WorldWideScience

Sample records for chlordecone

  1. Organochlorine (chlordecone) uptake by root vegetables.

    Science.gov (United States)

    Florence, Clostre; Philippe, Letourmy; Magalie, Lesueur-Jannoyer

    2015-01-01

    Chlordecone, an organochlorine insecticide, continues to pollute soils in the French West Indies. The main source of human exposure to this pollutant is food. Root vegetables, which are staple foods in tropical regions, can be highly contaminated and are thus a very effective lever for action to reduce consumer exposure. We analyzed chlordecone contamination in three root vegetables, yam, dasheen and sweet potato, which are among the main sources of chlordecone exposure in food in the French West Indies. All soil types do not have the same potential for the contamination of root vegetables, allophanic andosols being two to ten times less contaminating than non-allophanic nitisols and ferralsols. This difference was only partially explained by the higher OC content in allophanic soils. Dasheen corms were shown to accumulate more chlordecone than yam and sweet potato tubers. The physiological nature of the root vegetable may explain this difference. Our results are in good agreement with the hypothesis that chlordecone uptake by root vegetables is based on passive and diffusive processes and limited by transport and dilution during growth. PMID:25043888

  2. Field validation of chlordecone soil sequestration by organic matter addition

    OpenAIRE

    Clostre, F.; Woignier, T.; RANGON, Luc; Fernandes, P.; Soler, A.; Lesueur-Jannoyer, M.

    2014-01-01

    Purpose The use of chlordecone (CLD) has caused pollution of soils, which are now a source of contamination for crops and ecosystems. Because of its long-term impacts on human health, exposure to CLD is a public health concern and contamination of crops by CLD must be limited. To this end, we conducted field trials on chlordecone sequestration in soil with added compost. Materials and methods The impact of added compost on chlordecone sequestration was measured in nitisols. After characteriza...

  3. Chlordecone retention in the fractal structure of volcanic clay

    International Nuclear Information System (INIS)

    Highlights: ► Allophanic soils are highly polluted but less contaminant for cultivated vegetables. ► SAXS and TEM show the fractal structure of allophane aggregates at the nanoscale. ► Allophane aggregates play the role of a labyrinth which fixes and traps chlordecone. ► Allophane physical properties contribute to chlordecone retention in andosols. - Abstract: Chlordecone (CHLD), a soil and foodstuff pollutant, as well as an environmentally persistent organochlorine insecticide, was used intensively in banana fields. The chlordecone uptake of three crops was measured for two types of polluted soils: allophanic and non-allophanic. The uptake is lower for allophanic soils even if their chlordecone content is higher than with non-allophanic soils. The fractal structure of the allophane aggregates was characterized at the nanoscale by small angle X-rays scattering, pore size distribution and transmission electron microscopy. We showed that clay microstructures should be an important physico-chemical factor governing the fate of chlordecone in the environment. Allophanic clays result in two counterintuitive findings: higher contaminant trappings yet lower contaminant availability. We propose that this specific, tortuous structure, along with its associated low accessibility, partly explains the low availability of chlordecone confined in allophanic soils. Capsule The fractal and tortuous microstructure of allophane clay favours the chlordecone retention in soils and disfavours the crop uptake.

  4. Chlordecone retention in the fractal structure of volcanic clay

    Energy Technology Data Exchange (ETDEWEB)

    Woignier, Thierry, E-mail: thierry.woignier@imbe.fr [IRD, UMR 237, IMBE, PRAM B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); CNRS, UMR 7263, IMBE, PRAM B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); Aix Marseille Universite, IMBE, Faculte des Sciences et Techniques de Saint Jerome, avenue Escadrille Normandie Niemen, F-13397 Marseille Cedex 20 (France); Clostre, Florence [Cirad/PRAM, UPR fonctionnement agroecologique et performances des systemes de culture horticoles, B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); Macarie, Herve [IRD, UMR 237, IMBE, PRAM B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); Cirad UR HortSys, TA B-103/PS4, Boulevard de la Lironde, 34398, Montpellier Cedex 5 (France); Jannoyer, Magalie [Cirad/PRAM, UPR fonctionnement agroecologique et performances des systemes de culture horticoles, B.P. 214 Petit Morne, 97232, Le Lamentin, Martinique (France); Cirad UR HortSys, TA B-103/PS4, Boulevard de la Lironde, 34398, Montpellier Cedex 5 (France)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Allophanic soils are highly polluted but less contaminant for cultivated vegetables. Black-Right-Pointing-Pointer SAXS and TEM show the fractal structure of allophane aggregates at the nanoscale. Black-Right-Pointing-Pointer Allophane aggregates play the role of a labyrinth which fixes and traps chlordecone. Black-Right-Pointing-Pointer Allophane physical properties contribute to chlordecone retention in andosols. - Abstract: Chlordecone (CHLD), a soil and foodstuff pollutant, as well as an environmentally persistent organochlorine insecticide, was used intensively in banana fields. The chlordecone uptake of three crops was measured for two types of polluted soils: allophanic and non-allophanic. The uptake is lower for allophanic soils even if their chlordecone content is higher than with non-allophanic soils. The fractal structure of the allophane aggregates was characterized at the nanoscale by small angle X-rays scattering, pore size distribution and transmission electron microscopy. We showed that clay microstructures should be an important physico-chemical factor governing the fate of chlordecone in the environment. Allophanic clays result in two counterintuitive findings: higher contaminant trappings yet lower contaminant availability. We propose that this specific, tortuous structure, along with its associated low accessibility, partly explains the low availability of chlordecone confined in allophanic soils. Capsule The fractal and tortuous microstructure of allophane clay favours the chlordecone retention in soils and disfavours the crop uptake.

  5. Soil microstructure and organic matter: keys for chlordecone sequestration.

    Science.gov (United States)

    Woignier, T; Fernandes, P; Soler, A; Clostre, F; Carles, C; Rangon, L; Lesueur-Jannoyer, M

    2013-11-15

    Past applications of chlordecone, a persistent organochlorine pesticide, have resulted in diffuse pollution of agricultural soils, and these have become sources of contamination of cultivated crops as well as terrestrial and marine ecosystems. Chlordecone is a very stable and recalcitrant molecule, mainly present in the solid phase, and has a strong affinity for organic matter. To prevent consumer and ecosystem exposure, factors that influence chlordecone migration in the environment need to be evaluated. In this study, we measured the impact of incorporating compost on chlordecone sequestration in andosols as a possible way to reduce plant contamination. We first characterized the transfer of chlordecone from soil to plants (radish, cucumber, and lettuce). Two months after incorporation of the compost, soil-plant transfers were reduced by a factor of 1.9-15 depending on the crop. Our results showed that adding compost modified the fractal microstructure of allophane clays thus favoring chlordecone retention in andosols. The complex structure of allophane and the associated low accessibility are important characteristics governing the fate of chlordecone. These results support our proposal for an alternative strategy that is quite the opposite of total soil decontamination: chlordecone sequestration. PMID:24056248

  6. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS).

    Science.gov (United States)

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Rangon, Luc; Barthès, Bernard G

    2009-11-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q(2) = 0.75, R(2) = 0.82 for the total set), especially for samples with chlordecone content Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg(-1), nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. PMID:19493598

  7. Remediation of Soils and Groundwater Contaminated by Chlordecone

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František

    2010, s. 1. ISBN N. [Conclusions de l’Atelier Remédiation à la pollution par la chlordécone aux Antilles. Martinique (FR), 17.05.2010-22.05.2010] Institutional research plan: CEZ:AV0Z40720504 Keywords : remediation * chlordecone * reductive dehalogenation Subject RIV: CI - Industrial Chemistry, Chemical Engineering www.clostre.fr/atelierchlordecone/atlcld.htm

  8. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    OpenAIRE

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, M.; R. Achard; Rangon, Luc; Barthès, Bernard

    2009-01-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q(2) = 0.75, R-2 = 0.8...

  9. Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Bayo, Jesus D., E-mail: fernanje@supagro.inra.fr [IRD, UMR LISAH Bât 24, 2 Place Viala, 34060 Montpellier cedex 1 (France); INRA, UMR LISAH Bât 24, 2 Place Viala, 34060 Montpellier cedex 1 (France); Saison, Carine [IRD, UMR LISAH Bât 24, 2 Place Viala, 34060 Montpellier cedex 1 (France); Voltz, Marc [INRA, UMR LISAH Bât 24, 2 Place Viala, 34060 Montpellier cedex 1 (France); Disko, Ulrich; Hofmann, Diana; Berns, Anne E. [Forschungszentrum Jülich GmbH, IBG 3, 52425 Jülich (Germany)

    2013-10-01

    Chlordecone is a persistent organochlorine insecticide that, even decades after its ban, poses a threat to the environment and human health. Nevertheless, its environmental fate in soils has scarcely been investigated, and elementary data on its degradation and behaviour in soil are lacking. The mineralisation and sorption of chlordecone and the formation of possible metabolites were evaluated in a tropical agricultural andosol. Soil microcosms with two different soil horizons (S-A and S-B) were incubated for 215 days with {sup 14}C-chlordecone. At five different times (1, 33, 88, 150 and 215 days) the extractability of {sup 14}C-chlordecone was analysed. Mineralisation was monitored using {sup 14}CO{sub 2} traps of NaOH. The appearance of metabolites was studied using thin layer and gas chromatography techniques. At the end of the experiment, the water soluble {sup 14}C-activity was 2% of the remaining {sup 14}C-chlordecone for S-A and 8% for S-B. Only 12% of the remaining activity was non extractable and more than 80% remained extractable with organic solvents. For the first time to our knowledge, a significant mineralisation of chlordecone was measured in a microcosm under aerobic conditions (4.9% for S-A and 3.2% for S-B of the initial {sup 14}C-activity). The drastically lower emission of {sup 14}CO{sub 2} in sterilised microcosms indicated the biological origin of chlordecone mineralisation in the non-sterilised microcosms. No metabolites could be detected in the soil extracts. The mineralisation rate of chlordecone decreased by one order of magnitude throughout the incubation period. Thus, the chlordecone content in the soil remained large. This study confirms the existence of chlordecone degrading organisms in a tropical andosol. The reasons why their activity is restricted should be elucidated to allow the development of bioremediation approaches. Possible reasons are a heterogeneous distribution a chlordecone between sub-compartments with different

