WorldWideScience

Sample records for chitosan-based covalently cross-linked

  1. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Soumi Dey [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India); Farrugia, Brooke L.; Dargaville, Tim R. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Groove, Queensland-4059 (Australia); Dhara, Santanu, E-mail: sdhara@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India)

    2013-04-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application.

  2. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    International Nuclear Information System (INIS)

    Sarkar, Soumi Dey; Farrugia, Brooke L.; Dargaville, Tim R.; Dhara, Santanu

    2013-01-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application

  3. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    Science.gov (United States)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  4. Comparative Study of One-Step Cross-Linked Electrospun Chitosan-Based Membranes

    Directory of Open Access Journals (Sweden)

    Yanet E. Aguirre-Chagala

    2017-01-01

    Full Text Available Chitosan membranes are widely applied for tissue engineering; however, a major drawback is their low resistance in aqueous phases and therefore the structure collapses impeding their long-term use. Although there is extensive research, because of chitosan’s importance as a biomaterial, studies involving chitosan-based membranes are still needed. Herein, a detailed investigation of diverse chemical routes to cross-link fibers in situ by electrospinning process is described. In case of using genipin as cross-linker, a close relationship with the content and the mean diameter values is reported, suggesting a crucial effect over the design of nanostructures. Also, the physical resistance is enhanced for the combination of two types of methods, such as chemical and physical methods. Cross-linked fibers upon exposure to long wave ultraviolet A (UVA light change their morphology, but not their chemical composition. When they are incubated in aqueous phase for 70 days, they show an extensive improvement of their macrostructural integrity which makes them attractive candidates for tissue engineering application. As a result, the thermal properties of these materials reveal less crystallinity and higher temperature of degradation.

  5. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridine-moieties as well as epoxide groups, were synthesized via free-radical polymeri-zation. The products were cross-linked non-covalently with iron(II) ions and cova-lently by treatment with AlCl3. Both steps could be combined in

  6. Combination of supramolecular cross-linking with covalent cross-linking through epoxide ring-opening including gel studies

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2003-01-01

    Terpolymers based on poly(methyl methacrylate), containing terpyridinemoieties as well as epoxide groups, were synthesized via free-radical polymerization. The products were cross-linked non-covalently with iron(II) ions and covalently by treatment with AlCl3. Both steps could be combined in

  7. Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-01

    Full Text Available cross-linked PEEK-WC membrane, this covalent-ionically cross-linked PEEK-WC membrane exhibits extremely reduced water uptake and methanol permeability, but just slightly sacrificed proton conductivity. The proton conductivity of the covalent...

  8. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available -7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application....

  10. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

    Directory of Open Access Journals (Sweden)

    Esmaeil Mirzaei

    2014-04-01

    Full Text Available   Objective(s: To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.   Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nanofibers. The spun nanofibers were exposed to water vapor to complete crosslinking. The nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM, Fourier transform infrared-attenuated total reflection (FTIR-ATR spectroscopy, swelling test, MTT cytotoxicity, and cell attachment. Results: SEM images of electrospun mats showed that genipin-crosslinked nanofibers retained their fibrous structure after immerging in PBS (pH=7.4 for 24 hours, while the uncrosslinked samples lost their fibrous structure, indicating the water stability of genipin-crosslinked nanofibers. The genipin-crosslinked mats also showed no significant change in swelling ratio in comparison with uncrosslinked ones. FTIR-ATR spectrum of uncrosslinked and genipin-crosslinked chitosan nanofibers revealed the reaction between genipin and amino groups of chitosan. Cytotoxicity of genipin-crosslinked nanofibers was examined by MTT assay on human fibroblast cells in the presence of nanofibers extraction media. The genipin-crosslinked nanofibers did not show any toxic effects on fibroblast cells at the lowest and moderate amount of genipin. The fibroblast cells also showed a good adhesion on genipin-crosslinked nanofibers. Conclusion: This electrospun matrix would be used for biomedical applications such as wound dressing and scaffold for tissue engineering without the concern of toxicity.

  11. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  12. Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking `click´ reaction as potential carriers for drug administration.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Aguirresarobe, R H; Eceiza, A; Gabilondo, N

    2018-03-01

    Stimuli-responsive chitosan-based hydrogels for biomedical applications using the Diels-Alder reaction were prepared. Furan modified chitosan (Cs-Fu) was cross-linked with polyetheramine derived bismaleimide at different equivalent ratios in order to determine the effect in the swelling and release properties on the final CsFu:BMI hydrogels. The Diels Alder cross-linking reaction was monitored by UV-vis spectroscopy and rheological measurements. Both the sol-gel transition value and the final storage modulus for the different formulations were similar and close to 40 min and 400 Pa, respectively. On the contrary, the swelling degree was found to be strongly dependent on the amount of bismaleimide, mainly in acidic medium, where the increased cross-linking reduced the swelling value in 25%, but maintaining the sustained drug release in the simulated gastrointestinal environment. Our study suggested that these DA-cross-linked chitosan hydrogels could be potential carriers for targeted drug administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dialing in the Ratio of Covalent and Coordination Cross-links in Self-healing Hydrogels

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    ; it is of great interest to control the degree of which these are present; i.e. controlling the degree of catechol oxidation. Here, we report hydrogels in which the catechols participating in reversible (oxidation resistant catechol-analogue6) and irreversible oxidation cross-links are separated, enabling one...... to predefine the ratio of the two by altering the composition. The oxidation-resistant catechol-analogue was grafted onto polyallylamine,4 while the oxidation cross-links are introduced by addition of tannic acid that has the same useful properties as catechols.5,7,8 This affords hydrogels that retain self......-healing abilities even at high pH but that can be stiffened at will by dialing in the required degree of covalent crosslinking. This dial-in method thus harnesses two aspects of catechol-type chemistries to yield double network hydrogels in a straightforward and highly controllable manner....

  14. Conformational analysis of a covalently cross-linked Watson-Crick base pair model.

    Science.gov (United States)

    Jensen, Erik A; Allen, Benjamin D; Kishi, Yoshito; O'Leary, Daniel J

    2008-11-15

    Low-temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH(2)C(5') (psi) carbon-carbon bond, which is energetically preferred over the alternate CH(2)N(3) (phi) carbon-nitrogen bond rotation.

  15. Conformational Analysis of a Covalently Cross-Linked Watson-Crick Base Pair Model

    OpenAIRE

    Jensen, Erik A.; Allen, Benjamin D.; Kishi, Yoshito; O'Leary, Daniel J.

    2008-01-01

    Low temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH2–C(5′) (ψ) carbon-carbon bond, which is energetically preferred over the alternate CH2–N(3) (ϕ) carbon-nitrogen ...

  16. Mussel-Inspired Self-Healing Double-Cross-Linked Hydrogels by Controlled Combination of Metal Coordination and Covalent Cross-Linking

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    2018-01-01

    a catechol-based hydrogel design that allows for the degree of oxidative covalent cross-linking to be controlled. Double cross-linked hydrogels with tunable stiffness are constructed by adding the oxidizable catechol analogue, tannic acid, to an oxidation-resistant hydrogel construct held together...... by coordination of the dihydroxy functionality of 1-(2'-carboxyethyl)-2-methyl-3-hydroxy-4-pyridinone to trivalent metal ions. By varying the amount of tannic acid, the hydrogel stiffness can be customized to a given application while retaining the self-healing capabilities of the hydrogel's coordination chemical...

