohydroxy fatty acids made up a considerable portion of the CIFAs in certain samples, both from limnic fish and marine mammals. CIFAs in fish were found to be bound in complex lipids such as triacylglycerols (storage lipids) and phospholipids, as well as in acyl sterols (membrane lipids). In the marine mammals investigated, high concentrations of CIFAs were mainly bound in phospholipids. If

  16. Vanadium Chloroperoxidases: The Missing Link in the Formation of Chlorinated Compounds and Chloroform in the Terrestrial Environment?

    Science.gov (United States)

    Wever, Ron; Barnett, Phil

    2017-08-17

    It is well established that the majority of chlorinated organic substances found in the terrestrial environment are produced naturally. The presence of these compounds in soils is not limited to a single ecosystem. Natural chlorination is also a widespread phenomenon in grasslands and agricultural soils typical for unforested areas. These chlorinated compounds are formed from chlorination of natural organic matter consisting of very complex chemical structures, such as lignin. Chlorination of several lignin model compounds results in the intermediate formation of trichloroacetyl-containing compounds, which are also found in soils. These decay, in general, through a haloform-type reaction mechanism to CHCl 3 . Upon release into the atmosphere, CHCl 3 will produce chlorine radicals through photolysis, which will, in turn, lead to natural depletion of ozone. There is evidence that fungal chloroperoxidases able to produce HOCl are involved in the chlorination of natural organic matter. The objective of this review is to clarify the role and source of the various chloroperoxidases involved in the natural formation of CHCl 3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spectrometric methods for the determination of chlorine in crude oil and petroleum derivatives — A review

    International Nuclear Information System (INIS)

    Doyle, Adriana; Saavedra, Alvaro; Tristão, Maria Luiza B.; Mendes, Luiz A.N.; Aucélio, Ricardo Q.

    2013-01-01

    Chlorine determination in crude oil is made in order to guarantee that the oil does not contain levels of this element that might cause damages in the oil processing equipment. In petroleum products, the determination of chlorine is made, for instance, to evaluate if there are proper concentrations of organochloride compounds, which are used as additives. Such determinations are currently performed following official guidelines from the ASTM International and from the United States Environmental Protection Agency as well as protocols indicated by the Universal Oil Products. X-ray fluorescence spectroscopy plays an important role in many of these official methods. In contrast, other spectrometric methods based on optical and mass detection are plagued by limitations related to both the fundamental characteristics of non-metals and to the complex sample matrices, which reflects in the small number of articles devoted to these applications. In this review, the current status of the spectrometric methods, especially the role played by X-ray fluorescence spectrometry, is evaluated in terms of the determination of chlorine in crude oil and petroleum derivatives. Comparison of the performance of the methods, limitations and potential new approaches to ensure proper spectrometric determinations of chlorine is indicated. - Highlights: • Critical evaluation of spectrometric methods for chlorine in petroleum products. • Reviews on element determination in petroleum have not address the case of chlorine. • Peculiarities of the spectrometric determination of Cl in petroleum are discussed. • The spectrometric approaches are detailed and compared to the official methods. • New trends in chlorine determination in petroleum products are indicated

  18. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling

    Science.gov (United States)

    Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.

    2010-09-01

    Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is

  19. CHLORINE ABUNDANCES IN COOL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Z. G.; Pilachowski, C. A. [Indiana University Bloomington, Astronomy Department, Swain West 319, 727 East Third Street, Bloomington, IN 47405-7105 (United States); Hinkle, K., E-mail: zmaas@indiana.edu, E-mail: cpilacho@indiana.edu, E-mail: hinkle@noao.edu [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H{sup 35}Cl at 3.69851 μ m. The high-resolution L -band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [{sup 35}Cl/Fe] abundance in stars with −0.72 < [Fe/H] < 0.20 is [{sup 35}Cl/Fe] = (−0.10 ± 0.15) dex. The mean difference between the [{sup 35}Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [{sup 35}Cl/Ca] ratio has an offset of ∼0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H{sup 35}Cl and H{sup 37}Cl could be measured, a {sup 35}Cl/{sup 37}Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  20. Effect of chlorination on the development of marine biofilms dominated by diatoms

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Jagadeesan, V.

    , and Thalassionema did not increase in density after chlorine treatment. It was also demonstrated that diatoms can colonize, grow and photosynthesize on chlorine-treated surfaces. Under pulse chlorination (treatment every 6 h), irrespective of chlorine concentration...

  1. Chlorination of organophosphorus pesticides in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Acero, Juan L. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: jlacero@unex.es; Benitez, F. Javier; Real, Francisco J.; Gonzalez, Manuel [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-05-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 {sup o}C and pH 7 were determined to be 110.9, 0.004 and 191.6 M{sup -1} s{sup -1} for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L{sup -1} was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.

  2. Chlorination of organophosphorus pesticides in natural waters

    International Nuclear Information System (INIS)

    Acero, Juan L.; Benitez, F. Javier; Real, Francisco J.; Gonzalez, Manuel

    2008-01-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 o C and pH 7 were determined to be 110.9, 0.004 and 191.6 M -1 s -1 for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L -1 was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety

  3. Automatic analyzing device for chlorine ion

    International Nuclear Information System (INIS)

    Sugibayashi, Shinji; Morikawa, Yoshitake; Fukase, Kazuo; Kashima, Hiromasa.

    1997-01-01

    The present invention provides a device of automatically analyzing a trance amount of chlorine ions contained in feedwater, condensate and reactor water of a BWR type power plant. Namely, zero-adjustment or span calibration in this device is conducted as follows. (1) A standard chlorine ion liquid is supplied from a tank to a mixer by a constant volume pump, and the liquid is diluted and mixed with purified water to form a standard liquid. (2) The pH of the standard liquid is adjusted by a pH adjuster. (3) The standard liquid is supplied to an electrode cell to conduct zero adjustment or span calibration. Chlorine ions in a specimen are measured by the device of the present invention as follows. (1) The specimen is supplied to a head tank through a line filter. (2) The pH of the specimen is adjusted by a pH adjuster. (3) The specimen is supplied to an electrode cell to electrically measure the concentration of the chlorine ions in the specimen. The device of the present invention can automatically analyze trance amount of chlorine ions at a high accuracy, thereby capable of improving the sensitivity, reducing an operator's burden and radiation exposure. (I.S.)

  4. The study of chlorination of nickel oxide by chlorine and calcium chloride in the presence of active additives

    OpenAIRE

    Ilic, Ilija; Krstev, Boris; Stopic, Srecko; Cerovic, K

    1997-01-01

    Chlorination of nickel oxide by chlorine and calcium chloride in the presence of C, BaS and S were studied, both experimentally and theoretically. Chlorination of nickel oxide by chlorine was carried out in the temperature range 573-873 K and by calcium chloride in the temperature range 1023-1223 K. The results obtained of the chlorination of nickel oxide by chlorine showed that C has the strongest and S the weakest effect on the process. Addition of BaS has a favorable effect on the chlorina...

  5. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hao, E-mail: realking163@163.com [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China); Wang, Chao; Shi, Jiaqi [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Chen, Lei [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China)

    2014-08-30

    Highlights: • Cd has different effects on joint toxicity when in different concentrations. • The toxicity of most binary mixtures decreases when Cd concentration rises. • Different QSAR models are developed to predict the joint toxicity. • Descriptors in QSARs can help to elucidate the joint toxicity mechanism. • Van der Waals’ force or complexation may reduce the toxicity of mixtures. - Abstract: The individual IC{sub 50} (the concentrations causing a 50% inhibition of bioluminescence after 15 min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TU{sub Total}. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (E{sub LUMO}). When combined with different concentrations of Cd, the toxicity was related to the energy difference (E{sub HOMO} − E{sub LUMO}) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.

  6. Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract.

    Science.gov (United States)

    Wybraniec, Sławomir; Starzak, Karolina; Szneler, Edward; Pietrzkowski, Zbigniew

    2016-11-15

    A comparative chromatographic evaluation of chlorinated decarboxylated betanins and betanidins generated under activity of hypochlorous acid exerted upon these highly antioxidative potent decarboxylated pigments derived from natural sources was performed by LC-DAD-ESI-MS/MS. Comparison of the chromatographic profiles of the chlorinated pigments revealed two different directions of retention changes in relation to the corresponding substrates. Chlorination of all betacyanins that are decarboxylated at carbon C-17 results in an increase of their retention times. In contrast, all other pigments (the non-decarboxylated betacyanins as well as 2-decarboxy- and 15-decarboxy-derivatives) exhibit lower retention after chlorination. During further chromatographic experiments based upon chemical transformation of the related pigments (decarboxylation and deglucosylation), the compounds' structures were confirmed. The elaborated method for determination of chlorinated pigments enabled analysis of a chlorinated red beet root extract that was submitted to the MPO/H 2 O 2 /Cl - system acting under inflammation-like conditions (pH 5). This indicates a promising possibility for measurement of these chlorinated pigments as indicators of specific inflammatory states wherein betacyanins and decarboxylated betacyanins act as hypochlorite scavengers. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of aging on chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael Gustavo; Amorim, Milena Kowalczuk Manosso; Hadich, Tayan Vieira; Fernandes, Isabela Cristina; Fernandes, Gabriel Ferreira; Rossi, Diego; Rangel, Elidiane Cipriano; Durrant, Steven Frederick, E-mail: steve@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos

    2017-07-15

    Thin films deposited from propanol-chloroform-argon mixtures by plasma enhanced chemical vapor deposition at different partial pressures of chloroform in the feed, C{sub Cl}, were characterized after two years of aging and their characteristics compared with their as-deposited properties. Film thickness decreased and surface roughness increased with aging. Surface contact angles also increased with aging for the chlorinated films. For the film deposited with 40% chloroform in the feed the contact angle increased about 14°. Transmission infrared and Energy dispersive X-ray spectroscopy revealed that the films gain carbonyl and hydroxyl groups and lose chlorine and hydrogen on aging. Chlorination appears to make the films more durable. Delamination was observed for the unchlorinated films. (author)

  8. Investigation of molybdenum pentachloride interaction with chlorine

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Vovkotrub, Eh.G.; Strekalovskij, V.N.

    1993-01-01

    In Raman spectra of molybdenum pentachloride solutions in liquid chlorine lines were recorded in case of 397, 312, 410, 217 and 180 cm - 1 vibrations of ν 1 (A 1 '), ν 2 (A 1 '), ν 5 (E'), ν 6 (E') and ν 8 (E'') monomer (symmetry D 3h ) molecules of MoCl 5 . Interaction of molten molybdenum pentachloride with chlorine at increased (up to 6 MPa) pressures of Cl 2 was studied. In Raman spectra of its vapour distillation in liquid chlorine alongside with MoCl 5 lines appearance of new lines at 363 and 272 cm -1 , similar in their frequency to the ones calculated for the vibrations ν 1 (A 1g ) and ν 2 (E g ) of MoCl 6 molecules (symmetry O h ), was observed

  9. The effects of low level chlorination and chlorine dioxide on biofouling control in a once-through service water system

    International Nuclear Information System (INIS)

    Garrett, W.E. Jr.; Laylor, M.M.

    1995-01-01

    Continuous chlorination has been successfully used for the control of Corbicula at a nuclear power plant located on the Chattahoochee River in southeastern Alabama, since 1986. The purpose of this study was to investigate further minimization of chlorine usage and determine if chlorine dioxide is a feasible alternative. Four continuous biocide treatments were evaluated for macro and microfouling control effectiveness, operational feasibility, and environmental acceptability. One semi-continuous chlorination treatment was also evaluated for macrofouling control effectiveness. Higher treatment residuals were possible with chlorine dioxide than with chlorination due to the river discharge limitations. At the levels tested, continuous chlorine dioxide was significantly more effective in providing both macro and microfouling control. Semi-continuous chlorination was just as effective as continuous chlorination for controlling macrofouling. The Corbicula treatment programs that were tested should all provide sufficient control for zebra mussels. Chlorine dioxide was not as cost effective as chlorination for providing macrofouling control. The semi-continuous treatment save 50% on chemical usage and will allow for the simultaneous treatment of two service water systems. Chlorite levels produced during the chlorine dioxide treatments were found to be environmentally acceptable. Levels of trihalomethanes in the chlorinated service water were less than the maximum levels allowed in drinking water

  10. Occupational exposure to chlorinated and petroleum solvents and mycosis fungoides

    DEFF Research Database (Denmark)

    Morales-Suárez-Varela, Maria M; Olsen, Jørn; Villeneuve, Sara

    2013-01-01

    To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF).......To evaluate the potential association between occupational exposure to chlorinated and petroleum solvents and mycosis fungoides (MF)....

  11. Blends of caprolactam/caprolactone copolymers and chlorinated polymers

    NARCIS (Netherlands)

    Alberda van Ekenstein, G.O.R.; Deuring, H.; ten Brinke, G.; Ellis, T.S.

    The phase behaviour of blends of chlorinated polyethylene, polyvinyl chloride (PVC) and chlorinated PVC with random copolymers of caprolactone and caprolactam has been investigated and the results correlated with a binary interaction model. The known miscibility of polycaprolactone in the

  12. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  13. Chlorin derivatives for potential use in BNCT

    International Nuclear Information System (INIS)

    Osterloh, J.; Neumann, M.; Ruf, S.; Gabel, D.

    2000-01-01

    A series of BSH containing alkyl ether homologues of pytropheophorbide a has been prepared. Cellular uptake studies show that is possible to accumulate 2.2 mg of the heptyl ether after 2 h of incubation with a 0.04 mM solution. That means a boron amount of 330 μg per gram cell mass. Cytotoxicity studies allow radiobiological experiments. The patterns of subcellular localisation visualised by fluorescence microscopy and CLSM show that much of the chlorins is located close to the nucleus and in the nucleus membrane. However, no chlorin was found in the nucleus. (author)

  14. Chlorinated tyrosine derivatives in insect cuticle

    DEFF Research Database (Denmark)

    Andersen, Svend Olav

    2004-01-01

    A method for quantitative measurement of 3-monochlorotyrosine and 3,5-dichlorotyrosine in insect cuticles is described, and it is used for determination of their distribution in various cuticular regions in nymphs and adults of the desert locust, Schistocerca gregaria. The two chlorinated tyrosine......, not-yet sclerotized cuticle of adult femur and tibia, the amounts increased rapidly during the first 24 h after ecdysis and more slowly during the next two weeks. Control analyses using stable isotope dilution mass spectrometry have confirmed that the chlorinated tyrosines are not artifacts formed...

  15. Determination of carbon chlorine and fluorine in uranium dioxide

    International Nuclear Information System (INIS)

    Kijko, N.I.; Timofeev, G.A.

    1983-01-01

    Techniques of chlorine and fluorine determination and simultaneous determination of carbon and chlorine in electrolytic uranium dioxide are described. The method of chlorine and fluorine determination is based on their separation during oxide pyrohydrolysis with subsequent spectrophotometric analysis of condensate. Lower determination limits constitute 1 μg for chlorine, 0.5 μg for fluorine. Relative standard deviation when the content of impurities analyzed is 10 -3 % constitutes 0.05-0.07

  16. 21 CFR 177.2430 - Polyether resins, chlorinated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyether resins, chlorinated. 177.2430 Section 177... Components of Articles Intended for Repeated Use § 177.2430 Polyether resins, chlorinated. Chlorinated polyether resins may be safely used as articles or components of articles intended for repeated use in...

  17. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    Science.gov (United States)

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  18. Chlorine/chloride based processes for uranium ores

    International Nuclear Information System (INIS)

    1980-11-01

    The CE Lummus Minerals Division was commissioned by The Department of Supply and Services to develop order-of-magnitude capital and operating cost estimates for chlorine/chloride-based processes for uranium ores. The processes are designed to remove substantially all radioactive consituents from the ores to render the waste products harmless. Two processes were selected, one for a typical low grade ore (2 lb. U 3 O 8 /ton ore) and one for a high grade ore (50 lbs U 3 O 8 /ton). For the low grade ore a hydrochloric acid leaching process was chosen. For high grade ore, a more complex process, including gaseous chlorination, was selected. Capital cost estimates were compiled from information obtained from vendors for the specified equipment. Building cost estimates and the piping, electrical and instrumentation costs were developed from the plant layout. Utility diagrams and mass balances were used for estimating utilities and consumables. Detailed descriptions of the bases for capital and operating cost estimates are given

  19. Physical chemistry of the chlorination reactions of metals and alloys

    International Nuclear Information System (INIS)

    De Micco, Georgina

    2007-01-01

    This thesis has contributed towards the knowledge of complex systems.The chlorination reactions are non-catalytic solid-gas heterogeneous reactions which, in addition to the difficulties associated with the reactions occurring in an interface, have the particular features of chlorides compounds and their interactions.The questions arising from this type of study can not be solved by the application of an individual analysis technique.From the experimental point of view it is complicated, and many instrumental techniques need to be applied in order to obtain significant results as well as meaningful interpretations.The system under study is the chlorination of ternary and binary alloys containing Al, Cu and Zn and the pure metals, as these elements belong to the spent nuclear fuel cladding.The aim of the research has been to develop a process that eliminates most of the aluminium, which is the more abundant specie. In this way, the amount of material to be conditioned (vitrified) is reduced.The objectives proposed for each system have been achieved, and the results obtained can also be applied to similar systems for metal recycling [es

  20. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Science.gov (United States)

    2010-04-01

    ... Chlorine in Vinyl Chloride Polymers and Copolymers,” which is incorporated by reference (Copies may be..., Philadelphia, PA 19428-2959, or may be examined at the National Archives and Records Administration (NARA). For... percent in plastic articles prepared from polyvinyl chloride and/or from vinyl chloride copolymers...

  1. 46 CFR 151.50-31 - Chlorine.

    Science.gov (United States)

    2010-10-01

    ... inside diameter manhole, fitted with a cover located above the maximum liquid level and as close as... accessary equipment shall be of a type suitable for use with chlorine and shall be made of metal, corrosion... shutoff valves and with safety relief valves. All valves shall be bolted to the cover or covers specified...

  2. Thermodynamic consideration on chlorination of uraniferous phosphorite

    International Nuclear Information System (INIS)

    Itagaki, Kimio; Tozawa, Kazuteru; Taki, Tomihiro; Hirono, Shuichiro.

    1989-01-01

    The uranium ore of low grade which has apatite as a main mineral, but is different from the phosphorite used as the raw material for phosphoric acid production, exists in large amount in South America and Africa continents, and the importance of its effective utilization as future uranium resources is recognized. The Power Reactor and Nuclear Fuel Development Corp. took up the establishment of the treatment techniques to make this ore into resources as the subject of a project, and proposed the process of volatilizing the uranium in the ore as the chloride and recovering it, and at present, it attempts the experiment on the chlorination treatment. In this paper, the thermodynamic examination on the feasibility of this process, the optimum condition for leaving calcium existing in a large amount in the ore as the phosphate without chlorination and recovering only uranium by chlorination and volatilization, the phase reaction equilibrium chart and the calculation method according to thermodynamics concerning the behavior of chlorination of accompanying elements such as iron, silicon and aluminum and the effect of moisture in the ore are reported. (K.I.)

  3. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  4. A study on chlorination of uranium metal using ammonium chloride

    International Nuclear Information System (INIS)

    Eun, H.C.; Kim, T.J.; Jang, J.H.; Kim, G.Y.; Lee, S.J.; Hur, J.M.

    2017-01-01

    In this study, the chlorination of uranium metal using ammonium chloride (NH 4 Cl) was conducted to derive an easy and simple uranium chloride production method without impurities. In thermodynamic equilibrium calculations, it was predicted that only uranium chlorides can be produced by the reactions between uranium metal and NH 4 Cl. Experimental conditions for the chlorination of uranium metal were determined using a chlorination test of cerium metal using NH 4 Cl. It was confirmed that UCl 3 and UCl 4 in the form of particles as uranium chlorination products can be obtained from the chlorination method using NH 4 Cl. (author)

  5. Development of a Chlorine Dosing Strategy for Fresh Produce Washing Process to Maintain Microbial Food Safety and Minimize Residual Chlorine.

    Science.gov (United States)

    Chen, Xi; Hung, Yen-Con

    2018-05-22

    The residual free chlorine level in fresh produce wash solution is closely correlated to the chemical and microbial safety of produce. Excess amount of free chlorine can quickly react with organic matters to form hazardous disinfection by-products (DBPs) above EPA-permitted levels, whereas deficiency of residual chlorine in produce wash solution may result in incompletely removing pathogens on produce. The purpose of this study was to develop a chlorine dosing strategy to optimize the chlorine dosage during produce washing process without impacting the microbial safety of fresh produce. Prediction equations were developed to estimate free chlorine needed to reach targeted residual chlorine at various sanitizer pH and organic loads, and then validated using fresh-cut iceberg lettuce and whole strawberries in an automated produce washer. Validation results showed that equations successfully predicted the initial chlorine concentration needed to achieve residual chlorine at 10, 30, 60, and 90 mg/L for both lettuce and strawberry washing processes, with the root mean squared error at 4.45 mg/L. The Escherichia coli O157:H7 reductions only slightly increased on iceberg lettuce and strawberries with residual chlorine increasing from 10 to 90 mg/L, indicating that lowering residual chlorine to 10 mg/L would not compromise the antimicrobial efficacy of chlorine-based sanitizer. Based on the prediction equations and E. coli O157:H7 reduction results, a chlorine dosing strategy was developed to help the produce industry to maintain microbial inactivation efficacy without adding excess amount of free chlorine. The chlorine dosing strategy can be used for fresh produce washing process to enhance the microbial food safety and minimize the DBPs formation potential. © 2018 Institute of Food Technologists®.

  6. Toxic effects of chlorinated cake flour in rats.

    Science.gov (United States)

    Cunningham, H M; Lawrence, G A; Tryphonas, L

    1977-05-01

    Four experiments were conducted using weanling Wistar rats to determine whether chlorinated cake flour or its constituents were toxic. Levels of 0.2 and 1.0% chlorine added to unbleached cake flour significantly (p less than 0.01) reduced growth rate by 20.7 and 85.2% and increased liver weight relative to body weight by 16.7 and 25.3%, respectively. Lipids extracted from flour chlorinated at the same levels had similar effects. Rat chow diets containing 0.2 and 0.6% chlorine in the form of chlorinated wheat gluten reduced growth rate and increased liver weight as a percentage of body weight. A rat chow diet containing 0.2% chlorine as chlorinated flour lipids increased absolute liver weight by 40%, kidney by 20%, and heart by 10% compared to pair-fed controls.

  7. Relation between chlorine with the quality of crude water

    International Nuclear Information System (INIS)

    Lim, Fang Yee; Mohd Pauzi Abdullah

    2008-01-01

    Chlorine as disinfection agent in drinking water was used widely since it was successfully been practiced in drinking water in Jersey City, 1908. Mostly, water treatment plants in Malaysia were using chlorine as disinfection agent to kill pathogen and contaminated materials that can be dangerous to consumer. Because of chlorine was a strongly disinfection agent, it also can react with another chemical components such as manganese, hydrogen, sulfides, ammonia and phenol in water. These reactions happen very fast, and chlorine will not react as disinfection agent unless all the organic and inorganic substitution presented in water reacts with chlorine. These reactions between components will increase demand of chlorine in water. The demand of chlorine in water must be filled before the free radical chlorine occurred. These free radical chlorine will decay into hypochlorous acid and hypochlorite ion that so important in disinfection process to kill pathogens and pollutants in water. Most of water treatment plant to maintain free chlorine up to 0.2 mg/ L in distribution system to consumer. These researches involved determination of parameters that can be trusted to react with the chlorine in nine sampling station along Semenyih River and four stations in water treatment plants. These parameters were determined from ammonia, cyanides, sulfides, phenol, phosphorus, nitrite, manganese, iron and sum of organic carbons. Overall, these researches concluded that ammonia and sum of organic carbons were the most compounds that react with the chlorine to produce tryhalometane and chloramines. Besides that, the concentration of cyanides compounds, sulfide, phenol, phosphorus, nitrite, manganese and iron also decrease after the chlorination process. Results can used to evaluate demanding levels of chlorine in Semenyih River. (author)

  8. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Onstad, Gretchen D; Kull, Tomas P J; Metcalf, James S; Acero, Juan L; von Gunten, Urs

    2007-08-01

    As the World Health Organization (WHO) progresses with provisional Drinking Water Guidelines of 1 microg/L for microcystin-LR and a proposed Guideline of 1 microg/L for cylindrospermopsin, efficient treatment strategies are needed to prevent cyanotoxins such as these from reaching consumers. A kinetic database has been compiled for the oxidative treatment of three cyanotoxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ANTX) with ozone, chlorine, chlorine dioxide and permanganate. This kinetic database contains rate constants not previously reported and determined in the present work (e.g. for permanganate oxidation of ANTX and chlorine dioxide oxidation of CYN and ANTX), together with previously published rate constants for the remaining oxidation processes. Second-order rate constants measured in pure aqueous solutions of these toxins could be used in a kinetic model to predict the toxin oxidation efficiency of ozone, chlorine, chlorine dioxide and permanganate when applied to natural waters. Oxidants were applied to water from a eutrophic Swiss lake (Lake Greifensee) in static-dose testing and dynamic time-resolved experiments to confirm predictions from the kinetic database, and to investigate the effects of a natural matrix on toxin oxidation and by-product formation. Overall, permanganate can effectively oxidize ANTX and MC-LR, while chlorine will oxidize CYN and MC-LR and ozone is capable of oxidizing all three toxins with the highest rate. The formation of trihalomethanes (THMs) in the treated water may be a restriction to the application of sufficiently high-chlorine doses.

  9. Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection.

    Science.gov (United States)

    Xiao, Ming; Wei, Dongbin; Yin, Junxia; Wei, Guohua; Du, Yuguo

    2013-10-15

    The UV-filter BP-4 (2-hydroxy-4-methoxybenzophenone-5-sulfonic acid) has been frequently observed in the environment, showing high potentials to invade drinking water, swimming water, or wastewater reclamation treatment systems. With the help of high performance liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy, 10 new products from free chlorine-promoted BP-4 disinfection have been disclosed and their possible transformation routes have been investigated. The first route is chlorine substitution of BP-4 and its transformation products, forming mono-, di-, and tri-chlorinated BP-4 analogs. The second is Baeyer-Villiger-Type oxidation, converting diphenyl ketone to phenyl ester derivatives. The third is ester hydrolysis, generating corresponding phenolic and benzoic products. The fourth is decarboxylation, replacing the carboxyl group by chloride in the benzoic-type intermediate. The fifth is desulfonation, degrading the sulfonic group through an alternative chlorine substitution on the benzene ring. Orthogonal experiments have been established to investigate the species transformed from BP-4 at different pH values and free available chlorine (FAC) dosages. The reaction pathways are strongly dependent on pH conditions, while an excessive amount of FAC eliminates BP-4 to the smaller molecules. The initial transformation of BP-4 in chlorination system follows pseudo-first-order kinetics, and its half-lives ranged from 7.48 s to 1.26 × 10(2) s. More importantly, we have observed that the FAC-treated BP-4 aqueous solution might increase the genotoxic potentials due to the generation of chlorinated disinfection by-products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Antiradiation effectiveness of the chlorine C

    International Nuclear Information System (INIS)

    Bubnova, O.M.; Grechka, I.I.; Znamensky, V.V.

    1996-01-01

    At present ever more attention of the experimenters in the field of search of high-effective antiray means - is directed to development of preparations from bio-active substances of a natural origin. In this connection all greater interest is caused by researches of antiray activity of these compounds, distinguished, as a rule, from known preparations of synthetic manufacture of low toxicity, absence of expressed collateral effects and possibility of course application. It has biological (antiray) activity in dozes 5-10 mg/kg and chlorine C which is derivative of chlorophil A. At present it passes tests in oncology. Porphyrines (synthetic and natural) are recently subjected to wide study as potential medicinal means, due to their ability to be accumulated in bodies of the reticulo-endothelial system and proliferous tissues, as well as their physical-chemical characteristics (fluorescence, photosensitizing action, colouring). All this testifies for the benefit of perspective use of porphyrin for treatment and diagnostics of tumors. According to the above described properties of porphyrines there is that fact, that for some of them radioprotective properties are revealed during the injections as well as before and after radiation treatment. The above said has formed the basis for study of antiray properties of the chlorine C during the experiments on small-sized laboratory animals. Antiradiation effectivity of chlorine C was studied on the mice (CBA x C57 B1) F1. Chlorine C was applied in a wide range of dozes with its' use in 3 variants: before radiation treatment, after radiation treatment, combined (before and after radiation treatment). Radioprotective activity of chlorine C reduces at an increase of a time of the injection before radiation treatment and at other ways of injection (intramuscularly, subcutaneously, per os). Studies of medical activity of chlorine C in experiments on mice have shown, that the compound does not possess medical activity. The death of

  11. Organohalogen products from chlorination of cooling water at nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few μg/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 μg/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables

  12. A proposal to use chlorine-36 for monitoring the movement of radionuclides from nuclear explosions

    International Nuclear Information System (INIS)

    Phillips, F.M.; Davis, S.N.; Kubik, P.

    1990-01-01

    Chlorine-36 has been produced in large amounts by hundreds of nuclear explosions on the Nevada Test Site as well as 12 off-site explosions at eight locations in five states. Continued monitoring of the redistribution of radionuclides by subsurface water is of concern in most of the areas affected by the detonations. Chlorine-36 has the following advantages as a built-in tracer for this redistribution: its mobility is equal to or greater than water, its long half-life assures its continued usefulness over long periods, collection and storage of samples is simple, it is not subject to vapor transport at ordinary temperatures, its natural background is very low, and it does not form insoluble precipitates. Chlorine-36 from the Gnome event near Carlsbad, New Mexico, illustrates how 36 Cl can be used to help study the redistribution of radionuclides in the soil profile. Chlorine-36 is also potentially useful as a tracer to study movement of contaminants around large nuclear reactor complexes and near repositories for radioactive waste

  13. Dispersion of chlorine at seven southern California coastal generating stations

    International Nuclear Information System (INIS)

    Grove, R.S.

    1983-01-01

    The objectives of this study were to (1) determine chlorine concentrations and exposure time gradients of chlorine through seven coastal generating stations and (2) assess the dispersion characteristics of chlorine in the receiving waters. Remarkable variability in chlorine injection concentrations, condenser outlet concentrations, outfall concentrations, and dissipation rates between generating stations and, to a lesser extent, between surveys at the same generating station was found in this chlorine monitoring study. Other than quite consistent low injection and correspondingly low outfall concentrations at San Onofre (a generating station that had one of the more rigorous chlorine control and minimization programs in effect at the time), no recognizable patterns of chlorination could be discerned in the data. Over half of the outfall chlorine surveys had chlorine concentrations below 0.08 mg/L, which is the accepted level of detection for the titrator being used in the surveys. The post-outfall dilution calculations further showed that the chlorine that does enter the receiving water is initially diluted with entrained ambient water at a ratio of 5.2:19.0

  14. Spectrographic determination of chlorine and fluorine

    International Nuclear Information System (INIS)

    Contamin, G.

    1965-04-01

    Experimental conditions have been investigated in order to obtain the highest sensitivity in spectrographic determination of chlorine and fluorine using the Fassel method of excitation in an inert atmosphere. The influence of the nature of the atmosphere, of the discharge conditions and of the matrix material has been investigated. The following results have been established: 1. chlorine determination is definitely possible: a working curve has been drawn between 10 μg and 100 μg, the detection limit being around 5 μg; 2. fluorine determination is not satisfactory: the detection limit is still of the order of 80 μg. The best operating conditions have been defined for both elements. (author) [fr

  15. Chlorine-36 dating of continental evaporites

    International Nuclear Information System (INIS)

    Huang Qi

    1990-01-01

    Teh chloring-36 production, principle and experimental method of 36 Cl dating are briefly described. The ages calculated from the 36 Cl/Cl ratios are generally concordant with those obtained by using 14 C, 230 Th and magnetostratigraphic techniques. It confirms the constancy of the chlorine input ratio over the last million years and implys that 36 Cl can provide accurate dates on continental saline sediments

  16. Microbial transformation of chlorinated aromatics in sediments

    OpenAIRE

    Beurskens, J.E.M.

    1995-01-01

    Numerous contaminants like heavy metals, polycyclic aromatic hydrocarbons (PAHs), chlorinated benzenes (CBs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo- p -dioxins (PCDDs) and polychlorinated furans (PCDFs) are detected in the major rivers in the Netherlands. These contaminants have relatively low aqueous solubilities and bind substantially to the suspended solids in river water. Due to decreasing stream velocities in the downstream stretches of a...

  17. Accumulation of chlorinated benzenes in earthworms

    Science.gov (United States)

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  18. Chlorination and Carbochlorination of Cerium Oxide

    International Nuclear Information System (INIS)

    Esquivel, Marcelo; Bohe, Ana; Pasquevich, Daniel

    2000-01-01

    The chlorination and carbochlorination of cerium oxide were studied by thermogravimetry under controlled atmosphere (TG) in the 700 0 C 950 0 C temperature range.Both reactants and products were analyzed by X-ray diffraction (RX), scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). Thermodynamic calculations were performed by computer assisted software.The chlorination starts at a temperature close to 800 0 C.This reaction involves the simultaneous formation and evaporation of CeCl3.Both processes control the reaction rate and their kinetic may not be easily separated.The apparent chlorination activation energy in the 850 0 C-950 0 C temperature range is 172 to 5 kJ/ mole.Carbon transforms the CeO2-Cl2 into a more reactive system: CeO2-C-Cl2, where the effects of the carbon content, total flow rate and temperature were analyzed.The carbochlorination starting temperature is 700 0 C.This reaction is completed in one step controlled by mass transfer with an apparent activation energy of 56 to 5 kJ/mole in the 850 0 C-950 0 C temperature range

  19. Radiolytic degradation of chlorinated hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing-Zheng; Yamamoto, Takeshi [Fukui Univ., Faculty of Engineering, Dept. of Materials Science and Engineering, Fukui (Japan); Hatashita, Masanori [The Wakasa Wan Energy Research Center, Research Dept., Tsuruga, Fukui (Japan)

    2002-11-01

    Radiolytic degradation of chlorinated hydrocarbons (chloroform, trichloroethylene, and tetrachloroethylene) in water was carried out. Water solutions of the chlorinated hydrocarbons with different concentrations were irradiated with {gamma} rays. Concentrations of methane, ethane, CO, CO{sub 2}, H{sub 2}, and O{sub 2} after the irradiation were determined by gas chromatography. Concentration of chloride ion in the irradiated sample was determined by ion chromatography. Experimental results show that radiolytic degradation of the chlorinated hydrocarbon increased with the radiation dose. Methane, ethane, CO{sub 2}, H{sub 2}, and Cl{sup -} concentrations increased with the radiation dose and the sample concentration. On the other hand, O{sub 2} concentration decreased with the radiation dose and the sample concentration. When sample concentration was high, dissolved oxygen might be not enough for converting most of the C atoms in the sample into CO{sub 2}. This resulted in a low decomposition ratio. Addition of H{sub 2}O{sub 2} as an oxygen resource could increase the decomposition ratio greatly. Furthermore, gas chromatography-mass spectroscopy was applied to identify some intermediates of the radiolytic dehalogenation. Radiolytic degradation mechanisms are also discussed. (author)

  20. Radioimmunoassay for chlorinated dibenzo-p-dioxins

    International Nuclear Information System (INIS)

    Albro, P.W.; Chae, K.; Luster, M.I.; Mckinney, J.D.

    1980-01-01

    The invention provides a double-antibody radioimmunoassay method for the determination of chlorinated dibenzo-p-dioxins, particularly, 2,3,7,8-tetrachlorodibenzo-p-dioxin, in environmental samples including animal tissues such as monkey liver and adipose tissues. The limit of detection is approximately 25 picograms for 2,3,7,8-tetrachlorodibenzo-pdioxin. Assuming an appropriate cleanup procedure is used, chlorinated dibenzofurans are the only likely interferences, and these can be distinguished through the use of two antisers of different dibenzo-furan/dibenzodioxin selectivities. The invention includes the preparation of a reproducible antigen, an appropriate radiolabeled hapten, and effective sample extracts. A feature of the assay method is the use of a nonionic detergent (e.g., ''cutscum'' or ''triton x-305'') to solubilize the extremely hydrophobic dibenzo-p-dioxins in a manner permitting their binding by antibodies. The immunoassay is applicable to screening samples in order to minimize the demand for mass spectrometric screening, and to routine monitoring for exposure to known chlorinated dibenzo-p-dioxins in potentially contaminated environments

  1. Identification of intermediates leading to chloroform and C-4 diacids in the chlorination of humic acid

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leer, E.W.B. de; Erkelens, Corrie; Galan, L.