  10. Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions

    International Nuclear Information System (INIS)

    Chlordecone is a persistent organochlorine insecticide that, even decades after its ban, poses a threat to the environment and human health. Nevertheless, its environmental fate in soils has scarcely been investigated, and elementary data on its degradation and behaviour in soil are lacking. The mineralisation and sorption of chlordecone and the formation of possible metabolites were evaluated in a tropical agricultural andosol. Soil microcosms with two different soil horizons (S-A and S-B) were incubated for 215 days with 14C-chlordecone. At five different times (1, 33, 88, 150 and 215 days) the extractability of 14C-chlordecone was analysed. Mineralisation was monitored using 14CO2 traps of NaOH. The appearance of metabolites was studied using thin layer and gas chromatography techniques. At the end of the experiment, the water soluble 14C-activity was 2% of the remaining 14C-chlordecone for S-A and 8% for S-B. Only 12% of the remaining activity was non extractable and more than 80% remained extractable with organic solvents. For the first time to our knowledge, a significant mineralisation of chlordecone was measured in a microcosm under aerobic conditions (4.9% for S-A and 3.2% for S-B of the initial 14C-activity). The drastically lower emission of 14CO2 in sterilised microcosms indicated the biological origin of chlordecone mineralisation in the non-sterilised microcosms. No metabolites could be detected in the soil extracts. The mineralisation rate of chlordecone decreased by one order of magnitude throughout the incubation period. Thus, the chlordecone content in the soil remained large. This study confirms the existence of chlordecone degrading organisms in a tropical andosol. The reasons why their activity is restricted should be elucidated to allow the development of bioremediation approaches. Possible reasons are a heterogeneous distribution a chlordecone between sub-compartments with different microbial activities or a degradation of chlordecone by co

  11. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    International Nuclear Information System (INIS)

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q2 = 0.75, R2 = 0.82 for the total set), especially for samples with chlordecone content -1 or when the sample set was rather homogeneous (Q2 = 0.91, R2 = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg-1, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  12. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Didier, E-mail: didier.brunet@ird.f [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France); Woignier, Thierry [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); CNRS - Centre National de la Recherche Scientifique, Universite Montpellier 2, place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Lesueur-Jannoyer, Magalie; Achard, Raphael [CIRAD (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), PRAM, BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Rangon, Luc [IRD, UMR Eco and Sols, PRAM (Pole de Recherche Agronomique de la Martinique), BP 213, Petit Morne, 97232 Le Lamentin, Martinique (French West Indies) (France); Barthes, Bernard G. [IRD - Institut de Recherche pour le Developpement, UMR Eco and Sols (Ecologie Fonctionnelle et Biogeochimie des Sols), Montpellier SupAgro, Batiment 12, 2 place Viala, 34060 Montpellier Cedex 1 (France)

    2009-11-15

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q{sup 2} = 0.75, R{sup 2} = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg{sup -1} or when the sample set was rather homogeneous (Q{sup 2} = 0.91, R{sup 2} = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg{sup -1}, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. - Soil content in chlordecone, an organochlorine insecticide, can be determined time- and cost-effectively using near infrared reflectance spectroscopy (NIRS).

  13. Contamination of Harvested Organs in Root Crops Grown on Chlordecone-Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    Y. M. CABIDOCHE; M. LESUEUR-JANNOYER

    2012-01-01

    Chlordecone,one of the most persistent organochlorine pesticides,was applied between 1972 and 1993 in banana fields in the French West Indies,which results in long-term pollution of soils and contamination of waters,aquatic biota,and crops.As human exposure to chlordecone is mainly due to food contamination,early research was focused on chlordecone transfer to crops.Field trials were conducted to investigate chlordecone contamination of yam,sweet potato,turnip,and radish grown on a Ferralic Nitisol polluted by chlordecone.We also carried out trials on yam,courgette,and tomato under greenhouse conditions with homogenized Andosol and Nitisol,polluted by chlordecone to various extents.Our results indicated that i) all tubers were contaminated in accordance with the chlordecone content of the soils; ii) the plant contamination capacity of the Nitisol was greater than that of the Andosol; and iii) whatever the soil type,tuber contamination was related to the soil volumetric content of dissolved chlordecone.Nevertheless,no tubers showed sufficient chlordecone uptake for efficient soil decontamination by means of plant extraction.Soil contact accounted for most of the root crop contamination,which was inversely proportional to the tuber size.Internal transfer might also increase root crop contamination when the root central cylinder contained raw sap flow,as in the case of turnip or radish.Courgette fruits showed high contamination without soil contact.Thus,further research is needed to explore the pattern of both below- and aboveground plant chlordecone contamination and assess the hypothesis of its correlation with sap flow.Finally.we used our results to build a decisionmaking tool for farmers,relating soil pollution with the maximal contamination of the harvested organs to predict crop contamination and thus assisting farmers in making crop choices at planting in order to conform with the European Union's regulations.

  14. Chlordecone potentiates hepatic fibrosis in chronic liver injury induced by carbon tetrachloride in mice.

    Science.gov (United States)

    Tabet, Elise; Genet, Valentine; Tiaho, François; Lucas-Clerc, Catherine; Gelu-Simeon, Moana; Piquet-Pellorce, Claire; Samson, Michel

    2016-07-25

    Chronic liver damage due to viral or chemical agents leads to a repair process resulting in hepatic fibrosis. Fibrosis may lead to cirrhosis, which may progress to liver cancer or a loss of liver function, with an associated risk of liver failure and death. Chlordecone is a chlorinated pesticide used in the 1990s. It is not itself hepatotoxic, but its metabolism in the liver triggers hepatomegaly and potentiates hepatotoxic agents. Chlordecone is now banned, but it persists in soil and water, resulting in an ongoing public health problem in the Caribbean area. We assessed the probable impact of chlordecone on the progression of liver fibrosis in the population of contaminated areas, by developing a mouse model of chronic co-exposure to chlordecone and a hepatotoxic agent, carbon tetrachloride (CCl4). After repeated administrations of chlordecone and CCl4 by gavage over a 12-week period, we checked for liver damage in the exposed mice, by determining serum liver transaminase (AST, ALT) levels, histological examinations of the liver and measuring the expression of genes encoding extracellular matrix components. The co-exposure of mice to CCl4 and chlordecone resulted in significant increases in ALT and AST levels. Chlordecone also increased expression of the Col1A2, MMP-2, TIMP-1 and PAI-1 genes in CCl4-treated mice. Finally, we demonstrated, by quantifying areas of collagen deposition and alpha-SMA gene expression, that chlordecone potentiated the hepatic fibrosis induced by CCl4. In conclusion, our data suggest that chlordecone potentiates hepatic fibrosis in mice with CCl4-induced chronic liver injury. PMID:26853152

  15. Sequestration of chlordecone in the porous structure of an andosol and effects of added organic matter : an alternative to decontamination

    OpenAIRE

    Woignier, Thierry; Fernandes, P.; Jannoyer-Lesueur, M.; Soler, A.

    2012-01-01

    The context of this study is the pollution of soils and water by a persistent organo-chlorinated insecticide, chlordecone, in a tropical environment. The application of chlordecone to control the banana black weevil has led to continuing diffuse pollution of soils, and to its being a source of contamination for cultivated plants, as well as for terrestrial and marine ecosystems. Chlordecone is toxic and stable and is considered to be a persistent organic pesticide. Consequently, the amounts o...

  16. The Chlordecone crisis in the French West Indies : Its fate in soils and water

    OpenAIRE

    Voltz, Marc; Cattan, Philippe; Saison, Carine; Berns, Anne E.; Colin, François; Crabit, Armand; Crevoisier, David; Fernandez Bayo, Jesus; Levillain, Joseph; Pak, Lai Ting; Samouelian, Anatja; Cabidoche, Yves-Marie

    2013-01-01

    In the French West Indies, chlordecone (CLD), an organochlorine pesticide, which is highly persistent in the environment, was applied in banana plantations from 1972 to 1993 against the banana weevil Cosmopolites sordidus. Pollution surveys conducted in 2001 by the French Department of Health revealed the presence of chlordecone in soils, rivers, springs over large areas in Guadeloupe and Martinique islands. Contamination of drinking water, food crops, aquatic species by CLD has been observed...

  17. Comparative fate of an organochlorine, chlordecone, and a related compound, chlordecone-5b-hydro, in soils and plants.

