WorldWideScience

Sample records for chlamydomonas reinhardtii strains

  1. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    Directory of Open Access Journals (Sweden)

    Carrier Patrick

    2011-01-01

    Full Text Available Abstract Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols. The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1 showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas

  2. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System.

    Science.gov (United States)

    Kasai, Yuki; Harayama, Shigeaki

    2016-01-01

    The Escherichia coli bacteriophage P1 encodes a site-specific recombinase called Cre and two 34-bp target sites of Cre recombinase called loxP. The Cre/loxP system has been used to achieve targeted insertion and precise deletion in many animal and plant genomes. The Cre/loxP system has particularly been used for the removal of selectable marker genes to create marker-free transgenic organisms. For the first time, we applied the Cre/loxP-mediated site-specific recombination system to Chlamydomonas reinhardtii to construct marker-free transgenic strains. Specifically, C. reinhardtii strains cc4350 and cc124 carrying an aphVIII expression cassette flanked by two direct repeats of loxP were constructed. Separately, a synthetic Cre recombinase gene (CrCRE), the codons of which were optimized for expression in C. reinhardtii, was synthesized, and a CrCRE expression cassette was introduced into strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette. Among 46 transformants carrying the CrCRE expression cassette stably, the excision of aphVIII by CrCre recombinase was observed only in one transformant. We then constructed an expression cassette of an in-frame fusion of ble to CrCRE via a short linker peptide. The product of ble (Ble) is a bleomycin-binding protein that confers resistance to bleomycin-related antibiotics such as Zeocin and localizes in the nucleus. Therefore, the ble-(linker)-CrCRE fusion protein is expected to localize in the nucleus. When the ble-(linker)-CrCRE expression cassette was integrated into the genome of strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette, CrCre recombinase-mediated excision of the aphVIII expression cassette was observed at a frequency higher than that in stable transformants of the CrCRE expression cassette. Similarly, from strain cc124 carrying a single loxP-flanked aphVIII expression cassette, the aphVIII expression cassette was successfully excised after

  3. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Therien, Jesse B; Zadvornyy, Oleg A; Posewitz, Matthew C; Bryant, Donald A; Peters, John W

    2014-01-01

    The model alga Chlamydomonas reinhardtii requires acetate as a co-substrate for optimal production of lipids, and the addition of acetate to culture media has practical and economic implications for algal biofuel production. Here we demonstrate the growth of C. reinhardtii on acetate provided by mutant strains of the cyanobacterium Synechococcus sp. PCC 7002. Optimal growth conditions for co-cultivation of C. reinhardtii with wild-type and mutant strains of Synechococcus sp. 7002 were established. In co-culture, acetate produced by a glycogen synthase knockout mutant of Synechococcus sp. PCC 7002 was able to support the growth of a lipid-accumulating mutant strain of C. reinhardtii defective in starch production. Encapsulation of Synechococcus sp. PCC 7002 using an alginate matrix was successfully employed in co-cultures to limit growth and maintain the stability. The ability of immobilized strains of the cyanobacterium Synechococcus sp. PCC 7002 to produce acetate at a level adequate to support the growth of lipid-accumulating strains of C. reinhartdii offers a potentially practical, photosynthetic alternative to providing exogenous acetate into growth media.

  4. Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.

    Directory of Open Access Journals (Sweden)

    Margrethe Boyd

    Full Text Available The advent of multicellularity was a watershed event in the history of life, yet the transition from unicellularity to multicellularity is not well understood. Multicellularity opens up opportunities for innovations in intercellular communication, cooperation, and specialization, which can provide selective advantages under certain ecological conditions. The unicellular alga Chlamydomonas reinhardtii has never had a multicellular ancestor yet it is closely related to the volvocine algae, a clade containing taxa that range from simple unicells to large, specialized multicellular colonies. Simple multicellular structures have been observed to evolve in C. reinhardtii in response to predation or to settling rate-based selection. Structures formed in response to predation consist of individual cells confined within a shared transparent extracellular matrix. Evolved isolates form such structures obligately under culture conditions in which their wild type ancestors do not, indicating that newly-evolved multicellularity is heritable. C. reinhardtii is capable of photosynthesis, and possesses an eyespot and two flagella with which it moves towards or away from light in order to optimize input of radiant energy. Motility contributes to C. reinhardtii fitness because it allows cells or colonies to achieve this optimum. Utilizing phototaxis to assay motility, we determined that newly evolved multicellular strains do not exhibit significant directional movement, even though the flagellae of their constituent unicells are present and active. In C. reinhardtii the first steps towards multicellularity in response to predation appear to result in a trade-off between motility and differential survivorship, a trade-off that must be overcome by further genetic change to ensure long-term success of the new multicellular organism.

  5. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Anne-Noelle, E-mail: anne-noelle.petit@ec.gc.ca [Environment Canada, 105 McGill Street, Montreal, Quebec H2Y 2E7 (Canada); Eullaffroy, Philippe [Laboratoire Plantes, Pesticides et Developpement Durable, EA 2069, URVVC, BP 1039, Universite de Reims Champagne-Ardenne, 51687 Reims Cedex 2 (France); Debenest, Timothee; Gagne, Francois [Environment Canada, 105 McGill Street, Montreal, Quebec H2Y 2E7 (Canada)

    2010-10-15

    In recent decades, a new class of polymeric materials, PAMAM dendrimers, has attracted marked interest owing to their unique nanoscopic architecture and their hopeful perspectives in nanomedicine and therapeutics. However, the potential release of dendrimers into the aquatic environment raises the issue about their toxicity on aquatic organisms. Our investigation sought to estimate the toxicity of cationic PAMAM dendrimers on the green alga, Chlamydomonas reinhardtii. Algal cultures were exposed to different concentrations (0.3-10 mg L{sup -1}) of low dendrimer generations (G2, G4 and G5) for 72 h. Potential adverse effects on Chlamydomonas were assessed using esterase activity (cell viability), photosynthetic O{sub 2} evolution, pigments content and chlorophyll a fluorescence transient. According to the median inhibitory concentration (IC{sub 50}) appraised from esterase activity, toxicity on cell viability decreased with dendrimer generation number (2, 3 and 5 mg L{sup -1} for G2, G4 and G5 dendrimers, respectively). Moreover, the three generations of dendrimers did not induce the same changes in the photosynthetic metabolism of the green alga. O{sub 2} evolution was stimulated in cultures exposed to the lowest generations tested (i.e. G2 and G4) whereas no significant effects were observed with G5. In addition, total chlorophyll content was increased after G2 treatment at 2.5 mg L{sup -1}. Finally, G2 and G4 had positive effects on photosystem II (PSII): the amount of active PSII reaction centers, the primary charge separation and the electron transport between Q{sub A} and Q{sub B} were all increased inducing activation of the photosynthetic electron transport chain. These changes resulted in stimulation of full photosynthetic performance.

  6. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Petit, Anne-Noelle; Eullaffroy, Philippe; Debenest, Timothee; Gagne, Francois

    2010-01-01

    In recent decades, a new class of polymeric materials, PAMAM dendrimers, has attracted marked interest owing to their unique nanoscopic architecture and their hopeful perspectives in nanomedicine and therapeutics. However, the potential release of dendrimers into the aquatic environment raises the issue about their toxicity on aquatic organisms. Our investigation sought to estimate the toxicity of cationic PAMAM dendrimers on the green alga, Chlamydomonas reinhardtii. Algal cultures were exposed to different concentrations (0.3-10 mg L -1 ) of low dendrimer generations (G2, G4 and G5) for 72 h. Potential adverse effects on Chlamydomonas were assessed using esterase activity (cell viability), photosynthetic O 2 evolution, pigments content and chlorophyll a fluorescence transient. According to the median inhibitory concentration (IC 50 ) appraised from esterase activity, toxicity on cell viability decreased with dendrimer generation number (2, 3 and 5 mg L -1 for G2, G4 and G5 dendrimers, respectively). Moreover, the three generations of dendrimers did not induce the same changes in the photosynthetic metabolism of the green alga. O 2 evolution was stimulated in cultures exposed to the lowest generations tested (i.e. G2 and G4) whereas no significant effects were observed with G5. In addition, total chlorophyll content was increased after G2 treatment at 2.5 mg L -1 . Finally, G2 and G4 had positive effects on photosystem II (PSII): the amount of active PSII reaction centers, the primary charge separation and the electron transport between Q A and Q B were all increased inducing activation of the photosynthetic electron transport chain. These changes resulted in stimulation of full photosynthetic performance.

  7. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  8. Ultraviolet modification of Chlamydomonas reinhardtii for carbon capture

    Directory of Open Access Journals (Sweden)

    Gopal NS

    2016-04-01

    Full Text Available Nikhil S Gopal,1 K Sudhakar2 1The Lawrenceville School, Lawrenceville, NJ, USA; 2Bioenergy Laboratory, Malauna Azad National Institute of Technology, Bhopal, India Purpose: Carbon dioxide (CO2 levels have been rising rapidly. Algae are single-cell organisms with highly efficient CO2 uptake mechanisms. Algae yield two to ten times more biomass versus terrestrial plants and can grow nearly anywhere. Large scale CO2 sequestration is not yet sustainable due to high amounts of nitrogen (N and phosphate (P needed to grow algae in media. Methods: Mutant strains of Chlamydomonas reinhardtii were created using ultraviolet light (2.2–3 K J/m2 and natural selection using media with 20%–80% lower N and P compared to standard Sueoka's high salt medium. Strains were selected based upon growth in media concentrations varying from 20% to 80% less N/P compared to control. Biomass was compared to wild-type control (CC-125 using direct counts, optical density dry weight, and mean doubling time. Results: Mean doubling time was 20 and 25 hours in the low N and N/P strains, respectively (vs 66 hours in control. Using direct counts, growth rates of mutant strains of low N and N/P cultures were not statistically different from control (P=0.37 and 0.70, respectively. Conclusion: Two new strains of algae, as well as wild-type control, were able to grow while using 20%–40% less N and P. Ultraviolet light-based modification of algae is an inexpensive and alternative option to genetic engineering techniques. This technique might make larger scale biosequestration possible. Keywords: biosequestration, ultraviolet, carbon sequestration, carbon capture, algae

  9. Identification of an NADP/thioredoxin system in Chlamydomonas reinhardtii

    Science.gov (United States)

    Huppe, H. C.; Picaud, A.; Buchanan, B. B.; Miginiac-Maslow, M.

    1991-01-01

    The protein components of the NADP/thioredoxin system, NADP-thioredoxin reductase (NTR) and thioredoxin h, have been purified and characterized from the green alga, Chlamydomonas reinhardtii. The analysis of this system confirms that photoautotrophic Chlamydomonas cells resemble leaves in having both an NADP- and ferrodoxin-linked thioredoxin redox system. Chlamydomonas thioredoxin h, which is smaller on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than thioredoxin m from the same source, cross-reacted with antisera to thioredoxin h from spinach (Spinacia oleracea L.) and wheat germ (Triticum vulgaris L.) but not with antisera to m or f thioredoxins. In these properties, the thioredoxin h resembled a thioredoxin from Chlamydomonas, designated Ch1, whose sequence was reported recently (P. Decottignies et al., 1991, Eur. J. Biochem. 198, 505-512). The differential reactivity of thioredoxin h with antisera was used to demonstrate that thioredoxin h is enriched outside the chloroplast. The NTR was purified from Chlamydomonas using thioredoxin h from the same source. Similar to its counterpart from other organisms, Chlamydomonas NTR had a subunit size of approx. 36 kDa and was specific for NADPH. Chlamydomonas NTR effectively reduced thioredoxin h from the same source but showed little activity with the other thioredoxins tested, including spinach thioredoxin h and Escherichia coli thioredoxin. Comparison of the reduction of Chlamydomonas thioredoxins m and h by each of the endogenous thioredoxin reductases, NTR and ferredoxin-thioredoxin reductase, revealed a differential specificity of each enzyme for thioredoxin. Thus, NTR showed increased activity with thioredoxin h and ferredoxin-thioredoxin reductase with thioredoxins m and f.

  10. Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Küçük, Kübra; Tevatia, Rahul; Sorgüven, Esra; Demirel, Yaşar; Özilgen, Mustafa

    2015-01-01

    The study of thermodynamic aspects of the lipid, e.g., raw material for biodiesel, production in microalgae is important, as the non-lipid producing biological activities of the algal cultivation consume part of the solar energy captured during photosynthesis in expense of the exergetic efficiency of the lipid production process. The cultivation of Chlamydomonas reinhardtii (a unicellular biflagellate fresh-water microalga) is modeled as a three-step chemical mechanism representing growth, respiration, and lipid production. Further, the comprehensive thermodynamic analysis of these mechanisms is presented. The cumulative degree of perfection of the cellular proliferation, after excluding the lipid synthesis, fluctuates with no trend around 0.52 ± 0.19. The exergy analysis has indicated that C. reinhardtii prefers to maximize the lipid production when it is difficult to generate new cells. Under batch production of algal biomass, the highest heat and exergy loss per unit biomass production are accountable under the most favorable biological growth conditions, whereas the highest exergetic efficiency of the lipid production accounted under the least favorable growth conditions, which is in line with the previous studies. - Highlights: • Biomass, lipid production and respiration modeled as three-step chemical reaction. • CDP (cumulative degree of perfection) is calculated based on the model. • The CDP of the algae, after excluding the lipids, is about 0.52 ± 0.19. • Chlamydomonas reinhardtii maximized lipid production when it was difficult to grow

  11. Phosphopantetheinylation in the green microalgae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Sonnenschein, Eva; Pu, Yuan; Beld, Joris

    2016-01-01

    available microalgal genome data revealed that most green microalgae appear to carry two PPTases forming clusters with each C. reinhardtii PPTase, while microalgae of other divisions carry one or two PPTases and do not cluster in the pattern of the green algal data. This new understanding on the PPTases...... in microalgae shows that microalgae are already primed for biotechnological applications in contrast to other organisms. Thus, microalgae have great potential for metabolic engineering efforts in the realm of biofuel and high-value products including direct engineering of the fatty acid or secondary metabolism...

  12. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

    Science.gov (United States)

    Scaife, Mark A; Nguyen, Ginnie T D T; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-05-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  13. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation.

    Directory of Open Access Journals (Sweden)

    Dawei Yang

    Full Text Available Chlamydomonas reinhardtii accumulates lipids under complete nutrient starvation conditions while overall growth in biomass stops. In order to better understand biochemical changes under nutrient deprivation that maintain production of algal biomass, we used a lipidomic assay for analyzing the temporal regulation of the composition of complex lipids in C. reinhardtii in response to nitrogen and sulfur deprivation. Using a chip-based nanoelectrospray direct infusion into an ion trap mass spectrometer, we measured a diversity of lipid species reported for C. reinhardtii, including PG phosphatidylglycerols, PI Phosphatidylinositols, MGDG monogalactosyldiacylglycerols, DGDG digalactosyldiacylglycerols, SQDG sulfoquinovosyldiacylglycerols, DGTS homoserine ether lipids and TAG triacylglycerols. Individual lipid species were annotated by matching mass precursors and MS/MS fragmentations to the in-house LipidBlast mass spectral database and MS2Analyzer. Multivariate statistics showed a clear impact on overall lipidomic phenotypes on both the temporal and the nutrition stress level. Homoserine-lipids were found up-regulated at late growth time points and higher cell density, while triacyclglycerols showed opposite regulation of unsaturated and saturated fatty acyl chains under nutritional deprivation.

  14. Response of Chlamydomonas reinhardtii to naphthenic acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    Goff, K.; Wilson, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Headley, J. [Environment Canada, Ottawa, ON (Canada)

    2010-07-01

    This study examined the feasibility of using a model organism for the algal bioremediation of oil sands process water (OSPW), a highly toxic mixture of sediments, bitumen, ions, and organic and inorganic compounds. Naphthenic acids (NAs) are a contaminant class of particular concern. Bioremediation techniques may mitigate toxicity of OSPW in general, and NAs in particular. Although most studies on the biodegradation of NAs focus on the role of bacteria, fungi, and emergent macrophytes, studies have indicated that algae may also play a key role through direct degradation, biosequestration, or photosynthetic aeration of waters to promote other biological reactions. Chlamydomonas frigida is of particular interest, but no cultures are currently available. Therefore, this study used C. reinhardtii, a well-characterized model organism, to begin analysis of potential algal bioremediation of OSPW. Cultures of C. reinhardtii were grown heterotrophically in nutrient media spiked with a dilution series of NAs. Culture densities were measured to compile growth curves over time, changes in rate of growth, and survivability. Negative ion electrospray mass spectrometry was used to determine the concentration of NAs in solution in relation to growth rate and culture density. The study determined the tolerance of C. reinhardtii to NAs. A mechanism for this tolerance was then proposed.

  15. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gálvez-Valdivieso, Gregorio; Cardeñosa, Rosa; Pineda, Manuel; Aguilar, Miguel

    2015-09-01

    Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Evidences of oxidative stress during hydrogen photoproduction in sulfur-deprived cultures of Chlamydomonas reinhardtii

    Czech Academy of Sciences Publication Activity Database

    Sáens, M. E.; Bišová, Kateřina; Touloupakis, E.; Faraloni, C.; Dario Di Marzio, W.; Torzillo, G.

    2015-01-01

    Roč. 40, č. 30 (2015), s. 10410-10417 ISSN 0360-3199 Institutional support: RVO:61388971 Keywords : Oxidative stress * Chlamydomonas reinhardtii * H-2 production Subject RIV: EE - Microbiology, Virology Impact factor: 3.205, year: 2015

  17. Effect of mutagen combined action on Chlamydomonas Reinhardtii cells. I

    International Nuclear Information System (INIS)

    Vlcek, D.; Podstavkova, S.; Dubovsky, J.

    1978-01-01

    The effect was investigated of single and combined actions of alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) and UV-radiation on the survival of cells of Chlamydomonas reinhardtii algae in dependence on the sequence of application of mutagens and on the given conditions of cultivation following mutagen activity. In particular, the single phases were investigated of the total lethal effect, i.e., the death of cells before division and their death after division. The most pronounced changes in dependence on the sequence of application of mutagens and on the given conditions of cultivation were noted in cell death before division. In dependence on the sequence of application of mutagens, the effect of the combined action on the survival of cells changed from an additive (alkylnitrosourea + UV-radiation) to a protective effect (UV-radiation + alkylnitrosourea). (author)

  18. Effect of mutagen combined action on Chlamydomonas reinhardtii cells. II

    International Nuclear Information System (INIS)

    Podstavkova, S.; Vlcek, D.; Dubovsky, J.

    1978-01-01

    The effect of UV radiation and UV radiation combined with alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) was observed on survival of cells of the algae Chlamydomonas reinhardtii. In particular, single parts were evaluated of the overall lethal effect - dying of cells before division and dying of cells after division. It was found that the combined action of low doses of UV radiation and alkylnitrosoureas result in a pronounced protective effect which manifests itself by a higher frequency of surviving cells than was that effected by the action of alkylnitrosoureas alone. As a result of combined action with higher doses of UV radiation this effect is lost, and the resultant values will come close to the theoretically anticipated values. This gradual transition from a protective to an additive effect mainly manifests itself by changes in the proportion of cells dying before division. (author)

  19. Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Cagnon, Caroline; Mirabella, Boris; Nguyen, Hoa Mai; Beyly-Adriano, Audrey; Bouvet, Séverine; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2013-12-02

    Oils produced by microalgae are precursors to biodiesel. To achieve a profitable production of biodiesel from microalgae, identification of factors governing oil synthesis and turnover is desirable. The green microalga Chlamydomonas reinhardtii is amenable to genetic analyses and has recently emerged as a model to study oil metabolism. However, a detailed method to isolate various types of oil mutants that is adapted to Chlamydomonas has not been reported. We describe here a forward genetic approach to isolate mutants altered in oil synthesis and turnover from C. reinhardtii. It consists of a three-step screening procedure: a primary screen by flow cytometry of Nile red stained transformants grown in 96-deep-well plates under three sequential conditions (presence of nitrogen, then absence of nitrogen, followed by oil remobilization); a confirmation step using Nile red stained biological triplicates; and a validation step consisting of the quantification by thin layer chromatography of oil content of selected strains. Thirty-one mutants were isolated by screening 1,800 transformants generated by random insertional mutagenesis (1.7%). Five showed increased oil accumulation under the nitrogen-replete condition and 13 had altered oil content under nitrogen-depletion. All mutants were affected in oil remobilization. This study demonstrates that various types of oil mutants can be isolated in Chlamydomonas based on the method set-up here, including mutants accumulating oil under optimal biomass growth. The strategy conceived and the protocol set-up should be applicable to other microalgal species such as Nannochloropsis and Chlorella, thus serving as a useful tool in Chlamydomonas oil research and algal biotechnology.

  20. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks

    International Nuclear Information System (INIS)

    Hemschemeier, A; Happe, T.; Fouchard, S; Cournac, L; Peltier, G.

    2008-01-01

    The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H 2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H 2 producers. Two of the still most disputed questions regarding H 2 generation by C. reinhardtii concern the electron source for H 2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H 2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulose-bisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H 2 -production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H 2 also in the presence of sulfur, H 2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype.The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H 2 evolution. (authors)

  1. Characterization of Hydrocortisone Biometabolites and 18S rRNA Gene in Chlamydomonas reinhardtii Cultures

    Directory of Open Access Journals (Sweden)

    Seyed Bagher Mosavi-Azam

    2008-10-01

    Full Text Available A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1. This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25ºC for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17b-Dihydroxyandrost-4-en-3-one (2, 11b-hydroxyandrost-4-en-3,17-dione (3, 11b,17a,20b,21-tetrahydroxypregn-4-en-3-one (4 and prednisolone (5 were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  2. Characterization of hydrocortisone biometabolites and 18S rRNA gene in Chlamydomonas reinhardtii cultures.

    Science.gov (United States)

    Ghasemi, Younes; Rasoul-Amini, Sara; Morowvat, Mohammad Hossein; Raee, Mohammad Javad; Ghoshoon, Mohammad Bagher; Nouri, Fatemeh; Negintaji, Narges; Parvizi, Rezvan; Mosavi-Azam, Seyed Bagher

    2008-10-31

    A unicellular microalga, Chlamydomonas reinhardtii, was isolated from rice paddy-field soil and water samples and used in the biotransformation of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The products obtained were chromatographically purified and characterized using spectroscopic methods. 11b,17 beta-Dihydroxyandrost-4-en-3-one (2), 11 beta-hydroxyandrost-4-en-3,17-dione (3), 11 beta,17 alpha,20 beta,21-tetrahydroxypregn-4-en-3-one (4) and prednisolone (5) were the main products of the bioconversion. The observed bioreaction features were the side chain degradation of the substrate to give compounds 2 and 3 and the 20-ketone reduction and 1,2-dehydrogenation affording compounds 4 and 5, respectively. A time course study showed the accumulation of product 2 from the second day of the fermentation and of compounds 3, 4 and 5 from the third day. All the metabolites reached their maximum concentration in seven days. Microalgal 18S rRNA gene was also amplified by PCR. PCR products were sequenced to confirm their authenticity as 18S rRNA gene of microalgae. The result of PCR blasted with other sequenced microalgae in NCBI showed 100% homology to the 18S small subunit rRNA of two Chlamydomonas reinhardtii spp.

  3. Adaptation prevents the extinction of Chlamydomonas reinhardtii under toxic beryllium

    Directory of Open Access Journals (Sweden)

    Beatriz Baselga-Cervera

    2016-03-01

    Full Text Available The current biodiversity crisis represents a historic challenge for natural communities: the environmental rate of change exceeds the population’s adaptation capability. Integrating both ecological and evolutionary responses is necessary to make reliable predictions regarding the loss of biodiversity. The race against extinction from an eco-evolutionary perspective is gaining importance in ecological risk assessment. Here, we performed a classical study of population dynamics—a fluctuation analysis—and evaluated the results from an adaption perspective. Fluctuation analysis, widely used with microorganisms, is an effective empirical procedure to study adaptation under strong selective pressure because it incorporates the factors that influence demographic, genetic and environmental changes. The adaptation of phytoplankton to beryllium (Be is of interest because human activities are increasing the concentration of Be in freshwater reserves; therefore, predicting the effects of human-induced pollutants is necessary for proper risk assessment. The fluctuation analysis was performed with phytoplankton, specifically, the freshwater microalgae Chlamydomonas reinhardtii, under acute Be exposure. High doses of Be led to massive microalgae death; however, by conducting a fluctuation analysis experiment, we found that C. reinhardtii was able to adapt to 33 mg/l of Be due to pre-existing genetic variability. The rescuing adapting genotype presented a mutation rate of 9.61 × 10−6 and a frequency of 10.42 resistant cells per million wild-type cells. The genetic adaptation pathway that was experimentally obtained agreed with the theoretical models of evolutionary rescue (ER. Furthermore, the rescuing genotype presented phenotypic and physiologic differences from the wild-type genotype, was 25% smaller than the Be-resistant genotype and presented a lower fitness and quantum yield performance. The abrupt distinctions between the wild-type and the Be

  4. Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Ayswarya Ravi

    2018-02-01

    Full Text Available Correct folding and post-translational modifications are vital for therapeutic proteins to elicit their biological functions. Osteopontin (OPN, a bone regenerative protein present in a range of mammalian cells, is an acidic phosphoprotein with multiple potential phosphorylation sites. In this study, the ability of unicellular microalgae, Chlamydomonas reinhardtii, to produce phosphorylated recombinant OPN in its chloroplast is investigated. This study further explores the impact of phosphorylation and expression from a “plant-like” algae on separation of OPN. Chromatography resins ceramic hydroxyapatite (CHT and Gallium-immobilized metal affinity chromatography (Ga-IMAC were assessed for their binding specificity to phosphoproteins. Non-phosphorylated recombinant OPN expressed in E. coli was used to compare the specificity of interaction of the resins to phosphorylated OPN. We observed that CHT binds OPN by multimodal interactions and was better able to distinguish phosphorylated proteins in the presence of 250 mM NaCl. Ga-IMAC interaction with OPN was not selective to phosphorylation, irrespective of salt, as the resin bound OPN from both algal and bacterial sources. Anion exchange chromatography proved an efficient capture method to partially separate major phosphorylated host cell protein impurities such as Rubisco from OPN.

  5. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Davis, Maria C; Fiehn, Oliver; Durnford, Dion G

    2013-07-01

    There are several well-described acclimation responses to excess light in green algae but the effect on metabolism has not been thoroughly investigated. This study examines the metabolic changes during photoacclimation to high-light (HL) stress in Chlamydomonas reinhardtii using nuclear magnetic resonance and mass spectrometry. Using principal component analysis, a clear metabolic response to HL intensity was observed on global metabolite pools, with major changes in the levels of amino acids and related nitrogen metabolites. Amino acid pools increased during short-term photoacclimation, but were especially prominent in HL-acclimated cultures. Unexpectedly, we observed an increase in mitochondrial metabolism through downstream photorespiratory pathways. The expression of two genes encoding key enzymes in the photorespiratory pathway, glycolate dehydrogenase and malate synthase, were highly responsive to the HL stress. We propose that this pathway contributes to metabolite pools involved in nitrogen assimilation and may play a direct role in photoacclimation. Our results suggest that primary and secondary metabolism is highly pliable and plays a critical role in coping with the energetic imbalance during HL exposure and a necessary adjustment to support an increased growth rate that is an effective energy sink for the excess reducing power generated during HL stress. © 2013 John Wiley & Sons Ltd.

  6. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    International Nuclear Information System (INIS)

    Waterborg, J.H.; Robertson, A.J.; Tatar, D.L.; Borza, C.M.; Davie, J.R.

    1995-01-01

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  7. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna

    International Nuclear Information System (INIS)

    Lee, Woo-Mi; Yoon, Sung-Ji; Shin, Yu-Jin; An, Youn-Joo

    2015-01-01

    Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment. - Highlights: • This study evaluated the trophic transfer of AuNPs in an aquatic food chain. • Chlamydomonas reinhardtii and Euglena gracilis were selected as the primary producers. • Daphnia magna was used as the primary consumer. • The bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. • AuNPs were transferred from C. reinhardtii and E. gracilis to D. magna. - Gold nanoparticles can transfer from primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna) in an aquatic environment

  8. Gene silencing of stearoyl-ACP desaturase enhances the stearic acid content in Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Jaeger, de L.; Springer, J.; Wolbert, E.J.H.; Martens, D.E.; Eggink, G.; Wijffels, R.H.

    2017-01-01

    In this study, stearoyl-ACP desaturase (SAD), the enzyme that converts stearic acid into oleic acid, is silenced by artificial microRNA in the green microalga Chlamydomonas reinhardtii. Two different constructs, which target different positions on the mRNA of stearoyl-ACP desaturase, were tested.

  9. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Pan, Chang Gui; Peng, Feng-Jiao; Shi, Wen Jun; Hu, Li Xin; Wei, Xiao Dong; Ying, Guang Guo

    2018-01-01

    Triclosan (TCS) is an antibacterial and antifungal agent widely used in personal care products (PCPs). We investigated the effects of TCS (20 μg/L, 100 μg/L and 500 μg/L) on Chlamydomonas reinhardtii by measuring the algal growth, chlorophyll content, lipid peroxidation, and transcription of the

  10. Nonthermal effect of microwave irradiation on nitrite uptake in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Pedrajas, C.; Cotrino, J.

    1989-01-01

    When cells of the unicellular green alga Chlamydomonas reinhardtii were subjected to microwave irradiation at 2.45 GHz, nitrite uptake kinetics still obeyed the Michaelis-Menten equation, the Km of the process remaining constant, whereas V max increased, which indicates an enhanced nonthermal permeability in irradiated cells. (author)

  11. Katanin localization requires triplet microtubules in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Jessica M Esparza

    Full Text Available Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19 and p80 (pf15 subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.

  12. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Huawen Lin

    2010-09-01

    Full Text Available The essential coenzyme nicotinamide adenine dinucleotide (NAD+ plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis, as in plants, or nicotinamide, as in mammals (salvage synthesis. The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO, quinolinate synthetase (QS, quinolate phosphoribosyltransferase (QPT, nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT, and NAD+ synthetase (NS. Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1 or plasmids with cloned genes (nic1-1 and nic15-1 into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1 has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.

  13. Shewanella oneidensis: a new and efficient System for Expression and Maturation of heterologous [Fe-Fe] Hydrogenase from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Sybirna Kateryna

    2008-09-01

    Full Text Available Abstract Background The eukaryotic green alga, Chlamydomonas reinhardtii, produces H2 under anaerobic conditions, in a reaction catalysed by a [Fe-Fe] hydrogenase HydA1. For further biochemical and biophysical studies a suitable expression system of this enzyme should be found to overcome its weak expression in the host organism. Two heterologous expression systems used up to now have several advantages. However they are not free from some drawbacks. In this work we use bacterium Shewanella oneidensis as a new and efficient system for expression and maturation of HydA1 from Chlamydomonas reinhardtii. Results Based on codon usage bias and hydrogenase maturation ability, the bacterium S. oneidensis, which possesses putative [Fe-Fe] and [Ni-Fe] hydrogenase operons, was selected as the best potential host for C. reinhardtii [Fe-Fe] hydrogenase expression. Hydrogen formation by S. oneidensis strain AS52 (ΔhydAΔhyaB transformed with a plasmid bearing CrHydA1 and grown in the presence of six different substrates for anaerobic respiration was determined. A significant increase in hydrogen evolution was observed for cells grown in the presence of trimethylamine oxide, dimethylsulfoxide and disodium thiosulfate, showing that the system of S. oneidensis is efficient for heterologous expression of algal [Fe-Fe] hydrogenase. Conclusion In the present work a new efficient system for heterologous expression and maturation of C. reinhardtii hydrogenase has been developed. HydA1 of C. reinhardtii was purified and shown to contain 6 Fe atoms/molecule of protein, as expected. Using DMSO, TMAO or thiosulfate as substrates for anaerobic respiration during the cell growth, 0.4 – 0.5 mg l-1(OD600 = 1 of catalytically active HydA1 was obtained with hydrogen evolution rate of ~700 μmol H2 mg-1 min-1.

  14. The effect of caffeine on repair in chlamydomonas reinhardtii. Pt. 1

    International Nuclear Information System (INIS)

    Rosen, H.; Rehn, M.M.; Johnson, B.A.

    1980-01-01

    The effect of caffeine on repair was studied in the green alga Chlamydomonas reinhardtii. Treatment of UV-irradiated wild-type (UVS + ) cells with a sublethal level of caffeine caused a significant increase in survival compared to untreated UV-irradiated cells. Caffeine did not affect survival in the repair-deficient strain UVSE1, which is deficient in repair of UV-induced damage carried out by enzymes associated with recombination during meiosis. A significant increase in survival in the presence of caffeine was observed in the repair-deficient strain UVSE4 in which recombination during meiosis is not affected. Treatment of zygotes homozygous for UVS + , UVSE1, or UVSE4 with sublethal levels of caffeine caused marked increases in recombination frequency in UVS + and UVSE4 zygotes and no increase in recombination in UVSE1 zygotes. These results indicate that caffeine increases recombination in normal strains. Increased opportunity for recombination caused by caffeine would not result in increased recombination frequency in the UVSE1 strain, assuming limited-recombination enzyme activity in this strain. The observed increase in survival following UV-irradiation in the presence of caffeine in strains having normal recombination would therefore be associated with a caffeine-induced increase in opportunities for recombination repair. (orig.)

  15. Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition.

    Science.gov (United States)

    Erpel, Fernanda; Restovic, Franko; Arce-Johnson, Patricio

    2016-03-12

    In plant-derived animal feedstuffs, nearly 80 % of the total phosphorus content is stored as phytate. However, phytate is poorly digested by monogastric animals such as poultry, swine and fish, as they lack the hydrolytic enzyme phytase; hence it is regarded as a nutritionally inactive compound from a phosphate bioavailability point of view. In addition, it also chelates important dietary minerals and essential amino acids. Therefore, dietary supplementation with bioavailable phosphate and exogenous phytases are required to achieve optimal animal growth. In order to simplify the obtaining and application processes, we developed a phytase expressing cell-wall deficient Chlamydomonas reinhardtii strain. In this work, we developed a transgenic microalgae expressing a fungal phytase to be used as a food supplement for monogastric animals. A codon optimized Aspergillus niger PhyA E228K phytase (mE228K) with improved performance at pH 3.5 was transformed into the plastid genome of Chlamydomonas reinhardtii in order to achieve optimal expression. We engineered a plastid-specific construction harboring the mE228K gene, which allowed us to obtain high expression level lines with measurable in vitro phytase activity. Both wild-type and cell-wall deficient strains were selected, as the latter is a suitable model for animal digestion. The enzymatic activity of the mE228K expressing lines were approximately 5 phytase units per gram of dry biomass at pH 3.5 and 37 °C, similar to physiological conditions and economically competitive for use in commercial activities. A reference basis for the future biotechnological application of microalgae is provided in this work. A cell-wall deficient transgenic microalgae with phytase activity at gastrointestinal pH and temperature and suitable for pellet formation was developed. Moreover, the associated microalgae biomass costs of this strain would be between US$5 and US$60 per ton of feedstuff, similar to the US$2 per ton of feedstuffs

  16. Chlamydomonas reinhardtii: the model of choice to study mitochondria from unicellular photosynthetic organisms.

    Science.gov (United States)

    Funes, Soledad; Franzén, Lars-Gunnar; González-Halphen, Diego

    2007-01-01

    Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.

  17. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Kropat, Janette; Hong-Hermesdorf, Anne; Casero, David; Ent, Petr; Castruita, Madeli; Pellegrini, Matteo; Merchant, Sabeeha S; Malasarn, Davin

    2011-06-01

    Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner's supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni²⁺-inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni²⁺ because of the introduction of an EDTA buffer system in the revised medium. Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro- and micronutrient deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology. © 2011 The Authors

  18. Flocculation of Chlamydomonas reinhardtii with Different Phenotypic Traits by Metal Cations and High pH

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    2017-11-01

    Full Text Available Concentrating algal cells by flocculation as a prelude to centrifugation could significantly reduce the energy and cost of harvesting the algae. However, how variation in phenotypic traits such as cell surface features, cell size and motility alter the efficiency of metal cation and pH-induced flocculation is not well understood. Our results demonstrate that both wild-type and cell wall-deficient strains of the green unicellular alga Chlamydomonas reinhardtii efficiently flocculate (>90% at an elevated pH of the medium (pH 11 upon the addition of divalent cations such as calcium and magnesium (>5 mM. The trivalent ferric cation (at 10 mM proved to be essential for promoting flocculation under weak alkaline conditions (pH ∼8.5, with a maximum efficiency that exceeded 95 and 85% for wild-type CC1690 and the cell wall-deficient sta6 mutant, respectively. Near complete flocculation could be achieved using a combination of 5 mM calcium and a pH >11, while the medium recovered following cell removal could be re-cycled without affecting algal growth rates. Moreover, the absence of starch in the cell had little overall impact on flocculation efficiency. These findings contribute to our understanding of flocculation in different Chlamydomonas strains and have implications with respect to inexpensive methods for harvesting algae with different phenotypic traits. Additional research on the conditions (e.g., pH and metal ions used for efficient flocculation of diverse algal groups with diverse characteristics, at both small and large scale, will help establish inexpensive procedures for harvesting cell biomass.

  19. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere.

    Science.gov (United States)

    Pollock, Steve V; Colombo, Sergio L; Prout, Davey L; Godfrey, Ashley C; Moroney, James V

    2003-12-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.

  20. Resistance to Phosphinothricin (Glufosinate) and Its Utilization as a Nitrogen Source by Chlamydomonas reinhardtii.

    Science.gov (United States)

    Franco, A R; Lopez-Siles, F J; Cardenas, J

    1996-10-01

    Wild-type strain 21gr of the green alga Chlamydomonas reinhardtii was resistant to the ammonium salt of l-phosphinothricin (PPT, also called glufosinate), an irreversible inhibitor of glutamine synthetase activity and the main active component of the herbicide BASTA (AgrEvo, Frankfurt am Main, Germany). Under the same conditions, however, this strain was highly sensitive to l-methionine-S-sulfoximine, a structural analog of PPT which has been reported to be 5 to 10 times less effective than PPT as an inhibitor in plants. Moreover, this alga was able to grow with PPT as the sole nitrogen source when this compound was provided at low concentrations. This utilization of PPT was dependent upon the addition of acetate and light and did not take place in the presence of ammonium. Resistance was due neither to the presence of N-acetyltransferase or transaminase activity nor to the presence of glutamine synthetase isoforms resistant to PPT. By using l-[methyl-(sup14)C]PPT, we demonstrated that resistance is due to lack of PPT transport into the cells. This strongly suggests that PPT and l-methionine-S-sulfoximine enter the cells through different systems. Growth with PPT is supported by its deamination by an l-amino acid oxidase activity which has been previously described to be located at the periplasm.

  1. Relation between hydrogen production and photosynthesis in the green algae Chlamydomonas reinhardtii

    OpenAIRE

    Basu, Alex

    2015-01-01

    The modernized world is over-consuming low-cost energy sources that strongly contributes to pollution and environmental stress. As a consequence, the interest for environmentally friendly alternatives has increased immensely. One such alternative is the use of solar energy and water as a raw material to produce biohydrogen through the process of photosynthetic water splitting. In this work, the relation between H2-production and photosynthesis in the green algae Chlamydomonas reinhardtii was ...

  2. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii

    OpenAIRE

    May, P.; Christian, J.O.; Kempa, S.; Walther, D.

    2009-01-01

    Abstract Background The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. Results In the fra...

  3. ChlamyCyc - a comprehensive database and web-portal centered on _Chlamydomonas reinhardtii_

    OpenAIRE

    Jan-Ole Christian; Patrick May; Stefan Kempa; Dirk Walther

    2009-01-01

    *Background* - The unicellular green alga _Chlamydomonas reinhardtii_ is an important eukaryotic model organism for the study of photosynthesis and growth, as well as flagella development and other cellular processes. In the era of high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the whole cellular system of a sin...

  4. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii.

    Science.gov (United States)

    Blifernez-Klassen, Olga; Klassen, Viktor; Doebbe, Anja; Kersting, Klaudia; Grimm, Philipp; Wobbe, Lutz; Kruse, Olaf

    2012-01-01

    Plants convert sunlight to biomass, which is primarily composed of lignocellulose, the most abundant natural biopolymer and a potential feedstock for fuel and chemical production. Cellulose assimilation has so far only been described for heterotrophic organisms that rely on photosynthetically active primary producers of organic compounds. Among phototrophs, the unicellular green microalga Chlamydomonas reinhardtii is widely known as one of the best established model organisms. It occupies many habitats, including aquatic and soil ecosystems. This ubiquity underscores the versatile metabolic properties of this microorganism. Here we present yet another paradigm of adaptation for C. reinhardtii, highlighting its photoheterotrophic ability to utilize cellulose for growth in the absence of other carbon sources. When grown under CO(2)-limiting conditions in the light, secretion of endo-β-1,4-glucanases by the cell causes digestion of exogenous cellulose, followed by cellobiose uptake and assimilation. Phototrophic microbes like C. reinhardtii may thus serve as biocatalysts for cellulosic biofuel production.

  5. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition

    International Nuclear Information System (INIS)

    Mahdy, Ahmed; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-01-01

    Highlights: • Methane production of microalgae biomass is hampered by their cell wall. • Pretreatment should be designed in accordance to the microalgae specie. • Fresh Chlamydomonas reinhardtii exhibited high anaerobic biodegradability. • Chlorella vulgaris anaerobic biodegradability was enhanced by 50% using protease pretreatment. - Abstract: The effect of enzymatic hydrolysis on microalgae organic matter solubilisation and methane production was investigated in this study. Even though both biomasses, Chlamydomonas reinhardtii and Chlorella vulgaris, exhibited similar macromolecular distribution, their cell wall composition provided different behaviors. The addition of carbohydrolase (Viscozyme) and protease (Alcalase) resulted in high carbohydrates and protein solubilisation on both biomasses (86–96%). Despite the high carbohydrate solubilisation with the carbohydrolase, methane production was enhanced by 14% for C. vulgaris, while hydrolyzed C. reinhardtii did not show any improvement. The addition of protease to C. reinhardtii increased methane production by 1.17-fold. The low enhancement achieved together with the inherent high biodegradability of this biomass would not justify the cost associated to the enzyme addition. On the other hand, C. vulgaris hydrolyzed with the protease resulted in 86% anaerobic biodegradability compared to 54% of the raw biomass. Therefore, the application of protease prior anaerobic digestion of C. vulgaris could be a promising approach to decrease the energetic input required for cell wall disruption

  6. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    Directory of Open Access Journals (Sweden)

    Sangwoo Kim

    Full Text Available Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA, a chemical inducer of ER stress, rapidly triggers lipid droplet (LD formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs. The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS, a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  7. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    Science.gov (United States)

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. © 2014 Wiley Periodicals, Inc.

  8. Genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Dutcher, S.K.; Gibbons, W.; Inwood, W.B.

    1988-01-01

    A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another

  9. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  10. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Nanette R Boyle

    Full Text Available Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.

  11. Metabolism of D-lactate and structurally related organic acids in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Husic, D.W.