    1985-01-01

    The chlorination of terrestrial humic acid was studied at pH 7. 2 with varying chlorine to carbon ratios. The principal products are chloroform, di- and trichloroacetic acid, and chlorinated C-4 diacids. At a high chlorine dose many new chlorination products were detected, among them

  2. Features of copper etching in chlorine-argon plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Svettsov, V.I.

    1995-01-01

    Chlorine mixtures with inert gases including argon exhibit promise as plasma feed gases for etching metals and semiconductors in the microelectronics industry. It was shown that even strong dilution of reactive gas with an inert gas (up to 80-90% of the latter) has virtually no effect in decreasing the rate of plasma etching of materials such as silicon and gallium arsenide, compared to etching in pure chlorine. The principal reactive species responsible for etching these substrates are chlorine atoms therefore, a possible explanation of the effect is an increase in the rate of bulk generation of chlorine atoms in the presence of argon. In this work the authors studied the influence of argon on the rate of copper etching in chlorine, because copper, unlike the above substrates, reacts effectively not only with the atoms but with the ground-state molecules of chlorine

  3. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang (Malaysia)

    2016-07-19

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extent of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.

  4. Isothermal gas chromatography of short-lived Hf isotopes and element 104 in chlorinating, oxygen containing carrier gas

    Energy Technology Data Exchange (ETDEWEB)

    Jost, D.T.; Dressler, R.; Eichler, B.; Piguet, D.; Tuerler, A.; Gaeggeler, H.W.; Gaertner, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Grantz, M.; Huebener, S. [FZR (Germany); Buklanov, G.; Lebedev, V.; Timkhin, S.; Vedeneev, M.V.; Yakushev, A.; Zvara, I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    Based on thermodynamic state functions retention times of Hf and element 104 were calculated in the case of the simple adsorption of the tetrachlorides and the case of a complex adsorption involving a substitution process with oxygen in the chlorinating gas. Preliminary results for {sup 261}104 and Hf are shown. (author) 1 fig., 1 tab., 3 refs.

  5. Regiospecific synthesis of polychlorinated dibenzofurans with chlorine-37 excess

    International Nuclear Information System (INIS)

    Yoonseok Chang; Deinzer, M.L.; Oregon State Univ., Corvallis, OR

    1991-01-01

    The synthesis of regiospecifically chlorine-37 labeled di-and trichlorodibenzofurans is described. The strategy for introducing a chlorine-37 label regiospecifically has been to reduce the nitro derivative to the corresponding amine. The amine is converted to the diazonium salt with t-butyl nitrite, and this product is converted to the final product via the Sandmeyer reaction with chlorine-37 labeled cuprous chloride. (author)

  6. The removal of phenols from oily wastewater by chlorine dioxide

    OpenAIRE

    Hsu, Chung-Jung

    1988-01-01

    Treatability studies were performed on oily wastewaters produced by petroleum and canning industries. Chlorine dioxide was used for the removal of phenolic compounds from these oily wastewaters. Most of phenolic compounds can be destroyed by chlorine dioxide within 15 minutes if CI02-to-phenol ratios of higher than 5.0 are provided. Factors such as pH, temperature, and COD have little effect on phenol removal. The effectiveness of chlorine dioxide treatment depends critic...

  7. Chlorine gas processing of oxide nuclear fuel particles containing thorium

    International Nuclear Information System (INIS)

    Knotik, K.; Bildstein, H.; Falta, G.; Wagner, H.

    Experimental studies on the chloride extraction and separation of U and Th from coated Th--U oxide particles are reported. After a description of the chlorination equipment and the experimental procedures, the results are discussed. The yield of U is determined as a function of the reaction temperature. The results of a thermogravimetric analysis of the chlorination of uranium carbide and thorium carbides are reported and used to establish the reaction mechanism for the chlorination

  8. Electricity Storage and the Hydrogen-Chlorine Fuel Cell

    Science.gov (United States)

    Rugolo, Jason Steven

    Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to respond to every flick of a switch, constantly adjusting power production to meet demand. The dispatchable electricity production technologies that currently enable this type of market are growing unpopular because of their carbon emissions. Popular methods to move away from fossil fuels are wind and solar power. These sources also happen to be the least dispatchable. Electricity storage can solve that problem. By overproducing during sunlight to store energy for evening use, or storing during windy periods for delivery in future calm ones, electricity storage has the potential to allow intermittent renewable sources to constitute a large portion of our electricity mix. I investigate the variability of wind in Chapter 2, and show that the variability is not significantly reduced by geographically distributing power production over the entire country of the Netherlands. In Chapter 3, I calculate the required characteristics of a linear-response, constant activity storage technology to map wind and solar production scenarios onto several different supply scenarios for a range of specified system efficiencies. I show that solid electrode batteries have two orders of magnitude too little energy per unit power to be well suited for renewable balancing and emphasize the value of the modular separation between the power and energy components of regenerative fuel cell technologies. In Chapter 4 I introduce the regenerative hydrogen-chlorine fuel cell (rHCFC), which is a specific technology that shows promise for the above applications. In collaboration with Sustainable Innovations, we have made and tested 6 different rHCFCs. In order to understand the relative importance of the different inefficiencies in the rHCFC, Chapter 5 introduces a complex temperature and concentration dependent model of the r

  9. Post monitoring of a cyclodextrin remeditated chlorinated solvent contaminated aquifer

    Science.gov (United States)

    Blanford, W. J.

    2006-12-01

    Hydroxypropyl-â-cyclodextrin (HPâCD) has been tested successfully in the laboratory and in the field for enhanced flushing of low-polarity contaminants from aquifers. The cyclodextrin molecule forms a toroidal structure, which has a hydrophobic cavity. Within this cavity, organic compounds of appropriate shape and size can form inclusion complexes, which is the basis for the use of cyclodextrin in groundwater remediation. The hydrophilic exterior of the molecule makes cyclodextrin highly water-soluble. The solubility of cyclodextrins can be further enhanced by adding functional groups, such as hydroxypropyl groups, to the cyclodextrin core. The aqueous solubility of HPâCD exceeds 950 g/L. These high solubilities are advantageous for field applications because they permit relatively high concentrations of the flushing agent. In order for cyclodextrin to become a feasible remediative alternative, it must be demonstrate a short term resistance to biodegradation during field application, but ultimately biodegrade so as not to pose a long term presence in the aquifer. The potential for degradation of cyclodextrin as well as changes in the chlorinated solvents and groundwater geochemistry were examined during the post monitoring of a field demonstration in a shallow aquifer at Little Creek Naval Amphibious Base in Virginia. It was found that a portion of the cyclodextrin remaining in the aquifer after the cessation of field activities biodegraded during the 425 days of post monitoring. This degradation also led to the degradation of the chlorinated solvents trichloroethylene and 1,1-trichloroethane through both biological and chemical processes. The aquifer remained anaerobic with average dissolved oxygen levels below 0.5 mg/L. Dissolved nitrate and sulfate concentrations within the cyclodextrin plume decreased due their being used as terminal electron acceptors during the degradation of the cyclodextrin. The concentrations of total iron at the field site showed no

  10. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  11. Sorption of iodine, chlorine, technetium and cesium in soil

    International Nuclear Information System (INIS)

    Soederlund, M.; Lusa, M.; Lehto, J.; Hakanen, M.; Vaaramaa, K.

    2011-01-01

    The safety assessment of final disposal of spent nuclear fuel will include an estimate for the behavior of waste nuclides in the biosphere. As a part of this estimate also the sorption of radioactive iodine, chlorine, technetium and cesium in soil is to be considered. The chemistry and the sorption of these radionuclides in soils are described in this literature survey. Behavior of I-129, Cl-36 and Tc-99 in the environment is of great interest because of their long half-lives and relatively high mobilities. The importance of Cs-135 arises from its high content in spent nuclear fuel and long physical half-life, even though it is considered relatively immobile in soil. Factors affecting the migration and sorption of radionuclides in soils can be divided into elemental and soil specific parameters. The most important elemental factor is the speciation of the element, which is influenced by the soil redox potential, pH and complex forming ligands. Soil micro-organisms can either serve as sorbents for radionuclides or affect their speciation by altering the prevailing soil redox conditions. Soil organic matter content and mineral properties have a marked influence on the retention of radionuclides. The sorption of anionic radionuclides such as I-, Cl- and TcO 4 - is pronounced in the presence of organic matter. Clay minerals are known to bound cesium effectively. The effect of speciation of radioactive iodine, chlorine, technetium and cesium in soil is considered in this study, as well as the effect of soil micro-organisms, organic matter and mineral properties. (orig.)

  12. DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination.

    Science.gov (United States)

    Aghdam, Ehsan; Xiang, Yingying; Sun, Jianliang; Shang, Chii; Yang, Xin; Fang, Jingyun

    2017-08-01

    The formation of disinfection by-products (DBPs) from the degradation of N,N-diethyl-3-methyl benzoyl amide (DEET) and ibuprofen (IBP) by the ultraviolet irradiation (UV)/chlorine process and subsequent post-chlorination was investigated and compared with the UV/H 2 O 2 process. The pseudo first-order rate constants of the degradation of DEET and IBP by the UV/chlorine process were 2 and 3.1 times higher than those by the UV/H 2 O 2 process, respectively, under the tested conditions. This was due to the significant contributions of both reactive chlorine species (RCS) and hydroxyl radicals (HO) in the UV/chlorine process. Trichloromethane, 1,1,1-trichloro-2-propanone and dichloroacetic acid were the major known DBPs formed after 90% of both DEET and IBP that were degraded by the UV/chlorine process. Their yields increased by over 50% after subsequent 1-day post-chlorination. The detected DBPs after the degradation of DEET and IBP comprised 13.5% and 19.8% of total organic chlorine (TOCl), respectively, and the proportions increased to 19.8% and 33.9% after subsequent chlorination, respectively. In comparison to the UV/H 2 O 2 process accompanied with post-chlorination, the formation of DBPs and TOCl in the UV/chlorine process together with post-chlorination was 5%-63% higher, likely due to the generation of more DBP precursors from the attack of RCS, in addition to HO. Copyright © 2017. Published by Elsevier B.V.

  13. Pulse radiolysis investigations on the oxidation of bilirubin by chlorinated peroxyl radicals (Preprint No. RC.18)

    International Nuclear Information System (INIS)

    Mohan, Hari; Gopinathan, C.

    1989-01-01

    Chlorinated peroxyl radicals were observed to oxidize bilirubin. The rate constants, estimated from the formation kinetics of bilirubin cation, were observed to decrease with decrease in the chlorine substitution of various chlorinated peroxyl radicals. (author)

  14. Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents.

    Science.gov (United States)

    Boudjellaba, D; Dron, J; Revenko, G; Démelas, C; Boudenne, J-L

    2016-01-15

    Chlorination is one of the most widely used techniques for biofouling control in large industrial units, leading to the formation of halogenated chlorination by-products (CBPs). This study was carried out to evaluate the distribution and the dispersion of these compounds within an industrialised bay hosting multiple chlorination discharges issued from various industrial processes. The water column was sampled at the surface and at 7 m depth (or bottom) in 24 stations for the analysis of CBPs, and muscle samples from 15 conger eel (Conger conger) were also investigated. Temperature and salinity profiles supported the identification of the chlorination releases, with potentially complex patterns. Chemical analyses showed that bromoform was the most abundant CBP, ranging from 0.5 to 2.2 μg L(-1) away from outlets (up to 10 km distance), and up to 18.6 μg L(-1) in a liquefied natural gas (LNG) regasification plume. However, CBP distributions were not homogeneous, halophenols being prominent in a power station outlet and dibromoacetonitrile in more remote stations. A seasonal effect was identified as fewer stations revealed CBPs in summer, probably due to the air and water temperatures increases favouring volatilisation and reactivity. A simple risk assessment of the 11 identified CBPs showed that 7 compounds concentrations were above the potential risk levels to the local marine environment. Finally, conger eel muscles presented relatively high levels of 2,4,6-tribromophenol, traducing a generalised impregnation of the Gulf of Fos to CBPs and a global bioconcentration factor of 25 was determined for this compound. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  16. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  17. A current driven capacitively coupled chlorine discharge

    International Nuclear Information System (INIS)

    Huang, Shuo; Gudmundsson, J T

    2014-01-01

    The effect of driving current, driving frequency and secondary electrons on capacitively coupled chlorine discharge is systematically investigated using a hybrid approach consisting of a particle-in-cell/Monte Carlo simulation and a volume-averaged global model. The driving current is varied from 20 to 80 A m −2 , the driving frequency is varied from 13.56 to 60 MHz and the secondary electron emission coefficient is varied from 0.0 to 0.4. Key plasma parameters including electron energy probability function, electron heating rate, ion energy and angular distributions are explored and their variations with control parameters are analyzed and compared with other discharges. Furthermore, we extend our study to dual-frequency (DF) capacitively coupled chlorine discharge by adding a low-frequency current source and explore the effect of the low-frequency source on the discharge. The low-frequency current density is increased from 0 to 4 A m −2 . The flux of Cl 2 + ions to the surface increases only slightly while the average energy of Cl 2 + ions to the surface increases almost linearly with increasing low-frequency current, which shows possible independent control of the flux and energy of Cl 2 + ions by varying the low-frequency current in a DF capacitively coupled chlorine discharge. However, the increase in the flux of Cl + ions with increasing low-frequency current, which is mainly due to the increased dissociation fraction of the background gas caused by extra power supplied by the low-frequency source, is undesirable. (paper)

  18. Sonolysis of chlorinated compounds in aqueous solution.

    Science.gov (United States)

    Lim, Myung Hee; Kim, Seung Hyun; Kim, Young Uk; Khim, Jeehyeong

    2007-02-01

    To examine the reaction rates of sonochemical degradation of aqueous phase carbon tetrachloride, trichloroethylene and 1,2,3-trichloropropane at various temperatures, power intensities, and saturating gases, the batch tests were carried out. The degradations of chlorinated hydrocarbons were analyzed as pseudo first order reactions and their reaction rate constants were in the range of 10(-1)-10(-3)/min. The reaction was fast at the low temperature with higher power intensity. Also, the reaction went fast with the saturating gas with high specific heat ratio, high solubility and low thermal conductivity. The main mechanism of destruction of chemicals was believed the thermal combustion in the bubble.

  19. Chlorine and bromine solar neutrino experiments

    International Nuclear Information System (INIS)

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1985-01-01

    The solar neutrino experiment based upon the neutrino capture reaction 37 Cl (ν, e - ) 37 Ar has been in operation in the Homestake Gold Mine at Lead, South Dakota since 1967. The results of this experiment are well known, and have been reported most recently to the solar neutrino conference at Lead in 1984. We report here the latest results from this experiment. A radiochemical neutrino detector based upon the neutrino capture reaction 81 Br (ν, e - ) 81 Kr* → 81 Kr has recently been shown to be feasible. Our plans for performing a full scale test of the method using the Homestake chlorine detector are discussed briefly. 8 refs

  20. Biological Chlorine Cycling in Arctic Peat Soils

    Science.gov (United States)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    Soils of the Arctic tundra near Barrow, Alaska are waterlogged and anoxic throughout most of the profile due to underlying permafrost. Microbial communities in these soils are adapted for the dominant anaerobic conditions and are capable of a surprising diversity of metabolic pathways. Anaerobic respiration in this environment warrants further study, particularly in the realm of electron cycling involving chlorine, which preliminary data suggest may play an important role in arctic anaerobic soil respiration. For decades, Cl was rarely studied outside of the context of solvent-contaminated sites due to the widely held belief that it is an inert element. However, Cl has increasingly become recognized as a metabolic player in microbial communities and soil cycling processes. Organic chlorinated compounds (Clorg) can be made by various organisms and used metabolically by others, such as serving as electron acceptors for microbes performing organohalide respiration. Sequencing our arctic soil samples has uncovered multiple genera of microorganisms capable of participating in many Cl-cycling processes including organohalide respiration, chlorinated hydrocarbon degradation, and perchlorate reduction. Metagenomic analysis of these soils has revealed genes for key enzymes of Cl-related metabolic processes such as dehalogenases and haloperoxidases, and close matches to genomes of known organohalide respiring microorganisms from the Dehalococcoides, Dechloromonas, Carboxydothermus, and Anaeromyxobacter genera. A TOX-100 Chlorine Analyzer was used to quantify total Cl in arctic soils, and these data were examined further to separate levels of inorganic Cl compounds and Clorg. Levels of Clorg increased with soil organic matter content, although total Cl levels lack this trend. X-ray Absorption Near Edge Structure (XANES) was used to provide information on the structure of Clorg in arctic soils, showing great diversity with Cl bound to both aromatic and alkyl groups

  1. Investigation of the chlorine A-Center in polycrystalline CdTe layers by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Christian; Metzner, Heiner; Haedrich, Mathias [Institut fuer Festkoerperphysik, Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Schley, Pascal [Institut fuer Physik, Technische Universitaet Ilmenau, 98684 Ilmenau (Germany); Goldhahn, Ruediger [Institut fuer Experimentelle Physik, Universitaet Magdeburg, 39016 Magdeburg (Germany)

    2012-07-01

    Polycrystalline CdTe is a well known absorber material for thin film solar cells. However, the improvement of CdTe-based solar cells for industrial application is mainly based on empirical enhancements of certain process steps which are not concerning the absorber itself. Hence, the defect structure of CdTe is still not understood in detail. One of the most discussed defects in CdTe is the so called chlorine A-center. In general, the A-Center describes a defect complex of the intrinsic cadmium vacancy defect and an extrinsic impurity. By means of photoluminescence spectroscopy at temperatures of 5 K we investigated the behavior of the chlorine A-center under different CdTe activation techniques. Therefore, we were able to determine the electronic level of that defect and to analyze its influence on the crystal quality and the functionality of solar cells that were prepared of the corresponding samples.

  2. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice.

    Science.gov (United States)

    Sasada, Tatsunari; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Takakura, Yuji; Kawaguchi, Yasuo; Sotomaru, Yusuke; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2015-01-01

    The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox), abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox)) instability, respectively--were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox) mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences

  3. Bacterial oxidation of low-chlorinated compounds under anoxic conditions

    NARCIS (Netherlands)

    Dijk, J.A.

    2005-01-01

    Chlorinated hydrocarbons belong to the most frequently encountered contaminants in soil and groundwater. Many of them were found to be toxic and recalcitrant, which causes a potential threat to the environment. Therefore, it is of great importance that sites contaminated with chlorinated

  4. 78 FR 66767 - Chlorinated Isocyanurates From China and Japan

    Science.gov (United States)

    2013-11-06

    ...)] Chlorinated Isocyanurates From China and Japan Determinations On the basis of the record \\1\\ developed in the... reason of imports from China and Japan of chlorinated isocyanurates, provided for in subheadings 2933.69... (LTFV) from Japan and subsidized by the Government of China.\\2\\ \\1\\ The record is defined in sec. 207.2...

  5. Chlorine-containing natural compounds in higher plants

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1986-01-01

    More than 130 chlorine-containing compounds have been isolated from higher plants and ferns; about half are polyacetylenes, thiophenes and sesquiterpene lactones from the Asteraceae. A chlorinated chlorophyll may be an important part of photosystem 1. High biological activity is found in 4...

  6. Dense chlorinated solvents and other DNAPLs in groundwater

    DEFF Research Database (Denmark)

    Broholm, K.

    1996-01-01

    Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996......Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996...

  7. UASB reactor effluent disinfection by ozone and chlorine

    NARCIS (Netherlands)

    Ribeiro da Silvia, G.H.; Bruning, H.; Gerrity, D.; Daniel, L.A.

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L-1, followed by chlorine doses of 10, 20 and 30

  8. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  9. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    International Nuclear Information System (INIS)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-01-01

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  10. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    Science.gov (United States)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  11. Preliminary GRS Measurement of Chlorine Distribution on Surface of Mars

    Science.gov (United States)

    Keller, J. M.; Boynton, W. V.; Taylor, G. J.; Hamara, D.; Janes, D. M.; Kerry, K.

    2003-12-01

    Ongoing measurements with the Gamma Ray Spectrometer (GRS) aboard Mars Odyssey provide preliminary detection of chlorine at the surface of Mars. Summing all data since boom deployment and using a forward calculation model, we estimate values for chlorine concentration at 5° resolution. Rebinning this data and smoothing with a 15-degree-radius boxcar filter reveal regions of noticeable chlorine enrichment at scales larger than the original 5° resolution and allow for preliminary comparison with previous Mars datasets. Analyzing chlorine concentrations within 30 degrees of the equator, we find a negative correlation with thermal inertia (R2=0.55) and positive correlation with albedo (R2=0.52), indicating that chlorine is associated with fine, non-rock surface materials. Although possibly a smoothing artifact, the spatial correlation is more noticeable in the region covering Tharsis and Amazonis than around Arabia and Elysium. Additionally, a noticeable region of chlorine enrichment appears west of Tharsis Montes ( ˜0 to 20N, ˜110 to 150W) and chlorine concentration is estimated to vary in the equatorial region by over a factor of two. A simplified two-component model involving chlorine-poor rocks and a homogenous chlorine-rich fine material requires rock abundance to vary from zero to over 50%, a result inconsistent with previous measurements and models. In addition to variations in rock composition and distribution, substantial variations in chlorine content of various types of fine materials including dust, sand, and duricrust appear important in explaining this preliminary observation. Surprisingly, visual comparison of surface units mapped by Christensen and Moore (1992) does not show enrichment in chlorine associated with regions of indurated surfaces, where cementation has been proposed. Rather, Tharsis, a region of active deposition with proposed mantling of 0.1 to 2 meters of recent dust (Christensen 1986), shows the greatest chlorine signal. In light of

  12. Effects of short-chain chlorinated paraffins on soil organisms.

    Science.gov (United States)

    Bezchlebová, Jitka; Cernohlávková, Jitka; Kobeticová, Klára; Lána, Jan; Sochová, Ivana; Hofman, Jakub

    2007-06-01

    Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230 mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28 mg/kg was estimated for the soil environment, based on our data.

  13. Release of chlorine from biomass at gasification conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, E.; Stroemberg, B. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1997-05-01

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O{sub 2}, H{sub 2}O and CO{sub 2} had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO{sub 2} increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  14. Release of chlorine from biomass at gasification conditions

    International Nuclear Information System (INIS)

    Bjoerkman, E.; Stroemberg, B.

    1997-05-01

    The objective of the project was to investigate the influence of different gasifying atmospheres on the release of chlorine from biomass during gasification conditions. Furthermore, the purpose was also to try and identify the formed chloro compounds. The results showed that O 2 , H 2 O and CO 2 had negligible effect on the chlorine release at temperatures under 700 deg C. At temperatures above 800 deg C the reactivity towards CO 2 increased and could be seen as higher chlorine release and less solid residue. No chloro organic compounds (aliphatic one to six carbons or aromatic one to two rings) could be detected in the tar or the fuel gas produced during pyrolysis/gasifying. On the other hand, comparable amounts of chlorinated benzenes were found in the cooling section during combustion of lucerne and of synthetic waste, indicating that oxygen is essential for chlorination reactions. 11 refs, 4 figs, 1 tab

  15. Detecting chlorinated hydrocarbon residues: Rachel Carson's villains.

    Science.gov (United States)

    Travis, Anthony S

    2012-07-01

    In 1962, Rachel Carson's Silent Spring drew the public's attention to the deleterious effects of chlorinated hydrocarbons employed as economic poisons in agriculture. However, she did not discuss how their residues could be routinely identified and quantified. In part, this was because the introduction of instruments for use in environmental analysis had only just begun, and she was probably unaware of their existence. The development of the instrumental methods began in industry, particularly at Dow and Shell, in the mid-1950s. Dow scientists, by combining mass spectrometry with gas chromatography, developed the most powerful technique, then and now, for the separation, quantitation and identification of chlorinated hydrocarbons. Shell scientists were no less innovative, particularly with the application of highly sensitive gas chromatography detectors to trace analysis. The first of these detectors, the electron capture detector, was invented by James Lovelock at the National Institute of Medical Research, North London, at the end of the 1950s. Around the same time, Dale Coulson in the USA developed his microcoulometric detector.

  16. Bioremediation of chlorinated solvents and diesel soils

    International Nuclear Information System (INIS)

    Huismann, S.S.; Peterson, M.A.; Jardine, R.J.

    1995-01-01

    The US Army, in a cooperative effort with the Tennessee Valley Authority (TVA) and its cooperator, ENSR, performed an innovative enhanced bioremediation project at Fort Gillem in Atlanta, Georgia. The objective of the project was to remediate six hundred cubic yards of soil affected by a mixture of chlorinated compounds and petroleum hydrocarbons which posed a threat to uppermost groundwater and private drinking water wells. ENSR completed a demonstration project to measure the effects of bioremediation on both chlorinated compounds (primarily TCE) and petroleum hydrocarbons (number-sign 2 diesel). Contaminated soil was placed on top of a bermed polyethylene liner to construct an ex-situ biovault. Nutrients were added to the soil as it was loaded onto the liner. Contaminated soil was also used to construct a control vault. A methane barrier cover was placed over both piles. The cover was designed to prevent short circuiting of induced airflow in and around the enhanced pile, and to prevent the release of fugitive emissions from either pile

  17. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Osenbrueck, K.; Heidinger, M.; Voropaev, A.; Ertl, S.; Eichinger, L.

    2002-01-01

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13 C/ 12 C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  19. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    Science.gov (United States)

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Ultrafast measurements of chlorine dioxide photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ludowise, P.D.

    1997-08-01

    Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chapter 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay, the signal

  1. Key Factors Controlling the Applicability and Efficiency of Bioremediation of Chlorinated Ethenes In Situ

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.

    2012-12-01

    Bioremediation has been considered as one of environmentally friendly and cost effective approaches for cleaning up the sites polluted by organic contaminants, such as chlorinated ethenes. Although bioremediation, in its widest sense, is not new, and many researches have been performed on bioremediation of different kinds of pollutants, an effective design and implication of in situ bioremediation still remains a challenging problem because of the complexity. Many factors may affect the applicability and efficiency of bioremediation of chlorinated ethenes in situ, which include the type and concentration of contaminants, biological, geological and hydro-geological conditions of the site, physical and chemical characteristics of groundwater and soils to be treated, as well as the constraints in engineering. In this presentation, an overview together with a detailed discussion on each factor will be provided. The influences of individual factors are discussed using the data obtained or cited from different sites and experiments, and thus under different environmental conditions. The results of this study illustrated that 1) the establishment of microbial consortium is of crucial importance for a complete degradation of chlorinated ethenes, 2) in situ control of favorable conditions for increasing microbial activities for bio-degradation through a designed pathway is the key to success, 3) the focus of a successful remediation system is to design an effective delivery process that is capable of producing adequate amendment mixing of contaminant-degrading bacteria, appropriate concentrations of electron acceptors, electron donors, and microbial nutrients in the subsurface treatment area.

  2. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles; Graves, Duane

    2015-01-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

  3. The treatment of iodine and chlorine chemistry in the risk assessment of deep radioactive waste disposal

    International Nuclear Information System (INIS)

    Jones, Michael A.

    1992-01-01

    The predicted contribution from 129 I, 131 I and 36 Cl to the radiological risk from a radioactive waste repository may be enhanced by the assumption of limited retardation in the near field and geosphere. However, migration of these radionuclides may be affected by their chemical speciation and retarded by a range of sorption processes. The chemical behaviour of iodine and chlorine is determined emphasizing i) aqueous speciations, ii) sorption onto inorganic substrates, and iii) the role of organic matter and microbes. Recommendations to enhance the methodology include i) consideration of aqueous speciation of iodine, both metal and organic complexes, ii) mechanistic simulation of iodine sorption by ion exchange and electrostatic/covalent adsorption, iii) simulation of enzymatically enhanced sorption of iodine and chlorine onto organic substrates, iv) enhancement of HMIP K d databases to include iodine and chlorine data for the geosphere and biosphere. A well defined programme of additional data collection, modelling studies and experimental investigations is recommended to achieve these enhancements. (author)

  4. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-01-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  5. Radiation-Initiated Chlorination of 1, 2-Dichloroethane

    Energy Technology Data Exchange (ETDEWEB)

    Danno, A.; Abe, T.; Washino, M.; Souda, T.; Shimada, K. [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Watanuki-machi, Takasaki-shi, Gunma-ken (Japan)

    1969-12-15

    Radiation-initiated chlorination of 1,2-dichloroethane was carried out with a batch system to study the chlorination reaction in the laboratory and also with a flow system to obtain information on its scale-up. It was found that the direct chlorination of 1,2-dichloroethane in the presence of gamma radiation takes place by a free-radical chain reaction with a high G-value of the order of 10{sup 5}. Successive chlorination of 1,2-dichloroethane gives 1,1, 2-trichloroethane, 1,1,1, 2- and 1,1, 2, 2-tetrachloroethane, pentachloroethane and hexachloroethane. No products other than these polychloro ethanes were detected. The composition of the reaction products depends on the degree of chlorination; it is independent of the dose rate and the chlorine feed rate. A promising application of this process is to produce trichloroethylene and perchloroethylene by thermal dehydrochlorination of a mixture of tetrachloroethane and pentachloroethane. The optimum conditions of producing these compounds with high yields depend on the feed rate of 1, 2-dichloroethane and chlorine gas, the dose rate and the reaction temperature. A pilot experimental facility with a 2-litre reaction vessel has been completed and is now in operation. (author)

  6. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  7. [Toxicity and influencing factors of liquid chlorine on chironomid larvae].

    Science.gov (United States)

    Sun, Xing-Bin; Cui, Fu-Yi; Zhang, Jin-Song; Guo, Zhao-Hai; Xu, Feng; Liu, Li-Jun

    2005-09-01

    The excessive propagation of Chironomid larvae (red worm) in the sedimentation tanks is a difficult problem for the normal function of waterworks. The toxic effect of liquid chlorine on the different instar larvae of Chironomid was studied using distilled water as test sample. Furthermore, the effect of pH value, organic matter content, ammonia nitrogen, and algae content on toxicity of liquid chlorine was observed. The results show that the tolerance of Chironomid larvae to liquid chlorine is strengthened with the increase in instar. The 24h semi-lethal concentration (LC50) of liquid chlorine to the 4th instar larvae of Chironomid is 3.39 mg/L. Low pH value and high algae content are helpful to improve the toxic effect of liquid chlorine to Chironomid larvae. In neutral water body, the increase in organic matter content results in the decrease in the death rate of Chironomid larvae. The toxicity of liquid chlorine differs greatly in different concentrations of ammonia nitrogen. The death rate of the 4th instar larvae of Chironomid in raw water is higher by contrast with that in sedimentation tanks water for 24h disposal with various amount of liquid chlorine.

  8. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    International Nuclear Information System (INIS)

    Pipon, Y.; Bererd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrezic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-01-01

    The radiation enhanced diffusion of chlorine in UO 2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36 Cl, present as an impurity in UO 2 , 37 Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127 I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 x 10 -14 cm 2 s -1 , reflect the high mobility of chlorine in UO 2 during irradiation with fission products

  9. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    Science.gov (United States)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  10. Experimental lifetimes for Mg-like chlorine

    International Nuclear Information System (INIS)

    Engstroem, L.; Bengtsson, P.; Jupen, C.; Livingston, A.E.; Martinson, I.

    1995-01-01

    The results of beam-foil measurements of lifetimes for low-lying singlet levels in Mg-like chlorine, Cl VI, are presented. The decay curves were analyzed by means of the arbitrarily normalized decay curve method, combined with the recently developed CANYL code, which facilitates studies of decay chains. Cascade corrected data are presented for the levels 3s3p 1 P, 3p 2 1 S, 3p 2 1 D, and 3s3d 1 D, whereas less rigorous lifetime values, based on curve fits, were obtained for the 3p3d 1 D, 3p3d 1 F, and 3s4f 1 F levels. The data are in excellent agreement with recent theoretical values, and previous discrepancies between experiment and theory for short-lived states have been removed

  11. Preparation of 1,1,2,2-tetrachloroethane and trichloroethylene labelled with radioactive chlorine

    International Nuclear Information System (INIS)

    Smirnova, G.E.; Shalygin, V.A.; Zel'venskij, Ya.D.; Prosyanov, N.N.

    1980-01-01

    The chemical synthesis of 1,1,2,2-tetrachloroethane is carried out. 1,2,2,2-tetrachloroethane is labelled with radioactive chlorine by chlorinating the mixture of cis-, transisomeres of dichlorethylene with elementary chlorine. Trichloroethylene labelled with radioactive chlorine is prepared by the effect of alkali alcohol solution on radioactive 1,1,2,2-tetrachloroethane

  12. Corrosion of copper by chlorine trifluoride

    International Nuclear Information System (INIS)

    Vincent, L.

    1966-01-01

    The research described called for a considerable amount of preliminary development of the test methods and equipment in order that the various measurements and observations could be carried out without contaminating either the samples or this highly reactive gas. The chlorine trifluoride was highly purified before use, its purity being checked by gas-phase chromatography, micro-sublimation and infrared spectrography. The tests were carried out on copper samples of various purities, in particular a 99.999 per cent copper in the form of mono-crystals. They involved kinetic measurements and the characterization of corrosion products under different temperature and pressure conditions. The kinetics showed reactions of the same order of magnitude as those obtained with elementary fluorine. At atmospheric pressure there occurs formation of cupric fluoride and cuprous chloride. The presence of this latter product shows that it is not possible to consider ClF 3 simply as a fluorinating agent. At low pressures an unknown product has been characterized. There are strong grounds for believing that it is the unstable cuprous fluoride which it has not yet been possible to isolate. A germination phenomenon has been shown to exist indicating an analogy between the initial phases of fluorination and those of oxidation. Important effects resulting from the dissociation of the copper fluorides and the solubility of chlorine in this metal have been demonstrated. Finally, tests have shown the considerable influence of the purity of the gas phase and of the nature of the reaction vessel walls on the rates of corrosion which can in certain cases be increased by a factor of several powers of ten. (author) [fr

  13. Chlorination of niobium oxide in the presence of carbon monoxide

    International Nuclear Information System (INIS)

    Freitas, L.R. de

    1984-01-01

    The chlorination kinetics of niobium pentoxide in the presence of carbon monoxide between 500-800 0 C of temperature is studied. The following variable that influences on the reaction rate are analysed: gas flow, geometry and volume of the Nb 2 O 5 samples, reaction temperature and composition of the chlorinated mixture. At the same time, two other materials were studied: the CaO.Nb 2 O 5 (synthetized in laboratory) and pyrochlorine concentrates. The three materials are compared for the chlorination method used. (M.A.C.) [pt

  14. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Flensborg, Julie Pauline; Shoulaifar, Tooran Khazraie

    2014-01-01

    The release of chlorine (Cl) and sulfur (S) during biomass torrefaction and pyrolysis has been investigated via experiments in two laboratory-scale reactors: a rotating reactor and a fixed bed reactor. Six biomasses with different chemical compositions covering a wide range of ash content and ash...... reporting that biomasses with a lower chlorine content release a higher fraction of chlorine during the pyrolysis process. A significant sulfur release (about 60%) was observed from the six biomasses investigated at 350 degrees C. The initial sulfur content in the biomass did not influence the fraction...

  15. Chlorine and bromine contents in tobacco and tobacco smoke

    International Nuclear Information System (INIS)

    Haesaenen, E.; Manninen, P.K.G.; Himberg, K.; Vaeaetaeinen, V.

    1990-01-01

    The chlorine and bromine contents in tobacco and tobacco smoke in both the particulate and gaseous phases were studied by neutron activation analysis. Eleven popular brands of western filter cigarettes were tested. Methyl chloride and methyl bromide concentrations were measured in the gaseous phase in two leading brands in Finland. The results suggest that the mainstream smoke from one cigarette conveys into the lungs about 150 μg chlorine and about 5 μg bromine. Probably most of the chlorine and bromine is in the form of organic compounds and the main components are methyl chloride and methyl bromide. (author) 14 refs.; 1 tab

  16. Effect of Chlorine on Giardia lamblia Cyst Viability

    OpenAIRE

    Jarroll, Edward L.; Bingham, Alan K.; Meyer, Ernest A.