    Science.gov (United States)

    Clostre, Florence; Cattan, Philippe; Gaude, Jean-Marie; Carles, Céline; Letourmy, Philippe; Lesueur-Jannoyer, Magalie

    2015-11-01

    We address the problem of the comparative environmental fate of a pesticide, chlordecone (CLD), and a related compound, chlordecone-5b-hydro (CLD-5b-hydro). We used a large database including data from two types of contaminated volcanic soils, andosol and nitisol, and thirteen crops grown in the French West Indies in historically polluted soils. We performed in-depth statistical analysis of the effect of different parameters (soil type, crop, organ, etc.) on the ratio of CLD-5b-hydro to CLD in both soils and plants. The environmental fate of the two compounds differed depending on the type of soil. Proportionally, more CLD-5b-hydro than CLD was measured in nitisols than in andosols. Compared to CLD, we also found a preferential transfer of CLD-5b-hydro from the soil to the plant. Finally, mobilization of the two compounds differed according to the species of crop but also within the plant, with increasing ratios from the roots to the top of the plant. The properties of the compound played a key role in the underlying processes. Because CLD-5b-hydro is more soluble in water and has a lower K(ow) than CLD, CLD-5b-hydro (1) was more easily absorbed from soils by plants, (2) was less adsorbed onto plant tissues and (3) was transported in greater quantities through the transpiration stream. Due to the amounts of CLD-5b-hydro we measured in some plant parts such as cucurbit fruits, an assessment of the toxicity of this CLD monodechlorinated product is recommended. PMID:26081731

  18. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function.

    Science.gov (United States)

    Merlin, Chloé; Devers, Marion; Béguet, Jérémie; Boggio, Baptiste; Rouard, Nadine; Martin-Laurent, Fabrice

    2016-03-01

    The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil

  19. Ultra-trace quantification method for chlordecone in human fluids and tissues.

    Science.gov (United States)

    Bichon, Emmanuelle; Guiffard, Ingrid; Vénisseau, Anaïs; Marchand, Philippe; Antignac, Jean-Philippe; Le Bizec, Bruno

    2015-08-21

    Chlordecone is an organochlorine pesticide (OCP) considered as a Persistent Organic Pollutant (POP) as it persists in the environment, bio-accumulates through the food web, causes adverse effects to human health and the environment and transports across international boundaries far from its sources. The atypical physico-chemical properties of chlordecone make its inclusion in classical analytical approaches non applicable. The aim of our work was to include chlordecone in a multi organochlorine residue method preventing any degradation during the analytical process and thus allowing quantification at ppt (ngkg(-1) or ngL(-1)) levels for a wide range of OCPs in breast milk, human serum and adipose tissue. After GC-HRMS vs. MS/MS and EI vs. APCI comparisons, the major improvement in terms of sensitivity was found in decreasing the length and film thickness of the gas chromatography column. Thanks to a linear correlation between relative response and quantity of chlordecone injected, LC-(ESI-)-MS/MS was finally preferred. An acetonitrile based gradient optimized on a C30 coreshell HPLC column has led to reaching limits of quantification as low as 8ngL(-1), 25pgmL(-1) and 0.2ngg(-1) fat for breast milk, serum and adipose tissue, respectively, allowing multiresidue OCP quantification at concentration levels compatible with biomonitoring purposes and pre-requisites. PMID:26184709

  20. EVALUATION OF THE IMMUNOTOXIC POTENTIAL OF CHLORDECONE WITH COMPARISON TO CYCLOPHOSPHAMIDE

    Science.gov (United States)

    The immunotoxic potential of chlordecone was evaluated in male Fischer 344 rats following 10 days of dosing by oral gavage. These results were compared with a comparable dosing regimen with the known immunosuppressive drug cyclophosphamide. Significant changes in the immune param...

  1. Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies.

    Science.gov (United States)

    Merlin, Chloé; Devers, Marion; Crouzet, Olivier; Heraud, Cécile; Steinberg, Christian; Mougin, Christian; Martin-Laurent, Fabrice

    2014-04-01

    The insecticide chlordecone is a contaminant found in most of the banana plantations in the French West Indies. This study aims to search for fungal populations able to grow on it. An Andosol heavily contaminated with chlordecone, perfused for 1 year in a soil-charcoal system, was used to conduct enrichment cultures. A total of 103 fungal strains able to grow on chlordecone-mineral salt medium were isolated, purified, and deposited in the MIAE collection (Microorganismes d'Intérêt Agro-Environnemental, UMR Agroécologie, Institut National de la Recherche Agronomique, Dijon, France). Internal transcribed spacer sequencing revealed that all isolated strains belonged to the Ascomycota phylum and gathered in 11 genera: Metacordyceps, Cordyceps, Pochonia, Acremonium, Fusarium, Paecilomyces, Ophiocordyceps, Purpureocillium, Bionectria, Penicillium, and Aspergillus. Among predominant species, only one isolate, Fusarium oxysporum MIAE01197, was able to grow in a liquid culture medium that contained chlordecone as sole carbon source. Chlordecone increased F. oxysporum MIAE01197 growth rate, attesting for its tolerance to this organochlorine. Moreover, F. oxysporum MIAE01197 exhibited a higher EC50 value than the reference strain F. oxysporum MIAE00047. This further suggests its adaptation to chlordecone tolerance up to 29.2 mg l(-1). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that 40 % of chlordecone was dissipated in F. oxysporum MIAE01197 suspension culture. No chlordecone metabolite was detected by GC-MS. However, weak amount of (14)CO2 evolved from (14)C10-chlordecone and (14)C10-metabolites were observed. Sorption of (14)C10-chlordecone onto fungal biomass followed a linear relationship (r (2) = 0.99) suggesting that it may also account for chlordecone dissipation in F. oxysporum MIAE01197 culture. PMID:23872892

  2. Mechanistic study of chlordecone-induced endocrine disruption: Based on an adverse outcome pathway network.

    Science.gov (United States)

    Yang, Lihua; Zhou, Bingsheng; Zha, Jinmiao; Wang, Zijian

    2016-10-01

    The adverse outcome pathway (AOP) framework could be helpful for chemical risk assessment and mechanistic research. The aim of the present study was to unravel the mechanism of chlordecone-induced endocrine disruption by illustrating the main molecular initiating event (MIE)/perturbations responsible for the observed effects. In silico simulations were performed to predict the MIE(s), and the results pointed to agonistic interaction with estrogen receptors (ERα, ERβ), androgen receptor (AR), cytochrome P450 (CYP19A) by chlordecone. In vivo endocrine disruptions were evaluated in rare minnow (Gobiocypris rarus) exposed to 0.01, 0.1, 1 and 10 μg L(-1) chlordecone from 2 h post-fertilization until sexually mature. In the females, increases of vitellogenin (vtg) mRNA levels in liver and gonad, plasma estradiol (E2), testosterone (T) and E2/T, and renalsomatic index confirmed the role of agonism of ER and CYP19A as MIEs, but the decreased gonadosomatic index, degenerated ovaries as well as the feed-forward response pointed to other potential but important MIEs and corresponding AOPs. In the males, increased E2/T ratio, increased testis vtg mRNA levels and occurrence of intersex confirmed the roles of agonism of ERα and CYP19A as main MIEs in chlordecone-induced endocrine disruptions. Our results also fetches out the limit of AOPs in predicting the adverse outcomes and explaining the mechanism of chemicals at present, thus reflected a critical need for expanding AOPs and AOP network before using it in chemical risk assessment. PMID:27448318

  3. Effect of home food processing on chlordecone (organochlorine) content in vegetables.

    Science.gov (United States)

    Clostre, Florence; Letourmy, Philippe; Thuriès, Laurent; Lesueur-Jannoyer, Magalie

    2014-08-15

    Decades after their use and their ban, organochlorine pesticides still pollute soil, water and food and lead to human and ecosystem exposure. In the case of chlordecone, human exposure is mainly due to the consumption of polluted food. We studied the effect of preparation and cooking in five vegetable products, three root vegetables (yam, dasheen and sweet potato) and two cucurbits (cucumber and pumpkin), among the main contributors to exposure to chlordecone in food in the French West Indies. Boiling the vegetables in water had no effect on chlordecone content of the vegetables and consequently on consumer exposure. The peel was three to 40-fold more contaminated than the pulp except cucumber, where the difference was less contrasted. The edible part is thus significantly less contaminated and peeling is recommended after rinsing to reduce consumer exposure, particularly for food grown in home gardens with contaminated soils. The type of soil had no consistent effect on CLD distribution but plot did. Peel and pulp composition (lipids and fibers) appear to partially account for CLD distribution in the product. PMID:24914532

  4. [The effect of chlordecone (Kepone) on the laboratory colonies of the Pharaoh's ant Monomorium pharanois].

    Science.gov (United States)

    Berndt, K P; Nitschmann, J

    1976-03-01

    The control of the Pharaoh's ant Monomorium pharaonis is very difficult because of the social way of life in this insect pest. In regard to the reported good suppressing results of Chlordecone we analyzed the mode of action in this compound at laboratory colonies of the pharaoh's ant. Commercial gel and granular formulations as well as selfmade baits have been tested. The best results showed the granular bait on the basis of ground nut butter, while the effects of all of the others was much weaker. The pure gel, developed for cockroach control, was like the application in drinking water without success. The treatment of the colonies after a starvation period of 60 hours improved all of the effects. Sterility (fertility, fecundity) in the surviving queens was not measurable. For practical control measures the often recommended prebaiting is not at all desirable. The action on the worker ants is good, but the special mode of action based on the selective mortality in the queens and its detailed effects are unknown. Through the early absence of queens in the colonies will be induced in many cases a production of new sexuals, which compensate the success of the poison and allow the colonies to recover. The treatment leads faster to an eradiction if the ET90 to workers mortality reached earlier than that in the queens. Successful control of pharaoh's ant will Chlordecone should be considered with reserve. Nethertheless Chlordecone is in the present situation of pharaoh's ant control one of the best so far known organic-synthetically insecticides. PMID:1267219

  5. The invasive lionfish, Pterois volitans, used as a sentinel species to assess the organochlorine pollution by chlordecone in Guadeloupe (Lesser Antilles).