    1986-01-01

    During the initial minutes of anaerobiosis, 14 C-labeled D-lactate, derived from the photosynthetic sugar phosphate pool, accumulated in the unicellular green alga, Chlamydomonas reinhardtii. The production of the D-isomer of lactate by algae is in contrast to plant and mammalian cells in which L-lactate is formed. After initial lactate formation, Chlamydomonas exhibits a mixed-acid type fermentation, thereby avoiding lactate accumulation and enabling the cells to tolerate extended periods of anaerobiosis. A pyruvate reductase which catalyzes the formation of D-lactate in Chlamydomonas was partially purified and characterized. Lactate produced anaerobically was metabolized only when Chlamydomonas cells were returned to aerobic conditions, and reoxidation of the D-lactate was apparently catalyzed by a mitochondrial membrane-bound dehydrogenase, rather than by the soluble pyruvate reductase. Mutants of Chlamydomonas, deficient in mitochondrial respiration, were used to demonstrate that lactate metabolism was linked to the mitochondrial electron transport chain. In addition, the oxidation of glycolate, a structural analog of lactate, was also linked to mitochondrial electron transport in vivo

  12. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pratheesh, P T; Vineetha, M; Kurup, G Muraleedhara

    2014-06-01

    Algal-based recombinant protein production has gained immense interest in recent years. The development of algal expression system was earlier hindered due to the lack of efficient and cost-effective transformation techniques capable of heterologous gene integration and expression. The recent development of Agrobacterium-mediated genetic transformation method is expected to be the ideal solution for these problems. We have developed an efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Pre-treatment of Agrobacterium in TAP induction medium (pH 5.2) containing 100 μM acetosyringone and 1 mM glycine betaine and infection of Chlamydomonas with the induced Agrobacterium greatly improved transformation frequency. This protocol was found to double the number of transgenic events on selection media compared to that of previous reports. PCR was used successfully to amplify fragments of the hpt and GUS genes from transformed cells, while Southern blot confirmed the integration of GUS gene into the genome of C. reinhardtii. RT-PCR, Northern blot and GUS histochemical analyses confirm GUS gene expression in the transgenic cell lines of Chlamydomonas. This protocol provides a quick, efficient, economical and high-frequency transformation method for microalgae.

  13. Systems Biology of Lipid Body Formation in the Green Alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, Ursula [Washington Univ., St. Louis, MO (United States)

    2017-11-10

    The project aimed to deepen our understanding of alga triacylglycerol (TAG) production to undergird explorations of using algal TAG as a source of biodiesel fuel. Our published contributions included the following: 1) Development of a rapid assay for TAG in algal cultures which was widely distributed to the algal community. 2) A comprehensive transcriptome analysis of the development of the ultra-high-TAG “obese” phenotype In Chlamydomonas reinhardtii. 3) A comprehensive biochemical and ultrastructural analysis of the cell wall of Nannochloropsis gaditana, whose walls render it both growth-hardy and difficult to rupture for TAG recovery. A manuscript in preparation considers the autophagy response in C. reinhardtii and its entrance into stationary phase, both having an impact on TAG production.

  14. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production.

    Science.gov (United States)

    Shamriz, Shabnam; Ofoghi, Hamideh

    Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.

  15. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    Science.gov (United States)

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  16. Protocol: methodology for chromatin immunoprecipitation (ChIP in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Strenkert Daniela

    2011-11-01

    Full Text Available Abstract We report on a detailed chromatin immunoprecipitation (ChIP protocol for the unicellular green alga Chlamydomonas reinhardtii. The protocol is suitable for the analysis of nucleosome occupancy, histone modifications and transcription factor binding sites at the level of mononucleosomes for targeted and genome-wide studies. We describe the optimization of conditions for crosslinking, chromatin fragmentation and antibody titer determination and provide recommendations and an example for the normalization of ChIP results as determined by real-time PCR.

  17. Effect of temperature and light intensity on growth and photosynthetic activity of Chlamydomonas Reinhardtii

    International Nuclear Information System (INIS)

    Alfonsel, M.; Fernandez Gonzalez, J.

    1986-01-01

    The effect of five temperatures (15, 20, 25, 30 and 35 0 C) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhardtii has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of CO 2 labelled with C 14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 0 C for the lower lavel of illumination (2400 lux) and at 35 0 C for the higher one (13200 lux). These results suggest an interacton of temperature and illumination on photosynthetic activity. (author)

  18. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Mauriès, Adeline; Maes, Alexandre; Tourasse, Nicolas J; Hamon, Marion; Lemaire, Stéphane D; Marchand, Christophe H

    2017-08-07

    Thiol-based redox post-translational modifications have emerged as important mechanisms of signaling and regulation in all organisms, and thioredoxin plays a key role by controlling the thiol-disulfide status of target proteins. Recent redox proteomic studies revealed hundreds of proteins regulated by glutathionylation and nitrosylation in the unicellular green alga Chlamydomonas reinhardtii, while much less is known about the thioredoxin interactome in this organism. By combining qualitative and quantitative proteomic analyses, we have comprehensively investigated the Chlamydomonas thioredoxome and 1188 targets have been identified. They participate in a wide range of metabolic pathways and cellular processes. This study broadens not only the redox regulation to new enzymes involved in well-known thioredoxin-regulated metabolic pathways but also sheds light on cellular processes for which data supporting redox regulation are scarce (aromatic amino acid biosynthesis, nuclear transport, etc). Moreover, we characterized 1052 thioredoxin-dependent regulatory sites and showed that these data constitute a valuable resource for future functional studies in Chlamydomonas. By comparing this thioredoxome with proteomic data for glutathionylation and nitrosylation at the protein and cysteine levels, this work confirms the existence of a complex redox regulation network in Chlamydomonas and provides evidence of a tremendous selectivity of redox post-translational modifications for specific cysteine residues. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  19. Refactoring the six-gene photosystem II core in the chloroplast of the green algae Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Gimpel, Javier A.; Nour-Eldin, Hussam Hassan; Scranton, Melissa A.

    2016-01-01

    production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct...

  20. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    Science.gov (United States)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  1. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    Science.gov (United States)

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  2. A cost-effective approach to produce 15N-labelled amino acids employing Chlamydomonas reinhardtii CC503.

    Science.gov (United States)

    Nicolás Carcelén, Jesús; Marchante-Gayón, Juan Manuel; González, Pablo Rodríguez; Valledor, Luis; Cañal, María Jesús; Alonso, José Ignacio García

    2017-08-18

    The use of enriched stable isotopes is of outstanding importance in chemical metrology as it allows the application of isotope dilution mass spectrometry (IDMS). Primary methods based on IDMS ensure the quality of the analytical measurements and traceability of the results to the international system of units. However, the synthesis of isotopically labelled molecules from enriched stable isotopes is an expensive and a difficult task. Either chemical and biochemical methods to produce labelled molecules have been proposed, but so far, few cost-effective methods have been described. The aim of this study was to use the microalgae Chlamydomonas reinhardtii to produce, at laboratory scale, 15 N-labelled amino acids with a high isotopic enrichment. To do that, a culture media containing 15 NH 4 Cl was used. No kinetic isotope effect (KIE) was observed. The labelled proteins biosynthesized by the microorganism were extracted from the biomass and the 15 N-labelled amino acids were obtained after a protein hydrolysis with HCl. The use of the wall deficient strain CC503 cw92 mt+ is fit for purpose, as it only assimilates ammonia as nitrogen source, avoiding isotope contamination with nitrogen from the atmosphere or the reagents used in the culture medium, and enhancing the protein extraction efficiency compared to cell-walled wild type Chlamydomonas. The isotopic enrichment of the labelled amino acids was calculated from their isotopic composition measured by gas chromatography mass spectrometry (GC-MS). The average isotopic enrichment for the 16 amino acids characterized was 99.56 ± 0.05% and the concentration of the amino acids in the hydrolysate ranged from 18 to 90 µg/mL. Previously reported biochemical methods to produce isotopically labelled proteins have been applied in the fields of proteomics and fluxomics. For these approaches, low amounts of products are required and the isotopic enrichment of the molecules has never been properly determined. So far, only 13

  3. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Cheloni, Giulia; Cosio, Claudia; Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch

    2014-10-15

    Highlights: • Light intensity and spectral composition affect Cu uptake and effects to C. reinhardtii. • High light (HL) reduced Cu effect on growth inhibition, oxidative stress and damage. • HL in combination with Cu up-regulated genes involved in the antioxidant responses. • HL with increased UVB radiation exacerbated Cu uptake and Cu-induced toxic effects. - Abstract: The present study showed the important role of light intensity and spectral composition on Cu uptake and effects on green alga Chlamydomonas reinhardtii. High-intenisty light (HL) increased cellular Cu concentrations, but mitigated the Cu-induced decrease in chlorophyll fluorescence, oxidative stress and lipid peroxidation at high Cu concentrations, indicating that Cu and HL interact in an antagonistic manner. HL up-regulated the transcription of genes involved in the antioxidant response in C. reinhardtii and thus reduced the oxidative stress upon exposure to Cu and HL. Combined exposure to Cu and UVBR resulted in an increase of cellular Cu contents and caused severe oxidative damage to the cells. The observed effects were higher than the sum of the effects corresponding to exposure to UVBR or Cu alone suggesting a synergistic interaction.

  4. Crystallization and preliminary X-ray characterization of full-length Chlamydomonas reinhardtii centrin

    International Nuclear Information System (INIS)

    Alfaro, Elisa; Valle Sosa, Liliana del; Sanoguet, Zuleika; Pastrana-Ríos, Belinda; Schreiter, Eric R.

    2008-01-01

    C. reinhardtii centrin, an EF-hand calcium-binding protein localized to the microtubule-organizing center of eukaryotic organisms, has been crystallized in the presence of the model peptide melittin. X-ray diffraction data were collected to 2.2 Å resolution. Chlamydomonas reinhardtii centrin is a member of the EF-hand calcium-binding superfamily. It is found in the basal body complex and is important for flagellar motility. Like other members of the EF-hand family, centrin interacts with and modulates the function of other proteins in a calcium-dependent manner. To understand how C. reinhardtii centrin interacts with its protein targets, it has been crystallized in the presence of the model peptide melittin and X-ray diffraction data have been collected to 2.2 Å resolution. The crystals are orthorhombic, with unit-cell parameters a = 52.1, b = 114.4, c = 34.8 Å, and are likely to belong to space group P2 1 2 1 2

  5. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.

    Science.gov (United States)

    Pinto, T S; Malcata, F X; Arrabaça, J D; Silva, J M; Spreitzer, R J; Esquível, M G

    2013-06-01

    Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

  6. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Masayuki Onishi

    2016-12-01

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.

  7. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Kempa Stefan

    2009-05-01

    Full Text Available Abstract Background The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. Results In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. Conclusion ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.

  8. ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii.

    Science.gov (United States)

    May, Patrick; Christian, Jan-Ole; Kempa, Stefan; Walther, Dirk

    2009-05-04

    The unicellular green alga Chlamydomonas reinhardtii is an important eukaryotic model organism for the study of photosynthesis and plant growth. In the era of modern high-throughput technologies there is an imperative need to integrate large-scale data sets from high-throughput experimental techniques using computational methods and database resources to provide comprehensive information about the molecular and cellular organization of a single organism. In the framework of the German Systems Biology initiative GoFORSYS, a pathway database and web-portal for Chlamydomonas (ChlamyCyc) was established, which currently features about 250 metabolic pathways with associated genes, enzymes, and compound information. ChlamyCyc was assembled using an integrative approach combining the recently published genome sequence, bioinformatics methods, and experimental data from metabolomics and proteomics experiments. We analyzed and integrated a combination of primary and secondary database resources, such as existing genome annotations from JGI, EST collections, orthology information, and MapMan classification. ChlamyCyc provides a curated and integrated systems biology repository that will enable and assist in systematic studies of fundamental cellular processes in Chlamydomonas. The ChlamyCyc database and web-portal is freely available under http://chlamycyc.mpimp-golm.mpg.de.

  9. System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation

    Czech Academy of Sciences Publication Activity Database

    Valledor, Luis; Furuhashi, T.; Recuenco-Muňoz, L.; Wienkoop, S.; Weckwerth, W.

    2014-01-01

    Roč. 7, č. 171 (2014), s. 1-17 ISSN 1754-6834 Institutional support: RVO:67179843 Keywords : chlamydomonas reinhardtii * lipid accumulation * nitrogen Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.044, year: 2014

  10. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Barwal Indu

    2011-12-01

    Full Text Available Abstract Background Elucidation of molecular mechanism of silver nanoparticles (SNPs biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver

  11. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  12. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii

    Science.gov (United States)

    Ratcliff, William C.; Herron, Matthew D.; Howell, Kathryn; Pentz, Jennifer T.; Rosenzweig, Frank; Travisano, Michael

    2013-01-01

    The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. PMID:24193369

  13. Filling Knowledge Gaps in Biological Networks: integrating global approaches to understand H2 metabolism in Chlamydomonas reinhardtii - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Posewitz, Matthew C

    2011-06-30

    The green alga Chlamydomonas reinhardtii (Chlamydomonas) has numerous genes encoding enzymes that function in fermentative pathways. Among these genes, are the [FeFe]-hydrogenases, pyruvate formate lyase, pyruvate ferredoxin oxidoreductase, acetate kinase, and phosphotransacetylase. We have systematically undertaken a series of targeted mutagenesis approaches to disrupt each of these key genes and omics techniques to characterize alterations in metabolic flux. Funds from DE-FG02-07ER64423 were specifically leveraged to generate mutants with disruptions in the genes encoding the [FeFe]-hydrogenases HYDA1 and HYDA2, pyruvate formate lyase (PFL1), and in bifunctional alcohol/aldehyde alcohol dehydrogenase (ADH1). Additionally funds were used to conduct global transcript profiling experiments of wildtype Chlamydomonas cells, as well as of the hydEF-1 mutant, which is unable to make H2 due to a lesion in the [FeFe]-hydrogenase biosynthetic pathway. In the wildtype cells, formate, acetate and ethanol are the dominant fermentation products with traces of CO2 and H2 also being produced. In the hydEF-1 mutant, succinate production is increased to offset the loss of protons as a terminal electron acceptor. In the pfl-1 mutant, lactate offsets the loss of formate production, and in the adh1-1 mutant glycerol is made instead of ethanol. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars, and a decline in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant performs a complete rerouting of the glycolytic carbon to lactate and glycerol. Lastly, transcriptome data have been analysed for both the wildtype and hydEF-1, that correlate with our

  14. Rubisco Activase Is Required for Optimal Photosynthesis in the Green Alga Chlamydomonas reinhardtii in a Low-CO2 Atmosphere1

    Science.gov (United States)

    Pollock, Steve V.; Colombo, Sergio L.; Prout, Davey L.; Godfrey, Ashley C.; Moroney, James V.

    2003-01-01

    This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii. PMID:14605215

  15. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  17. Robust Microplate-Based Methods for Culturing and in Vivo Phenotypic Screening of Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Timothy C. Haire

    2018-03-01

    Full Text Available Chlamydomonas reinhardtii (Cr, a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii. We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism.

  18. Valorization of Spent Escherichia coli Media Using Green Microalgae Chlamydomonas reinhardtii and Feedstock Production

    Directory of Open Access Journals (Sweden)

    Jian-Guo Zhang

    2017-06-01

    Full Text Available The coupling of Chlamydomonas reinhardtii biomass production for nutrients removal of Escherichia coli anaerobic broth (EAB is thought to be an economically feasible option for the cultivation of microalgae. The feasibility of growing microalgae in using EAB high in nutrients for the production of more biomass was examined. EAB comprised of nutrient-abundant effluents, which can be used to produce microalgae biomass and remove environment pollutant simultaneously. In this study, C. reinhardtii 21gr (cc1690 was cultivated in different diluted E. coli anaerobic broth supplemented with trace elements under mixotrophic and heterotrophic conditions. The results showed that C. reinhardtii grown in 1×, 1/2×, 1/5× and 1/10×E. coli anaerobic broth under mixotrophic conditions exhibited specific growth rates of 2.71, 2.68, 1.45, and 1.13 day-1, and biomass production of 201.9, 184.2, 175.5, and 163.8 mg L-1, respectively. Under heterotrophic conditions, the specific growth rates were 1.80, 1.86, 1.75, and 1.02 day-1, and biomass production were 45.6, 29.4, 15.8, and 12.1 mg L-1, respectively. The removal efficiency of chemical oxygen demand, total-nitrogen and total-phosphorus from 1×E. coli anaerobic broth was 21.51, 22.41, and 15.53%. Moreover, the dry biomass had relatively high carbohydrate (44.3% and lipid content (18.7%. Therefore, this study provides an environmentally sustainable as well economical method for biomass production in promising model microalgae and subsequently paves the way for industrial use.

  19. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  20. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Hanul eKim

    2015-02-01

    Full Text Available Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 μg mL–1 for 1 h, Chlamydomonas cells accumulated at least four-fold the amount of triacylglycerols (TAGs present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over two-fold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs.

  1. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    La Russa, M; Bogen, C; Uhmeyer, A; Doebbe, A; Filippone, E; Kruse, O; Mussgnug, J H

    2012-11-30

    Photosynthetic organisms like plants and algae can use sunlight to produce lipids as important metabolic compounds. Plant-derived triacylglycerols (TAGs) are valuable for human and animal nutrition because of their high energy content and are becoming increasingly important for the production of renewable biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) have been demonstrated to play an important role in the accumulation of TAG compounds in higher plants. DGAT homologue genes have been identified in the genome of the green alga Chlamydomonas reinhardtii, however their function in vivo is still unknown. In this work, the three most promising type-2 DGAT candidate genes potentially involved in TAG lipid accumulation (CrDGAT2a, b and c) were investigated by constructing overexpression strains. For each of the genes, three strains were identified which showed enhanced mRNA levels of between 1.7 and 29.1 times that of the wild type (wt). Total lipid contents, neutral lipids and fatty acid profiles were determined and showed that an enhanced mRNA expression level of the investigated DGAT genes did not boost the intracellular TAG accumulation or resulted in alterations of the fatty acid profiles compared to wild type during standard growth condition or during nitrogen or sulfur stress conditions. We conclude that biotechnological efforts to enhance cellular TAG amount in microalgae need further insights into the complex network of lipid biosynthesis to identify potential bottlenecks of neutral lipid production. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus.

    Science.gov (United States)

    Chen, Chun-Yen; Kao, Ai-Ling; Tsai, Zheng-Chia; Chow, Te-Jin; Chang, Hsin-Yueh; Zhao, Xin-Qing; Chen, Po-Ting; Su, Hsiang-Yen; Chang, Jo-Shu

    2016-03-01

    Microalgal strains of Scenedesmus obliquus have the great potential for the production of biofuels, CO2 fixation, and bioremediation. However, metabolic engineering of S. obliquus to improve their useful phenotypes are still not fully developed. In this study, S. obliquus strain CPC2 was genetically engineered to promote the autotrophic growth and lipid productivity. The overexpression plasmid containing the type 2 diacylglycerol acyltransferse (DGAT) gene DGTT1 from Chlamydomonas reinhardtii was constructed and transformed into S. obliquus CPC2, and the positive transformants were obtained. The expression of DGTT1 gene was confirmed by reverse transcription PCR analysis. Enhanced lipid content of the transformant S. obliquus CPC2-G1 by nearly two-fold was observed. The biomass concentration of the recombinant strains was also 29% higher than that of the wild-type strain. Furthermore, the recombinant strain CPC2-G1 was successfully grown in 40 L tubular type photobioreactor and open pond system in an outdoor environment. The lipid content, biomass concentration, and biomass productivity obtained from 40 L tubular PBR were 127.8% 20.0%, and 232.6% higher than those obtained from the wild-type strain. The major aim of this work is to develop a tool to genetically engineer an isolated S. obliquus strain for the desired purpose. This is the first report that genetic engineering of S. obliquus has been successful employed to improve both the microalgal cell growth and the lipid production. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Screening of Chlamydomonas reinhardtii Populations with Single-Cell Resolution by Using a High-Throughput Microscale Sample Preparation for Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

    Science.gov (United States)

    Krismer, Jasmin; Sobek, Jens; Steinhoff, Robert F; Fagerer, Stephan R; Pabst, Martin; Zenobi, Renato

    2015-08-15

    The consequences of cellular heterogeneity, such as biocide persistence, can only be tackled by studying each individual in a cell population. Fluorescent tags provide tools for the high-throughput analysis of genomes, RNA transcripts, or proteins on the single-cell level. However, the analysis of lower-molecular-weight compounds that elude tagging is still a great challenge. Here, we describe a novel high-throughput microscale sample preparation technique for single cells that allows a mass spectrum to be obtained for each individual cell within a microbial population. The approach presented includes spotting Chlamydomonas reinhardtii cells, using a noncontact microarrayer, onto a specialized slide and controlled lysis of cells separated on the slide. Throughout the sample preparation, analytes were traced and individual steps optimized using autofluorescence detection of chlorophyll. The lysates of isolated cells are subjected to a direct, label-free analysis using matrix-assisted laser desorption ionization mass spectrometry. Thus, we were able to differentiate individual cells of two Chlamydomonas reinhardtii strains based on single-cell mass spectra. Furthermore, we showed that only population profiles with real single-cell resolution render a nondistorted picture of the phenotypes contained in a population. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    Science.gov (United States)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  5. Chlamydomonas reinhardtii responding to high light: a role for 2-propenal (acrolein).

    Science.gov (United States)

    Roach, Thomas; Baur, Theresa; Stöggl, Wolfgang; Krieger-Liszkay, Anja

    2017-09-01

    High light causes photosystem II to generate singlet oxygen ( 1 O 2 ), a reactive oxygen species (ROS) that can react with membrane lipids, releasing reactive electrophile species (RES), such as acrolein. To investigate how RES may contribute to light stress responses, Chlamydomonas reinhardtii was high light-treated in photoautotrophic and mixotrophic conditions and also in an oxygen-enriched atmosphere to elevate ROS production. The responses were compared to exogenous acrolein. Non-photochemical quenching (NPQ) was higher in photoautotrophic cells, as a consequence of a more de-epoxidized state of the xanthophyll cycle pool and more LHCSR3 protein, showing that photosynthesis was under more pressure than in mixotrophic cells. Photoautotrophic cells had lowered α-tocopherol and β-carotene contents and a higher level of protein carbonylation, indicators of elevated 1 O 2 production. Levels of glutathione, glutathione peroxidase (GPX5) and glutathione-S-transferase (GST1), important antioxidants against RES, were also increased in photoautotrophic cells. In parallel to the wild-type, the LHCSR3-deficient npq4 mutant was high light-treated, which in photoautotrophic conditions exhibited particular sensitivity under elevated oxygen, the treatment that induced the highest RES levels, including acrolein. The npq4 mutant had more GPX5 and GST1 alongside higher levels of carbonylated protein and a more oxidized glutathione redox state. In wild-type cells glutathione contents doubled after 4 h treatment, either with high light under elevated oxygen or with a non-critical dose (600 ppm) of acrolein. Exogenous acrolein also increased GST1 levels, but not GPX5. Overall, RES-associated oxidative damage and glutathione metabolism are prominently associated with light stress and potentially in signaling responses of C. reinhardtii. © 2017 Scandinavian Plant Physiology Society.

  6. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Plouviez, Maxence; Wheeler, David; Shilton, Andy; Packer, Michael A; McLenachan, Patricia A; Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Fernández, Emilio; Guieysse, Benoit

    2017-07-01

    Over the last decades, several studies have reported emissions of nitrous oxide (N 2 O) from microalgal cultures and aquatic ecosystems characterized by a high level of algal activity (e.g. eutrophic lakes). As N 2 O is a potent greenhouse gas and an ozone-depleting pollutant, these findings suggest that large-scale cultivation of microalgae (and possibly, natural eutrophic ecosystems) could have a significant environmental impact. Using the model unicellular microalga Chlamydomonas reinhardtii, this study was conducted to investigate the molecular basis of microalgal N 2 O synthesis. We report that C. reinhardtii supplied with nitrite (NO 2 - ) under aerobic conditions can reduce NO 2 - into nitric oxide (NO) using either a mitochondrial cytochrome c oxidase (COX) or a dual enzymatic system of nitrate reductase (NR) and amidoxime-reducing component, and that NO is subsequently reduced into N 2 O by the enzyme NO reductase (NOR). Based on experimental evidence and published literature, we hypothesize that when nitrate (NO 3 - ) is the main Nitrogen source and the intracellular concentration of NO 2 - is low (i.e. under physiological conditions), microalgal N 2 O synthesis involves the reduction of NO 3 - to NO 2 - by NR followed by the reduction of NO 2 - to NO by the dual system involving NR. This microalgal N 2 O pathway has broad implications for environmental science and algal biology because the pathway of NO 3 - assimilation is conserved among microalgae, and because its regulation may involve NO. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    Science.gov (United States)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ramos-Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-09-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP) n , wherein n = 10 or 20]. The yields of the (SP) n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP) n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP) n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP) n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Xie, Li [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Brede, Dag; Lind, Ole-Christian [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); Solhaug, Knut Asbjørn [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, N-1432, Ås (Norway); Salbu, Brit [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); and others

    2017-02-15

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H{sub 2}DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first

  10. Thioredoxin-dependent Redox Regulation of Chloroplastic Phosphoglycerate Kinase from Chlamydomonas reinhardtii*

    Science.gov (United States)

    Morisse, Samuel; Michelet, Laure; Bedhomme, Mariette; Marchand, Christophe H.; Calvaresi, Matteo; Trost, Paolo; Fermani, Simona; Zaffagnini, Mirko; Lemaire, Stéphane D.

    2014-01-01

    In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (−335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys227 and Cys361. Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view. PMID:25202015

  11. The involvement of carbohydrate reserves in hydrogen photoproduction by the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Chochois, V.

    2009-09-01

    The unicellular green alga Chlamydomonas reinhardtii is able to produce hydrogen, using water as an electron donor, and sunlight as an energy source. Although this property offers interesting biotechnological perspectives, a major limitation is related to the sensitivity of hydrogenase to oxygen which is produced by photosynthesis. It had been previously shown that in conditions of sulfur deprivation, C. reinhardtii is able to produce hydrogen during several days (Melis et an. 2000). During this process, two pathways, one direct depending on photosystem II (PSII) activity and the other involving only the PSI, are involved, starch reserves being supposed to play a role in both of these pathways. The purpose of this phD thesis was to elucidate the mechanisms linking starch catabolism to the hydrogen photoproduction process. Firstly, the analysis of mutants affected in starch biosynthesis (sta6 and sta7) showed that if starch reserves are essential to the functioning of the indirect pathway, they are not involved in the direct one. Secondly, in order to identify metabolic steps and regulatory processes involved in starch breakdown, we developed a genetic approach based on the search of mutants affected in starch reserves mobilization. Eight mutant (std1 to std8) diversely affected in their ability to degrade starch after an accumulation phase have been isolated from an insertional mutant library of 15,000 clones. One of these mutants, std1, is affected in a kinase related to the DYRK family (dual-specificity tyrosine regulated serine threonine kinase). Although the targets of this putative kinase remain to be identified, the analysis of the granule bound proteome displayed profound alterations in the expression profile of starch phosphorylases, potentially involved in starch breakdown. STD1 represents the first starch catabolism regulator identified to date in plants. (author)

  12. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    International Nuclear Information System (INIS)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit

    2017-01-01

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report

  13. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Jamers, An; Blust, Ronny; De Coen, Wim [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Griffin, Julian L. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 2QA (United Kingdom); Jones, Oliver A.H., E-mail: oliver.jones@rmit.edu.au [School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia)

    2013-01-15

    The effects of cadmium were assessed in the freshwater alga Chlamydomonas reinhardtii. Algae were exposed to concentrations of 0, 8.1 or 114.8 {mu}M of cadmium and growth rates, gene transcription and metabolite profiles were examined after 48 and 72 h of exposure. In algae exposed to 8.1 {mu}M Cd, several genes were differentially transcribed after 48 h but no adverse growth related effects were detected. A transient effect on both gene transcription patterns and metabolite profiles could be discerned after 48 h of exposure but the majority of these changes disappeared after 72 h. In contrast, all effects were more pronounced at the 114.8 {mu}M cadmium exposure. Here growth was clearly reduced and transcription of a large number of genes involved in oxidative stress defense mechanisms was differentially increased. Metabolites involved in the glutathione synthesis pathway (an important antioxidant defense) were also affected but the effects of cadmium were found to be more pronounced at the transcript level than in the metabolome, suggesting that the former exhibits greater sensitivity toward cadmium exposure.

  14. A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Sora Kim

    Full Text Available Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH23]8Si8Mg6O12(OH4, for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×10(2 transformants/µg DNA, second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods.

  15. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    Science.gov (United States)

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  16. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  17. Hydrogen production by Chlamydomonas reinhardtii under light driven sulfur deprived condition

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Krishnan; Karthik, Rajendran [Biotechnology Research Division, Department of Biotechnology, Prathyusha Institute of Technology and Management, Aranvoyalkuppam, Thiruvallur District 602025, Tamil Nadu (India); Kamala Nalini, S.P. [Department of Biotechnology, Vel Group of Educational Institutions, Avadi, Alamadhi Road, Chennai 600062, Tamil Nadu (India)

    2009-10-15

    This article explores the possibility of demonstrating sustainable photohydrogen production using Chlamydomonas reinhardtii when grown in sulfur deprived photoautotrophic condition. The hydrogen evolving capability of the algal species was monitored based on alternating light and dark period. Investigation was carried out during the day time in order to exploit the solar energy for meeting the demand of the light period. The results showed that when the reactor was operated at varying photoperiod namely 2, 3 and 4 h of alternating light and dark period, the gas generation was found to be 32 {+-} 4, 63 {+-} 7 and 52 {+-} 5 mL/h, while the corresponding hydrogen content was 47, 86 and 87% respectively. Functional components of hydrogen generation reaction centers were also analyzed, which showed that the PS(I) reaction centers were involved in hydrogen production pathway, as the light absorption by PS(I) was prerequisite for hydrogen generation under sulfur deprived photoautotrophic condition. The findings showed a higher gas yield and hydrogen content under dark period, whereas under light period the gas content was below detectable level for hydrogen due to the reversible hydrogenase reaction. (author)

  18. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Adam D Idoine

    Full Text Available Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell "waking up" from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.

  19. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  20. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    María Esther Pérez-Pérez

    2017-07-01

    Full Text Available Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1 and TOR complex 2 (TORC2. While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  1. VU-B radiation inhibits the photosynthetic electron transport chain in chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Cai, W.; Li, X.; Chen, L.

    2016-01-01

    UV radiation of sunlight is one of harmful factors for earth organisms, especially for photoautotrophs because they require light for energy and biomass production. A number of works have already been done regarding the effects of UV-B radiation at biochemical and molecular level, which showed that UV-B radiation could inhibit photosynthesis activity and reduce photosynthetic electron transport. However quite limited information can accurately make out inhibition site of UV-B radiation on photosynthetic electron transport. In this study, this issue was investigated through measuring oxygen evolution activity, chlorophyll a fluorescence and gene expression in a model unicellular green alga Chlamydomonas reinhardtii. Our results indicated that UV-B radiation could evidently decrease photosynthesis activity and inhibit electron transport by blocking electron transfer process from the first plastoquinone electron acceptors QA to second plastoquinone electron acceptors QB, but not impair electron transfer from the water oxidizing complex to QA. The psbA gene expression was also altered by UV-B radiation, where up-regulation occurred at 2, 4 and 6h after exposure and down-regulation happened at 12 and 24 h after exposure. These results suggested that UV-B could affects D1 protein normal turnover, so there was not enough D1 for binding with QB, which may affect photosynthetic electron transport and photosynthesis activity. (author)

  2. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  3. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pino, Ma Rosa; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2016-11-01

    Pharmaceuticals reach terrestrial environments through the application of treated wastewaters and biosolids to agricultural soils. We have investigated the toxicity of 15 common pharmaceuticals, classified as nonsteroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents, β-blockers and antibiotics, in two photosynthetic organisms. Twelve pharmaceuticals caused inhibitory effects on the radicle and hypocotyl elongation of Lactuca sativa seeds. The EC 50 values obtained were in the range of 170-5656 mg L -1 in the case of the radicle and 188-4558 mg L -1 for the hypocotyl. Propranolol was the most toxic drug for both root and hypocotyl elongation, followed by the NSAIDs, then gemfibrozil and tetracycline. Other effects, such as root necrosis, inhibition of root growth and curly hairs, were detected. However, even at the highest concentrations tested (3000 mg L -1 ), seed germination was not affected. NSAIDs decreased the photosynthetic yield of Chlamydomonas reinhardtii, but only salicylic acid showed EC 50 values below 1000 mg L -1 . The first effects detected at low concentrations, together with the concentrations found in environmental samples, indicate that the use of biosolids and wastewaters containing pharmaceuticals should be regulated and their compositions assessed in order to prevent medium- and long-term impacts on agricultural soils and crops.

  4. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  5. Photobiological hydrogen production with the unicellular green alga Chlamydomonas reinhardtii under process engineering aspects; Photobiologische Wasserstoffproduktion mit der einzelligen Gruenalge Chlamydomonas reinhardtii unter verfahrenstechnischen Aspekten

    Energy Technology Data Exchange (ETDEWEB)

    Geier, Stephanie

    2011-07-01

    Hydrogen is of high interest as a clean and environmentally friendly energy source as its combustion only emits water and energy. However, currently hydrogen is produced in energy demanding processes by the consumption of fossil fuels. An alternative way of sustainable and non-polluting hydrogen production could be provided by use of photosynthetic active microalgae. Within this work, the photobiological hydrogen production with the unicellular green algae Chlamydomonas reinhardtii is investigated under the aspects of bioprocess-engineering and economics. Objectives are, besides the increase of the photochemical efficiency, the cultivation of the algae and subsequent hydrogen production under cost-free sunlight. It could be demonstrated that outdoor cultivation of C. reinhardtii is possible in Central Europe throughout the year by using e.g. waste heat. Similar cell numbers in the range from 1,2.10{sup 7} cells ml{sup -1} to 1,7.10{sup 7} cells ml{sup -1} could be achieved in closed photobioreactors of the type Photobioreactor Screening Module under controlled laboratory conditions and both continuous illumination (200 {mu}mol.m{sup -2}.s{sup -1}) and simulated outdoor conditions according to the light intensity of idealized summer day as well as in outdoor experiments (up to 2000 {mu}mol.m{sup -2}.s{sup -1}).The use of 10 % CO{sub 2} corresponding to the CO{sub 2} content in flue gas led to a doubling of cell numbers under continuous illumination to 4,2.10{sup 7} cells ml{sup -1}, compared to the reference culture bubbled with 3 % CO{sub 2}. A significant increase of cell numbers under the light profiles of an idealized summer day could not be achieved. The cultivation under the light profile of a winter day at 25 C reduced cell growth to 54 %, compared to the summer simulation. In open 30 L outdoor ponds, only 0,26.10{sup 7} cells ml{sup -1} could be achieved under photoheterotrophic conditions during the summer months, which corresponds to 20 % of the cell

  6. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wannathong, Thanyanan; Waterhouse, Janet C; Young, Rosanna E B; Economou, Chloe K; Purton, Saul

    2016-06-01

    In recent years, there has been an increasing interest in the exploitation of microalgae in industrial biotechnology. Potentially, these phototrophic eukaryotes could be used for the low-cost synthesis of valuable recombinant products such as bioactive metabolites and therapeutic proteins. The algal chloroplast in particular represents an attractive target for such genetic engineering, both because it houses major metabolic pathways and because foreign genes can be targeted to specific loci within the chloroplast genome, resulting in high-level, stable expression. However, routine methods for chloroplast genetic engineering are currently available only for one species-Chlamydomonas reinhardtii-and even here, there are limitations to the existing technology, including the need for an expensive biolistic device for DNA delivery, the lack of robust expression vectors, and the undesirable use of antibiotic resistance markers. Here, we describe a new strain and vectors for targeted insertion of transgenes into a neutral chloroplast locus that (i) allow scar-less fusion of a transgenic coding sequence to the promoter/5'UTR element of the highly expressed endogenous genes psaA or atpA, (ii) employ the endogenous gene psbH as an effective but benign selectable marker, and (iii) ensure the successful integration of the transgene construct in all transformant lines. Transformation is achieved by a simple and cheap method of agitation of a DNA/cell suspension with glass beads, with selection based on the phototrophic rescue of a cell wall-deficient ΔpsbH strain. We demonstrate the utility of these tools in the creation of a transgenic line that produces high levels of functional human growth hormone.

  7. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris; Xiao, Mao [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-10-15

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  8. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    International Nuclear Information System (INIS)

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  9. Absorption and emission spectroscopic characterisation of combined wildtype LOV1-LOV2 domain of phot from Chlamydomonas reinhardtii.

    Science.gov (United States)

    Song, S-H; Dick, B; Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P

    2005-10-03

    An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.

  10. Inorganic polyphosphate occurs in the cell wall of Chlamydomonas reinhardtii and accumulates during cytokinesis

    Directory of Open Access Journals (Sweden)

    Freimoser Florian M

    2007-09-01

    Full Text Available Abstract Background Inorganic polyphosphate (poly P, linear chains of phosphate residues linked by energy rich phosphoanhydride bonds, is found in every cell and organelle and is abundant in algae. Depending on its localization and concentration, poly P is involved in various biological functions. It serves, for example, as a phosphate store and buffer against alkali, is involved in energy metabolism and regulates the activity of enzymes. Bacteria defective in poly P synthesis are impaired in biofilm development, motility and pathogenicity. PolyP has also been found in fungal cell walls and bacterial envelopes, but has so far not been measured directly or stained specifically in the cell wall of any plant or alga. Results Here, we demonstrate the presence of poly P in the cell wall of Chlamydomonas reinhardtii by staining with specific poly P binding proteins. The specificity of the poly P signal was verified by various competition experiments, by staining with different poly P binding proteins and by correlation with biochemical quantification. Microscopical investigation at different time-points during growth revealed fluctuations of the poly P signal synchronous with the cell cycle: The poly P staining peaked during late cytokinesis and was independent of the high intracellular poly P content, which fluctuated only slightly during the cell cycle. Conclusion The presented staining method provides a specific and sensitive tool for the study of poly P in the extracellular matrices of algae and could be used to describe the dynamic behaviour of cell wall poly P during the cell cycle. We assume that cell wall poly P and intracellular poly P are regulated by distinct mechanisms and it is suggested that cell wall bound poly P might have important protective functions against toxic compounds or pathogens during cytokinesis, when cells are more vulnerable.

  11. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Williams, C R; Bees, M A

    2014-02-01

    The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  12. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    Science.gov (United States)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    Science.gov (United States)

    Dobson, Renwick C J; Girón, Irma; Hudson, André O

    2011-01-01

    In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA) to L,L-diaminopimelate (L,L-DAP), in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL). The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  14. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    Directory of Open Access Journals (Sweden)

    Renwick C J Dobson

    Full Text Available In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL (E.C. 2.6.1.83 is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA to L,L-diaminopimelate (L,L-DAP, in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL. The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  15. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    Science.gov (United States)

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Experimental Definition and Validation of Protein Coding Transcripts in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Kourosh Salehi-Ashtiani; Jason A. Papin

    2012-01-13

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Using Chlamydomonas reinhardtii as a model, we developed a systems-level methodology bridging metabolic network reconstruction with annotation and experimental verification of enzyme encoding open reading frames. We reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. Our approach to generate a predictive metabolic model integrated with cloned open reading frames, provides a cost-effective platform to generate metabolic engineering resources. While the generated resources are specific to algal systems, the approach that we have developed is not specific to algae and

  17. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints

    International Nuclear Information System (INIS)

    Esperanza, Marta; Cid, Ángeles; Herrero, Concepción; Rioboo, Carmen

    2015-01-01

    Highlights: • Mitochondrial membrane potential constituted the most sensitive parameter assayed. • Several genotoxicity methods were applied for first time in ecotoxicological studies. • Oxidative DNA base damage (8-OHdG) was induced by paraquat exposure. • Cells with DNA strand breakage and subG1-nuclei increased in treated cultures. • Typical apoptosis hallmarks were observed in microalgal cells exposed to paraquat. - Abstract: Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of

  18. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints

    Energy Technology Data Exchange (ETDEWEB)

    Esperanza, Marta; Cid, Ángeles; Herrero, Concepción; Rioboo, Carmen, E-mail: carmen.rioboo@udc.es

    2015-08-15

    Highlights: • Mitochondrial membrane potential constituted the most sensitive parameter assayed. • Several genotoxicity methods were applied for first time in ecotoxicological studies. • Oxidative DNA base damage (8-OHdG) was induced by paraquat exposure. • Cells with DNA strand breakage and subG1-nuclei increased in treated cultures. • Typical apoptosis hallmarks were observed in microalgal cells exposed to paraquat. - Abstract: Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of

  19. Functional specificity of cardiolipin synthase revealed by the identification of a cardiolipin synthase CrCLS1 in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Chun-Hsien eHung

    2016-01-01

    Full Text Available Phosphatidylglycerol (PG and cardiolipin (CL are two essential classes of phospholipid in plants and algae. Phosphatidylglycerophosphate synthase (PGPS and cardiolipin synthase (CLS involved in the biosynthesis of PG and CL belong to CDP-alcohol phosphotransferase and share overall amino acid sequence homology. However, it remains elusive whether PGPS and CLS are functionally distinct in vivo. Here, we report identification of a gene encoding CLS in Chlamydomonas reinhardtii, CrCLS1, and its functional compatibility. Whereas CrCLS1 did not complement the growth phenotype of a PGPS mutant of Synechocystis sp. PCC 6803, it rescued the temperature-sensitive growth phenotype, growth profile with different carbon sources, phospholipid composition and enzyme activity of ∆crd1, a CLS mutant of Saccharomyces cerevisiae. These results suggest that CrCLS1 encodes a functional CLS of C. reinhardtii as the first identified algal CLS, whose enzyme function is distinct from that of PGPSs from C. reinhardtii. Comparison of CDP-alcohol phosphotransferase motif between PGPS and CLS among different species revealed a possible additional motif that might define the substrate specificity of these closely related enzymes.

  20. Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    João Vitor Dutra Molino

    Full Text Available Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications.