    1981-01-01

    The effect of chlorine concentration on Giardia lamblia cyst viability was tested under a variety of conditions. The ability of Giardia cysts to undergo excystation was used as the criterion of viability. The experimental variables employed included temperature (25, 15, and 5°C), pH (6, 7, and 8), chlorine-cyst contact time (10, 30, and 60 min), and chlorine concentration (1 to 8 mg/liter). In the pH range studied, cyst survival generally was observed to increase as buffer pH increased. Water...

  17. Nonaqueous chlorination of uranium metal in tributyl phosphate

    International Nuclear Information System (INIS)

    Buchikhin, E.P.; Kuznetsov, A.Yu.; Shatalov, V.V.; Vidanov, V.L.; Chekmarev, A.M.

    2005-01-01

    Low-temperature (30-50 deg C) chlorination of uranium metal in the TBP-TCE-Cl 2 system (TCE = tetrachloroethylene) was studied. Dissolution of uranium in the dipolar aprotic solvent proceeds with formation of U(IV) compounds. The activation energy of this process is 31.24 kJ mol -1 , and relative reaction order with respect to Cl 2 is 2. The effect of TBP concentration on chlorination was examined. The chlorination rate sharply increases at a water content in the TBP-TCE system of 0.2- 0.6 vol % [ru

  18. Effect of the temperature and the chlorine pressure, over the aluminium chlorides obtained by direct chlorination of the 6061 alloy

    International Nuclear Information System (INIS)

    Alvarez, Fabiola J.; Bohe, Ana E.; Pasquevich, Daniel M.

    2003-01-01

    The aluminium chloride is synthesized by direct chlorination of aluminium, in agreement with the following reaction: Al(s) + 3/2 Cl 2 AlCl 3 (s,g).The present work focuses on the preparation of aluminium chlorides by two methods: (a) Chlorination of 6061 aluminium alloy with gaseous chlorine in sealed containers, filled with different pressures of gas, from 0.8 to 74 Kpa and in the range of temperature between 200 0 and 500 0 C.(b) Chlorination of the same alloy in chlorine flow between 150 0 and 400 0 C.In the sealed systems, the hexahydrated aluminium trichloride predominated over the anhydrous form. For pressures lower than 14 Kpa and temperatures under 250 0 C, the chloride didn't appear.The residues were rich in aluminium, chlorine and magnesium.In the other systems, the anhydrous chloride was found in the areas of the reactor of temperatures above 100 0 C, for all the thermal treatments. The waste was composed by CrCl 3 and AlCl 3 .6H 2 O.The influence of the chlorine pressures and the heating temperature over the characteristics of the product, was studied.The characterization techniques were x-ray diffraction and energy dispersive spectroscopy, and the evolution of the structure was followed by scanning electron microscopy

  19. Aqueous chemistry of chlorine: chemistry, analysis, and environmental fate of reactive oxidant species

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Carpenter, J.H.

    1982-01-01

    This report reviews (1) the chemistry of chlorine relative to its reactions in fresh, estuarine, and marine waters and the formation of reactive oxidant species; (2) the current status of chemical analysis of reactive chlorine species and chlorine-produced oxidant species relative to analysis of low concentrations (microgram-per-liter range) and determination of accuracy and precision of methods; and (3) the environmental fate of chlorine and chlorine-produced oxidant species.

  20. Assessing the Impact of Chlorinated-Solvent Sites on Metropolitan Groundwater Resources

    OpenAIRE

    Brusseau, Mark L.; Narter, Matthew

    2013-01-01

    Chlorinated-solvent compounds are among the most common groundwater contaminants in the U.S.A. The majority of the many sites contaminated by chlorinated-solvent compounds are located in metropolitan areas, and most such areas have one or more chlorinated-solvent contaminated sites. Thus, contamination of groundwater by chlorinated-solvent compounds may pose a potential risk to the sustainability of potable water supplies for many metropolitan areas. The impact of chlorinated-solvent sites on...

  1. MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS

    Science.gov (United States)

    Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...

  2. Chlorine inactivation of fungal spores on cereal grains.

    Science.gov (United States)

    Andrews, S; Pardoel, D; Harun, A; Treloar, T

    1997-04-01

    Although 0.4% chlorine for 2 min has been recommended for surface disinfection of food samples before direct plating for fungal enumeration, this procedure may not be adequate for highly contaminated products. The effectiveness of a range of chlorine solutions was investigated using barley samples artificially contaminated with four different concentrations of Aspergillus flavus. A. niger, A. ochraceus, Eurotium repens, Penicillium brevicompactum P. chrysogenum and Cladosporium cladosporioides. At initial contamination levels greater than 10(4)/g, 0.4% chlorine did not inactivate sufficient spores to produce less than 20% contamination. Of the test fungi, ascospores of E. repens were the most resistant to chlorine inactivation, whereas the conidia of C. cladosporioides were the most sensitive. Rinsing the samples with 70% ethanol improved the effectiveness of the recommended surface disinfection procedure. However, some ethanol appears to permeate into the grains and may inactivate sensitive internal fungi, although a minimal effect only was observed on wheat infected with Alternaria.

  3. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    Science.gov (United States)

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  4. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  5. Determination of chlorine in graphite by combustion-ion chromatography

    International Nuclear Information System (INIS)

    Chen Lianzhong; Watanabe, Kazuo; Itoh, Mitsuo.

    1995-09-01

    A combustion/ion chromatographic method has been studied for the sensitive determination of chlorine in graphite. A graphite sample was burnt at 900degC in a silica reaction tube at an oxygen flow rate of 200 ml/min. Chlorine evolved was absorbed in 20 ml of a 0.1 mM sodium carbonate solution. The solution was evaporated to dryness. The residue was dissolved with a small volume of water. Chlorine in the solution was determined using ion chromatography. The method was applied to JAERI graphite certified reference materials and practical graphite materials. The detection limit was about 0.8 μgCl/g for a 2.0 g sample. The precision was about 2.5% (relative standard deviation) for samples with chlorine content of 70 μg/g level. The method is also usable for coal samples. (author)

  6. The chlorination kinetics of zirconium dioxide mixed with carbon black

    International Nuclear Information System (INIS)

    Movahedian, A.; Raygan, Sh.; Pourabdoli, M.

    2011-01-01

    In this research, the effects of chlorine gas at different chlorine partial pressures and carbon concentrations on the carbochlorination of zirconia were studied. It was found that in briquettes containing 18.7 %wt carbon, in a chlorine partial pressure range of 0.25-0.75 atm and for a reacted fraction of less than 0.7, the chemical reaction model was dominant for the carbochlorination process of zirconia. The order of reaction into chlorine gas (n) in this situation was 0.57. Moreover, the best weight ratio of carbon to zirconia was 40/60. In this case, the activation energy of the reaction was 209.9 kJ mol -1 in a temperature range of 1023-1223 K, and the dominant model was the chemical reaction model.

  7. Chlorination of zirconium (0001) surface: A first-principles study.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunja [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Physics and Astronomy; Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Borjas, Rosendo [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Chemistry; Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Chemistry

    2017-01-01

    Here, the mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by ~3 eV/Cl for dissociative adsorption of a single Cl2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism for Zr(0001) surface dissolution. Consistent with experimental findings, formation of ZrCl4 molecular products is also found to be dominant during Zr(0001) chlorination.

  8. Chlorination of zirconium (0001) surface: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. [Univ. of Nevada, Las Vegas, NV (United States). Department of Physics and Astronomy; Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Poineau, F. [Univ. of Nevada, Las Vegas, NV (United States). Department of Chemistry; Paviet, P. [Dept. of Energy (DOE), Washington DC (United States)

    2016-12-13

    The mechanisms and energetics of Zr(0001) surface chlorination by dissociative adsorption of gaseous Cl2, and associated speciation and surface degradation processes, have been investigated within the framework of density functional theory. Chlorination of Zr(0001) is predicted to be exothermic by 3 eV/Cl for dissociative adsorption of a single Cl2 molecule, followed by exothermic chlorination to 1ML and 2 ML under Cl-rich conditions, with respective energy gains of 1.93 and 2.79 eV/Cl. Calculations also show that exfoliation of the top Cl-Zr-Cl sandwich layers is exothermic and most energetically favorable, and can thus be considered as a leading mechanism for Zr(0001) surface dissolution. Finally, consistent with experimental findings, formation of ZrCl4 molecular products is also found to be dominant during Zr(0001) chlorination.

  9. Submarine Biofouling Control- Chlorination DATS Study at Pearl Harbor

    National Research Council Canada - National Science Library

    Wegand, John

    2001-01-01

    The intent of this document is to sumarize the chlorination studies performed at Naval Station, Pearl Harbor in support of biofouling control initiatives for the submarine community, as requested by NAVSEA 92T...

  10. Chlorinated rubbers with advanced properties for tire industry

    Science.gov (United States)

    Mikhaylov, I. A.; Sukhareva, K. V.; Andriasyan, Yu. O.; Popov, A. A.

    2017-12-01

    The paper investigates the production and processing of halide-modified chlorinated rubbers, such as isobutylene isoprene rubber and ethylene-propylene-diene-monomer rubber (IIR and EPDM), which are perspective in terms of application in rubber industry. Prospects for their production and application are determined by the specific properties of these rubbers (low gas permeability of IIR, high heat and ozone resistance of EPDM). These properties are governed by the structure of both initial IIR and EPDM and chlorinated rubbers (ChIIR and ChEPDM). A new alternative technology of obtaining chlorinated elastomers based on solid-phase mechanochemical halide modification is proposed. Novel chlorinated polyolefin rubbers obtained by the developed technology show good technological properties under industrial production conditions due to enhanced covulcanization.

  11. Characters of chlorine isotopic composition in ocean water

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.; Zhou, Y.; Liu, W.G.; Hong, A.; Wang, Q.; Wang, Y.; Wei, H.; Shirodkar, P.V.

    The chlorine isotopic composition of ocean water was determined using thermal ionization mass spectrometry based on the measurement of Cs sub(2) Cl sup(+) ion. The results show that the sup(37) Cl/ sup(35) Cl ratios are basically homogeneous...

  12. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

    Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology

    The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds

  13. Fate of free chlorine in drinking water during distribution in premise plumbing.

    Science.gov (United States)

    Zheng, Muzi; He, Chunguang; He, Qiang

    2015-12-01

    Free chlorine is a potent oxidizing agent and has been used extensively as a disinfectant in processes including water treatment. The presence of free chlorine residual is essential for the prevention of microbial regrowth in water distribution systems. However, excessive levels of free chlorine can cause adverse health effects. It is a major challenge to maintain appropriate levels of free chlorine residual in premise plumbing. As the first effort to assessing the fate of chlorine in premise plumbing using actual premise plumbing pipe sections, three piping materials frequently used in premise plumbing, i.e. copper, galvanized iron, and polyvinyl chloride (PVC), were investigated for their performance in maintaining free chlorine residual. Free chlorine decay was shown to follow first-order kinetics for all three pipe materials tested. The most rapid chlorine decay was observed in copper pipes, suggesting the need for higher chlorine dosage to maintain appropriate levels of free chlorine residual if copper piping is used. PVC pipes exhibited the least reactivity with free chlorine, indicative of the advantage of PVC as a premise plumbing material for maintaining free chlorine residual. The reactivity of copper piping with free chlorine was significantly hindered by the accumulation of pipe deposits. In contrast, the impact on chlorine decay by pipe deposits was not significant in galvanized iron and PVC pipes. Findings in this study are of great importance for the development of effective strategies for the control of free chlorine residual and prevention of microbiological contamination in premise plumbing.

  14. Bio-remediation of aquifers polluted by chlorinated solvents

    International Nuclear Information System (INIS)

    Fayolle, F.

    1996-01-01

    Numerous cases of contamination of aquifers by chlorinated aliphatic solvents, largely utilized during the last decades, constitute a public health problem, because of the toxic effect of such compounds. Different types of aerobic or anaerobic bacteria are able to degrade these molecules. Processes of bio remediation are now experimented in order to restore polluted aquifers. We present here the microorganisms and the enzymatic reactions involved in the biodegradation of chlorinated solvents, and different examples of in situ bio remediation operations are described. (author)

  15. The chlorine-36 dating program at the Australian National University

    International Nuclear Information System (INIS)

    Fifield, L.F.; Ophel, T.R.; Bird, J.R.; Calf, G.E.; Allison, G.B.; Chivas, A.R.

    1987-05-01

    A chlorine-36 dating capability based on the 14UD pelletron accelerator was developed at the Australian National University during 1986 and is now entering the routine measurement phase. It involves a collaboration between the Department of Nuclear Physics, the Australian Atomic Energy Commission and CSIRO Division of Soils. The chlorine-36 dating system is described and some early results are presented for samples of chloride from salt lakes in Western Australia and soil profiles in South Australia

  16. Decomposition of dilute residual active chlorine in sea-water

    International Nuclear Information System (INIS)

    Yoshinaga, Tetsutaro; Kawano, Kentaro; Yanagase, Kenjiro; Shiga, Akira

    1985-01-01

    Coastal industries such as power stations require enormous quantities of sea-water for cooling, but the marine organisms in it often result in fouling and/or blockade of the circulating water condenser and pipeworks. To prevent this, chlorine, or hypochlorite by the direct electrolysis of sea-water have been added. Environmental concerns, however, dictate that the residual chlorine concentration at the outlet should be less than the regulated value (0.02 ppm). Methods for decomposing dilute residual chlorine solutions were therefore studied. It was found that: 1) The addition of (raw) sea-water to the sea-water which passed through the condenser lowered the residual chlorine concentration to an greater extent than could be expected by dilution only. 2) Ozonation of the residual chlorine solution led to degradation of OCl - , but in solutions with a residual chlorine concentrations of less than 3 -- 4 ppm, ozonation had no effect. 3) Irradiation with ultra violet light (254 nm) decomposed the residual chlorine. Under the present work conditions (25 0 C: pH 8; depth 10 mm), nearly first order kinetics were to hold [da/dt = ksub((1)) (1-a)sup(n)]. There is a proportional relationship between the kinetic constant (k) and illuminous intensity (L), i.e., ksub((1))[C 0 sup(Cl 2 ): 10 ppm] = 6.56 x 10 -5 L (L = 0 -- 1000 lx). Thus, the use of both sea-water addition and UV irradiation provides a probable method for decomposing a residual chlorine to the expected concentration. (author)

  17. Degradation of Nicotine in Chlorinated Water: Pathways and ...

    Science.gov (United States)

    Report The objective of the study is to illustrate how drinking water would affect alkaloid pesticides, and to address the issue by (a) investigating the fate of nicotine in chlorinated drinking water and deionized water, (b) determining the reaction rate and pathway of the reaction between nicotine and aqueous chlorine, (c) identifying nicotine’s degradation products, and (d) providing data that can be used to assess the potential threat from nicotine in drinking water.

  18. Epidemiological evidence of carcinogenicity of chlorinated organics in drinking water.

    OpenAIRE

    Cantor, K P

    1982-01-01

    Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer risk and byproducts of chlorination. Preliminary data from measures of halogenated volatiles and personal exposure histories from respondents in a large epidemiologic study of bladder cancer are presented. These data sup...

  19. Electrochemical dehalogenisation of chlorinated aromatics - from model substances to practice-relevant ''real life'' samples

    International Nuclear Information System (INIS)

    Voss, I.; Altrogge, M.; Francke, W.

    1993-01-01

    Building on methods for the dehalogenisation of chlorinated benzoles known from the literature, an investigation was carried out whether polychlorinated biphenyls, dibenzo furane and dibenzo-p-dioxin can be dehalogenated electrochemically. The experiments were carried out with pure substances and transferred to mixed substances (real life samples). The investigations showed that both pure substances and complex mixtures can be dehalogenated without problems. Even in the presence of a clear oil matrix (e.g.: Oil trickled through a deposit), dehalogenisation of the xenobiotica present is possible. First attempts at 'scaling up' show that the method is also suitable in principle, for the disposal of large quantities of contaminated liquids. (BBR) [de

  20. SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Brian02 Looney, B; Michael J. Truex; Charles J. Newell

    2006-08-16

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and

  1. Prompt gamma analysis of chlorine in concrete for corrosion study

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2006-02-15

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine {gamma}-rays and calcium {gamma}-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine {gamma}-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  2. Carboranyl-Chlorin e6 as a Potent Antimicrobial Photosensitizer.

    Directory of Open Access Journals (Sweden)

    Elena O Omarova

    Full Text Available Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane, applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters.

  3. Susceptibility of Legionella pneumophila to chlorine in tap water.

    Science.gov (United States)

    Kuchta, J M; States, S J; McNamara, A M; Wadowsky, R M; Yee, R B

    1983-11-01

    A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.

  4. Site-selective photofragmentation of chlorinated polymeric films observed around the chlorine K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, C., E-mail: csilva@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém 25250-020, Duque de Caxias, RJ (Brazil); Mendes, L.A.V. [Instituto de Física, Universidade Federal da Bahia, Ondina, 40210-340 Salvador, BA (Brazil); Pinho, R.R. [Departamento de Física-ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36036-330 Juiz de Fora, MG (Brazil); Ferreira, M. [PEMM/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de; Rocha, A.B.; Rocco, M.L.M. [Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ (Brazil)

    2013-03-29

    Highlights: ► PVC and PVDC were studied by PSID and NEXAFS techniques at the Chlorine 1s-edge. ► PVC film presented isotope ratio of 3:1 in the PSID spectrum. ► Cl{sup +} ion yield curves reproduce the photoabsorption spectrum for both polymers. ► Site-selectivity of C–Cl bond breaking due to an efficient spectator Auger decay. - Abstract: Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly(vinyl chloride) (PVC) and poly(vinyl dichloride) (PVDC) around the chlorine 1s-edge. Experiments were performed using a synchrotron source operating in the single-bunch mode and a time-of-flight mass spectrometry for ion analysis. Cl{sup +} ion yields, as a function of the photon energy, reproduce the photoabsorption spectrum, showing significant increase at the 1s-resonance. Edge-jump ratios, defined as the ratio between edge-jumps (intensity ratio of the yields between above and below the absorption edge) of two different transitions, for Cl{sup +} ion yields were much higher than the equivalent electron yields, indicating site-selectivity in C–Cl bond breaking for both polymers, as a result of efficient spectator Auger decay. The expected isotope ratio of 3:1 for chlorine was measured for PVC. The interpretation of the NEXAFS spectrum was assisted by quantum mechanical calculations at a multireference perturbation theory level.

  5. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang, E-mail: hqren@nju.edu.cn; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-04-15

    This study investigated disinfection methods including chlorination, ultraviolet (UV) irradiation and sequential UV/chlorination treatment on the inactivation of antibiotic resistance genes (ARGs). ARGs including sul1, tetX, tetG, intI1, and 16S rRNA genes in municipal wastewater treatment plant (MWTP) effluent were examined. The results indicated a positive correlation between the removal of ARGs and chlorine dosage (p = 0.007–0.014, n = 6),as well as contact time (p = 0.0001, n = 10). Greater free chlorine (FC) dosage leads to higher removal for all the genes and the maximum removal (1.30–1.49 logs) could be achieved at FC dosage of 30 mg L{sup −1}. The transformation kinetic data for ARGs removal (log C{sub 0} / C) followed the second-order reaction kinetic model with FC dosage (R{sup 2} = 0.6829–0.9999) and contact time (R{sup 2} = 0.7353–8634), respectively. Higher ammonia nitrogen (NH{sub 3}–N) concentration was found to lead to lower removal of ARGs at the same chlorine dosage. When the applied Cl{sub 2}:NH{sub 3}–N ratio was over 7.6:1, a significant reduction of ARGs (1.20–1.49 logs) was achieved. By using single UV irradiation, the log removal values of tetX and 16Ss rRNA genes were 0.58 and 0.60, respectively, while other genes were 0.36–0.40 at a fluence of 249.5 mJ cm{sup −2}, which was observed to be less effective than chlorination. With sequential UV/chlorination treatment, 0.006 to 0.31 log synergy values of target genes were observed under different operation parameters. - Highlights: • Chlorine is more effective than UV irradiation in removing ARGs from MWTP effluent. • The chlorination reaction followed the second-order reaction kinetic model. • Higher NH{sub 3}–N contents result in lower ARGs removal in the chlorination process. • FC is more effective than CC on the inactivation of ARGs. • UV irradiation followed by chlorination shows high efficiency in removing ARGs.

  6. Evaluating the Environmental Fate of Short-Chain Chlorinated Paraffins (SCCPs) in the Nordic Environment Using a Dynamic Multimedia Model

    OpenAIRE

    Krogseth, Ingjerd Sunde; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders; Schlabach, Martin

    2013-01-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SC...

  7. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    International Nuclear Information System (INIS)

    Barber, Larry B.; Hladik, Michelle L.; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by > 90%. - Highlights: • Infrastructure upgrades provide opportunities for water quality improvements. • Halogenated disinfection byproducts were removed by activated sludge wastewater treatment. • Chlorine disinfected effluents contain complex mixtures of halogenated byproducts. • Conversion from chlorine to ultraviolet light disinfection eliminated byproduct formation. • Most disinfection byproducts are attenuated by in-stream processes but some were produced

  8. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by > 90%. - Highlights: • Infrastructure upgrades provide opportunities for water quality improvements. • Halogenated disinfection byproducts were removed by activated sludge wastewater treatment. • Chlorine disinfected effluents contain complex mixtures of halogenated byproducts. • Conversion from chlorine to ultraviolet light disinfection eliminated byproduct formation. • Most disinfection byproducts are attenuated by in-stream processes but some were produced.

  9. Inactivation of Mycobacterium avium with free chlorine.

    Science.gov (United States)

    Luh, Jeanne; Mariñas, Benito J

    2007-07-15

    The inactivation kinetics of Mycobacterium avium with free chlorine was characterized by two stages: an initial phase at a relatively fast rate followed by a slower second stage of pseudo first-order kinetics. The inactivation rate of each stage was approximately the same for all experiments performed at a certain condition of pH and temperature; however, variability was observed for the disinfectant exposure at which the transition between the two stages occurred. This variability was not a function of the initial disinfectant concentration, the initial bacterial density, or the bacterial stock. However, the transition to the second stage varied more significantly at high temperatures (30 degrees C), while lower variability was observed at lower temperatures (5 and 20 degrees C). Experiments conducted at pH values in the range of 6-9 revealed that the inactivation of M. avium was primarily due to hypochlorous acid, with little contribution from hypochlorite ion within this pH range. The inactivation kinetics was represented with a two-population model. The activation energies for the resulting pseudo first-order rate constants for the populations with fast and slow kinetics were 100.3 and 96.5 kJ/mol, respectively. The magnitude of these values suggested that for waters of relatively high pH and low temperatures, little inactivation of M. avium would be achieved within treatment plants, providing a seeding source for distribution systems.

  10. Tolerance of anaerobic bacteria to chlorinated solvents.

    Science.gov (United States)

    Koenig, Joanna C; Groissmeier, Kathrin D; Manefield, Mike J

    2014-01-01

    The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.

  11. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  12. Development of a Site-Specific Kinetic Model for Chlorine Decay and the Formation of Chlorination By-Products in Seawater

    Directory of Open Access Journals (Sweden)

    Suhur Saeed

    2015-07-01

    Full Text Available Chlorine is used commonly to prevent biofouling in cooling water systems. The addition of chlorine poses environmental risks in natural systems due to its tendency to form chlorination by-products (CBPs when exposed to naturally-occurring organic matter (NOM. Some of these CBPs can pose toxic risks to aquatic and benthic species in the receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs to fully understand the potential impacts of chlorination to the environment. The goal of this study was to develop improved predictions of how chlorine and CBP concentrations in seawater vary with time, chlorine dose and temperature. In the present study, chlorination of once-through cooling water at Ras Laffan Industrial City (RLIC, Qatar, was studied by collecting unchlorinated seawater from the RLIC cooling water system intake, treating it with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate exponential curves were used to represent fast and slow chlorine decay and CBP formation, and site-specific chlorine kinetic relationships were developed. Through extensive analysis of laboratory measurements, it was found that only some of the control parameters identified in the literature were important for predicting residual chlorine and CBP concentrations for this specific location. The new kinetic relationships were able to significantly improve the predictability and validity of Generalized Environmental Modeling System for Surfacewaters (GEMSS-chlorine kinetics module (CKM, a three-dimensional hydrodynamic and chlorine kinetics and transport model when applied for RLIC outfall studies using actual field measurements.

  13. Chlorinated and Non chlorinated-Volatile Organic Compounds (Vocs) in Drinking Water of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Chian, S.S.

    2011-01-01

    A survey undertaken in Peninsular Malaysia has shown that volatile organic compounds (VOCs), both chlorinated and non-chlorinated, are present in selected drinking water samples. In this study, analyses of VOCs were performed by means of solid phase micro extraction (SPME) with a 100 μm polydimethylsiloxane (PDMS) fibre followed by gas chromatography - mass spectrometry detector (GC-MSD). Samples from different points of the distribution system networks were taken and analysed for 54 VOCs of different chemical families. The results of the study indicated that chloroform constituted the major portion of the VOCs in all samples analysed. In addition to trihalo methanes (THMs), other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichlorobenzene. However, the measured concentrations did not exceed the National Guideline for Drinking Water Quality 2000 in any case. No clear relationship between the status of development of a state in Malaysia to the levels and types of VOCs detected in its drinking water was noted. Nevertheless, the finding of anthropogenic chemicals, even at low concentrations, gave credibility to the viewpoint that improper development and disposal practices threatened the purity of the drinking water. (author)

  14. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  15. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    Science.gov (United States)

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Modeling the Onset of Phase Separation in CaO-SiO2-CaCl2 Chlorine-Containing Silicate Glasses.

    Science.gov (United States)

    Swansbury, Laura A; Mountjoy, Gavin; Chen, Xiaojing; Karpukhina, Natalia; Hill, Robert

    2017-06-08

    The addition of chlorine into a bioactive glass composition is expected to reduce its abrasiveness and increase its bioactivity, which is important for dental applications such as toothpastes. There is a lack of information and understanding regarding the structural role of chlorine in chlorine-containing bioactive silicate glasses. This has prompted classical core-shell model molecular dynamics simulations of (50 - x/2)CaO-(50 - x/2)SiO 2 -xCaCl 2 glasses to be performed, where x ranges from x = 0.0 to 43.1 mol % CaCl 2 . These ternary glasses are advantageous for a fundamental study because they do not have additional network formers (e.g., phosphorus pentoxide) or modifiers (e.g., sodium) typically found in bioactive glass compositions. The (50 - x/2)CaO-(50 - x/2)SiO 2 -xCaCl 2 glasses were seen to become phase-separated around the x = 16.1 mol % CaCl 2 composition, and chlorine predominantly coordinated with calcium. These findings provide a solid foundation for further computational modeling work on more complex chlorine-containing bioactive glass compositions.

  17. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  18. Ametryn degradation by aqueous chlorine: Kinetics and reaction influences

    International Nuclear Information System (INIS)

    Xu Bin; Gao Naiyun; Cheng Hefa; Hu Chenyan; Xia Shengji; Sun Xiaofeng; Wang Xuejiao; Yang Shaogui

    2009-01-01

    The chemical oxidation of the herbicide ametryn was investigated by aqueous chlorination between pH 4 and 10 at a temperature of 25 deg. C. Ametryn was found to react very rapidly with aqueous chlorine. The reaction kinetics can be well described by a second-order kinetic model. The apparent second-order rate constants are greater than 5 x 10 2 M -1 s -1 under acidic and neutral conditions. The reaction proceeds much more slowly under alkaline conditions. The predominant reactions were found to be the reactions of HOCl with neutral ametryn and the charged ametryn, with rate constants equal to 7.22 x 10 2 and 1.58 x 10 3 M -1 s -1 , respectively. The ametryn degradation rate increases with addition of bromide and decreases with addition of ammonia during the chlorination process. Based on elementary chemical reactions, a kinetic model of ametryn degradation by chlorination in the presence of bromide or ammonia ion was also developed. By employing this model, we estimate that the rate constants for the reactions of HOBr with neutral ametryn and charged ametryn were 9.07 x 10 3 and 3.54 x 10 6 M -1 s -1 , respectively. These values are 10- to 10 3 -fold higher than those of HOCl, suggesting that the presence of bromine species during chlorination could significantly accelerate ametryn degradation.

  19. Chlorinated organic pesticides in marketed food: Barcelona, 2001-06

    International Nuclear Information System (INIS)

    Fontcuberta, M.; Arques, J.F.; Villalbi, J.R.; Martinez, M.; Centrich, F.; Serrahima, E.; Pineda, L.; Duran, J.; Casas, C.

    2008-01-01

    This paper reports concentration levels of 22 chlorinated organic compounds (both primary compounds and metabolites) in food marketed in the city of Barcelona (Catalonia, Spain) in 2001-06. Samples included meat products, fish and seafood, eggs, milk and dairy, vegetal oils, cereal products and derivates, vegetables, fresh fruits, dry fruits, spices, formula and baby food, tea and wine. Levels of chlorinated organic compounds were determined by gas chromatography with selective detectors: electron capture (ECD), flame photometric (FPD) and confirmation with mass-spectrometry. Chlorinated organic pesticides were detected in 7 of the 1,484 samples analyzed in the 2001-06 period (0.5%): 1 dairy product, 1 fruit, 1 olive oil and 4 vegetables. Specific pesticides detected are lindane and endosulfan α, β or sulphate. A decrease in both the proportion of samples with detectable residues and in the variety of chlorinated pesticides found is visible when comparing these results with those of the previous 1989-2000 period. These results suggest the gradual disappearance of regulated chlorinated organic pesticides as a consequence of the growing worldwide implementation of current regulatory agreements

  20. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    International Nuclear Information System (INIS)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P.; Cassayre, L.

    2008-01-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl 3 . A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl 3 is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl 5 and UCl 6 . It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  1. Bacterial repopulation of drinking water pipe walls after chlorination.

    Science.gov (United States)

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water.

  2. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    International Nuclear Information System (INIS)

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-01-01

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl 2 –N 2 flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al 2 O 3 (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl 2 atmosphere of the MgO–Al 2 O 3 mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C

  3. Removal of trihalomethane from chlorinated seawater using gamma radiation.

    Science.gov (United States)

    Rajamohan, R; Natesan, Usha; Venugopalan, V P; Rajesh, Puspalata; Rangarajan, S

    2015-12-01

    Chlorine addition as a biocide in seawater results in the formation of chlorination by-products such as trihalomethanes (THMs). Removal of THMs is of importance as they are potential mutagenic and carcinogenic agents. In this context, a study was conducted that used ionizing radiation to remove THMs from chlorinated (1, 3, and 5 mg/L) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation. Bromoform (BF) showed a faster rate of degradation as compared to other halocarbons such as bromodichloromethane (BDCM) and dibromochloromethane (DBCM). In chlorine-dosed seawater, total irradiation dose of 0.4 to 5 kGy caused percentage reduction in the range of 6.9 to 76.7%, 2.3 to 99.6%, and 45.7 to 98.3% for BDCM, DBCM, and BF, respectively. During the irradiation process, pH of the chlorinated seawater decreased with increase in the absorbed dose; however, no change in total organic carbon (TOC) was observed. The results show that gamma dose of 2.5 kGy was adequate for maximum degradation of THM; but for complete mineralization, higher dose would be required.

  4. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  5. Immobilization of chlorine dioxide modified cells for uranium absorption

    International Nuclear Information System (INIS)

    He, Shengbin; Ruan, Binbiao; Zheng, Yueping; Zhou, Xiaobin; Xu, Xiaoping

    2014-01-01

    There has been a trend towards the use of microorganisms to recover metals from industrial wastewater, for which various methods have been reported to be used to improve microorganism adsorption characteristics such as absorption capacity, tolerance and reusability. In present study, chlorine dioxide(ClO 2 ), a high-efficiency, low toxicity and environment-benign disinfectant, was first reported to be used for microorganism surface modification. The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. FTIR analysis indicated that several cell surface groups are involved in the uranium adsorption and cell surface modification. The modified cells were further immobilized on a carboxymethylcellulose (CMC) matrix to improve their reusability. The cell-immobilized adsorbent could be employed either in a high concentration system to move vast UO 2 2+ ions or in a low concentration system to purify UO 2 2+ contaminated water thoroughly, and could be repeatedly used in multiple adsorption-desorption cycles with about 90% adsorption capacity maintained after seven cycles. - Highlights: • Chlorine dioxide was first reported to be used for microorganism surface modification. • The chlorine dioxide modified cells demonstrated a 10.1% higher uranium adsorption capacity than control ones. • The chlorine dioxide modified cells were further immobilized by carboxymethylcellulose to improve their reusability

  6. Study of organic chlorine in soils and formation in biotic and abiotic conditions

    International Nuclear Information System (INIS)

    Osswald, Aurelie

    2016-01-01

    Chlorine has long been considered as the predominantly chlorine form present in the environment. However, recent studies have shown that chlorine is retained in the soil as an organic form and is formed by a natural process of chlorination mainly from the microbial activity of the soil still poorly documented. The aim of this study is to estimate the organic and inorganic forms of chlorine in contrasting soil and highlight the evolution of these forms according to certain environmental parameters or terms of incubations and to the activity of microorganisms. For this, the organo-mineral horizons of contrasting soil were studied (i) in situ: The amounts of chlorine and physico-chemical and microbiological parameters of soil were measured; (ii) in two experimental devices incubations under different conditions. Measurements of chlorine levels between the beginning and the end of the first experiment were measured by AOX analyzer. For the second experiment, the soil was previously enriched with Na 37 Cl and 37 Cl levels were measured by HR ICP MS. Soil samples from these incubations were analyzed by Xanes spectrometry to identify the speciation of chlorine forms in soils. Soil non-extractable organic chlorine contents represent almost all of the chlorine. The parameters that influence the distribution of chlorine contents in soils correspond to vegetation cover, pH, organic carbon content and quantities of microorganisms. The chlorine contents measured by AOX analyzer and by HR ICP MS highlight an organic chlorine formation over time in relation to the microorganisms in the soil. The measures carried out by HR ICP MS show also an organic chlorine formation in abiotic conditions. Conversely, XANES spectrometry measurements have shown any organic chlorine formation. In conclusion, the parameters that influence the distribution of chlorine contents in soils have been targeted. Similarly, the microbial origin of the chlorination process has been demonstrated, although a

  7. Characterization of the bacterial community in shower water before and after chlorination

    KAUST Repository

    Peters, Marjolein C. F. M.

    2017-12-22

    Bathers release bacteria in swimming pool water, but little is known about the fate of these bacteria and potential risks they might cause. Therefore, shower water was characterized and subjected to chlorination to identify the more chlorine-resistant bacteria that might survive in a chlorinated swimming pool and therefore could form a potential health risk. The total community before and after chlorination (1 mg Cl2 L−1 for 30 s) was characterized. More than 99% of the bacteria in the shower water were Gram-negative. The dominant bacterial families with a relative abundance of ≥10% of the total (non-chlorinated and chlorinated) communities were Flavobacteriaceae (24–21%), Xanthomonadaceae (23–24%), Moraxellaceae (12–11%) and Pseudomonadaceae (10–22%). The relative abundance of Pseudomonadaceae increased after chlorination and increased even more with longer contact times at 1 mg Cl2L−1. Therefore, Pseudomonadaceae were suggested to be relatively more chlorine resistant than the other identified bacteria. To determine which bacteria could survive chlorination causing a potential health risk, the relative abundance of the intact cell community was characterized before and after chlorination. The dominant bacterial families in the intact community (non-chlorinated and chlorinated) were Xanthomonadaceae (21–17%) and Moraxellaceae (48–57%). Moraxellaceae were therefore more chlorine resistant than the other identified intact bacteria present.

  8. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liping, E-mail: lisaleercees807@yahoo.cn; Wei, Dongbin, E-mail: weidb@rcees.ac.cn; Wei, Guohua, E-mail: wgh@rcees.ac.cn; Du, Yuguo, E-mail: duyuguo@rcees.ac.cn

    2013-11-15

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.