    Science.gov (United States)

    Charlotte, Dromard R; Yolande, Bouchon-Navaro; Cordonnier, Sebastien; Claude, Bouchon

    2016-06-15

    In Guadeloupe, many marine organisms are affected by an organochlorine pollution used in the past by the banana industry to fight against the banana weevil. In the present study, we evaluated the level of contamination of the invasive Indo-Pacific lionfish, Pterois volitans, all around the island. Concentrations of chlordecone varied from 3 to 144μg.kg(-1) wet weight. The highest concentrations were recorded when samples were captured in the marine zones located downstream of the previous banana plantations. This contamination seemed to decrease rapidly with the distance from the coast. Mean concentration of chlordecone in Pterois volitans was higher than that of five other fish species collected in similar sites. Due to its position at the top of the trophic web, lionfish was affected by bioaccumulation of chlordecone and can be used as a sentinel species to assess and control the level of contamination of the marine environment by chlordecone. PMID:27113021

  6. Role of suppressed hepatocellular regeneration and Ca2+ in chlordecone-potentiated CCl4 hepatotoxicity

    International Nuclear Information System (INIS)

    The mechanism by which the chlorinated pesticide chlordecone (CD; Kepone) potentiates CCl4-induced hepatotoxicity and lethality was investigated. It was hypothesized that perturbations in Ca2+ homeostasis, greater than those observed with a low dose of CCl4 alone, in concert with a suppression of hepatocellular regeneration induced by CD alone or by CD + CCl4 are responsible, at least in part, for CD-potentiated CCl4 hepatotoxicity. Ca2+ homeostasis was evaluated by measuring total cell Ca2+ and 45Ca2+ uptake in viable isolated hepatocyte suspension obtained from normal and CD-pretreated rats receiving CCl4 in vivo. In the normal rats in vivo CCL challenge did not affect 45Ca2+ uptake by viable isolated hepatocytes. In contrast, 45Ca2+ uptake was inhibited in viable isolated hepatocytes obtained from rats exposed to CD + CCl4

  7. Colchicine antimitosis abolishes resiliency of postnatally developing rats to chlordecone-amplified carbon tetrachloride hepatotoxicity and lethality.

    OpenAIRE

    Dalu, A; Rao, P S; Mehendale, H M

    1998-01-01

    We have previously reported that rats are resilient to the hepatotoxic and lethal combination of chlordecone (CD) and carbon tetrachloride (CCl4) during early postnatal development. The overall findings pointed to stimulated cell division and tissue repair mechanisms as the underlying cause of resistance. The objective of the current study was to investigate if the antimitotic effect of colchicine (CLC) abolishes this resiliency to CD + CCl4 by inhibiting ongoing and stimulated cell division....

  8. Distinct bacterial community structure of 3 tropical volcanic soils from banana plantations contaminated with chlordecone in Guadeloupe (French West Indies).

    Science.gov (United States)

    Mercier, Anne; Dictor, Marie-Christine; Harris-Hellal, Jennifer; Breeze, Dominique; Mouvet, Christophe

    2013-08-01

    In the French West Indies (FWI), the soil, andosols, ferralsols and nitisols, is highly polluted by chlordecone, although this organochlorine insecticide extensively applied to banana crops has been banned for 20years. This contamination has led to a major human health concern inducing the need for remediation of the contaminated soils. Work was conducted to help to evaluate the impact of remediation processes on the microbial communities from these soils. Microbial biomass was estimated after direct DNA extraction from three chlordecone-contaminated soils (an andosol, a ferralsol and a nitisol) and the bacterial community analyzed using t-RFLP. The FWI volcanic andosol was particularly recalcitrant to usual direct DNA extraction protocols hampering analysis of soil microbial communities until now, in contrast with the 2 other soils. For the first time, DNA was directly extracted from a FWI andosol based on yeast RNA addition at the lysis step. Differences in microbial biomass were thus observed between the 3 FWI soils. Moreover, the bacterial community structure was significantly distinct from each other's and related to soil physico-chemical characteristics. Interestingly, differences in bacterial diversity could not be exclusively attributed to the level of chlordecone contamination. PMID:23706897

  9. Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution.

    Science.gov (United States)

    Clostre, Florence; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Letourmy, Philippe; Cabidoche, Yves-Marie; Cattan, Philippe

    2014-02-01

    When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level. PMID:24014224

  10. The Chlordecone crisis in the French West Indies : Its fate in soils and water

    Science.gov (United States)

    Voltz, Marc; Cattan, Philippe; Saison, Carine; Berns, Anne E.; Colin, François; Crabit, Armand; Crevoisier, David; Fernandez-Bayo, Jesus; Levillain, Joseph; Pak, Lai-Ting; Samouelian, Anatja; Cabidoche, Yves-Marie

    2013-04-01

    In the French West Indies, chlordecone (CLD), an organochlorine pesticide, which is highly persistent in the environment, was applied in banana plantations from 1972 to 1993 against the banana weevil Cosmopolites sordidus. Pollution surveys conducted in 2001 by the French Department of Health revealed the presence of chlordecone in soils, rivers, springs over large areas in Guadeloupe and Martinique islands. Contamination of drinking water, food crops, aquatic species by CLD has been observed as well as its presence in blood of men, pregnant women and newborns. There is therefore a large social concern about the extent and evolution of CLD pollution in the French West Indies and its impact on human health and ecosystems. From 2008 to 2012 a multidisciplinary project CHLORDEXCO took place to study the CLD fate in water, soils and the contamination characteristics of aquatic species and food crops. Here, we summarize results obtained on the processes controlling the spatial and temporal patterns of soil and water contamination at the scale of the banana cropping area in Guadeloupe and of the Perou catchment. The main soils in the contaminated areas are andosols and nitisols and formed from the weathering of volcanic ashes. They have a high organic carbon content and high content of secondary minerals, allophane for andosols and halloysite for nitisols. An analysis of the spatial distribution of CLD in soil over 1045 field plots showed that the soil type had a strong impact. Andosols, with a high sorption capacity (Koc 20 000 L/kg), had the highest CLD concentrations and stocks, unlike Nitisols, which had 10-fold lower sorption capacities. A significant « farm effect », due to between-farm variations of application times and amounts, was also noticed. The observed stocks of CLD clearly correspond to the accumulation in soil of successive treatments and thereby confirm the high persistence of CLD in soil also observed in incubation studies in soil microcosms. Soil

  11. In vivo metabolism of CCl/sub 4/ by rats pretreated with chlordecone, mirex, or phenobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Mehendale, H.M.; Klingensmith, J.S.

    1988-04-01

    The propensity of chlordecone (CD) to potentiate hepatotoxic and lethal effects of CCl4 is well established. Mirex (M), a close structural analogue of CD, or phenobarbital (PB), powerful inducers of hepatic microsomal drug metabolizing enzymes, are much weaker potentiators of CCl4 toxicity. The purpose of this study was to test the possibility that CD potentiates the toxicity of CCl4 by increasing the metabolism of CCl4 to a greater degree than either PB or M. We compared the in vivo metabolism of CCl4 in rats pretreated with CD, M, or PB, by measuring the hepatic content of 14CCl4, the expiration of 14CCl4, expiration of 14CCl4-derived 14CO2, and lipid peroxidation. Male Sprague-Dawley rats (250-270 g) were pretreated with a single oral dose of CD (10 mg/kg), M (10 mg/kg), or corn oil vehicle (1 ml/kg). PB pretreatment consisted of an ip injection of sodium PB (80 mg/kg) in saline (0.9%) for 2 successive days. Twenty-four hours later, 14CCl4 (0.1 ml/kg; sp act: 0.04 mCi/mmol) was administered ip in corn oil and the radioactivity present in the expired air was collected for 6 hr. Excretion of the parent compound as represented by the 14C label in the toluene trap was unchanged by any of the pretreatments. Expiration of 14CO2 measured during the 6 hr after CCl4 administration was increased in animals pretreated with PB or CD. In vivo lipid peroxidation measured as diene conjugation in lipids extracted from the livers was increased to a similar extent in animals pretreated with PB and CD, whereas the serum transaminases (ALT, AST) were significantly elevated only in animals pretreated with CD.M did not affect 14CO2 production and was without a significant effect on the lipid peroxidation.