  1. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-01-01

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F 0 /F v . Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F ′ q /F ′ m , EC 50 = 303 ± 64 μg U L −1 after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC 50 = 142 ± 98 μg U L −1 after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from

  2. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Herlory, Olivier, E-mail: olivier.herlory@gmail.com [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Gilbin, Rodolphe, E-mail: rodolphe.gilbin@irsn.fr [IRSN-Laboratoire de Biogéochimie, Biodisponibilité et Transferts des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France)

    2013-09-15

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F{sub 0}/F{sub v}. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F{sup ′}{sub q}/F{sup ′}{sub m}, EC{sub 50} = 303 ± 64 μg U L{sup −1} after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC{sub 50} = 142 ± 98 μg U L{sup −1} after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown

  3. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Cheloni, Giulia; Marti, Elodie; Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch

    2016-01-15

    Highlights: • Comparable stability of CuO-NP suspensions under different light conditions. • UVR* inhibits growth, bleaches chlorophyll fluorescence and damages membrane. • Below 1 mg L{sup −1} CuO-NPs do not attenuate light in algal suspension. • SNL enhances significantly the effect of 0.8 mg L{sup −1} CuO-NPs on microalgae. • Synergistic interactions between UVR* and CuO-NPs. - Abstract: The present study explores the effect of light with different spectral composition on the stability of CuO-nanoparticle (CuO-NP) dispersions and their effects to green alga Chlamydomonas reinhardtii. The results showed that simulated natural light (SNL) and light with enhanced UVB radiation (UVR*) do not affect the dissolution of CuO-NPs as compared to light irradiation conditions typically used in laboratory incubator (INC). Comparable values of ζ-potential and hydrodynamic size during 24 h were found under all studied conditions. Concentrations of CuO-NPs below 1 mg L{sup −1} do not attenuate the light penetration in the algal suspensions in comparison with NP-free system. Exposure to a combination of 8 μg L{sup −1} or 0.8 mg L{sup −1} CuO-NPs and INC or SNL has no significant effect on the algal growth inhibition, algal fluorescence and membrane integrity under short-term exposure. However, an enhancement of the percentage of cells experiencing oxidative stress was observed upon exposure to 0.8 mg L{sup −1} CuO-NPs and SNL for 4 and 8 h. Combination of UVR* and 0.8 mg L{sup −1} CuO-NPs resulted in synergistic effects for all biological endpoints. Despite the photocatalytic properties of CuO-NPs no significant increase in abiotic reactive oxygen species (ROS) production under simulated solar radiation was observed suggesting that the synergistic effect observed might be correlated to other factors than CuO-NP-mediated ROS photoproduction. Tests performed with CuSO{sub 4} confirmed the important role of dissolution as toxicity driving force for lower

  4. Uptake of selenium by the unicellular green alga Chlamydomonas reinhardtii - effects induced by chronic exposure

    International Nuclear Information System (INIS)

    Morlon, H.; Fortin, C.; Pradines, C.; Floriani, M.; Grasset, G.; Adam, C.; Garnier-Laplace, J.

    2004-01-01

    79 Se is a long-lived radionuclide present in radioactive waste storages. The stable isotope selenium is an essential micro-nutrient that can act against oxidative damage. It is however well known for its bio-magnification potential and chemical toxicity to aquatic life. One of its particularity is to form oxyanions in freshwater ecosystems, which leads to specific behaviours towards biological membranes. Our study deals with the interactions between selenite -Se(IV)- and Chlamydomonas reinhardtii, a unicellular green alga representative of the freshwater phytoplankton community. Cells were exposed to selenite marked with Se 75 in well-known simple inorganic media. Short-term experiments (about one hour of exposure) were performed to better understand selenite transport (uptake kinetics and levels) and identify main factors influencing absorption (nutrients concentrations, pH). Long-term experiments (4 days of exposure) were performed (1) to evaluate the bioaccumulation considering environmentally relevant time scales, (2) to localize the intracellular selenium using EDAX-TEM and (3) to assess the toxicity of selenium as measured by growth impairment, ultrastructural changes, starch accumulation, and loss of pigment. Short-term experiments revealed a time-dependent linear absorption with an estimated absorbed flux of about 0.25 nmol.m -2 .nM -1 .h -1 . The absorption was proportional to ambient levels, except at very low concentrations (ca. 0.5 nM), were it was proportionally higher, suggesting that a specific but rapidly saturated transport could be used at those low concentrations. Selenite uptake was not dependent on phosphate nor carbonate concentrations. It was nevertheless inhibited by sulphate and nitrate, indicating that selenite could share common transporters with those nutrients. The accumulation was found to be maximum for intermediate pH around 7. EDAX-TEM analysis after long-term experiments revealed the presence of selenium in electron-dense granules

  5. Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Venkanna, Deepak; Südfeld, Christian; Baier, Thomas; Homburg, Sarah V; Patel, Anant V; Wobbe, Lutz; Kruse, Olaf

    2017-01-01

    The protein superfamily of short-chain dehydrogenases/reductases (SDR), including members of the atypical type (aSDR), covers a huge range of catalyzed reactions and in vivo substrates. This superfamily also comprises isoflavone reductase-like (IRL) proteins, which are aSDRs highly homologous to isoflavone reductases from leguminous plants. The molecular function of IRLs in non-leguminous plants and green microalgae has not been identified as yet, but several lines of evidence point at their implication in reactive oxygen species homeostasis. The Chlamydomonas reinhardtii IRL protein IFR1 was identified in a previous study, analyzing the transcriptomic changes occurring during the acclimation to sulfur deprivation and anaerobiosis, a condition that triggers photobiological hydrogen production in this microalgae. Accumulation of the cytosolic IFR1 protein is induced by sulfur limitation as well as by the exposure of C. reinhardtii cells to reactive electrophile species (RES) such as reactive carbonyls. The latter has not been described for IRL proteins before. Over-accumulation of IFR1 in the singlet oxygen response 1 ( sor1 ) mutant together with the presence of an electrophile response element, known to be required for SOR1-dependent gene activation as a response to RES, in the promoter of IFR1 , indicate that IFR1 expression is controlled by the SOR1-dependent pathway. An implication of IFR1 into RES homeostasis, is further implied by a knock-down of IFR1 , which results in a diminished tolerance toward RES. Intriguingly, IFR1 knock-down has a positive effect on photosystem II (PSII) stability under sulfur-deprived conditions used to trigger photobiological hydrogen production, by reducing PSII-dependent oxygen evolution, in C. reinhardtii . Reduced PSII photoinhibition in IFR1 knock-down strains prolongs the hydrogen production phase resulting in an almost doubled final hydrogen yield compared to the parental strain. Finally, IFR1 knock-down could be

  6. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Röhder, Lena A. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Brandt, Tanja [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Behra, Renata, E-mail: Renata.behra@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland)

    2014-07-01

    Highlights: • Phosphate-dispersed CeO₂ NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO₂ NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO₂ NP were caused by dissolved Ce³⁺ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO₂ NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO₂ NP and effects on algae are largely unknown. In this study, the short term effects of CeO₂ NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO₂ NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO₂ NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO₂ NP had a surface charge of ~0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO₂ NP at pH 7.5 over 24 h. This effect was exploited to test CeO₂ NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO₂ NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO₃)₃ decreased the photosynthetic yield in a concentration dependent manner with EC₅₀ of 7.5 ± 0.84 μM for wild type and EC₅₀ of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO₃)₃ with effective concentrations similar to those inhibiting photosynthesis. The agglomerated Ce

  7. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.

    Science.gov (United States)

    Abboud, Pauline; Wilkinson, Kevin J

    2013-08-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Effect of DNA and Sodium Cholate Dispersed Single-Walled Carbon Nano tubes on the Green Algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Williams, R.M.; Cox, Z.; Dolash, B.D.; Sooter, L.J.; Williams, R.M.; Taylor, H.K.; Thomas, J.

    2014-01-01

    Increasing use of single-walled carbon nano tubes (SWCNTs) will lead to their increased release into the environment. Previous work has shown negative effects of SWCNT on growth and survival of model organisms. The aim of the current study was to determine the effect of SWCNT well-dispersed by either DNA or sodium cholate (SC) on the unicellular green algae Chlamydomonas reinhardtii in stagnant water conditions. Growth measurements were taken up to ten days for algae treated with varied levels of DNA:SWCNT or SC:SWCNT or controls, and chlorophyll content after 10 days was determined. Results show no effect on either growth or chlorophyll content of algae at any concentration or duration. This is in contradiction to prior work showing toxicity of SWCNT to environmental model organisms.

  9. Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation.

    Science.gov (United States)

    Steinbeck, Janina; Nikolova, Denitsa; Weingarten, Robert; Johnson, Xenie; Richaud, Pierre; Peltier, Gilles; Hermann, Marita; Magneschi, Leonardo; Hippler, Michael

    2015-01-01

    Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.

  10. Crystallization and preliminary X-ray diffraction analysis of l,l-diaminopimelate aminotransferase (DapL) from Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Hudson, André O.; Girón, Irma; Dobson, Renwick C. J.

    2010-01-01

    A variant of the diaminopimelate/lysine pathway has recently been defined following the discovery of the enzyme l,l-diaminopimelate aminotransferase (DapL). The cloning of the cDNA, recombinant expression, purification and preliminary diffraction analysis of DapL from the alga C. reinhardtii are presented. In the anabolic synthesis of diaminopimelate and lysine in plants and in some bacteria, the enzyme l,l-diaminopimelate aminotransferase (DapL; EC 2.6.1.83) catalyzes the conversion of tetrahydrodipicolinic acid (THDPA) to l,l-diaminopimelate, bypassing the DapD, DapC and DapE enzymatic steps in the bacterial acyl pathways. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DapL from the alga Chlamydomonas reinhardtii are presented. Protein crystals were grown in conditions containing 25%(w/v) PEG 3350 and 200 mM lithium sulfate and initially diffracted to ∼1.35 Å resolution. They belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 58.9, b = 91.8, c = 162.9 Å. The data were processed to 1.55 Å resolution with an R merge of 0.081, an R p.i.m. of 0.044, an R r.i.m of 0.093 and a V M of 2.28 Å 3 Da −1

  11. Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations

    Science.gov (United States)

    Taylor, Nadine S.; Merrifield, Ruth; Williams, Tim D.; Chipman, J. Kevin; Lead, Jamie R.; Viant, Mark R.

    2016-01-01

    Abstract Ceria nanoparticles (NPs) are widely used as fuel catalysts and consequently are likely to enter the environment. Their potential impacts on. biota at environmentally relevant concentrations, including uptake and toxicity, remain to be elucidated and quantitative data on which to assess risk are sparse. Therefore, a definitive assessment of the molecular and phenotypic effects of ceria NPs was undertaken, using well-characterised mono-dispersed NPs as their toxicity is likely to be higher, enabling a conservative hazard assessment. Unbiased transcriptomics and metabolomics approaches were used to investigate the potential toxicity of tightly constrained 4–5 nm ceria NPs to the unicellular green alga, Chlamydomonas reinhardtii, a sentinel freshwater species. A wide range of exposure concentrations were investigated from predicted environmental levels, to support hazard assessment, to supra-environmental levels to provide insight into molecular toxicity pathways. Ceria NPs were internalised into intracellular vesicles within C. reinhardtii, yet caused no significant effect on algal growth at any exposure concentration. Molecular perturbations were only detected at supra-environmental ceria NP-concentrations, primarily down-regulation of photosynthesis and carbon fixation with associated effects on energy metabolism. For acute exposures to small mono-dispersed particles, it can be concluded there should be little concern regarding their dispersal into the environment for this trophic level. PMID:25740379

  12. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wang, Yingjun; Spalding, Martin H

    2006-06-27

    Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.

  13. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  14. Optimization of the C11-BODIPY581/591 Dye for the Determination of Lipid Oxidation in Chlamydomonas reinhardtii by Flow Cytometry

    OpenAIRE

    CHELONI Giulia

    2013-01-01

    Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof of concept work we examined the potential of the fluorescent dye C11 BODIPY591/581 to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11...

  15. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications.

    Science.gov (United States)

    Khan, Aliyya; Eikani, Carlo K; Khan, Hana; Iavarone, Anthony T; Pesavento, James J

    2018-01-05

    The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.

  16. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile.

    Science.gov (United States)

    Schein, Jessica R; Hunt, Kevin A; Minton, Janet A; Schultes, Neil P; Mourad, George S

    2013-09-01

    The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties for the lone C. reinhardtii nucleobase cation symporter 1 (CrNCS1) are determined through heterologous expression in Saccharomyces cerevisiae. CrNCS1 acts as a transporter of adenine, guanine, uracil and allantoin, sharing similar - but not identical - solute recognition specificity with the evolutionary distant NCS1 from Arabidopsis thaliana. The results suggest that the solute specificity for plant NCS1 occurred early in plant evolution and are distinct from solute transport specificities of single cell fungal NCS1 proteins. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide.

    Directory of Open Access Journals (Sweden)

    Beth A Rasala

    Full Text Available Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly 'cleaved' at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (~100-fold increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.

  18. Toxicity and mode of action of tritium alone and mixed with copper on the green algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Rety, Celine

    2010-01-01

    Liquid releases by Nuclear Power Plants (NPP) are composed of a mixture of radioactive and non-radioactive substances. When organisms are exposed to mixtures of contaminants the resultant toxicity can be enhanced, or reduced, due to interactions. In order to identify potential interactions between substances released by NPP, two substances representative of such effluents (in term of toxicity and of quantity) were selected for studies: Tritiated water (HTO) and copper (Cu). Effects of this binary mixture were studied on the unicellular green algae Chlamydomonas reinhardtii. HTO, when examined along, was not very toxic to C. reinhardtii. The most sensitive and early effect of HTO was an increase in oxidative stress at concentrations of 40 kBq mL -1 (0.13 μGy h -1 ). Algae exposure to the binary mixture HTO/Cu induced interactive effects on oxidative stress. Reactive Oxygen Species production was higher from exposure to the mixture of contaminants than the addition of the effect from each substance individually. This interaction was explained by an enhanced copper uptake by the algae when in the presence of HTO. The observed supra-additive effect could also be due to direct toxic interactions, especially on the antioxidant system. To conclude, this study showed that the effects of a mixture of radioactive and nonradioactive substances can be greater than what would be predicted based on mere addition of individual effects. Even thought this binary mixture is just a small part of NPP effluents, the study showed that potential interactions should be considered when determining ecological risks to aquatic ecosystems from NPP effluents. (author)

  19. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  20. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B.; Junghans, Marion; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  1. Site Energies of Active and Inactive Pheophytins in the Reaction Center of Photosystem II from Chlamydomonas Reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, K.; Neupane, B.; Zazubovich, V.; Sayre, R. T.; Picorel, R.; Seibert, M.; Jankowiak, R.

    2012-03-29

    It is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction center (RC) preparations is pheophytin {alpha} (Pheo {alpha}) within the D1 protein (Pheo{sub D1}), while Pheo{sub D2} (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the past two decades placed the Q{sub y}-states of Pheo{sub D1} and Pheo{sub D2} bands near 678-684 and 668-672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986-998; Cox et al. J. Phys. Chem. B 2009, 113, 12364-12374] of the electronic structure of the PSII RC reversed the assignment of the active and inactive Pheos, suggesting that the mean site energy of Pheo{sub D1} is near 672 nm, whereas Pheo{sub D2} ({approx}677.5 nm) and Chl{sub D1} ({approx}680 nm) have the lowest energies (i.e., the Pheo{sub D2}-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Q{sub y} absorption maxima at 676-680 nm [Germano et al. Biochemistry 2001, 40, 11472-11482; Germano et al. Biophys. J. 2004, 86, 1664-1672]. To provide more insight into the site energies of both Pheo{sub D1} and Pheo{sub D2} (including the corresponding Q{sub x} transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch Pheo{sub D1} is genetically replaced with chlorophyll {alpha} (Chl {alpha}). We show that the Q{sub x}-/Q{sub y}-region site energies of Pheo{sub D1} and Pheo{sub D2} are {approx}545/680 nm and {approx}541.5/670 nm, respectively, in good agreement with our previous assignment

  2. Copper excess-induced large reversible and small irreversible adaptations in a population of Chlamydomonas reinhardtii CW15 (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Bartosz Pluciński

    2018-03-01

    Full Text Available Two Chlamydomonas reinhardtii CW15 populations modified by an excess of copper in growth medium were obtained: a “Cu” population that was continuously grown under the selection pressure of 5 µM Cu2+ (for at least 48 weeks and the “Re” population, where a relatively short (9 week exposure to elevated copper, necessary for acquiring tolerance, was followed by a prolonged period (at least 39 weeks of cultivation at a normal (0.25 µM copper concentration. Cells of the Cu population were able to multiply at a Cu2+ concentration 16 times higher than that of the control population at a normal light intensity and at a Cu2+ concentration 64 times higher when cultivated in dim light. The potential quantum yield of photosystem II (FV/FM ratio under copper stress was also significantly higher for the Cu population than for Re and control populations. The Re population showed only residual tolerance towards the elevated concentration of copper, which is revealed by an FV/FM ratio slightly higher than in the control population under Cu2+ stress in dim light or in darkness. We postulate that in the Chlamydomonas populations studied in this paper, at least two mechanisms of copper tolerance operate. The first mechanism is maintained during cultivation at a standard copper concentration and seems to be connected with photosynthetic apparatus. This mechanism, however, has only low adaptive value under excess of copper. The other mechanism, with a much higher adaptive value, is probably connected with Cu2+ homeostasis at the cellular level, but is lost during cultivation at a normal copper concentration.

  3. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Nagy, Valéria; Vidal-Meireles, André; Podmaniczki, Anna; Szentmihályi, Klára; Rákhely, Gábor; Zsigmond, Laura; Kovács, László; Tóth, Szilvia Z

    2018-05-01

    Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H 2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  4. The energy balance of the biomass generation of Chlamydomonas acidophila under acidic and neutral conditions and Chlamydomonas reinhardtii; Die Energiebilanz der Biomasseneubildung von Chlamydomonas acidophila unter sauren und neutralen Bedingungen und von Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Langner, Uwe

    2009-01-16

    In this study the influence of pH < 3 as an extreme environment has been investigated for the eukaryotic green alga Chlamydomonas (C.) acidophila. The limited number of trophic levels, consisting of bacteria, phytoplankton, zooplankton and macrophytes, is a special characteristic of extreme acidic water bodies. C. acidophila was isolated from an extreme acidic mining lake (RL 111) (Bissinger et al. 2000). A special feature of the examined algal species is its wide tolerance range of external pH values from 2 to 7 (Cassin 1874, Gerloff-Elias et al. 2005a). C. acidophila is a dominant species in the acidic mining lakes, it can grow up to chlorophyll maxima of 500 {mu}g L{sup -1} during the summer time (Nixdorf et al. 1998, 2003). The alga can be found elsewhere in extreme acidic water bodies around the world. The hydrochemistry of the acidic mining lakes in the central regions of Germany and Lusatia show clear differences compared to neutral water bodies. Some of the characteristics of acidic mining lakes are high metal and heavy metal (aluminum) concentrations, high ion concentrations, which lead to high conductivity, as well as low phosphate concentrations, ammonium as the only nitrogen source and CO{sub 2} as the only inorganic carbon source. Many eukaryotic microalgae in acidic water bodies including C. acidophila show a neutral cytosolic pH. This is provided by special adaptations of the organisms. Thus, organisms in extreme acidic environments have a positive cell surface charge, a very efficient H{sup +}-ATPase and high internal buffer capacities. These mechanisms work contrary to the proton influx and the acidification of the cytosol and are therefore proof for the physiological impact of osmoregulation by microalgae in extreme acidic environments (Sekler et al.1991, Weiss et al. 1999). Hence, these mechanisms also complicate the access to nutrients for the algal cell. The passive influx of positively charged ions such as potassium or ammonium is reduced by

  5. Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity

    Czech Academy of Sciences Publication Activity Database

    Vítová, Milada; Bišová, Kateřina; Umysová, Dáša; Hlavová, Monika; Kawano, S.; Zachleder, Vilém; Čížková, Mária

    2011-01-01

    Roč. 233, č. 1 (2011), s. 75-86 ISSN 0032-0935 R&D Projects: GA AV ČR IAA500200614; GA ČR GA525/09/0102; GA ČR GA204/09/0111 Institutional research plan: CEZ:AV0Z50200510 Keywords : Cell division timing * Cell cycle phases * Chlamydomonas Subject RIV: EE - Microbiology, Virology Impact factor: 3.000, year: 2011

  6. A mutation in the centriole-associated protein centrin causes genomic instability via increased chromosome loss in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Marshall Wallace F

    2005-05-01

    Full Text Available Abstract Background The role of centrioles in mitotic spindle function remains unclear. One approach to investigate mitotic centriole function is to ask whether mutation of centriole-associated proteins can cause genomic instability. Results We addressed the role of the centriole-associated EF-hand protein centrin in genomic stability using a Chlamydomonas reinhardtii centrin mutant that forms acentriolar bipolar spindles and lacks the centrin-based rhizoplast structures that join centrioles to the nucleus. Using a genetic assay for loss of heterozygosity, we found that this centrin mutant showed increased genomic instability compared to wild-type cells, and we determined that the increase in genomic instability was due to a 100-fold increase in chromosome loss rates compared to wild type. Live cell imaging reveals an increased rate in cell death during G1 in haploid cells that is consistent with an elevated rate of chromosome loss, and analysis of cell death versus centriole copy number argues against a role for multipolar spindles in this process. Conclusion The increased chromosome loss rates observed in a centrin mutant that forms acentriolar spindles suggests a role for centrin protein, and possibly centrioles, in mitotic fidelity.

  7. Crystallization and preliminary X-ray diffraction analysis of L,L-diaminopimelate aminotransferase (DapL) from Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hudson, André O; Girón, Irma; Dobson, Renwick C J

    2011-01-01

    In the anabolic synthesis of diaminopimelate and lysine in plants and in some bacteria, the enzyme L,L-diaminopimelate aminotransferase (DapL; EC 2.6.1.83) catalyzes the conversion of tetrahydrodipicolinic acid (THDPA) to L,L-diaminopimelate, bypassing the DapD, DapC and DapE enzymatic steps in the bacterial acyl pathways. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DapL from the alga Chlamydomonas reinhardtii are presented. Protein crystals were grown in conditions containing 25% (w/v) PEG 3350 and 200 mM lithium sulfate and initially diffracted to ∼1.35 Å resolution. They belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=58.9, b=91.8, c=162.9 Å. The data were processed to 1.55 Å resolution with an Rmerge of 0.081, an Rp.i.m. of 0.044, an Rr.i.m of 0.093 and a VM of 2.28 Å3 Da(-1).

  8. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    Science.gov (United States)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells.

    Science.gov (United States)

    Dinc, Emine; Tian, Lijin; Roy, Laura M; Roth, Robyn; Goodenough, Ursula; Croce, Roberta

    2016-07-05

    To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the difficulty in extracting molecular information from in vivo experiments and the absence of a validation system for in vitro experiments. Here, we have created a minimal cell of the green alga Chlamydomonas reinhardtii that is able to undergo NPQ. We show that LHCII, the main light harvesting complex of algae, cannot switch to a quenched conformation in response to pH changes by itself. Instead, a small amount of the protein LHCSR1 (light-harvesting complex stress related 1) is able to induce a large, fast, and reversible pH-dependent quenching in an LHCII-containing membrane. These results strongly suggest that LHCSR1 acts as pH sensor and that it modulates the excited state lifetimes of a large array of LHCII, also explaining the NPQ observed in the LHCSR3-less mutant. The possible quenching mechanisms are discussed.

  10. Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gardner, Robert D; Lohman, Egan; Gerlach, Robin; Cooksey, Keith E; Peyton, Brent M

    2013-01-01

    Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO(2) (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO(2) (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage. Copyright © 2012 Wiley Periodicals, Inc.

  11. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Abboud, Pauline; Wilkinson, Kevin J.

    2013-01-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd–Pb and Cd–Cu, but not the Cd–Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. -- Highlights: •Cd bioaccumulation and phytochelatin production were evaluated for metal mixtures. •Bioaccumulated metal rather than free ion was a better predictor of biological effect. •Calcium additions decreased Cd bioaccumulation but increased phytochelatin production. •Copper additions increased Cd bioaccumulation and phytochelatin production. •Lead additions had little effect on either Cd bioaccumulation or phytochelatin production. -- In metal mixtures containing Cd and Ca, Pb or Cu, bioaccumulated metal rather than free ion was a better predictor of biological effect

  12. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Oncel, S.; Vardar-Sukan, F. [Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2011-01-01

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm{sup -2} for about 50 h with 10 {omega} load and 0.23 mA cm{sup -2} for about 80 h with 100 {omega} load. (author)

  13. Determination of the speciation and bioavailability of samarium to Chlamydomonas reinhardtii in the presence of natural organic matter.

    Science.gov (United States)

    Rowell, Justine-Anne; Fillion, Marc-Alexandre; Smith, Scott; Wilkinson, Kevin J

    2018-06-01

    As technological interest and environmental emissions of the rare earth elements increase, it is becoming more important to assess their potential environmental impact. Samarium (Sm) is a lanthanide of intermediate molar mass that is used in numerous high-technology applications including wind turbines, solar panels, and electric vehicles. The present study relates the speciation of Sm determined in the presence of natural organic matter (NOM) to its bioavailability to the unicellular green alga Chlamydomonas reinhardtii. The free ion concentration was determined using a cation exchange resin (ion exchange technique) in dynamic mode and compared with thermodynamic modeling. Short-term biouptake experiments were performed in the presence of 4 types of NOM: Suwannee River fulvic acids, Pahokee Peat fulvic acids, Suwannee River humic acids, and a Luther Marsh dissolved organic matter isolate (90-95% humic acids). It was clearly shown that even a small amount of NOM (0.5 mg C L -1 ) resulted in a significant decrease (10 times) in the Sm internalization fluxes. Furthermore, complexation with humic acids (and the corresponding reduction in Sm bioavailability) was stronger than that with fulvic acids. The results showed that the experimentally measured (free) Sm was a better predictor of Sm internalization than either the total concentrations or the free ion concentrations obtained using thermodynamic modeling. Environ Toxicol Chem 2018;37:1623-1631. © 2018 SETAC. © 2018 SETAC.

  14. Acetate and bicarbonate assimilation and metabolite formation in Chlamydomonas reinhardtii: a 13C-NMR study.

    Directory of Open Access Journals (Sweden)

    Himanshu Singh

    Full Text Available Cellular metabolite analyses by (13C-NMR showed that C. reinhardtii cells assimilate acetate at a faster rate in heterotrophy than in mixotrophy. While heterotrophic cells produced bicarbonate and CO2aq, mixotrophy cells produced bicarbonate alone as predominant metabolite. Experiments with singly (13C-labelled acetate ((13CH(3-COOH or CH(3-(13COOH supported that both the (13C nuclei give rise to bicarbonate and CO2(aq. The observed metabolite(s upon further incubation led to the production of starch and triacylglycerol (TAG in mixotrophy, whereas in heterotrophy the TAG production was minimal with substantial accumulation of glycerol and starch. Prolonged incubation up to eight days, without the addition of fresh acetate, led to an increased TAG production at the expense of bicarbonate, akin to that of nitrogen-starvation. However, such TAG production was substantially high in mixotrophy as compared to that in heterotrophy. Addition of mitochondrial un-coupler blocked the formation of bicarbonate and CO2(aq in heterotrophic cells, even though acetate uptake ensued. Addition of PSII-inhibitor to mixotrophic cells resulted in partial conversion of bicarbonate into CO2(aq, which were found to be in equilibrium. In an independent experiment, we have monitored assimilation of bicarbonate via photoautotrophy and found that the cells indeed produce starch and TAG at a much faster rate as compared to that in mixotrophy and heterotrophy. Further, we noticed that the accumulation of starch is relatively more as compared to TAG. Based on these observations, we suggest that acetate assimilation in C. reinhardtii does not directly lead to TAG formation but via bicarbonate/CO2(aq pathways. Photoautotrophic mode is found to be the best growth condition for the production of starch and TAG and starch in C. reinhardtii.

  15. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.

    Science.gov (United States)

    Sun, Jingyi; Simsek, Halis

    2017-07-01

    Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.

  16. Tracking the elusive 5' exonuclease activity of Chlamydomonas reinhardtii RNase J.

    Science.gov (United States)

    Liponska, Anna; Jamalli, Ailar; Kuras, Richard; Suay, Loreto; Garbe, Enrico; Wollman, Francis-André; Laalami, Soumaya; Putzer, Harald

    2018-04-01

    Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5' exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation. RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5' end maturation is thought to be achieved by the combined action of a 5' exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5' exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5' exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5' exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.

  17. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor; Etude des voies metaboliques de production d'hydrogene chez la microalgue Chlamydomonas reinhardtii et transposition en photobioreacteur

    Energy Technology Data Exchange (ETDEWEB)

    Fouchard, S

    2006-04-15

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  18. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor; Etude des voies metaboliques de production d'hydrogene chez la microalgue Chlamydomonas reinhardtii et transposition en photobioreacteur

    Energy Technology Data Exchange (ETDEWEB)

    Fouchard, S

    2006-04-15

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  19. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure

    International Nuclear Information System (INIS)

    Morlon, H.

    2005-03-01

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to μM and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se 75 as a tracer in short term exposures ( -2 .nM -1 .h -1 . The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to μM). However, fluxes were higher at very low concentrations ( μM), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations (∼mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 μM ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For the cell collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that they contained selenium and were also rich in calcium and phosphorus. Finally, growth inhibition was highly correlated to the bioaccumulation of selenite. The latter was inhibited by increasing

  20. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-01-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post......-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas...... in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins....

  1. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K.

    Science.gov (United States)

    Giera, Wojciech; Szewczyk, Sebastian; McConnell, Michael D; Redding, Kevin E; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2018-04-04

    Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.

  2. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Nestler, Holger; Groh, Ksenia J.; Schönenberger, René; Behra, Renata; Schirmer, Kristin; Eggen, Rik I.L.; Suter, Marc J.-F.

    2012-01-01

    The release of herbicides into the aquatic environment raises concerns about potential detrimental effects on ecologically important non-target species, such as unicellular algae, necessitating ecotoxicological risk assessment. Algal toxicity tests based on growth, a commonly assessed endpoint, are integrative, and hence do not provide information about underlying toxic mechanisms and effects. This limitation may be overcome by measuring more specific biochemical and physiological endpoints. In the present work, we developed and applied a novel multiple-endpoint assay, and analyzed the effects of the herbicides paraquat, diuron and norflurazon, each representing a specific mechanism of toxic action, on the single celled green alga Chlamydomonas reinhardtii. The endpoints added to assessment of growth were pigment content, maximum and effective photosystem II quantum yield, ATP content, esterase and oxidative activity. All parameters were measured at 2, 6 and 24 h of exposure, except for growth and pigment content, which were determined after 6 and 24 h only. Effective concentrations causing 50% of response (EC50s) and lowest observable effect concentrations (LOECs) were determined for all endpoints and exposure durations where possible. The assay provided a detailed picture of the concentration- and time-dependent development of effects elicited by the analyzed herbicides, thus improving the understanding of the underlying toxic mechanisms. Furthermore, the response patterns were unique to the respective herbicide and reflected the different mechanisms of toxicity. The comparison of the endpoint responses and sensitivities revealed that several physiological and biochemical parameters reacted earlier or stronger to disturbances than growth. Overall, the presented multiple-endpoint assay constitutes a promising basis for investigating stressor and toxicant effects in green algae.

  3. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor

    International Nuclear Information System (INIS)

    Fouchard, S.

    2006-04-01

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  4. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, Holger [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); Groh, Ksenia J.; Schoenenberger, Rene; Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); Schirmer, Kristin [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne (Switzerland); Eggen, Rik I.L. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland); Suter, Marc J.-F., E-mail: suter@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland); ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich (Switzerland)

    2012-04-15

    The release of herbicides into the aquatic environment raises concerns about potential detrimental effects on ecologically important non-target species, such as unicellular algae, necessitating ecotoxicological risk assessment. Algal toxicity tests based on growth, a commonly assessed endpoint, are integrative, and hence do not provide information about underlying toxic mechanisms and effects. This limitation may be overcome by measuring more specific biochemical and physiological endpoints. In the present work, we developed and applied a novel multiple-endpoint assay, and analyzed the effects of the herbicides paraquat, diuron and norflurazon, each representing a specific mechanism of toxic action, on the single celled green alga Chlamydomonas reinhardtii. The endpoints added to assessment of growth were pigment content, maximum and effective photosystem II quantum yield, ATP content, esterase and oxidative activity. All parameters were measured at 2, 6 and 24 h of exposure, except for growth and pigment content, which were determined after 6 and 24 h only. Effective concentrations causing 50% of response (EC50s) and lowest observable effect concentrations (LOECs) were determined for all endpoints and exposure durations where possible. The assay provided a detailed picture of the concentration- and time-dependent development of effects elicited by the analyzed herbicides, thus improving the understanding of the underlying toxic mechanisms. Furthermore, the response patterns were unique to the respective herbicide and reflected the different mechanisms of toxicity. The comparison of the endpoint responses and sensitivities revealed that several physiological and biochemical parameters reacted earlier or stronger to disturbances than growth. Overall, the presented multiple-endpoint assay constitutes a promising basis for investigating stressor and toxicant effects in green algae.

  5. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification.

    Science.gov (United States)

    Fouchard, Swanny; Pruvost, Jérémy; Degrenne, Benoit; Titica, Mariana; Legrand, Jack

    2009-01-01

    Chlamydomonas reinhardtii is a green microalga capable of turning its metabolism towards H2 production under specific conditions. However this H2 production, narrowly linked to the photosynthetic process, results from complex metabolic reactions highly dependent on the environmental conditions of the cells. A kinetic model has been developed to relate culture evolution from standard photosynthetic growth to H2 producing cells. It represents transition in sulfur-deprived conditions, known to lead to H2 production in Chlamydomonas reinhardtii, and the two main processes then induced which are an over-accumulation of intracellular starch and a progressive reduction of PSII activity for anoxia achievement. Because these phenomena are directly linked to the photosynthetic growth, two kinetic models were associated, the first (one) introducing light dependency (Haldane type model associated to a radiative light transfer model), the second (one) making growth a function of available sulfur amount under extracellular and intracellular forms (Droop formulation). The model parameters identification was realized from experimental data obtained with especially designed experiments and a sensitivity analysis of the model to its parameters was also conducted. Model behavior was finally studied showing interdependency between light transfer conditions, photosynthetic growth, sulfate uptake, photosynthetic activity and O2 release, during transition from oxygenic growth to anoxic H2 production conditions.

  6. The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Chlamydomonas reinhardtii for Biofuels Production.

    Science.gov (United States)

    Hounslow, Emily; Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman; Gilmour, D James; Wright, Phillip C

    2016-11-01

    Algal cells produce neutral lipid when stressed and this can be used to generate biodiesel. Salt stressed cells of the model microalgal species Chlamydomonas reinhardtii were tested for their suitability to produce lipid for biodiesel. The starchless mutant of C. reinhardtii (CC-4325) was subjected to salt stress (0.1, 0.2 and 0.3 M NaCl) and transesterification and GC analysis were used to determine fatty acid methyl ester (FAME) content and profile. Fatty acid profile was found to vary under salt stress conditions, with a clear distinction between 0.1 M NaCl, which the algae could tolerate, and the higher levels of NaCl (0.2 and 0.3 M), which caused cell death. Lipid content was increased under salt conditions, either through long-term exposure to 0.1 M NaCl, or short-term exposure to 0.2 and 0.3 M NaCl. Palmitic acid (C16:0) and linolenic acid (C18:3n3) were found to increase significantly at the higher salinities. Salt increase can act as a lipid trigger for C. reinhardtii.

  7. Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Venkateswarlu Yadavalli

    Full Text Available BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role

  8. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Aharchaou, Imad [Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz (France); Rosabal, Maikel; Liu, Fengjie [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9 (Canada); Battaglia, Eric; Vignati, Davide A.L. [Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz (France); Fortin, Claude, E-mail: claude.fortin@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9 (Canada)

    2017-01-15

    Highlights: • C. reinhardtii accumulated similar levels of Cr(III) and Cr(VI). • The subcellular partitioning of Cr(III) and Cr(VI) was similar. • Cr(III) and Cr(VI) associated mainly with organelles and heat-stable proteins. • Metallomic analysis showed two main Cr-binding biomolecules after 72 h of exposure. - Abstract: Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known. Using the radioactive tracer {sup 51}Cr we compared the accumulation (absorption and adsorption) of the two Cr forms by the green unicellular alga Chlamydomonas reinhardii after 1 h and 72 h of exposure to 100 nM of either Cr(III) or Cr(VI) at pH 7. Both Cr forms had similar accumulation, with a major part in the extracellular (adsorbed) fraction after 1 h and a major part of total accumulated Cr in the intracellular (absorbed) fraction after 72 h. We also investigated the intracellular partitioning of Cr using an operational fractionation scheme and found that both Cr forms had similar distributions among fractions: Cr was mostly associated with organelles (23 ± 12% after 1 h and 37 ± 7% after 72 h) and cytosolic heat-stable proteins and peptides (39 ± 18% after 1 h and 35 ± 3% after 72 h) fractions. Further investigations using a metallomic approach (SEC-ICP-MS) were performed with the heat-stable proteins and peptides fraction to compare the distribution of the two Cr forms among various biomolecules of this fraction. One Cr-binding biomolecule (∼28 kDa) appeared after 1 h of exposure for both Cr species. After 72 h another biomolecule of lower molecular weight (∼0.7 kDa) was involved in binding Cr and higher signal intensities were observed for Cr(VI) than for Cr(III). We show, for the

  9. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Aharchaou, Imad; Rosabal, Maikel; Liu, Fengjie; Battaglia, Eric; Vignati, Davide A.L.; Fortin, Claude

    2017-01-01

    Highlights: • C. reinhardtii accumulated similar levels of Cr(III) and Cr(VI). • The subcellular partitioning of Cr(III) and Cr(VI) was similar. • Cr(III) and Cr(VI) associated mainly with organelles and heat-stable proteins. • Metallomic analysis showed two main Cr-binding biomolecules after 72 h of exposure. - Abstract: Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known. Using the radioactive tracer "5"1Cr we compared the accumulation (absorption and adsorption) of the two Cr forms by the green unicellular alga Chlamydomonas reinhardii after 1 h and 72 h of exposure to 100 nM of either Cr(III) or Cr(VI) at pH 7. Both Cr forms had similar accumulation, with a major part in the extracellular (adsorbed) fraction after 1 h and a major part of total accumulated Cr in the intracellular (absorbed) fraction after 72 h. We also investigated the intracellular partitioning of Cr using an operational fractionation scheme and found that both Cr forms had similar distributions among fractions: Cr was mostly associated with organelles (23 ± 12% after 1 h and 37 ± 7% after 72 h) and cytosolic heat-stable proteins and peptides (39 ± 18% after 1 h and 35 ± 3% after 72 h) fractions. Further investigations using a metallomic approach (SEC-ICP-MS) were performed with the heat-stable proteins and peptides fraction to compare the distribution of the two Cr forms among various biomolecules of this fraction. One Cr-binding biomolecule (∼28 kDa) appeared after 1 h of exposure for both Cr species. After 72 h another biomolecule of lower molecular weight (∼0.7 kDa) was involved in binding Cr and higher signal intensities were observed for Cr(VI) than for Cr(III). We show, for the

  10. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Cindy, E-mail: c.gunawan@unsw.edu.au [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Sirimanoonphan, Aunchisa [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Teoh, Wey Yang [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Marquis, Christopher P., E-mail: c.marquis@unsw.edu.au [School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW (Australia); Amal, Rose [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2013-09-15

    Highlights: • Uptake of TiO{sub 2} solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO{sub 2} exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO{sub 2} and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO{sub 2} exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO{sub 2} stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO{sub 2} exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO{sub 2}/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.

  11. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Gunawan, Cindy; Sirimanoonphan, Aunchisa; Teoh, Wey Yang; Marquis, Christopher P.; Amal, Rose

    2013-01-01

    Highlights: • Uptake of TiO 2 solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO 2 exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO 2 and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO 2 exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO 2 stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO 2 exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO 2 /L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials

  12. Comparison of the resistance of two Chlamydomonas reinhardii strains with different β- and carotene content

    International Nuclear Information System (INIS)

    Gikoshvili, T.I.; Vilenchik, M.M.; Ladygin, V.G.; Kuzin, A.M.

    1989-01-01

    Radiosensitivity of Chlamydomonas reinhardii strain containing considerable amount of ξ-carotene is lower than that of the wild strain. This indicates that ξ-caotene is oneof the natural radioresistance factors

  13. Effect of mutagen combined action on Chlamydomonas reinhardtii cells. II. Dependence of lethal effect on mutagen dose and on conditions of cultivation following mutagen action. [In Slovak

    Energy Technology Data Exchange (ETDEWEB)

    Podstavkova, S; Vlcek, D; Dubovsky, J [Komenskeho Univ., Bratislava (Czechoslovakia). Prirodovedecka Fakulta

    1978-01-01

    The effect of UV radiation and UV radiation combined with alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) was observed on survival of cells of the algae Chlamydomonas reinhardtii. In particular, single parts were evaluated of the overall lethal effect - dying of cells before division and dying of cells after division. It was found that the combined action of low doses of UV radiation and alkylnitrosoureas result in a pronounced protective effect which manifests itself by a higher frequency of surviving cells than was that effected by the action of alkylnitrosoureas alone. As a result of combined action with higher doses of UV radiation this effect is lost, and the resultant values will come close to the theoretically anticipated values. This gradual transition from a protective to an additive effect mainly manifests itself by changes in the proportion of cells dying before division.

  14. Effect of mutagen combined action on Chlamydomonas reinhardtii cells. I. Lethal effect dependence on the sequence of mutagen application and on cultivation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, D; Podstavkova, S; Dubovsky, J [Komenskeho Univ., Bratislava (Czechoslovakia). Prirodovedecka Fakulta

    1978-01-01

    The effect was investigated of single and combined actions of alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) and UV-radiation on the survival of cells of Chlamydomonas reinhardtii algae in dependence on the sequence of application of mutagens and on the given conditions of cultivation following mutagen activity. In particular, the single phases were investigated of the total lethal effect, i.e., the death of cells before division and their death after division. The most pronounced changes in dependence on the sequence of application of mutagens and on the given conditions of cultivation were noted in cell death before division. In dependence on the sequence of application of mutagens, the effect of the combined action on the survival of cells changed from an additive (alkylnitrosourea + UV-radiation) to a protective effect (UV-radiation + alkylnitrosourea).

  15. [The impact of melafen on the expression of chloroplastic chaperone protein HSP70B and photosynthetic pigments in cells of Chlamydomonas reinhardtii].

    Science.gov (United States)

    Ermokhina, O V; Belkina, G G; Oleskina, Iu P; Fattakhov, S G; Iurina, N P

    2009-01-01

    The effects of growth regulator of the new generation-melamine salt of bis(oxymethyl)phosphine acid (melafen)--on culture growth, pigment and protein content, and the induction of protective chloroplastic chaperone HSP70B in Chlamydomonas reinhardtii CW15 cells were studied. Melafen exhibited 10-30% growth inhibition at 10(-9)-10(-2)% concentration. At 10(-9)-10(-4)% of melafen electrophoretic concentration, the pattern of cellular proteins was similar to the control. The alterations in protein content of algae cells were detected only at 10(-2)% concentration. The content of chlorophyll and carotenoids in melafen-treated cells was 17-40% lower than in the control. Melafen at 10(-9)-109-2)% concentration inhibited HSP70B induction by 39-43% compared to untreated cells. The potential mechanism of melafen effect might involve its influence on nuclear gene expression.

  16. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ballottari, Matteo; Truong, Thuy B; De Re, Eleonora; Erickson, Erika; Stella, Giulio R; Fleming, Graham R; Bassi, Roberto; Niyogi, Krishna K

    2016-04-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Systems-Wide Analysis of Acclimation Responses to Long-Term Heat Stress and Recovery in the Photosynthetic Model Organism Chlamydomonas reinhardtii[W][OPEN

    Science.gov (United States)

    Hemme, Dorothea; Veyel, Daniel; Mühlhaus, Timo; Sommer, Frederik; Jüppner, Jessica; Unger, Ann-Katrin; Sandmann, Michael; Fehrle, Ines; Schönfelder, Stephanie; Steup, Martin; Geimer, Stefan; Kopka, Joachim; Giavalisco, Patrick; Schroda, Michael

    2014-01-01

    We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions. PMID:25415976

  18. Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    Science.gov (United States)

    Yang, Wei-Wan; Miao, Ai-Jun; Yang, Liu-Yan

    2012-01-01

    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii. PMID:22403644

  19. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.