  9. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination

    International Nuclear Information System (INIS)

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2013-01-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log 10 control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log 10 reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. - Highlights: • As a disinfectant, chlorine is more effective than UV in inactivating Aspergillus flavus. • As a combined method, UV irradiation followed by chlorination shows high efficiency. • UV irradiation can improve effectiveness of chlorination in reducing Aspergillus flavus

  10. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    International Nuclear Information System (INIS)

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2013-01-01

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process

  11. Effects of solvent-solute interactions on the stereochemical course in high energy chlorine-38-for chlorine substitution in meso- and rac-1,2-dichloro-1,2-difluoroethane in solution

    International Nuclear Information System (INIS)

    Acciani, T.R.; Su, Y.Y.; Ache, H.J.; Rack, E.P.

    1978-01-01

    The stereochemistry of the chlorine-38-for-chlorine substitution was studied in diastereomeric 1,2-dichloro-1,2-difluoroethanes in solutions. The experimental results are very similar to those previously observed in meso- and d,l-2,4-dichloropentane solutions which by analogy suggest that the stereochemical course of the substitution process is in the present system also predominantly and directly controlled by the properties of the solvent molecules, most likely by the factors which govern the magnitude of intermolecular interaction between reactants and solvents. It appears that strong intermolecular interaction favors substitution via retention of configuration, whereas in solvents having a low dielectric constant the retention/inversion ratio decreases. These results seem further to suggest that if the reaction occurs via the previously postulated caged complex or excited intermediate that the primary attack by the energetic 38 Cl proceeds via both front and backside replacement

  12. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuang [State Key Laboratory of Environmental Criteria and Risk Assessment (China); Research Academy of Environmental Sciences, Beijing 100012 (China); Shu, Yun [Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Gang; Huang, Jiayu [Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Fan, E-mail: zhangfan5188@vip.sina.com [Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-01-15

    Highlights: • Chlorine and fluorine are present mainly in an inorganic form on ash. • Correlations of carbon–oxygen complexes with mercury retention are established. • Concentrations of carbon–oxygen complexes on ash are related to coal type. • No effect of fluorine on mercury retention is observed. • Chlorine, fluorine and carbon in ash are enriched on surface. - Abstract: Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon–oxygen functional groups indicate that the C=O, OH/C−O and (O−C=O)−O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed.

  13. Molecular structure stability of short-chain chlorinated paraffins (SCCPs): Evidence from lattice compatibility and Simha-Somcynsky theories

    Science.gov (United States)

    Yumak, A.; Boubaker, K.; Petkova, P.; Yahsi, U.

    2015-10-01

    In is known that short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with single chlorine content. Due to their physical properties (viscosity, flame resistance) they are used in many different applications, such as lubricant additives, metal processing, leather fat-liquoring, plastics softening, PVC plasticizing and flame retardants in paints, adhesives and sealants. SCCPs are studied here in terms of processing-linked molecular structure stability, under Simha and Somcynsky-EOS theory calculations and elements from Simha-Somcynsky-related Lattice Compatibility Theory. Analyses were carried out on 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro 2-methylane, and 2-chloro 2-methylane as (SCCPs) universal representatives. This paper gives evidence to this stability and reviews the current state of knowledge and highlights the need for further research in order to improve future (SCCPs) monitoring efforts.

  14. Recovery of actinides from actinide-aluminium alloys by chlorination: Part III - Chlorination with HCl(g)

    Science.gov (United States)

    Meier, Roland; Souček, Pavel; Walter, Olaf; Malmbeck, Rikard; Rodrigues, Alcide; Glatz, Jean-Paul; Fanghänel, Thomas

    2018-01-01

    Two steps of a pyrochemical route for the recovery of actinides from spent metallic nuclear fuel are being investigated at JRC-Karlsruhe. The first step consists in electrorefining the fuel in molten salt medium implying aluminium cathodes. The second step is a chlorination process for the separation of actinides (An) from An-Al alloys formed on the cathodes. The chlorination process, in turn, consists of three steps; the distillation of adhered salt (1), the chlorination of An-Al by HCl/Cl2 under formation of AlCl3 and An chlorides (2), and the subsequent sublimation of AlCl3 (3). In the present work UAl2, UAl3, NpAl2, and PuAl2 were chlorinated with HCl(g) in a temperature range between 300 and 400 °C forming UCl4, NpCl4 or PuCl3 as the major An containing phases, respectively. Thermodynamic calculations were carried out to support the experimental work. The results showed a high chlorination efficiency for all used starting materials and indicated that the sublimation step may not be necessary when using HCl(g).

  15. Chlorination and oxidation of sulfonamides by free chlorine: Identification and behaviour of reaction products by UPLC-MS/MS.

    Science.gov (United States)

    Gaffney, Vanessa de Jesus; Cardoso, Vitor Vale; Benoliel, Maria João; Almeida, Cristina M M

    2016-01-15

    Sulfonamides (SAs) are one class of the most widely used antibiotics around the world and have been frequently detected in municipal wastewater and surface water in recent years. Their transformation in waste water treatment plants (WWTP) and in water treatment plants (WTP), as well as, their fate and transport in the aquatic environment are of concern. The reaction of six sulfonamides (sulfamethoxazole, sulfapyridine, sulfamethazine, sulfamerazine, sulfathiazole and sulfadiazine) with free chlorine was investigated at a laboratory scale in order to identify the main chlorination by-products. A previously validated method, liquid chromatography/mass spectrometry, was used to analyse SAs and their chlorination by-products. At room temperature, pH 6-7, reaction times of up to 2 h and an initial concentration of 2 mg/L of free chlorine, the majority of SAs suffered degradation of around 65%, with the exception of sulfamethoxazole and sulfathiazole (20%). The main reaction of SAs with free chlorine occurred in the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Chlorin photosensitizers sterically designed to prevent self-aggregation.

    Science.gov (United States)

    Uchoa, Adjaci F; de Oliveira, Kleber T; Baptista, Mauricio S; Bortoluzzi, Adailton J; Iamamoto, Yassuko; Serra, Osvaldo A

    2011-11-04

    The synthesis and photophysical evaluation of new chlorin derivatives are described. The Diels-Alder reaction between protoporphyrin IX dimethyl ester and substituted maleimides furnishes endo-adducts that completely prevent the self-aggregation of the chlorins. Fluorescence, resonant light scattering (RLS) and (1)H NMR experiments, as well as X-ray crystallographic have demonstrated that the configurational arrangement of the synthesized chlorins prevent π-stacking interactions between macrocycles, thus indicating that it is a nonaggregating photosensitizer with high singlet oxygen (Φ(Δ)) and fluorescence (Φ(f)) quantum yields. Our results show that this type of synthetic strategy may provide the lead to a new generation of PDT photosensitizers.

  17. Survey of potential chlorine production processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This report is part of the ongoing study of industrial electrochemical processes for the purpose of identifying methods of improving energy efficiencies. A computerized literature search of past and current chlorine generation methods was performed to identify basic chlorine production processes. Over 200 pertinent references are cited involving 20 separate and distinct chlorine processes. Each basic process is evaluated for its engineering and economic viability and energy efficiency. A flow diagram is provided for each basic process. Four criteria are used to determine the most promising processes: raw material availability, type and amount of energy required, by-product demand/disposal and status of development. The most promising processes are determined to be the membrane process (with and without catalytic electrodes), Kel-Chlor, Mobay (direct electrolysis of hydrogen chloride), the Shell process (catalytic oxidation of hydrogen chloride) and oxidation of ammonium chloride. Each of these processes is further studied to determine what activities may be pursued.

  18. The geochemistry of stable chlorine and bromine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Eggenkamp, Hans [Onderzock and Beleving, Bussum (Netherlands)

    2014-11-01

    First book solely dedicated to the geochemistry of chlorine and bromine isotopes. Detailed description of analytical techniques, including their advantages and disadvantages. Indication of research fields where measurement of these isotopes is especially useful. This book provides detailed information on the history, analysis and applications of chlorine and bromine isotope geochemistry. Chlorine and bromine are geochemically unique as they prefer to exist as single charged negative ions. For this reason isotope fractionation reflects mostly processes that are not related to changes in the redox state and this fractionation is generally modest. The book will describe the processes that are most easily detected using these isotopes. Also isotope variations, and processes that cause them, measured in oxidised species such as perchlorates and in organic molecules will be described in this book.

  19. Biodegradation of chlorinated solvents in a water unsaturated topsoil

    DEFF Research Database (Denmark)

    Borch, T.; Ambus, P.; Laturnus, F.

    2003-01-01

    In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl3), 1,1,1-trichloroethane (CH3CCl3), tetrachloromethane (CCl4), trichloroethene (C2HCl3) and tetrachloroethene (C2Cl4) was studied in anoxic laboratory....... The headspace concentrations of all the chlorinated solvents except CH3CCl3 were significantly (P less than or equal to 0.05) lower after 41 days in biologically active batches as compared to sterile batches. For the compounds with significantly decreasing headspace concentrations, the decline was the least...... experiments designed to simulate denitrifying conditions in water unsanstrated by measuring the release of N-15 in N-2 to the headspace from added N-15 labeled nitrate. The degradation of chlorinated aliphatic compounds was followed by measuring their concentrations in the headspace above the soil...

  20. Enhanced reductive dechlorination in clay till contaminated with chlorinated solvents

    DEFF Research Database (Denmark)

    Damgaard, Ida

    Chlorinated solvents are among the most frequently found contaminants in groundwater. In fractured media, chlorinated ethenes and ethanes are transported downwards through preferential pathways with subsequent diffusion into the sediment matrix. Due to slow back diffusion it can serve as a long...... (direct push delivery, Gl. Kongevej). Degradation of chlorinated ethenes (and ethanes) in the clay till matrix and in embedded high permeability features was investigated by high resolution sampling of intact cores combined with groundwater sampling. An integrated approach using chemical analysis...... (hydraulic fracturing with gravitational injection and direct push delivery) were therefore tested in clay till by injection of amendment-comparable tracers to investigate the possibility to overcome diffusion limitations in the low permeability matrix. The study of hydraulic fracturing demonstrated...

  1. Epidemiological evidence of carcinogenicity of chlorinated organics in drinking water.

    Science.gov (United States)

    Cantor, K P

    1982-12-01

    Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer risk and byproducts of chlorination. Preliminary data from measures of halogenated volatiles and personal exposure histories from respondents in a large epidemiologic study of bladder cancer are presented. These data support the use in epidemiologic studies of categorical measures of exposure and suggest that results from completed case-control studies, based on death certificates, may have underestimated the true risk of exposure to chlorination by-products. The current generation of studies which use a case-control interview design offer many advantages over earlier efforts to evaluate this issue.

  2. Analyzing Environmental Policies for Chlorinated Solvents with a Model of Markets and Regulations

    Science.gov (United States)

    1991-01-01

    chlorine, fluorine , bromine, and iodine. Another broad term is chlorocarbons (fluorocarbons), which indicates the chlorinated ( fluorinated ) hydrocarbons... varnishes , and lacquers (Wolf, Yazdani, and Yates, 1990b). Process Substitutes. The only process modifications that are available for consumer paint

  3. State of the art on cyanotoxins in water and their behaviour towards chlorine.

    Science.gov (United States)

    Merel, Sylvain; Clément, Michel; Thomas, Olivier

    2010-04-01

    The occurrence of cyanobacterial blooms is drastically increasing in temperate countries and drinking water resources are threatened. As a result, cyanotoxins should be considered in water treatment to protect human health. This study presents a state of the art on cyanotoxins in water and their behaviour towards chlorination, a common drinking water disinfection process. Chlorination efficiency on cyanotoxins alteration depends on pH, chlorine dose and oxidant nature. Microcystins and cylindrospermopsin are efficiently transformed by chlorine, with respectively 6 and 2 by-products identified. In addition, chlorination of microcystins and cylindrospermopsin is associated with a loss of acute toxicity. Even though they have been less investigated, saxitoxins and nodularins are also altered by chlorine. For these toxins, no by-products have been identified, but the chlorinated mixture does not show acute toxicity. On the contrary, the fact that anatoxin-a has a very slow reaction kinetics suggests that this toxin resists chlorination. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Chlorinated pesticide residues in sediments from the Arabian Sea along the Central West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    Environmental contamination by persistent chlorinated pesticides has evoked major concern due to the presence of their residues in the environment. The quantitative distribution of chlorinated pesticides residues in the marine sediments from...

  5. Electrochemically activated water as an alternative to chlorine for decentralized disinfection

    KAUST Repository

    Ghebremichael, Kebreab A.; Muchelemba, E.; Petruševski, Branislav; Amy, Gary L.

    2011-01-01

    Electrochemically activated (ECA) water is being extensively studied and considered as an alternative to chlorine for disinfection. Some researchers claim that ECA is by and large a chlorine solution, while others claim the presence of reactive

  6. Chlorine Dioxide: The State of Science, Regulatory, Environmental Issues, and Case Histories

    National Research Council Canada - National Science Library

    Burton, Dennis

    2001-01-01

    The use of chlorine by electric utilities and other surface water users to inhibit biofouling and the chlorination of wastewater by POTWs to eliminate the discharge of pathogenic organisms are widespread practices...

  7. Elaboration in the area of low temperature chlorination of rare-metal crude ore

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    The chemical base of low temperature chlorination of rare-metal crude ore was elaborated. The chemical nature of chlorination process which pass at low temperature was decoded and scientifically elaborated

  8. Heat-Activated Persulfate Oxidation of Chlorinated Solvents in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Jialu Liu

    2014-01-01

    Full Text Available Heat-activated persulfate oxidative treatment of chlorinated organic solvents containing chlorinated ethenes and ethanes in soil was investigated with different persulfate dosages (20 g/L, 40 g/L, and 60 g/L and different temperatures (30°C, 40°C, and 50°C. Chlorinated organic solvents removal was increased as persulfate concentration increase. The persulfate dosage of 20 g/L with the highest OE (oxidant efficiency value was economically suitable for chlorinated organic solvents removal. The increasing temperature contributed to the increasing depletion of chlorinated organic solvents. Chlorinated ethenes were more easily removed than chlorinated ethanes. Moreover, the persulfate depletion followed the pseudo-first-order reaction kinetics (kps=0.0292 [PS]0+0.0008, R2=0.9771. Heat-activated persulfate appeared to be an effective oxidant for treatment of chlorinated hydrocarbons.

  9. Chlorine release from biomass. Part 6; Kloravgaang fraan biobraenslen. Del 6

    Energy Technology Data Exchange (ETDEWEB)

    Zintl, Frank; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    Chlorine release from model compounds and different biomass fuels has been studied during thermal treatment in an electric oven in inert atmosphere (N{sub 2}) and with addition of 10% O{sub 2}. The amount of chlorine in all investigated materials has been kept to 2% with addition of KCl solution in methanol. The amount of chlorine was analysed before and after treatment in the decided atmosphere and to the temperature chosen. The influence from different functional groups on the chlorine release at low temperatures has been studied in pyrolysis experiments of simple model compounds with different structures. A good correlation between the chlorine release and the functional groups in the model substances was achieved. Results from the experiments shows that the early chlorine release, is most likely to occur in all biofuels, since all biomass fuels contains biological material with significant amounts of functional groups which can interact with fuel chlorine ( inorganic chlorine)

  10. Characterization of the bacterial community in shower water before and after chlorination

    KAUST Repository

    Peters, Marjolein C. F. M.; Keuten, Maarten G. A.; Knezev, Aleksandra; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.; Rietveld, Luuk C.; de Kreuk, Merle K.

    2017-01-01

    Gram-negative. The dominant bacterial families with a relative abundance of ≥10% of the total (non-chlorinated and chlorinated) communities were Flavobacteriaceae (24–21%), Xanthomonadaceae (23–24%), Moraxellaceae (12–11%) and Pseudomonadaceae (10

  11. Cooling-water chlorination: the kinetics of chlorine, bromine, and ammonia in sea water

    International Nuclear Information System (INIS)

    Johnson, J.D.; Inman, G.W. Jr.; Trofe, T.W.

    1982-11-01

    The major inorganic reaction pathways for the chlorination of saline waters were measured by a variety of techniques including: (1) amperometric titration, (2) amperometric membrane covered electrode, (3) uv spectrophotometry, (4) conventional kinetics methods for slow reactions, and (5) stopped-flow kinetics measurements with a microcomputer data acquisition system. The major reactions studied were: (1) the competitive reactions of ammonia and bromide ion with hypochlorous acid, (2) bromide oxidation by hypochlorous acid, (3) monochloramine formation in sea water, (4) monobromamine formation and subsequent disproportionation to form dibromamine, and (5) monochloramine oxidation of bromide to form bromochloramine. Reaction rates were determined in sodium chloride and sea water as a function of reactant concentration, pH, salinity, and ammonia concentration. Rate constants and corresponding rate laws and mechanisms were developed for each reaction

  12. Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine.

    Science.gov (United States)

    Zhang, Yanyan; Hu, Zhiqiang

    2013-01-01

    Bacterial biofilms are a growing concern in a broad range of areas. In this study, a mixture of RNA bacteriophages isolated from municipal wastewater was used to control and remove biofilms. At the concentrations of 400 and 4 × 10(7) PFU/mL, the phages inhibited Pseudomonas aeruginosa biofilm formation by 45 ± 15% and 73 ± 8%, respectively. At the concentrations of 6,000 and 6 × 10(7) PFU/mL, the phages removed 45 ± 9% and 75 ± 5% of pre-existing P. aeruginosa biofilms, respectively. Chlorine reduced biofilm growth by 86 ± 3% at the concentration of 210 mg/L, but it did not remove pre-existing biofilms. However, a combination of phages (3 × 10(7) PFU/mL) and chlorine at this concentration reduced biofilm growth by 94 ± 2% and removed 88 ± 6% of existing biofilms. In a continuous flow system with continued biofilm growth, a combination of phages (a one-time treatment at the concentration of 1.9 × 10(8) PFU/mL for 1 h first) with chlorine removed 97 ± 1% of biofilms after Day 5 while phage and chlorine treatment alone removed 89 ± 1% and 40 ± 5%, respectively. For existing biofilms, a combined use of a lower phage concentration (3.8 × 10(5) PFU/mL) and chlorination with a shorter time duration (12 h) followed by continuous water flushing removed 96 ± 1% of biofilms in less than 2 days. Laser scanning confocal microscopy supplemented with electron microscopy indicated that the combination treatment resulted in biofilms with lowest cell density and viability. These results suggest that the combination treatment of phages and chlorine is a promising method to control and remove bacterial biofilms from various surfaces. Copyright © 2012 Wiley Periodicals, Inc.

  13. Example process hazard analysis of a Department of Energy water chlorination process

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    On February 24, 1992, the Occupational Safety and Health Administration (OSHA) released a revised version of Section 29 Code of Federal Regulations CFR Part 1910 that added Section 1910.119, entitled ``Process Safety Management of Highly Hazardous Chemicals`` (the PSM Rule). Because US Department of Energy (DOE) Orders 5480.4 and 5483.1A prescribe OSHA 29 CFR 1910 as a standard in DOE, the PSM Rule is mandatory in the DOE complex. A major element in the PSM Rule is the process hazard analysis (PrHA), which is required for all chemical processes covered by the PSM Rule. The PrHA element of the PSM Rule requires the selection and application of appropriate hazard analysis methods to systematically identify hazards and potential accident scenarios associated with processes involving highly hazardous chemicals (HHCs). The analysis in this report is an example PrHA performed to meet the requirements of the PSM Rule. The PrHA method used in this example is the hazard and operability (HAZOP) study, and the process studied is the new Hanford 300-Area Water Treatment Facility chlorination process, which is currently in the design stage. The HAZOP study was conducted on May 18--21, 1993, by a team from the Westinghouse Hanford Company (WHC), Battelle-Columbus, the DOE, and Pacific Northwest Laboratory (PNL). The chlorination process was chosen as the example process because it is common to many DOE sites, and because quantities of chlorine at those sites generally exceed the OSHA threshold quantities (TQs).

  14. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears

  15. Aspects of chlorination and its potential to produce niobium pentoxide

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Jeffes, J.H.E.

    1984-01-01

    Reduction chlorination of niobium pentoxide were carried out under different experimental conditions in order to study the effects of some variables of the process. In order to evaluate the efficiency of the recovery of niobium pentoxide which could be obtained as condensed material a group of experiments were also carried out with pyrochlore concentrate. The results showed that a balance of factors such as temperature, percentage of carbon in the initial charge and porosity cause the progress of the reaction to be controlled by different mechanisms and indicate that chlorination can be used to produce niobium pentoxide-especially if applied on rich starting material. (Author) [pt

  16. [Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].

    Science.gov (United States)

    Ziakun, A M; Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.

  17. Ultraviolet light: sterile water without chlorine smell and taste

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm 2 for all known bacteria. In practice a dose of 40 mWs/cm 2 and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly. (JIW)

  18. Ultraviolet light: sterile water without chlorine smell and taste

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-14

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm/sup 2/ for all known bacteria. In practice a dose of 40 mWs/cm/sup 2/ and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly.

  19. Tools for Management of Chlorinated Solvent - Contaminated Sites

    Science.gov (United States)

    2009-12-03

    Movie Lee Ann Doner – (2008) MS CSU “Sandy aquifers” Image from Fred Payne /ARCADIS New Paradigm After NRC 2005 l~r SERDP. Advancing solvent plume...Situ Bioremediation Using Emulsified  Edible  Oil”   AFCEE (http://www.afcee.brooks.af.mil/products/techtrans/) - “Principles and Practices of Enhanced...Anaerobic Bioremediation of  Chlorinated Solvents”  - “Protocol for In Situ Bioremediation of Chlorinated Solvents Using  Edible  Oil” 232 Short Course

  20. Pepspectives of chlorine application in metallurgy of vanadium

    International Nuclear Information System (INIS)

    Korshunov, B.G.; Kutsenko, S.A.

    1983-01-01

    The most expedient variants of reprocessing of vanadium technical oxide (5), ferrovanadium and converter slags by chlorine technology with production of pure metal are considered. It is shown that production of vanadium by the way of electro- or metallothermal reduction of chlorides provides more plastic metal in comparison with reduction from oxides. The methods of production of VOCl 3 , VCl 4 and vanadium lowest chlorides are considered. Necessity of expansion of production of vanadium chlorine derivatives is dictated as well by their increasing application in different areas of national economy, in particular, as catalysts in organic synthesis

  1. Chlorine international thermodynamic tables of the fluid state

    CERN Document Server

    Angus, S; de Reuck, K M

    1985-01-01

    Chlorine: International Thermodynamic Tables of the Fluid State-8 is a four-chapter book that covers available and estimated data on chlorine; estimation of the element's properties; the correlating equations for the element; and how the tabulated properties are calculated from chosen equation. The tables in this book give the volume, entropy, enthalpy, isobaric heat capacity, compression factor, fugacity/pressure ratio, Joule-Thomson coefficient, ratio of the heat capacities, and speed of sound as a function of pressure and temperature. Given in the tables as well are the pressure, entropy, i

  2. The optimization of the analysis of chlorine-36 in urine

    International Nuclear Information System (INIS)

    Joseph, S.; Kramer, G.H.

    1982-02-01

    A method has been developed and optimized for the analysis of chlorine-36 in urine. Problems such as sample size, photodecomposition of silver chloride and anion interferences have been solved and are discussed in detail. The analysis is performed by first removing interfering phosphates and sulphates from an untreated urine sample and isolating the chlorine-36 as silver chloride. The precipitate is counted in a planchet counter. Recoveries are estimated to be 90 +- 5% with a detection limit of 3 pCi (0.1 Bq) for a routine sample (counting time 10 minutes, counting efficiency 10%, sample size 100 mL)

  3. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.

    2012-01-01

    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended......O2, while in high COD effluent a significant increase in API oxidation was observed after treatment with 8mg/L ClO2. This study illustrates the successful degradation of several APIs during treatment of wastewater effluents with chlorine dioxide....

  4. Inactivation of Giardia muris cysts by free chlorine.

    OpenAIRE

    Leahy, J G; Rubin, A J; Sproul, O J

    1987-01-01

    The chlorine resistance of cysts of the flagellate protozoan Giardia muris was examined. This organism, which is pathogenic to mice, is being considered as a model for the inactivation of the human pathogen Giardia lamblia. Excystation was used as the criterion for cyst viability. Experiments were performed at pH 5, 7, and 9 at 25 degrees C and pH 7 at 5 degrees C. Survival curves were "stepladder"-shaped, but concentration-time data generally conformed to Watson's Law. Chlorine was most effe...

  5. Chlorine cycling and fates of 36Cl in terrestrial environments

    OpenAIRE

    Bastviken, David; Svensson, Teresia; Sandén, Per; Kylin, Henrik

    2013-01-01

    Chlorine-36 (36Cl), a radioisotope of chlorine (Cl) with a half-life of 301,000 years, is present in some types of nuclear waste and is disposed in repositories for radioactive waste. As the release of 36Cl from such repositories to the near surface environment has to be taken into account it is of interest to predict possible fates of 36Cl under various conditions as a part of the safety assessments of repositories for radioactive waste. This report aims to summarize the state of the art kno...

  6. Evaluation of sea water chlorine demand in condenser cooling water at TAPS 1 and 2

    International Nuclear Information System (INIS)

    Papachan, Deepa; Gupta, P.K.; Patil, D.P.; Save, C.B.; Anilkumar, K.R.

    2008-01-01

    To prevent microbiological growth in the condenser tubes, condenser cooling water chlorination is very important. For effective chlorination, chlorine dose rate and frequency of dosing has to be determined on the basis of sea water chlorine demand. TAPS 1 and 2 is located near Arabian sea and draws water from this sea for its condenser cooling. The present practice of chlorine dosing at TAPS 1 and 2, based on the analysis carried out by GE in 1969, is 2500 kg/day/CWpump and 90 kg/day/SSWpump for a contact period of 25 minutes. Normal frequency of dosing is once per 8 hour and booster dose is once in a week at the same rate for 1 hour. The criteria of effective chlorination is to get residual chlorine of 2-3 ppm at the condenser water box outlet during chlorination at water box inlet/CW pump suction header in the recommended dose rate. The other option of chlorination was continuous dosing to get 0.5 ppm residual chlorine. This option has its own limitations as it is more expensive and also that micro organisms get immune to chlorine eventually due to continuous dosing. Nevertheless higher chlorine dosing is detrimental to AI-brass condenser tubes. Therefore the second option was not adopted at TAPS 1 and 2. Tarapur Atomic Power Station-1 is in the process of replacement of condenser tubes due to frequent condenser tube failures in the recent years. It was essential to analyse the present sea water chlorine demand and re-determine the chlorine dose rate because of development of industries under Maharashtra Industrial Development Corporation (MIDC) and simultaneous population growth around this area over a period of three decades. This paper discusses the experimental observations regarding significant change in sea water chlorine demand over this period and the effect of seasonal changes on sea water chlorine demand. (author)

  7. Chlorinated cooling waters in the marine environment: development of effluent guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Capuzzo, J M; Goldman, J C; Davidson, J A; Lawrence, S A

    1977-07-01

    The effects of free chlorine and chloramine on stage I lobster larvae and juvenile killifish were investigated in continuous flow bioassay units. In comparing mortality and changes in standard respiration rates during and after exposure to either chlorine form, significant respiratory stress was observed with exposure to sublethal levels. Sublethal responses to free and combined chlorine should be considered when establishing regulations for chlorine residuals in cooling waters.

  8. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

    DEFF Research Database (Denmark)

    Hunkeler, D.; Abe, Y.; Broholm, Mette Martina

    2011-01-01

    The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (q...... reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of 13C in the daughter products followed by an enrichment of 13C as degradation proceeded. At 1000 m downgradient......DCE. The significant enrichment of 13C in VC indicates that VC was transformed further, although the mechanismcould not be determined. The transformation of cDCEwas the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon–chlorine isotope analysis and qPCR combinedwith...

  9. Determination of Residual Chlorine and Turbidity in Drinking Water. Instructor's Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's guide presents analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. This publication is intended…

  10. Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…

  11. Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas

    International Nuclear Information System (INIS)

    Barbosa, L.I.; Valente, N.G.; González, J.A.

    2013-01-01

    Highlights: ► β-Spodumene was chlorinated to extract lithium with pure chlorine. ► The kinetics of the chlorination was studied in the range of 1000–1100 °C. ► Cl 2 flow rate, sample mass, and Cl 2 partial pressure were the operating variables. ► Experimental data were best fitted by the sequential nucleation and growth model. - Abstract: In this paper, the kinetics chlorination of β-spodumene for the extraction of lithium has been studied using gaseous chlorine as chlorinating agent. The effect of chlorine flow rate, temperature, mass of the sample, and partial pressure of Cl 2 was investigated. The study of the effect of chlorine flow rate indicated that the chlorination of β-spodumene may be carried out in the presence of active chlorinating species The chlorine partial pressure was found to have an appreciable effect on the system reactivity. The temperature was found to be the most important variable affecting the reaction rate. The β-spodumene chlorination process by Cl 2 was characterized by an apparent activation energy of about 359 kJ/mol in the range from 1000 to 1100 °C. Reaction was of non-catalytic gas–solid nature and experimental data fitted the sequential nucleation and growth model

  12. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds

    NARCIS (Netherlands)

    Dolfing, Jan; Janssen, Dick B.

    1994-01-01

    The Gibbs free energy of formation of chlorinated aliphatic compounds was estimated with Mavrovouniotis' group contribution method. The group contribution of chlorine was estimated from the scarce data available on chlorinated aliphatics in the literature, and found to vary somewhat according to the

  13. Characterization and Monitoring of Natural Attenuation of Chlorinated Solvents in Ground Water: A Systems Approach

    Science.gov (United States)

    Cutshall, N. H.; Gilmore, T.; Looney, B. B.; Vangelas, K. M.; Adams, K. M.; Sink, C. H.

    2006-05-01

    Like many US industries and businesses, the Department of Energy (DOE) is responsible for remediation and restoration of soils and ground water contaminated with chlorinated ethenes. Monitored Natural Attenuation (MNA) is an attractive remediation approach and is probably the universal end-stage technology for removing such contamination. Since 2003 we have carried out a multifaceted program at the Savannah River Site designed to advance the state of the art for MNA of chlorinated ethenes in soils and groundwater. Three lines of effort were originally planned: 1) Improving the fundamental science for MNA, 2) Promoting better characterization and monitoring (CM) techniques, and 3) Advancing the regulatory aspects of MNA management. A fourth line, developing enhanced attenuation methods based on sustainable natural processes, was added in order to deal with sites where the initial natural attenuation capacity cannot offset contaminant loading rates. These four lines have been pursued in an integrated and mutually supportive fashion. Many DOE site-cleanup program managers view CM as major expenses, especially for natural attenuation where measuring attenuation is complex and the most critical attenuation mechanisms cannot be determined directly. We have reviewed new and developing approaches to CM for potential application in support of natural attenuation of chlorinated hydrocarbons in ground water at DOE sites (Gilmore, Tyler, et al., 2006 WSRC-TR- 2005-00199). Although our project is focused on chlorinated ethenes, many of the concepts and strategies are also applicable to a wider range of contaminants including radionuclides and metals. The greatest savings in CM are likely to come from new management approaches. New approaches can be based, for example, on conceptual models of attenuation capacity, the ability of a formation to reduce risks caused by contaminants. Using the mass balance concept as a guide, the integrated mass flux of contaminant is compared to

  14. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  15. Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers

    International Nuclear Information System (INIS)

    Stelzer, Nicole; Imfeld, Gwenael; Thullner, Martin; Lehmann, Juergen; Poser, Alexander; Richnow, Hans-H.; Nijenhuis, Ivonne

    2009-01-01

    Biodegradation of chlorobenzenes was assessed at an anoxic aquifer by combining hydrogeochemistry and stable isotope analyses. In situ microcosm analysis evidenced microbial assimilation of chlorobenzene (MCB) derived carbon and laboratory investigations asserted mineralization of MCB at low rates. Sequential dehalogenation of chlorinated benzenes may affect the isotope signature of single chlorobenzene species due to simultaneous depletion and enrichment of 13 C, which complicates the evaluation of degradation. Therefore, the compound-specific isotope analysis was interpreted based on an isotope balance. The enrichment of the cumulative isotope composition of all chlorobenzenes indicated in situ biodegradation. Additionally, the relationship between hydrogeochemistry and degradation activity was investigated by principal component analysis underlining variable hydrogeochemical conditions associated with degradation activity at the plume scale. Although the complexity of the field site did not allow straightforward assessment of natural attenuation processes, the application of an integrative approach appeared relevant to characterize the in situ biodegradation potential. - Lines of evidence for in situ biodegradation of chlorinated benzenes in an anoxic aquifer by combining hydrogeochemical and stable isotope data with multivariate statistics.

  16. Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, Nicole; Imfeld, Gwenael [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Thullner, Martin [Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Lehmann, Juergen [Ingenieurbuero Roth and Partner GmbH, Hans-Sachs-Str. 9, 76133 Karlsruhe (Germany); Poser, Alexander [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Richnow, Hans-H., E-mail: hans.richnow@ufz.d [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Nijenhuis, Ivonne [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2009-06-15

    Biodegradation of chlorobenzenes was assessed at an anoxic aquifer by combining hydrogeochemistry and stable isotope analyses. In situ microcosm analysis evidenced microbial assimilation of chlorobenzene (MCB) derived carbon and laboratory investigations asserted mineralization of MCB at low rates. Sequential dehalogenation of chlorinated benzenes may affect the isotope signature of single chlorobenzene species due to simultaneous depletion and enrichment of {sup 13}C, which complicates the evaluation of degradation. Therefore, the compound-specific isotope analysis was interpreted based on an isotope balance. The enrichment of the cumulative isotope composition of all chlorobenzenes indicated in situ biodegradation. Additionally, the relationship between hydrogeochemistry and degradation activity was investigated by principal component analysis underlining variable hydrogeochemical conditions associated with degradation activity at the plume scale. Although the complexity of the field site did not allow straightforward assessment of natural attenuation processes, the application of an integrative approach appeared relevant to characterize the in situ biodegradation potential. - Lines of evidence for in situ biodegradation of chlorinated benzenes in an anoxic aquifer by combining hydrogeochemical and stable isotope data with multivariate statistics.

  17. Dissociative electron attachment negative ion mass spectrometry: a chlorine-specific detector for gas chromatography

    Science.gov (United States)

    Curtis, Jonathan M.; Boyd, Robert K.

    1997-11-01

    This work describes the application of negative ion chemical ionization, optimized for dissociative electron attachment (DEA), to location of unknown trace chlorinated compounds in complex gas chromatograms by selected ion recording (SIR) of m / z 35 and 37. The DEA-SIR technique is compared with other GC detectors, including the electron capture detector, electrolytic conductivity detector, the atomic emission detector and the chemical reaction interface mass spectrometry method, with respect to selectivity for chlorine, sensitivity, linear dynamic range, and general robustness and ease of use. When applied to quantitative analysis of target analytes such as polychlorobiphenyls, the DEA-SIR method has potential problems arising from the possibility of suppression effects due to abundant co-eluting components, and possible alleviating measures are discussed. In addition to these practical investigations, literature information on the fundamental physical and chemical phenomena underlying the DEA process is summarized in order to guide future work on extension to other compound types and on general improvements to the technique.

  18. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

  19. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    International Nuclear Information System (INIS)

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl 4 ) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO 2 ) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl 4 -UO 2 shows a reaction to form uranium oxychloride (UOCl 2 ) that has a good solubility in molten UCl 4 . This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl 4 , ZrCl 4 , SiCl 4 , ThCl 4 ) by reaction of oxides with chlorine (Cl 2 ) and carbon has application to the preparation of UCl 4

  20. Comparison of antimicrobial activities of brine salting, Chlorinated ...

    African Journals Online (AJOL)

    Chemical preservatives can be used to reduce the overall microbial populations in fish and fish products. This study was set to determine the antimicrobial activities of brine salting, chlorinated solution, and Moringa oleifera plant extracts treatments on enteric bacteria in Rastrineobola argentea and Oreochromis niloticus fish ...

  1. Structural and optical properties of chlorinated plasma polymers

    International Nuclear Information System (INIS)

    Turri, Rafael; Davanzo, Celso U.; Schreiner, Wido; Dias da Silva, José Humberto; Appolinario, Marcelo Borgatto; Durrant, Steven F.