  17. Synthesis of Covalently Cross-Linked Colloidosomes from Peroxidized Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Nadiya Popadyuk

    2016-10-01

    Full Text Available A new approach to the formation of cross-linked colloidosomes was developed on the basis of Pickering emulsions that were stabilized exclusively by peroxidized colloidal particles. Free radical polymerization and a soft template technique were used to convert droplets of a Pickering emulsion into colloidosomes. The peroxidized latex particles were synthesized in the emulsion polymerization process using amphiphilic polyperoxide copolymers poly(2-tert-butylperoxy-2-methyl-5-hexen-3-ine-co-maleic acid (PM-1-MAc or poly[N-(tert-butylperoxymethylacrylamide]-co-maleic acid (PM-2-MAc, which were applied as both initiators and surfactants (inisurfs. The polymerization in the presence of the inisurfs results in latexes with a controllable amount of peroxide and carboxyl groups at the particle surface. Peroxidized polystyrene latex particles with a covalently grafted layer of inisurf PM-1-MAc or PM-2-MAc were used as Pickering stabilizers to form Pickering emulsions. A mixture of styrene and/or butyl acrylate with divinylbenzene and hexadecane was applied as a template for the synthesis of colloidosomes. Peroxidized latex particles located at the interface are involved in the radical reactions of colloidosomes formation. As a result, covalently cross-linked colloidosomes were obtained. It was demonstrated that the structure of the synthesized (using peroxidized latex particles colloidosomes depends on the amount of functional groups and pH during the synthesis. Therefore, the size and morphology of colloidosomes can be controlled by latex particle surface properties.

  18. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  19. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  20. Dialing in the Ratio of Covalent and Coordination Cross-links in Self-healing Hydrogels

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    -linking and as these impacts the abovementioned properties, it is of great interest to control the degree of which these are present; i.e. controlling the degree of catechol oxidation. Until now, the catechols participating in the two cross-linking types have been the same. This way the actual ratio between the two types...... cannot be either predefined or controlled, as it is determined by the oxidation rate within the hydrogel. Here, we report hydrogels in which the catechols participating in reversible (oxidation resistant catechol) and irreversible (classical catechol) cross-links are separated, enabling one to predefine...... the ratio of the two by altering the composition....

  1. Covalent cross-linking of insulin-like growth factor-1 to a specific inhibitor from human serum

    International Nuclear Information System (INIS)

    Ooi, G.T.; Herington, A.C.

    1986-01-01

    Previous studies have shown that a specific inhibitor of insulin-like growth factor (IGF) action in vitro can be isolated from normal human serum and subsequently partially purified on an IGF-affinity column. The ability of the inhibitor to bind the IGFs has now been confirmed directly using covalent cross-linking techniques. When 125 I-IGF-1 was cross-linked to inhibitor using disuccinimidyl suberate, five specifically labelled bands were seen on SDS-PAGE and autoradiography. Two bands (MW 21.5 K and 25.5 K) were intensely labelled, while the remaining three (MW 37 K, 34 K and 18 K) appeared as minor bands only. Inhibitor bioactivity, following further analysis by hydrophobic interaction chromatography or Con A-Sepharose affinity chromatography, was always associated with the presence of the 21.5 K and/or 25.5 K bands

  2. Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.

    Science.gov (United States)

    Baker, Edward N; Squire, Christopher J; Young, Paul G

    2015-10-01

    The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength. © 2015 Authors; published by Portland Press Limited.

  3. Combining covalent and noncovalent cross-linking: a novel terpolymer for two-step curing applications

    NARCIS (Netherlands)

    El-Ghayoury, A.; Hofmeier, H.; Ruiter, de B.; Schubert, U.S.

    2003-01-01

    A terpolymer of poly(butyl acrylate) bearing terpyridine as well as oxetane units was synthesized by free radical polymerization and characterized using NMR, UV-vis, and GPC. Subsequently, UV-vis experiments indicated clearly a noncovalent cross-linking of the terpyridine moieties by addition of

  4. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics

    Science.gov (United States)

    Ai, Xiangzhao; Ho, Chris Jun Hui; Aw, Junxin; Attia, Amalina Binte Ebrahim; Mu, Jing; Wang, Yu; Wang, Xiaoyong; Wang, Yong; Liu, Xiaogang; Chen, Huabing; Gao, Mingyuan; Chen, Xiaoyuan; Yeow, Edwin K. L.; Liu, Gang; Olivo, Malini; Xing, Bengang

    2016-01-01

    The development of precision nanomedicines to direct nanostructure-based reagents into tumour-targeted areas remains a critical challenge in clinics. Chemical reaction-mediated localization in response to tumour environmental perturbations offers promising opportunities for rational design of effective nano-theranostics. Here, we present a unique microenvironment-sensitive strategy for localization of peptide-premodified upconversion nanocrystals (UCNs) within tumour areas. Upon tumour-specific cathepsin protease reactions, the cleavage of peptides induces covalent cross-linking between the exposed cysteine and 2-cyanobenzothiazole on neighbouring particles, thus triggering the accumulation of UCNs into tumour site. Such enzyme-triggered cross-linking of UCNs leads to enhanced upconversion emission upon 808 nm laser irradiation, and in turn amplifies the singlet oxygen generation from the photosensitizers attached on UCNs. Importantly, this design enables remarkable tumour inhibition through either intratumoral UCNs injection or intravenous injection of nanoparticles modified with the targeting ligand. Our strategy may provide a multimodality solution for effective molecular sensing and site-specific tumour treatment.

  5. Membrane-Based Separation of Phenol/Water Mixtures Using Ionically and Covalently Cross-Linked Ethylene-Methacrylic Acid Copolymers

    Directory of Open Access Journals (Sweden)

    Alexander Mixa

    2008-01-01

    Full Text Available Membrane-based separation of phenol/water mixtures with concentrations of phenol between 3 wt% and 8 wt% in the feed has been performed with nonmodified as well as cross-linked ethylene-methacrylic acid (E-MAA copolymers with different amounts of methacrylic acid. As cross-linking agents, aluminium acetyl acetonate, which leads to ionically cross-linked membranes, and 2,3,5,6-tetramethyl-1,4-phenylene diamine and glycerine digycidether, leading to covalently cross-linked membranes, have been used. Generally, it was found that with increasing phenol content in the feed, the total flux is increasing whereas the enrichment factor is decreasing. Using nonmodified membranes with higher methacrylic acid monomer content in the polymer, lower fluxes and higher enrichment factors were observed. Investigation of different cross-linked membranes showed that with high phenol concentration in the feed, ionic cross-linking seems to be very promising. Furthermore, variation of feed temperature shows that ionically cross-linked membranes reached higher fluxes as well as higher enrichment factors at elevated temperatures. The temperature-dependent data were fitted based on an Arrhenius-type equation, and activation energies for the permeation of phenol and water through the membrane were calculated.

  6. EPR-spin probe studies of model polymers: separation of covalent cross-linking effects from hydrogen bonding effects in swelled Argonne Premium Coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Spears, D.R.; Sady, W.; Tucker, D.; Kispert, L.D. (University of Alabama, Tuscaloosa, AL (United States). Chemistry Dept.)

    The swelling behaviour of 2-12% cross-linked polystyrene-divinylbenzene (PSDVB) copolymers was examined by an EPR-spin probe technique. It was observed that the mechanism of spin probe inclusion was the intercalation into the matrix rather than diffusion into the pores. The disruption of van der Waals forces between adjacent aromatic rings appeared to be the primary mechanism for pyridine swelling of PSDVB. By comparing the data to results from coal swelling studies it was also inferred that the extent of hydrogen bonding in coal will have a much greater impact on its swelling properties than its covalently cross-linked character. 24 refs., 6 figs.

  7. Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions.