    Directory of Open Access Journals (Sweden)

    Flavia Vischi Winck

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1 gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF and transcription regulator (TR genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1 and Lcr2 (Low-CO2 response regulator 2, may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome

  20. Transcriptional and cellular effects of benzotriazole UV stabilizers UV-234 and UV-328 in the freshwater invertebrates Chlamydomonas reinhardtii and Daphnia magna.

    Science.gov (United States)

    Giraudo, Maeva; Cottin, Guillaume; Esperanza, Marta; Gagnon, Pierre; Silva, Amila O De; Houde, Magali

    2017-12-01

    Benzotriazole ultra violet stabilizers (BZT-UVs) are compounds used in many applications and products to prevent photochemical degradation. Despite their widespread presence in aquatic ecosystems and persistence in the environment, there are very limited data on their effects and toxicity, and their modes of action remain largely unknown. The objectives of the present study were to evaluate the chronic effects of 2 BZT-UVs, 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV-234) and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), on the freshwater green algae Chlamydomonas reinhardtii and the freshwater crustacean Daphnia magna. Organisms were exposed to 0.01 and 10 μg/L of UV-234, UV-328, as well as a mixture of the 2 compounds. Life-history endpoints (viability, reproduction, and growth) and oxidative stress-related biomarkers (gene transcription, reactive oxygen species [ROS] production, and lipid peroxidation) were measured. Daphnia magna growth, reproduction, and gene transcription were not impacted by 21-d individual or mixed exposure. After 96-h of exposure, no differences were observed on the cellular viability of C. reinhardtii for either of the 2 BZT-UVs. In the algae, results showed increased ROS production in response to UV-328 and lipid peroxidation following exposure to UV-234. Synergistic effects of the 2 BZT-UVs were evident at the transcriptional level with 2 to 6 times up-regulation of glutathione peroxidase (gp x ) in response to the mixture for all treatment conditions. The transcription of superoxide dismutase (sod), catalase (cat), and ascorbic peroxidase (apx) was also regulated by UV-234 and UV-328 in the green algae, most likely as a result of ROS production and lipid peroxidation. Results from the present study suggest potential impacts of UV-234 and UV-328 exposure on the antioxidant defense system in C. reinhardtii. Environ Toxicol Chem 2017;36:3333-3342. © 2017 Crown in the Right of Canada. Published by

  1. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-01-01

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr_2O_3-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr_2O_3-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr_2O_3-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L"−"1 Cr_2O_3-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L"−"1 Cr_2O_3-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr_2O_3-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr_2O_3-NP after 24 h of treatment. - Highlights: • Cr_2O_3 nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L"−"1 at 72 h. • Cr_2O_3 nanoparticles increase ROS levels at 10 g L"−"1. • Cr_2O_3 nanoparticles affect photosynthetic electron transport.

  2. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cristina Henning da [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Perreault, François [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005 (United States); Oukarroum, Abdallah [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Melegari, Sílvia Pedroso [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Center of Marine Studies, Federal University of Parana, Beira-mar Avenue, 83255-976, Pontal do Parana, PR (Brazil); Popovic, Radovan [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Matias, William Gerson, E-mail: william.g.matias@ufsc.br [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil)

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr{sub 2}O{sub 3}-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr{sub 2}O{sub 3}-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr{sub 2}O{sub 3}-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L{sup −1} Cr{sub 2}O{sub 3}-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L{sup −1} Cr{sub 2}O{sub 3}-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr{sub 2}O{sub 3}-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr{sub 2}O{sub 3}-NP after 24 h of treatment. - Highlights: • Cr{sub 2}O{sub 3} nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L{sup −1} at 72 h. • Cr{sub 2}O{sub 3} nanoparticles increase ROS levels at 10 g L{sup −1}. • Cr{sub 2}O{sub 3} nanoparticles affect photosynthetic electron transport.

  3. The microalga Chlamydomonas reinhardtii CW-15 as a solar cell for hydrogen peroxide photoproduction. Comparison between free and immobilized cells and thylakoids for energy conversion efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, W.; Galvan, F.; Rosa, F.F. de la [Instituto de Bioquimica Vegetal y Fotosintesis, Universidad de Sevilla y CSIC, Sevilla (Spain)

    1995-11-28

    Immobilized cells and thylakoid vesicles of the microalga Chlamydomonas reinhardtii CW-15 have been developed as a solar cell because of their capabilities of producing hydrogen peroxide. This compound is an efficient and clean fuel used for rocket propulsion, motors and for heating. Hydrogen peroxide is produced by the photosystem in a catalyst cycle in which a redox mediator (methyl viologen) is reduced by electrons obtained from water by the photosynthetic apparatus of the microalga and it is re-oxidized by the oxygen dissolved in the solution. The photoproduction has been investigated using a discontinuous system with whole cells, or thylakoid vesicles, free or immobilized on alginate. The stimulation by azide as an inhibitor of catalase has also been analyzed. Under determined optimum conditions, the photoproduction by Ca-alginate entrapped cells, with a rate of 33 {mu}mol H{sub 2}O{sub 2}/mg Chl.h, was maintained for several hours with an energy conversion efficiency of 0.25%

  4. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called open-quotes water windowclose quotes area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition

  5. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii

    CERN Document Server

    Durnford Dion, G; McKim, Sarah M; Sarchfield, Michelle L

    2003-01-01

    To compensate for increases in photon flux density (PFD), photosynthetic organisms possess mechanisms for reversibly modulating their photosynthetic apparatus to minimize photodamage. The photoacclimation response in Chlamydomonas reinhardtii was assessed following a 10-fold increase in PFD over 24h. In addition to a 50% reduction in the amount of chlorophyll and light-harvesting complexes (LHC) per cell, the expression of genes encoding polypeptides of the light-harvesting antenna were also affected. The abundance of Lhcb (a LHCH gene), Lhcb4 (a CP29-like gene), and Lhca (a LHCI gene) transcripts were reduced by 65 to 80%, within 1-2 h; however, the RNA levels of all three genes recovered to their low-light (LL) concentrations within 6-8 h. To determine the role of transcript turnover in this transient decline in abundance, the stability of all transcripts was measured. Although there was no change in the Lhcb or Lhca transcript turnover time, the Lhcb4 mRNA stability decreased 2.5-fold immediately following...

  6. Optimization of the C11-BODIPY(581/591) dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry.

    Science.gov (United States)

    Cheloni, Giulia; Slaveykova, Vera I

    2013-10-01

    Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore, the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof-of-concept work, we examined the potential of the fluorescent dye C11-BODIPY(591/581) to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11-BODIPY(591/581) staining was combined with flow cytometry measurements to obtain multiparameter information on cellular features and oxidative stress damage within single cells. First, staining conditions were optimized by exploring the capability of the dye to stain algal cells under increasing cell and dye concentrations and different staining procedures. Then lipid oxidation in algae induced by short- and long-term exposures to the three metallic micropollutants, copper, mercury, and nanoparticulate copper oxide, and the two organic contaminants, diethyldithiocarbamate (DDC) and diuron was determined. In this work we pointed out C11-BODIPY(591/581) applicability in a wide range of exposure conditions, including studies of oxidation as a function of time and that it is suitable for in vivo measurements of lipid oxidation due to its high permeation and stability in cells and its low interference with algal autofluorescence. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  7. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii[C][W

    Science.gov (United States)

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf

    2014-01-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  8. Combined Increases in Mitochondrial Cooperation and Oxygen Photoreduction Compensate for Deficiency in Cyclic Electron Flow in Chlamydomonas reinhardtii[W][OPEN

    Science.gov (United States)

    Dang, Kieu-Van; Plet, Julie; Tolleter, Dimitri; Jokel, Martina; Cuiné, Stéphan; Carrier, Patrick; Auroy, Pascaline; Richaud, Pierre; Johnson, Xenie; Alric, Jean; Allahverdiyeva, Yagut; Peltier, Gilles

    2014-01-01

    During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)–mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand. PMID:24989042

  9. The mechanism of anthracene interaction with photosynthetic apparatus: A study using intact cells, thylakoid membranes and PS II complexes isolated from Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Aksmann, Anna; Shutova, Tatiana; Samuelsson, Goeran; Tukaj, Zbigniew

    2011-01-01

    Intact cells of Chlamydomonas reinhardtii as well as isolated thylakoid membranes and photosystem II complexes were used to examine a possible mechanism of anthracene (ANT) interaction with the photosynthetic apparatus. Since ANT concentrations above 1 mM were required to significantly inhibit the rate of oxygen evolution in PS II membrane fragments it may indicate that the toxicant did not directly interact with this photosystem. On the other hand, stimulation of oxygen uptake by ANT-treated thylakoids suggested that ANT could either act as an artificial electron acceptor in the photosynthetic electron transport chain or function as an uncoupler. Electron transfer from excited chlorophyll to ANT is impossible due to the very low reduction potential of ANT and therefore we propose that toxic concentrations of ANT increase the thylakoid membrane permeability and thereby function as an uncoupler, enhancing electron transport in vitro. Hence, its unspecific interference with photosynthetic membranes in vitro suggests that the inhibitory effect observed on intact cell photosynthesis is caused by uncoupling of phosphorylation.

  10. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W.; Page, A.M. [Univ. of London (United Kingdom); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  11. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    Science.gov (United States)

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  12. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  13. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Science.gov (United States)

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  14. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Melanie Oey

    Full Text Available Single cell green algae (microalgae are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels. Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3 in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%, LHCBM2 (81.2% ±0.037% and LHCBM3 (41.4% ±0.05% compared to 100% control levels, and improved light to H2 (180% and biomass (165% conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m(-2 s(-1 and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1 reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses near the photobioreactor surface; 2 improved light distribution in the reactor; 3 reduced photoinhibition; 4 early onset of HYDA expression and 5 reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems.

  15. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    Science.gov (United States)

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID

  16. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  17. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: Implications for an algal BLM

    International Nuclear Information System (INIS)

    Francois, Laura; Fortin, Claude; Campbell, Peter G.C.

    2007-01-01

    The influence of pH on short-term uptake of manganese and cadmium by the green alga Chlamydomonas reinhardtii was studied to better understand the nature of proton interactions with metal membrane transporters. Manganese and cadmium internalization fluxes (J int ) were measured over a wide range of free metal ion concentrations from 1 x 10 -10 to 4 x 10 -4 M at several pH values (Mn: 5.0, 6.5 and 8.0; Cd: 5.0 and 6.5). For both metals, first-order biological internalization kinetics were observed but the maximum transport flux (J max ) decreased when pH decreased, in contradiction with the Biotic Ligand Model (BLM). This result suggested a non-competitive inhibition of metal uptake by the H + -ion. A Michaelis-Menten type inhibition model considering proton and calcium competition was tested. The metal biotic ligand stability constants and the stability constants for competitive binding of Ca 2+ and H + with the metal transporters were calculated: for manganese, K Mn = 10 4.20 and K Ca = 10 3.71 ; for cadmium, K Cd = 10 4.19 and K Ca = 10 4.76 ; for both metal transport systems, K H was not a significant parameter. Furthermore, metal uptake was not significantly influenced by the pH of the antecedent growth medium, suggesting that increases in metal fluxes as the pH is raised are caused by conformational changes of the surface transport proteins rather than by the synthesis of additional transport sites. Our results demonstrate that the BLM in its present state does not properly describe the true influence of pH on manganese and cadmium uptake by algae and that a non-competitive inhibition component must be integrated

  18. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes.

    Directory of Open Access Journals (Sweden)

    Ankush Prasad

    Full Text Available Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non

  19. Study on heavy metal absorption capability of chlamidomonas reinhardtii in solution containing uranium and lead

    International Nuclear Information System (INIS)

    Nguyen Thuy Binh

    2003-01-01

    The mutant strain chlamydomonas reinhardtii No.4 obtained by C 5+ ion beam irradiation could be grown in simple mineral salt medium with initial pH range of 3.5-7.5 with continued illumination of 12,000 lux under aeration. The study demonstrated that the mutant strain C.reinhardtii had a good growth in mineral salt medium containing U 6+ (concentration about 0.015 mg/ml) and Pb 2+ (concentration about 65% and Pb 2+ about 60% from solution was estimated by analyzing dried cell. (NTB)

  20. Biogenesis and fate of the cell-cell adhesion molecule, agglutinin, during gametogenesis and fertilization of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Hunnicutt, G.R.

    1989-01-01

    Fertilization in Chlamydomonas begins with the species-specific recognition and adhesion between gametes of opposite mating types via agglutinin molecules on the flagellar surface. This adhesion generates a cAMP-mediated sexual signal that initiates the subsequent events of call wall release, mating structure activation, and cell fusion. Although flagella of paired gametes remain attached to each other until the zygote forms, the process is dynamic. Engaged agglutinins rapidly become inactivated and turnover, requiring the constant supply of new agglutinins to replace the lost molecules. A population of cell body associated agglutinins has been postulated to the pool of agglutinins recruited during this turnover. Cell body agglutinins, therefore were identified, purified, localized within the cells and compared to flagellar agglutinins. The relationship between these two agglutinin populations was also examined. Cell body agglutinins were biochemically indistinguishable from the flagellar form with respect to their M r , sedimentation coefficient, and hydrophobicity elution properties. Functionally, however, these molecules were inactive in situ. The calculated surface density of agglutinins in the cell body and flagellar domains was similar and thus could not explain their functional difference, but two domains contiguous and yet distinctive suggested they may be separated by a functional barrier. To test this, a method was developed, using a monoclonal antibody and cycloheximide, that removed the flagellar agglutinins so movement between the domains could be monitored. Mobilization of agglutinins onto the flagella did not occur unless sexual signaling was induced with cAMP and papaverine

  1. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pugliara, Alessandro [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Makasheva, Kremena; Despax, Bernard [LAPLACE (LAboratoire PLAsma et Conversion d' Energie), Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse (France); Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France); Sancho, Maria Carmen; Navarro, Enrique [IPE (Instituto Pirenaico de Ecología)-CSIC, Avda. Montañana 1005, Zaragoza 50059 (Spain); Echegoyen, Yolanda [I3A, Department of Analytical Chemistry, University of Zaragoza, C/ María de Luna 3, 50018, Zaragoza (Spain); Bonafos, Caroline, E-mail: bonafos@cemes.fr [nMat group-CEMES (Centre d' Elaboration de Matériaux et d' Etudes Structurales)-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse Cedex 4 (France)

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size < 20 nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20 h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49 μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. - Highlights: • Controlled synthesis of 2D arrays of silver nanoparticles embedded in silica. • Assessing bio-available silver release using the green algae as bio-sensors. • The Ag release can be controlled by the distance nanoparticles/dielectric surface. • All the Ag released in solution is in the form of Ag{sup +} ions. • Toxicity comparable to similar concentrations of

  2. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level

    International Nuclear Information System (INIS)

    Morlon, Helene; Fortin, Claude; Floriani, Magali; Adam, Christelle; Garnier-Laplace, Jacqueline; Boudou, Alain

    2005-01-01

    The toxicity of selenium in aquatic ecosystems is mainly linked to its uptake and biotransformation by micro-organisms, and its subsequent transfer upwards into the food chain. Thus, organisms at low trophic level, such as algae, play a crucial role. The aim of our study was to investigate the biological effects of selenite on Chlamydomonas reinhardtii, both at the sub-cellular level (effect on ultrastructure) and at the population level (effect on growth). The cells were grown under batch culture conditions in well-defined media and exposed to waterborne selenite at concentrations up to 500 μM; i.e. up to lethal conditions. Based on the relationship between Se concentration and cell density achieved after a 96 h exposure period, an EC 50 of 80 μM with a 95% confidence interval ranging between 64 and 98 μM was derived. No adaptation mechanisms were observed: the same toxicity was quantified for algae pre-contaminated with Se. The inhibition of growth was linked to impairments observed at the sub-cellular level. The intensity of the ultrastructural damages caused by selenite exposure depended on the level and duration of exposure. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For cells collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that these granules contained selenium and were also rich in calcium and phosphorus. This study confirms that the direct toxicity of selenite on the phytoplankton biomass is not likely to take place at concentrations found in the environment. At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a

  3. Selenite -Se(4)- uptake mechanisms in the unicellular green alga Chlamydomonas reinhardtii: bioaccumulation and effects induced on growth and ultrastructure; Mecanismes de prise en charge du selenite - Se(4)-chez l'algue verte unicellulaire Chlamydomonas reinhardtii. Bioaccumulation et effets induits sur la croissance et l'ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Morlon, H

    2005-03-15

    Selenium is an essential element, but becomes very toxic at higher concentrations. It occurs in the environment at concentrations ranging from nM to {mu}M and selenium pollution is a worldwide phenomenon. This works aims at improving the knowledge on the interactions between selenite - Se(IV) - and a freshwater phyto-planktonic organism: the unicellular green algae Chlamydomonas reinhardtii. The aim of the performed experiments were: i) to investigate selenite -Se(IV)- uptake mechanisms in C. reinhardtii, using Se{sup 75} as a tracer in short term exposures (<1 h); ii) to assess selenite toxicity as measured with growth impairment and ultrastructural damage (with EDAX-TEM analysis), using long term exposures (96 h) to stable selenite; iii) to evaluate the bioaccumulation capacity of selenite and its potential links with toxicity. Short-term experiments revealed a negligible adsorption and a time-dependent linear absorption with an estimated absorbed flux of about 0.2 nmol.m{sup -2}.nM{sup -1}.h{sup -1}. The uptake was proportional to ambient levels in a broad range of intermediate concentrations (from nM to {mu}M). However, fluxes were higher at very low concentrations (< nM), and decrease with increasing high concentrations ( > {mu}M), suggesting that a high affinity but rapidly saturated transport mechanism could be used at low concentrations, in parallel with a low affinity mechanism that would only saturate at high concentrations ({approx}mM). The latter could involve transporters used by sulphate and nitrates, as suggested by the inhibition of selenite uptake by those element. Se(IV) speciation changes with pH did not induce significant effect on bioavailability. On the basis of the relationship between Se concentration and maximal cell density achieved, an EC50 of 80 {mu}M ([64; 98]) was derived. No adaptation mechanism were observed as the same the same toxicity was quantified for Se-pre-exposed algae. Observations by TEM suggested chloroplasts as the first

  4. Influence of carbon dioxide, temperature, medium kind and light intensity on the growth of algae Chlamydomonas reinhardtii and Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    Olejnik Przemysław Piotr

    2016-01-01

    Full Text Available Microalgae attracts the attention of scientists because of the possibility of using in the energy industry as one of the substrates for the production of renewable energy. So far, the greatest emphasis was put on attempts to obtain strains, and technologies of their culturing, in order to efficiently acquire fat from cells and its further conversion to biodiesel using transesterification reaction. Increasingly, algae are considered also as an efficient biomass producer, which can be used as a substrate for methane production in biogas plants. In this study the influence of different physical and chemical conditions, on the growth of two algae species: Chlamydomonasreinhardtii and Scenedesmus obliquus was investigated. Based on the literature and the data obtained for the algae growth on the standard medium and the digestate remaining after fermentation, one may suggest further investigations on the use of other liquid waste from agriculture and industry for algae breeding, including chemical. analysis and supplementation of these mediums so as to provide the best conditions for their growth.

  5. Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division in Chlamydomonas reinhardtii

    Czech Academy of Sciences Publication Activity Database

    Oldenhof, H.; Bišová, Kateřina; Ende, H.; Zachleder, Vilém

    2004-01-01

    Roč. 42, - (2004), s. 341-348 ISSN 0981-9428 R&D Projects: GA ČR GA204/02/1438 Institutional research plan: CEZ:AV0Z5020903 Keywords : blue light * chlamydomonas reingardtii * cell cycle Subject RIV: EA - Cell Biology Impact factor: 1.414, year: 2004

  6. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants

    Directory of Open Access Journals (Sweden)

    de Montaigu Amaury

    2011-07-01

    Full Text Available Abstract A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker and in the strategies used to maintain and store transformants.

  7. Physiological and Biochemical characterization of Chlamydomonas sp. the Hydrogen Production's Strain

    International Nuclear Information System (INIS)

    Chader, S.; Belhamel, M.; H Hacene

    2006-01-01

    The hydrogen produced by biological way became, one of the most interesting subjects of research relating to development the energy system starting from renewable sources. This study describes the closed relation between the physiological behaviour, biochemical and rate of gases produced by Chlamydomonas sp. strain AT14, isolated in the area of Touat (the Sahara Algerian) and cultivated in a toric photo-bioreactor. A considerable growth was noted, where the concentration of the biomass double in only two days after incubation. The micro-algal cells present a 100% of viability, which relocate has satisfactory behaviour in the toric engine. In addition, the displacement water level in the system of measurement implies has gas production (0.1 ml) in coordination with the anaerobic period of the reactional enclosure. The yield of this way of hydrogen production is depending on the species used, the light intensity, and the conditions of culture. (authors)

  8. Improving the optimum yield and growth of Chlamydomonas ...

    African Journals Online (AJOL)

    N.T

    2016-06-08

    Jun 8, 2016 ... genomes such as Chlamydomonas reinhardtii, Chlorella vulgaris, Volvox ..... The potential of micro algae as laboratory tool in cosmetic industries ..... lutein by Chlorella protothecoides at various glucose concentrations in.

  9. Expression of a Synthetic Gene for the Major Cytotoxin (Cyt1Aa of Bacillus thuringiensis subsp. israelensis in the Chloroplast of Wild-Type Chlamydomonas

    Directory of Open Access Journals (Sweden)

    Seongjoon Kang

    2018-05-01

    Full Text Available Chlamydomonas reinhardtii (Chlamydomonas strains that are toxic to mosquito larvae because they express chloroplast transgenes that are based on the mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis (Bti could be very useful in mosquito control. Chlamydomonas has several advantages for this approach, including genetic controls not generally available with industrial algae. The Bti toxin is produced by sporulating bacteria and has been used for mosquito control for >30 years without creating highly resistant mosquito populations. The suite of toxins is four main proteins: three Cry proteins and the cytotoxic Cyt1Aa (27 kDa. Cyt1Aa is not very toxic to mosquitoes by itself, but it prevents the development of resistance. The production of Cyt1Aa in other microbes, however, has been challenging due to its affinity for certain membrane phospholipids. Here we report on the production of recombinant Cyt1Aa (rCyt1A in the chloroplast of photosynthetic Chlamydomonas at levels of at least 0.3% total protein. Live cell bioassays demonstrated toxicity of the rCyt1Aa Chlamydomonas to larvae of Aedes aegypti. We also expressed the chloroplast cyt1Aa gene in a wild-type Chlamydomonas strain (21 gr that can grow on nitrate. These results have implications for developing a Chlamydomonas strain that will be toxic to mosquito larvae but will not induce strongly resistant populations.

  10. The Chlamydomonas genome reveals the evolution of key animal and plant functions

    Czech Academy of Sciences Publication Activity Database

    Merchant, S.S.; Prochnik, S. E.; Bišová, Kateřina

    2007-01-01

    Roč. 318, - (2007), s. 245-251 ISSN 0036-8075 Institutional research plan: CEZ:AV0Z50200510 Keywords : chlamydomonas reinhardtii * alga * eukaryotic cell Subject RIV: EE - Microbiology, Virology Impact factor: 26.372, year: 2007

  11. Improving the optimum yield and growth of Chlamydomonas ...

    African Journals Online (AJOL)

    Chlamydomonas reinhardtii CC125 (wild type) and CW15 (cell wall mutants) were feed up on solid and liquid Tris phosphate (TP) media with various concentrations of acetate, glycerol(10-100 mM) or methanol (0.01-718 mM) and cultivated under phototrophic, mixotrophic and heterotrophic conditions. Use of 10 and 35 ...

  12. Characterization of a Native Algae Species Chlamydomonas debaryana: Strain Selection, Bioremediation Ability, and Lipid Characterization

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-08-01

    Full Text Available Native microalgal species may offer a favorable combination of both wastewater treatment and biofuel production. In this research, a green microalgae, Chlamydomonas debaryana, was isolated from a local lagoon, screened for its lipid content using flow cytometry, and further identified with microscopic observations and DNA sequence analysis. When using swine wastewater as a medium, the biomass yields were between 0.6 and 1.62 g/L, giving a median value of 1.11 g/L. By increasing mass transfer rates and providing sufficient light intensity, the microalgal growth was intrinsically enhanced. The growth of C. debaryana reduced most nutritional contents of the wastewater except iron. When combining the microalgal growth and nutrient removal, C. debaryana was able to utilize 1.3 to 1.6×103 mg COD (chemical oxygen demand/g biomass, 55 to 90 ppm ammonia/g biomass, and 48 to 89 ppm phosphorous/g biomass, The lipid content of C. debaryana was 19.9 ± 4.3% of cell dry weight. The transesterified microalgal oil mostly consisted of 14 kinds of fatty acids, ranging from C5 to C22, which can be refined into renewable jet fuel or used as sources of omega-3 and omega-6 fatty acids.

  13. An improved ARS2-derived nuclear reporter enhances the efficiency and ease of genetic engineering in Chlamydomonas

    DEFF Research Database (Denmark)

    Specht, Elizabeth A; Nour-Eldin, Hussam Hassan; Hoang, Kevin T D

    2015-01-01

    The model alga Chlamydomonas reinhardtii has been used to pioneer genetic engineering techniques for high-value protein and biofuel production from algae. To date, most studies of transgenic Chlamydomonas have utilized the chloroplast genome due to its ease of engineering, with a sizeable suite o...

  14. Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain)

    International Nuclear Information System (INIS)

    Aguilera, Angeles; Amils, Ricardo

    2005-01-01

    The effects of selected concentrations of Cd on the growth and ultrastructure of three strains of Chlamydomonas sp. isolated from a highly acidic river, Rio Tinto (SW Spain) were examined. The river is characterized by its extreme physico-chemical conditions in terms of low pH, mean 2.2 and high concentrations of heavy metals. Growth, Cd accumulation, chlorophyll a, influence of Fe in Cd toxicity and ultrastructural localization were determined. The strains were cultured in both, artificial chemically defined media as well as in natural water from the river. Since iron is the main component of the river water, the effect of different concentrations of this element in relation with Cd toxicity was also analysed. The three strains analysed showed comparable growth and ultrastructural changes. Cd concentration corresponding to 50% growth inhibition (EC 5 ) was 0.2 mM when cells were grown in artificial media. When cells were grown in natural water, no significant differences were found between the controls and the Cd supplemented media even at the highest concentration of 0.8 mM. At an inhibitory level of 0.1 mM of Cd, increasing the concentration of iron up to 90 or 180 mM resulted in a dramatic recovery in algal growth rates in artificial media, reaching normal growth curves. The accumulation of Cd depended on dose and time in the artificial media. The maximal accumulation of Cd was reached after 3 days for all Cd doses, and remained almost unchanged in the subsequent period of time. Chlorophyll a amount depended on dose but not on time in the artificial growth media. At the ultrastructural level, an increase in the periplasmalemmal space was observed due to the presence of a large number of vacuoles, together with a decrease in the relative volume of the nucleus when the cells were incubated in the presence of Cd. Pyrenoid and starch granules were observed and accumulation of spherical electron-dense bodies were also detected. X-ray spectra of these bodies for

  15. Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Angeles [Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain)]. E-mail: aaguilera@cbm.uam.es; Amils, Ricardo [Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Canto Blanco, 28049 Madrid (Spain)

    2005-11-30

    The effects of selected concentrations of Cd on the growth and ultrastructure of three strains of Chlamydomonas sp. isolated from a highly acidic river, Rio Tinto (SW Spain) were examined. The river is characterized by its extreme physico-chemical conditions in terms of low pH, mean 2.2 and high concentrations of heavy metals. Growth, Cd accumulation, chlorophyll a, influence of Fe in Cd toxicity and ultrastructural localization were determined. The strains were cultured in both, artificial chemically defined media as well as in natural water from the river. Since iron is the main component of the river water, the effect of different concentrations of this element in relation with Cd toxicity was also analysed. The three strains analysed showed comparable growth and ultrastructural changes. Cd concentration corresponding to 50% growth inhibition (EC{sub 5}) was 0.2 mM when cells were grown in artificial media. When cells were grown in natural water, no significant differences were found between the controls and the Cd supplemented media even at the highest concentration of 0.8 mM. At an inhibitory level of 0.1 mM of Cd, increasing the concentration of iron up to 90 or 180 mM resulted in a dramatic recovery in algal growth rates in artificial media, reaching normal growth curves. The accumulation of Cd depended on dose and time in the artificial media. The maximal accumulation of Cd was reached after 3 days for all Cd doses, and remained almost unchanged in the subsequent period of time. Chlorophyll a amount depended on dose but not on time in the artificial growth media. At the ultrastructural level, an increase in the periplasmalemmal space was observed due to the presence of a large number of vacuoles, together with a decrease in the relative volume of the nucleus when the cells were incubated in the presence of Cd. Pyrenoid and starch granules were observed and accumulation of spherical electron-dense bodies were also detected. X-ray spectra of these bodies for

  16. EFFECT OF TREATED DOMESTIC WASTEWATER USED AS CULTURE MEDIUM ON THE GROWTH AND PRODUCTIVITY OF Chlamydomonas sp. STRAIN ISOLATED FROM LANDFILL LEACHATE

    Directory of Open Access Journals (Sweden)

    Fábio de Farias Neves

    2013-07-01

    Full Text Available Microalgae have been culturing to fix carbon and produce biofuels from the biomass. However, it is important to develop low cost strategies for microalgae production in orther to make it a viable alternative of renewable energy. The present research studied the effect of treated wastewater used as an alternative culture medium for growth and productivity of a Chlamydomonas sp. strain isolated from landfills leachate of a treatment pond located in Southern Brazil. Three culture media were evaluated, the control consisted of synthetic TAP medium, other, consisting of 50% TAP medium and 50% wastewater, and another consisting of 100% wastewater. The growth parameters do not have significant difference among the three culture media. Also, productivity do not have significant difference among the cultures with TAP medium and with 100% wastewater, resulting in dry weight values of 1,4±0,14g/L and 1,3±0,19g/L respectively. The culture with 50% TAP medium and 50% wastewater showed the highest productivity, showing an average dry weight value of 1,7±0,07g/L. The results indicate that treated wastewater can be used as an alternative culture medium for Chlamydomonas sp. strain without negative effects on growth and productivity, and possible leading to a decrease in production costs.

  17. The Chlamydomonas genome project: a decade on

    Science.gov (United States)

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  18. Chlamydomonas as a model for biofuels and bio-products production.

    Science.gov (United States)

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Heat shock induced change in protein ubiquitination in Chlamydomonas

    International Nuclear Information System (INIS)

    Shimogawara, K.; Muto, S.

    1989-01-01

    Ubiquitin was purified from pea (Pisum sativum L.) and its antibody was produced. Western blot analysis showed that the antibody cross-reacted with ubiquitins from a green alga Chlamydomonas reinhardtii, a brown alga Laminaria angustata and a red alga Porphyridium cruentum but not with ubiquitin from a blue-green alga Synechococcus sp. In Chlamydomonas, the antibody also reacted with some ubiquitinated proteins including 28- and 31-kDa polypeptides. The isoelectric points of Chlamydomonas ubiquitin and the 28- and 31-kDa ubiquitinated proteins were 8.0, 8.9 and 10.3, respectively. The ubiquitinated proteins, including the 28- and 31-kDa polypeptides were detected after in vitro ATP-dependent ubiquitination of Chlamydomonas cell extract with l25 I-labeled bovine ubiquitin. Heat treatment of Chlamydomonas cells (>40°C) caused drastic increase of ubiquitinated proteins with high mol wt (>60kDa), and coordinated redistribution or decrease of other ubiquitinated proteins and free ubiquitin. Quantitative analysis revealed that the 28- and 31-kDa ubiquitinated proteins showed different responses against heat stress, i.e. the former being more sensitive than the latter. (author)

  20. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic

  1. Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2012-01-01

    As a result of mixing and light attenuation, algae in a photobioreactor (PBR) alternate between light and dark zones and, therefore, experience variations in photon flux density (PFD). These variations in PFD are called light/dark (L/D) cycles. The objective of this study was to determine how these

  2. ATP Production in Chlamydomonas reinhardtii Flagella by Glycolytic Enzymes

    DEFF Research Database (Denmark)

    Mitchell, Beth F; Pedersen, Lotte B; Feely, Michael

    2005-01-01

    reside in the detergent-soluble (membrane + matrix) compartments. We further show that axonemal enolase is a subunit of the CPC1 central pair complex and that reduced flagellar enolase levels in the cpc1 mutant correlate with the reduced flagellar ATP concentrations and reduced in vivo beat frequencies...

  3. MEETING: Chlamydomonas Annotation Jamboree - October 2003

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Arthur R

    2007-04-13

    Shotgun sequencing of the nuclear genome of Chlamydomonas reinhardtii (Chlamydomonas throughout) was performed at an approximate 10X coverage by JGI. Roughly half of the genome is now contained on 26 scaffolds, all of which are at least 1.6 Mb, and the coverage of the genome is ~95%. There are now over 200,000 cDNA sequence reads that we have generated as part of the Chlamydomonas genome project (Grossman, 2003; Shrager et al., 2003; Grossman et al. 2007; Merchant et al., 2007); other sequences have also been generated by the Kasuza sequence group (Asamizu et al., 1999; Asamizu et al., 2000) or individual laboratories that have focused on specific genes. Shrager et al. (2003) placed the reads into distinct contigs (an assemblage of reads with overlapping nucleotide sequences), and contigs that group together as part of the same genes have been designated ACEs (assembly of contigs generated from EST information). All of the reads have also been mapped to the Chlamydomonas nuclear genome and the cDNAs and their corresponding genomic sequences have been reassembled, and the resulting assemblage is called an ACEG (an Assembly of contiguous EST sequences supported by genomic sequence) (Jain et al., 2007). Most of the unique genes or ACEGs are also represented by gene models that have been generated by the Joint Genome Institute (JGI, Walnut Creek, CA). These gene models have been placed onto the DNA scaffolds and are presented as a track on the Chlamydomonas genome browser associated with the genome portal (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html). Ultimately, the meeting grant awarded by DOE has helped enormously in the development of an annotation pipeline (a set of guidelines used in the annotation of genes) and resulted in high quality annotation of over 4,000 genes; the annotators were from both Europe and the USA. Some of the people who led the annotation initiative were Arthur Grossman, Olivier Vallon, and Sabeeha Merchant (with many individual

  4. OK, thanks! A new mutualism between Chlamydomonas and methylobacteria facilitates growth on amino acids and peptides.

    Science.gov (United States)

    Calatrava, Victoria; Hom, Erik F Y; Llamas, Ángel; Fernández, Emilio; Galván, Aurora

    2018-04-01

    Nitrogen is a key nutrient for land plants and phytoplankton in terrestrial and aquatic ecosystems. The model alga Chlamydomonas reinhardtii can grow efficiently on several inorganic nitrogen sources (e.g. ammonium, nitrate, nitrite) as well as many amino acids. In this study, we show that Chlamydomonas is unable to use proline, hydroxyproline and peptides that contain these amino acids. However, we discovered that algal growth on these substrates is supported in association with Methylobacterium spp., and that a mutualistic carbon-nitrogen metabolic exchange between Chlamydomonas and Methylobacterium spp. is established. Specifically, the mineralization of these amino acids and peptides by Methylobacterium spp. produces ammonium that can be assimilated by Chlamydomonas, and CO2 photosynthetically fixed by Chlamydomonas yields glycerol that can be assimilated by Methylobacterium. As Chlamydomonas is an algal ancestor to land plants and Methylobacterium is a plant growth-promoting bacterium, this new model of mutualism may facilitate insights into the ecology and evolution of plant-bacterial interactions and design principles of synthetic ecology.

  5. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Díaz, Silvia; Penacho, Vanessa; Aguilera, Angeles; Olsson, Sanna

    2018-07-01

    To better understand heavy metal tolerance in Chlamydomonas acidophila, an extremophilic green alga, we assembled its transcriptome and measured transcriptomic expression before and after Cd exposure in this and the neutrophilic model microalga Chlamydomonas reinhardtii. Genes possibly related to heavy metal tolerance and detoxification were identified and analyzed as potential key innovations that enable this species to live in an extremely acid habitat with high levels of heavy metals. In addition we provide a data set of single orthologous genes from eight green algal species as a valuable resource for comparative studies including eukaryotic extremophiles. Our results based on differential gene expression, detection of unique genes and analyses of codon usage all indicate that there are important genetic differences in C. acidophila compared to C. reinhardtii. Several efflux family proteins were identified as candidate key genes for adaptation to acid environments. This study suggests for the first time that exposure to cadmium strongly increases transposon expression in green algae, and that oil biosynthesis genes are induced in Chlamydomonas under heavy metal stress. Finally, the comparison of the transcriptomes of several acidophilic and non-acidophilic algae showed that the Chlamydomonas genus is polyphyletic and that acidophilic algae have distinctive aminoacid usage patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Sabeeha S

    2007-04-09

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

  7. Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grown Chlamydomonas

    International Nuclear Information System (INIS)

    Moroney, J.V.; Togasaki, R.K.; Husic, H.D.; Tolbert, N.E.

    1987-01-01

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO 2 . Both air-grown cells, that have a CO 2 concentrating system, and 5% CO 2 -grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO 2 -grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO 2 fixation by high CO 2 -grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO 2 -grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase

  8. Chlamydomonas IFT25 is dispensable for flagellar assembly but required to export the BBSome from flagella

    Directory of Open Access Journals (Sweden)

    Bin Dong

    2017-11-01

    Full Text Available Intraflagellar transport (IFT particles are composed of polyprotein complexes IFT-A and IFT-B as well as cargo adaptors such as the BBSome. Two IFT-B subunits, IFT25 and IFT27 were found to form a heterodimer, which is essential in exporting the BBSome out of the cilium but not involved in flagellar assembly and cytokinesis in vertebrates. Controversial results were, however, recorded to show that defects in IFT, flagellar assembly and even cytokinesis were caused by IFT27 knockdown in Chlamydomonas reinhardtii. Using C. reinhardtii as a model organism, we report that depletion of IFT25 has no effect on flagellar assembly and does not affect the entry of the BBSome into the flagellum, but IFT25 depletion did impair BBSome movement out of the flagellum, clarifying the evolutionally conserved role of IFT25 in regulating the exit of the BBSome from the flagellum cross species. Interestingly, depletion of IFT25 causes dramatic reduction of IFT27 as expected, which does not cause defects in flagellar assembly and cytokinesis in C. reinhardtii. Our data thus support that Chlamydomonas IFT27, like its vertebrate homologues, is not involved in flagellar assembly and cytokinesis.

  9. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    Science.gov (United States)

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  10. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism.

    Science.gov (United States)

    Memmola, Francesco; Mukherjee, Bratati; Moroney, James V; Giordano, Mario

    2014-09-01

    Four mutants of Chlamydomonas reinhardtii with defects in different components of the CO2 concentrating mechanism (CCM) or in Rubisco activase were grown autotrophically at high pCO2 and then transferred to low pCO2, in order to study the role of different components of the CCM on carbon allocation and elemental composition. To study carbon allocation, we measured the relative size of the main organic pools by Fourier Transform Infrared spectroscopy. Total reflection X-ray fluorescence was used to analyze the elemental composition of algal cells. Our data show that although the organic pools increased their size at high CO2 in all strains, their stoichiometry was highly homeostatic, i.e., the ratios between carbohydrates and proteins, lipid and proteins, and carbohydrates and lipids, did not change significantly. The only exception was the wild-type 137c, in which proteins decreased relative to carbohydrates and lipids, when the cells were transferred to low CO2. It is noticeable that the two wild types used in this study responded differently to the transition from high to low CO2. Malfunctions of the CCM influenced the concentration of several elements, somewhat altering cell elemental stoichiometry: especially the C/P and N/P ratios changed appreciably in almost all strains as a function of the growth CO2 concentration, except in 137c and the Rubisco activase mutant rca1. In strain cia3, defective in the lumenal carbonic anhydrase (CA), the cell quotas of P, S, Ca, Mn, Fe, and Zn were about 5-fold higher at low CO2 than at high CO2. A Principle Components Analysis showed that, mostly because of its elemental composition, cia3 behaved in a substantially different way from all other strains, at low CO2. The lumenal CA thus plays a crucial role, not only for the correct functioning of the CCM, but also for element utilization. Not surprisingly, growth at high CO2 attenuated differences among strains.

  11. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection.

    Directory of Open Access Journals (Sweden)

    Olivia C Demurtas

    Full Text Available The E7 protein of the Human Papillomavirus (HPV type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines.An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG, under the control of the C. reinhardtii chloroplast psbD 5' UTR and the psbA 3' UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein.The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.

  12. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    Science.gov (United States)

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Identification and molecular characterization of the second Chlamydomonas gun4 mutant, gun4-II [v2; ref status: indexed, http://f1000r.es/1id

    Directory of Open Access Journals (Sweden)

    Phillip B Grovenstein

    2013-07-01

    Full Text Available The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study oxygenic photosynthesis. Chlorophyll (Chl and heme are major tetrapyrroles that play an essential role in photosynthesis and respiration. These tetrapyrroles are synthesized via a common branched pathway that involves mainly enzymes, encoded by nuclear genes. One of the enzymes in the pathway is Mg chelatase (MgChel. MgChel catalyzes insertion of Mg2+ into protoporphyrin IX (PPIX, proto to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto, the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4 protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m-2 s-1. It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m-2 s-1. PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.

  14. Protein (Viridiplantae): 159470305 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available predicted protein Chlamydomonas reinhardtii MSSRPKRAASANMANVIAAEKANKAAALHAWPKMWATKLEAQLQLMFMPTRLHRRPLHQGTCRNYSTAPGITGVIELTSAFYRMYPNATFVFNKETAAKGTYRGEEETAASWWLKHVGSKLEIYLSPLRCRPEVSR ...

  15. Gradual plasticity alters population dynamics in variable environments: thermal acclimation in the green alga Chlamydomonas reinhartdii.

    Science.gov (United States)

    Kremer, Colin T; Fey, Samuel B; Arellano, Aldo A; Vasseur, David A

    2018-01-10

    Environmental variability is ubiquitous, but its effects on populations are not fully understood or predictable. Recent attention has focused on how rapid evolution can impact ecological dynamics via adaptive trait change. However, the impact of trait change arising from plastic responses has received less attention, and is often assumed to optimize performance and unfold on a separate, faster timescale than ecological dynamics. Challenging these assumptions, we propose that gradual plasticity is important for ecological dynamics, and present a study of the plastic responses of the freshwater green algae Chlamydomonas reinhardtii as it acclimates to temperature changes. First, we show that C. reinhardtii 's gradual acclimation responses can both enhance and suppress its performance after a perturbation, depending on its prior thermal history. Second, we demonstrate that where conventional approaches fail to predict the population dynamics of C. reinhardtii exposed to temperature fluctuations, a new model of gradual acclimation succeeds. Finally, using high-resolution data, we show that phytoplankton in lake ecosystems can experience thermal variation sufficient to make acclimation relevant. These results challenge prevailing assumptions about plasticity's interactions with ecological dynamics. Amidst the current emphasis on rapid evolution, it is critical that we also develop predictive methods accounting for plasticity. © 2018 The Author(s).

  16. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    2010-12-01

    Full Text Available Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii.We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species.This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that

  17. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Science.gov (United States)

    Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas

    2010-12-15

    Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production

  18. Modifying effect of caffeine on lethality and mutability of Chlamydomonas reinhardii cells following UV irradiation

    International Nuclear Information System (INIS)

    Podstavkova, S.; Vlcek, D.; Miadokova, E.