    2011-01-01

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform–acetylene–argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R C , which was varied from 0 to 80%. Deposition rates of 80 nm min −1 were typical for the chlorinated films. Infrared reflection–absorption spectroscopy revealed the presence of C–Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at ∼ 47 at.% for R C ≥ 40%. The refractive index and optical gap, E 04 , of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet–visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from ∼ 40° to ∼ 77°.

  2. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  3. Aerobic biodegradation of a mixture of chlorinated organics in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... DCM; and 0.232 – 0.588 week-1 for DCA in both water microcosms with higher degradation generally observed in New ... Key words: Bioaugmentation, biodegradation, biostimulation, chlorinated aliphatic hydrocarbons, microcosms. ... culture (OD of 1 at λ600) of the consortia was added separately to.

  4. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  5. Morphological study of synthesized chlorinated polyethylene by inductive plasma

    International Nuclear Information System (INIS)

    Olayo, M.G.; Cruz, G.; Carapia, L.; Fernandez, G.; Morales, J.

    2004-01-01

    In this work a morphological study on the synthesis of Chlorinated polyethylene for plasma starting from Trichloroethylene in a polymerization process and ablation simultaneous of metals, where silver atoms and copper are inserted directly during the growth of the polymer from the gas phase to the one solid is presented. (Author)

  6. Natural attenuation of chlorinated ethenes in hyporheic zones

    NARCIS (Netherlands)

    Weatherill, John J.; Atashgahi, Siavash; Schneidewind, Uwe; Krause, Stefan; Ullah, Sami; Cassidy, Nigel; Rivett, Michael O.

    2018-01-01

    Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban

  7. PHYTOREMEDIATION POTENTIAL OF A CHLORINATED SOLVENTS PLUME IN CENTRAL FLORIDA

    Science.gov (United States)

    The potential for phytoremediation of a shallow chlorinated solvent plume was assessed by application of ground water flow and evapotranspiration (ET) models for a site in Orlando, Florida. The focus of the work was on the hydrologic and hydraulic factors that influence phytoreme...

  8. Riverine input of chlorinated hydrocarbons in the coastal pollution

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Everaarts, J.M.

    of various chlorinated hydrocarbons. It deals with an in-depth analysis of pollution of the coastal ecosystem around the Netherlands, U.K. and Germany due to inputs of contaminants from the rivers namely, Elbe, Weser, Ems Ijssel, Rhine, Meuse, Scheldt, Thames...

  9. Analysis of alternative flow sheets for the hybrid chlorine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Gooding, Charles H. [Department of Chemical and Biomolecular Engineering, 209 Earle Hall, Clemson University, Clemson, SC 29634-0909 (United States)

    2009-05-15

    This paper reports the results of the most complete conceptual study conducted to date on hydrogen production using the hybrid chlorine cycle. Three alternative process flow sheets were developed, each capable of producing hydrogen at 35 C (308 K) and 21 bar. The alternative approaches differ primarily in the way HCl is isolated and converted to hydrogen and chlorine gases. Aspen Plus trademark simulation software was used to model the unit processes, supplemented where necessary by custom Excel spreadsheets. Major equipment was sized for a 200-million kg/yr plant; feasible materials of construction were identified; fixed capital investments and variable costs were estimated. Estimated net thermal efficiencies of the flow sheets range from 30% to 36%, based on the lower heating value of the hydrogen produced. With electrical power valued at $0.05/kWh, the cost of hydrogen produced by the hybrid chlorine cycle would be at least $3/kg. These results indicate that direct electrolysis of water is a more attractive way to produce hydrogen than any presently conceived version of the hybrid chlorine cycle. (author)

  10. Structural and optical properties of chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas, SP (Brazil); Schreiner, Wido [Departamento de Fisica, Universidade Federal de Parana, PR (Brazil); Dias da Silva, Jose Humberto [Faculdade de Ciencias, Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil); Appolinario, Marcelo Borgatto [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Durrant, Steven F., E-mail: steve@sorocaba.unesp.br [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil)

    2011-12-30

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R{sub C}, which was varied from 0 to 80%. Deposition rates of 80 nm min{sup -1} were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at {approx} 47 at.% for R{sub C} {>=} 40%. The refractive index and optical gap, E{sub 04}, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from {approx} 40 Degree-Sign to {approx} 77 Degree-Sign .

  11. DFT application for chlorin derivatives photosensitizer drugs modeling

    Science.gov (United States)

    Machado, Neila; Carvalho, B. G.; Téllez Soto, C. A.; Martin, A. A.; Favero, P. P.

    2018-04-01

    Photodynamic therapy is an alternative form of cancer treatment that meets the desire for a less aggressive approach to the body. It is based on the interaction between a photosensitizer, activating light, and molecular oxygen. This interaction results in a cascade of reactions that leads to localized cell death. Many studies have been conducted to discover an ideal photosensitizer, which aggregates all the desirable characteristics of a potent cell killer and generates minimal side effects. Using Density Functional Theory (DFT) implemented in the program Vienna Ab-initio Simulation Package, new chlorin derivatives with different functional groups were simulated to evaluate the different absorption wavelengths to permit resonant absorption with the incident laser. Gaussian 09 program was used to determine vibrational wave numbers and Natural Bond Orbitals. The chosen drug with the best characteristics for the photosensitizer was a modified model of the original chlorin, which was called as Thiol chlorin. According to our calculations it is stable and is 19.6% more efficient at optical absorption in 708 nm in comparison to the conventional chlorin e6. Vibrational modes, optical and electronic properties were predicted. In conclusion, this study is an attempt to improve the development of new photosensitizer drugs through computational methods that save time and contribute to decrease the numbers of animals for model application.

  12. Degradation of chlorinated compounds in an anaerobic-aerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Alfan-Guzman, R.; Guerrero-Barajas, C.; Garcia-Pena, I.

    2009-07-01

    Remediation technologies that involves gas transport (e.g., soil vapor extraction and air sparging of groundwater) cause the emission of gases contaminated with chlorinated solvents. Under anaerobic conditions, reductive dechlorination of trichloroethylene (TCE) proceeds via the formation of cis and trans dichloroethene (DCEs) and vinyl chloride (VC) as intermediates. (Author)

  13. A Plume Scale Model of Chlorinated Ethene Degradation

    DEFF Research Database (Denmark)

    Murray, Alexandra Marie; Broholm, Mette Martina; Badin, Alice

    leaked from a dry cleaning facility, and a 2 km plume extends from the source in an unconfined aquifer of homogenous fluvio-glacial sand. The area has significant iron deposits, most notably pyrite, which can abiotically degrade chlorinated ethenes. The source zone underwent thermal (steam) remediation...

  14. Chlorinated paraffins wrapping of carbon nanotubes: A theoretical investigation

    Science.gov (United States)

    Ding, Qiuyue; Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2018-04-01

    How nanomaterials interact with pollutants is the central for understanding their environmental behavior and practical application. In this work, molecular dynamics (MD) and density functional theoretical (DFT) methods were used to investigated the influence of carbon chain length, degree of chlorination, chain configuration, and chirality of chlorinated paraffin (CP) and diameter of single-walled carbon nanotubes (SWNTs) on the interaction between CPs and SWNTs. The simulation results demonstrated that CP chain length and chlorination degree played considerably important roles in determining interaction strength between SWNTs and CPs. The interaction energies increased with increasing chain length and chlorination degree. The chirality of SWNT exerted negligible influence on the interaction energy between SWNTs and CPs. On the contrary, interaction energy increased with increasing radius of SWNTs due to the surface curvatures. This result was rationalized by considering the decrease in SWNT curvature with increasing radius, which resulted in plane-like CNT wall. The negligible influence of CP chain configurations was attributed to relative flexibility of CP carbon chains, which can wrap on tubes through conformational changes with low-energy barriers. MD results indicated that CPs could adsorb on SWNT surface rapidly in aqueous environment. Charge transfer and electronic density results indicated that the interaction between CPs and SWNTs was physisorption in nature. This work provides fundamental information regarding SWNTs as sorbents for CPs extraction and adsorptive removal from environmental water system.

  15. Rate of absorption and interfacial area of chlorine into aqueous ...

    African Journals Online (AJOL)

    Due to excellent mass transfer characteristics with energy efficiency jet ejectors can be used in place of conventional countercurrent systems, namely, packed bed contactors as well as venturi scrubbers, cyclones and airlift pumps. The removal of chlorine from certain gases by absorption in aqueous solutions of sodium ...

  16. Dose and temperature criteria for radiation chlorination of ethane

    International Nuclear Information System (INIS)

    Prasil, Z.

    1979-01-01

    General criteria determining the region of dose rates and temperatures at which a radiation-induced chain reaction proceeds are applied to a series of subsequent and competitive chain reactions of the chlorination of ethane and its derivatives. The calculations presume that the reactions proceed in an ideal through-flow chemical reactor with a piston flow. (M.S.)

  17. Effectiveness of chlorination and ozonation methods on pure ...

    African Journals Online (AJOL)

    Other oxidants, such as ozone, could be used for bulking control. In view of the fact that chlorine and ozone are both non-selective chemical agents affecting filamentous and floc-forming micro-organisms, the determination of optimum dosage conditions becomes essential to minimise the impact produced on the activated ...

  18. Chlorinated Iridoid Glucosides from Veronica longifolia and their Antioxidant Activity

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal; Gotfredsen, Charlotte Held; Harput, U. Sebnem

    2010-01-01

    From Veronica longifolia were isolated three chlorinated iridoid glucosides, namely asystasioside E (6) and its 6-O-esters 6a and 6b, named longifoliosides A and B, respectively. The structures of 6a and 6b were proved by analysis of their spectroscopic data and by conversion to the catalpol ester...

  19. Degradation of Chlorinated Aromatic Compounds in UASB Reactors

    DEFF Research Database (Denmark)

    Christiansen, Nina; Hendriksen, Hanne Vang; Järvinen, Kimmo T.

    1995-01-01

    Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded...

  20. Transformation of chlorinated compounds by methanogenic granular sludge

    NARCIS (Netherlands)

    Eekert, van M.H.A.

    1999-01-01

    Chlorinated compounds are an important group of contaminants often found in sediments, groundwater, soils, wastewaters, and off-gasses. Many of these pollutants are found on the EPA list of Priority Pollutants indicating their potential hazard for the environment. Initial degradation can

  1. 75 FR 51113 - Chlorinated Isocyanurates From China and Spain

    Science.gov (United States)

    2010-08-18

    ... Isocyanurates From China and Spain AGENCY: United States International Trade Commission. ACTION: Scheduling of... and Spain. SUMMARY: The Commission hereby gives notice of the scheduling of expedited reviews pursuant... revocation of the antidumping duty orders on chlorinated isocyanurates from China and Spain would be likely...

  2. Effectiveness of chlorination and ozonation methods on pure ...

    African Journals Online (AJOL)

    2005-01-16

    Jan 16, 2005 ... dising agents on the metabolic activity and the viability of the micro-organisms. Ozone was found to ..... the antimicrobial action of ozone and chlorine. This strain was ... The pH of the culture medium was adjusted to 7.0 with ..... indicated that lysis of the cells can result for high concentrations or extended ...

  3. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    Science.gov (United States)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Chlorination and cleavage of lignin structures by fungal chloroperoxidases

    Science.gov (United States)

    Patricia Ortiz-Bermudez; Ewald Srebotnik; Kenneth E. Hammel

    2003-01-01

    Two fungal chloroperoxidases (CPOs), the heme enzyme from Caldariomyces fumago and the vanadium enzyme from Curvularia inaequalis, chlorinated 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane, a dimeric model compound that represents the major nonphenolic structure in lignin. Both enzymes also cleaved this dimer to give 1-chloro-4-ethoxy-3-...

  5. Challenges in subsurface in situ remediation of chlorinated solvents

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical...

  6. Chlorinative stress in age-related diseases: a literature review.

    Science.gov (United States)

    Casciaro, Marco; Di Salvo, Eleonora; Pace, Elisabetta; Ventura-Spagnolo, Elvira; Navarra, Michele; Gangemi, Sebastiano

    2017-01-01

    Aging is an agglomerate of biological long-lasting processes that result being inevitable. Main actors in this scenario are both long-term inflammation and oxidative stress. It has been proved that oxidative stress induce alteration in proteins and this fact itself is critically important in the pathophysiological mechanisms leading to diseases typical of aging. Among reactive species, chlorine ones such as hypochlorous acid (HOCl) are cytotoxic oxidants produced by activated neutrophils during chronic inflammation processes. HOCl can also cause damages by reacting with biological molecules. HOCl is generated by myeloperoxidase (MPO) and augmented serum levels of MPO have been described in acute and chronic inflammatory conditions in cardiovascular patients and has been implicated in many inflammatory diseases such as atherosclerosis, neurodegenerative conditions, and some cancers. Due to these data, we decided to conduct an up-to-date review evaluating chlorinative stress effects on every age-related disease linked; potential anti-oxidant countermeasures were also assessed. Results obtained associated HOCl generation to the aging processes and confirmed its connection with diseases like neurodegenerative and cardiovascular pathologies, atherosclerosis and cancer; chlorination was mainly linked to diseases where molecular (protein) alteration constitute the major suspected cause: i.e. inflammation, tissue lesions, DNA damages, apoptosis and oxidative stress itself. According data collected, a healthy lifestyle together with some dietary suggestion and/or the administration of nutracetical antioxidant integrators could balance the effects of chlorinative stress and, in some cases, slow down or prevent the onset of age-releated diseases.

  7. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  8. Chlorine-36 and the initial value problem

    Science.gov (United States)

    Davis, Stanley N.; Cecil, DeWayne; Zreda, Marek; Sharma, Pankaj

    Chlorine-36 is a radionuclide with a half-life of 3.01×105a. Most 36Cl in the hydrosphere originates from cosmic radiation interacting with atmospheric gases. Large amounts were also produced by testing thermonuclear devices during 1952-58. Because the monovalent anion, chloride, is the most common form of chlorine found in the hydrosphere and because it is extremely mobile in aqueous systems, analyses of both total Cl- as well as 36Cl have been important in numerous hydrologic studies. In almost all applications of 36Cl, a knowledge of the initial, or pre-anthropogenic, levels of 36Cl is useful, as well as essential in some cases. Standard approaches to the determination of initial values have been to: (a) calculate the theoretical cosmogenic production and fallout, which varies according to latitude; (b) measure 36Cl in present-day precipitation and assume that anthropogenic components can be neglected; (c) assume that shallow groundwater retains a record of the initial concentration; (d) extract 36Cl from vertical depth profiles in desert soils; (e) recover 36Cl from cores of glacial ice; and (f) calculate subsurface production of 36Cl for water that has been isolated from the atmosphere for more than one million years. The initial value from soil profiles and ice cores is taken as the value that occurs directly below the depth of the easily defined bomb peak. All six methods have serious weaknesses. Complicating factors include 36Cl concentrations not related to cosmogenic sources, changes in cosmogenic production with time, mixed sources of chloride in groundwater, melting and refreezing of water in glaciers, and seasonal groundwater recharge that does not contain average year-long concentrations of 36Cl. Résumé Le chlore-36 est un radionucléide de période 3.01×105a. Pour l'essentiel, le 36Cl dans l'hydrosphère provient des effets du rayonnement cosmique sur les gaz atmosphériques. De grandes quantités de 36Cl ont aussi été produites au cours des

  9. Selective synthesis and characterization of chlorins as sensitizers for photodynamic therapy

    Science.gov (United States)

    Montforts, Franz-Peter; Kusch, Dirk; Hoper, Frank; Braun, Stefan; Gerlach, Benjamin; Brauer, Hans-Dieter; Schermann, Guido; Moser, Joerg G.

    1996-04-01

    Chlorin type sensitizers have ideal photophysical properties for an application in PDT. The basic chlorin framework of these sensitizers has to be modified by attachment of lipophilic and hydrophilic residues to achieve a good cell uptake and tumor enrichment. In the present study we describe the selective synthesis of amphiphilic chlorins starting from the readily accessible red blood pigment heme. The photophysical properties of the well defined synthetic chlorins are characterized by photophysical investigations. The kinetic of cell uptake, the localization in the cell and the photodynamic behavior of the amphiphilic sensitizers are demonstrated by incubation of A 375 cancer cell lines with structurally different chlorins.

  10. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    Science.gov (United States)

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  11. Determination of chlorine in nuclear-grade uranium compounds by ion-selective electrode

    International Nuclear Information System (INIS)

    Yang Chunqing; Liu Fuyun; Huang Dianfan.

    1989-01-01

    The determination of microamount chlorine in nuclear-grade uranium compounds is described. Chlorine is separated from uranium oxide pyrohydrolytically with stream of wet oxygen in a furnace at 800-900 deg C. Chlorine is volatilized as hydrochloric acid, which then is absorbed in a dilute alkaline solution and measured with chlorine selective electrode. This method covers the concentration range of 10-500 ppm chlorine in uranium oxide. The relative standard diviation is better than 10% and recovery of 85-108% has been reported

  12. The potential feasibility of chlorinic photosynthesis on exoplanets.

    Science.gov (United States)

    Haas, Johnson R

    2010-11-01

    The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater.

  13. Comprehensive Model for Enhanced Biodegradation of Chlorinated Solvents in Groundwater

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Robinson, C.; Barry, A. D.; Harkness, M.; Mack, E. E.; Dworatzek, S.

    2007-12-01

    SABRE (Source Area BioREmediation) is a public/private consortium whose charter is to de-termine if enhanced anaerobic bioremediation can result in effective treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research and development project is a field site in the United Kingdom containing TCE DNAPL. A comprehensive numerical model for simulating dehalogenation of chlorinated ethenes has been developed. The model considers the kinetic dissolution of DNAPL and nonaqueous organic amendments, bacterial growth and decay, and the interaction of biological and geochemical reactions that might influence biological activity. The model accounts for inhibitory effects of high chlorin-ated solvent concentrations as well as the link between fermentation and dehalogenation due to dynamic hydrogen concentration (the direct electron donor). In addition to the standard biodegradation pathways, sulphate reduction, mineral dissolution and precipitation kinetics are incorporated. These latter processes influence the soil buffering capacity and thus the net acidity generated. One-dimensional simulations were carried out to reproduce the data from columns packed with site soil and groundwater exhibiting both intermediate (250 mg/L) and near solubility (1100 mg/L) TCE concentrations. The modelling aims were to evaluate the key processes underpinning bioremediation success and provide a tool for investigating field sys-tem sensitivity to site data and design variables. This paper will present the model basis and validation and examine sensitivity to key processes including chlorinated ethene partitioning into soybean oil, sulphate reduction, and geochemical influences such as pH and the role of buffering in highly dechlorinating systems.

  14. Short-chain chlorinated paraffins (SCCPs) in surface soil from a background area in China: occurrence, distribution, and congener profiles.

    Science.gov (United States)

    Wang, Xue-Tong; Zhang, Yuan; Miao, Yi; Ma, Ling-Ling; Li, Yuan-Cheng; Chang, Yue-Ya; Wu, Ming-Hong

    2013-07-01

    Short-chain chlorinated paraffins (SCCPs) are extremely complex technical mixtures of polychlorinated n-alkanes with carbon chain lengths from C10 to C13 and chlorine content between 49 and 70%. SCCPs are under consideration for inclusion in the Stockholm Convention on persistent organic pollutants. SCCPs have been used extensively in industrial production, but little is known about the pollution level in soil environment in China. In this study, levels and distribution of SCCPs in soil samples from Chongming Island were analyzed. Concentrations of total SCCPs in soil samples ranged from 0.42 to 420 ng g(-1), with a median of 9.6 ng g(-1). The ubiquitous occurrence of SCCPs in Chongming Island implied that long-range atmospheric transport and soil-air exchange may be the most important pathways for SCCP contamination in the background area. The localized SCCP contamination could be derived from an unidentified source. Hierarchical cluster analysis indicated that C13- and C11-congeners were predominant in most soils and C10- and C12-congeners dominated in the remaining soils. Cl7- and Cl8-congeners were on the average the most dominant chlorine congeners in nearly all soils. Principal component analysis suggested that the separation of even and odd carbon chain congeners occurred during long-range atmospheric transport and aging in soil in the study area.

  15. Compounded effects of chlorinated ethene inhibition on ecological interactions and population abundance in a Dehalococcoides - Dehalobacter coculture.

    Science.gov (United States)

    Lai, Yenjung; Becker, Jennifer G

    2013-02-05

    The development of rational and effective engineered bioremediation approaches for sites contaminated with chlorinated solvents requires a fundamental understanding of the factors limiting the in situ activity of dehalorespiring bacteria. Frequently, multiple dehalorespiring bacteria are present at contaminated sites, particularly when bioaugmentation is applied. The ecological interactions between different dehalorespiring populations can-along with hydrodynamic and other environmental factors-affect their activity and thus the rates and extent of dehalorespiration. An integrated experimental and modeling approach was used to evaluate the ecological interactions between two hydrogenotrophic, dehalorespiring strains. A dual Monod model of dehalorespiration provided a good fit to the chlorinated ethene concentrations measured in a coculture of Dehalococcoides mccartyi 195 and Dehalobacter restrictus growing on tetrachloroethene (PCE) and excess H(2) in a continuous-flow reactor. Inhibition of dehalorespiration by chlorinated ethenes was previously observed in cultures containing Dehalococcoides or Dehalobacter strains. Therefore, inhibition coefficients were estimated for Dhc. mccartyi 195 and Dhb. restrictus. The inhibition effects of PCE and TCE on VC dechlorination by Dhc. mccartyi 195, and of VC on PCE and TCE dechlorination by Dhb. restrictus, were compounded when these strains were grown in coculture, and dehalorespiring population abundance and survival could be accurately predicted only by incorporating these complex interactions into the dual Monod model.

  16. Chlorine Evolution Reaction on RuO2(110): Ab initio Atomistic Thermodynamics Study - Pourbaix Diagrams

    International Nuclear Information System (INIS)

    Exner, Kai S.; Anton, Josef; Jacob, Timo; Over, Herbert

    2014-01-01

    Graphical abstract: - Highlights: • Using the method Pourbaix diagram we identified the oxygen covered RuO 2 (110) surface as the catalytically active phase under chlorine evolution reaction (CER) conditions. This active phase is compared with the active phase in the Deacon process, the heterogeneous gas phase counterpart of the CER. - Abstract: Constrained ab initio thermodynamics in the form of a Pourbaix diagram can greatly assist kinetic modeling of a particular electrochemical reaction such as the chlorine evolution reaction (CER) over RuO 2 (110). Pourbaix diagrams reveal stable surface structures, as a function of pH and the potential. The present DFT study indicates that the Pourbaix diagram in the CER potential region above 1.36 V and pH values around zero is dominated by a stable surface structure in which all coordinatively undercoordinated Ru sites (Ru cus ) are capped by on-top oxygen (O ot ). This oxygen saturated RuO 2 (110) surface is considered to serve as the catalytically active phase in the CER, quite in contrast to the heterogeneously catalyzed HCl oxidation (Deacon process), for which the active RuO 2 (110) surface is mainly covered by on-top chlorine. The active sites in the CER are suggested to be Ru cus O ot surface complexes, while in the Deacon process both undercoordinated surface Ru and oxygen sites must be available for the activation of HCl molecules

  17. Effects of chlorinated drinking water on the xenobiotic metabolism in Cyprinus carpio treated with samples from two Italian municipal networks.

    Science.gov (United States)

    Cirillo, Silvia; Canistro, Donatella; Vivarelli, Fabio; Paolini, Moreno

    2016-09-01

    Drinking water (DW) disinfection represents a milestone of the past century, thanks to its efficacy in the reduction of risks of epidemic forms by water micro-organisms. Nevertheless, such process generates disinfection by-products (DBPs), some of which are genotoxic both in animals and in humans and carcinogenic in animals. At present, chlorination is one of the most employed strategies but the toxicological effects of several classes of DBPs are unknown. In this investigation, a multidisciplinary approach foreseeing the chemical analysis of chlorinated DW samples and the study of its effects on mixed function oxidases (MFOs) belonging to the superfamily of cytochrome P450-linked monooxygenases of Cyprinus carpio hepatopancreas, was employed. The experimental samples derived from aquifers of two Italian towns (plant 1, river water and plant 2, spring water) were obtained immediately after the disinfection (A) and along the network (R1). Animals treated with plant 1 DW-processed fractions showed a general CYP-associated MFO induction. By contrast, in plant 2, a complex modulation pattern was achieved, with a general up-regulation for the point A and a marked MFO inactivation in the R1 group, particularly for the testosterone metabolism. Together, the toxicity and co-carcinogenicity (i.e. unremitting over-generation of free radicals and increased bioactivation capability) of DW linked to the recorded metabolic manipulation, suggests that a prolonged exposure to chlorine-derived disinfectants may produce adverse health effects.

  18. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.

  19. Chlorination for biofouling control in power plant cooling water system - a review

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Ruth Nithila, S.D.

    2008-01-01

    Fresh water is becoming a rare commodity day by day and thus power plant authorities are turning into sea to make use of the copious amount of seawater available at an economical rate for condenser cooling. Unfortunately, biofouling; the growth and colonization of marine organisms affect the smooth operation of power plant cooling water systems. This is more so, if the plant is located in tropical climate having clean environment, which enhances the variety and density of organisms. Thus, biofouling needs to be controlled for efficient operation of the power plant. Biocide used for biofouling control is decided based on three major criteria viz: it should be economically, operationally and environmentally acceptable to the power plant authorities. Chlorine among others stands out on the top and meets all the above requirements in spite of a few shortcomings. Therefore it is no wonder that still chlorine rules the roost and chlorination remains the most common method of biofouling control in power plant cooling water system all over the world. Although, it is easier said than done, a good amount of R and D work is essential before a precise chlorination regime is put into pragmatic use. This paper discusses in details the chemistry of chlorination such as chlorine demand, chlorine decay, break point chlorination, speciation of chlorine residual and role of temperature and ammonia on chlorination in biofouling control. Moreover, targeted and pulse chlorination are also discussed briefly. (author)

  20. Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic.

    Science.gov (United States)

    Bastviken, David; Svensson, Teresia; Karlsson, Susanne; Sandén, Per; Oberg, Gunilla

    2009-05-15

    Old assumptions that chloride is inert and that most chlorinated organic matter in soils is anthropogenic have been challenged by findings of naturally formed organochlorines. Such natural chlorination has been recognized for several decades, but there are still very few measurements of chlorination rates or estimates of the quantitative importance of terrestrial chlorine transformations. While much is known about the formation of specific compounds, bulk chlorination remains poorly understood in terms of mechanisms and effects of environmental factors. We quantified bulk chlorination rates in coniferous forest soil using 36Cl-chloride in tracer experiments at different temperatures and with and without molecular oxygen (O2). Chlorination was enhanced by the presence of O2 and had a temperature optimum at 20 degrees C. Minimum rates were found at high temperatures (50 degrees C) or under anoxic conditions. The results indicate (1) that most of the chlorination between 4 and 40 degrees C was biotic and driven by O2 dependent enzymes, and (2) that there is also slower background chlorination occurring under anoxic conditions at 20 degrees C and under oxic conditions at 50 degrees C. Hence, while oxic and biotic chlorination clearly dominated, chlorination by other processes including possible abiotic reactions was also detected.

  1. Formation of trichloromethane in chlorinated water and fresh-cut produce and as a result of reacting with citric acid

    Science.gov (United States)

    Chlorine (sodium hypochlorite) is commonly used by the fresh produce industry to sanitize wash water, fresh and fresh-cut fruits and vegetables. However, possible formation of harmful chlorine by-products is a concern. The objectives of this study were to compare chlorine and chlorine dioxide in t...

  2. ASCORBIC ACID REDUCTION OF ACTIVE CHLORINE PRIOR TO DETERMINING AMES MUTAGENICITY OF CHLORINATED NATURAL ORGANIC MATTER (NOM)

    Science.gov (United States)

    Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all com...

  3. Chloride pyrometallurgy of uranium ore. 1. Chlorination of phosphate ore using solid or gas chlorinating agent and carbon

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Komoto, Shigetoshi; Otomura, Keiichiro; Takenaka, Toshihide; Sato, Nobuaki; Fujino, Takeo.

    1995-01-01

    A thermodynamical and pyrometallurgical study to recover uranium from the phosphate ores was undertaken using the chloride volatilization method. Iron was chlorinated with solid chlorinating agents such as NaCl and CaCl 2 in combination with activated carbon, which will be used for removing this element from the ore, but uranium was not. On the other hand, the chlorination using Cl 2 gas and activated carbon gave a good result at 1,223 K. Not only uranium but also iron, phosphorus, aluminum and silicon were found to form volatile chlorides which vaporized out of the ore, while calcium remained in the ore as non-volatile CaCl 2 . The chlorination condition was studied as functions of temperature, reaction time and carbon content. The volatilization ratio of uranium around 95% was obtained by heating the mixture of the ore and activated carbon (35 wt%) in a mixed gas flow of Cl 2 (200 ml/min) and N 2 (200 ml/min) at 1,223 K for 120 min. (author)

  4. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    International Nuclear Information System (INIS)

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie C.C.; Aravena, Ramon; Canals, Àngels; Binning, Philip J.; Bjerg, Poul L.; Otero, Neus; Soler, Albert

    2014-01-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ 13 C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ 37 Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ 37 Cl and δ 13 C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ( 13 C, 35 Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer

  5. Durability of Selected Membrane Materials when Exposed to Chlorine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Marianne Soerflaten

    2001-03-01

    This thesis is focusing on the durability of selected membrane materials when exposed to chlorine gas in the temperature range 30-100{sup o}C. Studies of the changes of membrane separation properties and the mechanisms promoting these changes have been studied. The selected membrane materials were poly(dimethylsioxane) (PDMS), Fluorel, fluorosilicone, and blends of PDMS and Fluorel. The thesis is organised in seven chapters. The first chapter gives an introduction to the background of the work. The second chapter presents the theory for gas separation using dense rubbery membranes. The properties of the selected membrane materials are presented in chapter three. The fourth chapter describes degradation mechanisms for polymeric materials in general and for the selected membrane materials in particular. Presentation of the experimental work is given in chapter five, while the results with discussions are presented in chapter six. The conclusions and recommendations for further studies are given in chapter seven. Five appendixes are attached: Appendix A describes the calculations of permeability and solubility coefficients and the accuracy of the experimental measurements. Appendix B summarises the measured values in tables and Appendix C describes the analytical methods. Appendix D gives the properties of the gases used in the experiments. Appendix E is the article ''Durability of Poly(dimethylsiloxane) when Exposed to Chlorine Gas'', submitted to the Journal of Applied Polymer Science. Highly crosslinked PDMS was found to have an initial high permeability for chlorine gas and a high Cl{sub 2}/O{sub 2} selectivity. However when exposed to chlorine gas the permeability decreased significantly. Crosslinking of the PDMS polymer chain and chlorination of the polymer gave a denser polymer structure and thus lower permeability. Fluorel showed very low permeabilities and selectivities for the gases in question and was thus not interesting for this

  6. The quantification of short-chain chlorinated paraffins in sediment samples using comprehensive two-dimensional gas chromatography with μECD detection.

    Science.gov (United States)

    Muscalu, Alina M; Morse, Dave; Reiner, Eric J; Górecki, Tadeusz

    2017-03-01

    The analysis of persistent organic pollutants in environmental samples is a challenge due to the very large number of compounds with varying chemical and physical properties. Chlorinated paraffins (CPs) are complex mixtures of chlorinated n-alkanes with varying chain lengths (C 10 to C 30 ) and degree of chlorination (30 to 70% by weight). Their physical-chemical properties make these compounds persistent in the environment and able to bioaccumulate in living organisms. Comprehensive two-dimensional gas chromatography (GC × GC) coupled with micro-electron capture detection (μECD) was used to separate and quantify short-chain chlorinated paraffins (SCCP) in sediment samples. Distinct ordered bands were observed in the GC × GC chromatograms pointing to group separation. Using the Classification function of the ChromaTOF software, summary tables were generated to determine total area counts to set up multilevel-calibration curves for different technical mixes. Fortified sediment samples were analyzed by GC × GC-μECD with minimal extraction and cleanup. Recoveries ranged from 120 to 130%. To further validate the proposed method for the analysis of SCCPs, the laboratory participated in interlaboratory studies for the analysis of standards and sediment samples. The results showed recoveries between 75 and 95% and z-score values <2, demonstrating that the method is suitable for the analysis of SCCPs in soil/sediment samples. Graphical abstract Quantification of SCCPs by 2D-GC-μECD.

  7. [Formation mechanism and chemical safety of nonintentional chemical substances present in chlorinated drinking water and wastewater].

    Science.gov (United States)

    Onodera, Sukeo

    2010-09-01

    This paper reviews the formation mechanism and chemical safety of nonintentional chemical substances (NICS) present in chlorine-treated water containing organic contaminants. Undesirable compounds, i.e., NICS, may be formed under certain conditions when chlorine reacts with organic matter. The rate and extent of chlorine consumption with organics are strongly dependent on their chemical structures, particularly whether double bonds or sulfur and nitrogen atoms occur in the molecules. Organothiophosphorus pesticides (P=S type) are easily oxidized to their phosphorus compounds (P=O type) in chlorinated water containing HOCl as little as 0.5 mg/l, resulting in an increase in cholinesterase-inhibitory activity. Chlorination of phenols in water also produces a series of highly chlorinated compounds, including chlorophenols, chloroquinones, chlorinated carboxylic acids, and polychlorinated phenoxyphenols (PCPPs). In some of these chloroquinones, 2,6-dichloroalkylsemiquinones exhibit a strong mutagenic response as do positive controls used in the Ames test. 2-phenoxyphenols in these PCPPs are particularly interesting, as they are present in the chlorine-treated phenol solution and they are also precursors (predioxins) of the highly toxic chlorinated dioxins. Polynuclear aromatic hydrocarbons (PAHs) were found to undergo chemical changes due to hypochlorite reactions to give chloro-substituted PAHs, oxygenated (quinones) and hydroxylated (phenols) compounds, but they exhibit a lower mutagenic response. In addition, field work was performed in river water and drinking water to obtain information on chemical distribution and their safety, and the results are compared with those obtained in the model chlorination experiments.

  8. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  9. Synthesis and spectral properties of novel chlorinated pH fluorescent probes

    International Nuclear Information System (INIS)

    Wu Xianglong; Jin Xilang; Wang Yunxia; Mei Qibing; Li Jianli; Shi Zhen

    2011-01-01

    Eight chlorinated fluoresceins have been synthesized by the reaction of chlorinated resorcinols with 4, 5, 6, 7-tetrachlorophthalic anhydride or 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. The spectral properties of the chlorinated fluoresceins were studied. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. pH-dependent properties of chlorinated fluoresceins were studied in detail. These compounds showed a strongly pH-sensitive range of 3.0-7.0. These chlorinated fluoresceins will be used as pH probes for pH measurement of the cell because of the high quantum yield and strong pH-sensitivity. - Research highlights: → Eight chlorinated fluoresceins have been synthesized in the presence of methanesulfonic acid. → Emission spectra of these compounds shifted towards long wavelength with increase in chlorine. → Eight chlorinated fluoresceins showed a strongly pH-sensitive range of 3.0-7.0. → They have emission maxima at long wavelengths and high fluorescence quantum yields.

  10. Electrochemical chlorine evolution at rutile oxide (110) surfaces

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Man, Isabela Costinela; Studt, Felix

    2010-01-01

    -sites are established for MO2 (M being Ir, Ru, Pt, Ti). The linear relations form the basis for constructing a generalized surface phase diagram where two parameters, the potential and the binding energy of oxygen, are needed to determine the surface composition. We calculate the catalytic activity as function...... the lowest overpotential at which all elementary reaction steps in the chlorine evolution reaction are downhill in free energy. This condition is then used as a measure for catalytic activity. Linear scaling relations between the binding energies of the intermediates and the oxygen binding energies at cus...... of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity...

  11. Uranium extraction from high content chlorine leach liquor

    International Nuclear Information System (INIS)

    Fatemi, K.