  12. In vivo metabolism of CCl4 by rats pretreated with chlordecone, mirex, or phenobarbital

    International Nuclear Information System (INIS)

    The propensity of chlordecone (CD) to potentiate hepatotoxic and lethal effects of CCl4 is well established. Mirex (M), a close structural analogue of CD, or phenobarbital (PB), powerful inducers of hepatic microsomal drug metabolizing enzymes, are much weaker potentiators of CCl4 toxicity. The purpose of this study was to test the possibility that CD potentiates the toxicity of CCl4 by increasing the metabolism of CCl4 to a greater degree than either PB or M. We compared the in vivo metabolism of CCl4 in rats pretreated with CD, M, or PB, by measuring the hepatic content of 14CCl4, the expiration of 14CCl4, expiration of 14CCl4-derived 14CO2, and lipid peroxidation. Male Sprague-Dawley rats (250-270 g) were pretreated with a single oral dose of CD (10 mg/kg), M (10 mg/kg), or corn oil vehicle (1 ml/kg). PB pretreatment consisted of an ip injection of sodium PB (80 mg/kg) in saline (0.9%) for 2 successive days. Twenty-four hours later, 14CCl4 (0.1 ml/kg; sp act: 0.04 mCi/mmol) was administered ip in corn oil and the radioactivity present in the expired air was collected for 6 hr. Excretion of the parent compound as represented by the 14C label in the toluene trap was unchanged by any of the pretreatments. Expiration of 14CO2 measured during the 6 hr after CCl4 administration was increased in animals pretreated with PB or CD. In vivo lipid peroxidation measured as diene conjugation in lipids extracted from the livers was increased to a similar extent in animals pretreated with PB and CD, whereas the serum transaminases (ALT, AST) were significantly elevated only in animals pretreated with CD.M did not affect 14CO2 production and was without a significant effect on the lipid peroxidation

  13. In vivo metabolism of CCl4 by gerbils pretreated with chlordecone, phenobarbital, or mirex

    International Nuclear Information System (INIS)

    Gerbils are known to be much more sensitive to CCl4 lethality than rats as indicated by 48 hours LD50 (0.08 vs 2.8 ml/kg). On the other hand, gerbils are refractory to chlordecone (CD) potentiation of CCl4 toxicity. To investigate the possible mechanism underlying gerbil's high sensitivity to CCl4 lethality, the authors studied in vivo metabolism of CCl4 in gerbils pretreated with dietary CD (10 ppm), phenobarbital (PB, 225 ppm) or mirex (M, 10 ppm). The hepatic content of CCl4, the expiration of 14CCl4 and 14CCl4-derived Co2, and lipid peroxidation were measured and the results were compared with our previous data for rats. After 15-day dietary pretreatment, male gerbils (60-80 g) received 14CCl4 (80 ml/kg; sp act: 0.04 mCi/mmol) ip in corn oil and the expired air was collected for 6 hours. More than 80% of the dose administered was expired as parent compound in 6 hours regardless of pretreatments. Expiration of 14CCl4 derived 14CO2 in control gerbils was 3.5-fold more than in control rats and was increased significantly in pretreated gerbils (M>PB>CD). PB and M pretreatments resulted in significant increase of 14C label bound to non-lipid fraction of hepatic content as compared with CD or control gerbils. The radiolabel present in hepatic content of control gerbils was 5-fold higher than that of control rats. In vivo liquid peroxidation measured as diene conjugation in lipid extracts from the livers was lower in gerbils than in rats, and there were no significant differences among control and pretreated gerbils. These data indicate that the more extensive metabolism of CCl4 in gerbils may partially explain their high sensitivity to CCl4 toxicity. However, the significantly enhanced metabolism of CCl4 found in CD, PB, or M pretreated gerbils did not lead to amplification of CCl4 hepatotoxic and lethal effects

  14. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    Science.gov (United States)

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions. PMID:26945637

  15. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    OpenAIRE

    Lee, Junga; Scheri, Richard C.; Zhang, Yuan; Curtis, Lawrence R.

    2008-01-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [14C]CD or [14C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vit...

  16. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue

    International Nuclear Information System (INIS)

    Chlordecone was applied between 1972 and 1993 in banana fields of the French West Indies. This resulted in long-term pollution of soils and contamination of waters, aquatic biota, and crops. To assess pollution level and duration according to soil type, WISORCH, a leaching model based on first-order desorption kinetics, was developed and run. Its input parameters are soil organic carbon content (SOC) and SOC/water partitioning coefficient (Koc). It accounts for current chlordecone soil contents and drainage water concentrations. The model was valid for andosol, which indicates that neither physico-chemical nor microbial degradation occurred. Dilution by previous deep tillages makes soil scrapping unrealistic. Lixiviation appeared the main way to reduce pollution. Besides the SOC and rainfall increases, Koc increased from nitisol to ferralsol and then andosol while lixiviation efficiency decreased. Consequently, pollution is bound to last for several decades for nitisol, centuries for ferralsol, and half a millennium for andosol. - Soil and water contamination by chlordecone will persist for several centuries in the French West Indies, because the only decontamination is through leaching by drainage water.

  17. Soil and river contamination patterns of chlordecone in a tropical volcanic catchment in the French West Indies (Guadeloupe).

    Science.gov (United States)

    Crabit, A; Cattan, P; Colin, F; Voltz, M

    2016-05-01

    The aim of this study was to identify primary flow paths involved in the chlordecone (CLD) river contamination and quantify the CLD fluxes to assess CLD pollution levels and duration according to a typical catchment of the banana cropping area in the French Indies (Guadeloupe): the Pérou Catchment (12 km(2)) characterized by heavy rainfall (5686 mm year(-1)). Three sub-catchments (SC1, SC2 and SC3) were studied during the hydrological year 2009-2010: a pedological survey combined with a spatialized hydrochemical approach was conducted. The average soil concentration is higher in the Pérou Catchment (3400 μg kg(-1)) than in the entire banana cropping area in Guadeloupe (2100 μg kg(-1)). The results showed that CLD stocks in soils vary largely among soil types and farming systems: the weakest stocks are located upstream in SC1 (5 kg ha(-1)), where a majority of the area is non-cultivated; medium stocks are located in Nitisols downstream in SC3 (9 kg ha(-1)); and the greatest stocks are observed in SC2 on Andosols (12 kg ha(-1)) characterized by large farms. The annual water balance and the hydro-chemical analysis revealed that the three sub-catchments exhibited different behaviors. Pérou River contamination was high during low flows, which highlighted that contamination primarily originated from groundwater contributions. The results showed that only a small part of the catchment (SC2), contributing little to the water flow, comprises a major CLD contribution, which is in agreement with the highly contaminated andosol soils observed there. Another significant result considers that at least 50 years would be required to export the totality of the actual CLD soil stocks retained in the topsoil layer. The actual time for soil remediation will however be much longer considering (i) the necessary time for the chlordecone to percolate and be stored in the shallow aquifers and (ii) its travel time to reach the river. PMID:27039897

  18. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    International Nuclear Information System (INIS)

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [14C]CD or [14C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0-50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice

  19. Natural transformation of chlordecone into 5b-hydrochlordecone in French West Indies soils: statistical evidence for investigating long-term persistence of organic pollutants.

    Science.gov (United States)

    Devault, Damien A; Laplanche, Christophe; Pascaline, Hélène; Bristeau, Sébastien; Mouvet, Christophe; Macarie, Hervé

    2016-01-01

    Chlordecone (CLD) was an organochlorine insecticide whose previous use resulted in an extensive pollution of the environment with severe health effects and social consequences. A closely related compound, 5b-hydrochlordecone (5b-hydroCLD), has been searched for and often detected in environmental matrices from the geographical area where CLD was applied. The current consensus considered that its presence was not the result of a biotic or abiotic dechlorination of CLD in these matrices but rather the consequence of its presence as impurity (synthesis by-product) in the CLD released into the environment. The aim of the present study was to determine if and to what extent degradation of CLD into 5b-hydroCLD occurred in the field. To test this hypothesis, the ratios of 5b-hydroCLD and CLD concentrations in a dataset of 810 soils collected between 2006 and 2012 in Martinique were compared to the ratios measured in 3 samples of the CLD dust commercial formulations applied in the banana fields of French West Indies (FWI) and 1 sample of the technical-grade CLD corresponding to the active ingredient used in such formulations. Soil data were processed with a hierarchical Bayesian model to account for random measurement errors and data censoring. Any pathway of CLD transformation into 5b-hydroCLD occurring over the long term in FWI soils would indeed change the ratio of 5b-hydroCLD/CLD compared to what it was in the initially applied formulations. Results showed a significant increase of the 5b-hydroCLD/CLD ratio in the soils-25 times greater in soil than in commercial formulations-which suggested that natural CLD transformation into 5b-hydroCLD over the long term occurred in these soils. Results from this study may impact future decisions for the remediation of the polluted areas. PMID:26122571

  20. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice

    International Nuclear Information System (INIS)

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [14C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [14C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [14C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [14C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [14C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [14C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism

  1. IN VITRO AND IN VIVO TOXICITY: A COMPARISON OF ACRYLAMIDE, CYCLOPHOSPHAMIDE, CHLORDECONE, AND DIETHYLSTILBESTROL

    Science.gov (United States)

    Four chemicals that had been tested in an in vivo toxicological screen were tested in a Chinese hamster ovary (CHO) cytotoxicity assay. Cell density, viability, ATP concentration, rate of protein synthesis, and cellular protein concentration were decreased by exposure to acrylami...

  2. FINAL REPORT ON THE EVALUATION OF FOUR TOXIC CHEMICALS IN AN 'IN VIVO/IN VITRO' TOXICOLOGICAL SCREEN: ACRYLAMIDE, CHLORDECONE, CYCLOPHOSPHAMIDE, AND DIETHYLSTILBESTROL

    Science.gov (United States)

    An in vivo/in vitro Toxicological Screen (Tox Screen) has been developed for screening large numbers of wastes for biological activity. Emphasis is placed on identifying a wide range of potential toxic responses by employing diverse test methods with toxic endpoints in mutagenesi...

  3. Contribution of stable isotopes and age dating tools to the understanding of pesticide transfer into surface and ground-waters in Martinique (French West Indies).

    OpenAIRE

    Gourcy, Laurence; Arnaud, Luc; Baran, Nicole; Petelet Giraud, Emmanuelle

    2013-01-01

    In Martinique, chlordecone, a synthetic chlorinated organic compound has mainly been used as an insecticide for banana farming up to 1993. The intrinsic characteristic of this contaminant makes it still quite abundant in soil, surface and groundwater. Since 2004 and the implementation of the Water Framework Directive the concentration of chlordecone in groundwater has been monitored regularly (two to four times / year) at different points of the island by the ODE (Office de l'Eau). Previous s...