    1983-01-01

    The modifying effect of caffeine was studied using two standard and two UV-sensitive strains of Chlamydomonas reinhardii Dang. Cell survival and mutation frequency was microscopically evaluated on media without caffeine and on media with 1.5 mM of caffeine. The obtained results were indicative of the stimulating effect of caffeine upon survival in all strains. (author)

  19. Improvement of the Uranium Sequestration Ability of a Chlamydomonas sp. (ChlSP Strain) Isolated From Extreme Uranium Mine Tailings Through Selection for Potential Bioremediation Application.

    Science.gov (United States)

    Baselga-Cervera, Beatriz; Romero-López, Julia; García-Balboa, Camino; Costas, Eduardo; López-Rodas, Victoria

    2018-01-01

    The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h -1 ) and contaminated with metals, mainly U (from 25 to 48 mg L -1 ) and zinc (from 17 to 87 mg L -1 ). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae , but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection.

  20. Improvement of the Uranium Sequestration Ability of a Chlamydomonas sp. (ChlSP Strain) Isolated From Extreme Uranium Mine Tailings Through Selection for Potential Bioremediation Application

    Science.gov (United States)

    Baselga-Cervera, Beatriz; Romero-López, Julia; García-Balboa, Camino; Costas, Eduardo; López-Rodas, Victoria

    2018-01-01

    The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h−1) and contaminated with metals, mainly U (from 25 to 48 mg L−1) and zinc (from 17 to 87 mg L−1). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae, but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (microalgae growth curve; ChlSG cells removed close to 4 mg L−1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection. PMID:29662476

  1. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    Science.gov (United States)

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  2. Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light.

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.; Benvenuti, G.; Streefland, M.; Wijffels, R.H.

    2013-01-01

    As a result of mixing and light attenuation in a photobioreactor (PBR), microalgae experience light/dark (L/D) cycles that can enhance PBR efficiency. One parameter which characterizes L/D cycles is the duty cycle; it determines the time fraction algae spend in the light. The objective of this study

  3. An experimental study of the growth and hydrogen production of C. reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Burgess, S.; Nixon, P.J.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae, such as C. reinhardtii, have the ability to photosynthetically produce molecular hydrogen under anaerobic conditions. They offer a biological route to renewable, carbon-neutral hydrogen production from two of nature's most plentiful resources - sunlight and water. This process provides the additional benefit of carbon dioxide sequestration and the option of deriving valuable products from algal biomass. The growth of dense and healthy algal biomass is a prerequisite for efficient hydrogen production. This study investigates the growth of C. reinhardtii under different cyclic light regimes and at various continuous light intensities. Algal growth is characterised in terms of the cell count, chlorophyll content and optical density of the culture. The consumption of critical nutrients such as acetate and sulphate is measured by chromatography techniques. C. reinhardtii wild-type CC-124 strain is analysed in a 3 litre tubular flow photobioreactor featuring a large surface-to-volume ratio and excellent light penetration through the culture. Key parameters of the hydrogen production process are continuously monitored and controlled; these include pH, pO{sub 2}, optical density, temperature, agitation and light intensity. Gas phase hydrogen production is determined by mass spectrometry. (orig.)

  4. Flavodiiron Proteins Promote Fast and Transient O2 Photoreduction in Chlamydomonas.

    Science.gov (United States)

    Chaux, Frédéric; Burlacot, Adrien; Mekhalfi, Malika; Auroy, Pascaline; Blangy, Stéphanie; Richaud, Pierre; Peltier, Gilles

    2017-07-01

    During oxygenic photosynthesis, the reducing power generated by light energy conversion is mainly used to reduce carbon dioxide. In bacteria and archae, flavodiiron (Flv) proteins catalyze O 2 or NO reduction, thus protecting cells against oxidative or nitrosative stress. These proteins are found in cyanobacteria, mosses, and microalgae, but have been lost in angiosperms. Here, we used chlorophyll fluorescence and oxygen exchange measurement using [ 18 O]-labeled O 2 and a membrane inlet mass spectrometer to characterize Chlamydomonas reinhardtii flvB insertion mutants devoid of both FlvB and FlvA proteins. We show that Flv proteins are involved in a photo-dependent electron flow to oxygen, which drives most of the photosynthetic electron flow during the induction of photosynthesis. As a consequence, the chlorophyll fluorescence patterns are strongly affected in flvB mutants during a light transient, showing a lower PSII operating yield and a slower nonphotochemical quenching induction. Photoautotrophic growth of flvB mutants was indistinguishable from the wild type under constant light, but severely impaired under fluctuating light due to PSI photo damage. Remarkably, net photosynthesis of flv mutants was higher than in the wild type during the initial hour of a fluctuating light regime, but this advantage vanished under long-term exposure, and turned into PSI photo damage, thus explaining the marked growth retardation observed in these conditions. We conclude that the C. reinhardtii Flv participates in a Mehler-like reduction of O 2 , which drives a large part of the photosynthetic electron flow during a light transient and is thus critical for growth under fluctuating light regimes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.

    Science.gov (United States)

    Keller, Lani C; Romijn, Edwin P; Zamora, Ivan; Yates, John R; Marshall, Wallace F

    2005-06-21

    The centriole is one of the most enigmatic organelles in the cell. Centrioles are cylindrical, microtubule-based barrels found in the core of the centrosome. Centrioles also act as basal bodies during interphase to nucleate the assembly of cilia and flagella. There are currently only a handful of known centriole proteins. We used mass-spectrometry-based MudPIT (multidimensional protein identification technology) to identify the protein composition of basal bodies (centrioles) isolated from the green alga Chlamydomonas reinhardtii. This analysis detected the majority of known centriole proteins, including centrin, epsilon tubulin, and the cartwheel protein BLD10p. By combining proteomic data with information about gene expression and comparative genomics, we identified 45 cross-validated centriole candidate proteins in two classes. Members of the first class of proteins (BUG1-BUG27) are encoded by genes whose expression correlates with flagellar assembly and which therefore may play a role in ciliogenesis-related functions of basal bodies. Members of the second class (POC1-POC18) are implicated by comparative-genomics and -proteomics studies to be conserved components of the centriole. We confirmed centriolar localization for the human homologs of four candidate proteins. Three of the cross-validated centriole candidate proteins are encoded by orthologs of genes (OFD1, NPHP-4, and PACRG) implicated in mammalian ciliary function and disease, suggesting that oral-facial-digital syndrome and nephronophthisis may involve a dysfunction of centrioles and/or basal bodies. By analyzing isolated Chlamydomonas basal bodies, we have been able to obtain the first reported proteomic analysis of the centriole.

  6. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.

    Science.gov (United States)

    Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi

    2016-12-01

    Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1.

    Science.gov (United States)

    Luck, Meike; Hegemann, Peter

    2017-10-01

    Histidine kinase rhodopsins (HKRs) belong to a class of unexplored sensory photoreceptors that share a similar modular architecture. The light sensing rhodopsin domain is covalently linked to signal-transducing modules and in some cases to a C-terminal guanylyl-cyclase effector. In spite of their wide distribution in unicellular organisms, very little is known about their physiological role and mechanistic functioning. We investigated the photochemical properties of the recombinant rhodopsin-fragment of Cr-HKR1 originating from Chlamydomonas reinhardtii. Our spectroscopic studies revealed an unusual thermal stability of the photoproducts with the deprotonated retinal Schiff base (RSB). Upon UV-irradiation these Rh-UV states with maximal absorbance in the UVA-region (Rh-UV) photochemically convert to stable blue light absorbing rhodopsin (Rh-Bl) with protonated chromophore. The heterogeneity of the sample is based on two parallel photocycles with the chromophore in C 15 =N-syn- or -anti-configuration. This report represents an attempt to decipher the underlying reaction schemes and interconversions of the two coexisting photocycles. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Nickel and low CO2-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters

    Directory of Open Access Journals (Sweden)

    Rosenbaum Joel L

    2011-01-01

    Full Text Available Abstract Background Chlamydomonas reinhardtii is a model system for the biology of unicellular green algae. Chemically regulated promoters, such as the nickel-inducible CYC6 or the low CO2-inducible CAH1 promoter, may prove useful for expressing, at precise times during its cell cycle, proteins with relevant biological functions, or complementing mutants in genes encoding such proteins. To this date, this has not been reported for the above promoters. Results We fused the CYC6 and CAH1 promoters to an HA-tagged RSP3 gene, encoding a protein of the flagellar radial spoke complex. The constructs were used for chemically regulated complementation of the pf14 mutant, carrying an ochre mutation in the RSP3 gene. 7 to 8% of the transformants showed cells with restored motility after induction with nickel or transfer to low CO2 conditions, but not in non-inducing conditions. Maximum complementation (5% motile cells was reached with very different kinetics (5-6 hours for CAH1, 48 hours for CYC6. The two inducible promoters drive much lower levels of RSP3 protein expression than the constitutive PSAD promoter, which shows almost complete rescue of motility. Conclusions To our knowledge, this is the first example of the use of the CYC6 or CAH1 promoters to perform a chemically regulated complementation of a Chlamydomonas mutant. Based on our data, the CYC6 and CAH1 promoters should be capable of fully complementing mutants in genes whose products exert their biological activity at low concentrations.

  9. Molecular mechanisms behind the adjustment of phototrophic light-harvesting and mixotrophic utilization of cellulosic carbon sources in Chlamydomonas reinhardtii

    OpenAIRE

    Blifernez-Klassen, Olga

    2012-01-01

    Plants, green algae and cyanobacteria perform photosynthetic conversion of sunlight into chemical energy in a permanently changing natural environment, where the efficient utilization of light and inorganic carbon represent the most critical factors. Photosynthetic organisms have developed different acclimation strategies to adapt changing light conditions and insufficient carbon source supply in order to survive and to assure optimal growth and protection. This thesis provides further insigh...

  10. LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells

    NARCIS (Netherlands)

    Dinc, E.; Tian, L.; Roy, L.M.; Roth, R.; Goodenough, U.; Croce, R.

    2016-01-01

    To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the

  11. Photoadduct Formation from the FMN Singlet Excited State in the LOV2 Domain of Chlamydomonas reinhardtii Phototropin

    NARCIS (Netherlands)

    Zhu, J.; Mathes, Tilo; Hontani, Y.; Alexandre, Maxime T A; Toh, K C; Hegemann, Peter; Kennis, John T M

    2016-01-01

    The two light, oxygen, and voltage domains of phototropin are blue-light photoreceptor domains that control various functions in plants and green algae. The key step of the light-driven reaction is the formation of a photoadduct between its FMN chromophore and a conserved cysteine, where the

  12. Consequences of state transitions on the structural and functional organization of Photosystem I in the green alga Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Drop, Bartlomiej; Yadav K.N., Sathish; Boekema, Egbert J.; Croce, Roberta

    State transitions represent a photoacclimation process that regulates the light-driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light-harvesting complex of green algae

  13. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  14. Protein (Viridiplantae): 159468384 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3436 hypothetical protein CHLREDRAFT_180911 Chlamydomonas reinhardtii MTTEEPLSCSKIRSWNITVYSFTLKGLPGCLEPSHSFWVKEREGEWGLKCLSETFSHELVENVPGREEVSNLLKKGGSSNKSQKGGWICCERNCFLCQHKKCQVLI ...

  15. Protein (Viridiplantae): 159466610 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 2419 hypothetical protein CHLREDRAFT_123820, partial Chlamydomonas reinhardtii RVQCRLVDMPAPCLPPFLPTCPHKPRRIPMPCTDAH...ELVDMPAPCLPPFLPDNLPARAPQAPHAVTDAHECMQCRLVDMPAPCLPPFLPKCPHKPRRLPMPCTDAHECNMPAPCLPPFLPKCPHKPRRLPMPCTDAHECMQCRLVDMPAPCLPAFLPNCPHKPRRLPMPCTDAHECSAGW ...

  16. Dissecting the sequential assembly and localization of intraflagellar transport particle complex B in Chlamydomonas.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Richey

    Full Text Available Intraflagellar transport (IFT, the key mechanism for ciliogenesis, involves large protein particles moving bi-directionally along the entire ciliary length. IFT particles contain two large protein complexes, A and B, which are constructed with proteins in a core and several peripheral proteins. Prior studies have shown that in Chlamydomonas reinhardtii, IFT46, IFT52, and IFT88 directly interact with each other and are in a subcomplex of the IFT B core. However, ift46, bld1, and ift88 mutants differ in phenotype as ift46 mutants are able to form short flagella, while the other two lack flagella completely. In this study, we investigated the functional differences of these individual IFT proteins contributing to complex B assembly, stability, and basal body localization. We found that complex B is completely disrupted in bld1 mutant, indicating an essential role of IFT52 for complex B core assembly. Ift46 mutant cells are capable of assembling a relatively intact complex B, but such complex is highly unstable and prone to degradation. In contrast, in ift88 mutant cells the complex B core still assembles and remains stable, but the peripheral proteins no longer attach to the B core. Moreover, in ift88 mutant cells, while complex A and the anterograde IFT motor FLA10 are localized normally to the transition fibers, complex B proteins instead are accumulated at the proximal ends of the basal bodies. In addition, in bld2 mutant, the IFT complex B proteins still localize to the proximal ends of defective centrioles which completely lack transition fibers. Taken together, these results revealed a step-wise assembly process for complex B, and showed that the complex first localizes to the proximal end of the centrioles and then translocates onto the transition fibers via an IFT88-dependent mechanism.

  17. Isolation and proteomic analysis of Chlamydomonas centrioles.

    Science.gov (United States)

    Keller, Lani C; Marshall, Wallace F

    2008-01-01

    Centrioles are barrel-shaped cytoskeletal organelles composed of nine triplet microtubules blades arranged in a pinwheel-shaped array. Centrioles are required for recruitment of pericentriolar material (PCM) during centrosome formation, and they act as basal bodies, which are necessary for the outgrowth of cilia and flagella. Despite being described over a hundred years ago, centrioles are still among the most enigmatic organelles in all of cell biology. To gain molecular insights into the function and assembly of centrioles, we sought to determine the composition of the centriole proteome. Here, we describe a method that allows for the isolation of virtually "naked" centrioles, with little to no obscuring PCM, from the green alga, Chlamydomonas. Proteomic analysis of this material provided evidence that multiple human disease gene products encode protein components of the centriole, including genes involved in Meckel syndrome and Oral-Facial-Digital syndrome. Isolated centrioles can be used in combination with a wide variety of biochemical assays in addition to being utilized as a source for proteomic analysis.

  18. NRT2.4 and NRT2.5 Are Two Half-Size Transporters from the Chlamydomonas NRT2 Family

    Directory of Open Access Journals (Sweden)

    Jose Javier Higuera

    2016-03-01

    Full Text Available The NRT2 transporters mediate High Affinity Nitrate/NitriteTransport (HAN/NiT, which are essential for nitrogen acquisition from these inorganic forms. The NRT2 proteins are encoded by a multigene family in plants, and contain 12 transmembrane-spanning domains. Chlamydomonas reinhardtii has six NRT2, two of which (NRT2.5 and NRT2.4 are located in Chromosome III, in tandem head to tail. cDNAs for these genes were isolated and their sequence revealed that they correspond to half-size NRT2 transporters each containing six transmembrane domains. NRT2.5 has long N- and C- termini sequences without known homology. NRT2.4 also contains long termini sequences but smaller than NRT2.5. Expression of both studied genes occurred at a very low level, slightly in darkness, and was not modified by the N or C source. Silencing of NRT2.4 by specific artificial miRNA resulted in the inhibition of nitrite transport in the absence of other HANNiT (NRT2.1/NAR2 in the cell genetic background. Nitrite transport activity in the Hansenula polymorpha Δynt::URA3 Leu2 mutant was restored by expressing CrNRT2.4. These results indicate that half-size NRT2 transporters are present in photosynthetic organisms and that NRT2.4 is a HANiT.

  19. Metabolic studies of Hg-203 on chlamydomonas reinhardi

    International Nuclear Information System (INIS)

    Macka, W.; Stehlik, G.; Wihlidal, H.; Washuettl, J.; Bancher, E.

    1977-09-01

    Vegetative cultures of the green algae Chlamydomonas reinhardi WT + in the log-phase reduce mercury(II)-nitrate to elemental mercury which is removed from the cell suspension by the stream of gas bubbling through it. Monomethyl and dimethyl mercury as intermediate metabolic compounds are to be excluded, because none of them could be found in the algae, the nutrient medium or the gas phase. (author)

  20. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.

    Science.gov (United States)

    Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru

    2014-01-03

    Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.

  1. The rhinoceros among Serpents: Comparative anatomy and experimental biophysics of Calabar burrowing python (Calabaria reinhardtii) skin.

    Science.gov (United States)

    Han, Dawei; Young, Bruce A

    2018-01-01

    The Calabar burrowing python (Calabaria reinhardtii) has a unique combination of marked thickness of the integumentary layers, a highly organized lamellate arrangement of the dermal collagen bundles, and a reduction in the size of the interscale hinge region of the integument. Biomechanical testing demonstrates that the skin of C. reinhardtii is more resistant to penetration than the skin of other snakes. The laminar arrangement of the collagen bundles provides for penetrative resistance, even while maintaining the flexibility characteristic of snake skin. Considering the life history of this species, it is hypothesized that the specialized integument of C. reinhardtii is a passive defensive mechanism against penetrative bites from maternal rodents and predators. © 2017 Wiley Periodicals, Inc.

  2. Gene : CBRC-PHAM-01-1650 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available tinin [Chlamydomonas reinhardtii] 1e-68 36% MFFFPTLSPPPSSPLTLIPSPSQSLLPSPSVPTPSSLHPHLHPSPLTPSSSRLSPPHLICPHPIFIPSILTPSSSHLSPAHPHP...MCPHSHHPHPHPSPLTPSSPHPSPAHPHPMCPHSPHPHPHPSPLTPPSPHPSPAHPHPMCPHSPHPHPMCPHSPHPHPHLSPLTPSSP...PSIPTPSSPPSVLTHPILTPIHPHSPHPHPHPSPLTPSSPHPSPLTPSSPPSVPTHPILTPSVPTHPILTPSVPTPSSPHV...SPLTPSSSPSVPTHPTLTPIHPHSILTPICPHSPHPHPHPSPLTPSSSPSVSTHPILTPIHPHSIFTPICPHSPHPHPHPSPLTPSSPPSVPTHPILTPSIPTHPILTPIRPHSPHPHPIRPHSPHPHP...IRPHPILTPCVPTHPILIPICLHSPHPHPHPSPLHLHPHLSSLTPSSPPSIPTHPILPSSSPPHPCHSSWEAGCTCVEPEPPHPCPSLPSPLAEREGTAWDWLPPVAMTVARIRAVSSPCRKHVMNYGCPIFSERPDL ...

  3. Protein (Viridiplantae): 714399 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3051:329 ... 3052:329 ... 3055:329 ... predicted protein Chlamydomonas reinhardtii MAPAALPGRSVKSKQAHLLRTDAHRVKSKQAHLLRTDAHRVKSKQAHLLRTDA...HRVKSKQAHLLRTDAHRVKSKQAHLLRTDAHRVALTTLTGALSLFGGACTATSFVLQVSASAASYAASLRLSCPAVPSLTDVA

  4. Protein (Viridiplantae): 569482 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3051:1120 ... 3052:1120 ... 3055:1120 ... SR protein factor Chlamydomonas reinhardtii MSYRDRDRDRGDRGYSDRDRDRGRDDRRGGDRGGDRGGGGGGDRG...PRDMMRIESKTKGDERRDDRRRSRSRSPRRSSRRSSRSPRRSRSRSPRRSRSPRADRGRDRSPRDRSPRDRSPRDRSPRDRSPRERSPVRVERERSPERERSPERERVREDSRSPPPRERSPPPRDRSPPPRERSPSPRRDSPPRDDYAGDDF

  5. Final Report: Filling Knowledge Gaps in Biological Networks: Integrated Global Approaches to Understand H{sub 2} Metabolism in Chlamydomonas Reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Arthur

    2012-05-01

    The major goal of our part of this project has been to generate mutants in fermentation metabolism and begin to decipher how lesions in the pathways associated with fermentation metabolism impact both H{sub 2} production and the production of other metabolites that accumulate as cells become anoxic. We are also trying to understand how metabolic pathways are regulated as O{sub 2} in the environment becomes depleted.

  6. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas.

    Science.gov (United States)

    Shaver, Scott; Casas-Mollano, J Armando; Cerny, Ronald L; Cerutti, Heriberto

    2010-05-16

    Polycomb group proteins play an essential role in the maintenance of cell identity and the regulation of development in both animals and plants. The Polycomb Repressive Complex 2 (PRC2) is involved in the establishment of transcriptionally silent chromatin states, in part through its ability to methylate lysine 27 of histone H3 by the Enhancer of zeste [E(z)] subunit. The absence of PRC2 in unicellular model fungi and its function in the repression of genes vital for the development of higher eukaryotes led to the proposal that this complex may have evolved together with the emergence of multicellularity. However, we report here on the widespread presence of PRC2 core subunits in unicellular eukaryotes from the Opisthokonta, Chromalveolata and Archaeplastida supergroups. To gain insight on the role of PRC2 in single celled organisms, we characterized an E(z) homolog, EZH, in the green alga Chlamydomonas reinhardtii. RNAi-mediated suppression of EZH led to defects in the silencing of transgenes and retrotransposons as well as to a global increase in histone post-translational modifications associated with transcriptional activity, such as trimethylation of histone H3 lysine 4 and acetylation of histone H4. On the basis of the parsimony principle, our findings suggest that PRC2 appeared early in eukaryotic evolution, even perhaps in the last unicellular common ancestor of eukaryotes. One of the ancestral roles of PCR2 may have been in defense responses against intragenomic parasites such as transposable elements, prior to being co-opted for lineage specific functions like developmental regulation in multicellular eukaryotes.

  7. Biofiksasi CO2 Oleh Mikroalga Chlamydomonas sp dalam Photobioreaktor Tubular

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2014-05-01

    Full Text Available Mikroalga memiliki potensi dalam membiofiksasi CO2 dan dapat dimanfaatkan untuk mengurangi kadar CO2 dalam gas pencemar. Pertumbuhan mikroalga sangat dipengaruhi oleh konsentrasi gas CO2 di dalam gas pencemar. Tujuan penelitian ini adalah untuk mengeetahui kemampuan mikroalga Chlamydomonas sp yang dikultivasi dalam photobioreaktor tubular dalam penyerapan gas CO2 serta untuk mengetahui konsentrasi maksimum gas CO2 dalam umpan untuk memproduksi biomasa mikroalga yang optimal. Percobaan dilakukan dnegan memvariasi laju alir dari 0.03 -0.071 L/menit dan konsentrasi CO2 dalam umpan 10-30%. Hasil penelitian menunjukkan bahwa biomasa mikroalga dapat diproduksi dengan maksimal dengan konsentrasi gas CO2 20% dengan laju alir 0.07 L/min. Semakin tinggi laju alir maka produksi biomasa alga semakin besar. Kecepatan pertumbuhan alga maksimum terjadi pada 0.31 /hari. Pada konsentrasi gas CO2 30%, terjadi substrate inhibition yang disebabkan carbon dalam bentuk ion bicarbonate tidak dapat dikonsumsi lagi di dalam kultur alga. Kata kunci : Mikroalga, chlamydomonas sp, biofiksasi CO2, biogas Abstract Microalgae have a potential for CO2 biofixation and therefore can be used to reduce the CO2 concentration in the gas pollutants. Moreover, microalgae growth is strongly affected by the concentration of CO2 in the exhaust gas pollutants. The objective of this research was to investigate the ability of microalgae Chlamydomonas sp which was cultivated in a tubular photobioreactor for CO2 absorption as well as to determine the maximum concentration of CO2 in the feed gas to obtain optimum microalgae biomass. The experiments were performed by varying the gas flow rate of 0.03 -0.071 L / min and the concentration of CO2 in the feed of 10-30%. The results showed that the maximum biomass of microalgae can be produced with CO2 concentration of 20% vol with a flow rate of 0.07 L / min. The result also showed that increasing the gas flow rate, the greater of the production of

  8. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas

    DEFF Research Database (Denmark)

    Pedersen, L. B.; Geimer, S.; Rosenbaum, J. L.

    2006-01-01

    Background The assembly and maintenance of eukaryotic cilia and flagella are mediated by intraflagellar transport (IFT), a bidirectional microtubule (MT)-based transport system. The IFT system consists of anterograde (kinesin-2) and retrograde (cDynein1b) motor complexes and IFT particles...... comprising two complexes, A and B. In the current model for IFT, kinesin-2 carries cDynein1b, IFT particles, and axonemal precursors from the flagellar base to the tip, and cDynein1b transports kinesin-2, IFT particles, and axonemal turnover products from the tip back to the base. Most of the components...... of the IFT system have been identified and characterized, but the mechanisms by which these different components are coordinated and regulated at the flagellar base and tip are unclear. Results Using a variety of Chlamydomonas mutants, we confirm that cDynein1b requires kinesin-2 for transport toward the tip...

  9. Interactions between marine facultative epiphyte Chlamydomonas sp. (Chlamydomonadales, Chlorophyta) and ceramiaceaen algae (Rhodophyta).

    Science.gov (United States)

    Klochkova, Tatyana A; Cho, Ga Youn; Boo, Sung Min; Chung, Ki Wha; Kim, Song Ja; Kim, Gwang Hoon

    2008-07-01

    Previously unrecorded marine Chlamydomonas that grew epiphytic on ceramiaceaen algae was collected from the western coast of Korea and isolated into a unialgal culture. The isolate was subjected to 18S rDNA phylogenetic analysis as well as ultrastructure and life cycle studies. It had an affinity with the marine Chlamydomonas species and was less related to freshwater/terrestrial representatives of this genus. It had flagella shorter than the cell body two-layered cell wall with striated outer surface and abundant mucilaginous material beneath the innermost layer and no contractile vacuoles. This alga grew faster in mixed cultures with ceramiaceaen algae rather than in any tested unialgal culture condition; the cells looked healthier and zoosporangia and motile flagellated vegetative cells appeared more often. These results suggested that this Chlamydomonas might be a facultative epiphyte benefiting from its hosts. Several ceramiaceaen algae were tested as host plants. Meanwhile, cell deformation or collapse of the whole thallus was caused to Aglaothamnion byssoides, and preliminary study suggested that a substance released from Chlamydomonas caused the response. This is first report on harmful epiphytic interactions between Chlamydomonas species and red ceramiaceaen algae.

  10. Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille.

    Science.gov (United States)

    Gorton, Holly L; Vogelmann, Thomas C

    2003-06-01

    Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.

  11. Flagellar coordination in Chlamydomonas cells held on micropipettes.

    Science.gov (United States)

    Rüffer, U; Nultsch, W

    1998-01-01

    The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated

  12. Azolla filiculoides Nitrogenase Activity Decrease Induced by Inoculation with Chlamydomonas sp. †

    Science.gov (United States)

    Habte, Mitiku

    1986-01-01

    Experiments were conducted to determine the influence of Chlamydomonas sp. on nitrogen fixation (C2H2 → C2H4) in Azolla filiculoides and on the nitrogen fixation and growth of free-living Anabaena azollae 2B organisms. Inoculation of azolla medium with Chlamydomonas sp. was associated with decreased nitrogenase activity in A. filiculoides and with increases in the density of a fungal population identified as Acremonium sp. Subsequent inoculation of azolla medium with this fungus was also accompanied by a significant decrease in nitrogenase activity of A. filiculoides. However, the extent of depression of nitrogenase activity was significantly higher when azolla medium was inoculated with Chlamydomonas sp. than when it was inoculated with Acremonium sp. Inoculation of nitrogen-free Stanier medium with either Acremonium sp. or Chlamydomonas sp. did not adversely affect the growth or nitrogenase activity of free-living A. azollae. Decreased nitrogenase activity in A. filiculoides is apparently related to the adverse influence of the green alga and the fungus on the macrosymbiont. The mechanisms that might be involved are discussed. PMID:16347211

  13. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism

    Czech Academy of Sciences Publication Activity Database

    Memmola, F.; Mukherjee, B.; Moroney, James V.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 201-211 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : Chlamydomonas mutants * carbon * carbon dioxide * elemental stoichiometry Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  14. Protein (Viridiplantae): 232868 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 3051:4703 ... 3052:4703 ... 3055:4703 ... hypothetical protein CHLREDRAFT_120274, partial Chlamydomonas reinhardtii PPGCRCSSAPPGCRC...SSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCSSAPPGCRCS

  15. The chloroplasts membrane phospholipids of Chlamydomonas reinhardii mutant not forming the Photosystem 2

    International Nuclear Information System (INIS)

    Trusova, V.M.; Ladygin, V.G.; Mezentsev, V.V.; Molchanov, M.I.

    1987-01-01

    Study on a component composition and physical state of photosynthetic membranes of Chlamydomonas chloroplasts of the wild type and mutant A-110 with disturbance of electron transfer chain in the photosystem 2 region permitted to conclude that 170 A diameter particles localized on the internal hydrophobic surface of membrane chips are deleted with respect to phosphatidylglycerin. The results obtained permit to suggest that the formation of protein-lipid complexes containing phosphatidylglycerins is suppressed in mutant A-110 which is not capable of the lamellar system differentation in

  16. Chlamydomonas Outer Arm Dynein Alters Conformation in Response to Ca2+

    OpenAIRE

    Sakato, Miho; Sakakibara, Hitoshi; King, Stephen M.

    2007-01-01

    We have previously shown that Ca2+ directly activates ATP-sensitive microtubule binding by a Chlamydomonas outer arm dynein subparticle containing the β and γ heavy chains (HCs). The γ HC–associated LC4 light chain is a member of the calmodulin family and binds 1-2 Ca2+ with KCa = 3 × 10−5 M in vitro, suggesting it may act as a Ca2+ sensor for outer arm dynein. Here we investigate interactions between the LC4 light chain and γ HC. Two IQ consensus motifs for binding calmodulin-like proteins a...

  17. Dephosphorylation Pathway of D-myo-Inositol 1,4,5-trisphosphate in the Unicellular Green Alga Chlamydomonas eugametos

    NARCIS (Netherlands)

    Klerk, Hans; Himbergen, John A.J. van; Musgrave, Alan; Haastert, Peter J.M. van; Ende, Herman van den

    In vitro dephosphorylation of D-myo-inositol 1,4,5-trisphosphate [Ins(l,4,5)P-3] by vegetative cells, gametes and zygotes of the green alga Chlamydomonas eugametos was studied using a soluble cell fraction as enzyme source and labelled Ins(1,4,5)P-3 as substrate. This compound was dephosphorylated

  18. Seasonal and diel changes in photosynthetic activity of the snow algae Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by PAM fluorometry

    Czech Academy of Sciences Publication Activity Database

    Stibal, Marek; Elster, Josef; Šabacká, Marie; Kaštovská, Klára

    2007-01-01

    Roč. 59, - (2007), s. 265-273 ISSN 0168-6496 R&D Projects: GA AV ČR KJB6005409 Institutional research plan: CEZ:AV0Z60050516 Keywords : Chlamydomonas nivalis * photosynthetic activity * PAM fluorometry Subject RIV: EF - Botanics Impact factor: 3.039, year: 2007

  19. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  20. Species-specific differences of the spectroscopic properties of P700 - Analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Witt, H.; Bordignon, E.; Carbonera, D.; Dekker, J.P.; Karapetyan, N.; Teutloff, C.; Webber, A.; Lubitz, W.; Schlodder, E.

    2003-01-01

    We applied optical spectroscopy, magnetic resonance techniques, and redox titrations to investigate the properties of the primary electron donor P700 in photosystem I (PS I) core complexes from cyanobacteria (Thermosynechococcus elongatus, Spirulina platensis, and Synechocystis sp. PCC 6803), algae

  1. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Roi; Torres, Enrique, E-mail: torres@udc.es; Abalde, Julio

    2014-03-01

    Highlights: • Sulphate effect on cadmium toxicity in the microalga Chlamydomonas moewusii Gerloff. • Cadmium increases the sulphur requirements in Chlamydomonas moewusii. • Kinetic coefficients for sulphate utilization and cadmium effect on them. • Sulphate and cadmium influence on the biosynthesis of low-molecular mass thiols. • Cadmium toxicity reduction by sulphate due to higher biosynthesis of thiols. - Abstract: Sulphur is an essential macroelement that plays important roles in living organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu–Cys, glutathione and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of inorganic sulphate. The aim of this study was to investigate, using a bifactorial experimental design, the effect of different sulphate concentrations in the nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular concentrations of low-molecular mass thiol compounds were determined. A mathematical model to describe the growth of this microalga based on the effects of sulphate and cadmium was obtained. An ANOVA revealed an interaction between them, 16% of the effect sizes was explained by this interaction. A higher amount of sulphate in the culture medium allowed a higher cadmium tolerance due to an increase in the thiol compound biosynthesis. The amount of low-molecular mass thiol compounds, mainly phytochelatins, synthesized by this microalga was significantly dependent on the sulphate and cadmium concentrations; the higher phytochelatin content was obtained in cultures with 4 mg Cd/L and 1 mM sulphate. The maximum EC{sub 50} value (based on nominal cadmium concentration) reached for this microalga was 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was also 1 m

  2. Effect of Temperature and light intensity on growth and Photosynthetic Activity of Chlamydomonas reinhard II

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Fernandez Gonzalez, J.

    1985-01-01

    The effect of five temperatures (15,20,25,30 and 35 degree centigree) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhard II has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of C0 2 labelled with C-14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 degree centigree for the lower level of illumination (2400 lux) and at 35 degree centigree for the higher one (13200 lux) and at 35 degree centigree for the higher ono (13200 lux). These results suggest an interaction of temperature and illumination on photosynthetic activity. (Author) 37 refs

  3. Cell growth and protein synthesis of unicellular green alga Chlamydomonas in heavy water

    International Nuclear Information System (INIS)

    Ishida, M.R.

    1983-01-01

    The effects of heavy water on the cell growth and protein synthesis of the photoautotrophically growing Chlamydomonas cells were studied. The growth rate of the cells is inversely proportional to the concentrations of heavy water. The cells can barely live in 90% heavy water, but they die in 99.85% heavy water within a few days. Incorporation of 14 Cleucine into cells is markedly stimulated by heavy water of various concentrations between 30 and 99.85% in the case of the short time incubation. Contrary to this, in the long time incubation as several days, heavy water inhibits the protein synthesis. Such two modes of the protein synthetic activities are dependent upon the incubation time of the cells grown photoautotrophically in the heavy water media. (author)

  4. Inhomogeneous distribution of Chlamydomonas in a cylindrical container with a bubble plume

    Science.gov (United States)

    Nonaka, Yuki; Kikuchi, Kenji; Numayama-Tsuruta, Keiko; Kage, Azusa; Ueno, Hironori; Ishikawa, Takuji

    2016-01-01

    ABSTRACT Swimming microalgae show various taxes, such as phototaxis and gravitaxis, which sometimes result in the formation of a cell-rich layer or a patch in a suspension. Despite intensive studies on the effects of shear flow and turbulence on the inhomogeneous distribution of microalgae, the effect of a bubble plume has remained unclear. In this study, we used Chlamydomonas as model microalgae, and investigated the spatial distribution of cells in a cylindrical container with a bubble plume. The results illustrate that cells become inhomogeneously distributed in the suspension due to their motility and photo-responses. A vortical ring distribution was observed below the free surface when the bubble flow rate was sufficiently small. We performed a scaling analysis on the length scale of the vortical ring, which captured the main features of the experimental results. These findings are important in understanding transport phenomena in a microalgae suspension with a bubble plume. PMID:26787679

  5. NCBI nr-aa BLAST: CBRC-PHAM-01-1025 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PHAM-01-1025 ref|XP_001697359.1| magnesium chelatase subunit H [Chlamydomonas ...reinhardtii] gb|EDP00299.1| magnesium chelatase subunit H [Chlamydomonas reinhardtii] XP_001697359.1 7e-05 47% ...

  6. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae

    Directory of Open Access Journals (Sweden)

    Pouya Asrar

    2015-06-01

    Full Text Available We have developed an optofluidic biosensor to study microscale particles and different species of microalgae. The system is comprised of a microchannel with a set of chevron-shaped grooves. The chevrons allows for hydrodynamic focusing of the core stream in the center using a sheath fluid. The device is equipped with a new generation of highly sensitive photodetectors, multi-pixel photon counter (MPPC, with high gain values and an extremely small footprint. Two different sizes of high intensity fluorescent microspheres and three different species of algae (Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana were studied. The forward scattering emissions generated by samples passing through the interrogation region were carried through a multimode fiber, located in 135 degree with respect to the excitation fiber, and detected by a MPPC. The signal outputs obtained from each sample were collected using a data acquisition system and utilized for further statistical analysis. Larger particles or cells demonstrated larger peak height and width, and consequently larger peak area. The average signal output (integral of the peak for Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana falls between the values found for the 3.2 and 10.2 μm beads. Different types of algae were also successfully characterized.

  7. The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique

    OpenAIRE

    1985-01-01

    Using the quick-freeze, deep-etch technique, we have analyzed the structure of the intact cell wall of Chlamydomonas reinhardi, and have visualized its component glycoproteins after mechanical shearing and after depolymerization induced by perchlorate or by the wall-disrupting agent, autolysin. The intact wall has previously been shown in a thin- section study (Roberts, K., M. Gurney-Smith, and G. J. Hills, 1972, J. Ultrastruct. Res. 40:599-613) to consist of a discrete central triplet bisect...

  8. High-level 13C-enrichment of random and synchronous populations of Chlamydomonas reinhardii

    International Nuclear Information System (INIS)

    Price, R.L.; Crissman, H.A.; Martin, J.C.; Kollman, V.H.

    1975-01-01

    The alga Chlamydomonas reinhardii was grown in suspension culture at high levels of 13 C-enrichment (98 mol percent) both in synchronous and random populations for the purpose of investigating possible macro- and ultrastructural changes in the cell as induced by essentially total carbon replacement. The algae, grown in spinner flasks, were analyzed using a newly developed multiparameter flow-system technique applied to characterizing various algal genera. The versatility of this technique provides for measuring and processing several cell characteristics simultaneously and separating cells according to selected combinations of parameters. In these studies, cell volume (by Coulter aperture) and DNA and chlorophyll content were determined simultaneously. Cell ultrastructure was examined at various levels of isotope enrichment and time periods by electron microscopy. The data presented for synchronous growth of this organism demonstrate the absence of biological effects (considering the parameters measured) due to the almost total replacement of cellular 12 C with 13 C. Interpretational problems encountered when looking for biological effects on random populations are discussed

  9. CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas

    Science.gov (United States)

    Tam, Lai-Wa; Ranum, Paul T.; Lefebvre, Paul A.

    2013-01-01

    The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes—LF1, LF2, LF3, and LF4—cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)—LF1, LF2, and LF3—are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC. PMID:23283985

  10. Chlamydomonas outer arm dynein alters conformation in response to Ca2+.

    Science.gov (United States)

    Sakato, Miho; Sakakibara, Hitoshi; King, Stephen M

    2007-09-01

    We have previously shown that Ca(2+) directly activates ATP-sensitive microtubule binding by a Chlamydomonas outer arm dynein subparticle containing the beta and gamma heavy chains (HCs). The gamma HC-associated LC4 light chain is a member of the calmodulin family and binds 1-2 Ca(2+) with K(Ca) = 3 x 10(-5) M in vitro, suggesting it may act as a Ca(2+) sensor for outer arm dynein. Here we investigate interactions between the LC4 light chain and gamma HC. Two IQ consensus motifs for binding calmodulin-like proteins are located within the stem domain of the gamma heavy chain. In vitro experiments indicate that LC4 undergoes a Ca(2+)-dependent interaction with the IQ motif domain while remaining tethered to the HC. LC4 also moves into close proximity of the intermediate chain IC1 in the presence of Ca(2+). The sedimentation profile of the gamma HC subunit changed subtly upon Ca(2+) addition, suggesting that the entire complex had become more compact, and electron microscopy of the isolated gamma subunit revealed a distinct alteration in conformation of the N-terminal stem in response to Ca(2+) addition. We propose that Ca(2+)-dependent conformational change of LC4 has a direct effect on the stem domain of the gamma HC, which eventually leads to alterations in mechanochemical interactions between microtubules and the motor domain(s) of the outer dynein arm.

  11. Uptake pf 203Hg++ and sup(115M)Cd++ by growing chlamydomonas reinhardi under different conditions

    International Nuclear Information System (INIS)

    Macka, W.; Stehlik, G.; Whilidal, H.; Washuettl, J.; Bancher, E.

    1977-09-01

    The uptake of labelled mercury and cadmium ions by living and dead cells Chlamydomonas reinhardi WT + was measured at 25 deg C in minimal and optimal conditions (dark/nitrogen or light/air, respectively). In each case incorporation was completely independent of external energy. Living and dead cells incorporate almost the same amount of the added heavy metal ions; after about 4 to 8 hours saturation was obtained. Furthermore the distribution of mercury in the system alga/culture medium/gas phase and the amount of mercury and cadmium adsorbed by cells were studied. (author)

  12. Efeito do uso de efluente doméstico tratado, como meio de cultura, sobre o crescimento e produtividade no cultivo de chlamydomonas sp. Isolada de lixiviado de aterro sanitário

    Directory of Open Access Journals (Sweden)

    Fábio de Farias Neves

    2013-01-01

    Full Text Available É crescente a aplicação do cultivo de microalgas no campo da Biotecnologia Ambiental, buscando fixação de dióxido de carbono (CO2 e obtenção de energia da biomassa. Entretanto, para essas aplicações se tornarem economicamente viáveis, é necessáriaa adoção de estratégias para baixar o custo de produção de microalgas. A presente pesquisa avaliou o efeito do uso de efluentedoméstico tratado como meio de cultura alternativo de baixo custo sobre o crescimento e a produtividade do cultivo de Chlamydomonas sp. isolada de uma lagoa de tratamento de lixiviados de aterro sanitário, situada na região sul do Brasil. Três tratamentos foram testados: um controle utilizando o meio de cultura sintético TAP, outro com 50% do meio TAP e 50% do efluente e o terceiro com 100% do efluente. Não houve diferença significativa dos parâmetros de crescimento entre os tratamentos, assim como entre a produtividade alcançada nos cultivos com meio TAP e 100% efluente, atingindo valores de massa seca após 10 dias de cultivo de 1,4 ± 0,14g L-1 e 1,3 ± 0,19 g L-1 respectivamente. Já o cultivo em meio TAP com adição de 50% do efluente apresentou a maior produtividade, atingindo um valor de massa seca médio após 10 dias de cultivo de 1,7 ± 0,07 g L-1. Os resultados demonstram que o efluente doméstico tratado tem potencial para ser utilizado como meio de cultura para o cultivo das cepas de Chlamydomonas sp. sem prejudicar o crescimento e a produtividade Abstract Microalgae have been cultured increasingly in order to fix carbon dioxide and produce biofuels from the biomass. However, it is important to develop low cost strategies for microalgae production in order to turn this into a viable alternative of renewable energy. The present investigation studied the effect of treated wastewater used as an alternative culture medium for growth and productivity of a Chlamydomonas sp. strain isolated from landfills leachate of a treatment pond located in

  13. Calcium regulates ATP-sensitive microtubule binding by Chlamydomonas outer arm dynein.

    Science.gov (United States)

    Sakato, Miho; King, Stephen M

    2003-10-31

    The Chlamydomonas outer dynein arm contains three distinct heavy chains (alpha, beta, and gamma) that exhibit different motor properties. The LC4 protein, which binds 1-2 Ca2+ with KCa = 3 x 10-5 m, is associated with the gamma heavy chain and has been proposed to act as a sensor to regulate dynein motor function in response to alterations in intraflagellar Ca2+ levels. Here we genetically dissect the outer arm to yield subparticles containing different motor unit combinations and assess the microtubule-binding properties of these complexes both prior to and following preincubation with tubulin and ATP, which was used to inhibit ATP-insensitive (structural) microtubule binding. We observed that the alpha heavy chain exhibits a dominant Ca2+-independent ATP-sensitive MT binding activity in vitro that is inhibited by attachment of tubulin to the structural microtubule-binding domain. Furthermore, we show that ATP-sensitive microtubule binding by a dynein subparticle containing only the beta and gamma heavy chains does not occur at Ca2+ concentrations below pCa 6 but is maximally activated above pCa 5. This activity was not observed in mutant dyneins containing small deletions in the microtubule-binding region of the beta heavy chain or in dyneins that lack both the alpha heavy chain and the motor domain of the beta heavy chain. These findings strongly suggest that Ca2+ binding directly to a component of the dynein complex regulates ATP-sensitive interactions between the beta heavy chain and microtubules and lead to a model for how individual motor units are controlled within the outer dynein arm.