    Science.gov (United States)

    Mitra, Tapas; Sailakshmi, G; Gnanamani, A; Mandal, A B

    2012-05-01

    The present study emphasizes the influence of non-covalent interactions on the mechanical and thermal properties of the scaffolds of chitosan/collagen origin. Malonic acid (MA), a bifuncitonal diacid was chosen to offer non-covalent cross-linking. Three dimensional scaffolds was prepared using chitosan at 1.0% (w/v) and MA at 0.2% (w/v), similarly collagen 0.5% (w/v) and MA 0.2% (w/v) and characterized. Results on FT-IR, TGA, DSC, SEM and mechanical properties (tensile strength, stiffness, Young's modulus, etc.) assessment demonstrated the existence of non-covalent interaction between MA and chitosan/collagen, which offered flexibility and high strength to the scaffolds suitable for tissue engineering research. Studies using NIH 3T3 fibroblast cells suggested biocompatibility nature of the scaffolds. Docking simulation study further supports the intermolecular hydrogen bonding interactions between MA and chitosan/collagen.

  8. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Basiuk, Vladimir A.; Meza-Laguna, Víctor; Contreras-Torres, Flavio F.; Martínez, Melchor; Rojas-Aguilar, Aarón; Salerno, Marco

    2012-01-01

    Highlights: ► Diamines were used for one-step functionalization of nanotubes and nanodiamond. ► We found experimental evidences of cross-linking effects in these nanomaterials. ► We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  9. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Basiuk, Vladimir A. [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos (Mexico); Meza-Laguna, Victor; Contreras-Torres, Flavio F.; Martinez, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Salerno, Marco [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Diamines were used for one-step functionalization of nanotubes and nanodiamond. Black-Right-Pointing-Pointer We found experimental evidences of cross-linking effects in these nanomaterials. Black-Right-Pointing-Pointer We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  10. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking.

    Science.gov (United States)

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B; Holding, Andrew N; Montgomery, Martin G; Fearnley, Ian M; Walker, John E

    2015-05-22

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    Science.gov (United States)

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  12. Fabrication of Collagen Gel Hollow Fibers by Covalent Cross-Linking for Construction of Bioengineering Renal Tubules.

    Science.gov (United States)

    Shen, Chong; Zhang, Guoliang; Wang, Qichen; Meng, Qin

    2015-09-09

    Collagen, the most used natural biomacromolecule, has been extensively utilized to make scaffolds for cell cultures in tissue engineering, but has never been fabricated into the configuration of a hollow fiber (HF) for cell culture due to its poor mechanical properties. In this study, renal tubular cell-laden collagen hollow fiber (Col HF) was fabricated by dissolving sacrificial Ca-alginate cores from collagen shells strengthened by carbodiimide cross-linking. The inner/outer diameters of the Col HF were precisely controlled by the flow rates of core alginate/shell collagen solution in the microfluidic device. As found, the renal tubular cells self-assembled into renal tubules with diameters of 50-200 μm post to the culture in Col HF for 10 days. According to the 3D reconstructed confocal images or HE staining, the renal cells appeared as a tight tubular monolayer on the Col HF inner surface, sustaining more 3D cell morphology than the cell layer on the 2D flat collagen gel surface. Moreover, compared with the cultures in either a Transwell or polymer HF membrane, the renal tubules in Col HF exhibited at least 1-fold higher activity on brush border enzymes of alkaline phosphatase and γ-glutamyltransferase, consistent with their gene expressions. The enhancement occurred similarly on multidrug resistance protein 2 and glucose uptake. Such bioengineered renal tubules in Col HF will present great potential as alternatives to synthetic HF in both clinical use and pharmaceutical investigation.

  13. Synthesis and characterization of N-hydroxysuccinimide ester chemical affinity derivatives of asialoorosomucoid that covalently cross-link to galactosyl receptors on isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Herzig, M.C.S.; Weigel, P.H.

    1989-01-01

    The authors have developed chemical affinity reagents for the hepatic galactosyl receptor. Asialoorosomucoid (ASOR) was derivatized with five homobifunctional N-hydroxysuccinimide (NHS) ester cross-linkers. NHS/ASOR derivatives were synthesized, purified, and applied within 10 min to isolated rat hepatocytes at 4 degree C. Specific binding of these 125 I-labeled derivatives was ∼90% in the presence of either EGTA or excess ASOR. Specific cross-linking assessed by the resistance of specifically bound NHS/ 125 I-ASOR to release by EGTA, was 50-75% of the specifically bound ligand. The extent of specific cross-linking correlated with the average number of NHS groups per ASOR and was controlled by varying the molar ratio of cross-linker to ASOR during the synthesis. After being cross-linked with any of the NHS/ 125 I-ASOR derivatives, cells were washed with EGTA, solubilized in Triton X-100, and analyzed by SDA-PAGE and autoradiography. They conclude that all three receptor subunits can cross-link to ligand. They propose a model in which the native receptor is a heterohexamer composed of four subunits of RHL 1 and two subunits of RHL 2 and/or RHL 3

  14. Oligomerization of optineurin and its oxidative stress- or E50K mutation-driven covalent cross-linking: possible relationship with glaucoma pathology.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available The optineurin gene, OPTN, is one of the causative genes of primary open-angle glaucoma. Although oligomerization of optineurin in cultured cells was previously observed by gel filtration analysis and blue native gel electrophoresis (BNE, little is known about the characteristics of optineurin oligomers. Here, we aimed to analyze the oligomeric state of optineurin and factors affecting oligomerization, such as environmental stimuli or mutations in OPTN. Using BNE or immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, we demonstrated that both endogenous and transfected optineurin exist as oligomers, rather than monomers, in NIH3T3 cells. We also applied an in situ proximity ligation assay to visualize the self-interaction of optineurin in fixed HeLaS3 cells and found that the optineurin oligomers were localized diffusely in the cytoplasm. Optineurin oligomers were usually detected as a single band of a size equal to that of the optineurin monomer upon SDS-PAGE, while an additional protein band of a larger size was observed when cells were treated with H2O2. We showed that larger protein complex is optineurin oligomers by immunoprecipitation and termed it covalent optineurin oligomers. In cells expressing OPTN bearing the most common glaucoma-associated mutation, E50K, covalent oligomers were formed even without H2O2 stimulation. Antioxidants inhibited the formation of E50K-induced covalent oligomers to various degrees. A series of truncated constructs of OPTN was used to reveal that covalent oligomers may be optineurin trimers and that the ubiquitin-binding domain is essential for formation of these trimers. Our results indicated that optineurin trimers may be the basic unit of these oligomers. The oligomeric state can be affected by many factors that induce covalent bonds, such as H2O2 or E50K, as demonstrated here; this provides novel insights into the pathogenicity of E50K. Furthermore

  15. Chitosan-based nanocomposites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-08-01

    Full Text Available , and hygiene devices. They thus represent a strong and emerging answer for improved and eco-friendly materials. This chapter reviews the recent developments in the area of chitosan-based nanocomposites, with a special emphasis on clay-containing nanocomposites...-sized mineral fillers like silica, talc, and clay are added to reduce the cost and improve chitosan’s performance in some way. However, the mechanical properties such as elongation at break and tensile strength of these composites decrease with the incorporation...

  16. Chitosan-based nanocarriers for antimalarials

    Science.gov (United States)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  17. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, Michiel

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  18. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality

    DEFF Research Database (Denmark)

    Zaidel, Dayang Norulfairuz Abang; Meyer, Anne S.

    2012-01-01

    the mechanisms of formation of functional pectic polysaccharide cross-links, including covalent cross-links (notably phenolic esters and uronyl ester linkages) and non-covalent, ionic cross-links (which involve calcium and borate ester links). The treatise examines how such cross-links can be designed via......Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights...... specific enzymatic reactions, and highlights the most recent data concerning enzyme catalyzed engineering of cross-links for in situ structural design of functional properties of foods....

  19. Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols

    NARCIS (Netherlands)

    Mee, van der M.A.J.; Goossens, J.G.P.; Duin, van M.