  4. Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Coat, Sophie, E-mail: coatsophie@gmail.com [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Monti, Dominique, E-mail: dominique.monti@univ-ag.fr [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Legendre, Pierre, E-mail: pierre.legendre@umontreal.ca [Departement de Sciences Biologique, Universite de Montreal, C.P. 6128, succursale A, Montreal, Quebec H3C 3J7 (Canada); Bouchon, Claude, E-mail: claude.bouchon@univ-ag.fr [EA 926 DYNECAR, Laboratoire de Biologie Marine, UFR Sciences, Universite des Antilles et de la Guyane, BP592, 97159 Pointe-a-Pitre Cedex (France); Massat, Felix, E-mail: fmassat@ladrome.fr [LDA26, laboratoire Departemental d' Analyses de la Drome, 27 avenue Lautagne, 26000 Valence (France); Lepoint, Gilles, E-mail: g.lepoint@ulg.ac.be [MARE Centre, Laboratoire d' Oceanologie, Universite de Liege, Bat. B6, 4000 Sart Tilman, Belgique (Belgium)

    2011-06-15

    Concentrations of organochlorine pesticides and stable isotope ratios of nitrogen and carbon were measured in a tropical freshwater ecosystem to evaluate the contamination level of biota and examine the bioaccumulation patterns of pollutants through the food web. Chemical analyses showed a general and heavy contamination of the entire food web. They revealed the strong accumulation of pollutants by juveniles of diadromous fishes and shrimps, as they re-enter the river. The role of ecological factors in the bioaccumulation of pesticides was evaluated. Whereas the most persistent pollutants (chlordecone and monohydro-chlordecone) were related to the organisms diet and habitat, bioaccumulation of {beta}-HCH was only influenced by animal lipid content. The biomagnification potential of chlordecone through the food chain has been demonstrated. It highlighted the importance of trophic transfer in this compound bioaccumulation process. In contrast, bioconcentration by passive diffusion from water seemed to be the main exposure route of biota to {beta}-HCH. - Highlights: > We measured OC pesticides and stable isotope ratios in a tropical stream. > Results showed a strong and ubiquitous contamination of the entire food web. > Diadromous juveniles strongly accumulated pollutants when they re-enter the river. > The most persistent pollutant (chlordecone) was related to species diet and habitat. > {beta}-HCH was only influenced by animal lipid content. - This paper determines the bioaccumulation and transfer processes of organochlorine pesticides within the stream food web in Guadeloupe (Caribbean).

  5. Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation

    International Nuclear Information System (INIS)

    Concentrations of organochlorine pesticides and stable isotope ratios of nitrogen and carbon were measured in a tropical freshwater ecosystem to evaluate the contamination level of biota and examine the bioaccumulation patterns of pollutants through the food web. Chemical analyses showed a general and heavy contamination of the entire food web. They revealed the strong accumulation of pollutants by juveniles of diadromous fishes and shrimps, as they re-enter the river. The role of ecological factors in the bioaccumulation of pesticides was evaluated. Whereas the most persistent pollutants (chlordecone and monohydro-chlordecone) were related to the organisms diet and habitat, bioaccumulation of β-HCH was only influenced by animal lipid content. The biomagnification potential of chlordecone through the food chain has been demonstrated. It highlighted the importance of trophic transfer in this compound bioaccumulation process. In contrast, bioconcentration by passive diffusion from water seemed to be the main exposure route of biota to β-HCH. - Highlights: → We measured OC pesticides and stable isotope ratios in a tropical stream. → Results showed a strong and ubiquitous contamination of the entire food web. → Diadromous juveniles strongly accumulated pollutants when they re-enter the river. → The most persistent pollutant (chlordecone) was related to species diet and habitat. → β-HCH was only influenced by animal lipid content. - This paper determines the bioaccumulation and transfer processes of organochlorine pesticides within the stream food web in Guadeloupe (Caribbean).

  6. Contribution of stable isotopes and age dating tools to the understanding of pesticide transfer into surface and ground-waters in Martinique (French West Indies)

    Science.gov (United States)

    Gourcy, Laurence; Arnaud, Luc; Baran, Nicole; Petelet-Giraud, Emmanuelle

    2013-04-01

    In Martinique, chlordecone, a synthetic chlorinated organic compound has mainly been used as an insecticide for banana farming up to 1993. The intrinsic characteristic of this contaminant makes it still quite abundant in soil, surface and groundwater. Since 2004 and the implementation of the Water Framework Directive the concentration of chlordecone in groundwater has been monitored regularly (two to four times / year) at different points of the island by the ODE (Office de l'Eau). Previous study (Gourcy et al. 2009, Arnaud et al. 2012) showed that variations of pesticides concentrations in groundwater are temporally strong and not always easy to correlate to climate, geological or hydrogeological context. The objective of the present study was to explore new investigation ways to identify, in a specific site and for high sampling frequency possible pathways of chlordecone into surface and ground-waters. A major sampling campaign was carried out in December 2011 including 12 surface and groundwater points located in Chalvet and Chez Lélène wells watersheds. Besides, monthly or weekly samples were taken at these two groundwater monitoring wells and the Falaise river up to August 2012. Major dissolved ions, δ18O, δ2H, chlordecone concentrations were determined for all samples. CFC-11, CFC-12, CFC-113 and SF6 analyses were performed for groundwater for apparent age estimation. Punctual or cumulative rainfalls were sampled at Chalvet (30 m NGM) and Aileron (800 m NGM) for stable isotopes determination. The isotope data are indicating a deuterium excess higher for surface water, groundwater and rainfall collected at high altitude vs. samples corresponding to lowest altitudes. This data can therefore be used to estimate the average altitude of recharge area of groundwater. This altitude of recharge, between 30 and 350m corresponds to the altitude of banana growing ; it is therefore in accordance with the presence of chlordecone in soils. This information is also

  7. Assessing pesticide pollution risk: from field to watershed

    OpenAIRE

    Houdart, Marie; Tixier, P.; Lassoudière, A.; Saudubray, F.

    2009-01-01

    Pesticides used for intensive agricultural production threaten the water resources of the French West Indies. For example, the pesticide chlordecone was used until the nineties in banana fields. Operational and simple tools are needed to assess the potential risk of pollution by pesticides. Here, we propose a method to assess the spatial variability of pollution risk on a watershed scale. This method proceeds in four steps: (1) surveying practices; (2) determining the pesticide load for each ...

  8. [Evaluation of mirex for the control of pharaoh's ants].

    Science.gov (United States)

    Berndt, K P

    1976-11-01

    The paper analyses the mode of action of the organic chlorine compound Mirex in laboratory colonies of the pharaoh's ant Monomorium pharaonis under the special view of practical use in control measures in comparison with the related insecticide Chlordecone (Kepone). Similar to Chlordecone the queens are very susceptible towards the action of Mirex. According to the regression lines of the mortality the best concentrations for practical control measures are in the range of 0.1 to 1%, respectively. Under laboratory conditions a reliable eradication is effected by an application of 0.001% Mirex over a period of three weeks. Such a treatment lead to the loss of reproductive capacity of the remaining living queens. These queens do not recover after transmission to normal colonies. The larvae were influenced in the same manner as the adults. At the recommended level of Mirex all of the larvae disappear within the first five days of application of the poison bait. Also a short termed use lead to a long lasting damage of the ant societies. Between different baits no significant difference could be demonstrated even when one bait obviously was better accepted than another. Because of the strong effect on intact colonies Mirex should be recommended for the control of this ant pest. PMID:1008292

  9. Pollution of soils and ecosystems by a permanent toxic organochlorine pesticide: chlordecone—numerical simulation of allophane nanoclay microstructure and calculation of its transport properties

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2015-06-01

    Full Text Available Pest control technology was introduced into the tropics without considering the specificity of their ecosystems and the risk of pollution was underestimated. Some volcanic soils (andosols contain nanoclay (allophane with a unique structure and porous properties compared to crystalline clays. Andosols are characterized by large pore volume and pore size distribution, a high specific surface area, and a fractal structure. These soils are more polluted than the other kinds of tropical soils but release less pollutants (chlordecone to water and plants. The literature shows that the allophane microstructure favors accumulation and sequestration of chlordecone, an organochlorine pesticide, in andosols.We used a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster-cluster aggregation model. From the simulated data, we derived the structural features, pore volume and tortuosity, and its transport properties, hydraulic conductivity and diffusion. We show that transport properties decrease because of the presence of allophane. We propose that low hydraulic conductivity and diffusion are important parameters to explain the high concentrations and trapping of pollutants in andosols.