    1998-01-01

    In this work uranium solution has been leached out by leaching process of uranium ores from Bandar-Ab bass port using sea water, since fresh water could not be available when it is processed in large scale. Two samples of different batches containing 11 and 20 gr./lit chlorine underwent two stages of precipitation by lead nitrate. As the result of this treatment the chlorine removed and its final concentration reduced to 530 p.p.m. which is well below allowances. Then, the uranium of this recent dechlorinated solu ton has been extracted by T.B.P. Uranium in organic phase was stripped out into inorganic phase by sodium carbonate and precipitated in a form of yellow cake and converted to U3o8. The total recovery of U, was well above 90% and the purity of the conc. U was better than 94%. The lead used at the beginning of the process was recovered for next use

  12. Chlorine trifluoride (1963); Le trifluorure de chlore (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, L.M.; Gillardeau, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This monograph on chlorine trifluoride may be considered as a working tool useful in gaseous diffusion research. It consists of data gathered from the literature and includes furthermore a certain amount of original data. This monograph groups together the physical, chemical and physiological properties of chlorine trifluoride, as well as the preparation and analytical methods. It has been thought wise to add some technological information, and the safety regulations governing its use. (authors) [French] Cette monographie sur le trifluorure de chlore doit etre consideree comme un instrument de travail dans le cadre des recherches sur la diffusion gazeuse. Il etait necessaire de grouper les donnees eparses dans la litterature. Elle comprend en outre un certain nombre de donnees originales. Cette monographie groupe les proprietes physiques, chimiques et physiologiques du trifluorure de chlore, ainsi que ses methodes de preparation et d'analyse. On a juge utile de joindre des indications technologiques et les consignes de securite concernant son emploi. (auteurs)

  13. Chlorine trifluoride (1963); Le trifluorure de chlore (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, L M; Gillardeau, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This monograph on chlorine trifluoride may be considered as a working tool useful in gaseous diffusion research. It consists of data gathered from the literature and includes furthermore a certain amount of original data. This monograph groups together the physical, chemical and physiological properties of chlorine trifluoride, as well as the preparation and analytical methods. It has been thought wise to add some technological information, and the safety regulations governing its use. (authors) [French] Cette monographie sur le trifluorure de chlore doit etre consideree comme un instrument de travail dans le cadre des recherches sur la diffusion gazeuse. Il etait necessaire de grouper les donnees eparses dans la litterature. Elle comprend en outre un certain nombre de donnees originales. Cette monographie groupe les proprietes physiques, chimiques et physiologiques du trifluorure de chlore, ainsi que ses methodes de preparation et d'analyse. On a juge utile de joindre des indications technologiques et les consignes de securite concernant son emploi. (auteurs)

  14. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...

  15. Chlorine-assisted leaching of Key Lake uranium ore

    International Nuclear Information System (INIS)

    Haque, K.E.

    1981-04-01

    Bench-scale chlorine-assisted leach tests were conducted on the Key Lake uranium ore. Leach tests conducted at 80 0 C on a slurry containing 50% solids during 10 hours of agitation gave the maximum extraction of uranium - 96% and radium-226 - 91%. Chlorine was added at 23.0 Kg Cl 2 /tonne of ore to maintain the leach slurry pH in the range of 1.5-1.0. To obtain residue almost free of radionuclides, hydrochloric acid leaches were conducted on the first stage leach residues. The second stage leach residue still was found to contain uranium - 0.0076% and radium-226 - 200 pCi/g of solids

  16. Flash photolysis of chlorine dioxide in aqueous solution

    International Nuclear Information System (INIS)

    Mialocq, Jean-Claude

    1972-01-01

    The primary process when aqueous solutions of chlorine dioxide are flash photo-lysed by light with a wave length greater than 270 nm is: OClO → hν ClO ( 2 Π) + O ( 3 P). The photochemical decomposition is characterized by the formation of small quantities of O ( 3 P) atoms and of equal amounts of chlorine atoms and molecular oxygen, the latter originating in the reaction: ClOO → Cl + O 2 . The isomer ClOO is formed by the germinate recombination of ClO and O, a process which is twice as important as diffusion of the fragments into the mass of the solution and one which represents 30 per cent of the decomposition of the chlorine dioxide. Under our experimental conditions, the lifetime of the ClOO is less than one microsecond. Chlorine atoms are precursors of Cl 2 O 2 , whose UV absorption spectrum has been determined, and which is formed by the reactions: Cl + OClO → Cl 2 O 2 ; Cl + Cl - → Cl 2- ; Cl 2- + OClO → Cl 2 O 2 + Cl - k = (1,0 ±0,1) 10 9 M -1 s -1 . Cl 2 O 2 disappears by a first-order process which leads to the formation of the ions Cl - and ClO 3 - . Competition between the reactions: O ( 3 P) + O 2 → O 3 ; O ( 3 P) + OClO → ClO 3 . ( k OClO + O)/( k O 2 + O) = 1.85±0.25 has been studied and the molar extinction coefficient of ClO 3 determined at its absorption maximum (255 nm): ε 255 nm = (920 ± 90) M -1 cm -1 . (author) [fr

  17. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography.

    Science.gov (United States)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-12-01

    Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  18. NDMA Formation during Chlorination and Chloramination of Aqueous Diuron Solutions

    OpenAIRE

    Young, Thomas M

    2008-01-01

    Formation of the potent carcinogen N-nitrosodimethylamine (NDMA) during chlorine disinfection of water containing secondary amines is now generally acknowledged. The phenylurea herbicide diuron is one of the most widely used herbicides in California, has been frequently detected in California’s water sources with a transient nature of appearance, and has a structure that suggests it might be an NDMA precursor. This study sought to quantify the potential for NDMA formation from aqueous diuron ...

  19. The pool chlorine hypothesis and asthma among boys.

    LENUS (Irish Health Repository)

    Cotter, A

    2012-01-31

    Swimming pool sanitation has largely been concerned with the microbiological quality of pool water, which is normally treated using a number of chlorine products. Recent studies have pointed to the potential hazards of chlorine by-products to the respiratory epithelium, particularly in indoor, poorly ventilated, pools. The aim of our study was to elucidate whether chronic exposure to indoor chlorinated swimming pools was associated with an increased likelihood of the development of asthma in boys. METHODS: The subjects were boys aged between 6 and 12 years. Data was collected by means of parental responses to a standardized asthma questionnaire (ISAAC: International Study of Asthma and Allergies in Childhood), supplemented with additional questions regarding frequency of attendance, number of years attendance, whether the child is a swimming team member. The questionnaire return rate was 71\\/% (n = 121). 23 boys were excluded on the basis that they had asthma before they started swimming (n = 97). There was a significant association between number of years a boy had been swimming and the likelihood of wheezing in the last 12 months (p = 0.009; OR = 1.351; 95% CI = 1.077-1.693) and diagnosed asthma (p = 0.046; OR = 1.299; 95% CI = 1.004-1.506). The greater the number the number of years a boy had been attending an indoor, chlorinated pool, the greater the likelihood of wheezing in the last 12 months or "had asthma". Age, parental smoking habits and being a swimming team member had no association with any of the asthma variables examined. Swimming pool attendance may be a risk factor in asthma in boys.

  20. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C von; Struis, R; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  1. Sem-edx and ftir studies of chlorinated rubber coating

    International Nuclear Information System (INIS)

    Bano, H.; Khan, M.I.

    2013-01-01

    Summary: Anticorrosive performance of chlorinated rubber coating has been investigated by visual examination, Scanning electron microscopy (SEM)/Energy dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) spectroscopy. After surface preparation, commercially available coating system based on chlorinated rubber (primer)/chlorinated rubber (topcoat) formulation was applied on mild steel test panels (10cm x 15cm sizes). Prepared coated panels were exposed at marine, industrial and urban test sites located in Karachi, Pakistan according to ISO 8565 norm. Accelerated testing was performed by using a salt spray chamber (ASTM B117 norm). Accelerated weathering methods are the methods in which the factors responsible for the degradation of coatings are artificially intensified in order to achieve the rapid degradation of coatings. Visual examination of blistering and rusting as well as SEM micrographs indicated a more severe degradation of the coating surface characteristics at natural exposure testing sites (particularly at marine test site) than for accelerated (salt spray) testing. EDX determination of the Oxygen/Carbon (O/C) ratios also indicated increased degradation at natural test sites compared to the accelerated (salt spray) testing. Photooxidation of the binder results in the formation of carbonyl compounds as revealed by FTIR spectroscopy which also indicated dehydrochlorination. (author)

  2. SOME ASPECTS REGARING CHLORINE DECAY IN WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    LIANA IOANA VUŢĂ

    2011-03-01

    Full Text Available A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. The quality of drinking water delivered to the customer’s tap is influenced by a number of processes; namely water treatment, disinfection and changes during transport of treated water via the distribution system. All natural waters and even treated drinking water exerts disinfectant demand due to the reactions with NOM and other constituents in water. Therefore, the applied disinfectant dose must be sufficient to meet the inherent demand in the treated water, to provide sufficient protection against microbial infection. Thus, controlling free residual chlorine properly is definitely important to ensure meeting regulatory requirements and satisfying customer needs.This paper presents the main aspects regarding chlorine decay in drinking-water distribution networks and, also a free chlorine decay simulation with EPANET2 on Ramnicu Valcea water distribution system.

  3. Preliminary treatment of chlorinated waste streams containing fission products

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, Damien; Bardez, Isabelle; Bart, Florence [CEA Marcoule DTCD/SECM/LM2C, BP 17171, 30207 Bagnols sur Ceze (France); Deniard, Philippe; Jobic, Stephane [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, BP 32229, 44322 Nantes cedex 3 (France); Rakhmatullin, Aydar [Conditions Extremes et Materiaux: Hautes Temperatures et Irradiations, CEMHTI-CNRS, 45071 Orleans cedex 2 (France); Bessada, Catherine [Conditions Extremes et Materiaux: Hautes Temperatures et Irradiations, CEMHTI-CNRS, 45071 Orleans cedex 2 (France); Universite d' Orleans, Faculte des Sciences, BP 6749, 45067 Orleans cedex 2 (France)

    2008-07-01

    Separating actinides from fission products (FP) by electrolytic techniques in a molten chloride medium produces high-level waste which, because of its high chlorine content, cannot be directly and quantitatively loaded in a glass matrix and therefore requires the development of new management methods. In this regard the strategy of submitting chlorinated waste streams to a preliminary treatment consists in separating the various types of FP from the solvent to minimize the ultimate high-level waste volume. Selective precipitation of the rare earth elements by NH{sub 4}H{sub 2}PO{sub 4} was investigated in a LiCl-KCl medium, and could constitute the first step in the purification process. Unlike the use of alkali orthophosphate, this method provides similar conversion factors with the simple addition of stoichiometric phosphorus (P:rare-earth = 1) and does not require excess phosphate (P:rare-earth = 5). This prevents the formation of a secondary Li{sub 3}PO{sub 4} phase. Moreover, NH{sub 4}H{sub 2}PO{sub 4} also allows chlorine bound to rare earth elements to be eliminated as NH{sub 4}Cl. The formation of HCl is highly probable.

  4. Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.

    Science.gov (United States)

    Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A

    2014-07-01

    Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.

  5. A New Formulation of Equivalent Effective Stratospheric Chlorine (EESC)

    Science.gov (United States)

    Newman, P. A.; Daniel, J. S.; Waugh, D. W.; Nash, E. R.

    2007-01-01

    Equivalent effective stratospheric chlorine (EESC) is a convenient parameter to quantify the effects of halogens (chlorine and bromine) on ozone depletion in the stratosphere. We show and discuss a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. Using this EESC formulation, we estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties in the estimated time of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air, and the assumption that the mean age-of-air and fractional release values are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be accelerated from 2041 to 2031.

  6. Aqueous-chlorine leaching of typical Canadian uranium ores

    International Nuclear Information System (INIS)

    Haque, K.E.

    1982-01-01

    Laboratory-scale aqueous-chlorine leaches were conducted on quartz-pebble conglomerates, pegmatite and vein-type ores. Optimum leach temperatures, pulp density and retention times were determined. Uranium extraction of 98 per cent was obtained from the Elliot Lake, Madawaska Mines of Bancroft and Rabbit Lake ores, 96 per cent from the Key Lake ore and 86 per cent from the Agnew Lake ore. However, tailings containing 15-20 pCi g -1 of radium-226 were obtained only from the Elliot Lake and Agnew lake quartz-pebble conglomerates and Bancroft pegmatite-type ores by second-stage leaches with HCl. The second-stage leach results indicate that multistage (3 or 4) acid-chloride or salt-chloride leaches might be effective to obtain tailings containing 15-20 pCi 226 Ra g -1 from the high-grade vein-type ores. Comparative reagent-cost estimates show that the sulphuric-acid leach process is far less expensive than aqueous chlorine leaching. Nevertheless, only the aqueous chlorine and acid-chloride leaches in stages are effective in producing tailings containing 15-20 pCi 226 Ra g -1 from the typical Canadian uranium ores. (Auth.)

  7. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Powell, Karen S. [Research Resource Facilities, University of Louisville, Louisville, KY (United States); Roberts, Andrew M. [Department of Physiology, University of Louisville, Louisville, KY (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was developed.

  8. Fatal chlorine gas exposure at a metal recycling facility: Case report.

    Science.gov (United States)

    Harvey, Robert R; Boylstein, Randy; McCullough, Joel; Shumate, Alice; Yeoman, Kristin; Bailey, Rachel L; Cummings, Kristin J

    2018-06-01

    At least four workers at a metal recycling facility were hospitalized and one died after exposure to chlorine gas when it was accidentally released from an intact, closed-valved cylinder being processed for scrap metal. This unintentional chlorine gas release marks at least the third such incident at a metal recycling facility in the United States since 2010. We describe the fatal case of the worker whose clinical course was consistent with acute respiratory distress syndrome (ARDS) following exposure to high concentrations of chlorine gas. This case report emphasizes the potential risk of chlorine gas exposure to metal recycling workers by accepting and processing intact, closed-valved containers. The metal recycling industry should take steps to increase awareness of this established risk to prevent future chlorine gas releases. Additionally, public health practitioners and clinicians should be aware that metal recycling workers are at risk for chlorine gas exposure. © 2018 Wiley Periodicals, Inc.

  9. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    Directory of Open Access Journals (Sweden)

    Claudia Coronel-Olivares

    2013-08-01

    Full Text Available The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains, Enterobacter cloacae, Kluyvera cryocrescens (three strains, Kluyvera intermedia, Citrobacter freundii (two strains, Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1, contact time (0, 15 and 30 min and water temperature (20, 25 and 30 °C. The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min. The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  10. Investigation of chlorination of zirconium and hafnium and their compounds in discharge from hollow cathode

    International Nuclear Information System (INIS)

    Ioffe, R.B.; Korovin, Yu.I.

    1978-01-01

    The possibility is investigated of chlorinating various zirconium and hafnium compounds (metal, oxide, carbide) in a hot discharge from a hollow cathode with various chlorinating reagents: copper monochloride, nickel chloride, magnesium chloride, for the purpose of accelerating their entrance into the excitation zone. It has been shown thermodynamically and experimentally that chlorination of metal zirconium and hafnium and their carbides with copper monochloride in hot hollow cathode conditions provides a sharp increase in the intensity of the lines of these elements

  11. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water.

    Science.gov (United States)

    Mao, Guannan; Wang, Yingying; Hammes, Frederik

    2018-02-01

    Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated Solvent Sites

    Science.gov (United States)

    2015-03-19

    Bioremediation Approaches at Chlorinated Solvent Sites March 19, 2015 SERDP & ESTCP Webinar Series (#11) SERDP & ESTCP Webinar Series Welcome and...Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated Solvent Sites Ms. Carmen Lebrón, Independent Consultant (20 minutes + Q&A) Dr...ESTCP Webinar Series Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated

  13. Oxidation of Cr(III)-Fe(III) Mixed-phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.

    Science.gov (United States)

    Chebeir, Michelle; Liu, Haizhou

    2018-05-17

    The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.

  14. Role of soot in the transport of chlorine in hydrocarbon-air diffusion flames

    International Nuclear Information System (INIS)

    Venkatesh, S.; Saito, K.; Stencel, J.M.; Majidi, V.; Owens, M.

    1991-01-01

    Soot is an inevitable product of incomplete combustion in many practical combustion systems such as automobiles, incinerators and furnaces. Recent studies on chlorinated hydrocarbon combustion have shown that soot and other praticulates (eg. fly ash) play an important role in secondary reactions leading to the formation of chlorine substituted polyaromatic hydrocarbons (PAHs). In order to attain very high destruction efficiencies the fundamental chemical and physical processes that are associated with combustion, and post-combustion cleanup must be well understood. In order to understand the effect of chlorine on the soot formed in a combustion system, fundamental studies using a coflow laminar hydrocarbon-air diffusion flame have been carried out. Phenomenological studies have revealed the effect of chlorine on the visible structure of the flame. Soot inception activation energies were estimated for methane, ethane and ethylene diffusion flames for the case of with and without chlorine addition. No significant difference in the activation energy was estimated for either case. The effect of chlorine on the soot escape rate of an acetylene diffusion flame was estimated. The soot formed in these diffusion flames was analyzed for chlorine using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and by laser induced plasma spectroscopy (LIPS). REsults from these techniques indicate the presence of chlorine in the soot formed. In this paper a chemical scheme to explain the chlorine found in the soot is proposed based on known theories of soot formation

  15. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    International Nuclear Information System (INIS)

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure

  16. Chlorination and chloramination of aminophenols in aqueous solution: oxidant demand and by-product formation.

    Science.gov (United States)

    Mehrez, O Abou; Dossier-Berne, F; Legube, B

    2015-01-01

    Chlorination and monochloramination of aminophenols (AP) were carried out in aqueous solution at 25°C and at pH 8.5. Oxidant demand and disinfection by-product formation were determined in excess of oxidant. Experiments have shown that chlorine consumption of AP was 40-60% higher than monochloramine consumption. Compared with monochloramination, chlorination of AP formed more chloroform and haloacetic acids (HAA). Dichloroacetic acid was the major species of HAA. Chloroform and HAA represented, respectively, only 1-8% and 14-15% of adsorbable organic halides (AOX) by monochloramination but up to 29% and 39% of AOX by chlorination.

  17. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure.

  18. In Situ Treatment of Chlorinated Ethene-Contaminated Groundwater Using horizontal Flow Treatment Wells

    National Research Council Canada - National Science Library

    Ferland, Derek

    2000-01-01

    The limitations of conventional containment technologies for groundwater contaminated with chlorinated solvents have motivated development of innovative technologies to achieve national groundwater...

  19. Chlorine dioxide as biocide to prevent biofouling in the hydro technical structures at KKNPP

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Sundar, R.S.

    2008-01-01

    Chlorination is envisaged in the sea water systems of KKNPP to control macro and micro bio-fouling of underwater structures and equipments. KKNPP intake and the fore bay structures are shown in detail. The sodium hypo chlorite required for chlorination is produced in the electro chlorination plant at site by the electrolysis of sea water. It is added in the sea water at the intake structure, tunnels and fore bay on continuous as well as periodic basis. The sea water to chlorination plant is supplied by the pumps located at the main pump house. Chlorination of sea water system by electro-chlorination is possible only after pump house flooding and commissioning of electro-chlorination plant. So for the period from breach of temporary dyke till commissioning of electro chlorination plant, chlorination by temporary method has to be done to prevent the bio-fouling of underwater structures and equipments. The flooding of the pump house subsequent to breach of temporary dyke is done

  20. The role of bound chlorine in the brightness reversion of bleached hardwood kraft pulp

    Directory of Open Access Journals (Sweden)

    Kátia Maria Morais Eiras

    2009-01-01

    Full Text Available Our previous paper showed fragmentary evidence that pulp brightness reversion may be negatively affected by its organically bound chlorine (OX content. A thorough investigation on eucalyptus kraft pulp led to the conclusion that OX increases reversion of certain pulps but this trend is not universal. Alkaline bleaching stages decrease reversion regardless of pulp OX content. Pulps bleached with high temperature chlorine dioxide revert less than those bleached with conventional chlorine dioxide in sequences ending with a chlorine dioxide stage but similarly in sequences ending with a final peroxide stage. The use of secondary condensate for pulp washing decreases reversion.

  1. Chlorination of uranium oxides in melts of alkali metal chlorides and their mixtures

    International Nuclear Information System (INIS)

    Vorobej, M.P.; Bevz, A.S.; Skiba, O.V.

    1978-01-01

    Chlorination of UO 2 , U 3 O 8 , and UO 3 in melts of chlorides of alkali metals and of their mixtures has been studied by thermogravimetric, X-ray phase, and spectrophotometric methods. The thermogravimetric method has been proposed for evaluating the state of uranylcation in the melt; the effect of the composition of the oxide being chlorinated and of the salt-solvent on the composition of the chlorination products has been studied. The effect of the composition of the chlorination products on the stoichiometry of the electrolytic uranium dioxide has been shown

  2. Selective recovery of uranium from Ca-Mg uranates by chlorination

    International Nuclear Information System (INIS)

    Pomiro, Federico J.; Gaviría, Juan P.; Quinteros, Raúl D.

    2017-01-01

    A chlorination process is proposed for the uranium extraction and separation using Calcium−Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO 4 ) as reaction product. The formation of U 3 O 8 and MgU 3 O 10 was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h −1 of chlorine and 10 hs of reaction at 700 °C being U 3 O 8 the single uranium product obtained. - Highlights: •The chlorination is an effective method for the recovery uranium from Ca-Mg uranates. •The optimal conditions were: 10 hs of reaction time at 700 °C using 3 l/h of Cl 2 (g). •U 3 O 8 is recovery by washing out the chlorination by-products.

  3. Chlorine determination in (U, Pu)C fuel by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Misra, Nand Lal; Dhara, Sangita; Mudher, Khush Dev Singh; Aggarwal, Suresh K.; Thakur, Uday Kumar; Shah, Dipti; Sawant, R.M.; Ramakumar, K.L.

    2007-01-01

    A Total Reflection X-ray Fluorescence (TXRF) method for the determination of chlorine in (U,Pu)C has been developed. The method involves calibration of the instrument with standard solutions and validation of TXRF determination of chlorine using synthetic standard solutions. Cl K α line excited with W L α source was used for TXRF determinations of chlorine. Chlorine present in trace amounts in (U,Pu)C samples was first separated by pyro hydrolysis. The evolved chlorine, in form of HCl, was collected in 5 mM NaOH solution. This solution was analyzed for chlorine by Total Reflection X-ray Fluorescence Spectrometry using cobalt as an internal standard. The TXRF detection limit of chlorine was found to be 3.6 pg with sample size of 30 μL. In order to assess the applicability of TXRF method for chlorine determinations in other nuclear materials, one U 3 O 8 trace element standard was also analyzed for chlorine in similar way. The precision of the method was found to be 25% (1 σ) at ng level in most of the cases. (author)

  4. Dealing with the chlorinated solvent situation at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1993-01-01

    Recent events regarding health and environmental problems associated with the use of chlorinated solvents have prompted the Oak Ridge Y-12 Plant to investigate substitutes for these materials. Since 1987, the purchase of chlorinated solvents at the Y-12 Plant has been reduced by 92%. This has been accomplished by substituting chlorinated solvent degreasing with ultrasonic aqueous detergent cleaning and by substituting chlorinated solvents with less toxic, environmentally friendly solvents for hand-wiping applications. Extensive studies of cleaning ability, compabitility, and effects on welding, bonding, and painting have been conducted to gain approval for use of these solvents. Toxicity and waste disposal were also assessed for the solvents

  5. On electron attachment effect on characteristics of the DBD in chlorine and its mixtures with xenon

    Science.gov (United States)

    Avtaeva, S. V.

    2017-11-01

    The electron attachment effect on DBD characteristics in chlorine and its mixtures with xenon has been studied. Characteristics of the DBDs in pure chlorine and in xenon-chlorine mixtures with a chlorine fraction of 0.1-5% were modeled using the fluid model. It is shown that the electron attachment limits a magnitude of the DBD current, contributes to formation of multiple current spikes, appearance of a double layer near the dielectric surface and formation of XeCl* excimer molecules, and leads to a redistribution of the power deposited into the discharge: more power is deposited into ions and less power is deposited into electrons.

  6. Evaluating potential chlorinated methanes degradation mechanisms and treatments in interception trenches filled with concrete-based construction wastes

    Science.gov (United States)

    Rodríguez-Fernandez, Diana; Torrentó, Clara; Rosell, Mònica; Audí-Miró, Carme; Soler, Albert

    2014-05-01

    A complex mixture of chlorinated organic compounds is located in an unconfined carbonated bedrock aquifer with low permeability in a former industrial area next to Barcelona (NE Spain). The site exhibited an especially high complexity due to the presence of multiple contaminant sources, wide variety of pollutants (mainly chlorinated ethenes but also chlorinated methanes) and unknown system of fractures (Palau et al., 2014). Interception trenches were installed in the place of the removed pollution sources and were filled with construction wastes with the aim of retaining and treating the accumulated contaminated recharge water before reaching the aquifer. Recycled concrete-based aggregates from a construction and demolition waste recycling plant were used to maintain alkaline conditions in the water accumulated in the trenches (pH 11.6±0.3) and thus induce chloroform (CF) degradation by alkaline hydrolysis. An efficacy of around 30-40% CF degradation in the interception trenches was calculated from the significant and reproducible CF carbon isotopic fractionation (-53±3o obtained in batch experiments (Torrentó et al., 2014). Surprisingly, although hydrolysis of carbon tetrachloride (CT) is extremely slow, a significant CT carbon isotopic enrichment was also observed in the trenches. The laboratory experiments verified the low capability of concrete to hydrolyze the CT and showed the high adsorption of CT on the concrete particles (73% after 50 days) with invariability in its δ13C values. Therefore, the significant CT isotopic fractionation observed in the interception trenches could point out the occurrence of other degradation processes distinct than alkaline hydrolysis. Geochemical speciation modelling using the code PHREEQC showed that water collected at the trenches is supersaturated with respect to several iron oxy-hydroxides and therefore, CT degradation processes related to these iron minerals cannot be discarded. In addition, the combination of alkaline

  7. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Maslehuddin, M.; Garwan, M.A.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Raashid, M.; Khateeb-ur-Rehman

    2010-01-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  8. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes.

    Science.gov (United States)

    Dong, Huiyu; Qiang, Zhimin; Hu, Jun; Qu, Jiuhui

    2017-09-15

    Ultraviolet (UV)/chlorine process is considered as an emerging advanced oxidation process for the degradation of micropollutants. This study investigated the degradation of chloramphenicol (CAP) and formation of disinfection by-products (DBPs) during the UV/chlorine treatment. It was found that CAP degradation was enhanced by combined UV/chlorine treatment compared to that of UV and chlorination treatment alone. The pseudo-first-order rate constant of the UV/chlorine process at pH 7.0 reached 0.016 s -1 , which was 10.0 and 2.0 folds that observed from UV and chlorination alone, respectively. The enhancement can be attributed to the formation of diverse radicals (HO and reactive chlorine species (RCSs)), and the contribution of RCSs maintained more stable than that of HO at pH 5.5-8.5. Meanwhile, enhanced DBPs formation during the UV/chlorine treatment was observed. Both the simultaneous formation and 24-h halonitromethanes formation potential (HNMsFP) were positively correlated with the UV/chlorine treatment time. Although the simultaneous trichloronitromethane (TCNM) formation decreased with the prolonged UV irradiation, TCNM dominated the formation of HNMs after 24 h (>97.0%). According to structural analysis of transformation by-products, both the accelerated CAP degradation and enhanced HNMs formation steps were proposed. Overall, the formation of diverse radicals during the UV/chlorine treatment accelerated the degradation of CAP, while also enhanced the formation of DBPs simultaneously, indicating the need for DBPs evaluation before the application of combined UV/chlorine process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Optimization of Chlorination Process for Mature Leachate Disinfection Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hamzeh Ali Jamali1

    2014-06-01

    Full Text Available Background: leachate from landfill contains high level of microbial pathogens which is considered as one of the most important threats for the environment. One of the common and simple methods for water and wastewater disinfection is chlorination, but it rarely has been used for leachate disinfection. The objective of this study was evaluating the efficiency of chlorine for leachate disinfection and optimization of the effect of concentration and contact time on the death of total and fecal coliforms, as a microbial contamination index. Methods: In this descriptive-analysis study, microbial indices monitoring in leachates initiated from landfill of Qazvin city were conducted for one year. After pre-tests, the range of chlorine concentration and contact time on the inactivation of microbial indices were determined. Central composite design (CCD and response surface methodology (RSM were applied to optimize chlorine concentration and contact time parameters effect on microbial inactivation. 13 runs of tests were performed on samples. Tests were included BOD, COD, total and fecal coliforms. All analytical experiments were according to the standard methods for the examination of water and wastewater. Results: Results of the study showed that microbial indices had relatively high sensitivity to inactivation by chlorination, which in the chlorine concentration of 2 mg/L and contact time of 9 min, and chlorine concentration of 0.5 mg/L and contact time of 12 min, 100% of total and fecal coliforms inactivated, respectively. The RSM method was used for analysis of bacterial inactivation. Analyses showed that in contact time of 9.4 min and chlorine concentration of 2.99 mg/L, the inactivation efficiency of total and fecal coliforms were 89.16% and 100%, respectively. Conclusions: Chlorine could be used for leachate disinfection. However, in high concentrations of organic matter in leachates, due to production potential of chlorination by-products, health

  10. The role of chlorine and additives of PVC-plastic in combustion

    International Nuclear Information System (INIS)

    Mattila, H.

    1991-01-01

    The PVC differs from other common plastics due to the chlorine content. As the PVC is combusted, the chlorine is released mainly as hydrogen chloride. The content of chlorinated hydrocarbons is small, but these can also contain polychlorinated dibenzofuranes and dibenzodioxines, which are extremely poisonous. The aim of this study was to find out, what is the portion of PVC combustion in total emission of chlorinated hydrocarbons. Additionally, the amounts chlorine coming into combustion process with ordinary fuels have been estimated, and they are compared with the amounts of PVC. The chloride content of municipal wastes vary in between 0.4-0.9 %. The portion of plastics is about 30 % of the total, and the rest being from paper, food , wood and garden wastes an textiles. Both organic and inorganic chlorine form gaseous hydrogen chlorid in combustion processes. HCl can then react with oxygen and produce caseous chlorine. This can react with unreacted carbon of the smoke and produce different kinds of chlorinated hydrocarbons. The portion of PVC of the chlorine going into combustion in Finland has been estimated to be about 1-2 %. Combustion tests were made using coal and bark and plastic waste as additional fuel. It was noticed that addition of plastic decreased the amount of polyaromatic hydrocarbons in the smoke. Chlorinated dioxins and furans occurred a little less in the gases of combustion of plastic mixtures not containing PVC than in reference tests, but they increased when PVC containing plastic mixture was combusted, but more chlorinated dioxins and furans were absorbed into fly ash, so the emissions remained almost the same

  11. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M.; Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-03-15

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  12. Bromination vis-a-vis chlorination as a biocide feasibility study

    International Nuclear Information System (INIS)

    Upadhyay, S.K.; Nagaigh, N.; Mittal, S.

    2000-01-01

    Water is used extensively as a cooling medium in various heat transfer equipment's of a power industry such as condenser, heat exchangers and cooling towers. At elevated temperature, the breeding of microbiological growth can form slimes, underneath of this, accelerated corrosion can take place resulting into sudden and catastrophic failure of equipment's. The microbiological growth unchecked in the various systems especially in low velocity areas can lead to large growth of micro organisms such as algae which can even reduce the flow of the fluid thus affecting the efficiency of plant equipment's. Therefore, chlorination is a mandatory requirement in industrial cooling water to reduce biofouling in heat transfer equipment's. The chlorination in drinking water produces germicidal effect and thus reduces the bacterial counts. At NAPS the water quality is good and mild doses of chlorine (5 ppm) two times a day, as envisaged in design is noticed to be satisfactory. The chlorination of recirculating condenser cooling water presently is being done with the established doses for a fixed time twice a day. Some of the problems noticed with the chlorination process are : Corrosion of constructional material of chlorination plant and equipment's and pipelines causing large input of efforts on maintenance for keeping high availability of the chlorination plant. In addition to this, the leakages in the equipment could be a potential safety hazard. The effectiveness of chlorine is observed to be less in alkaline pH (above 9.0) as encountered at NAPS. This results is large quantities of chlorine injection for extended periods. The cost of chlorine and bleaching powder keeps fluctuating in the market as noticed in past few years. Many a times this results in scarcity of chlorine/bleaching powder causing interruption in biofouling control programme. Hence it was felt prudent to work on the alternative biocides which could be cost effective, non-polluting and nature and user

  13. Complexed iron removal from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Munter, R.; Ojaste, H.; Sutt, J. [Tallinn Technical University, Tallinn (Estonia). Dept. of Environmental & Chemical Technology

    2005-07-01

    The paper demonstrates an intensive work carried out and results obtained on the pilot plant of the City of Kogalym Water Treatment Station (Tjumen, Siberia, Russian Federation) to elaborate on a contemporary nonreagent treatment technology for the local iron-rich groundwater. Several filter materials (Birm, Pyrolox, hydroanthracite, Everzit, granulated activated carbon) and chemical oxidants (ozone, chlorine, hydrogen peroxide, oxygen, and potassium permanganate) were tested to solve the problem with complexed iron removal from groundwater. The final elaborated technology consists of raw water intensive aeration in the gas-degas treatment unit followed by sequential filtration through hydroanthracite and the special anthracite Everzit.

  14. Transfer of chlorine from the environment to agricultural foodstuffs

    International Nuclear Information System (INIS)

    Kashparov, V.; Colle, C.; Levchuk, S.; Yoschenko, V.; Svydynuk, N.

    2007-01-01

    The factors governing chlorine transfer from Phaeozem and Greyzem soils to various important crop species (foodstuff and forage) were determined in natural conditions in the Kiev region of Ukraine. The stable chlorine concentration ratio (CR) values were the lowest in apple (0.5 ± 0.3) and strawberry (2 ± 1), higher in vegetables (5 ± 3), seeds (15 ± 7) and reached a maximum in straw (187 ± 90). The average CR values of 36 Cl were estimated for the most important crops using all experimental data on 36 Cl and stable chlorine transfer into plants from various soils. It was experimentally shown that boiling potatoes in water leads to an equilibrium between 36 Cl specific content in the water and moisture in the cooked potato. The 36 Cl processing factor (PF) for boiling various foodstuffs is equal to the ratio of water mass in the cooked foodstuff to the total water mass (in the food and the decoction). 36 Cl PF for cereal flour can be estimated as 1. The 36 Cl processing factor for dairy products is equal to the ratio of residual water mass in the product to initial water mass in milk. At a 36 Cl specific activity in soil of 1 Bq kg -1 , the estimated annual dietary 36 Cl intake into human organism (adult man) is about 10 kBq. Sixty to seventy percent of the above amount will be taken in via milk and dairy products, 7-16% via meat, 14-16% via bread and bakery items and 8-12% via vegetables. The highest annual 36 Cl intake, 10.7 kBq, is predicted for 1-year-old children. The expected effective doses from annual 36 Cl intake are higher for younger age groups, increasing from 0.008 mSv in adults to 0.12 mSv in 1-year-old children

  15. A new formulation of equivalent effective stratospheric chlorine (EESC

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2007-09-01

    Full Text Available Equivalent effective stratospheric chlorine (EESC is a convenient parameter to quantify the effects of halogens (chlorine and bromine on ozone depletion in the stratosphere. We show, discuss, and analyze a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This EESC can be more appropriately applied to various parts of the stratosphere because of this dependence on mean age-of-air. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. In this paper, we first provide a detailed description of the EESC calculation. We then use this EESC formulation to estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties and possible problems in the estimated times of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air and fractional release values, and the assumption that these quantities are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be significantly accelerated.

  16. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination.