    2008-01-01

    Maleated ethylene/propylene copolymers (MAn-g-EPM) were thermoreversibly cross-linked using diamines and amino-alcohols. Covalent cross-links are formed via the equilibrium reaction of the grafted anhydride groups with di-functional cross-linkers containing combinations of primary (1°) and secondary

  20. Collagen cross linking: Current perspectives

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao

    2013-01-01

    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  1. UV laser-induced cross-linking in peptides

    Science.gov (United States)

    Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

    2013-01-01

    RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

  2. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    Science.gov (United States)

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels.

  3. Tailoring Functional Chitosan-based Composites for Food Applications.

    Science.gov (United States)

    Nunes, Cláudia; Coimbra, Manuel A; Ferreira, Paula

    2018-03-08

    Chitosan-based functional materials are emerging for food applications. The covalent bonding of molecular entities demonstrates to enhance resistance to the typical acidity of food assigning mechanical and moisture/gas barrier properties. Moreover, the grafting to chitosan of some functional molecules, like phenolic compounds or essential oils, gives antioxidant, antimicrobial, among others properties to chitosan. The addition of nanofillers to chitosan and other biopolymers improves the already mentioned required properties for food applications and can attribute electrical conductivity and magnetic properties for active and intelligent packaging. Electrical conductivity is a required property for the processing of food at low temperature using electric fields or for sensors application. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone

    International Nuclear Information System (INIS)

    Gajewski, E.; Dizdaroglu, M.

    1990-01-01

    Hydroxyl radical induced formation of a DNA-protein cross-link involving cytosine and tyrosine in nucleohistone in buffered aqueous solution is reported. The technique of gas chromatography-mass spectrometry was used for this investigation. A γ-irradiated aqueous mixture of cytosine and tyrosine was first investigated in order to obtain gas chromatographic-mass spectrometric properties of possible cytosine-tyrosine cross-links. One cross-link was observed, and its structure was identified as the product from the formation of a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. With the use of gas chromatography-mass spectrometry with selected-ion monitoring, this cytosine-tyrosine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone γ-irradiated in N 2 O-saturated aqueous solution. The yield of this DNA-protein cross-link in nucleohistone was found to be a linear function of the radiation dose in the range of 100-500 Gy (J·kg -1 ). This yield amounted to 0.05 nmol·J -1 . Mechanisms underlying the formation of the cytosine-tyrosine cross-link in nucleohistone were proposed to involve radical-radical and/or radical addition reactions of hydroxyl adduct radicals of cytosine and tyrosine moieties, forming a covalent bond between carbon 6 of cytosine and carbon 3 of tyrosine. When oxygen was present in irradiated solutions, no cytosine-tyrosine cross-links were observed

  5. Chemical cross-linking of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1988-01-01

    Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which...

  6. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  7. Cross-linked polymeric membranes for carbon dioxide separation

    Science.gov (United States)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  8. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    Directory of Open Access Journals (Sweden)

    Pouria Falamarzpour

    2017-02-01

    Full Text Available Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR. The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured, chemically cross-linked (cured, and uncross-linked (prepared by acetic acid films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  9. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    Science.gov (United States)

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  10. Light-induced cross-linking and post-cross-linking modification of polyglycidol.

    Science.gov (United States)

    Marquardt, F; Bruns, M; Keul, H; Yagci, Y; Möller, M

    2018-02-08

    The photoinduced radical generation process has received renewed interest due to its economic and ecological appeal. Herein the light-induced cross-linking of functional polyglycidol and its post-cross-linking modification are presented. Linear polyglycidol was first functionalized with a tertiary amine in a two-step reaction. Dimethylaminopropyl functional polyglycidol was cross-linked in a UV-light mediated reaction with camphorquinone as a type II photoinitiator. The cross-linked polyglycidol was further functionalized by quaternization with various organoiodine compounds. Aqueous dispersions of the cross-linked polymers were investigated by means of DLS and zeta potential measurements. Polymer films were evaluated by DSC and XPS.

  11. A general method for targeted quantitative cross-linking mass spectrometry

    Science.gov (United States)

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  12. Comparative study of PBI Cross Linked Utilizing Agents of Varying Steric Configurations

    DEFF Research Database (Denmark)

    Kirkebcek, Andreas; Aili, David; Li, Qingfeng

    2016-01-01

    ionic or covalent cross linking. When considering such, little attention is devoted to explore the effect of the sterical configuration of the cross linking agent. In this contribution three different cross linking agents are utilized to evaluate how these affects final membrane properties.......The high thermal and chemical stability of poly[2,2'-(m-phenylene)-5,5' bibenzimidazole] (PBI) accounts for its wise spread use in high temperature polymer electrolyte membrane fuel cells (HT- PEMFC). By doping the membrane with phosphoric acid (PA) ionic conductivity is obtained. Thus conductivity...... is dependent on the amount of PA present within the membrane. However mechanical properties are reduced are significantly reduced due to the plasticizing effect shown by PA [1]. This effect is due to PBI chain displacement. This effect can be lessened by use of cross linking [2-4]. This can be obtained using...

  13. Composition of cross-linked 125I-follitropin-receptor complexes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J.; Ji, T.H.

    1985-10-15

    Both of the alpha and beta subunits of intact human follitropin (FSH) were radioiodinated with SVI-sodium iodide and chloramine-T and could be resolved on sodium dodecyl sulfate-polyacrylamide gels. Radioiodinated FSH was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to its membrane receptor on the porcine granulosa cell surface as well as to a Triton X-100-solubilized form of the receptor. Cross-linked samples revealed three additional bands of slower electrophoretic mobility, corresponding to 65, 83, and 117 kDa, in addition to the hormone bands. The hormone alpha beta dimer band corresponded to 43 kDa. Formation of the three bands requires the SVI-hormone to bind specifically to the receptor with subsequent cross-linking. Binding was prevented by an excess of the native hormone but not by other hormones. A monofunctional analog of the cross-linking reagent failed to produce the three bands. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of cross-linked complexes were treated to cleave covalent cross-links and then electrophoresed in a second dimension, 18-, 22-, and 34-kDa components were released, in addition to the alpha and beta subunits of the hormone.

  14. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  15. UV induced DNA-protein cross links in vitro and in vivo

    International Nuclear Information System (INIS)

    Kornhauser, A.

    1976-01-01

    The review was not intended to cover all the past year's literature in this field; only selective material published in 1974 and 1975 has been surveyed. Covalent linkage of DNA and RNA to proteins induced by UV is considered, but DNA-membrade attachment, amino acids covalently bound to DNA as functions of growth conditions and protein non-covalently bound to DNA involved in cell regulation are excluded. Studies of DNA-protein cross-links upon UV irradiation in chemical model systems, bacteria and tissue culture systems, and an in vivo mammalian system are all surveyed. (U.K.)

  16. DNA oligonucleotide duplexes containing intramolecular platinated cross-links: energetics, hydration, sequence, and ionic effects.

    Science.gov (United States)

    Kankia, Besik I; Soto, Ana Maria; Burns, Nicole; Shikiya, Ronald; Tung, Chang-Shung; Marky, Luis A

    2002-11-05

    The anticancer activity of cisplatin arises from its ability to bind covalently to DNA, forming primarily intrastrand cross-links to adjacent purine residues; the most common adducts involve d(GpG) (65%) and d(ApG) (25%) intrastrand cross-links. The incorporation of these platinum adducts in a B-DNA helix induces local distortions, causing bending and unwinding of the DNA. In this work, we used temperature-dependent UV spectroscopy to investigate the unfolding thermodynamics, and associated ionic effects, of two sets of DNA decamer duplexes containing either cis-[Pt(NH(3))(2)[d(GpG

  17. Heating tubes of cross-linked polyethylene

    International Nuclear Information System (INIS)

    Knoeppler, H.; Hoffmann, M.