  10. Cytotoxic effects and aromatase inhibition by xenobiotic endocrine disrupters alone and in combination

    International Nuclear Information System (INIS)

    Xenobiotics may cause long-term adverse effects in humans, especially at the embryonic level, raising questions about their levels of exposure, combined effects, and crucial endpoints. We are interested in the possible interactions between xenobiotic endocrine disrupters, cellular viability and androgen metabolism. Accordingly, we tested aroclor 1254 (A1254), atrazine (AZ), o,p'-DDT, vinclozolin (VZ), p,p'-DDE, bisphenol A (BPA), chlordecone (CD), nonylphenol (NP), tributylin oxide (TBTO), and diethylstilbestrol (DES) for cellular toxicity against human embryonic 293 cells, and activity against cellular aromatase, but also on placental microsomes and on the purified equine enzyme. Cellular viability was affected in 24 h by all the xenobiotics with a threshold at 50 μM (except for TBTO and DES, 10 μM threshold), and aromatase was inhibited at non-toxic doses. In combination synergism was observed reducing the threshold values of toxicity to 4-10 μM, and aromatase activity by 50% in some cases. In placental microsomes the most active xenobiotics rapidly inhibited microsomal aromatase in a manner independent of NADPH metabolism. Prolonged exposures to low doses in cells generally amplified by 50 times aromatase inhibition. These xenobiotics may act by inhibition of the active site or by allosteric effects on the enzyme. Bioaccumulation is a feature of some xenobiotics, especially chlordecone, DDT and DDE, and low level chronic exposures can also affect cell signaling mechanisms. This new information about the mechanism of action of these xenobiotics will assist in improved molecular design with a view to providing safer compounds for use in the (human) environment

  11. Persistent organochlorine pollutants with endocrine activity and blood steroid hormone levels in middle-aged men.

    Directory of Open Access Journals (Sweden)

    Elise Emeville

    Full Text Available BACKGROUND: Studies relating long-term exposure to persistent organochlorine pollutants (POPs with endocrine activities (endocrine disrupting chemicals on circulating levels of steroid hormones have been limited to a small number of hormones and reported conflicting results. OBJECTIVE: We examined the relationship between serum concentrations of dehydroepiandrosterone, dehydroepiandrosterone sulphate, androstenedione, androstenediol, testosterone, free and bioavailable testosterone, dihydrotestosterone, estrone, estrone sulphate, estradiol, sex-hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone as a function of level of exposure to three POPs known to interfere with hormone-regulated processes in different way: dichlorodiphenyl dichloroethene (DDE, polychlorinated biphenyl (PCB congener 153, and chlordecone. METHODS: We collected fasting, morning serum samples from 277 healthy, non obese, middle-aged men from the French West Indies. Steroid hormones were determined by gas chromatography-mass spectrometry, except for dehydroepiandrosterone sulphate, which was determined by immunological assay, as were the concentrations of sex-hormone binding globulin, follicle-stimulating hormone and luteinizing hormone. Associations were assessed by multiple linear regression analysis, controlling for confounding factors, in a backward elimination procedure, in multiple bootstrap samples. RESULTS: DDE exposure was negatively associated to dihydrotestosterone level and positively associated to luteinizing hormone level. PCB 153 was positively associated to androstenedione and estrone levels. No association was found for chlordecone. CONCLUSIONS: These results suggested that the endocrine response pattern, estimated by determining blood levels of steroid hormones, varies depending on the POPs studied, possibly reflecting differences in the modes of action generally attributed to these compounds. It remains to be investigated whether

  12. Assessment of chemicals using a battery of neurobehavioral tests: a comparative study.

    Science.gov (United States)

    Pryor, G T; Uyeno, E T; Tilson, H A; Mitchell, C L

    1983-01-01

    Single-dose LD10S and LD50S were determined in male, Fischer-344 rats for acrylamide monomer, arsenic trioxide, chlordecone, lead acetate, methylmercury hydroxide, monosodium salicylate, tetraethyl tin, and triethyl lead chloride. Proportions of the single-dose LD10S were used in a subacute study to estimate the 28-day LD20S for each chemical. Proportions of the 28-day LD20S were used in a subchronic (105 days of dosing) study to determine the effectiveness of a battery of neurobehavioral tests for detecting and characterizing the neurotoxic effects of each chemical. The battery consisted of undifferentiated motor activity, forelimb and hindlimb grip strengths, rotation orientation, thermal sensitivity, startle responsiveness to acoustic and air-puff stimuli, and performance of a multisensory conditioned pole-climb avoidance response task; body weight and rectal temperature were also monitored. The battery of tests was administered on eight occasions, that is, before, at three-week intervals during dosing (PO or IP, five days each week for 15 weeks), and at three and six weeks after dosing. Normative data (controls from each experiment) indicated fair overall stability of the measures over the eight test sessions, but experiment-to-experiment variability in this regard was clearly evident. The inherent statistical sensitivity of the tests varied greatly as estimated by their coefficients of variation, which ranged from 1% (rectal temperature) to over 100% (rotation orientation). Intercorrelations among the various measures were low to moderate indicating relatively little redundancy. The various measures were differentially affected by the eight chemicals: body weight by all eight; rectal temperature by one; undifferentiated motor activity by three; forelimb grip strength by two; hindlimb grip strength by four; rotation orientation by one; thermal sensitivity by one; startle responsiveness by three; and CAR performance by five. A profile analysis using the slopes

  13. On the rumors about the silent spring: review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects

    Directory of Open Access Journals (Sweden)

    Cocco Pierluigi

    2002-01-01

    Full Text Available Occupational exposure to some pesticides, and particularly DBCP and chlordecone, may adversely affect male fertility. However, apart from the therapeutic use of diethylstilbestrol, the threat to human reproduction posed by "endocrine disrupting" environmental contaminants has not been supported by epidemiological evidence thus far. As it concerns other endocrine effects described in experimental animals, only thyroid inhibition following occupational exposure to amitrole and mancozeb has been confirmed in humans. Cancer of the breast, endometrium, ovary, prostate, testis, and thyroid are hormone-dependent, which fostered research on the potential risk associated with occupational and environmental exposure to the so-called endocrine-disrupting pesticides. The most recent studies have ruled out the hypothesis of DDT derivatives as responsible for excess risks of cancer of the reproductive organs. Still, we cannot exclude a role for high level exposure to o,p'-DDE, particularly in post-menopausal ER+ breast cancer. On the other hand, other organochlorine pesticides and triazine herbicides require further investigation for a possible etiologic role in some hormone-dependent cancers.

  14. NERIS workshop. Lasting contaminations and land development. After Fukushima: the possibility of a lasting radioactive contamination

    International Nuclear Information System (INIS)

    The document contains the contributions proposed during a workshop and the content of discussions after these contributions. For the first day, case studies are thus reported and commented: land contamination in Japan after the Fukushima accident, the CENTRACO plant accident, medium and long term stakes within the context of a lasting contamination by pesticides (the case of chlordecone pollution in the French West Indies), the complex and multiple actor challenges in the case of long duration radiological contamination for land agriculture, a lasting contamination in urban environment (the case of Metaleurop). The second session addressed the conditions and means for preparedness of local actors to a lasting radioactive contamination: the Norwegian approach, how to take the post-accidental perspective into account in the local safeguard plans, the PRIME project (research project on radio-ecological sensitivity indices and multi-criteria methods applied to the environment of an industrial territory), the pilot radiation protection project of the Montbeliard district, the OPAL project (to provide the local information commissions with post-accidental zoning information on the different French nuclear sites)

  15. Current Status and Regulatory Aspects of Pesticides Considered to be Persistent Organic Pollutants (POPs in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2010-10-01

    Full Text Available Organochlorine pesticides (OCPs are capable of persisting in the environment, transporting between phase media and accumulating to high levels, implying that they could pose a risk of causing adverse effects to human health and the environment. Consequently, most OCPs are designated as persistent organic pollutants (POPs and even as endocrine disrupting chemicals (EDCs. The objective of this paper was to review the current status of pesticide POPs in Taiwan, including aldrin, chlordane, chlordecone, DDT, dieldrin, endrin, heptachlor, hexachlorobenzene, α/β-hexachlorocyclohexanes, lindane, mirex, pentachloro-benzene, and toxaphene. The information about their environmental properties, banned use, carcinogenic toxicity and environmental levels, can be connected with the regulatory infrastructure, which has been established by the joint-venture of the central competent authorities (i.e., Environmental Protection Administration, Department of Health, Council of Agriculture, and Council of Labor Affairs. The significant progress to be reported is that the residual levels of these pesticide-POPs, ranging from trace amounts to a few ppb, have declined notably in recent years.

  16. Protocol to the 1979 Convention on Long-range Transboundary Air Pollution on Persistent Organic Pollutants and Executive Body decision 1998/2 on information to be submitted and the procedure for adding substances to Annexes I, II or III to the Protocol on persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Protocol to the Convention on Long-Range Transboundary Air Pollution aims to control, reduce or eliminate discharges, emissions and losses of persistent organic pollutants, in accordance with the provision of the 20 Articles. Substances scheduled to be eliminated from production are: aldrin, chlordane, chlordecone, DDT, dieldrin, endrin, heptachlor and hexabromobiphenyl. DDT and HCH have some specific restrictions on use defined. Parties are also obliged to reduce total annual emissions of polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/F), and hexachlorobenzene, from the level of emission in the reference year (either 1990 or year between 1985 and 1995 inclusive), by best available techniques and to within limit values specified for each stationary source category, and for mobile pollution sources (motor vehicles). Other Articles list exemptions to the Protocol, technology information exchange, public awareness, policies and measures for implementation, research, development and monitoring, reporting procedures, reviews, compliance, settlement of disputes and amendments. The Protocol is open for signature from June 1998 (in Aarhus, Denmark) and until 21 December 1998 in New York and comes into force on the 90th day, after deposit of the 16th instrument of ratification, acceptance, approval or accession. The Protocol concerns emissions from fossil fuel and wood fuels combustion, waste incineration, thermal processes in the metallurgical industry, coke combustion and motor vehicles. 18 tabs.

  17. Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway.