  14. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates.

    Science.gov (United States)

    Ning, Jue; Otto, Thomas D; Pfander, Claudia; Schwach, Frank; Brochet, Mathieu; Bushell, Ellen; Goulding, David; Sanders, Mandy; Lefebvre, Paul A; Pei, Jimin; Grishin, Nick V; Vanderlaan, Gary; Billker, Oliver; Snell, William J

    2013-05-15

    Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns. Out of several conserved genes in a minus gamete cluster, we focused on Cre06.g280600, an ortholog of the fertilization-related Arabidopsis GEX1. Gene disruption, cell biological, and immunolocalization studies show that CrGEX1 functions in nuclear fusion in Chlamydomonas. Moreover, CrGEX1 and its Plasmodium ortholog, PBANKA_113980, are essential for production of viable meiotic progeny in both organisms and thus for mosquito transmission of malaria. Remarkably, we discovered that the genes are members of a large, previously unrecognized family whose first-characterized member, KAR5, is essential for nuclear fusion during yeast sexual reproduction. Our comparative transcriptomics approach provides a new resource for studying sexual development and demonstrates that exploiting the data can lead to the discovery of novel biology that is conserved across distant taxa.

  15. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems

    NARCIS (Netherlands)

    Cuaresma, M.; Casal, C.; Forján, E.; Vílchez, C.

    2011-01-01

    Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate highvalue compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This

  16. Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms.

    Directory of Open Access Journals (Sweden)

    Ryosuke Yamamoto

    2017-09-01

    Full Text Available Cytoplasmic assembly of ciliary dyneins, a process known as preassembly, requires numerous non-dynein proteins, but the identities and functions of these proteins are not fully elucidated. Here, we show that the classical Chlamydomonas motility mutant pf23 is defective in the Chlamydomonas homolog of DYX1C1. The pf23 mutant has a 494 bp deletion in the DYX1C1 gene and expresses a shorter DYX1C1 protein in the cytoplasm. Structural analyses, using cryo-ET, reveal that pf23 axonemes lack most of the inner dynein arms. Spectral counting confirms that DYX1C1 is essential for the assembly of the majority of ciliary inner dynein arms (IDA as well as a fraction of the outer dynein arms (ODA. A C-terminal truncation of DYX1C1 shows a reduction in a subset of these ciliary IDAs. Sucrose gradients of cytoplasmic extracts show that preassembled ciliary dyneins are reduced compared to wild-type, which suggests an important role in dynein complex stability. The role of PF23/DYX1C1 remains unknown, but we suggest that DYX1C1 could provide a scaffold for macromolecular assembly.

  17. Taxonomic identity and physiological ecology of Chlamydomonas hedleyi sp. nov. , algal flagellate symbiont from the foraminifer Archaias angulatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J J; Crockett, L J; Hagen, J; Stone, R J

    1975-12-31

    The fine structure of the symbiotic alga isolated from the foraminiferan Archaias angulatus (Fichtel et Moll) DeMontfort is typical of the Chlorophyceae of the volvocalean and chlorococcalean lines. Spherical non-motile cells, 10--14 ..mu..m in diameter, characterize the dominant life cycle phase. Long oval motile forms with truncated apices are present 3--5 days after transfer to fresh medium. The pyrenoids are embedded anteriorly in the singly bilobed chloroplast and are surrounded by a sheath of starch platelets. In spite of the non-motile state of cells in older cultures (which is perhaps a reflection of its normally symbiotic condition), the alga is identified as a species of the volvocalean genus Chlamydomonas and is named C. hedleyi sp. nov. The symbiont has no vitamin or organic requirements but growth is increased threefold in the presence of thiamine, and twofold in the presence of 1 ..mu..m glutamic acid, histidine and methionine. Urea was the best nitrogen source tested. Purines and pyrimidines did not serve as nitrogen sources. Chlamydomonas hedleyi grows well in a salinity range of 6- greater than 52 per thousand and a pH range of 6--8.5. 7.04 x 10/sup -7/ M carbon h/sup -1/ g/sup -1/ was fixed by the symbiont, 57 percent being released into the medium as a chromatographically homogeneous organic molecule provisionally identified as mannitol.

  18. Effect of Temperature and light intensity on growth and Photosynthetic Activity of Chlamydomonas reinhard II; Efecto de la temperatura e intensidad luminosa sobre el crecimiento y actividad fotosintetica del alga Chlamydomonas Reinhardt II

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel Jaen, M; Fernandez Gonzalez, J

    1985-07-01

    The effect of five temperatures (15,20,25,30 and 35 degree centigree) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhard II has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of C0{sub 2} labelled with C-14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 degree centigree for the lower level of illumination (2400 lux) and at 35 degree centigree for the higher one (13200 lux) and at 35 degree centigree for the higher ono (13200 lux). These results suggest an interaction of temperature and illumination on photosynthetic activity. (Author) 37 refs.

  19. Águas com predominância de Eutreptia lanowi steuer e Chlamydomonas reinhardi dangeard no plancton, na enseada de Inhauma, Baía de Guanabara

    Directory of Open Access Journals (Sweden)

    Lejeune P. H. de Oliveira

    1962-03-01

    Full Text Available In brackish waters of a creek of Guanabara Bay, the author points by the first time the presence of Chlamydomonas reinhardi, Eutreptia lanowi, Oscillatoria putrida, O. limosa, O. chlorina that were unknown in our waters; such biologic indicators proved themselves pollutional conditions, so bad a stark-mesosaprobic regime. Other news are plankton analysis by the Standar methods, of two most expressive samples of water masses;also the mobility of the plankters are measured in micra by second.

  20. Development of a Biosensor for Environmental Monitoring Based on Microalgae Immobilized in Silica Hydrogels

    Directory of Open Access Journals (Sweden)

    Claude Durrieu

    2012-12-01

    Full Text Available A new biosensor was designed for the assessment of aquatic environment quality. Three microalgae were used as toxicity bioindicators: Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. These microalgae were immobilized in alginate and silica hydrogels in a two step procedure. After studying the growth rate of entrapped cells, chlorophyll fluorescence was measured after exposure to (3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and various concentrations of the common herbicide atrazine. Microalgae are very sensitive to herbicides and detection of fluorescence enhancement with very good efficiency was realized. The best detection limit was 0.1 µM, obtained with the strain C. reinhardtii after 40 minutes of exposure.

  1. Negative effects of UVB-irradiated phytoplankton on life history traits and fitness of Daphnia magna

    NARCIS (Netherlands)

    Lange, de H.J.; Reeuwijk, van P.L.

    2003-01-01

    1. We tested the effect of ultraviolet-B (UVB)-irradiated phytoplankton on life history characteristics of Daphnia magna . Two phytoplankton species were used, Chlamydomonas reinhardtii and Cryptomonas pyrenoidifera . The phytoplankton species were cultured under photosynthetically active radiation

  2. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    acer

    One of the most serious ecological problems is muta- ... UV irradiation mutagenesis of Chlamydomonas reinhardtii CC-. 124 .... certain balance between the pigment content in the algal ... is bombarded with the full brunt of solar UV (ultraviolet).

  3. Radiocesium bioaccumulation in freshwater plankton: Influences of cation concentrations (K+ and Na+) on direct uptake of 137Cs in Chlamydomonas, Scenedesmus and Daphnia. Food-chain transfer of 137Cs from Chlamydomonas to Daphnia at different K+ concentrations

    International Nuclear Information System (INIS)

    Hagstroem, J.

    2002-01-01

    The influences of cation concentrations (K + and Na + ) on radiocesium ( 137 Cs) bioaccumulation in two freshwater phytoplankton species (Scenedesmus quadricauda and Chlamydomonas noctigama) were systematically investigated in batch-cultures monitored during two weeks. Both species were cultured at 9 μE M -2 s -1 constant illumination at 20 deg. C. The exponential growth phase lasted for more than 100 hours (μ ≅ 0.02 h -1 for C. noctigama and 0.03 h -1 for S, quadricauda). Over cation concentration ranges encountered in natural fresh waters ([K + ] from 0.1 μM to 3 mM, [Na + ] from 20 μM to 3 mM), a more than three order of magnitude variation was found for both intake rate and observed bioconcentration factors (BCF) at apparent steady-state (from less than 10 3 to 10 6 L (kg C) -1 ). For both species, the major effector on BCF and uptake rate was external [K + ], which was inversely proportional to these parameters over wide ranges (1-1000 μM for S. quadricauda and 0.1 to 300 μM for C. noctigama). At concentrations above these ranges K + still reduced 137 Cs bio-uptake, but less effectively. A minor influence of external [Na + ] on 137 Cs bioaccumulation was indicated for S. quadricauda, whereas no such influence was significant for C. noctigama. A biphasic pattern for 137 Cs bioaccumulation was discovered in C. noctigama. A rapid 'quasi-steady state' with an effective equilibration time of less than 100 hours was approached during the exponential growth phase. A surge in the uptake occurred when exponential growth ceased, and this pattern was consistent over the range 30 μM to 1.4 mM external [K + ]. Since depletion of external [K + ] was not detected for these treatments, this pattern can only be explained if there are at least two different cellular compartments involved. Although less certain, a second steady-state BCF appeared within two weeks, which seems to be up to one order of magnitude higher than the first. Microcosm experiments with the

  4. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate.

    Science.gov (United States)

    Xiong, Jiu-Qiang; Kurade, Mayur B; Abou-Shanab, Reda A I; Ji, Min-Kyu; Choi, Jaeyoung; Kim, Jong Oh; Jeon, Byong-Hun

    2016-04-01

    This study evaluated the toxicity and cellular stresses of carbamazepine (CBZ) on Chlamydomonas mexicana and Scenedesmus obliquus, and its biodegradation by both microalgal species. The growth of both microalgal species decreased with increase of CBZ concentration. The growth of S. obliquus was significantly inhibited (97%) at 200 mg CBZ L(-1), as compared to the control after 10days; whereas, C. mexicana showed 30% inhibition at the same experimental conditions. Biochemical characteristics including total chlorophyll, carotenoid contents and enzyme activities (SOD and CAT) for both species were affected by CBZ at relatively high concentration. C. mexicana and S. obliquus could achieve a maximum of 35% and 28% biodegradation of CBZ, respectively. Two metabolites (10,11-dihydro-10,11-expoxycarbamazepine and n-hydroxy-CBZ) were identified by UPLC-MS, as a result of CBZ biodegradation by C. mexicana. This study demonstrated that C. mexicana was more tolerant to CBZ and could be used for treatment of CBZ contaminated wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome.

    Science.gov (United States)

    Odom, Obed W; Baek, Kwang-Hyun; Dani, Radhika N; Herrin, David L

    2008-03-01

    Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16S(spec)) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16S(spec) plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.

  6. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  7. Hamstring strain - aftercare

    Science.gov (United States)

    Pulled hamstring muscle; Sprain - hamstring ... There are 3 levels of hamstring strains: Grade 1 -- mild muscle strain or pull Grade 2 -- partial muscle tear Grade 3 -- complete muscle tear Recovery time depends ...

  8. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  9. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  10. Strain measurement technique

    International Nuclear Information System (INIS)

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  11. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  12. A strain gauge

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... relates to a method for manufacturing a strain gauge as mentioned above....

  13. Morphological features of the species of the genus Chlamydomonas s.l. (Chlorophyta from various molecular clades

    Directory of Open Access Journals (Sweden)

    Maria N. Pavlovska

    2012-03-01

    Full Text Available The morphology of 78 authentic strains from 5 clades into culture condition was investigated. The complex of phenotype features was established. Such features as: type of mucilage and their origin, mucilage collapse under methylene blue, saving papilla and stigma in not motile stage, extracellular matrix formation inside cell wall, the way of sporangium break, pyrenoid and stigma habit before cell division, cell shape, chloroplast morphology. Diagnostic features for determination of taxa on clades level are discussed.

  14. Global Metabolic Regulation of the Snow Alga Chlamydomonas nivalis in Response to Nitrate or Phosphate Deprivation by a Metabolome Profile Analysis.

    Science.gov (United States)

    Lu, Na; Chen, Jun-Hui; Wei, Dong; Chen, Feng; Chen, Gu

    2016-05-10

    In the present work, Chlamydomonas nivalis, a model species of snow algae, was used to illustrate the metabolic regulation mechanism of microalgae under nutrient deprivation stress. The seed culture was inoculated into the medium without nitrate or phosphate to reveal the cell responses by a metabolome profile analysis using gas chromatography time-of-flight mass spectrometry (GC/TOF-MS). One hundred and seventy-one of the identified metabolites clustered into five groups by the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Among them, thirty of the metabolites in the nitrate-deprived group and thirty-nine of the metabolites in the phosphate-deprived group were selected and identified as "responding biomarkers" by this metabolomic approach. A significant change in the abundance of biomarkers indicated that the enhanced biosynthesis of carbohydrates and fatty acids coupled with the decreased biosynthesis of amino acids, N-compounds and organic acids in all the stress groups. The up- or down-regulation of these biomarkers in the metabolic network provides new insights into the global metabolic regulation and internal relationships within amino acid and fatty acid synthesis, glycolysis, the tricarboxylic acid cycle (TCA) and the Calvin cycle in the snow alga under nitrate or phosphate deprivation stress.

  15. Internally Mounting Strain Gages

    Science.gov (United States)

    Jett, J. R., Jr.

    1984-01-01

    Technique for mounting strain gages inside bolt or cylinder simultaneously inserts gage, attached dowel segment, and length of expandable tubing. Expandable tubing holds gage in place while adhesive cures, assuring even distribution of pressure on gage and area gaged.

  16. Running Title: Strained Yoghurts

    African Journals Online (AJOL)

    USER

    2012-09-27

    Sep 27, 2012 ... ever, the traditional method of producing strained yoghurt ... Food market studies have the essential function of providing ..... Communication No: 2001/21. ... fermented foods and beverages of Turkey. Crit. Rev. Food. Sci. Nutr.

  17. Flexible piezotronic strain sensor.

    Science.gov (United States)

    Zhou, Jun; Gu, Yudong; Fei, Peng; Mai, Wenjie; Gao, Yifan; Yang, Rusen; Bao, Gang; Wang, Zhong Lin

    2008-09-01

    Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.

  18. Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii.

    Directory of Open Access Journals (Sweden)

    Byung-Hyuk Kim

    Full Text Available This study deals with an effective nucleic acids extraction method from various strains of Botryococcus braunii which possesses an extensive extracellular matrix. A method combining freeze/thaw and bead-beating with heterogeneous diameter of silica/zirconia beads was optimized to isolate DNA and RNA from microalgae, especially from B. braunii. Eukaryotic Microalgal Nucleic Acids Extraction (EMNE method developed in this study showed at least 300 times higher DNA yield in all strains of B. braunii with high integrity and 50 times reduced working volume compared to commercially available DNA extraction kits. High quality RNA was also extracted using this method and more than two times the yield compared to existing methods. Real-time experiments confirmed the quality and quantity of the input DNA and RNA extracted using EMNE method. The method was also applied to other eukaryotic microalgae, such as diatoms, Chlamydomonas sp., Chlorella sp., and Scenedesmus sp. resulting in higher efficiencies. Cost-effectiveness analysis of DNA extraction by various methods revealed that EMNE method was superior to commercial kits and other reported methods by >15%. This method would immensely contribute to area of microalgal genomics.

  19. Isolation and Selection of Microalgal Strains from Natural Water Sources in Viet Nam with Potential for Edible Oil Production.

    Science.gov (United States)

    Thao, Tran Yen; Linh, Dinh Thi Nhat; Si, Vo Chi; Carter, Taylor W; Hill, Russell T

    2017-06-23

    Industrial vegetable oil production in Viet Nam depends on oil seeds and crude plant oils that are currently more than 90% imported. As the first step in investigating the feasibility of using microalgae to provide Viet Nam with a domestic source of oil for food and edible oil industries, fifty lipid-producing microalgae were isolated and characterized. The microalgae were isolated from water sources ranging from freshwater to brackish and marine waters from a wide geographic distribution in Viet Nam. Initial analyses showed that 20 of the 50 strains had good growth rates, produced high biomass and had high lipid content, ranging up to 50% of dry weight biomass. 18S rRNA gene sequence analyses of the 50 strains showed a great diversity in this assemblage of microalgae, comprising at least 38 species and representatives of 25 genera : Chlamydomonas , Poterioochromonas , Scenedesmus , Desmodesmus , Chlorella , Bracteacoccus , Monoraphidium , Selenastrum , Acutodesmus , Mychonastes , Ankistrodesmus , Kirchneriella , Raphidocelis , Dictyosphaerium , Coelastrella , Schizochlamydella , Oocystidium , Nannochloris , Auxenochlorella , Chlorosarcinopsis , Stichococcus , Picochlorum , Prasinoderma , Chlorococcum , and Marvania. Some of the species are closely related to well-known lipid producers such as Chlorella sorokiniana , but some other strains are not closely related to the strains found in public sequence databases and likely represent new species. Analysis of oil quality showed that fatty acid profiles of the microalgal strains were very diverse and strain-dependent. Fatty acids in the microalgal oils comprised saturated fatty acids (SFAs), poly-unsaturated fatty acids (PUFAs), and mono-unsaturated fatty acids (MUFAs). The main SFA was palmitic acid. MUFAs and PUFAs were dominated by oleic acid, and linoleic and linolenic acids, respectively. Some strains were especially rich in the essential fatty acid α-linolenic acid (ALA), which comprised more than 20% of the

  20. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chongjie [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Ma, Li [Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Mou, Shanli [Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao (China); Wang, Yibin, E-mail: wangyibin@fio.org.cn [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Miao, Jinlai, E-mail: miaojinlai@163.com [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); State Key Laboratory of Biological Fermentation Engineering of Beer (In Preparation), Qingdao (China)

    2015-03-15

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm{sup 2} UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field.

  1. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    International Nuclear Information System (INIS)

    Li, Chongjie; Ma, Li; Mou, Shanli; Wang, Yibin; Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao; Miao, Jinlai

    2015-01-01

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm 2 UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field

  2. X-ray and proton induced ultrastructural changes in Chlamydomonas reinhardi, with special reference to the dividing cell

    International Nuclear Information System (INIS)

    Gruber, H.E.

    1976-01-01

    Liquid cultures were exposed to 9000 R x-irradiation delivered at approximately 600 R/min. This produced 69 percent mortality in the 137c wild type strain and 71 percent mortality in the acetate-requiring strain ac-31. Irradiated and control cells were fixed for electron microscopic examination at intervals up to five days post exposure. Proton-irradiations using a positive ion Van de Graff accelerator were administered to monolayers of cells attached to Millipore filters. Irradiated and control cells were later resuspended and incubated in liquid culture medium. The dose rate was approximately 20 kilorad/second for thin targets with the dose monitored with a solid state detector. Distinctive fine structural responses were observed for the two kinds of radiation at the indicated exposure levels. Alterations affecting the nucleus were prominent after x-irradiation. Nuclei were observed in which non-nucleolar condensations and swollen nuclear envelopes were evident. Nuclear envelope rupture was noted when cells were in an advanced state of disorganization. Multiple nuclei per cell were also observed. Proton-irradiation often resulted in both live and dead daughter cells within the same mother cell wall. Changes in the chloroplast and mitochondria were seen after both types of irradiation. Two features absent in control cells were of special interest. Following x- and proton-irradiation, cells were observed which remained joined in configurations closely resembling division profiles or division conformations. Irradiated cells also possessed chromosomes and spindle fibers at a time not characteristic for such events in control cells

  3. Radiocesium bioaccumulation in freshwater plankton: Influences of cation concentrations (K{sup +} and Na{sup +}) on direct uptake of {sup 137}Cs in Chlamydomonas, Scenedesmus and Daphnia. Food-chain transfer of {sup 137}Cs from Chlamydomonas to Daphnia at different K{sup +} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hagstroem, J. [Uppsala Univ., Dept. of Limnology, Uppsala (Sweden)

    2002-04-01

    The influences of cation concentrations (K{sup +} and Na{sup +}) on radiocesium ({sup 137}Cs) bioaccumulation in two freshwater phytoplankton species (Scenedesmus quadricauda and Chlamydomonas noctigama) were systematically investigated in batch-cultures monitored during two weeks. Both species were cultured at 9 {mu}E M{sup -2} s{sup -1} constant illumination at 20 deg. C. The exponential growth phase lasted for more than 100 hours ({mu} {approx_equal} 0.02 h{sup -1} for C. noctigama and 0.03 h{sup -1} for S, quadricauda). Over cation concentration ranges encountered in natural fresh waters ([K{sup +}] from 0.1 {mu}M to 3 mM, [Na{sup +}] from 20 {mu}M to 3 mM), a more than three order of magnitude variation was found for both intake rate and observed bioconcentration factors (BCF) at apparent steady-state (from less than 10{sup 3} to 10{sup 6} L (kg C){sup -1}). For both species, the major effector on BCF and uptake rate was external [K{sup +}], which was inversely proportional to these parameters over wide ranges (1-1000 {mu}M for S. quadricauda and 0.1 to 300 {mu}M for C. noctigama). At concentrations above these ranges K{sup +} still reduced {sup 137} Cs bio-uptake, but less effectively. A minor influence of external [Na{sup +}] on {sup 137}Cs bioaccumulation was indicated for S. quadricauda, whereas no such influence was significant for C. noctigama. A biphasic pattern for {sup 137}Cs bioaccumulation was discovered in C. noctigama. A rapid 'quasi-steady state' with an effective equilibration time of less than 100 hours was approached during the exponential growth phase. A surge in the uptake occurred when exponential growth ceased, and this pattern was consistent over the range 30 {mu}M to 1.4 mM external [K{sup +}]. Since depletion of external [K{sup +}] was not detected for these treatments, this pattern can only be explained if there are at least two different cellular compartments involved. Although less certain, a second steady-state BCF

  4. Strains and Sprains

    Science.gov (United States)

    ... lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if you haven't warmed up first to get blood circulating to the muscles. They're also common for someone returning to a sport after the off-season. That first time playing ...

  5. Strains in general relativity

    International Nuclear Information System (INIS)

    Bini, Donato; Felice, Fernando de; Geralico, Andrea

    2006-01-01

    The definition of relative accelerations and strains among a set of comoving particles is studied in connection with the geometric properties of the frame adapted to a 'fiducial observer'. We find that a relativistically complete and correct definition of strains must take into account the transport law of the chosen spatial triad along the observer's congruence. We use special congruences of (accelerated) test particles in some familiar spacetimes to elucidate such a point. The celebrated idea of Szekeres' compass of inertia, arising when studying geodesic deviation among a set of free-falling particles, is here generalized to the case of accelerated particles. In doing so we have naturally contributed to the theory of relativistic gravity gradiometer. Moreover, our analysis was made in an observer-dependent form, a fact that would be very useful when thinking about general relativistic tests on space stations orbiting compact objects like black holes and also in other interesting gravitational situations

  6. Strain Induced Adatom Correlations

    OpenAIRE

    Kappus, Wolfgang

    2012-01-01

    A Born-Green-Yvon type model for adatom density correlations is combined with a model for adatom interactions mediated by the strain in elastic anisotropic substrates. The resulting nonlinear integral equation is solved numerically for coverages from zero to a limit given by stability constraints. W, Nb, Ta and Au surfaces are taken as examples to show the effects of different elastic anisotropy regions. Results of the calculation are shown by appropriate plots and discussed. A mapping to sup...

  7. Ratchetting strain prediction

    International Nuclear Information System (INIS)

    Noban, Mohammad; Jahed, Hamid

    2007-01-01

    A time-efficient method for predicting ratchetting strain is proposed. The ratchetting strain at any cycle is determined by finding the ratchetting rate at only a few cycles. This determination is done by first defining the trajectory of the origin of stress in the deviatoric stress space and then incorporating this moving origin into a cyclic plasticity model. It is shown that at the beginning of the loading, the starting point of this trajectory coincides with the initial stress origin and approaches the mean stress, displaying a power-law relationship with the number of loading cycles. The method of obtaining this trajectory from a standard uniaxial asymmetric cyclic loading is presented. Ratchetting rates are calculated with the help of this trajectory and through the use of a constitutive cyclic plasticity model which incorporates deviatoric stresses and back stresses that are measured with respect to this moving frame. The proposed model is used to predict the ratchetting strain of two types of steels under single- and multi-step loadings. Results obtained agree well with the available experimental measurements

  8. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  9. Studies on Drosophila radiosensitive strains

    International Nuclear Information System (INIS)

    Varentsova, E.P.; Zakharov, I.A.

    1976-01-01

    45 of radiosensitive strains of Drosophila melanogaster were isolated by Curly/Lobe technique after EMS treatment of Livadia population males. The lethality of non-Curly late larvae after gamma-irradiation (4000r) characterized radiosensitivity strains. Most of them exhibited higher frequency of the spontaneous dominant lethals (up to 69%). The males of 6 strains were semi-sterile. 5 of these strains exhibited higher frequency of X-chromosome non-disjunction

  10. Strain induced adatom correlations

    Science.gov (United States)

    Kappus, Wolfgang

    2012-12-01

    A Born-Green-Yvon type model for adatom density correlations is combined with a model for adatom interactions mediated by the strain in elastic anisotropic substrates. The resulting nonlinear integral equation is solved numerically for coverages from zero to a limit given by stability constraints. W, Nb, Ta and Au surfaces are taken as examples to show the effects of different elastic anisotropy regions. Results of the calculation are shown by appropriate plots and discussed. A mapping to superstructures is tried. Corresponding adatom configurations from Monte Carlo simulations are shown.

  11. Strain actuated aeroelastic control

    Science.gov (United States)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  12. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kothari Shankar L

    2010-05-01

    Full Text Available Abstract Background Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents. Results In this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS. Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents. Conclusion Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.

  13. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae

    Directory of Open Access Journals (Sweden)

    Federico Perozeni

    2018-01-01

    Full Text Available Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, limited biomass productivity is commonly experienced in their cultivating system despite their high potential. One of the reasons for this limitation is the high thermal dissipation of the light absorbed by the outer layers of the cultures exposed to high light caused by the activation of a photoprotective mechanism called non-photochemical quenching (NPQ. In the model organism for green algae Chlamydomonas reinhardtii, NPQ is triggered by pigment binding proteins called light-harvesting-complexes-stress-related (LHCSRs, which are over-accumulated in high light. It was recently reported that biomass productivity can be increased both in microalgae and higher plants by properly tuning NPQ induction. In this work increased light use efficiency is reported by introducing in C. reinhardtii a LHCSR3 gene under the control of Heat Shock Protein 70/RUBISCO small chain 2 promoter in a npq4 lhcsr1 background, a mutant strain knockout for all LHCSR genes. This complementation strategy leads to a low expression of LHCSR3, causing a strong reduction of NPQ induction but is still capable of protecting from photodamage at high irradiance, resulting in an improved photosynthetic efficiency and higher biomass accumulation.

  14. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae.

    Science.gov (United States)

    Perozeni, Federico; Stella, Giulio Rocco; Ballottari, Matteo

    2018-01-05

    Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, limited biomass productivity is commonly experienced in their cultivating system despite their high potential. One of the reasons for this limitation is the high thermal dissipation of the light absorbed by the outer layers of the cultures exposed to high light caused by the activation of a photoprotective mechanism called non-photochemical quenching (NPQ). In the model organism for green algae Chlamydomonas reinhardtii , NPQ is triggered by pigment binding proteins called light-harvesting-complexes-stress-related (LHCSRs), which are over-accumulated in high light. It was recently reported that biomass productivity can be increased both in microalgae and higher plants by properly tuning NPQ induction. In this work increased light use efficiency is reported by introducing in C. reinhardtii a LHCSR3 gene under the control of Heat Shock Protein 70 / RUBISCO small chain 2 promoter in a npq4 lhcsr1 background, a mutant strain knockout for all LHCSR genes. This complementation strategy leads to a low expression of LHCSR3 , causing a strong reduction of NPQ induction but is still capable of protecting from photodamage at high irradiance, resulting in an improved photosynthetic efficiency and higher biomass accumulation.

  15. Local repeat sequence organization of an intergenic spacer in the ...

    Indian Academy of Sciences (India)

    Unknown

    chloroplast genome of Chlamydomonas reinhardtii leads to DNA expansion and sequence ... The discovery of uniparentally inherited streptomycin resistant mutants ... resembles yeast, mitochondrial and phage recombination in that it is typically ...... Sager R and Lane D 1972 Molecular basis of maternal inheritance; Proc.

  16. Degradation and de novo synthesis of D1 protein and psbA ...

    Indian Academy of Sciences (India)

    This shows that synthesis of D1 protein is not the only component involved in the recovery process. Our events, which ... transcript levels in the green alga Chlamydomonas reinhardtii in ..... and Gaba V 1996 Accelerated degradation of the D2 ...

  17. Effects of UV-B irradiated algae on life history traits of Daphnia pulex

    NARCIS (Netherlands)

    De Lange, H.J.; Van Donk, E.

    1997-01-01

    1. The impact of ultraviolet-B (UVB)-irradiated phytoplankton on the life history parameters of Daphnia was studied. Three species of Chlorophyceae (Chlamydomonas reinhardtii, Scenedesmus acutus and S. subspicatus) and one species of Cryptophyceae (Cryptamonas pyrenoidifera) were cultured with and

  18. Effects of UV-B irradiated algae on zooplankton grazing

    NARCIS (Netherlands)

    Lange, de H.J.; Lürling, M.F.L.L.W.

    2003-01-01

    We tested the effects of UV-B stressed algae on grazing rates of zooplankton. Four algal species ( Chlamydomonas reinhardtii, Cryptomonas sp., Scenedesmus obliquus and Microcystis aeruginosa) were used as food and fed to three zooplankton species ( Daphnia galeata, Bosmina longirostris and

  19. Environmental, genetic and cellular toxicity of tenuazonic acid ...

    African Journals Online (AJOL)

    Alternaria alternata, an important pathogen of many plants, produces tenuazonic acid (TeA) with bioactivity to microbes, plants and animals. TeA is one of the main mycotoxin to humans and other organisms. Using Chlamydomonas reinhardtii, Vicia faba root tip and three mammalian normal cell lines as target materials, ...

  20. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp.and Chlamydomonas sp.isolated from rivers in Penang, Malaysia

    Institute of Scientific and Technical Information of China (English)

    W.O.Wan Maznah; A.T. Al-Fawwaz; Misni Surif

    2012-01-01

    In this study,the biosorption of copper and zinc ions by Chlorella sp.and Chlamydomonas sp.isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses.Under optimal biosorption conditions,the biosorption capacity of Chlorella sp.for copper and zinc ions was 33.4 and 28.5 mg/g,respectively,after 6 hr of biosorption in an immobilised system.Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass.Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption.Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  1. Colony Dimorphism in Bradyrhizobium Strains

    Science.gov (United States)

    Sylvester-Bradley, Rosemary; Thornton, Philip; Jones, Peter

    1988-01-01

    Ten isolates of Bradyrhizobium spp. which form two colony types were studied; the isolates originated from a range of legume species. The two colony types differed in the amount of gum formed or size or both, depending on the strain. Whole 7-day-old colonies of each type were subcultured to determine the proportion of cells which had changed to the other type. An iterative computerized procedure was used to determine the rate of switching per generation between the two types and to predict proportions reached at equilibrium for each strain. The predicted proportions of the wetter (more gummy) or larger colony type at equilibrium differed significantly between strains, ranging from 0.9999 (strain CIAT 2383) to 0.0216 (strain CIAT 2469), because some strains switched faster from dry to wet (or small to large) and others switched faster from wet to dry (or large to small). Predicted equilibrium was reached after about 140 generations in strain USDA 76. In all but one strain (CIAT 3030) the growth rate of the wetter colony type was greater than or similar to that of the drier type. The mean difference in generation time between the two colony types was 0.37 h. Doubling times calculated for either colony type after 7 days of growth on the agar surface ranged from 6.0 to 7.3 h. The formation of two persistent colony types by one strain (clonal or colony dimorphism) may be a common phenomenon among Bradyrhizobium strains. Images PMID:16347599

  2. Strain Pattern in Supercooled Liquids

    Science.gov (United States)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  3. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  4. Asymptomatic bacteriuria Escherichia coli strains

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Nielsen, E.M.; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast...... to uropathogenic E. coli (UPEC) that cause symptomatic UTI, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the growth characteristics in human urine as well as adhesin repertoire of nine ABU strains; the ability of ABU strains to compete...

  5. TL transgenic mouse strains

    International Nuclear Information System (INIS)

    Obata, Y.; Matsudaira, Y.; Hasegawa, H.; Tamaki, H.; Takahashi, T.; Morita, A.; Kasai, K.

    1993-01-01

    As a result of abnormal development of the thymus of these mice, TCR αβ lineage of the T cell differentiation is disturbed and cells belonging to the TCR γδ CD4 - CD8 - double negative (DN) lineage become preponderant. The γδ DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, indicating that the γδ cells are incapable of participating in these reactions. Molecular and serological analyses of T-cell lymphomas reveal that they belong to the γδ lineage. Tg.Tla a -3-1 mice should be useful in defining the role of TL in normal and abnormal T cell differentiation as well as in the development of T-cell lymphomas, and further they should facilitate studies on the differentiation and function of γδ T cells. We isolated T3 b -TL gene from B6 mice and constructed a chimeric gene in which T3 b -TL is driven by the promoter of H-2K b . With the chimeric gene, two transgenic mouse strains, Tg. Con.3-1 and -2 have been derived in C3H background. Both strains express TL antigen in various tissues including skin. The skin graft of transgenic mice on C3H and (B6 X C3H)F 1 mice were rejected. In the mice which rejected the grafts, CD8 + TCRαβ cytotoxic T cells (CTL) against TL antigens were recognized. The recognition of TL by CTL did not require the antigen presentation by H-2 molecules. The results indicated that TL antigen in the skin becomes a transplantation antigen and behaves like a typical allogeneic MHC class I antigen. The facts that (B6 X C3H)F 1 mice rejected the skin expressing T3 b -TL antigen and induced CTL that killed TL + lymphomas of B6 origin revealed that TL antigen encoded by T3 b -TL is recognized as non-self in B6 mice. Experiments are now extended to analyze immune responses to TL antigen expressed on autochthonous T cell lymphomas. (J.P.N.)

  6. Nutritionally fastidious Ruminococct $ flovefociens : strains

    African Journals Online (AJOL)

    than those obtained in a medium containing rumen fluid. Growth of all strains was remarkably uniform. Where the same inoculum was used, differences in the qualitative com- position of the medium usually had little effect on growth. In contrast, the R. f/avefaciens strains were much more variable in their growth responses.

  7. Haldane model under nonuniform strain

    Science.gov (United States)

    Ho, Yen-Hung; Castro, Eduardo V.; Cazalilla, Miguel A.

    2017-10-01

    We study the Haldane model under strain using a tight-binding approach, and compare the obtained results with the continuum-limit approximation. As in graphene, nonuniform strain leads to a time-reversal preserving pseudomagnetic field that induces (pseudo-)Landau levels. Unlike a real magnetic field, strain lifts the degeneracy of the zeroth pseudo-Landau levels at different valleys. Moreover, for the zigzag edge under uniaxial strain, strain removes the degeneracy within the pseudo-Landau levels by inducing a tilt in their energy dispersion. The latter arises from next-to-leading order corrections to the continuum-limit Hamiltonian, which are absent for a real magnetic field. We show that, for the lowest pseudo-Landau levels in the Haldane model, the dominant contribution to the tilt is different from graphene. In addition, although strain does not strongly modify the dispersion of the edge states, their interplay with the pseudo-Landau levels is different for the armchair and zigzag ribbons. Finally, we study the effect of strain in the band structure of the Haldane model at the critical point of the topological transition, thus shedding light on the interplay between nontrivial topology and strain in quantum anomalous Hall systems.

  8. Pin clad strains in Phenix

    International Nuclear Information System (INIS)

    Languille, A.

    1979-07-01

    The Phenix reactor has operated for 4 years in a satisfactory manner. The first 2 sub-assembly loadings contained pins clad in solution treated 316. The principal pin strains are: diametral strain (swelling and irradiation creep), ovality and spiral bending of the pin (interaction of wire and pin cluster and wrapper). A pin cluster irradiated to a dose of 80 dpa F reached a pin diameter strain of 5%. This strain is principally due to swelling (low fission gas pressure). The principal parameters governing the swelling are instantaneous dose, time and temperature for a given type of pin cladding. Other types of steel are or will be irradiated in Phenix. In particular, cold-worked titanium stabilised 316 steel should contribute towards a reduction in the pin clad strains and increase the target burn-up in this reactor. (author)

  9. Strain expansion-reduction approach

    Science.gov (United States)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  10. Roll bonding of strained aluminium

    DEFF Research Database (Denmark)

    Staun, Jakob M.

    2003-01-01

    This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...

  11. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  12. Strain accumulation in quasicrystalline solids

    International Nuclear Information System (INIS)

    Nori, F.; Ronchetti, M.; Elser, V.

    1988-01-01

    We study the relaxation of 2D quasicrystalline elastic networks when their constituent bonds are perturbed homogeneously. Whereas ideal, quasiperiodic networks are stable against such perturbations, we find significant accumulations of strain in a class of disordered networks generated by a growth process. The grown networks are characterized by root mean square phason fluctuations which grow linearly with system size. The strain accumulation we observe in these networks also grows linearly with system size. Finally, we find a dependence of strain accumulation on cooling rate

  13. Strain localisation in granular media

    OpenAIRE

    Desrues , Jacques

    1984-01-01

    This study is devoted to strain localisation in Granular materials. Both experimental and theoretical results have been obtained.The first part of the thesis is a review of the methods and theories about rupture in sols mechanics and more generally, in solid mechanics. The classical framework of Shear Band analysis is presented, and the main results available for different classes of materials are discussed.The second part describes an experimental study of strain localisation in sand specime...

  14. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas.

    Science.gov (United States)

    Im, Sungoh; Lee, Ha-Nul; Jung, Hyun Shin; Yang, Sunghwan; Park, Eun-Jeong; Hwang, Mi Sook; Jeong, Won-Joong; Choi, Dong-Woog

    2017-06-01

    Pyropia tenera (Kjellman) are marine red algae that grow in the intertidal zone and lose more than 90% of water during hibernal low tides every day. In order to identify the desiccation response gene (DRG) in P. tenera, we generated 1,444,210 transcriptome sequences using the 454-FLX platform from the gametophyte under control and desiccation conditions. De novo assembly of the transcriptome reads generated 13,170 contigs, covering about 12 Mbp. We selected 1160 differentially expressed genes (DEGs) in response to desiccation stress based on reads per kilobase per million reads (RPKM) expression values. As shown in green higher plants, DEGs under desiccation are composed of two groups of genes for gene regulation networks and functional proteins for carbohydrate metabolism, membrane perturbation, compatible solutes, and specific proteins similar to higher plants. DEGs that show no significant homology with known sequences in public databases were selected as DRGs in P. tenera. PtDRG2 encodes a novel polypeptide of 159 amino acid residues locating chloroplast. When PtDRG2 was overexpressed in Chlamydomonas, the PtDRG2 confer mannitol and salt tolerance in transgenic cells. These results suggest that Pyropia may possess novel genes that differ from green plants, although the desiccation tolerance mechanism in red algae is similar to those of higher green plants. These transcriptome sequences will facilitate future studies to understand the common processes and novel mechanisms involved in desiccation stress tolerance in red algae.

  15. Job strain and male fertility.

    Science.gov (United States)

    Hjollund, Niels Henrik I; Bonde, Jens Peter E; Henriksen, Tine Brink; Giwercman, Aleksander; Olsen, Jørn

    2004-01-01

    Job strain, defined as high job demands and low job control, has not previously been explored as a possible determinant of male fertility. We collected prospective data on job strain among men, and describe the associations with semen quality and probability of conceiving a clinical pregnancy during a menstrual cycle. Danish couples (N = 399) who were trying to become pregnant for the first time were followed for up to 6 menstrual periods. All men collected semen samples, and a blood sample was drawn from both partners. Job demand and job control were measured by a self-administered questionnaire at entry, and in each cycle the participants recorded changes in job control or job demand during the previous 30 days. In adjusted analyses, no associations were found between any semen characteristic or sexual hormones and any job strain variable. The odds for pregnancy were not associated with job strain. Psychologic job strain encountered in normal jobs in Denmark does not seem to affect male reproductive function.

  16. Crack tip stress and strain

    International Nuclear Information System (INIS)

    Francois, D.