    1981-01-01

    Oxygen permeability of plastic tubes for floor heating systems was measured as a function of the reduced oxygen content of water in plastic tubes at a flow rate of 0.5 m/s and a temperature of 30 0 C and as a function of oxygen uptake of low-oxygen water in floor heating tubes. Pipes of VEP, periodically cross-linked polyethylene (Engels process), polypropylene copolymeride, and polybutene were compared. The permeability of periodically cross-linked polyethylene is twice as high as that of VEP. Measurements, results, and consequences for floor heating systems are discussed. (KH) [de

  18. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  19. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  20. [Biophysical principles of collagen cross-linking].

    Science.gov (United States)

    Spörl, E; Raiskup-Wolf, F; Pillunat, L E

    2008-02-01

    The reduced mechanical stability of the cornea in keratoconus or in keratectasia after Lasik may be increased by photooxidative cross-linking of corneal collagen. The biophysical principles are compiled for the safe and effective application of this new treatment method. The setting of the therapy parameters should be elucidated from the absorption behaviour of the cornea. The safety of the method for the endothelium cells and the lens will be discussed. The induced cross-links are shown to be the result of changes in the physico-chemical properties of the cornea. To reach a high absorption of the irradiation energy in the cornea, riboflavin of a concentration of 0.1% and UV light of a wavelength of 370 nm, corresponding to the relative maximum of absorption of riboflavin, were used. An irradiance of 3 mW/cm(2) and an irradiation time of 30 min lead to an increase of the mechanical stiffness. The endothelium cells will be protected due to the high absorption within the cornea, that means the damaging threshold of the endothelium cells will not be reached in a 400 microm thick stroma. As evidence for cross-links we can consider the increase of the biomechanical stiffness, the increased resistance against enzymatic degradation, a higher shrinkage temperature, a lower swelling rate and an increased diameter of collagen fibres. The therapy parameters were tested experimentally and have been proven clinically in the corneal collagen cross-linking. These parameters should be respected to reach a safe cross-linking effect without damage of the adjacent tissues.

  1. The cross linking of EPDM and NBR rubber

    Directory of Open Access Journals (Sweden)

    Samardžija-Jovanović Suzana

    2005-01-01

    Full Text Available In the process of macromolecule cross linking, the choice of type and quantity of the components and the experimental conditions are important to obtain the new cross linked materials with better mechanical and chemical characteristics. The cross linking method depends on the rubber type and structure. Intermolecular cross linking results in the formation elastomer network. The basis of the cross linking process, between ethylene propylene diene rubber (EPDM and acrylonitrile butadiene rubber (NBR, is a chemical reaction. Fillers and other additives are present in different mass ratios in the material. The exploitation properties of the cross linked materials depend on the quantity of additive in the cross linked systems.

  2. Thermoreversible cross-linking of elastomers : a comparative study between ionic interactions, hydrogen bonding and covalent cross-links

    NARCIS (Netherlands)

    Mee, van der M.A.J.

    2007-01-01

    Vernetten, in de Angelsaksische literatuur aangeduid met crosslinken, van elastomeren is noodzakelijk om typische rubbereigenschappen zoals hoge elasticiteit, taaiheid en oplosmiddelresistentie te verkrijgen. De belangrijkste industriële technieken hiervoor, zijnde zwavel en peroxide vulkanisatie,

  3. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  4. Progress of research on corneal collagen cross-linking for corneal melting

    Directory of Open Access Journals (Sweden)

    Ke-Ren Xiao

    2016-06-01

    Full Text Available Corneal collagen cross-linking(CXLcould increase the mechanical strength, biological stability and halt ectasia progression due to covalent bond formed by photochemical reaction between ultraviolet-A and emulsion of riboflavin between collagen fibers in corneal stroma. Corneal melting is an autoimmune related noninfectious corneal ulcer. The mechanism of corneal melting, major treatment, the basic fundamental of ultraviolet-A riboflavin induced CXL and the clinical researches status and experiment in CXL were summarized in the study.

  5. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    Directory of Open Access Journals (Sweden)

    Qingyue Yu

    2016-01-01

    Full Text Available Individual Carbon Nanotubes (CNTs have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively. Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline.

  6. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Juan D Chavez

    Full Text Available Chemical cross-linking mass spectrometry (XL-MS provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  7. Studies on Cross-linking of succinic acid with chitosan/collagen

    Directory of Open Access Journals (Sweden)

    Tapas Mitra

    2013-01-01

    Full Text Available The present study summarizes the cross-linking property of succinic acid with chitosan /collagen. In detail, the chemistry behind the cross-linking and the improvement in mechanical and thermal properties of the cross-linked material were discussed with suitable instruments and bioinformatics tools. The concentration of succinic acid with reference to the chosen polymers was optimized. A 3D scaffold prepared using an optimized concentration of succinic acid (0.2% (w/v with chitosan (1.0% (w/v and similarly with collagen (0.5% (w/v, was subjected to surface morphology, FT-IR analysis, tensile strength assessment, thermal stability and biocompatibility. Results revealed, cross-linking with succinic acid impart appreciable mechanical strength to the scaffold material. In silico analysis suggested the prevalence of non-covalent interactions, which played a crucial role in improving the mechanical and thermal properties of the cross-linked scaffold. The resultant 3D scaffold may find application as wound dressing material, as an implant in clinical applications and as a tissue engineering material.

  8. Covalent bindings in proteins following UV-C irradiation

    International Nuclear Information System (INIS)

    Diezel, W.; Meffert, H.; Soennichsen, N.; Reinicke, C.

    1980-01-01

    Following a UV-C irradiation of catalase cross-linked catalase subunits could be detected by sodium dodecylsulfate gel electrophoresis. The subunits of aldolase were not cross-linked. The origin of covalent bindings in the catalase molecule is suggested to be effected by a free radical chain reaction induced by the heme component of catalase after UV-C irradiation. (author)

  9. Cross-linking for microbial keratitis

    Directory of Open Access Journals (Sweden)

    Jayesh Vazirani

    2013-01-01

    Full Text Available The success of collagen cross-linking as a clinical modality to modify the clinical course in keratoconus seems to have fueled the search for alternative applications for this treatment. Current clinical data on its efficacy is limited and laboratory data seems to indicate that it performs poorly against resistant strains of bacteria and against slow growing organisms. However, the biological plausibility of crosslinking and the lack of effective strategies in managing infections with these organisms continue to focus attention on this potential treatment. Well-conducted experimental and clinical studies with controls are required to answer the questions of its efficacy in future.

  10. Induction of SCE by DNA cross-links in human fibroblasts exposed to 8-MOP and UVA irradiation

    International Nuclear Information System (INIS)

    Bredberg, A.; Lambert, B.

    1983-01-01

    To study the SCE-inducing effect of psoralen cross-links in the DNA of normal, human fibroblasts, cell cultures were exposed to PUVA (0.2-1 μg of 8-MOP per ml, followed by UVA irradiation at 0.04 J/cm 2 ) and carefully washed to remove non-covalently bound psoralen. Some cell cultures were then given a second dose of UVA (1.1 J/cm 2 ), either immediately after PUVA or 1-3 days later. By this type of treatment, cells with different proportions of DNA cross-links are obtained. The initial PUVA treatment will mainly give rise to psoralen monoadducts and only few cross-links in the DNA, and the second UVA irradiation will convert a number of the psoralen monoadducts into cross-links. (orig./AJ)

  11. Covalent Crosslinking of Porous Poly(Ionic Liquid) Membrane via a Triazine Network

    OpenAIRE

    Täuber, Karoline; Dani, Alessandro; Yuan, Jiayin

    2017-01-01

    Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect the pore size and pore size distribution of the membranes and stabilize them towards salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.

  12. Chitosan-based delivery systems for protein therapeutics and antigens

    NARCIS (Netherlands)

    Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E.

    Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based

  13. Emerging Chitosan-Based Films for Food Packaging Applications.

    Science.gov (United States)

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  14. General protein-protein cross-linking.

    Science.gov (United States)

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  15. Dynamic covalent gels assembled from small molecules:from discrete gelators to dynamic covalent polymers

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zhang; Li-Hua Zeng; Juan Feng

    2017-01-01

    Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials.This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules.First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding.Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators.Dynamic covalent bonding can be involved to form low molecular weight gelators.Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators.Two catalogues of gels show different properties arising from their different structures.This review aims to illustrate the structure-property relationships of these dynamic covalent gels.

  16. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.

    Science.gov (United States)

    Chen, I-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-02

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm( - 1), which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  17. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.

    Science.gov (United States)

    Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun

    2016-07-13

    Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.

  18. Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications.

    Science.gov (United States)

    Gabriel Paulraj, Michael; Ignacimuthu, Savarimuthu; Gandhi, Munusamy Rajiv; Shajahan, Azeez; Ganesan, Pathalam; Packiam, Soosaimanickam Maria; Al-Dhabi, Naif Abdhullah

    2017-11-01

    A nanopesticide formulation was developed using chitosan and a botanical pesticide PONNEEM ® and its antifeedant, larvicidal and growth regulating activities were screened against Helicoverpa armigera, a major lepidopteran pest. Chitosan nanoparticles (CSNs) were prepared by using two different cross-linking agents namely glutaraldehyde (GLA) and tripolyphosphate (TPP). The effects of cross linking agents on CSNs and the biological properties against the insect pest were also studied. Cross linking of chitosan with either TPP or GLA was confirmed through Fourier Transform Infrared (FTIR) spectroscopy. Electron micrograph revealed that the size of CSNs varied from 32 to 90nm. The stability of nanoparticles lasted for 9days in CSNs-TPP-PONNEEM. In CSNs-GLA-PONNEEM, the stability of nanoparticles was higher. CSNs-TPP-PONNEEM treatment recorded 88.5% antifeedant activity and 90.2% larvicidal activity against H. armigera. Weights of H. armigera pupae in CSNs-TPP-PONNEEM treatment were significantly low. Chitosan-based nano-pesticide formulation holds great promise in H. armigera management. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The cross-linking influence of electromagnetic radiation on water-soluble polyacrylan compositions with biopolymers

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2009-01-01

    Full Text Available The results of examinations of the cross-linking influence of electromagnetic radiation - in a microwave range – on polyacrylancompositions with biopolymers, are presented in the hereby paper. The cross-linking process of the tested compositions was determined on the basis of the FT-IR spectroscopic methods. It was shown that microwave operations can lead to the formation of new cross-linkedstructures with strong covalent bonds. The adsorption process and formation of active centres in polymer molecules as well as in highsilica sand were found due to microwave radiations. In this process hydroxyl groups (-OH - present in a polymer - and silane groups (Si- O-H - present in a matrix - are mainly taking part. Spectroscopic and strength tests performed for the system: biopolymer binding agent – matrix indicate that the microwave radiation can be applied for hardening moulding sands with biopolymer binders.

  20. DNA interstrand cross-link repair: understanding role of Fanconi anemia pathway and therapeutic implications.

    Science.gov (United States)

    Shukla, Pallavi; Solanki, Avani; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2013-11-01

    Interstrand cross-links (ICLs) are extremely toxic DNA lesions that prevent DNA double-helix separation due to the irreversible covalent linkage binding of some agents on DNA strands. Agents that induce these ICLs are thus widely used as chemotherapeutic drugs but may also lead to tumor growth. Fanconi anemia (FA) is a rare genetic disorder that leads to ICL sensitivity. This review provides update on current understanding of the role of FA proteins in repairing ICLs at various stages of cell cycle. We also discuss link between DNA cross-link genotoxicity caused by aldehydes in FA pathway. Besides this, we summarize various ICL agents that act as drugs to treat different types of tumors and highlight strategies for modulating ICL sensitivity for therapeutic interventions that may be helpful in controlling cancer and life-threatening disease, FA. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Biochemical properties of bioplastics made from wheat gliadins cross-linked with cinnamaldehyde.

    Science.gov (United States)

    Balaguer, M Pau; Gómez-Estaca, Joaquín; Gavara, Rafael; Hernandez-Munoz, Pilar

    2011-12-28

    The aim of this work has been to study the modification of gliadin films with cinnamaldehyde as a potential cross-linker agent. The molecular weight profile and cross-linking density showed that cinnamaldehyde increased reticulation in the resulting films. The participation of free amino groups of the protein in the newly created entanglements could be a possible mechanism of connection between the polypeptidic chains. The combination of a Schiff base and a Michael addition is a feasible approach to understanding this mechanism. The protein solubility in different media pointed to lower participation by both noncovalent and disulfide bonds in stabilizing the structure of the cross-linked films. The new covalent bonds formed by the cinnamaldehyde treatment hampered water absorption and weight loss, leading to more water-resistant matrices which had not disintegrated after 5 months. The properties of this novel bioplastic could be modified to suit the intended application by using cinnamaldehyde, a naturally occurring compound.

  2. Cross-link guided molecular modeling with ROSETTA.

    Directory of Open Access Journals (Sweden)

    Abdullah Kahraman

    Full Text Available Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods.

  3. Riboflavin for corneal cross-linking.

    Science.gov (United States)

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  4. The Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells

    Directory of Open Access Journals (Sweden)

    Nadège Bossuet-Greif

    2018-03-01

    Full Text Available Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli. Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR, and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2 protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells.

  5. Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker

    DEFF Research Database (Denmark)

    Noye, Pernille; Li, Qingfeng; Pan, Chao

    2008-01-01

    Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produ......Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP.......e. within the temperature range of operation of PBI-based fuel cells....

  6. Cross-linked polyelectrolyte multilayers for marine antifouling applications

    NARCIS (Netherlands)

    Zhu, X.; Janczewski, D.; Lee, S.S.C.; Teo, S.L-M.; Vancso, Gyula J.

    2013-01-01

    A polyionic multilayer film was fabricated by layer-by-layer (LbL) sequential deposition followed by cross-linking under mild conditions on a substrate surface to inhibit marine fouling. A novel polyanion, featuring methyl ester groups for an easy cross-linking was used as a generic solution for

  7. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  8. Recent advances in corneal collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Gitansha Shreyas Sachdev

    2017-01-01

    Full Text Available Corneal collagen cross-linking has become the preferred modality of treatment for corneal ectasia since its inception in late 1990s. Numerous studies have demonstrated the safety and efficacy of the conventional protocol. Our understanding of the cross-linking process is ever evolving, with its wide implications in the form of accelerated and pulsed protocols. Newer advancements in technology include various riboflavin formulations and the ability to deliver higher fluence protocols with customised irradiation patterns. A greater degree of customisation is likely the path forward, which will aim at achieving refractive improvements along with disease stability. The use of cross-linking for myopic correction is another avenue under exploration. Combination of half fluence cross-linking with refractive correction for high errors to prevent post LASIK regression is gaining interest. This review aims to highlight the various advancements in the cross-linking technology and its clinical applications.