    Science.gov (United States)

    Fu, Jing; Wang, Xiaomao; Bai, Weiliang; Yang, Hongwei; Xie, Yuefeng F

    2017-05-01

    The chlorination of azo compounds can produce halonitromethanes (HNMs), which have attracted increasing concern due to their high genotoxicity. By impacting the speciation of chlorine and azo compounds, pH impacts apparent second-order rate constants of Methyl Orange (MO, 27.5-1.4 × 10 3  M -1  s -1 ), Acid Orange II (AO, 16.7-99.3 M -1  s -1 ), and Acid Red 1 (AR 1, 3.7-72.5 M -1  s -1 ) (pH range 6.3-9.0). The two-compartment first-order model successfully described the chloropicrin (TCNM) formation kinetics, suggesting that both fast- and slow-reacting precursors of TCNM are generated from the chlorination of azo compounds. The ratios between fast and slow formation rate constants for MO and AO were 15.6-5.4 × 10 2 , while that of AR 1 was 9.8-19.4 (pH range 6.5-9.0). The fraction of the fast-reacting TCNM precursors decreased with increasing pH for MO and AO; while that for AR 1 decreased when pH increased from 6.5 to 8.0, and then increased when pH increased from 8.0 to 9.0. The impact of pH on TCNM formation was also precursor-specific. The highest molar yields of TCNM predicted from the model in this study were 2.4%, 2.5%, and 1.5% for MO, AO, and AR 1, respectively. The study demonstrates that azo compounds are important HNM precursors, and pose a potential threat to drinking water safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Predicting the distribution of contamination from a chlorinated hydrocarbon release

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, M.J. [K.W. Brown Environmental Services, College Station, TX (United States); Moridis, G.J. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The T2VOC model with the T2CG1 conjugate gradient package was used to simulate the motion of a dense chlorinated hydrocarbon plume released from an industrial plant. The release involved thousands of kilograms of trichloroethylene (TCE) and other chemicals that were disposed of onsite over a period of nearly twenty years. After the disposal practice ceased, an elongated plume was discovered. Because much of the plume underlies a developed area, it was of interest to study the migration history of the plume to determine the distribution of the contamination.

  18. Chlorine isotope fractionation during supergene enrichment of copper

    Science.gov (United States)

    Reich, M.; Barnes, J.; Barra, F.; Milojevic, C.; Drew, D.

    2017-12-01

    Supergene enrichment of Cu deposits in the Atacama Desert has played a critical role in making this the prime Cu-producing province of the world. The Cu-hydroxychloride atacamite is a major component of supergene zones in this region whereas in similar deposits elsewhere it is rare. Atacamite requires saline water to form and dissolves rapidly when exposed to fresh, meteoric water. Previous chlorine stable isotope data [1] for atacamite mineralization at the Radomiro Tomic, Chuquicamata and Mina Sur Cu deposits show δ37Cl values that range from -0.1 to +0.2‰, indicating a similar nonmagmatic source for the introduction of chloride. However, distal atacamite mineralization on the periphery of these orebodies show more fractionated and lighter δ37Cl values (-3.2 to -0.1‰). Although little disagreement currently exists about the involvement of saline groundwater during the formation of atacamite [2], no δ37Cl data are currently available for atacamite within a single deposit and/or supergene enrichment profile that allow explaining the aforementioned differences in the observed δ37Cl values. Furthermore, no experimental data for chlorine isotope fractionation between Cu-hydroxychloride minerals and water exist that help evaluate possible mechanisms of fractionation along the groundwater flow path. Here we present a new database that combines detailed mineralogical observations with δ37Cl data of atacamite along a thick ( 100 m) supergene enrichment profile at the Barreal Seco IOCG deposit in the Atacama Desert of northern Chile. Chlorine stable isotope data of atacamite vary between -0.62 and +2.1 ‰ and show a well-defined trend where δ37Cl values progressively decrease (become lighter) with depth. These data, when combined with new experimental determinations of chlorine isotope fractionation between atacamite and water, point to changes triggered by the progressive deepening of groundwater tables during Andean uplift and the extreme desiccation of

  19. A refined method for calculating equivalent effective stratospheric chlorine

    Science.gov (United States)

    Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick

    2018-01-01

    Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from

  20. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-01-01

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures

  1. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Jordi, E-mail: jordi.palau@unine.ch [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Marchesi, Massimo [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Chambon, Julie C.C. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Canals, Àngels [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Binning, Philip J.; Bjerg, Poul L. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Otero, Neus; Soler, Albert [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain)

    2014-03-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ{sup 13}C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ{sup 37}Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ{sup 37}Cl and δ{sup 13}C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ({sup 13}C,{sup 35}Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer.

  2. Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine.

    Science.gov (United States)

    Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G

    2010-09-01

    This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental

  3. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Ying-kai; Liu, Wei-guo; Zhou, Y.M.; Wang, Yun-hui; Shirodkar, P.V.

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs sub(2) Cl sup(+) ion by thermal ionization...

  4. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by INEOS Chlor Americas

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  5. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Dover Chemical

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  6. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Qualice, LLC

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  7. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products.

    Science.gov (United States)

    Hrudey, Steve E; Backer, Lorraine C; Humpage, Andrew R; Krasner, Stuart W; Michaud, Dominique S; Moore, Lee E; Singer, Philip C; Stanford, Benjamin D

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches.

  8. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products

    Science.gov (United States)

    Hrudey, Steve E.; Backer, Lorraine C.; Humpage, Andrew R.; Krasner, Stuart W.; Michaud, Dominique S.; Moore, Lee E.; Singer, Philip C.; Stanford, Benjamin D.

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches. PMID:26309063

  9. 76 FR 62149 - American Chemistry Council, The Chlorine Institute, Inc., the Fertilizer Institute, and PPG...

    Science.gov (United States)

    2011-10-06

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. NOR 42129; Docket No. FD 35517] American Chemistry Council, The Chlorine Institute, Inc., the Fertilizer Institute, and PPG... both cases. \\1\\ In Docket No. NOR 42129, the complainants are American Chemistry Council, The Chlorine...

  10. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yingxue; Wu Qianyuan [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu Hongying, E-mail: hyhu@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian Jie [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  11. Investigation of chlorine decay of water resource in khanbebein city, Golestan, Iran

    Directory of Open Access Journals (Sweden)

    Kourosh Rahmani

    2013-01-01

    Conclusion: The factors that affected short-time chlorine decay constant (k 2 were nitrite, ammonia and iron and The factors that affected on long-time chlorine decay constant (k 2 were Nitrite, ammonia and iron. The material removal techniques for them were the use of natural resins, zeolite, ion exchange, membrane and aeration methods, oxidation and sedimentation, and filtration.

  12. Chlorine loss and mass loss from polyvinylchloride and polyvinylidenchloride under the electron beam

    International Nuclear Information System (INIS)

    Lindberg, K.A.H.; Bertilsson, H.E.

    1985-01-01

    The loss of chlorine during the irradiation of PVC and PVDC in the electron microscope has been measured by the decay of the X-ray chlorine Kα signal. A number of factors affecting the measured beam damage curves have been considered and the experimental errors reduced to +- 10%. The results show that the chlorine decay curves can be best described by the sum of two exponentials, corresponding to the two different chlorine decay processes, these being: the dehydrochlorination of the polymer molecules and the dehydrochlorination of the polyene structure formed by the beam damage. The higher initial chlorine content of PVDC compared to PVC will result in a larger amount of chlorine atoms reacting with the polyene structure, which is more stable in the electron beam than the undamaged polymer. The chlorine loss, measured by X-ray analysis, has been compared to the mass loss, measured by energy loss analysis, and also with the volume changes of isolated spherical PVC particles. It has been concluded that the mass loss is almost entirely due to chlorine loss and that the residual structure has a density similar to the undamaged PVC. (author)

  13. Synthetic strategies in the preparation of regiospecifically chlorine-37 labeled polychlorinated dibenzo-p-dioxins

    International Nuclear Information System (INIS)

    Mahiou, Belaid; Deinzer, M.L.

    1992-01-01

    A series of thirteen regiospecifically chlorine-37 labeled polychlorodibenzo-p-dioxins were synthesized via the Sandmeyer reaction. Nitrochlorodibenzodioxins which were obtained by a base promoted condensation of catechols and dinitropolyhalobenzenes were reduced and converted to the diazonium salts. Chlorine-37 was introduced using cuprous chloride-37. The isotopic enrichment was in the range 75-96%. (Author)

  14. Neutron activation of chlorine in zirconium and zirconium alloys use of the matrix as comparator

    International Nuclear Information System (INIS)

    Cohen, I.M.; Gomez, C.D.; Mila, M.I.

    1981-01-01

    A procedure is described for neutron activation analysis of chlorine in zirconium and zirconium alloys. Calculation of chlorine concentration is performed relative to zirconium concentration in the matrix in order to minimize effects of differences in irradiation and counting geometry. Principles of the method and the results obtained are discussed. (author)

  15. Sodium and chlorine concentrations in mixed saliva of healthy and cystic fibrosis children

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Reyes, M. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Sanchez-Aguirre, F.J. [Instituto Mexicano del Seguro Social (Mexico). Dept. de Genetica

    1996-03-01

    Sodium and chlorine concentrations in mixed saliva were simultaneously measured by neutron activation analysis in nine normal children and in nine patients with cystic fibrosis. Sodium levels showed a significant difference (P < 0.01) between patients and controls. The concentration of chlorine was similar in both the control and the cystic fibrosis groups. (author).

  16. Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A

    NARCIS (Netherlands)

    Andra, Syam S.; Charisiadis, Pantelis; Arora, Manish; van Vliet-Ostaptchouk, Jana V.; Makris, Konstantinos C.

    2015-01-01

    The high reactivity of bisphenol A (BPA) with disinfectant chlorine is evident in the instantaneous formation of chlorinated BPA derivatives (Cl(x)BPA) in various environmental media that show increased estrogen-activity when compared with that of BPA. The documented health risks associated with BPA

  17. Feasibility study of the separation of chlorinated films from plastic packaging wastes.

    Science.gov (United States)

    Reddy, Mallampati Srinivasa; Yamaguchi, Takefumi; Okuda, Tetsuji; Tsai, Tsung-Yueh; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2010-04-01

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0g/cm(3) and floated in water even though the true density was more than 1.0g/cm(3). However, the apparent density of the PS and the PET films increased with agitation to more than 1.0g/cm(3), whereas that of chlorinated plastic films was kept less than 1.0g/cm(3). The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10wt.% of the chlorinated films and real PPW films with 9wt.% of the chlorinated films. About 76wt.% of the artificial PPW films and 75wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7wt.% and 3.0wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. The Dutch secret : How to provide safe drinking water without chlorine in the Netherlands

    NARCIS (Netherlands)

    Smeets, P.W.M.H.; Medema, G.J.; Van Dijk, J.C.

    2009-01-01

    The Netherlands is one of the few countries where chlorine is not used at all, neither for primary disinfection nor to maintain a residual disinfectant in the distribution network. The Dutch approach that allows production and distribution of drinking water without the use of chlorine while not

  19. Role of Dehalogenases in Aerobic Bacterial Degradation of Chlorinated Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2014-01-01

    Full Text Available This review was conducted to provide an overview of dehalogenases involved in aerobic biodegradation of chlorinated aromatic compounds. Additionally, biochemical and molecular characterization of hydrolytic, reductive, and oxygenolytic dehalogenases was reviewed. This review will increase our understanding of the process of dehalogenation of chlorinated aromatic compounds.

  20. Chlorine: Is it really so bad and what are the alternatives? | Nozaic ...

    African Journals Online (AJOL)

    Chlorine disinfection has been practised for over a century and has been credited with saving a significant number of lives worldwide on a daily basis, but it has received a great deal of negative publicity over the past few decades. The discovery in the 1970\\'s that chlorination of water could result in the formation of ...

  1. A study of the characteristics of indium tin oxide after chlorine electro-chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moonsoo; Kim, Jongmin; Cho, Jaehee; Kim, Hyunwoo; Lee, Nayoung; Choi, Byoungdeog, E-mail: bdchoi@skku.edu

    2016-10-15

    Graphical abstract: The presence of Chlorine in the outer surface resulted in a highly electro-negative surface states and an increase in the vacuum energy level. - Highlights: • We investigated the influence of chlorine surface treatment on ITO properties. • Chlorination induced the change of the electro-static potential in the outer surface. • Chlorine electro-chemical treatment of ITO is a simple, fast and effective technique. - Abstract: In this work, we investigate the influence of a chlorine-based electro-chemical surface treatment on the characteristics of indium tin oxide (ITO) including the work function, chemical composition, and phase transition. The treated ITOs were characterized using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), 4-point probe measurements, and grazing incidence X-ray diffraction (GI-XRD). We confirmed a change of the chemical composition in the near-surface region of the ITO and the formation of indium-chlorine (In-Cl) bonds and surface dipoles (via XPS). In particular, the change of the electro-static potential in the outer surface was caused by chlorination. Due to the vacuum-level shift after the electro-chemical treatment in a dilute hydrochloric acid, the ITO work function was increased by ∼0.43 eV (via UPS); furthermore, the electro-negativity of the chlorine anions attracted electrons to emit them from the hole transport layer (HTL) to the ITO anodes, resulting in an increase of the hole-injection efficiency.

  2. Control of fouling organisms in estuarine cooling water systems by chlorine and bromine chloride

    International Nuclear Information System (INIS)

    Burton, D.T.; Margrey, S.L.

    1979-01-01

    The study described was initiated to evaluate the antifouling effectiveness of chlorine and bromine chloride in low velocity flow areas where estuarine waters are used for cooling purposes. The relative antifouling effectiveness of chlorine and bromine chloride under intermittent and continuous modes of application in low velocity flow areas was evaluated at an estuarine power plant located on the Chesapeake Bay

  3. Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development

    Science.gov (United States)

    Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...

  4. The formation and fate of chlorinated organic substances in temperate and boreal forest soils

    Czech Academy of Sciences Publication Activity Database

    Clarke, N.; Fuksová, Květoslava; Gryndler, Milan; Lachmanová, Z.; Liste, H. H.; Rohlenová, Jana; Schroll, R.; Schröder, P.; Matucha, Miroslav

    2009-01-01

    Roč. 16, č. 2 (2009), s. 127-143 ISSN 0944-1344 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50200510 Keywords : Carbon cycle * Chlorination * Chlorine biogeochemistry Subject RIV: GK - Forestry Impact factor: 2.411, year: 2009

  5. Degradation of acrylamide by the UV/chlorine advanced oxidation process.

    Science.gov (United States)

    Gao, Ze-Chen; Lin, Yi-Li; Xu, Bin; Pan, Yang; Xia, Sheng-Ji; Gao, Nai-Yun; Zhang, Tian-Yang; Chen, Ming

    2017-11-01

    The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 10 9  M -1  s -1 . The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons

    Science.gov (United States)

    2002-12-19

    lead, arsenic, nickel, mercury and cadmium) is also widespread at the same military facilities due to the use of these metals in ordnance...Eds.), Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle Second International Conference on Remediation of...Electron Donors, in Wickramanayake, G., Gavashkar, A., Alleman, B., Magar, V., eds. Bioremediation and Phytoremediation of Chlorinated and Recalcitrant

  7. Sodium and chlorine concentrations in mixed saliva of healthy and cystic fibrosis children

    International Nuclear Information System (INIS)

    Jimenez-Reyes, M.; Sanchez-Aguirre, F.J.

    1996-01-01

    Sodium and chlorine concentrations in mixed saliva were simultaneously measured by neutron activation analysis in nine normal children and in nine patients with cystic fibrosis. Sodium levels showed a significant difference (P < 0.01) between patients and controls. The concentration of chlorine was similar in both the control and the cystic fibrosis groups. (author)

  8. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    International Nuclear Information System (INIS)

    Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter; Ravi Selvaganapathy, P.

    2015-01-01

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5–2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously

  9. Assessment of residual active chlorine in sodium hypochlorite solutions after dissolution of porcine incisor pulpal tissue.

    Science.gov (United States)

    Clarkson, R M; Smith, T K; Kidd, B A; Evans, G E; Moule, A J

    2013-12-01

    In previous studies, surfactant-containing Hypochlor brands of sodium hypochlorite showed better tissue solubilizing abilities than Milton; differences not explained by original active chlorine content or presence of surfactant. It was postulated that exhaustion of active chlorine content could explain differences. This study aimed to assess whether Milton's poorer performance was due to exhaustion of active chlorine. Parallel experiments assessed the influence of titration methods, and the presence of chlorates, on active chlorine measurements. Time required to dissolve one or groups of 10 samples of porcine incisor pulp samples in Milton was determined. Residual active chlorine was assessed by thermometric titration. Iodometric and thermometric titration was carried out on samples of Milton. Chlorate content was also measured. Dissolution of single and 10 pulp samples caused a mean loss of 1% and 3% respectively of active chlorine, not being proportional to tissue dissolved. Thermometric ammonium ion titration resulted in 10% lower values than iodometric titration. Chlorate accounted for much of this difference. Depletion of active chlorine is not the reason for differences in tissue dissolving capabilities of Milton. Thermometric ammonium ion titration gives more accurate measurement of active chlorine content than iodometric titration. © 2013 Australian Dental Association.

  10. Enhanced salmonella reduction on tomatoes washed in chlorinated water with wash aid T-128

    Science.gov (United States)

    Chlorine is widely used by the fresh and fresh-cut produce industries to reduce microbial populations and to prevent potential pathogen cross contamination during produce washing. However, the organic materials released from produce quickly react with chlorine and degrade its efficacy for pathogen i...

  11. Chloroxyanion residues in cantaloupe and tomatoes after chlorine dioxide gas sanitation

    Science.gov (United States)

    Chlorine dioxide gas is effective at cleansing fruits and vegetables of bacterial pathogens and(or) rot organisms, but few data are available on chemical residues remaining subsequent to chlorine gas treatment. Therefore, studies were conducted to quantify chlorate and perchlorate residues after tom...

  12. Feasibility study of the separation of chlorinated films from plastic packaging wastes

    International Nuclear Information System (INIS)

    Reddy, Mallampati Srinivasa; Yamaguchi, Takefumi; Okuda, Tetsuji; Tsai, Tsung-Yueh; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2010-01-01

    This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0 g/cm 3 and floated in water even though the true density was more than 1.0 g/cm 3 . However, the apparent density of the PS and the PET films increased with agitation to more than 1.0 g/cm 3 , whereas that of chlorinated plastic films was kept less than 1.0 g/cm 3 . The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10 wt.% of the chlorinated films and real PPW films with 9 wt.% of the chlorinated films. About 76 wt.% of the artificial PPW films and 75 wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7 wt.% and 3.0 wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films.

  13. POPULATION DIVERSITY IN MODEL DRINKING WATER BIOFILMS RECEIVING CHLORINE OR MONOCHLORAMINE RESIDUAL

    Science.gov (United States)

    Most water utilities add monochloramine or chlorine as a residual disinfectant in potable water distribution systems (WDS) to control bacterial regrowth. While monochloramine is considered more stable than chlorine, little is known about the fate of this disinfectant or the effec...

  14. Effect of chlorinated ethene conversion on viability and activity of Methylosinus trichosporium OB3b

    NARCIS (Netherlands)

    van Hylckama Vlieg, Johan E.T.; Koning, Wim de; Janssen, Dick B.

    1997-01-01

    The effect of transformation of chlorinated ethenes on the cell viability of Methylosinus trichosporium OB3b was investigated. A comparison of the loss of viability with the decrease in transformation rates shelved that for the monooxygenase-mediated transformation of all chlorinated ethenes except

  15. Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes

    NARCIS (Netherlands)

    van Hylckama Vlieg, Johan E.T.; Janssen, DB

    2001-01-01

    Short-chain halogenated aliphatics, such as chlorinated ethenes, constitute a large group of priority pollutants. This paper gives an overview on the chemical and physical properties of chlorinated aliphatics that are critical in determining their toxicological characteristics and recalcitrance to

  16. Risk assessment of Short and Medium Chain Chlorinated Paraffin’s (SCCP and MCCP)

    DEFF Research Database (Denmark)

    Christensen, Frans Møller; Olsen, Stig Irving

    2002-01-01

    findings of the Short Chain Chlorinated Paraffin (SCCP) and the draft Medium Chain Chlorinated Paraffin (MCCP) risk assessments. The political actions taken as a consequence of the assessments are also described. The risk assessments have been prepared according to the EU Technical Guidance Document (TGD...

  17. Study of the production of zirconium tetrachloride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.

    1983-01-01

    The studies carried out on the production of zirconium tetrachloride by chlorination of pure zirconium oxide with carbon tetrachloride and chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride, the chlorination efficiency increases with the rise in temperature at intervals between 450 and 750 0 C. The flow of the carbon tetrachloride vapour was 1.50l/min. Higher temperatures of 700 to 850 0 C were used for the zirconium oxide chlorination in the presence of carbon, and the flowrate of the chlorine gas used in the process was 0.50 l/min. Pure zirconium oxide chlorination as well as zirconium oxide - carbon misture chlorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constant, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  18. Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Monitorable and Regenerative Sacrificial Layers.

    Science.gov (United States)

    Huang, Hai; Lin, Saisai; Zhang, Lin; Hou, Li'an

    2017-03-22

    Improving chlorine stability is a high priority for aromatic polyamide (PA) reverse osmosis (RO) membranes especially in long-term desalination. In this Research Article, PA RO membranes of sustainable chlorine resistance was synthesized. Glycylglycine (Gly) was grafted onto the membrane surface as a regenerative chlorine sacrificial layer, and the zeta-potential was used to monitor the membrane performance and to conduct timely regeneration operations for chlorinated Gly. The Gly-grafted PA membrane exhibited ameliorative chlorine resistance in which the N-H moiety of glycylglycine served as sacrificial pendants against chlorine attacks. Cyclic chlorination experiments, combined with FT-IR and XPS analysis, were carried out to characterize the membrane. Results indicated that the resulting N-halamines could be fast regenerated by a simple alkaline reduction step (pH 10). A synchronous relationship between the zeta-potential and the chlorination extent of the sacrificial layer was observed. This indicated that the zeta-potential can be used as an on-site sensor to conduct a timely regeneration operation. The intrinsic mechanism of the surface sacrificial process was also studied.

  19. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    International Nuclear Information System (INIS)

    Sun Yingxue; Wu Qianyuan; Hu Hongying; Tian Jie

    2009-01-01

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  20. Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production

    Science.gov (United States)

    Patricia Ortiz-Bermudez; Kolby C. Hirth; Ewald Srebotnik; Kenneth E. Hammel

    2007-01-01

    Soils and decayed plant litter contain significant quantities of chlorinated aromatic polymers that have a natural but largely unknown origin. We used cupric oxide ligninolysis coupled with gas chromatography/mass spectrometry to show that Curvularia inaequalis, a widely distributed litter ascomycete, chlorinated the aromatic rings of lignin in wood that it was...

  1. Fluorine and chlorine determination in oxides and metals by ion chromatography

    International Nuclear Information System (INIS)

    Evseeva, T.I.; Poletaeva, I.L.; Zemlyanukhina, N.A.; Pavlova, I.V.; Rybin, A.M.; Malykh, M.Yu.; Fedorova, L.A.

    1989-01-01

    Method for simultaneous determination of fluorine and chlorine microquantitie in tantalum, uranium and plutonium oxides, based on combined methods of pyrohydrolysis (1000-1100 deg C) and two-column ion chromatography with conductometric detection is suggested. The relative root-mean-square deviation of determination error is 0.2, the fluorine and chlorine content being 5·10 -4 mass%

  2. Nuclear energy - Determination of chlorine and fluorine in uranium dioxide powder and sintered pellets

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  3. Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below

    International Nuclear Information System (INIS)

    Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin

    2015-01-01

    Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t 1/2 = 37.24 min) – accelerator mass spectrometry (AMS) of 36 Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t 1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36 Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36 Cl/Cl analysis.

  4. Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Stephan R., E-mail: srw@tlabs.ac.za [Universität Wien, Fakultät für Physik, Institut für Isotopenforschung und Kernphysik (Austria); Eigl, Rosmarie [Universität Wien, Fakultät für Chemie, Institut für Anorganische Chemie (Austria); Forstner, Oliver; Martschini, Martin; Steier, Peter [Universität Wien, Fakultät für Physik, Institut für Isotopenforschung und Kernphysik (Austria); Sterba, Johannes H. [Technische Universität Wien, Atominstitut (Austria); Golser, Robin [Universität Wien, Fakultät für Physik, Institut für Isotopenforschung und Kernphysik (Austria)

    2015-10-15

    Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t{sub 1/2} = 37.24 min) – accelerator mass spectrometry (AMS) of {sup 36}Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t{sub 1/2} = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the {sup 36}Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for {sup 36}Cl/Cl analysis.

  5. Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below

    Science.gov (United States)

    Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin

    2015-10-01

    Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t1/2 = 37.24 min) - accelerator mass spectrometry (AMS) of 36Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36Cl/Cl analysis.

  6. Fate of chlorinated fatty acids in migrating sockeye salmon and their transfer to arctic grayling

    DEFF Research Database (Denmark)

    Mu, Huiling; Ewald, G.; Nilsson, E.

    2004-01-01

    To investigate whether biotransport constitutes an entry route into pristine ecosystems for nonpersistent, nonvolatile xenobiotic compounds, extractable organically bound halogen in sockeye salmon (Oncorhynchus nerka) from Alaska was determined before and after spawning migration. The major...... organohalogen compounds in the salmon were halogenated fatty acids, predominantly chlorinated species that accounted for up to 35% of the extractable, organically bound chlorine (EOCl) in the fish tissues. The amount of chlorinated fatty acids in the salmon muscle decreased as a result of spawning migration....... The decrease was correlated with that of triacylglycerols in the salmon muscle, indicating the chlorinated fatty acids to be mobilized and metabolized to approximately the same extent as the other fatty acids. Chlorinated fatty acids were also transferred to the maturing roe in a manner similar...

  7. Normal levels of total body sodium and chlorine by neutron activation analysis

    International Nuclear Information System (INIS)

    Kennedy, N.S.J.; Eastell, R.; Smith, M.A.; Tothill, P.

    1983-01-01

    In vivo neutron activation analysis was used to measure total body sodium and chlorine in 18 male and 18 female normal adults. Corrections for body size were developed. Normalisation factors were derived which enable the prediction of the normal levels of sodium and chlorine in a subject. The coefficient of variation of normalised sodium was 5.9% in men and 6.9% in women, and of normalised chlorine 9.3% in men and 5.5% in women. In the range examined (40-70 years) no significant age dependence was observed for either element. Total body sodium was correlated with total body chlorine and total body calcium. Sodium excess, defined as the amount of body sodium in excess of that associated with chlorine, also correlated well with total body calcium. In females there was a mean annual loss of sodium excess of 1.2% after the menopause, similar to the loss of calcium. (author)

  8. Application of activated carbons from coal and coconut shell for removing free residual chlorine.

    Science.gov (United States)

    Ogata, Fumihiko; Tominaga, Hisato; Ueda, Ayaka; Tanaka, Yuko; Iwata, Yuka; Kawasaki, Naohito

    2013-01-01

    This study investigated the removal of free residual chlorine by activated carbon (AC). ACs were prepared from coal (AC1) and coconut shell (AC2). The specific surface area of AC1 was larger than that of AC2. The removal of free residual chlorine increased with elapsed time and amount of adsorbent. The removal mechanism of free residual chlorine was the dechlorination reaction between hypochlorous acid or hypochlorite ion and AC. Moreover, AC1 was useful in the removal of free residual chlorine in tap water. The optimum condition for the removal of free residual chlorine using a column is space velocity 306 1/h; liner velocity 6.1 m/h.

  9. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    International Nuclear Information System (INIS)

    Kushita, Kouhei

    2001-12-01

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, 35 Cl and 37 Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, 36 Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  10. Comparative evaluation of effects of ozonated and chlorinated thermal discharges on estuarine and freshwater organisms

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, C.R.; Sugam, R.; Meldrim, J.W.; Holmstrom, E.R.; Balog, G.E.

    1980-08-01

    As a part of a program at PSE and G designed to examine the feasibility of ozonation as an alternative to chlorination for control of biofouling in once-through cooling systems, the biological effects of ozonated and chlorinated thermal discharges were evaluated with estuarine and freshwater organisms. Mortality at salinities between 0.5 to 2.5 ppt with mummichog and white perch indicated greater toxicity for chlorine while the alewife, spottail shiner, rainbow trout and white perch in freshwater were more sensitive to ozone. Behavioral and physograhic results were consistent with those observed in toxicity studies. Initial cough response and avoidance concentrations of mummicog and white perch in estuarine waters were lower when exposed to chlorine than to ozone. In freshwater, blueback herring, alewife, rainbow trout, spottail shiner, banded killifish, and white perch avoided lower concentrations of ozone than chlorine.

  11. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, Kouhei [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, {sup 35}Cl and {sup 37}Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, {sup 36}Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  12. Analysis of chest image performance in patients with acute chlorine poisoning

    International Nuclear Information System (INIS)

    Liu Liangqing; Zheng Jiangang; Yang Keyu; Wu Honglin; Tang Qingfang; Wu Huiming

    2012-01-01

    Objective: To explore chest image features of patients with acute chlorine poisoning and their clinical values. Methods: A retrospective analysis was performed by chest image features of 117 patients with acute chlorine poisoning. All the patients were classified according to Chinese management of occupational acute chlorine poisoning diagnosis standard. Results: Sixty-five patients presented with stimulus response, and normal or both lungs had a little more white on their chest images. Thirty-one cases presented with minor poisoning, and without or the texture of both lungs was increased, and grew hazy and coarse.seventeen cases were moderate, and small sample vague shadows or single or multiple limitations lamellar shadow. Four cases were serious,and two lungs had extensive and density homogeneous consolidation shadow. Conclusions: It would make the diagnosis and assessment of chlorine poisoning more easier based on the combination of chest image features, the clear history of acute chlorine poisoning and relevant clinical performance. (authors)

  13. Preparing of LiCl-KCl-UCl3 eutectic salt by a chlorination of Cd

    International Nuclear Information System (INIS)

    Kang, Hee Seok; Woo, Moon Sik; Lee, Han Soo

    2008-01-01

    Uranium trichloride salt(UCl 3 ) is supplied with the initial U in to the LiCl-KCl eutectic salt for a stabilization of the initial cell voltage during an electrorefining process in a reactor. The apparatus for producing UCl 3 consists of a chlorine gas generator, a chlorinator, and an off-gas wet scrubber. Gaseous chlorine in the chlorine gas generator was injected into a lower layer of liquid Cd where CdCl 2 formed. The CdCl 2 reacts with the uranium to form uranium trichloride and Cd. The throughput of the UCl 3 chlorinator is about. 1.4Kg UCl 3 /batch. During a production the temperature of the reactants are maintained at about 600 .deg. C

  14. Photochemistry of CS2/Cl complexes-combined pulse radiolysis-laser flash photolysis studies

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Nakayama, Masayoshi; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Complexes of chlorine atoms and carbon disulfide (CS 2 ) were produced by pulse radiolysis of CS 2 in halocarbons and photochemical reactions were studied by laser flash photolysis. Excitation of CS 2 /Cl complexes resulted in rapid and permanent photobleaching. The photobleaching of CS 2 /Cl complexes is due to intermolecular chlorine atom abstraction in CCl 4 with a quantum yield of 0.04, while that ascribed to hydrogen atom abstraction in 1,2-dichloroethane has a quantum yield of 0.21. The effects of additives are discussed based on the bond dissociation energy

  15. Ingestion Exposure to Nitrosamines in Chlorinated Drinking Water

    Science.gov (United States)

    Han, Kichan

    2011-01-01

    Objectives N-Nitrosodimethylamine (NDMA) is classified as a probable human carcinogen by the United States Environmental Protection Agency (US EPA) and is formed during the chlorination of municipal drinking water. In this study, selected nitrosamines were measured in chlorinated drinking water collected from Chuncheon, Kangwon-do, Republic of Korea, and a risk assessment for NDMA was conducted. Methods Twelve water samples were collected from 2 treatment plants and 10 household taps. Samples were analyzed for 6 nitrosamines via solid-phase extraction cleanup followed by conversion to dansyl derivatives and high-performance liquid chromatography-fluorescence detection (HPLC-FLD). Considering the dietary patterns of Korean people and the concentration change of NDMA by boiling, a carcinogenic risk assessment from ingestion exposure was conducted following the US EPA guidelines. Results NDMA concentrations ranged between 26.1 and 112.0 ng/L. NDMA in water was found to be thermally stable, and thus its concentration at the end of boiling was greater than before thermal treatment owing to the decrease in water volume. The estimated excess lifetime carcinogenic risk exceeded the regulatory baseline risk of 10-5. Conclusions This result suggests that more extensive studies need to be conducted on nitrosamine concentration distributions over the country and the source of relatively high nitrosamine concentrations. PMID:22125764

  16. Catalytic destruction of organics and chlorinated organics with TEES II

    International Nuclear Information System (INIS)

    Baker, E.G.; Elliot, D.C.; Sealock, L.J. Jr.; Neuenschwander, G.G.

    1991-06-01

    A catalytic process is being developed at Pacific Northwest Laboratory (PNL) for destroying hazardous organics and chlorinated organics, including spent solvents, in aqueous waste streams. Experiments have been conducted in a batch reactor, a bench-scale continuous-stirred tank reactor (CSTR), and an continuous-flow tubular reactor. A 5-gal/h developmental unit is under construction and will be operational in 1991. The Thermochemical Environmental Energy System 2 can destroy a wide variety of organics and chlorinated organics by thermocatalytic treatment at 300 degrees C to 350 degrees C and 2000 to 3000 psig. This paper summarizes the batch reactor and CSTR results and presents new results obtained in the tubular reactor. The high levels of destruction achieved in the tubular reactor show that kinetic data obtained in CSTR can be used to design large-scale tubular reactors with little scaleup risk. Corrosion studies were completed, and it appears that less expensive materials of construction can be used in many applications, which will make the process more cost effective. Cost estimates for larger- scale facilities have been prepared by Onsite*Ofsite, Inc., who is working with PNL to transfer the technology to industry. 5 refs., 4 tabs., 1 fig

  17. Potential biodefense model applications for portable chlorine dioxide gas production.

    Science.gov (United States)

    Stubblefield, Jeannie M; Newsome, Anthony L

    2015-01-01

    Development of decontamination methods and strategies to address potential infectious disease outbreaks and bioterrorism events are pertinent to this nation's biodefense strategies and general biosecurity. Chlorine dioxide (ClO2) gas has a history of use as a decontamination agent in response to an act of bioterrorism. However, the more widespread use of ClO2 gas to meet current and unforeseen decontamination needs has been hampered because the gas is too unstable for shipment and must be prepared at the application site. Newer technology allows for easy, onsite gas generation without the need for dedicated equipment, electricity, water, or personnel with advanced training. In a laboratory model system, 2 unique applications (personal protective equipment [PPE] and animal skin) were investigated in the context of potential development of decontamination protocols. Such protocols could serve to reduce human exposure to bacteria in a decontamination response effort. Chlorine dioxide gas was capable of reducing (2-7 logs of vegetative and spore-forming bacteria), and in some instances eliminating, culturable bacteria from difficult to clean areas on PPE facepieces. The gas was effective in eliminating naturally occurring bacteria on animal skin and also on skin inoculated with Bacillus spores. The culturable bacteria, including Bacillus spores, were eliminated in a time- and dose-dependent manner. Results of these studies suggested portable, easily used ClO2 gas generation systems have excellent potential for protocol development to contribute to biodefense strategies and decontamination responses to infectious disease outbreaks or other biothreat events.

  18. Chlorine dioxide reaction with selected amino acids in water

    International Nuclear Information System (INIS)

    Navalon, Sergio; Alvaro, Mercedes; Garcia, Hermenegildo

    2009-01-01

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO 2 with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO 2 were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO 2 creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO 2 with ubiquitous amino acids present in natural waters.

  19. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Ultrasonic aqueous cleaning as a replacement for chlorinated solvent cleaning

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1992-01-01

    The Oak Ridge Y-12 Plant has been involved in the replacement of chlorinated solvents since 1982. One of the most successful replacement efforts has been the substitution of vapor degreasers or soak tanks using chlorinated solvents with ultrasonic cleaning using aqueous detergents. Recently, funding was obtained from the Department of Energy Office (DOE) of Technology Development to demonstrate this technology. A unit has been procured and installed in the vacuum pump shop area to replace the use of a solvent soak tank. Initially, the solvents used in the shop were CFC-113 and a commercial brand cleaner which contained both perchloroethylene and methylene chloride. While the ultrasonic unit was being procured, a terpene-based solvent was used. Generally, parts were soaked overnight in order to soften baked-on vanish. Many times, wire brushing was used to help remove remaining contamination. Initial testing with the ultrasonic cleaner indicated cleaning times of 20 min were as effective as the overnight solvent soaks in removing contamination. Wire brushing was also not required following the ultrasonic cleaning as was sometimes required with the solvent soak

  1. Tritium and chlorine-36 migration from a nuclear explosion cavity

    International Nuclear Information System (INIS)

    Burbey, T.J.; Wheatcraft, S.W.