    1975-01-01

    The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr

  17. Management of digital eye strain.

    Science.gov (United States)

    Coles-Brennan, Chantal; Sulley, Anna; Young, Graeme

    2018-05-23

    Digital eye strain, an emerging public health issue, is a condition characterised by visual disturbance and/or ocular discomfort related to the use of digital devices and resulting from a range of stresses on the ocular environment. This review aims to provide an overview of the extensive literature on digital eye strain research with particular reference to the clinical management of symptoms. As many as 90 per cent of digital device users experience symptoms of digital eye strain. Many studies suggest that the following factors are associated with digital eye strain: uncorrected refractive error (including presbyopia), accommodative and vergence anomalies, altered blinking pattern (reduced rate and incomplete blinking), excessive exposure to intense light, closer working distance, and smaller font size. Since a symptom may be caused by one or more factors, a holistic approach should be adopted. The following management strategies have been suggested: (i) appropriate correction of refractive error, including astigmatism and presbyopia; (ii) management of vergence anomalies, with the aim of inducing or leaving a small amount of heterophoria (~1.5 Δ Exo); (iii) blinking exercise/training to maintain normal blinking pattern; (iv) use of lubricating eye drops (artificial tears) to help alleviate dry eye-related symptoms; (v) contact lenses with enhanced comfort, particularly at end-of-day and in challenging environments; (vi) prescription of colour filters in all vision correction options, especially blue light-absorbing filters; and (vii) management of accommodative anomalies. Prevention is the main strategy for management of digital eye strain, which involves: (i) ensuring an ergonomic work environment and practice (through patient education and the implementation of ergonomic workplace policies); and (ii) visual examination and eye care to treat visual disorders. Special consideration is needed for people at a high risk of digital eye strain, such as computer

  18. Taxonomy of oxalotrophic Methylobacterium strains

    Science.gov (United States)

    Sahin, Nurettin; Kato, Yuko; Yilmaz, Ferah

    2008-10-01

    Most of the oxalotrophic bacteria are facultative methylotrophs and play important ecological roles in soil fertility and cycling of elements. This study gives a detailed picture of the taxonomy and diversity of these bacteria and provides new information about the taxonomical variability within the genus Methylobacterium. Twelve mesophilic, pink-pigmented, and facultatively methylotrophic oxalate-oxidizing strains were included in this work that had been previously isolated from the soil and some plant tissues by the potassium oxalate enrichment method. The isolates were characterized using biochemical tests, cellular lipid profiles, spectral characteristics of carotenoid pigments, G+C content of the DNA, and 16S rDNA sequencing. The taxonomic similarities among the strains were analyzed using the simple matching ( S SM) and Jaccard ( S J) coefficients, and the UPGMA clustering algorithm. The phylogenetic position of the strains was inferred by the neighbor-joining method on the basis of the 16S rDNA sequences. All isolates were Gram-negative, facultatively methylotrophic, oxidase and catalase positive, and required no growth factors. Based on the results of numerical taxonomy, the strains formed four closely related clusters sharing ≥85% similarity. Analysis of the 16S rDNA sequences demonstrated that oxalotrophic, pink-pigmented, and facultatively methylotrophic strains could be identified as members of the genus Methylobacterium. Except for M. variabile and M. aquaticum, all of the Methylobacterium type strains tested had the ability of oxalate utilization. Our results indicate that the capability of oxalate utilization seems to be an uncommon trait and could be used as a valuable taxonomic criterion for differentiation of Methylobacterium species.

  19. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  20. Noncontacting-optical-strain device

    Science.gov (United States)

    Silver, R. H.

    1970-01-01

    Noncontacting-strain-measuring gauge and extensometer remotely measures the mechanical displacement along the entire length of a test specimen. Measurement is accomplished by continuous scanning of a reflected light from reflective bench markings or stripes previously affixed to the specimen.

  1. Job strain and tobacco smoking

    DEFF Research Database (Denmark)

    Heikkilä, Katriina; Nyberg, Solja T; Fransson, Eleonor I

    2012-01-01

    Tobacco smoking is a major contributor to the public health burden and healthcare costs worldwide, but the determinants of smoking behaviours are poorly understood. We conducted a large individual-participant meta-analysis to examine the extent to which work-related stress, operationalised as job...... strain, is associated with tobacco smoking in working adults....

  2. Strain effects in oxide superconductors

    International Nuclear Information System (INIS)

    Wada, H.; Kuroda, T.; Sekine, H.; Yuyama, M.; Itoh, K.

    1991-01-01

    Strain sensitivities of superconducting properties are critical to high magnetic field applications of superconductors, since critical temperature, T c , upper critical field, H c2 , and critical current (density), I c (J c ), are all degraded under strains. Oxide superconductors so far known are all very fragile, thus requiring to be fabricated in the form of composite. In the case of practical metallic superconductors, such as Nb 3 Sn and V 3 Ga, the so-called bronze method has been developed where these superconducting intermetallics are enveloped in a ductile metallic sheath. Recently, a fabrication method similar to the bronze method has been developed for the Bi 2 Sr 2 Ca 2 Cu 3 O x superconductors using Ag tubes as sheath. In the present study mono- and multicore BiPbSrCaCuO tape conductors were prepared by means of this Ag-sheath composite method, and examined in terms of strain sensitivity by measuring their T c and I c (J c ) under bending or tensile strains. (orig.)

  3. Mobilomics in Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Menconi, Giulia; Battaglia, Giovanni; Grossi, Roberto; Pisanti, Nadia; Marangoni, Roberto

    2013-03-20

    Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus-like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non-conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra-specific comparison are sharp markers of inter-specific evolution: indeed, many events of non-conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to infer MGEs also for low coverage genomes

  4. Mobilomics in Saccharomyces cerevisiae strains

    Science.gov (United States)

    2013-01-01

    Background Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus–like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. Results Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non–conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra–specific comparison are sharp markers of inter–specific evolution: indeed, many events of non–conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. Conclusions The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to

  5. A NEW STRAIN OF TRANSMISSIBLE LEUCEMIA IN FOWLS (STRAIN H).

    Science.gov (United States)

    Ellermann, V

    1921-03-31

    1. A new strain of fowl leucosis has been transmitted through twelve generations of fowls. 2. An increase in virulence was observed during its passage. This was shown in a shortening of the interval between inoculation and death. The increase in virulence does not affect the number of successful inoculations, which remains approximately constant in from 20 to 40 per cent of the birds employed. 3. As with former strains, the disease manifests itself in various forms; i.e., myeloid and intravascular lymphoid types. A single lymphatic case was observed. 4. In several intravascular cases a diminution in the hemolytic power of the serum was established. This phenomenon was absent in a number of myeloid cases. 5. Active immunization cannot be produced by means of the subcutaneous injection of virulent material. 6. The finding of previous experiments that the virus is filterable has been confirmed. 7. The inoculation of human leucemic material into fowls gave negative results.

  6. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.

    Science.gov (United States)

    Klassen, Viktor; Blifernez-Klassen, Olga; Hoekzema, Yoep; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    The use of alga biomass for biogas generation has been studied for over fifty years but until today, several distinct features, like inefficient degradation and low C/N ratios, limit the applicability of algal biomass for biogas production in larger scale. In this work we investigated a novel, one-stage combined cultivation/fermentation strategy including inherently progressing nitrogen starvation conditions to generate improved microalgal biomass substrates. For this strategy, comparable low amounts of nitrogen fertilizers were applied during cultivation and no additional enzymatic, chemical or physical pretreatments had to be performed. The results of this study demonstrate that progressing nitrogen limitation leads to continuously increasing C/N ratios of the biomass up to levels of 24-26 for all three tested alga strains (Chlamydomonas reinhardtii, Parachlorella kessleri and Scenedesmus obliquus). Importantly, the degradation efficiency of the algal cells increased with progressing starvation, leading to strain-specific cell disintegration efficiencies of 35%-100% during the fermentation process. Nitrogen limitation treatment resulted in a 65% increase of biogas yields for C. reinhardtii biomass (max. 698±23mL biogas g(-1) VS) when compared to replete conditions. For P. kessleri and S. obliquus, yields increased by 94% and 106% (max. 706±39mL and 586±36mL biogas g(-1) VS, respectively). From these results we conclude that this novel one-stage cultivation strategy with inherent nitrogen limitation can be used as a pretreatment for microalgal biomass generation, in order to produce accessible substrates with optimized C/N ratios for the subsequent anaerobic fermentation process, thus increasing methane production and avoiding the risk of ammonia inhibition effects within the fermenter. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.

    Science.gov (United States)

    Vinyard, David J; Gimpel, Javier; Ananyev, Gennady M; Mayfield, Stephen P; Dismukes, G Charles

    2014-03-12

    The D1 protein of Photosystem II (PSII) provides most of the ligating amino acid residues for the Mn4CaO5 water-oxidizing complex (WOC) and half of the reaction center cofactors, and it is present as two isoforms in the cyanobacterium Synechococcus elongatus PCC 7942. These isoforms, D1:1 and D1:2, confer functional advantages for photosynthetic growth at low and high light intensities, respectively. D1:1, D1:2, and seven point mutations in the D1:2 background that are native to D1:1 were expressed in the green alga Chlamydomonas reinhardtii. We used these nine strains to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions (where charge recombination is significant) have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period. Conversely, these same strains under light saturation (where charge recombination does not compete) confer a correspondingly faster O2 evolution rate and greater protection against photoinhibition. Taken together, the data clearly establish that PSII primary charge separation is a trade-off between photochemical productivity (water oxidation and plastoquinone reduction) and charge recombination (photoprotection). These trade-offs add up to a significant growth advantage for the two natural isoforms. These insights provide fundamental design principles for engineering of PSII reaction centers with optimal photochemical efficiencies for growth at low versus high light intensities.

  8. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  9. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  10. Nutrient content of sorghum beer strainings

    African Journals Online (AJOL)

    Sorghum beer strainings were analysed for starch, protein, fat, crude fibre, ash, minerals and ... The importance of minerals in animal nutrition has been recognized for many ..... strainings is probably due to yeast activity during fermentation ...

  11. Yeast strains and methods of use thereof

    OpenAIRE

    Goddard, Matthew Robert; Gardner, Richard Clague; Anfang, Nicole

    2013-01-01

    The present invention relates to yeast strains and, in particular, to yeast stains for use in fermentation processes. The invention also relates to methods of fermentation using the yeast strains of the invention either alone or in combination with other yeast strains. The invention thither relates to methods for the selection of yeast strains suitable for fermentation cultures by screening for various metabolic products and the use of specific nutrient sources.

  12. Development of Industrial Yeast Platform Strains

    DEFF Research Database (Denmark)

    Bergdahl, Basti; Dato, Laura; Förster, Jochen

    2014-01-01

    Most of the current metabolic engineering projects are carried out using laboratory strains as the starting host. Although such strains are easily manipulated genetically, their robustness does not always meet the requirements set by industrial fermentation conditions. In such conditions, the cells...... screening of the 36 industrial and laboratory yeast strains. In addition, progress in the development of molecular biology methods for generating the new strains will be presented....

  13. STRAINED OFF BREAST MILK: PRO AND CONTRA

    Directory of Open Access Journals (Sweden)

    O.L. Lukoyanova

    2010-01-01

    Full Text Available The questions of feeding of children with strained off breast milk are discussed in this article. Author presents medical indications to such type of feeding, peculiarities and rules of storage of strained off milk. There is a brief literature review on the influence of different factors on the composition of strained off breast milk.Key words: strained milk, breast feeding, pasteurization, freezing.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(2:70-73

  14. Haemophilus ducreyi Cutaneous Ulcer Strains Are Nearly Identical to Class I Genital Ulcer Strains.

    Directory of Open Access Journals (Sweden)

    Dharanesh Gangaiah

    Full Text Available Although cutaneous ulcers (CU in the tropics is frequently attributed to Treponema pallidum subspecies pertenue, the causative agent of yaws, Haemophilus ducreyi has emerged as a major cause of CU in yaws-endemic regions of the South Pacific islands and Africa. H. ducreyi is generally susceptible to macrolides, but CU strains persist after mass drug administration of azithromycin for yaws or trachoma. H. ducreyi also causes genital ulcers (GU and was thought to be exclusively transmitted by microabrasions that occur during sex. In human volunteers, the GU strain 35000HP does not infect intact skin; wounds are required to initiate infection. These data led to several questions: Are CU strains a new variant of H. ducreyi or did they evolve from GU strains? Do CU strains contain additional genes that could allow them to infect intact skin? Are CU strains susceptible to azithromycin?To address these questions, we performed whole-genome sequencing and antibiotic susceptibility testing of 5 CU strains obtained from Samoa and Vanuatu and 9 archived class I and class II GU strains. Except for single nucleotide polymorphisms, the CU strains were genetically almost identical to the class I strain 35000HP and had no additional genetic content. Phylogenetic analysis showed that class I and class II strains formed two separate clusters and CU strains evolved from class I strains. Class I strains diverged from class II strains ~1.95 million years ago (mya and CU strains diverged from the class I strain 35000HP ~0.18 mya. CU and GU strains evolved under similar selection pressures. Like 35000HP, the CU strains were highly susceptible to antibiotics, including azithromycin.These data suggest that CU strains are derivatives of class I strains that were not recognized until recently. These findings require confirmation by analysis of CU strains from other regions.

  15. Strain gradient effects in surface roughening

    DEFF Research Database (Denmark)

    Borg, Ulrik; Fleck, N.A.

    2007-01-01

    evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...

  16. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads

    2008-01-01

    of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  17. drug resistant strains of Salmonella enterica

    African Journals Online (AJOL)

    Conclusions: The aqueous extract of Thonningia sanguinea can provide an alternative therapy for the treatment of salmonellosis, mainly for typhoid fever caused by MDR strains of S. Typhi.The extract also inhibits S.Hadar a MDR emerging strain in Ivory Coast. Keywords: Thonningia sanguinea; Salmonella, MDR strains, ...

  18. Development of high temperature strain gage, (5)

    International Nuclear Information System (INIS)

    Yuuki, Hiroshi; Kobayashi, Yukio; Kanai, Kenji; Yamaura, Yoshio

    1976-01-01

    Development and improvement of resistance wire type strain gages usable for experimental measurement of thermal strains generated at high temperature in various structures and equipments that consist of a Fast Breeder Reactor have been carried out, and various characteristics of the strain gages have been investigated. Based on the results obtained up to now, development and research of this time mainly aim to improve strain and fatigue characteristics. As the results, characteristics of strain gages with sensing elements of nichrome V are improved, specifically mechanical hysteresis is decreased, strain limit is increased, etc. Also, improvement is recognized in thermal output, and it becomes clear that dummy gages work effectively. However, a filling method of MgO and an inserting method of active-dummy elements are selected as primary objects to improve strain characteristics, and many hours are taken for these objects, so confirmations of characteristics of platinum-tungsten strain gages, strain sensing elements of which are troublesome to produce, have not been completely done, though the performance of the gages has been improved in several points. As to nichrome V strain gages, there is a fair prospect of obtaining ones, specifications of which are quite close to the goal, though problems in manufacturing technics remain for future. As to platinum-tungsten strain gages, it is expected that similar strain gages to nichrome V are obtainable by improvement in manufacturing of sensing elements. (auth.)

  19. Strain path dependency in metal plasticity

    NARCIS (Netherlands)

    Viatkina, E.M.; Brekelmans, W.A.M.; Geers, M.G.D.

    2003-01-01

    A change in strain path has a significant effect on the mechanical response of metals. Strain path change effects physically originate from a complex microstructure evolution. This paper deals with the contribution of cell structure evolution to the strain path change effect. The material with cells

  20. Stress and strain measurements in solids

    International Nuclear Information System (INIS)

    Askegaard, V.

    1978-01-01

    A design basis is given for stress- and strain cells to be used in a solid either externally loaded or with a stressfree strain field (for example shrinkage). A stress- and a strain cell has been designed for use in granular materials. Calibration tests show either good or reasonably good correspondance with calculated values. (orig.) [de

  1. Spontaneous abortion and physical strain around implantation

    DEFF Research Database (Denmark)

    Hjollund, N H; Jensen, Tina Kold; Bonde, Jens Peter

    2000-01-01

    pregnancy the women recorded physical strain prospectively in a structured diary. Physical strain around the time of implantation was associated with later spontaneous abortion. The adjusted risk ratio for women who reported physical strain higher than average at day 6 to 9 after the estimated date...

  2. Strain engineering of van der Waals heterostructures

    NARCIS (Netherlands)

    Vermeulen, Paul A.; Mulder, Jefta; Momand, Jamo; Kooi, Bart J.

    2018-01-01

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS2, and Bi2Te3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals

  3. On lower order strain gradient plasticity theories

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...... the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory....... The findings raise questions about the physical acceptability of this class of strain gradient theories....

  4. Spontaneous abortion and physical strain around implantation

    DEFF Research Database (Denmark)

    Hjøllund, Niels Henrik Ingvar; Jensen, T.K.; Bonde, J.P.

    2000-01-01

    Existing studies of physical strain and spontaneous abortion are mainly retrospective or based only on pregnancies that have survived the first trimester. Furthermore, almost all studies have relied on averaged measures of physical strain, which tend to blur an effect if peak values during short...... pregnancy the women recorded physical strain prospectively in a structured diary. Physical strain around the time of implantation was associated with later spontaneous abortion. The adjusted risk ratio for women who reported physical strain higher than average at day 6 to 9 after the estimated date...

  5. Local strains in waste tank deflagration analysis

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.

    1993-01-01

    In recent years extensive effort has been expended to qualify buried nuclear waste storage tanks under accident conditions. One of these conditions is deflagration of the combustible gases which may build up over time. While much work has been done to calculate the general strain state, less effort has been made to address the local strains at structural discontinuities. An analytical method is presented for calculating these local strains and combining them with the general strain state. A closed form solution of the local strains is compared to a finite element solution

  6. Sensibility of different wheat varieties (strains) to Ar+ implantation

    International Nuclear Information System (INIS)

    Cui Huanhu; Jing Hua; Ma Aiping; Kang Xiuli; Yang Liping; Huang Mingjing; Ma Buzhou; Shanxi Academy of Agricultural Sciences, Taiyuan

    2005-01-01

    The sensibility of different wheat varieties (strains) to Ar + implantation was studied. The results showed that the survival rate of 21 wheat varieties (strains) at the dose of 6 x 10 16 Ar + /cm 2 could be divided into five groups: surplus sensitive varieties (strains), sensitive varieties (strains), transitional varieties (strains), obtuse varieties (strains) and surplus obtuse varieties (strains). The sensibility of wheat varieties (strains) to Ar + injection is high-moisture-fertility wheat varieties (strains) > medium-moisture-fertility wheat varieties (strains) > dry land wheat varieties (strains). The study has provided theoretical basis in induced mutation medial lethal dose of different wheat varieties (strains) to Ar + implantation. (authors)

  7. Stress-strain properties of railway steel at strain rates of upto 105 per second

    International Nuclear Information System (INIS)

    Hashmi, M.S.J.; Islam, M.N.

    1985-01-01

    This paper presents the stress-strain characteristics of railway steel at strain rates of up to 10 5 /s at room temperature determined by a new technique. In determining the results, account has been taken of the strain-rate variation, the total strain and the strain rate history. The effect of friction, material inertia and temperature rise is also assessed and an empirical constitutive equation describing the strain-rate and strain sensitive flow stress for this type of steel is proposed. (orig.)

  8. Strain quantification in epitaxial thin films

    International Nuclear Information System (INIS)

    Cushley, M

    2008-01-01

    Strain arising in epitaxial thin films can be beneficial in some cases but devastating in others. By altering the lattice parameters, strain may give a thin film properties hitherto unseen in the bulk material. On the other hand, heavily strained systems are prone to develop lattice defects in order to relieve the strain, which can cause device failure or, at least, a decrease in functionality. Using convergent beam electron diffraction (CBED) and high-resolution transmission electron microscopy (HRTEM), it is possible to determine local strains within a material. By comparing the results from CBED and HRTEM experiments, it is possible to gain a complete view of a material, including the strain and any lattice defects present. As well as looking at how the two experimental techniques differ from each other, I will also look at how results from different image analysis algorithms compare. Strain in Si/SiGe samples and BST/SRO/MgO capacitor structures will be discussed.

  9. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  10. Reparation in unicellular green algae during chronic exposure to the action of mutagenic factors. II. Restoration of single-stranded DNA breaks following exposure of Chlamydomonas reinchardii to gamma-irradiation

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    The restoration of single-stranded breaks in the DNA in different strains of unicellular green algae (chlamydomonads) during chronic exposure to the action of mutagenic factors following γ-irradiation was investigated. It was shown that the restoration of DNA breaks was most effective in the case of strain M γ/sup mt + /, which is resistant to radiation. Strains, that were sensitive to UV irradiation showed a similar order of DNA break restoration as the wild-type strain. Strain UVS-1 showed a higher level of restoration than the wild-type strain. The data indicated that chlamydomonads have different pathways of reparation, which lead to the restoration of breaks induced by γ-irradiation and UV-rays

  11. Noninvasive characterization of carotid plaque strain.

    Science.gov (United States)

    Khan, Amir A; Sikdar, Siddhartha; Hatsukami, Thomas; Cebral, Juan; Jones, Michael; Huston, John; Howard, George; Lal, Brajesh K

    2017-06-01

    Current risk stratification of internal carotid artery plaques based on diameter-reducing percentage stenosis may be unreliable because ischemic stroke results from plaque disruption with atheroembolization. Biomechanical forces acting on the plaque may render it vulnerable to rupture. The feasibility of ultrasound-based quantification of plaque displacement and strain induced by hemodynamic forces and their relationship to high-risk plaques have not been determined. We studied the feasibility and reliability of carotid plaque strain measurement from clinical B-mode ultrasound images and the relationship of strain to high-risk plaque morphology. We analyzed carotid ultrasound B-mode cine loops obtained in patients with asymptomatic ≥50% stenosis during routine clinical scanning. Optical flow methods were used to quantify plaque motion and shear strain during the cardiac cycle. The magnitude (maximum absolute shear strain rate [MASSR]) and variability (entropy of shear strain rate [ESSR] and variance of shear strain rate [VSSR]) of strain were combined into a composite shear strain index (SSI), which was assessed for interscan repeatability and correlated with plaque echolucency. Nineteen patients (mean age, 70 years) constituting 36 plaques underwent imaging; 37% of patients (n = 7) showed high strain (SSI ≥0.5; MASSR, 2.2; ESSR, 39.7; VSSR, 0.03) in their plaques; the remaining clustered into a low-strain group (SSI routine B-mode imaging using clinical ultrasound machines. High plaque strain correlates with known high-risk echolucent morphology. Strain measurement can complement identification of patients at high risk for plaque disruption and stroke. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  12. Phycoremediation of municipal wastewater by microalgae to produce biofuel.

    Science.gov (United States)

    Singh, Amit Kumar; Sharma, Nikunj; Farooqi, Humaira; Abdin, Malik Zainul; Mock, Thomas; Kumar, Shashi

    2017-09-02

    Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.

  13. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective

    International Nuclear Information System (INIS)

    Murphy, Thomas E.; Berberoglu, Halil

    2011-01-01

    This paper reports a numerical study coupling light transfer with photosynthetic rate models to determine the size and microorganism concentration of photobioreactors based on the pigmentation of algae to achieve maximum productivity. The wild strain Chlamydomonas reinhardtii and its transformant tla1 with 63% lower pigmentation are used as exemplary algae. First, empirical models of the specific photosynthetic rates were obtained from experimental data as a function of local irradiance using inverse methods. Then, these models were coupled with the radiative transfer equation (RTE) to predict both the local and total photosynthetic rates in a planar photobioreactor (PBR). The optical thickness was identified as the proper scaling parameter. The results indicated that under full sunlight corresponding to about 400 W/m 2 photosynthetically active irradiation, enhancement of PBR productivity up to 30% was possible with tla1. Moreover, under similar irradiation, optical thicknesses above 169 and 275 for the wild strain and tla1, respectively, did not further enhance PBR productivity. Based on these results guidelines are provided for maximizing PBR productivity from a light transport perspective.

  14. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....

  15. Evolution of sexes from an ancestral mating-type specification pathway.

    Directory of Open Access Journals (Sweden)

    Sa Geng

    2014-07-01

    Full Text Available Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT gene in volvocine algae-MID, which encodes a RWP-RK domain transcription factor-evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type-limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was

  16. Thermoresistance in radioresistant strains of 'Drosophila nebulosa'

    International Nuclear Information System (INIS)

    Kratz, F.L.

    1977-01-01

    The detection of thermoresistance in radioresistant strains of 'D. nebulosa' is described, as well as some conclusions on the genetic nature of these differences are presented. The strains used in this experiment were MF 204, from 'Morro de Ferro', in Pocos de Caldas (MG) (one of the biggest radioactive anomalies in the world) whose radioresistance is due to its additive genetic components (Kratz, 1973 and 1975); 85(87) R, an induced radioresistant strain; and MF K a control 'pooled' strain obtained near 'Morro do Ferro'. Survival tests, 72 hours after temperature shocks, performed in the interval of 36 0 C to 39 0 C showed a decreasing gradient of thermoresistance with the following regression coefficients: MF 204 b= - 5,4; 85(87)R b= - 7,2 and MF K b= - 7,9. Bifactorial analysis (strains and sexes) performed at 38 0 C and 39 0 C confirmed differences among strains (P [pt

  17. The many shades of prion strain adaptation.

    Science.gov (United States)

    Baskakov, Ilia V

    2014-01-01

    In several recent studies transmissible prion disease was induced in animals by inoculation with recombinant prion protein amyloid fibrils produced in vitro. Serial transmission of amyloid fibrils gave rise to a new class of prion strains of synthetic origin. Gradual transformation of disease phenotypes and PrP(Sc) properties was observed during serial transmission of synthetic prions, a process that resembled the phenomenon of prion strain adaptation. The current article discusses the remarkable parallels between phenomena of prion strain adaptation that accompanies cross-species transmission and the evolution of synthetic prions occurring within the same host. Two alternative mechanisms underlying prion strain adaptation and synthetic strain evolution are discussed. The current article highlights the complexity of the prion transmission barrier and strain adaptation and proposes that the phenomenon of prion adaptation is more common than previously thought.

  18. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Czech Academy of Sciences Publication Activity Database

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machat, J.; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Roč. 9, č. 58 (2009), s. 1-16 ISSN 1471-2229 R&D Projects: GA AV ČR IAA600200701; GA MŠk OE 221; GA MŠk OE09025 Institutional research plan: CEZ:AV0Z50200510 Keywords : CHLAMYDOMONAS-REINHARDTII * THIOREDOXIN REDUCTASE * EMILIANIA-HUXLEYI Subject RIV: EE - Microbiology, Virology Impact factor: 3.774, year: 2009

  19. The microorganisms as a renewable source of ecological clean fuel

    International Nuclear Information System (INIS)

    Shalygo, N.V.; Mel'nikov, S.S.; Manankina, E.E.; Budakova, E.A.; Kolyago, V.M.

    2006-01-01

    Five families of microorganisms (Bacillaceae, Rhodospirillaceae, Cyanophyceae, Chlorophyceae and Euglenophyceae) as hydrogen producers were tested and the conditions that are necessary for hydrogen photoproduction were investigated. It was shown, that the most effective producers of hydrogen were Rhodobacter spheroides, Clostridium sp.; Euglena gracilis var. bacillaris and Chlamydomonas reinhardtii. Addition of glucose, iron and vanadium salts resulted in the increase of hydrogen production. Polycultures consisted of two or three microorganisms were more effective hydrogen producers compared to separate monocultures. (authors)

  20. A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms

    Czech Academy of Sciences Publication Activity Database

    Valledor, Luis; Escandón, M.; Meijón, M.; Nukarinen, E.; Jesús Cañal, M.; Weckwerth, W.

    2014-01-01

    Roč. 79, č. 1 (2014), s. 173-180 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : systems biology * combined isolation * RNA * small RNA * proteins * metabolites * Chlamydomonas reinhardtii * Arabidopsis thaliana * Populus sp. * Pinus sp. * technical advance Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.972, year: 2014

  1. Alga-based HPV16 E7 vaccine elicits specific immune response in mice

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Josef; Bříza, Jindřich; Ryba, Š.; Ludvíková, V.

    2013-01-01

    Roč. 34, č. 1 (2013), s. 141-148 ISSN 2249-7412 R&D Projects: GA AV ČR IAA500960903 Institutional support: RVO:60077344 Keywords : Chlamydomonas reinhardtii * chloroplast transformation * human papillomaviruses * E7 oncogene Subject RIV: EB - Genetics ; Molecular Biology http://pelagiaresearchlibrary.com/asian-journal-of-plant-science/vol3-iss1/AJPSR-2013-3-1-141-148.pdf

  2. In the presence of fluoride, free Sc³⁺ is not a good predictor of Sc bioaccumulation by two unicellular algae: possible role of fluoro-complexes.

    Science.gov (United States)

    Crémazy, Anne; Campbell, Peter G C; Fortin, Claude

    2014-08-19

    We investigated the effect of fluoride complexation on scandium accumulation by two unicellular algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. This trivalent metal was selected for its chemical similarities with aluminum and for its convenient radioisotope (Sc-46), which can be used as a tracer in short-term bioaccumulation studies. Scandium surface-bound concentrations (Sc(ads)) and uptake fluxes (J(int)) were estimated in the two algae over short-term (organisms.

  3. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses

    OpenAIRE

    Nam, Sun-Hwa; Il Kwak, Jin; An, Youn-Joo

    2018-01-01

    Soil algae, which have received attention for their use in a novel bioassay to evaluate soil toxicity, expand the range of terrestrial test species. However, there is no information regarding the toxicity of nanomaterials to soil algae. Thus, we evaluated the effects of silver nanoparticles (0–50 mg AgNPs/kg dry weight soil) on the soil alga Chlamydomonas reinhardtii after six days, and assessed changes in biomass, photosynthetic activity, cellular morphology, membrane permeability, esterase ...

  4. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  5. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tensio...... of principal overall strain. For other orientations surface instabilities are seen when non-associated plastic flow is taken into account. Compared to tension, smaller compressive deformations are needed in order to initiate a surface instability....

  6. Strain comparisons in aquaculture species: a manual

    OpenAIRE

    Ponzoni, R.W.; James, J.W.; Nguyen, N.H.; Mekkawy, W.; Khaw, H.L.

    2013-01-01

    When different strains or breeds of a particular species are available, the best choice is seldom immediately obvious for producers. Scientists are also interested in the relative performance of different strains because it provides a basis for recommendations to producers and it often stimulates the conduct of work aimed at unraveling the underlying biological mechanisms involved in the expression of such differences. Hence, strain or breed comparisons of some sort are frequently conducted. ...

  7. [Characteristics of Lactobacillus strains contained in pharmaceuticals].

    Science.gov (United States)

    Banach, W; Bucholc, B; Wójcik, B

    2001-01-01

    The aim of the study was to characterize lactic acid bacteria (LAB) which are components of drugs administered orally in cases of intestinal disturbances, or antibiotic--related diarrhea. Biochemical properties, growth behavior, bile tolerance, and survival at low pH of six LAB strains (four strains L. rhamnosus and two L. acidophilus) were studied. The survival at low pH was determined in MRS broth (Difco) acidified to pH 1; 2; 3; and 4. Bile tolerance was tested on MRS broth with 0.3% oxgall (Difco). Between tested strains differences in ability to grow at low pH and survival in bile were observed. Only 0.01% inoculum of all examined strains survived at pH 1. Differences between strains in survival at low pH (pH 2 and pH 3) and tolerance of bile were observed. However, after 2 h incubation at pH 4, 100% of strains stayed alive. Examined strains demonstrated good 3% bile tolerance. All strains met the criteria for probiotic strains: ability to survive at pH 3 and in the presence of bile.

  8. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  9. Comparison of Thermal Creep Strain Calculation Results Using Time Hardening and Strain Hardening Rules

    International Nuclear Information System (INIS)

    Kim, Junehyung; Cheon, Jinsik; Lee, Byoungoon; Lee, Chanbock

    2014-01-01

    One of the design criteria for the fuel rod in PGSFR is the thermal creep strain of the cladding, because the cladding is exposed to a high temperature for a long time during reactor operation period. In general, there are two kind of calculation scheme for thermal creep strain: time hardening and strain hardening rules. In this work, thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules are compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule are compared with those by using MACSIS. Thermal creep strain calculation results for HT9 cladding by using time hardening and strain hardening rules were compared by employing KAERI's current metallic fuel performance analysis code, MACSIS. Also, thermal creep strain calculation results by using ANL's metallic fuel performance analysis code, LIFE-METAL which adopts strain hardening rule were compared with those by using MACSIS. Tertiary creep started earlier in time hardening rule than in strain hardening rule. Also, calculation results by MACSIS with strain hardening and those obtained by using LIFE-METAL were almost identical to each other

  10. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    Directory of Open Access Journals (Sweden)

    Giuseppina Rea

    2011-01-01

    Full Text Available Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues

  11. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    Science.gov (United States)

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  12. Predicting creep rupture from early strain data

    International Nuclear Information System (INIS)

    Holmstroem, Stefan; Auerkari, Pertti

    2009-01-01

    To extend creep life modelling from classical rupture modelling, a robust and effective parametric strain model has been developed. The model can reproduce with good accuracy all parts of the creep curve, economically utilising the available rupture models. The resulting combined model can also be used to predict rupture from the available strain data, and to further improve the rupture models. The methodology can utilise unfailed specimen data for life assessment at lower stress levels than what is possible from rupture data alone. Master curves for creep strain and rupture have been produced for oxygen-free phosphorus-doped (OFP) copper with a maximum testing time of 51,000 h. Values of time to specific strain at given stress (40-165 MPa) and temperature (125-350 deg. C) were fitted to the models in the strain range of 0.1-38%. With typical inhomogeneous multi-batch creep data, the combined strain and rupture modelling involves the steps of investigation of the data quality, extraction of elastic and creep strain response, rupture modelling, data set balancing and creep strain modelling. Finally, the master curves for strain and rupture are tested and validated for overall fitting efficiency. With the Wilshire equation as the basis for the rupture model, the strain model applies classical parametric principles with an Arrhenius type of thermal activation and a power law type of stress dependence for the strain rate. The strain model also assumes that the processes of primary and secondary creep can be reasonably correlated. The rupture model represents a clear improvement over previous models in the range of the test data. The creep strain information from interrupted and running tests were assessed together with the rupture data investigating the possibility of rupture model improvement towards lower stress levels by inverse utilisation of the combined rupture based strain model. The developed creep strain model together with the improved rupture model is

  13. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)

    2011-08-17

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  14. Nanocomposite Strain Gauges Having Small TCRs

    Science.gov (United States)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  15. Strain differentiation of polioviruses with monoclonal antibodies.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); A.L. van Wezel; A.J.H. Stegmann; J.A.A.M. van Asten (Jack)

    1984-01-01

    textabstractPanels of monoclonal antibodies raised against different poliovirus type 1, 2 and 3 strains, were tested in a micro-neutralization test and in a micro-enzyme linked immunosorbent assay against a large number of poliovirus strains. The results were compared with those obtained with the

  16. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  17. On lower order strain gradient plasticity theories

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2002-01-01

    By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...

  18. Job strain and time to pregnancy

    DEFF Research Database (Denmark)

    Hjollund, N H; Kold Jensen, T; Bonde, Jens Peter

    1998-01-01

    The association between fertility and job strain defined as high job demands and low job control has not previously been studied. A follow-up study was conducted with prospective collection of information on job strain among women, achievement of pregnancy, and potential confounding variables....

  19. Medically Complex Home Care and Caregiver Strain

    Science.gov (United States)

    Moorman, Sara M.; Macdonald, Cameron

    2013-01-01

    Purpose of the study: To examine (a) whether the content of caregiving tasks (i.e., nursing vs. personal care) contributes to variation in caregivers' strain and (b) whether the level of complexity of nursing tasks contributes to variation in strain among caregivers providing help with such tasks. Design and methods: The data came from the Cash…

  20. Five challenges in modelling interacting strain dynamics

    DEFF Research Database (Denmark)

    Wikramaratna, Paul S; Kurcharski, Adam; Gupta, Sunetra

    2015-01-01

    population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity...

  1. Multiple Genome Sequences of Lactobacillus plantarum Strains

    OpenAIRE

    Kafka, Thomas A.; Geissler, Andreas J.; Vogel, Rudi F.

    2017-01-01

    ABSTRACT We report here the genome sequences of four Lactobacillus plantarum strains which vary in surface hydrophobicity. Bioinformatic analysis, using additional genomes of Lactobacillus plantarum strains, revealed a possible correlation between the cell wall teichoic acid-type and cell surface hydrophobicity and provide the basis for consecutive analyses.

  2. Preliminary characterization of slow growing rhizobial strains ...

    African Journals Online (AJOL)

    In this paper, we did some preliminary characterization of six slow growing rhizobial strains, isolated from Retama monosperma (L.) Boiss. root nodules sampled from 3 sites along the coast of Oran (CapeFalcon, Bousfer and MersElHadjadj) in Northwestern Algeria. Results of this study showed that all strains had a very ...

  3. Typing of lymphogranuloma venereum Chlamydia trachomatis strains

    NARCIS (Netherlands)

    Christerson, Linus; de Vries, Henry J. C.; de Barbeyrac, Bertille; Gaydos, Charlotte A.; Henrich, Birgit; Hoffmann, Steen; Schachter, Julius; Thorvaldsen, Johannes; Vall-Mayans, Martí; Klint, Markus; Herrmann, Björn; Morré, Servaas A.

    2010-01-01

    We analyzed by multilocus sequence typing 77 lymphogranuloma venereum Chlamydia trachomatis strains from men who have sex with men in Europe and the United States. Specimens from an outbreak in 2003 in Europe were monoclonal. In contrast, several strains were in the United States in the 1980s,

  4. Typing of Lymphogranuloma Venereum Chlamydia trachomatis Strains

    Science.gov (United States)

    Christerson, Linus; de Vries, Henry J.C.; de Barbeyrac, Bertille; Gaydos, Charlotte A.; Henrich, Birgit; Hoffmann, Steen; Schachter, Julius; Thorvaldsen, Johannes; Vall-Mayans, Martí; Klint, Markus; Morré, Servaas A.

    2010-01-01

    We analyzed by multilocus sequence typing 77 lymphogranuloma venereum Chlamydia trachomatis strains from men who have sex with men in Europe and the United States. Specimens from an outbreak in 2003 in Europe were monoclonal. In contrast, several strains were in the United States in the 1980s, including a variant from Europe. PMID:21029543

  5. MARSI: metabolite analogues for rational strain improvement

    DEFF Research Database (Denmark)

    Cardoso, João G. R.; Zeidan, Ahmad A; Jensen, Kristian

    2018-01-01

    reactions in an organism can be used to predict effects of MAs on cellular phenotypes. Here, we present the Metabolite Analogues for Rational Strain Improvement (MARSI) framework. MARSI provides a rational approach to strain improvement by searching for metabolites as targets instead of genes or reactions...

  6. General Strain Theory and Delinquency: Focusing on the Influences of Key Strain Characteristics on Delinquency

    Science.gov (United States)

    Moon, Byongook; Blurton, David; McCluskey, John D.

    2008-01-01

    The study examines the effects of recent, older, and chronic strains and of perceived injustice of strain on delinquency, sampling 777 Korean youth. Seven key strains most likely leading to delinquency, some of which were often overlooked in previous research, were included, and these are family conflict, parental punishment, teachers' punishment,…

  7. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  8. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters

    International Nuclear Information System (INIS)

    Samuel, K G

    2006-01-01

    It is shown that the deviation from the ideal Hollomon relation in describing the stress-strain behaviour is characteristic of all materials at low strains. The Ludwigson relation describing the deviation from the Hollomon relation at low strains is critically analysed and it is shown that the deviation at low strains is a consequence of some unknown 'plastic strain equivalent' present in the material. Stress strain curves obeying an ideal Hollomon relation as well as that of a structurally modified (prior cold worked) material were simulated and compared. The results show that the yield strength and the flow strength of a material at constant strain rate and temperature are dictated by the magnitude of the 'plastic strain equivalent' term. It is shown that this component need not necessarily mean a prior plastic strain present in the material due to prior cold work alone and that prior cold work strain will add to this. If this component is identified, the stress-strain behaviour can be adequately described by the Swift relation. It is shown that in both formalisms, the strain hardening index is a function of the yield strength of the material

  9. Atlas of stress-strain curves

    CERN Document Server

    2002-01-01

    The Atlas of Stress-Strain Curves, Second Edition is substantially bigger in page dimensions, number of pages, and total number of curves than the previous edition. It contains over 1,400 curves, almost three times as many as in the 1987 edition. The curves are normalized in appearance to aid making comparisons among materials. All diagrams include metric (SI) units, and many also include U.S. customary units. All curves are captioned in a consistent format with valuable information including (as available) standard designation, the primary source of the curve, mechanical properties (including hardening exponent and strength coefficient), condition of sample, strain rate, test temperature, and alloy composition. Curve types include monotonic and cyclic stress-strain, isochronous stress-strain, and tangent modulus. Curves are logically arranged and indexed for fast retrieval of information. The book also includes an introduction that provides background information on methods of stress-strain determination, on...

  10. [New antibiotics produced by Bacillus subtilis strains].

    Science.gov (United States)

    Malanicheva, I A; Kozlov, D G; Efimenko, T A; Zenkova, V A; Kastrukha, G S; Reznikova, M I; Korolev, A M; Borshchevskaia, L N; Tarasova, O D; Sineokiĭ, S P; Efremenkova, O V

    2014-01-01

    Two Bacillus subtilis strains isolated from the fruiting body of a basidiomycete fungus Pholiota squarrosa exhibited a broad range of antibacterial activity, including those against methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and Leuconostoc mes6nteroides VKPM B-4177 resistant to glycopep-> tide antibiotics, as well as antifungal activity. The strains were identified as belonging to the "B. subtilis" com- plex based on their morphological and physiological characteristics, as well as by sequencing of the 16S rRNA gene fragments. Both strains (INA 01085 and INA 01086) produced insignificant amounts of polyene antibiotics (hexaen and pentaen, respectively). Strain INA 01086 produced also a cyclic polypeptide antibiotic containing Asp, Gly, Leu, Pro, Tyr, Thr, Trp, and Phe, while the antibiotic of strain INA 01085 contained, apart from these, two unidentified nonproteinaceous amino acids. Both polypeptide antibiotics were new compounds efficient against gram-positive bacteria and able to override the natural bacterial antibiotic resistance.

  11. On fracture in finite strain gradient plasticity

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof

    2016-01-01

    In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....

  12. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  13. Pseudomagnetic fields and triaxial strain in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Jauho, Antti-Pekka

    2016-01-01

    Pseudomagnetic fields, which can result from nonuniform strain distributions, have received much attention in graphene systems due to the possibility of mimicking real magnetic fields with magnitudes of greater than 100 T. We examine systems with such strains confined to finite regions ("pseudoma......Pseudomagnetic fields, which can result from nonuniform strain distributions, have received much attention in graphene systems due to the possibility of mimicking real magnetic fields with magnitudes of greater than 100 T. We examine systems with such strains confined to finite regions......-binding calculations of single pseudomagnetic dots in extended graphene sheets confirm these predictions, and are also used to study the effect of rotating the strain direction with respect to the underlying graphene lattice, and varying the size of the pseudomagnetic dot....

  14. MODERNIZATION OF GENEOTIPING OF STRAINS B. PERTUSSIS

    Directory of Open Access Journals (Sweden)

    G. A. Ivashinnikova

    2013-01-01

    Full Text Available The new rapid molecular genotyping method was developed for studying the structure of ptxP promoter of pertussis toxin. Method is based on PCR-RFLP analysis, which allows studying the specific restriction profiles of the B. pertussis strains and allows differentiation of the strains with the ptxP structural particularities. The developed method for genotyping of strains of B. pertussis can be hhelpful when monitoring strains of the causative agent of whooping cough in system of an epidemiological surveillance over pertussis infections, allowing observation over circulating population of B.pertussis, revealing strains of the causative agent of whooping cough with high production of pertussis toxin and to watch their distribution.

  15. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  16. Strain-controlled nonvolatile magnetization switching

    Science.gov (United States)

    Geprägs, S.; Brandlmaier, A.; Brandt, M. S.; Gross, R.; Goennenwein, S. T. B.