  9. Chitosan-based polyherbal toothpaste: As novel oral hygiene product

    Directory of Open Access Journals (Sweden)

    Mohire Nitin

    2010-01-01

    Full Text Available Objective: The objective of the present work was to develop chitosan-based polyherbal toothpaste and evaluate its plaque-reducing potential and efficacy in reduction of dental pathogens. Materials and Methods: Antimicrobial activity of herbal extracts against dental pathogens were performed by using disk diffusion method. The pharmaceutical evaluation of toothpaste was carried out as per the US Government Tooth Paste Specifications. A 4-week clinical study was conducted in patients with oro-dental problems to evaluate the plaque removing efficacy of chitosan-based polyherbal toothpaste with commercially available chlorhexidine gluconate (0.2% w/v mouthwash as positive control. Total microbial count was carried out to determine the percentage decrease in the oral bacterial count over the period of treatment. Result: Herbal extracts were found to possess satisfactory antimicrobial activity against most of the dental pathogens. Chitosan-containing polyherbal toothpaste significantly reduces the plaque index by 70.47% and bacterial count by 85.29%, and thus fulfills the majority of esthetic and medicinal requirements of oral hygiene products. Conclusion: Chitosan-based polyherbal toothpaste proves itself as a promising novel oral hygiene product as compared with currently available oral hygiene products. A further study to confirm the exact mechanism and active constituents behind antiplaque and antimicrobial activity of chitosan-based polyherbal toothpaste and its efficacy in large number of patient population is on high demand.

  10. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    Science.gov (United States)

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  11. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    Science.gov (United States)

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  12. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization.

    Science.gov (United States)

    Liu, I-Hsin; Chang, Shih-Hsin; Lin, Hsin-Yi

    2015-05-13

    A 3D plotting system was used to make chitosan-based tissue scaffolds with interconnected pores using pure chitosan (C) and chitosan cross-linked with pectin (CP) and genipin (CG). A freeze-dried chitosan scaffold (CF/D) was made to compare with C, to observe the effects of structural differences. The fiber size, pore size, porosity, compression strength, swelling ratio, drug release efficacy, and cumulative weight loss of the scaffolds were measured. Osteoblasts were cultured on the scaffolds and their proliferation, type I collagen production, alkaline phosphatase activity, calcium deposition, and morphology were observed. C had a lower swelling ratio, degradation, porosity and drug release efficacy and a higher compressional stiffness and cell proliferation compared to CF/D (p 3D-plotted samples, cells on CP exhibited the highest degree of mineralization after 21 d (p 3D-plotted scaffolds were stronger, less likely to degrade and better promoted osteoblast cell proliferation in vitro compared to the freeze-dried scaffolds. C, CP and CG were structurally similar, and the different crosslinking caused significant changes in their physical and biological performances.

  13. Characterization of the degree of cross-linking in radiation cross-linked low and high density polyethylenes

    International Nuclear Information System (INIS)

    Posselt, K.; Haedrich, W.

    1986-01-01

    In practice the cross-linking of irradiated polyethylene is mostly characterized by solubility and thermomechanical data. The irradiation of samples of a LDPE and a HDPE yields very different gel-dose curves. But for a quantitative comparison the complicated connection between the gel values and the corresponding densities of cross-links, especially the dependence on the initial molecular size distribution, has to take into consideration. The analysis of the solubility data according to the statistical theory of cross-linking developed by Inokuti and Saito shows that at equal doses in both investigated PE types in spite of the different gel values nearly the same densities of cross-links are present. That result is confirmed by the densities of cross-links determined from stress-strain measurements at 423 K. (author)

  14. Manufacture of polyethylene foam by electron beam cross-linking

    International Nuclear Information System (INIS)

    Tamai, Isamu

    1976-01-01

    The manufacturing process of polyethylene foam, comparison between electron beam cross-linking process and chemical cross-linking process, the electron beam irradiation technique for continuous sheets, the characteristics and uses of polyethylene foam are reviewed. The pore diameter can be controlled by selecting the dose rate, because there is strong relationship between the pore diameter and the dose rate. As the dose if higher, the foam becomes finer. The electron accelerators having large capacity show the lowest cost as the radiation source, and are applicable industrially. If the production capacity exceeds about 200 tons per month, the costs of electron beam irradiation process may be more advantageous than that of chemical process according to the circumstances. It is difficult to obtain the uniform distribution of absorption dose in the direction of thickness. General characteristics of cross-linked polyethylene foam are listed. The special feature of electron beam process is that the degree of cross-linking can be controlled arbitrarily before foaming. The products obtained by the electron beam cross-linking process have finer foams and smoother surfaces than those obtained by the chemical process, because the separation of the decomposition of foaming agents from that of cross-linking agents in the chemical cross-linking is difficult. (Iwakiri, K.)

  15. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    Science.gov (United States)

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  16. Current status of accelerated corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Michael Mrochen

    2013-01-01

    Full Text Available Corneal cross-linking with riboflavin is a technique to stabilize or reduce corneal ectasia, in diseases such as keratoconus and post-laser-assisted in situ keratomileusis (LASIK ectasia. There is an interest by patient as well as clinicians to reduce the overall treatment time. Especially, the introduction of corneal cross-linking in combination with corneal laser surgery demands a shorter treatment time to assure a sufficient patient flow. The principles and techniques of accelerated corneal cross-linking is discussed.

  17. X-ray-mediated cross linking of protein and DNA

    International Nuclear Information System (INIS)

    Minsky, B.D.; Braun, A.

    1977-01-01

    Using a simple filter assay for the binding of BSA or lysozyme to DNA, two mechanisms of x-ray-mediated cross linking are shown to occur. One, a fast reaction, appears to involve a radical intermediate, is inhibited by high pH and salt, and seems to be enhanced by deoxygenation. The second mechanism, a slow time-dependent component, differs from the fast reaction in its stimulation by histidine, its inhibition by catalase, and the lack of an oxygen effect. Separate irradiation of DNA or water does not lead to cross linking. However, separate irradiation of protein leads to cross linking which proceeds with slow-component kinetics

  18. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked polyacrylate... shall be determined using size exclusion chromatography or an equivalent method. When conducting the...

  19. Photoreactivities and thermal properties of psoralen cross-links

    International Nuclear Information System (INIS)

    Yeung, A.T.; Jones, B.K.; Chu, C.T.

    1988-01-01

    The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link

  20. Shaped articles of cross-linked fluorocarbon polymers

    International Nuclear Information System (INIS)

    Gotcher, A.J.; Germeraad, P.B.

    1981-01-01

    A process is described which comprises (1) contacting (a) a shaped article of a polymeric composition wherein the polymer is a fluorocarbon polymer having a melting point of at least 200 0 C, the article having a tensile strength of at least 3,000 psi, with (b) a fluid composition comprising a cross-linking agent, until the article contains at least 2.5% by weight of the cross-linking agent; and (2) irradiating the shaped article with ionising radiation to a dosage not exceeding 50 Mrads under conditions such that the composition is cross-linked sufficiently to impart thereto an M 100 value of at least 300 psi, while maintaining a tensile strength of at least 3000 psi, the shaped article containing a specified proportion of the cross-linking agent. (author)

  1. Formulation and Characterization of Glutaraldehyde Cross-Linked ...

    African Journals Online (AJOL)

    ... drug/polymer ratio, volume of cross linking agent and volume of surfactant were ... The microspheres were characterized for entrapment efficiency, drug loading, ... size distribution (105 – 219 μm) and an entrapment efficiency of up to 73 %.

  2. Enzymatic digestibility of peptides cross-linked by ionizing radiation

    International Nuclear Information System (INIS)

    Dizdaroglu, M.; Gajewski, E.; Simic, M.G.