    1986-04-01

    The Radionuclide Migration (RNM) Experiment consists of a 600 gpm pumping well placed approximately 90 m away from the center of the rubble chimney and cavity created by the 1965 Cambric event. The purpose of the experiment is to deliberately draw radionuclides away from the cavity and produce breakthrough curves of the migrating radionuclides at the pumping well. Tritium and chlorine-36 are the most mobile radionuclides and they have produced breakthrough curves that are very amenable to analysis. The other radionuclides that have been observed at the pumping well are ruthenium-106, Kr-85 and I-129, in very small quantities. A conceptual model of the Cambric cavity and surrounding hydrogeologic environment was formulated using available field data such as core samples and the breakthrough curves of tritium and chlorine-36. Results show that the cavity hydraulic conductivity is about one-tenth as large as the average hydraulic conductivity of the surrounding medium. The calibrated model required the addition of retardation of the tritium. The breakthrough curve was relatively insensitive to variations in the other parameters tested in the sensitivity study

  2. Nature of strontium extraction by synergistic mixtures of chlorinated cobalt dicarbollide and polyethers

    International Nuclear Information System (INIS)

    Smirnov, I.V.; Stoyanov, E.S.; Vorob'eva, T.P.

    2003-01-01

    Extraction of strontium by synergistic mixtures of chlorinated cobalt dicarbollide (DCC) with different polyethers was studied. In the acidic media the distribution coefficients (D(Sr)) decreases in the order 15-crown-5 > PEG-400 > 18-crown-6 and does not correspond to the row of constants stability of the strontium complexes with these polyethers. When passing to the salt media (Li and Na nitrates) the row of D(Sr) is changed: PEG-400 > 18 crown 6 > 15 crown 5. IR-spectroscopy study has shown that in synergistic mixtures the proton forms [H 5O2 + .PEG], [H 5O2 + .(15-crown-5)2] and [H 3 O + .(18 crown 6)] cations, which are exchange on Sr 2+ resulting to formation [Sr 2+ .PEG], [Sr 2+ .(15-crown-5)2] and [Sr 2+ .(18-crown-6)(H 2 O)n] cations correspondingly. The PEG-400 is the best among polyethylene glycols, since its all six COC groups and two even more active OH groups complete the first co-ordination sphere of Sr 2+ . Extremely low extractability of Sr 2+ from acidic media in the presence of 18-crown-6 as compared with 15-crown-5 is mainly caused by the high stability of the [H 3 O + .(18-crown-6)] cation that is responsible for less extractable hydrated Sr complex formation. (author)

  3. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    Science.gov (United States)

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Quantitative microbial risk assessment for an indoor swimming pool with chlorination compared to a UV-based treatment

    NARCIS (Netherlands)

    Peters, M.C.F.M.; Keuten, M.G.A.; de Kreuk, M.K.; Vrouwenvelder, J.S.; Rietveld, L.C.; Medema, G.

    2017-01-01

    Aims Most swimming pools use residual disinfectants like chlorine for disinfection. The use of chlorine has several drawbacks: some waterborne-pathogens are chlorine resistant and disinfection by-products (DBPs) may be formed which are associated with various health risks. Therefore, an alternative

  5. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  6. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  7. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    Directory of Open Access Journals (Sweden)

    Xiaolu Liu

    Full Text Available Assimilable organic carbon (AOC is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM. The initial AOC concentration was 168 μg.L(-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5 cells.mL(-1 to 2.6 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.6 mg.L(-1 to 4.8 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.3 mg.L(-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  8. Reagent-Free Quantification of Aqueous Free Chlorine via Electrical Readout of Colorimetrically Functionalized Pencil Lines.

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Broomfield, Andrew D; Chowdhury, Tanzina; Selvaganapathy, P Ravi; Kruse, Peter

    2017-06-21

    Colorimetric methods are commonly used to quantify free chlorine in drinking water. However, these methods are not suitable for reagent-free, continuous, and autonomous applications. Here, we demonstrate how functionalization of a pencil-drawn film with phenyl-capped aniline tetramer (PCAT) can be used for quantitative electric readout of free chlorine concentrations. The functionalized film can be implemented in a simple fluidic device for continuous sensing of aqueous free chlorine concentrations. The sensor is selective to free chlorine and can undergo a reagent-free reset for further measurements. Our sensor is superior to electrochemical methods in that it does not require a reference electrode. It is capable of quantification of free chlorine in the range of 0.1-12 ppm with higher precision than colorimetric (absorptivity) methods. The interactions of PCAT with the pencil-drawn film upon exposure to hypochlorite were characterized spectroscopically. A previously reported detection mechanism relied on the measurement of a baseline shift to quantify free chlorine concentrations. The new method demonstrated here measures initial spike size upon exposure to free chlorine. It relies on a fast charge built up on the sensor film due to intermittent PCAT salt formation. It has the advantage of being significantly faster than the measurement of baseline shift, but it cannot be used to detect gradual changes in free chlorine concentration without the use of frequent reset pulses. The stability of PCAT was examined in the presence of free chlorine as a function of pH. While most ions commonly present in drinking water do not interfere with the free chlorine detection, other oxidants may contribute to the signal. Our sensor is easy to fabricate and robust, operates reagent-free, and has very low power requirements and is thus suitable for remote deployment.

  9. Chlorination and dechlorination rates in a forest soil — A combined modelling and experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Montelius, Malin, E-mail: malin.montelius@liu.se [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden); Svensson, Teresia [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden); Lourino-Cabana, Beatriz [EDF, Laboratoire National d' Hydraulique et Environnement, 78401 Chatou (France); Thiry, Yves [Andra, Research and Development Division, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Bastviken, David [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden)

    2016-06-01

    Much of the total pool of chlorine (Cl) in soil consists of naturally produced organic chlorine (Cl{sub org}). The chlorination of bulk organic matter at substantial rates has been experimentally confirmed in various soil types. The subsequent fates of Cl{sub org} are important for ecosystem Cl cycling and residence times. As most previous research into dechlorination in soils has examined either single substances or specific groups of compounds, we lack information about overall bulk dechlorination rates. Here we assessed bulk organic matter chlorination and dechlorination rates in coniferous forest soil based on a radiotracer experiment conducted under various environmental conditions (additional water, labile organic matter, and ammonium nitrate). Experiment results were used to develop a model to estimate specific chlorination (i.e., fraction of Cl{sup −} transformed to Cl{sub org} per time unit) and specific dechlorination (i.e., fraction of Cl{sub org} transformed to Cl{sup −} per time unit) rates. The results indicate that chlorination and dechlorination occurred simultaneously under all tested environmental conditions. Specific chlorination rates ranged from 0.0005 to 0.01 d{sup −1} and were hampered by nitrogen fertilization but were otherwise similar among the treatments. Specific dechlorination rates were 0.01–0.03 d{sup −1} and were similar among all treatments. This study finds that soil Cl{sub org} levels result from a dynamic equilibrium between the chlorination and rapid dechlorination of some Cl{sub org} compounds, while another Cl{sub org} pool is dechlorinated more slowly. Altogether, this study demonstrates a highly active Cl cycling in soils. - Highlights: • Chlorination and dechlorination rates in soil were revealed by a radiotracer method. • Chlorination was hampered by nitrogen addition. • Both Cl{sup −} and many Cl{sub org} compounds are highly reactive in soils. • Some formed Cl{sub org} seem to be refractory.

  10. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rando, Roy J. [Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA (United States); Pathak, Yashwant V. [College of Pharmacy, University of South Florida, Tampa, FL (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  11. Photodynamic inactivation of bacteria using polyethylenimine-chlorin(e6) conjugates: Effect of polymer molecular weight, substitution ratio of chlorin(e6) and pH.

    Science.gov (United States)

    Huang, Liyi; Zhiyentayev, Timur; Xuan, Yi; Azhibek, Dulat; Kharkwal, Gitika B; Hamblin, Michael R

    2011-04-01

    Antimicrobial photodynamic therapy (APDT) is a novel technique to treat local infections. Previously we reported that the attachment of chlorin(e6) to polyethylenimine (PEI) polymers to form PEI-ce6 conjugates is an effective way to improve ce6 PDT activity against bacteria. The aim of this work was to explore how the polymer molecular weight, substitution ratio (SR) of ce6 and pH value affect the PDT efficacy. We have synthesized PEI-ce6(10) (MW = 60,000, SR = 1) and PEI-ce6(11) (MW = 60,000, SR = 5) and compared these with the previous PEI-ce6(9) (MW = 10,000, SR = 1). We tested the PDT efficacy of these three conjugates against Gram-negative E. coli and Gram-positive bacteria (S. aureus and E. fecalis) at three different pH values (5.0, 7.4, 10.0) that may affect the charge on both the bacterial cells and on the conjugate (that has both basic and acidic groups). PEI-ce6(9) and PEI-ce6(10) were the most effective against these tested bacteria. The PDT effect of all three conjugates depended on pH values. The effective order was pH = 10.0 > pH = 7.4 > pH = 5.0 on E. coli. For S. aureus and E. fecalis the order was pH = 5.0 > pH = 10.0 > pH = 7.4. PEI-ce6(11) PDT activity was worse than PEI-ce6(10) activity which is probably connected to the fact that ce6 molecules are self-quenched within the PEI-ce6(11) molecule. Ce6 quenching within the PEI-ce6 molecules was proved by analyzing fluorescence spectra of PEI-ce6 conjugates at different pH values. There were no differences in bacterial uptake between different pH values in three PEI-ce6 conjugates. We assume high pH (rather than low pH as was hypothesized) disaggregates the conjugates, so the higher pH was more effective than the lower pH against E. coli. But for Gram-positive bacteria, low pH was more effective possibly due to more overall positive charge on the conjugate. Copyright © 2011 Wiley-Liss, Inc.

  12. Sulfonate activation of the electrophilic reactivity of chlorine and alkyl hypochlorides by the insertion of sulfur trioxide at the C1-C1 and O-C1 bonds. Addition of chlorine chloro- and ethoxysulfate to olefins

    International Nuclear Information System (INIS)

    Zefirov, N.S.; Koz'min, A.S.; Sorokin, V.D.; Zhdankin, V.V.

    1986-01-01

    At low temperatures (-40 to -80 0 C) sulfur trioxide enters the chlorine molecule (with the formation of chlorine chlorosulfate) and the ethyl hypochlorite molecule (giving chlorine ethoxysulfate). Both new compounds are highly reactive electrophilic chlorinating reagents and add to ethylene, activated alkenes (1-hexene and cyclohexene), and deactivated olefins (methyl methacrylate, tri- and tetrachloroethylene) in methylene chloride solution at low temperatures. The addition of chlorine chlorosulfate leads to the formation of β-chloroalkyl chlorosulfates with yields of 24-85%, and the addition of chlorine ethoxysulfate leads to β-chloroalkyl ethylsulfates with yields of 65-85%. The reactions with unsymmetrical olefins lead to mixtures of the regioisomers with a preference for the products from addition according to the Markovnikov rule; the addition to cyclohexene is trans-stereospecific. The investigated processes represent a new simple approach to the production of sulfate-activated chlorinating reagents and extend the possibilities for functional substitution of olefins

  13. Experimental evaporation of hyperacid brines: Effects on chemical composition and chlorine isotope fractionation

    Science.gov (United States)

    Rodríguez, Alejandro; van Bergen, Manfred J.; Eggenkamp, H. G. M.

    2018-02-01

    Hyperacid brines from active volcanic lakes are some of the chemically most complex aqueous solutions on Earth. Their compositions provide valuable insights into processes of elemental transfer from a magma body to the surface and interactions with solid rocks and the atmosphere. This paper describes changes in chemical and δ37Cl signatures observed in a 1750 h isothermal evaporation experiment on hyperacid (pH 0.1) sulphate-chloride brine water from the active lake of Kawah Ijen volcano (Indonesia). Although gypsum was the only evaporite mineral identified in the evolving brine, decreasing Si concentrations may ultimately result in amorphous silica precipitation. Geochemical simulations predict the additional formation of elemental sulphur at lower water activities (aH2O ≤ 0.65) that were not reached in the experiment. Absence of other sulphates and halides despite the high load of dissolved elements (initial TDS ca. 100 g/kg) can be attributed to increased solubility of metals, promoted by extensive formation of complexes between the variety of cations and the major anions (HSO4-, Cl-, F-) present. Chlorine deviations from a conservative behaviour point to losses of gaseous hydrogen chloride (HCl(g)) and consequently an increase in Br/Cl ratios. Chlorine isotope fractionation that accompanied the escape of HCl(g) showed a marked change in sign and magnitude in the course of progressive evaporation of the brine. The calculated factor of fractionation between HCl(g) and dissolved Cl for the initial interval (before 500 h) is positive (1000lnαHCl(g)-Cldiss. = + 1.55 ± 0.49‰to + 3.37 ± 1.11‰), indicating that, at first, the escaping HCl(g) was isotopically heavier than the dissolved Cl remaining in the brine. Conversely, fractionation shifted to the opposite direction in the subsequent interval (1000lnαHCl(g)-Cldiss. = 5.67 ± 0.17‰to - 5.64 ± 0.08‰), in agreement with values reported in literature. It is proposed that Cl isotopic fractionation in

  14. Sequential and Simultaneous Applications of UV and Chlorine for Adenovirus Inactivation.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko; Takizawa, Satoshi

    2015-09-01

    Adenoviruses are water-borne human pathogens with high resistance to UV disinfection. Combination of UV treatment and chlorination could be an effective approach to deal with adenoviruses. In this study, human adenovirus 5 (HAdV-5) was challenged in a bench-scale experiment by separate applications of UV or chlorine and by combined applications of UV and chlorine in either a sequential or simultaneous manner. The treated samples were then propagated in human lung carcinoma epithelial cells to quantify the log inactivation of HAdV-5. When the processes were separate, a fluence of 100 mJ/cm(2) and a CT value of 0.02 mg min/L were required to achieve 2 log inactivation of HAdV-5 by UV disinfection and chlorination, respectively. Interestingly, synergistic effects on the HAdV-5 inactivation rates were found in the sequential process of chlorine followed by UV (Cl2-UV) (p simultaneous application of UV/Cl2. This implies that a pretreatment with chlorine may increase the sensitivity of the virus to the subsequent UV disinfection. In conclusion, this study suggests that the combined application of UV and chlorine could be an effective measure against adenoviruses as a multi-barrier approach in water disinfection.

  15. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems.

    Science.gov (United States)

    Pehlivanoglu-Mantas, Elif; Hawley, Elisabeth L; Deeb, Rula A; Sedlak, David L

    2006-01-01

    The probable human carcinogen nitrosodimethylamine (NDMA) is produced when wastewater effluent is disinfected with chlorine. In systems where wastewater effluent is used for landscape or crop irrigation, relatively high chlorine doses (i.e., up to 2,000,mg-min/L) are often used to ensure adequate disinfection and to minimize biofouling in the irrigation system. To assess the formation of NDMA in such systems, samples were collected from several locations in full-scale wastewater treatment systems and their associated irrigation systems. Up to 460 ng/L of NDMA was produced in full-scale systems in which chloramines were formed when wastewater effluent was disinfected with chlorine in the presence of ammonia. Less than 20 ng/L of NDMA was produced in systems that used free chlorine (i.e., HOCl/OCl(-)) for disinfection in the absence of ammonia. The production of NDMA in ammonia-containing systems was correlated with the concentration of NDMA precursors in the wastewater effluent and the overall dose of chlorine applied. Much of the NDMA formation occurred in chlorine contact basins or in storage basins where water that contained chloramines was held after disinfection. When landscape or crop irrigation is practiced with ammonia-containing wastewater effluent, NDMA production can be controlled by use of lower chlorine doses or by application of alternative disinfectants.

  16. Robust Chemiresistive Sensor for Continuous Monitoring of Free Chlorine Using Graphene-like Carbon.

    Science.gov (United States)

    Aryasomayajula, Aditya; Wojnas, Caroline; Divigalpitiya, Ranjith; Selvaganapathy, Ponnambalam Ravi; Kruse, Peter

    2018-02-23

    Free chlorine is widely used in industry as a bleaching and oxidizing agent. Its concentration is tightly monitored to avoid environmental contamination and deleterious human health effects. Here, we demonstrate a solid state chemiresistive sensor using graphene like carbon (GLC) to detect free chlorine in water. A 15-20 nm thick GLC layer on a PET substrate was modified with a redox-active aniline oligomer (phenyl-capped aniline tetramer, PCAT) to increase sensitivity, improve selectivity, and impart fouling resistance. Both the bare GLC sensor and the PCAT-modified GLC sensor can detect free chlorine continuously and, unlike previous chemiresistive sensors, do not require a reset. The PCAT-modified sensor showed a linear response with a slope of 13.89 (mg/L) -1 to free chlorine concentrations between 0.2 and 0.8 mg/L which is relevant for free chlorine monitoring for drinking water and wastewater applications. The PCAT-modified GLC sensors were found to be selective and showed less than 0.5% change in current in response to species such as nitrates, phosphates and sulfates in water. They also were resistant to fouling from organic material and showed only a 2% loss in signal. Tap water samples from residential area were tested using this sensor which showed good agreement with standard colorimetric measurement methods. The GLC and PCAT-GLC sensors show high sensitivity and excellent selectivity to free chlorine and can be used for continuous automated monitoring of free chlorine.

  17. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation.

    Science.gov (United States)

    Manasfi, Tarek; Coulomb, Bruno; Ravier, Sylvain; Boudenne, Jean-Luc

    2017-12-05

    Organic ultraviolet (UV) filters are used in sunscreens and other personal-care products to protect against harmful effects of exposure to UV solar radiation. Little is known about the fate of UV filters in seawater swimming pools disinfected with chlorine. The present study investigated the occurrence and fate of five commonly used organic UV filters, namely dioxybenzone, oxybenzone, avobenzone, 2-ethylhexyl-4-methoxycinnamate, and octocrylene, in chlorinated seawater swimming pools. Pool samples were collected to monitor the variation of UV filter concentrations during pool opening hours. Furthermore, laboratory-controlled chlorination experiments were conducted in seawater spiked with UV filters to investigate the reactivity of UV filters. Extracts of chlorination reaction samples were analyzed using high-resolution mass spectrometry and electron-capture detection to identify the potentially formed byproducts. In the collected pool samples, all the UV filters except dioxybenzone were detected. Chlorination reactions showed that only octocrylene was stable in chlorinated seawater. The four reactive UV filters generated brominated transformation products and disinfection byproducts. This formation of brominated products resulted from reactions between the reactive UV filters and bromine, which is formed rapidly when chlorine is added to seawater. Based on the identified byproducts, the transformation pathways of the reactive UV filters were proposed for the first time. Bromoform was generated by all the reactive UV filters at different yields. Bromal hydrate was also detected as one of the byproducts generated by oxybenzone and dioxybenzone.

  18. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  19. Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Chen, Jing; Schlueter, Connie F.; Mo, Yiqun; Humphrey, David M. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rawson, Greg; Niño, Joe A.; Carson, Kenneth H. [Microencapsulation and Nanomaterials Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX (United States)

    2016-05-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Countermeasures for treatment of chlorine-induced acute lung injury are needed. • Formulations containing rolipram, triptolide, or budesonide were produced. • Formulations with a wide range of release properties were developed. • Countermeasure formulations inhibited chlorine-induced lung injury in mice.

  20. Manganese dioxide nanosheets as an optical probe for photometric determination of free chlorine

    International Nuclear Information System (INIS)

    Yu, Haili; Zheng, Lei

    2016-01-01

    We report on a colorimetric assay for free chlorine using MnO 2 nanosheets as an optical probe. In the absence of free chlorine, the addition of ascorbic acid (AA) causes the chemical dissolution of MnO 2 nanosheets via a redox reaction to result in low absorbance. However, if a solution containing free chlorine is added to the system, AA will be oxidized by free chlorine and the MnO 2 nanosheets will not longer be dissolved. Hence, the AA-induced decoloration will not take place and solution will remain yellow. Under optimized experimental conditions, there is a linear relationship between the change in absorbance at 370 nm and the concentration of free chlorine in the 0.2 to 10 μM concentration range, with an 80 nM detection limit. The detection limit for visual evaluation is 8.0 μM. The assay is fairly selective for free chlorine over common inorganic ions and small organic substances. It was applied to the determination of free chlorine in tap water using the standard addition method. (author)

  1. Health effects from swimming training in chlorinated pools and the corresponding metabolic stress pathways.

    Directory of Open Access Journals (Sweden)

    Jiang-Hua Li

    Full Text Available Chlorination is the most popular method for disinfecting swimming pool water; however, although pathogens are being killed, many toxic compounds, called disinfection by-products (DBPs, are formed. Numerous epidemiological publications have associated the chlorination of pools with dysfunctions of the respiratory system and with some other diseases. However, the findings concerning these associations are not always consistent and have not been confirmed by toxicological studies. Therefore, the health effects from swimming in chlorinated pools and the corresponding stress reactions in organisms are unclear. In this study, we show that although the growth and behaviors of experimental rats were not affected, their health, training effects and metabolic profiles were significantly affected by a 12-week swimming training program in chlorinated water identical to that of public pools. Interestingly, the eyes and skin are the organs that are more directly affected than the lungs by the irritants in chlorinated water; instead of chlorination, training intensity, training frequency and choking on water may be the primary factors for lung damage induced by swimming. Among the five major organs (the heart, liver, spleen, lungs and kidneys, the liver is the most likely target of DBPs. Through metabolomics analysis, the corresponding metabolic stress pathways and a defensive system focusing on taurine were presented, based on which the corresponding countermeasures can be developed for swimming athletes and for others who spend a lot of time in chlorinated swimming pools.

  2. Identification of reaction products from reactions of free chlorine with the lipid-regulator gemfibrozil.

    Science.gov (United States)

    Krkošek, Wendy H; Koziar, Stephen A; White, Robert L; Gagnon, Graham A

    2011-01-01

    High global consumption rates have led to the occurrence of pharmaceutically active compounds (PhACs) in wastewater. The use of chlorine to disinfect wastewater prior to release into the environment may convert PhACs into uncharacterized chlorinated by-products. In this investigation, chlorination of a common pharmaceutical, the antihyperlipidemic agent gemfibrozil, was documented. Gemfibrozil (2,2-dimethyl-5-(2,5-dimethylphenoxy)pentanoic acid) was reacted with sodium hypochlorite and product formation was monitored by gas chromatography-mass spectrometry (GC-MS). The incorporation of one, two or three chlorine atoms into the aromatic region of gemfibrozil was demonstrated using negative-ion electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Further analysis using (1)H nuclear magnetic resonance (NMR) spectroscopy identified the reaction products as 4'-ClGem (5-(4-chloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid) 4',6'-diClGem (5-(4,6-dichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), and 3',4',6'-triClGem (5-(3,4,6-trichloro-2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid), products consistent with electrophilic aromatic substitution reactions. The rapid reaction of gemfibrozil with free chlorine at pH conditions relevant to water treatment indicates that a mixture of chlorinated gemfibrozils is likely to be found in wastewater disinfected with chlorine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Reaction kinetics and transformation of carbadox and structurally related compounds with aqueous chlorine.

    Science.gov (United States)

    Shah, Amisha D; Kim, Jae-Hong; Huang, Ching-Hua

    2006-12-01

    The potential release of carbadox (CDX), a commonly used antibacterial agent in swine husbandry, into water systems is of a concern due to its carcinogenic and genotoxic effects. Until this study, the reactivity of carbadox (possessing quinoxaline N,N'-dioxide and hydrazone moieties) toward aqueous chlorine has yetto be investigated in depth. Chemical reactivity, reaction kinetics, and transformation pathways of carbadox and structurally related compounds with free chlorine under typical water treatment conditions were determined. This study found that only CDX and desoxycarbadox (DCDX), a main metabolite of CDX with no ring N-oxide groups, react rapidly with free chlorine while other structurally related compounds including olaquindox, quindoxin, quinoxaline N-oxide, quinoxaline, and quinoline N-oxide do not. The reaction kinetics of CDX and DCDX with chlorine are highly pH dependent (e.g., the apparent second-order rate constant, kapp, for CDX ranges from 51.8 to 3.15 x 10(4) M(-1)s(-1) at pH 4-11). The high reactivity of CDX and DCDX to chlorine involves deprotonation of their hydrazone N-H moieties where initial chlorine attack results in a reactive intermediate that is further attacked by nucleophiles in the matrix to yield non-chlorinated, hydroxylated, and larger molecular weight byproducts. All of the CDX's byproducts retain their biologically active N-oxide groups, suggesting that they may remain as active antibacterial agents.

  4. Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate.

    Science.gov (United States)

    Rodríguez, Eva; Sordo, Ana; Metcalf, James S; Acero, Juan L

    2007-05-01

    Cyanobacteria produce toxins that may contaminate drinking water sources. Among others, the presence of the alkaloid toxins cylindrospermopsin (CYN) and anatoxin-a (ANTX) constitutes a considerable threat to human health due to the acute and chronic toxicity of these compounds. In the present study, not previously reported second-order rate constants for the reactions of CYN and ANTX with chlorine and monochloramine and of CYN with potassium permanganate were determined and the influence of pH and temperature was established for the most reactive cases. It was found that the reactivity of CYN with chlorine presents a maximum at pH 7 (rate constant of 1265 M(-1)s(-1)). However, the oxidation of CYN with chloramine and permanganate are rather slow processes, with rate constants chlorination product of CYN was found to be 5-chloro-CYN (5-Cl-CYN), which reacts with chlorine 10-20 times slower than the parent compound. The reactivity of ANTX with chlorine and chloramines is also very low (kchlorine dose of 1.5 mg l(-1) was enough to oxidize CYN almost completely. However, 3 mg l(-1) of chlorine was able to remove only 8% of ANTX, leading to a total formation of trihalomethanes (TTHM) at a concentration of 150 microg l(-1). Therefore, chlorination is a feasible option for CYN degradation during oxidation and disinfection processes but not for ANTX removal. The permanganate dose required for CYN oxidation is very high and not applicable in waterworks.

  5. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    International Nuclear Information System (INIS)

    Pickles, C.A.

    2009-01-01

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  6. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, C.A., E-mail: pickles-c@mine.queensu.ca [Department of Mining Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  7. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  8. Chlorination of uranium oxides with CCl4 using a mechanochemical method

    Science.gov (United States)

    Kitawaki, Shinichi; Nagai, Takayuki; Sato, Nobuaki

    2013-08-01

    A chlorination method for uranium oxides at low temperature was investigated by using a mechanochemical method. In particular, the possibility of the chlorination of uranium oxides, such as UO2 and U3O8, via mechanochemical reaction with CCl4 was studied using a planetary ball mill. Mechanochemical experiments were conducted to evaluate the effect of milling time, CCl4/uranium oxide molar ratio, and revolution speed on the reaction. The synthesized products were then subjected to X-ray diffraction analysis, and it was found that the chlorination of U3O8 with CCl4 to UOCl2, UCl4, and U2O2Cl5 proceeded. However, the chlorination reaction could not be observed when using UO2 powder as the raw material. The chlorination reaction could not be observed when using UO2 powder as the raw material. The chlorination of U3O8 with CCl4 to form UOCl2, UCl4, and U2O2Cl5 via mechanochemical reaction occurs at room temperature. The ratio of chlorination increases with milling time when the appropriate amount of CCl4 is employed. However, the use of excess liquid CCl4 decreases the mechanochemical effect.

  9. Selective recovery of uranium from Ca-Mg uranates by chlorination

    Science.gov (United States)

    Pomiro, Federico J.; Gaviría, Juan P.; Quinteros, Raúl D.; Bohé, Ana E.

    2017-07-01

    A chlorination process is proposed for the uranium extraction and separation using Calciumsbnd Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO4) as reaction product. The formation of U3O8 and MgU3O10 was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h-1 of chlorine and 10 hs of reaction at 700 °C being U3O8 the single uranium product obtained.

  10. Molten salt destruction of rubber and chlorinated solvents

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.

    1994-09-01

    Acceptable methods for the treatment of mixed wastes are not currently available. The authors have investigated Molten Salt Destruction (MSD) as an alternative to incineration of mixed wastes. MSD differs from incineration in several ways: there is no evidence of open flames in MSD, the containment of actinides is accomplished by chemical means (wetting and dissolution), the operating temperature of MSD is much lower (700--590 C vs 1,000--1,200 C) thus lowering the volatility of actinides. Furthermore, no acid gases are released from MSD. These advantages provide the main incentive for developing MSD as an alternative to incineration. The authors have demonstrated the viability of the MSD process to cleanly destroy rubber and chlorinated solvents

  11. Optimal intervention strategies for cholera outbreak by education and chlorination

    Science.gov (United States)

    Bakhtiar, Toni

    2016-01-01

    This paper discusses the control of infectious diseases in the framework of optimal control approach. A case study on cholera control was studied by considering two control strategies, namely education and chlorination. We distinct the former control into one regarding person-to-person behaviour and another one concerning person-to-environment conduct. Model are divided into two interacted populations: human population which follows an SIR model and pathogen population. Pontryagin maximum principle was applied in deriving a set of differential equations which consists of dynamical and adjoin systems as optimality conditions. Then, the fourth order Runge-Kutta method was exploited to numerically solve the equation system. An illustrative example was provided to assess the effectiveness of the control strategies toward a set of control scenarios.

  12. Chlorine dioxine DBPs (disinfection by-products in drinking water

    Directory of Open Access Journals (Sweden)

    C. Lasagna

    2013-01-01

    Full Text Available Since the 1970s it has been well known that, though water for human consumption is generally disinfected before being distributed along the network, the use of chemicals results in the formation of many different Disinfection By-Products (DBPs. In the case of chlorine dioxide, the most important and represented DBPs are chlorite and chlorate: after an introduction concerning the current Italian regulation on this subject, in the experimental part the results of a 7-year minitoring campaign, concerning water of different origin collected from taps in various Italian regions, are shown. The analytical technique used for the determination of chlorite and chlorate was Ion Chromatography. The result obtained are finally discussed.

  13. Tolyporphin-An Unusual Green Chlorin-like Dioxobacteriochlorin.

    Science.gov (United States)

    Brückner, Christian

    2017-10-01

    The tolyporphins, a family of green tetrapyrrolic pigments isolated from a cyanobacterium-microbial ecological unit, possess unique carbohydrate-derivatized dioxobacteriochlorin frameworks. A brief overview over the history, synthesis, chemistry and biological properties of the tolyporphins forms the backdrop for highlighting the contribution by Hood et al. (Photochem. Photobiol., 2017, https://doi.org/10.1111/php.12781) who demonstrate the optical properties of tolyporphins to be more similar to those of chlorins than of bacteriochlorins. This property could be correlated with the presence of β-oxo-functionalities. The study continues to clarify the structure, properties and possible roles of these intriguing chromophores with a range of biomedical properties. © 2017 The American Society of Photobiology.

  14. Groundwater sustainability in Central Australia studied using chlorine-36

    International Nuclear Information System (INIS)

    Cresswell, R.G.; Fifield, L.K.; Jacobson, G.

    1998-01-01

    The sustainability of Aboriginal community water supplies in arid Central Australia has been evaluated using the radioisotope chlorine-36 as a tracer within groundwaters to indicate the age of waters being tapped by local bores. Shallow regional groundwaters from fractured sandstones of the Ngalia Basin, fractured metamorphic rocks and Cainozoic sands and gravels show a bimodal distribution of 36 Cl ratios. The higher ratio probably represents modern (Holocene) recharge diluted with windblown salts from local playa lakes and is seen in bores around the margin. The lower ratio corresponds to a 36 Cl age of 80-100ka, implying that the last major recharge occurred during the last interglacial. These values are mainly observed in the interior of the basin, and are believed to be minimum ages for most of the shallow groundwaters in this region. Substantial recharge only appears to occur during favourable interglacial climatic regimes. Most community water supplies depend on these waters. (authors)

  15. Prevention of superheater corrosion caused by chlorine; Tulistimien kloorikorroosion estaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Roppo, J. [Kvaerner Power Oy, Tampere (Finland)

    2006-12-19

    Combustion of CO{sub 2}-neutral fuels is becoming more attractive and common method to decrease CO2 emissions of energy production. Also well managed and controlled combustion of waste fractions compared to their landfilling produces much less greenhouse gas emissions. In combustion of these fuels in high efficiency power plants notably increased superheater corrosion risk is prevailing, mainly caused by chlorine. Typical such fuels are forest, agricultural and household residues, biological sludge's of pulp and paper industry and RDF made from separated municipal and industrial solid waste. The goal of the project is to develop clearly cheaper and more effective method to protect superheaters, which enables combustion of biomass and waste fuels with higher energy shares. Tests in pilot and full scale power plants will reveal the potential and applicability of the developed method for commercial use. (orig.)

  16. Beam-foil spectroscopy of chlorine and sulfur ions

    International Nuclear Information System (INIS)

    Frot, D.; Barchewitz, R.; Cukier, M.; Bruneau, J.

    1987-01-01

    We report on the measurement of spectra of highly stripped chlorine and sulfur ions in the energy ranges of, respectively, 2900 - 3500 eV and 2300 - 2600 eV. The spectra have been obtained after excitation of ions travelling through a thin carbon foil. X-rays emitted by the emerging beam are analysed with a Johann-type bent crystal spectrometer. The observation angle with respect to the beam axis is 54 0 . The interpretation of the spectra is performed by comparing experimental results with Multiconfiguration Dirac-Fock (MCDF) calculated energies and intensities. All the lines are interpreted by 2p - ls transitions (K α spectrum) in excited ions with, respectively, H-, He-, Li-, Be- and B-like electron structures

  17. Feasibility study of self-lubrication by chlorine implantation

    International Nuclear Information System (INIS)

    Akhajdenung, T.; Aizawa, T.; Yoshitake, M.; Mitsuo, A.

    2003-01-01

    Implantation of chlorine into titanium nitride (TiN) coating on the high-speed steel substrate has succeeded in significant reduction of wear rate and friction coefficient for original TiN under dry wear condition. Through precise investigation on the surface reaction in the wear track, in situ formation of oxygen-deficient titanium oxides was found to play a role as a lubricious oxide. In the present paper, this self-lubrication mechanism is further investigated for various wearing conditions. For wide range of sliding speed and normal load in the wear map, the wear volume of a counter material is actually reduced with comparison to the un-implanted TiN. Effect of the ion implantation dose on this self-lubrication mechanism is also studied for practical use. Some comments are made on further application of this self-lubrication to manufacturing

  18. Organohalogens in chlorinated cooling waters discharged from nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.; Mann, D.C.; Neitzel, D.A.

    1983-01-01

    For the power plant discharges studied to date, measured concentrations of trihalomethanes are lower than might be expected, particularly in cooling tower water, which can lose THMs to the atmosphere. In the cooling towers, where chlorine was added in higher concentrations and for longer residence times, halogenated phenols can contribute significantly to the total organic halogen content of the discharge. The way in which cooling towers are operated may also influence the production of halogenated phenols because they concentrate the incoming water by a factor of 4 or 5. In addition, the phenols, which act as a substrate for the halogenating agent, are also probably concentrated by the cooling tower operation and may be prevented from being biodegraded by addition of the same biocide that produces the halogenated phenols. 8 references, 4 tables

  19. Chlorine decay under steady and unsteady-state hydraulic conditions

    DEFF Research Database (Denmark)

    Stoianov, Ivan; Aisopou, Angeliki

    2014-01-01

    This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....

  20. Corrosion behaviour of dimensionally stable anodes in chlorine electrolysis

    International Nuclear Information System (INIS)

    Evdokimov, S.V.

    2000-01-01

    Dependence of ruthenium anodic dissolution rate in active coating of oxide ruthenium-titanium anodes on time both in chloride and perchlorate solutions was studied using radiometric methods. It is shown that i chloride solutions effect of a high and long-term decrease in ruthenium dissolution rate takes place. The data confirm the previously made conclusion that adsorbed chlorine produces inhibiting effect on anodic dissolution of a precious metal. Influence of pH on steady-state rate of the anode corrosion is considered. Effect of abrupt increase in corrosion rate with pH increase from 2 to 4 with its subsequent slow decrease to the values characteristic of the process rate in solutions with pH 2 is revealed [ru