    2014-11-01

    We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

  17. Amerindian Helicobacter pylori strains go extinct, as european strains expand their host range.

    Directory of Open Access Journals (Sweden)

    Maria G Domínguez-Bello

    Full Text Available We studied the diversity of bacteria and host in the H. pylori-human model. The human indigenous bacterium H. pylori diverged along with humans, into African, European, Asian and Amerindian groups. Of these, Amerindians have the least genetic diversity. Since niche diversity widens the sets of resources for colonizing species, we predicted that the Amerindian H. pylori strains would be the least diverse. We analyzed the multilocus sequence (7 housekeeping genes of 131 strains: 19 cultured from Africans, 36 from Spanish, 11 from Koreans, 43 from Amerindians and 22 from South American Mestizos. We found that all strains that had been cultured from Africans were African strains (hpAfrica1, all from Spanish were European (hpEurope and all from Koreans were hspEAsia but that Amerindians and Mestizos carried mixed strains: hspAmerind and hpEurope strains had been cultured from Amerindians and hpEurope and hpAfrica1 were cultured from Mestizos. The least genetically diverse H. pylori strains were hspAmerind. Strains hpEurope were the most diverse and showed remarkable multilocus sequence mosaicism (indicating recombination. The lower genetic structure in hpEurope strains is consistent with colonization of a diversity of hosts. If diversity is important for the success of H. pylori, then the low diversity of Amerindian strains might be linked to their apparent tendency to disappear. This suggests that Amerindian strains may lack the needed diversity to survive the diversity brought by non-Amerindian hosts.

  18. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Bintu, Alexandra [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Vincze, Gabriela, E-mail: gvincze@ua.pt [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Picu, Catalin R. [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lopes, Augusto B. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Grácio, Jose J. [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Barlat, Frederic [Materials Mechanics Laboratory, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2015-04-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS.

  19. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    International Nuclear Information System (INIS)

    Bintu, Alexandra; Vincze, Gabriela; Picu, Catalin R.; Lopes, Augusto B.; Grácio, Jose J.; Barlat, Frederic

    2015-01-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS

  20. Measurement of Strain and Strain Rate during the Impact of Tennis Ball Cores

    Directory of Open Access Journals (Sweden)

    Ben Lane

    2018-03-01

    Full Text Available The aim of this investigation was to establish the strains and strain rates experienced by tennis ball cores during impact to inform material characterisation testing and finite element modelling. Three-dimensional surface strains and strain rates were measured using two high-speed video cameras and corresponding digital image correlation software (GOM Correlate Professional. The results suggest that material characterisation testing to a maximum strain of 0.4 and a maximum rate of 500 s−1 in tension and to a maximum strain of −0.4 and a maximum rate of −800 s−1 in compression would encapsulate the demands placed on the material during impact and, in turn, define the range of properties required to encapsulate the behavior of the material during impact, enabling testing to be application-specific and strain-rate-dependent properties to be established and incorporated in finite element models.

  1. Factors affecting finite strain estimation in low-grade, low-strain clastic rocks

    Science.gov (United States)

    Pastor-Galán, Daniel; Gutiérrez-Alonso, Gabriel; Meere, Patrick A.; Mulchrone, Kieran F.

    2009-12-01

    The computer strain analysis methods SAPE, MRL and DTNNM have permitted the characterization of finite strain in two different regions with contrasting geodynamic scenarios; (1) the Talas Ala Tau (Tien Shan, Kyrgyzs Republic) and (2) the Somiedo Nappe and Narcea Antiform (Cantabrian to West Asturian-Leonese Zone boundary, Variscan Belt, NW of Iberia). The performed analyses have revealed low-strain values and the regional strain trend in both studied areas. This study also investigates the relationship between lithology (grain size and percentage of matrix) and strain estimates the two methodologies used. The results show that these methods are comparable and the absence of significant finite strain lithological control in rocks deformed under low metamorphic and low-strain conditions.

  2. Chemical Profile of Monascus ruber Strains

    Directory of Open Access Journals (Sweden)

    Ahamed M. Moharram

    2012-01-01

    Full Text Available Chemical profile of Monascus ruber strains has been studied using gas chromatography-mass spectrometry (GC/MS analysis. The colour intensity of the red pigment and secondary metabolic products of two M. ruber strains (AUMC 4066 and AUMC 5705 cultivated on ten different media were also studied. Metabolic products can be classified into four categories: anticholesterol, anticancer, food colouring, and essential fatty acids necessary for human health. Using GC/MS, the following 88 metabolic products were detected: butyric acid and its derivatives (25 products, other fatty acids and their derivatives (19 products, pyran and its derivatives (22 products and other metabolites (22 products. Among these, 32 metabolites were specific for AUMC 4066 strain and 34 for AUMC 5705 strain, whereas 22 metabolites were produced by both strains on different tested substrates. Production of some metabolites depended on the substrate used. High number of metabolites was recorded in the red pigment extract obtained by both strains grown on malt broth and malt agar. Also, 42 aroma compounds were recorded (4 alcohols, 2 benzaldehydes, 27 esters, 3 lactones, 1 phenol, 1 terpenoid, 3 thiol compounds and acetate-3-mercapto butyric acid. Thin layer chromatography and GC/MS analyses revealed no mycotoxin citrinin in any media used for the growth of the two M. ruber strains.

  3. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  4. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.

    Science.gov (United States)

    Nakagawa, Youji; Ogihara, Hiroyuki; Mochizuki, Chisato; Yamamura, Hideki; Iimura, Yuzuru; Hayakawa, Masayuki

    2017-03-01

    Previously reported self-cloning procedures for breeding of industrial yeast strains require DNA from other strains, plasmid DNA, or mutagenesis. Therefore, we aimed to construct a self-cloning baker's yeast strain that exhibits freeze tolerance via an improved self-cloning procedure. We first disrupted the URA3 gene of a prototrophic baker's yeast strain without the use of any marker gene, resulting in a Δura3 homozygous disruptant. Then, the URA3 gene of the parental baker's yeast strain was used as a selection marker to introduce the constitutive TDH3 promoter upstream of the PDE2 gene encoding high-affinity cyclic AMP phosphodiesterase. This self-cloning procedure was performed without using DNA from other Saccharomyces cerevisiae strains, plasmid DNA, or mutagenesis and was therefore designated an intra-strain self-cloning procedure. Using this self-cloning procedure, we succeeded in producing self-cloning baker's yeast strains that harbor the TDH3p-PDE2 gene heterozygously and homozygously, designated TDH3p-PDE2 hetero and TDH3p-PDE2 homo strains, respectively. These self-cloning strains expressed much higher levels of PDE2 mRNA than the parental strain and exhibited higher viability after freeze stress, as well as higher fermentation ability in frozen dough, when compared with the parental strain. The TDH3p-PDE2 homo strain was genetically more stable than the TDH3p-PDE2 hetero strain. These results indicate that both heterozygous and homozygous strains of self-cloning PDE2-overexpressing freeze-tolerant strains of industrial baker's yeast can be prepared using the intra-strain self-cloning procedure, and, from a practical viewpoint, the TDH3p-PDE2 homo strain constructed in this study is preferable to the TDH3p-PDE2 hetero strain for frozen dough baking. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. [Screening and optimization of cholesterol conversion strain].

    Science.gov (United States)

    Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong

    2014-10-04

    Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.

  6. Ductile Damage Evolution and Strain Path Dependency

    International Nuclear Information System (INIS)

    Tasan, C. C.; Hoefnagels, J. M. P.; Peerlings, R. H. J.; Geers, M. G. D.; ten Horn, C. H. L. J.; Vegter, H.

    2007-01-01

    Forming limit diagrams are commonly used in sheet metal industry to define the safe forming regions. These diagrams are built to define the necking strains of sheet metals. However, with the rise in the popularity of advance high strength steels, ductile fracture through damage evolution has also emerged as an important parameter in the determination of limit strains. In this work, damage evolution in two different steels used in the automotive industry is examined to observe the relationship between damage evolution and the strain path that is followed during the forming operation

  7. Strain-energy effects on dynamic fragmentation

    International Nuclear Information System (INIS)

    Glenn, L.A.; Chudnovsky, A.

    1986-01-01

    Grady's model of the dynamic fragmentation process, in which the average fragment size is determined by balancing the local kinetic energy and the surface energy, is modified to include the stored elastic (strain) energy. The revised model predicts that the strain energy should dominate for brittle materials, with low fracture toughness and high fracture-initiation stress. This conclusion is not borne out, however, by limited experimental data on brittle steels, even when the kinetic-energy density is small compared with the strain-energy density

  8. Stability of germanene under tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-09-01

    The stability of germanene under biaxial tensile strain and the accompanying modifications of the electronic properties are studied by density functional theory. The phonon spectrum shows that up to 16% strain the germanene lattice is stable, where the Dirac cone shifts towards higher energy and hole-doped Dirac states are achieved. The latter is due to weakening of the Ge-Ge bonds and reduction of the s-p hybridization. Our calculated Grüneisen parameter shows a similar dependence on the strain as reported for silicene (which is different from that of graphene). © 2013 Elsevier B.V. All rights reserved.

  9. Stability of germanene under tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The stability of germanene under biaxial tensile strain and the accompanying modifications of the electronic properties are studied by density functional theory. The phonon spectrum shows that up to 16% strain the germanene lattice is stable, where the Dirac cone shifts towards higher energy and hole-doped Dirac states are achieved. The latter is due to weakening of the Ge-Ge bonds and reduction of the s-p hybridization. Our calculated Grüneisen parameter shows a similar dependence on the strain as reported for silicene (which is different from that of graphene). © 2013 Elsevier B.V. All rights reserved.

  10. Rat Strain Ontology: structured controlled vocabulary designed to facilitate access to strain data at RGD.

    Science.gov (United States)

    Nigam, Rajni; Munzenmaier, Diane H; Worthey, Elizabeth A; Dwinell, Melinda R; Shimoyama, Mary; Jacob, Howard J

    2013-11-22

    The Rat Genome Database (RGD) ( http://rgd.mcw.edu/) is the premier site for comprehensive data on the different strains of the laboratory rat (Rattus norvegicus). The strain data are collected from various publications, direct submissions from individual researchers, and rat providers worldwide. Rat strain, substrain designation and nomenclature follow the Guidelines for Nomenclature of Mouse and Rat Strains, instituted by the International Committee on Standardized Genetic Nomenclature for Mice. While symbols and names aid in identifying strains correctly, the flat nature of this information prohibits easy search and retrieval, as well as other data mining functions. In order to improve these functionalities, particularly in ontology-based tools, the Rat Strain Ontology (RS) was developed. The Rat Strain Ontology (RS) reflects the breeding history, parental background, and genetic manipulation of rat strains. This controlled vocabulary organizes strains by type: inbred, outbred, chromosome altered, congenic, mutant and so on. In addition, under the chromosome altered category, strains are organized by chromosome, and further by type of manipulations, such as mutant or congenic. This allows users to easily retrieve strains of interest with modifications in specific genomic regions. The ontology was developed using the Open Biological and Biomedical Ontology (OBO) file format, and is organized on the Directed Acyclic Graph (DAG) structure. Rat Strain Ontology IDs are included as part of the strain report (RS: ######). As rat researchers are often unaware of the number of substrains or altered strains within a breeding line, this vocabulary now provides an easy way to retrieve all substrains and accompanying information. Its usefulness is particularly evident in tools such as the PhenoMiner at RGD, where users can now easily retrieve phenotype measurement data for related strains, strains with similar backgrounds or those with similar introgressed regions. This

  11. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    Science.gov (United States)

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  12. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    Science.gov (United States)

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed. Copyright © 2013. Published by Elsevier Ltd.

  13. Species-specific roles of sulfolipid metabolism in acclimation of photosynthetic microbes to sulfur-starvation stress.

    Directory of Open Access Journals (Sweden)

    Norihiro Sato

    Full Text Available Photosynthetic organisms utilize sulfate for the synthesis of sulfur-compounds including proteins and a sulfolipid, sulfoquinovosyl diacylglycerol. Upon ambient deficiency in sulfate, cells of a green alga, Chlamydomonas reinhardtii, degrade the chloroplast membrane sulfolipid to ensure an intracellular-sulfur source for necessary protein synthesis. Here, the effects of sulfate-starvation on the sulfolipid stability were investigated in another green alga, Chlorella kessleri, and two cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. The results showed that sulfolipid degradation was induced only in C. kessleri, raising the possibility that this degradation ability was obtained not by cyanobacteria, but by eukaryotic algae during the evolution of photosynthetic organisms. Meanwhile, Synechococcus disruptants concerning sqdB and sqdX genes, which are involved in successive reactions in the sulfolipid synthesis pathway, were respectively characterized in cellular response to sulfate-starvation. Phycobilisome degradation intrinsic to Synechococcus, but not to Synechocystis, and cell growth under sulfate-starved conditions were repressed in the sqdB and sqdX disruptants, respectively, relative to in the wild type. Their distinct phenotypes, despite the common loss of the sulfolipid, inferred specific roles of sqdB and sqdX. This study demonstrated that sulfolipid metabolism might have been developed to enable species- or cyanobacterial-strain dependent processes for acclimation to sulfate-starvation.

  14. Electrokinetically controlled fluid injection into unicellular microalgae.

    Science.gov (United States)

    Zhou, Xuewen; Zhang, Xixi; Boualavong, Jonathan; Durney, Andrew R; Wang, Tonghui; Kirschner, Scott; Wentz, Michaela; Mukaibo, Hitomi

    2017-10-01

    Electrokinetically controlled microinjection is reported as an effective transport mechanism for microinjection into the wild-type strain of the widely studied model microalga Chlamydomonas reinhardtii. A microinjection system using glass capillary pipettes was developed to capture and impale the motile cells. To apply an electric field and induce electrokinetic flow (e.g., electrophoresis and electroosmosis), an electrode was inserted directly into the solution inside the impaling injection pipette and another electrode was inserted into the external cell media. The viability of the impaled cells was confirmed for more than an hour under 0.01 V using the fluorescein diacetate/propidium iodide dual fluorescent dye based assay. The viability was also found to increase almost logarithmically with decreasing voltage and to depend strongly on the solution within the injection pipette. Successful electrokinetic microinjection into cells was confirmed by both an increase in cell volume under an applied voltage and electric field dependent delivery of fluorescent fluorescein molecules into an impaled cell. Our study offers novel opportunities for quantitative delivery of biomolecules into microalgae and advancing the research and development of these organisms as biosynthetic factories. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.

    Science.gov (United States)

    Imamura, Sousuke; Kawase, Yasuko; Kobayashi, Ikki; Sone, Toshiyuki; Era, Atsuko; Miyagishima, Shin-Ya; Shimojima, Mie; Ohta, Hiroyuki; Tanaka, Kan

    2015-10-01

    Most microalgae produce triacylglycerol (TAG) under stress conditions such as nitrogen depletion, but the underlying molecular mechanism remains unclear. In this study, we focused on the role of target of rapamycin (TOR) in TAG accumulation. TOR is a serine/threonine protein kinase that is highly conserved and plays pivotal roles in nitrogen and other signaling pathways in eukaryotes. We previously constructed a rapamycin-susceptible Cyanidioschyzon merolae, a unicellular red alga, by expressing yeast FKBP12 protein to evaluate the results of TOR inhibition (Imamura et al. in Biochem Biophys Res Commun 439:264-269, 2013). By using this strain, we here report that rapamycin-induced TOR inhibition results in accumulation of cytoplasmic lipid droplets containing TAG. Transcripts for TAG synthesis-related genes, such as glycerol-3-phosphate acyltransferase and acyl-CoA:diacylglycerol acyltransferase (DGAT), were increased by rapamycin treatment. We also found that fatty acid synthase-dependent de novo fatty acid synthesis was required for the accumulation of lipid droplets. Induction of TAG and up-regulation of DGAT gene expression by rapamycin were similarly observed in the unicellular green alga, Chlamydomonas reinhardtii. These results suggest the general involvement of TOR signaling in TAG accumulation in divergent microalgae.

  16. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic]. Progress report, June 1991--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant`s recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  17. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  18. Biological assay of attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus.

    Science.gov (United States)

    Mengeling, W L; Pejsak, Z; Paul, P S

    1984-11-01

    Attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus (PPV) were titrated in vivo and in vitro under similar conditions to provide a better understanding of some of the factors involved in virulence of PPV in causing maternal reproductive failure of swine. Both strains cause fetal death when they are injected directly into fetal fluids, but only strain NADL-8 does so when administered to pregnant swine. The strains were tested for their hemagglutinating activity (HA), median cell culture infective dose (CCID50), median fetal infective dose (FID50), and median fetal lethal dose (FLD50). The FID50 and FLD50 were determined by injecting virus directly into the amniotic fluid of fetuses in utero at 44 +/- 2 days of gestation and collecting the fetuses 15 +/- 1 days later. Both strains had an HA titer of 64, suggesting that there is a similar number of virions in stock preparations. However, other measurements differed markedly. The CCID50, FID50, and FLD50 were 10(5.5), 10(3.5), and 10(0.5), respectively, for strain NADL-2, and 10(4.5), 10(7.7), and 10(6.3), respectively, for strain NADL-8. Collectively, the values indicate that more than 10,000 times as much strain NADL-2 would need to reach the conceptus transplacentally to establish infection. These observations may help to explain the different consequences of oronasal exposure of pregnant swine to these strains of PPV.

  19. Solitary waves in morphogenesis: Determination fronts as strain-cued strain transformations among automatous cells

    Science.gov (United States)

    Cox, Brian N.; Landis, Chad M.

    2018-02-01

    We present a simple theory of a strain pulse propagating as a solitary wave through a continuous two-dimensional population of cells. A critical strain is assumed to trigger a strain transformation, while, simultaneously, cells move as automata to tend to restore a preferred cell density. We consider systems in which the strain transformation is a shape change, a burst of proliferation, or the commencement of growth (which changes the shape of the population sheet), and demonstrate isomorphism among these cases. Numerical and analytical solutions describe a strain pulse whose height does not depend on how the strain disturbance was first launched, or the rate at which the strain transformation is achieved, or the rate constant in the rule for the restorative cell motion. The strain pulse is therefore very stable, surviving the imposition of strong perturbations: it would serve well as a timing signal in development. The automatous wave formulation is simple, with few model parameters. A strong case exists for the presence of a strain pulse during amelogenesis. Quantitative analysis reveals a simple relationship between the velocity of the leading edge of the pulse in amelogenesis and the known speed of migration of ameloblast cells. This result and energy arguments support the depiction of wave motion as an automatous cell response to strain, rather than as a response to an elastic energy gradient. The theory may also contribute to understanding the determination front in somitogenesis, moving fronts of convergent-extension transformation, and mitotic wavefronts in the syncytial drosophila embryo.

  20. Five challenges in modelling interacting strain dynamics

    Directory of Open Access Journals (Sweden)

    Paul S. Wikramaratna

    2015-03-01

    Full Text Available Population epidemiological models where hosts can be infected sequentially by different strains have the potential to help us understand many important diseases. Researchers have in recent years started to develop and use such models, but the extra layer of complexity from multiple strains brings with it many technical challenges. It is therefore hard to build models which have realistic assumptions yet are tractable. Here we outline some of the main challenges in this area. First we begin with the fundamental question of how to translate from complex small-scale dynamics within a host to useful population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity accumulates over multiple exposures.

  1. (HN1) strain of Aspergillus niger

    African Journals Online (AJOL)

    login123

    2016-09-26

    Sep 26, 2016 ... olive oil) increased the production of lipase up to 20% in case of both the strains. The production of ... insoluble triacylglycerols to generate free fatty acids, mono and ... Two fermentation processes, including solid state.

  2. Mumps vaccine virus strains and aseptic meningitis.

    Science.gov (United States)

    Bonnet, Marie-Claude; Dutta, Anil; Weinberger, Clement; Plotkin, Stanley A

    2006-11-30

    Mumps immunization can easily be included in national schedules, particularly if combined with measles or measles and rubella vaccines, but debate continues concerning the relative safety of various licensed mumps vaccine strains. The opportunities for control of mumps are also being affected by differences in the cost of the vaccines prepared with different strains of mumps virus. The present report evaluates available data on the association of the Urabe and other strains of mumps vaccine with the occurrence of aseptic meningitis. We also review the comparative immunogenicity and efficacies of the most widely used mumps vaccines in controlled clinical trials and field evaluations, and briefly examine relative cost as it relates to the implementation of national immunization programs. We conclude that extensive experience with the most widely used mumps vaccine strains in many countries has shown that the risk-benefit ratio of live mumps vaccines is highly favourable for vaccination, despite the occasional occurence of aseptic meningitis.

  3. Characterization of 3 Strains of Yersinia Pestis

    National Research Council Canada - National Science Library

    Kournikakis, B

    2000-01-01

    .... Antibiotic sensitivities showed that the 3 strains were sensitive to aminoglycosides, the cephalosporins/ cephams, most of the beta lactams/penicillins (e.g. ampicillin) and quinolones (e.g. ciprofloxacin...

  4. Flexoelectricity: strain gradient effects in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)

    2007-12-15

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.

  5. Review of strain buckling: analysis methods

    International Nuclear Information System (INIS)

    Moulin, D.

    1987-01-01

    This report represents an attempt to review the mechanical analysis methods reported in the literature to account for the specific behaviour that we call buckling under strain. In this report, this expression covers all buckling mechanisms in which the strains imposed play a role, whether they act alone (as in simple buckling under controlled strain), or whether they act with other loadings (primary loading, such as pressure, for example). Attention is focused on the practical problems relevant to LMFBR reactors. The components concerned are distinguished by their high slenderness ratios and by rather high thermal levels, both constant and variable with time. Conventional static buckling analysis methods are not always appropriate for the consideration of buckling under strain. New methods must therefore be developed in certain cases. It is also hoped that this review will facilitate the coding of these analytical methods to aid the constructor in his design task and to identify the areas which merit further investigation

  6. Systems strategies for developing industrial microbial strains

    DEFF Research Database (Denmark)

    Lee, Sang Yup; Kim, Hyun Uk

    2015-01-01

    Industrial strain development requires system-wide engineering and optimization of cellular metabolism while considering industrially relevant fermentation and recovery processes. It can be conceptualized as several strategies, which may be implemented in an iterative fashion and in different...

  7. Characterization of 21 Strains of Bacillus Anthracis

    National Research Council Canada - National Science Library

    Kournikakis, B

    2000-01-01

    Twenty-one strains of Bacillus anthracis currently held in the culture collection at DRES were characterized by colonial morphology, antibiotic sensitivity and BiologTM metabolic identification profiles...

  8. Phenotypic variability among strains of Pasteurella multocida ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... Available online at http://www.academicjournals.org/AJB. ISSN 1684–5315 ... extended phenotypic characterization methods supported by DNA ... septicaemia African (Obudu) strain (E:2) which are currently employed as ...

  9. Job strain and the risk of stroke

    DEFF Research Database (Denmark)

    Fransson, Eleonor I; Nyberg, Solja T; Heikkilä, Katriina

    2015-01-01

    BACKGROUND AND PURPOSE: Psychosocial stress at work has been proposed to be a risk factor for cardiovascular disease. However, its role as a risk factor for stroke is uncertain. METHODS: We conducted an individual-participant-data meta-analysis of 196 380 males and females from 14 European cohort...... studies to investigate the association between job strain, a measure of work-related stress, and incident stroke. RESULTS: In 1.8 million person-years at risk (mean follow-up 9.2 years), 2023 first-time stroke events were recorded. The age- and sex-adjusted hazard ratio for job strain relative to no job....... CONCLUSION: Job strain may be associated with an increased risk of ischemic stroke, but further research is needed to determine whether interventions targeting job strain would reduce stroke risk beyond existing preventive strategies....

  10. The radiographic observation of the cervical strain

    International Nuclear Information System (INIS)

    Rhee, Chung Sik

    1972-01-01

    A total of 100 cases of cervical disorders were analysed of clinical signs and symptoms. The cervical strain is proved by the loss of normal lordotic curvature of the cervical spinal column on the lateral x-ray film in Ewha University Hospital from January, 1970 to december 1971 with the following results. 1. The 53 cervical strain was diagnosed in radiographic study for its abnormal locations. The hyperextension with abnormal curve is twice more after than hyperflection type. 2. The most frequent location of the cervical strain is demonstrated in the 4-6 th cervical spinal bodies (80%). 3. Most pronounced symptoms of cervical strain are local tenderness (40%), limitation of motion (17%) and radiating pain (15%). 4. The ratio of the sex incidence of male female was 3:2

  11. The radiographic observation of the cervical strain

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chung Sik [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    1972-12-15

    A total of 100 cases of cervical disorders were analysed of clinical signs and symptoms. The cervical strain is proved by the loss of normal lordotic curvature of the cervical spinal column on the lateral x-ray film in Ewha University Hospital from January, 1970 to december 1971 with the following results. 1. The 53 cervical strain was diagnosed in radiographic study for its abnormal locations. The hyperextension with abnormal curve is twice more after than hyperflection type. 2. The most frequent location of the cervical strain is demonstrated in the 4-6 th cervical spinal bodies (80%). 3. Most pronounced symptoms of cervical strain are local tenderness (40%), limitation of motion (17%) and radiating pain (15%). 4. The ratio of the sex incidence of male female was 3:2.

  12. A strain gradient plasticity theory with application to wire torsion

    KAUST Repository

    Liu, J. X.; El Sayed, Tamer S.

    2014-01-01

    Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity

  13. MM98.57 Quantification of Combined Strain Paths

    DEFF Research Database (Denmark)

    Nielsen, Morten Sturgård; Wanheim, Tarras

    1998-01-01

    this curve into useful scalar relations from experimental data.The strain history for plane strain when assuming volume constancy may be plotted in a shear strain, normal strain diagram, which has the property of showing both the rotation of principal deformation axes during the deformation and the amount...... is to describe the total strain history as a curve in the 6-dimensional shear strain, normal strain space. In order to be able to use these experimental data for calculation, the development of this strain curve must be transformed into a set of scalar relations that may be used for predicting the yield surface...... at a given point in a new strain history. A simple example of this concept is to take the length of the strain curve as describing scalar relation: E.g. to use the equivalent strain as parameter for describing the yield stress. This paper focuses on the strain curve concept and the possibilities to convert...

  14. On generalization uniaxial stress-strain relation

    International Nuclear Information System (INIS)

    Sahay, C.; Dubey, R.N.

    1980-01-01

    Different forms of constitutive relations have been advanced for elastic, plastic and elastic-plastic behaviour of materials. It is shown that the various forms of the stress-strain relationship are specialized forms of generalization of a single stress-strain relation. For example, it is shown how the laws of elastic deformation, and the incremental and total deformation relationship for plastic behaviour are derivable from the Ramberg-Osgood relation. (orig.)

  15. Survival and activity of individual bioaugmentation strains

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; G. Marquesa, Irina; Karst, Søren Michael

    2015-01-01

    Successful application of bioaugmentation for enhanced degradation of environmental pollutants is often limited by the lack of methods to monitor the survival and activity of individual bioaugmentation strains. However, recent advancements in sequencing technologies and molecular techniques now...... allow us to address these limitations. Here a complementing set of general applicable molecular methods are presented that provides detailed information on the performance of individual bioaugmentation strains under in situ conditions. The approach involves genome sequencing to establish highly specific...

  16. Strain limit criteria to predict failure

    International Nuclear Information System (INIS)

    Flanders, H.E.

    1995-01-01

    In recent years extensive effort has been expended to qualify existing structures for conditions that are beyond the original design basis. Determination of the component failure load is useful for this type of evaluation. This paper presents criteria based upon strain limits to predict the load at failure. The failure modes addressed are excessive plastic deformations, localized plastic strains, and structural instability. The effects of analytical method sophistication, as built configurations, material properties degradation, and stress state are addressed by the criteria

  17. Deformation strain inhomogeneity in columnar grain nickel

    DEFF Research Database (Denmark)

    Wu, G.L.; Godfrey, A.; Juul Jensen, D.

    2005-01-01

    A method is presented for determination of the local deformation strain of individual grains in the bulk of a columnar grain sample. The method, based on measurement of the change in grain area of each grain, is applied to 12% cold rolled nickel. Large variations are observed in the local strain...... associated with each grain. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  18. Antimicrobial properties of indigenous Lactobacillus sakei strain

    OpenAIRE

    Vesković-Moračanin Slavica; Obradović D.; Velebit B.; Borović Branka; Škrinjar Marija; Turubatović L.

    2010-01-01

    The strain I 154 of Lactobacillus sakei has been isolated from traditionally fermented sausages in the course of the realization of the international project (INCO PROJECT No ICA4-CT-2002-10037). This strain exhibited the ability for bacteriocin production. Antimicrobial properties of the isolated bacteriocin (sakacine), its sensibility towards proteolytic enzymes, as well as the effect of increased to high temperatures on its stability have been examined in this work. Semi purified bacterioc...

  19. A closer look at prion strains

    Science.gov (United States)

    Solforosi, Laura; Milani, Michela; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto

    2013-01-01

    Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states. Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages. This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves. PMID:23357828

  20. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  1. Strain-controlled electrocatalysis on multimetallic nanomaterials

    Science.gov (United States)

    Luo, Mingchuan; Guo, Shaojun

    2017-11-01

    Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

  2. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    International Nuclear Information System (INIS)

    Guelorget, Bruno; Francois, Manuel; Vial-Edwards, Cristian; Montay, Guillaume; Daniel, Laurent; Lu, Jian

    2006-01-01

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force (ε t ≅ 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements

  3. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)]. E-mail: bruno.guelorget@utt.fr; Francois, Manuel [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Vial-Edwards, Cristian [Departemento de Ingenieria Mecanica y Metalurgica, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, 6904411 Santiago (Chile); Montay, Guillaume [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Daniel, Laurent [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Lu, Jian [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2006-01-15

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force ({epsilon} {sup t} {approx_equal} 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements.

  4. Molecular typing of Brucella melitensis endemic strains and differentiation from the vaccine strain Rev-1.

    Science.gov (United States)

    Noutsios, Georgios T; Papi, Rigini M; Ekateriniadou, Loukia V; Minas, Anastasios; Kyriakidis, Dimitrios A

    2012-03-01

    In the present study forty-four Greek endemic strains of Br. melitensis and three reference strains were genotyped by Multi locus Variable Number Tandem Repeat (ML-VNTR) analysis based on an eight-base pair tandem repeat sequence that was revealed in eight loci of Br. melitensis genome. The forty-four strains were discriminated from the vaccine strain Rev-1 by Restriction Fragment Length Polymorphism (RFLP) and Denaturant Gradient Gel Electrophoresis (DGGE). The ML-VNTR analysis revealed that endemic, reference and vaccine strains are genetically closely related, while most of the loci tested (1, 2, 4, 5 and 7) are highly polymorphic with Hunter-Gaston Genetic Diversity Index (HGDI) values in the range of 0.939 to 0.775. Analysis of ML-VNTRs loci stability through in vitro passages proved that loci 1 and 5 are non stable. Therefore, vaccine strain can be discriminated from endemic strains by allele's clusters of loci 2, 4, 6 and 7. RFLP and DGGE were also employed to analyse omp2 gene and reveled different patterns among Rev-1 and endemic strains. In RFLP, Rev-1 revealed three fragments (282, 238 and 44 bp), while endemic strains two fragments (238 and 44 bp). As for DGGE, the electrophoretic mobility of Rev-1 is different from the endemic strains due to heterologous binding of DNA chains of omp2a and omp2b gene. Overall, our data show clearly that it is feasible to genotype endemic strains of Br. melitensis and differentiate them from vaccine strain Rev-1 with ML-VNTR, RFLP and DGGE techniques. These tools can be used for conventional investigations in brucellosis outbreaks.

  5. Strain-dependent diffusion behavior of H within tungsten

    International Nuclear Information System (INIS)

    Ding, Wenyi; He, Haiyan; Liu, Changsong; Ding, Rui; Chen, Junling; Pan, Bicai

    2014-01-01

    The diffusion behaviors of H in tungsten, a promising material serving as the first wall facing the plasma in nuclear reactors, under either biaxial strain or isotropic strain are theoretically studied. We find that under the isotropic strain, an individual H atom may diffuse along all pathways, and under the biaxial strain, it preferably migrates along the direction perpendicular to the loaded strain. Moreover, in the case of either the isotropic or the biaxial strain, the loaded compressive strain weakens the diffusion of H, while the loaded tensile strain enhances the diffusion of H in bulk W.

  6. Strain-dependent diffusion behavior of H within tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenyi; He, Haiyan [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Ding, Rui; Chen, Junling [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Pan, Bicai, E-mail: bcpan@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-06-15

    The diffusion behaviors of H in tungsten, a promising material serving as the first wall facing the plasma in nuclear reactors, under either biaxial strain or isotropic strain are theoretically studied. We find that under the isotropic strain, an individual H atom may diffuse along all pathways, and under the biaxial strain, it preferably migrates along the direction perpendicular to the loaded strain. Moreover, in the case of either the isotropic or the biaxial strain, the loaded compressive strain weakens the diffusion of H, while the loaded tensile strain enhances the diffusion of H in bulk W.

  7. Information about the Current Strain of Clostridium difficile

    Science.gov (United States)

    ... fluoroquinolones may provide the new strain with an advantage over susceptible strains to spread within healthcare facilities where these antibiotics are commonly used. Top of page What should ...

  8. Effects of strain on the Schwinger pair creation in graphene

    International Nuclear Information System (INIS)

    Fanbanrai, P.; Hutem, A.; Boonchui, S.

    2015-01-01

    The effects of strain on mechanically deformed graphene are determined by looking at how the strain affects the amplitude of the Schwinger two particle pair state. The influences of the lattice distortions, such as isotropic tensile strain ϵ is , shear strain ϵ ss , uniaxial armchair strain ϵ as , and zigzag strain ϵ zs , on the photon emission spectrum have been analyzed. We find that the intensities of the emission increases or decreases when compared to those of the unstrained graphene, depending on the type of strain applied. Thus the structure of energy band, the frequencies of the photons and the emission spectrum can be controlled by use of the different strains

  9. Intramyocardial strain estimation from cardiac cine MRI.

    Science.gov (United States)

    Elnakib, Ahmed; Beache, Garth M; Gimel'farb, Georgy; El-Baz, Ayman

    2015-08-01

    Functional strain is one of the important clinical indicators for the quantification of heart performance and the early detection of cardiovascular diseases, and functional strain parameters are used to aid therapeutic decisions and follow-up evaluations after cardiac surgery. A comprehensive framework for deriving functional strain parameters at the endocardium, epicardium, and mid-wall of the left ventricle (LV) from conventional cine MRI data was developed and tested. Cine data were collected using short TR-/TE-balanced steady-state free precession acquisitions on a 1.5T Siemens Espree scanner. The LV wall borders are segmented using a level set-based deformable model guided by a stochastic force derived from a second-order Markov-Gibbs random field model that accounts for the object shape and appearance features. Then, the mid-wall of the segmented LV is determined based on estimating the centerline between the endocardium and epicardium of the LV. Finally, a geometrical Laplace-based method is proposed to track corresponding points on successive myocardial contours throughout the cardiac cycle in order to characterize the strain evolutions. The method was tested using simulated phantom images with predefined point locations of the LV wall throughout the cardiac cycle. The method was tested on 30 in vivo datasets to evaluate the feasibility of the proposed framework to index functional strain parameters. The cine MRI-based model agreed with the ground truth for functional metrics to within 0.30 % for indexing the peak systolic strain change and 0.29 % (per unit time) for indexing systolic and diastolic strain rates. The method was feasible for in vivo extraction of functional strain parameters. Strain indexes of the endocardium, mid-wall, and epicardium can be derived from routine cine images using automated techniques, thereby improving the utility of cine MRI data for characterization of myocardial function. Unlike traditional texture-based tracking, the

  10. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Abstract This paper studies the stiffening effects of the material strain rate sensitivity and strain hardening on the saturated impulse of elastic, perfectly plastic plates. Finite element (FE code ABAQUS is employed to simulate the elastoplastic response of square plates under rectangular pressure pulse. Rigid-plastic analyses for saturated impulse, which consider strain rate sensitivity and strain hardening, are conducted. Satisfactory agreement between the finite element models (FEM and predictions of the rigid-plastic analysis is obtained, which verifies that the proposed rigid-plastic methods are effective to solve the problem including strain rate sensitivity and strain hardening. The quantitative results for the scale effect of the strain rate sensitivity are given. The results for the stiffening effects suggest that two general stiffening factors n 1 and n 2, which characterizes the strain rate sensitivity and strain hardening effect, respectively can be defined. The saturated displacement is inversely proportional to the stiffening factors (i.e. n 1 and n 2 and saturated impulse is inversely proportional to the square roots of the stiffening factors (i.e. n 1 and n 2. Formulae for displacement and saturated impulse are proposed based on the empirical analysis.

  11. Genome-Wide Transcription Study of Cryptococcus neoformans H99 Clinical Strain versus Environmental Strains.

    Directory of Open Access Journals (Sweden)

    Elaheh Movahed

    Full Text Available The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird's droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B and C. neoformans reference clinical strain (H99 were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1, Mitochondrial matrix factor 1 (MMF1, Bud-site-selection protein 8 (BUD8, High affinity glucose transporter 3 (SNF3 and Rho GTPase-activating protein 2 (RGA2. Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis.

  12. Variation in the strain anisotropy of Zircaloy with temperature and strain

    International Nuclear Information System (INIS)

    Hindle, E.D.; Worswick, D.

    1984-04-01

    Strain anisotropy was investigated at temperatures in the range 293 to 1117K in circular tensile specimens prepared from rolled Zircaloy-2 plate so that their tensile axes were parallel to and transverse to the rolling direction. The strain anisotropy factor for both types of specimen increased markedly in the high alpha phase region above 923K reaching a maximum at circa 1070K. Above this temperature in the alpha-plus-beta phase region the strain anisotropy decreased rapidly as the proportion of beta phase increased and was almost non-existent at 1173K. The strain anisotropy was markedly strain dependent, particularly in the high alpha phase region. The study was extended to Zircaloy-4 pressurized water reactor (PWR) 17 x 17 type fuel rod tubing specimens which were strained under biaxial conditions using cooling conditions which promoted uniform diametral strain over most of their lengths (circa 250 mm). In these circumstances the strain anisotropy is manifest by a reduction in length. Measurement of this change along with that in diameter and wall thickness produced data from which the strain anisotropy factor was calculated. The results, although influenced by additional factors discussed in the paper, were similar to those observed in the uniaxial Zircaloy-2 tensile tests. (author)

  13. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.

    Science.gov (United States)

    Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling

    2018-06-12

    An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.

  14. Dynamic strains for earthquake source characterization

    Science.gov (United States)

    Barbour, Andrew J.; Crowell, Brendan W

    2017-01-01

    Strainmeters measure elastodynamic deformation associated with earthquakes over a broad frequency band, with detection characteristics that complement traditional instrumentation, but they are commonly used to study slow transient deformation along active faults and at subduction zones, for example. Here, we analyze dynamic strains at Plate Boundary Observatory (PBO) borehole strainmeters (BSM) associated with 146 local and regional earthquakes from 2004–2014, with magnitudes from M 4.5 to 7.2. We find that peak values in seismic strain can be predicted from a general regression against distance and magnitude, with improvements in accuracy gained by accounting for biases associated with site–station effects and source–path effects, the latter exhibiting the strongest influence on the regression coefficients. To account for the influence of these biases in a general way, we include crustal‐type classifications from the CRUST1.0 global velocity model, which demonstrates that high‐frequency strain data from the PBO BSM network carry information on crustal structure and fault mechanics: earthquakes nucleating offshore on the Blanco fracture zone, for example, generate consistently lower dynamic strains than earthquakes around the Sierra Nevada microplate and in the Salton trough. Finally, we test our dynamic strain prediction equations on the 2011 M 9 Tohoku‐Oki earthquake, specifically continuous strain records derived from triangulation of 137 high‐rate Global Navigation Satellite System Earth Observation Network stations in Japan. Moment magnitudes inferred from these data and the strain model are in agreement when Global Positioning System subnetworks are unaffected by spatial aliasing.

  15. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    Science.gov (United States)

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Anisotropic nature of radially strained metal tubes

    Science.gov (United States)

    Strickland, Julie N.

    Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw

  18. [A prophylactic program for strain urinary incontinence].

    Science.gov (United States)

    Stadnicka, Grazyna; Iwanowicz-Palus, Grazyna J; Bień, Agnieszka M

    2002-01-01

    The aim of the study was to work out a prophylactic program for strain urinary incontinence. Analysis of literature on the subject and results of own investigations presented in the first part of the paper indicate that the program of prophylaxis of strain urinary incontinence should primarily include: (1) Preparation of the medical staff (nurses, midwives) for propagating health education among women on prevention of strain urinary incontinence. (2) Preparation of adequate educational materials in the form of brochures, leaflets, information posters about symptoms, causes and prophylaxis of urinary incontinence indicating health care institutions available to all women when the disease is suspected or already present. (3) Propagation of problems connected with strain urinary incontinence in the mass media providing information to a wide audience in order to make people realize the significance of this social problem and break stereotypes associated with this disease of "shame". (4) Preparation of sets of exercises for the muscles of the base of the pelvis to be performed during pregnancy, confinement and menopause to maintain their proper function. (5) Indicating factors predisposing to strain urinary incontinence with focus on possibilities of their reduction or elimination.

  19. Probiotic features of Lactobacillus plantarum mutant strains.

    Science.gov (United States)

    Bove, Pasquale; Gallone, Anna; Russo, Pasquale; Capozzi, Vittorio; Albenzio, Marzia; Spano, Giuseppe; Fiocco, Daniela

    2012-10-01

    In this study, the probiotic potential of Lactobacillus plantarum wild-type and derivative mutant strains was investigated. Bacterial survival was evaluated in an in vitro system, simulating the transit along the human oro-gastro-intestinal tract. Interaction with human gut epithelial cells was studied by assessing bacterial adhesive ability to Caco-2 cells and induction of genes involved in innate immunity. L. plantarum strains were resistant to the combined stress at the various steps of the simulated gastrointestinal tract. Major decreases in the viability of L. plantarum cells were observed mainly under drastic acidic conditions (pH ≤ 2.0) of the gastric compartment. Abiotic stresses associated to small intestine poorly affected bacterial viability. All the bacterial strains significantly adhered to Caco-2 cells, with the ΔctsR mutant strain exhibiting the highest adhesion. Induction of immune-related genes resulted higher upon incubation with heat-inactivated bacteria rather than with live ones. For specific genes, a differential transcriptional pattern was observed upon stimulation with different L. plantarum strains, evidencing a possible role of the knocked out bacterial genes in the modulation of host cell response. In particular, cells from Δhsp18.55 and ΔftsH mutants strongly triggered immune defence genes. Our study highlights the relevance of microbial genetic background in host-probiotic interaction and might contribute to identify candidate bacterial genes and molecules involved in probiosis.

  20. Brittle superconducting magnets: an equivilent strain model

    International Nuclear Information System (INIS)

    Barzi, E.; Danuso, M.

    2010-01-01

    To exceed fields of 10 T in accelerator magnets, brittle superconductors like A15 Nb 3 Sn and Nb 3 Al or ceramic High Temperature Superconductors have to be used. For such brittle superconductors it is not their maximum tensile yield stress that limits their structural resistance as much as strain values that provoke deformations in their delicate lattice, which in turn affect their superconducting properties. Work on the sensitivity of Nb 3 Sn cables to strain has been conducted in a number of stress states, including uniaxial and multi-axial, producing usually different results. This has made the need of a constituent design criterion imperative for magnet builders. In conventional structural problems an equivalent stress model is typically used to verify mechanical soundness. In the superconducting community a simple scalar equivalent strain to be used in place of an equivalent stress would be an extremely useful tool. As is well known in fundamental mechanics, there is not one single way to reduce a multiaxial strain state as represented by a 2nd order tensor to a scalar. The conceptual experiment proposed here will help determine the best scalar representation to use in the identification of an equivalent strain model.