    Science.gov (United States)

    Laquitaine, L; Durimel, A; de Alencastro, L F; Jean-Marius, C; Gros, O; Gaspard, S

    2016-01-01

    Banana has been a main agricultural product in the French West Indies (Guadeloupe and Martinique) since the 1960s. This crop requires the intensive use of pesticides to prevent attacks by insect pests. Chlorinated pesticides, such as hexachlorocyclohexane (HCH), chlordecone and dieldrin, were used until the beginning of the 1990s, resulting in a generalized diffuse contamination of the soil and water in the areas of banana production, hence the need to develop solutions for cleanup of the polluted sites. The aims of this work were (i) to assess lindane degradation in soil slurry microcosms treated with lindane at 10 mg/L and (ii) to detect the catabolic genes involved in the HCH degradation pathway. The soil slurry microcosm system showed a 40% lindane degradation efficiency at the end of a 30-day experiment. Lower lindane removal was also detected in the abiotic controls, probably caused by pesticide adsorption to soil particles. Indeed, the lindane concentration decreased from 6000 to 1330 ng/mL and from 800 to 340 ng/mL for the biotic and abiotic soils, respectively. Nevertheless, some of the genes involved in the HCH degradation pathway were amplified by polymerase chain reaction (PCR) from crude deoxyribonucleic acid (DNA) extracted from the Guadeloupe agricultural soil, suggesting that HCH degradation is probably mediated by bacteria closely related to the family Sphingomonadaceae. PMID:26686518

  18. Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning (1)H NMR spectroscopy.

    Science.gov (United States)

    Blondel, Claire; Khelalfa, Farid; Reynaud, Stéphane; Fauvelle, Florence; Raveton, Muriel

    2016-07-01

    (1)H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 μM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 μM CLD and 25 μM γHCH for 7 days (mimicking hot spot contaminations). The (1)H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, (1)H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity. PMID:27131813

  19. Transcriptome analysis of the copepod Eurytemora affinis upon exposure to endocrine disruptor pesticides: Focus on reproduction and development.

    Science.gov (United States)

    Legrand, Eléna; Forget-Leray, Joëlle; Duflot, Aurélie; Olivier, Stéphanie; Thomé, Jean-Pierre; Danger, Jean-Michel; Boulangé-Lecomte, Céline

    2016-07-01

    Copepods-which include freshwater and marine species-represent the most abundant group of aquatic invertebrates. Among them, the calanoid copepod Eurytemora affinis is widely represented in the northern hemisphere estuaries and has become a species of interest in ecotoxicology. Like other non-target organisms, E. affinis may be exposed to a wide range of chemicals such as endocrine disruptors (EDs). This study investigated the gene expression variation in E. affinis after exposure to ED pesticides-chosen as model EDs-in order to (i) improve the knowledge on their effects in crustaceans, and (ii) highlight relevant transcripts for further development of potential biomarkers of ED exposure/effect. The study focused on the reproduction function in response to ED. Copepods were exposed to sublethal concentrations of pyriproxyfen (PXF) and chlordecone (CLD) separately. After 48h, males and females (400 individuals each) were sorted for RNA extraction. Their transcriptome was pyrosequenced using the Illumina(®) technology. Contigs were blasted and functionally annotated using Blast2GO(®). The differential expression analysis between ED- and acetone-exposed organisms was performed according to sexes and contaminants. Half of the 19,721 contigs provided by pyrosequencing were annotated, mostly (80%) from arthropod sequences. Overall, 2,566 different genes were differentially expressed after ED exposures in comparison with controls. As many genes were differentially expressed after PXF exposure as after CLD exposure. In contrast, more genes were differentially expressed in males than in females after both exposures. Ninety-seven genes overlapped in all conditions. Finally, 31 transcripts involved in reproduction, growth and development, and changed in both chemical exposures were selected as potential candidates for future development of biomarkers. PMID:27111276

  20. Hydrological and pesticide transfer modeling in a tropical volcanic watershed with the WATPPASS model

    Science.gov (United States)

    Mottes, Charles; Lesueur-Jannoyer, Magalie; Charlier, Jean-Baptiste; Carles, Céline; Guéné, Mathilde; Le Bail, Marianne; Malézieux, Eric

    2015-10-01

    Simulation of flows and pollutant transfers in heterogeneous media is widely recognized to be a remaining frontier in hydrology research. We present a new modeling approach to simulate agricultural pollutions in watersheds: WATPPASS, a model for Watershed Agricultural Techniques and Pesticide Practices ASSessment. It is designed to assess mean pesticide concentrations and loads that result from the use of pesticides in horticultural watersheds located on heterogeneous subsoil. WATPPASS is suited for small watershed with significant groundwater flows and complex aquifer systems. The model segments the watershed into fields with independent hydrological and pesticide transfers at the ground surface. Infiltrated water and pesticides are routed toward outlet using a conceptual reservoir model. We applied WATPPASS on a heterogeneous tropical volcanic watershed of Martinique in the French West Indies. We carried out and hydrological analysis that defined modeling constraints: (i) a spatial variability of runoff/infiltration partitioning according to land use, and (ii) a predominance of groundwater flow paths in two overlapping aquifers under permeable soils (50-60% of annual flows). We carried out simulations on a 550 days period at a daily time step for hydrology (Nashsqrt > 0.75). Weekly concentrations and loads of a persistent organic pesticide (chlordecone) were simulated for 67 weeks to evaluate the modeling approach. Pesticide simulations without specific calibration detected the mean long-term measured concentration, leading to a good quantification of the cumulative loads (5% error), but failed to represent the concentration peaks at the correct timing. Nevertheless, we succeed in adjusting the model structure to better represent the temporal dynamic of pesticide concentrations. This modification requires a proper evaluation on an independent dataset. Finally, WATPPASS is a compromise between complexity and easiness of use that makes it suited for cropping system

  1. Amplified interactive toxicity of chemicals at nontoxic levels: Mechanistic considerations and implications to public health

    Energy Technology Data Exchange (ETDEWEB)

    Mehendale, H.M. [Northeast Louisiana Univ., Monroe, LA (United States)

    1994-11-01

    It is widely recognized that exposure to combinations or mixtures of chemicals may result in highly exaggerated toxicity even though the individual chemicals might not be toxic. Assessment of risk from exposure to combinations of chemicals requires the knowledge of the underlying mechanism(s). Dietary exposure to a nontoxic dose of chlordecone (CD; 10 ppm, 15 days) results in a 67-fold increase in lethality of an ordinarily inconsequential dose of CCl{sub 4} (100 {mu}l/kg, ip). Toxicity of closely related CHCl{sub 3} and BrCCl{sub 3} is also enhanced. Phenobarbital (PB, 225 ppm, 15 days) and mirex (10 ppm, 15 days) do not share the propensity of CD in this regard. Exposure to PB + CCl{sub 4} results in enhanced liver injury similar to that observed with CD, but the animals recover and survive in contrast to the greatly amplified lethality of CD + CCl{sub 4}. Investigations have revealed that neither enhanced bioactivation of CCl{sub 4} nor increased lipid peroxidation offers a satisfactory explanation of these findings. Additional studies indicate that exposure to a low dose of CCl{sub 4} (100 {mu}l/kg, ip) results in limited jury, which is accompanied by a biphasic response of hepatocellular regeneration (6 and 36 hr) and tissue repair, which enables the animals to recover from injury. Exposure to CD + CCl{sub 4} results in suppressed tissue repair owing to an energy deficit in hepatocytes as a consequence of excessive intracellular influx of Ca{sup 2+} leading initially to a precipitous decline in glycogen and ultimately to hypoglycemia. Supplementation of cellular energy results in restoration of the tissue repair and complete recovery from the toxicity of CD + CCl{sub 4} combination. In contrast, only the early-phase hepatic tissue repair (6 hr) is affected in PB + CCl{sub 4} treatment, but this is compensated for by a greater stimulation of tissue repair at 24 and 48 hr resulting in recovery from liver and animal survival. 85 refs., 7 figs., 7 tabs.

  2. On the rumors about the silent spring: review of the scientific evidence linking occupational and environmental pesticide exposure to endocrine disruption health effects Rumores de uma primavera silenciosa: uma revisão das evidências científicas sobre a associação entre exposição ocupacional e ambiental a pesticidas e distúrbios endócrinos

    Directory of Open Access Journals (Sweden)

    Pierluigi Cocco

    2002-04-01

    Full Text Available Occupational exposure to some pesticides, and particularly DBCP and chlordecone, may adversely affect male fertility. However, apart from the therapeutic use of diethylstilbestrol, the threat to human reproduction posed by "endocrine disrupting" environmental contaminants has not been supported by epidemiological evidence thus far. As it concerns other endocrine effects described in experimental animals, only thyroid inhibition following occupational exposure to amitrole and mancozeb has been confirmed in humans. Cancer of the breast, endometrium, ovary, prostate, testis, and thyroid are hormone-dependent, which fostered research on the potential risk associated with occupational and environmental exposure to the so-called endocrine-disrupting pesticides. The most recent studies have ruled out the hypothesis of DDT derivatives as responsible for excess risks of cancer of the reproductive organs. Still, we cannot exclude a role for high level exposure to o,p'-DDE, particularly in post-menopausal ER+ breast cancer. On the other hand, other organochlorine pesticides and triazine herbicides require further investigation for a possible etiologic role in some hormone-dependent cancers.A exposição ocupacional a determinados pesticidas, particularmente ao DBCP e à clordecona, pode ter efeitos adversos sobre a fertilidade masculina. Entretanto, com exceção do uso terapêutico do dietil-estilbestrol, a ameaça à reprodução humana através da "desregulação endócrina" por contaminantes ambientais ainda não foi comprovada através de evidências epidemiológicas. A questão diz respeito a outros efeitos endócrinos descritos em animais experimentais, e apenas a inibição tireóide foi confirmada em seres humanos, após exposição ocupacional a amitrole e mancozeb. O fato de serem hormônio-dependentes os cânceres de mama, endométrio, ovário, próstata, testículos e tireóide motivou pesquisas sobre o risco potencial associado à exposi