    1984-01-01

    Digestibility by proteolytic enzymes of peptides cross-linked by ionizing radiation was investigated. Small peptides of alanine and phenylalanine were chosen as model compounds and aminopeptidases and carboxypeptidases were used as proteolytic enzymes. Peptides exposed to γ-radiation in aqueous solution were analysed by high-performance liquid chromatography before and after hydrolysis by aminopeptidase M, leucine aminopeptidase carboxypeptidase A and carboxypeptidase Y. The results obtained clearly demonstrate the different actions of these enzymes on cross-linked aliphatic and aromatic peptides. Peptide bonds of cross-linked dipeptides of alanine were completely resistant to enzymatic hydrolysis whereas the enzymes, except for carboxypeptidase Y, cleaved all peptide bonds of cross-linked peptides of phenylalanine. The actions of the enzymes on these particular compounds are discussed in detail. (author)

  3. Donor cross-linking for keratoplasty: a laboratory evaluation.

    Science.gov (United States)

    Mukherjee, Achyut; Hayes, Sally; Aslanides, Ioannis; Lanchares, Elena; Meek, Keith M

    2015-12-01

    This laboratory-based investigation compares the topographic outcomes of conventional penetrating keratoplasty with that of a novel procedure in which donor corneas are cross-linked prior to keratoplasty. Penetrating keratoplasty procedures with continuous running sutures were carried out in a porcine whole globe model. Sixty eyes were randomly paired as 'donor' and 'host' tissue before being assigned to one of two groups. In the cross-linked group, donor corneas underwent riboflavin/UVA cross-linking prior to being trephined and sutured to untreated hosts. In the conventional keratoplasty group, both host and donor corneas remained untreated prior to keratoplasty. Topographic and corneal wavefront measurements were performed following surgery, and technical aspects of the procedure evaluated. Mean keratometric astigmatism was significantly lower in the cross-linked donor group at 3.67D (SD 1.8 D), vs. 8.43 D (SD 2.4 D) in the conventional keratoplasty group (p < 0.005). Mean wavefront astigmatism was also significantly reduced in the cross-linked donor group 4.71 D (SD 2.1) vs. 8.29D (SD 3.6) in the conventional keratoplasty group (p < 0.005). Mean RMS higher order aberration was significantly lower in the cross-linked donor group at 1.79 um (SD 0.98), vs. 3.05 um (SD 1.9) in the conventional keratoplasty group (P = 0.02). Qualitative analysis revealed less tissue distortion at the graft-host junction in the cross-linked group. Cross-linking of donor corneas prior to keratoplasty reduces intraoperative induced astigmatism and aberrations in an animal model. Further studies are indicated to evaluate the implications of this potential modification of keratoplasty surgery.

  4. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  5. In vivo oxidation in remelted highly cross-linked retrievals.

    Science.gov (United States)

    Currier, B H; Van Citters, D W; Currier, J H; Collier, J P

    2010-10-20

    Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight

  6. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.

    Science.gov (United States)

    Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric

    2015-05-13

    Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.

  7. Development of new cross-linked polyethylene for atomic energy

    International Nuclear Information System (INIS)

    Fujimura, Shun-ichi; Ohya, Shingo; Kubo, Masaji; Tsutsumi, Yukihiro; Seguchi, Tadao.

    1988-01-01

    Cross-linked polyethylene is the material which is used most as the insulating material for electric wires and cables, but for the cables for nuclear power stations and the wiring materials within machinery and equipment, the cross-linked polyethylene which is hard to burn by mixing burning-retarding agent is frequently used as the disaster-preventing countermeasures. As the burning-retarding agent for cross-linked polyethylene, bromine system agent that gives high burning retardation, chlorine system agent that can prevent melting and dripping at the time of burning and so on have been used so as to meet the objective. However by the addition of burning-retarding agents, the electrical and mechanical characteristics of cross-linked polyethylene lower, therefore consideration must be given to the use. In this paper, the results of the examination on the application of condensed acenaphthylene bromide as a new burning-retarding agent to cross-linked polyethylene are reported. White lead was effective for catching HBr. It was confirmed that more than 30 parts of this agent ensured burning retardation. By mixing this agent, the tensile strength increased, but the elongation lowered. It was found that the good radiation resistance was obtained by adding this agent. (K.I.)

  8. Radiation cross-linked polymers: Recent developments and new applications

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2005-01-01

    The purpose of the present paper is to review the innovative and recent applications of radiation cross-linking of polymers that reinforces their dimensional stability in chemically aggressive and high temperature conditions. Radiation cross-linking can be applied to a great number of plastics: thermoplastics, elastomers and thermoplastic elastomers (TPE). Some of them can cross-link on their own, some others need to be formulated with a cross-linking agent (promoter) or to be modified during their polymerization. Some results of chemical and thermomechanical characterizations of radiation cross-linked plastics based on engineering polymers will be described, and their advantages will be emphasized in relation with their applications in various sectors: pipes and cables, packaging, automotive, electrical engineering and electronics, including connectors, surface mounted devices, integrated circuits, 3D-MID technology, etc. The paper will conclude with a short review of the industrial irradiation facilities (EB facilities and gamma plants) adapted to the treatment of such various products

  9. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    Science.gov (United States)

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Science.gov (United States)

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Analysis of growth hormone and lactogenic binding sites cross-linked to iodinated human growth hormone

    International Nuclear Information System (INIS)

    Hughes, J.P.; Simpson, J.S.; Friesen, H.G.

    1983-01-01

    GH (GHR) and lactogenic receptors were analyzed after use of the cross-linking reagent ethylene glycol bis-(succinimidyl succinate) to attach covalently iodinated human GH (hGH) to binding proteins 1) on intact IM-9 lymphocytes, 2) in a partially purified GHR preparation from rabbit liver, and 3) in crude microsomal fractions from rabbit liver, rabbit mammary gland, and rat liver. The latter two microsomal preparations contain primarily lactogenic receptors, whereas in IM-9 lymphocytes and the rabbit liver preparations, GHR predominate. Cross-linked [125I]hGH-receptor complexes were solubilized, reduced, and separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of proteins cross-linked to [125I]hGH in the microsomal fraction from rabbit liver showed a specifically labeled complex with an estimated molecular weight (mol wt) of 75K. A slightly lower mol wt (71K) was determined for the complex labeled in the purified GHR preparation. In contrast to the relatively low mol wt complexes in rabbit liver, a complex that migrated with an apparent mol wt of 130K was identified in IM-9 lymphocytes. Labeled complexes were identified at 66K from rat liver and 61K from rabbit mammary gland. If it is assumed that hGH contributes 21K to the mol wt of the radiolabeled complexes, then the approximate mol wts of hGH-binding sites are 50-54K from rabbit liver, 109K from IM-9 lymphocytes, 45K from rat liver, and 40K from rabbit mammary gland

  12. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells

    International Nuclear Information System (INIS)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-01-01

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O 6 -methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross-linking repair in a p

  13. Cross-linking and relaxation of supercoiled DNA by psoralen and light

    International Nuclear Information System (INIS)

    Yoakum, G.H.; Cole, R.S.

    1978-01-01

    Photoreaction of 4,5',8-trimethylpsoralen with superhelical ColE1 and ColE1amp DNA was studied. Changes in mobilities in agarose gels, formation of interstrand cross-links, and DNA strand breaks were determined. Psoralen and light treatment removed negative superhelical turns, and extensive treatments failed to produce positive superhelical turns in covalently closed plasmid DNA. The rate of relaxation of superhelical turns by psoralen photobinding appeared to be directly proportional to the number of superhelical turns remaining. A unique reaction mechanism is presented to explain these results. By this interpretation the initial rate of psoralen photobinding to superhelical DNA was estimated to be 3 times that for linear DNA, and the ratio of cross-linking to monofunctional adducts appears to be dependent on the superhelical conformation of the DNA. The estimated ratio of psoralen molecules bound to DNA strand breaks was 1.7 . 10 4 :1, and 70% of this breakage is caused by the light alone. (Auth.)

  14. Efficacy of iontophoresis-assisted epithelium-on corneal cross-linking for keratoconus

    Directory of Open Access Journals (Sweden)

    Hong-Zhen Jia

    2018-04-01

    Full Text Available Corneal cross-linking (CXL is a noninvasive therapeutic procedure for keratoconus that is aimed at improving corneal biomechanical properties by induction of covalent cross-links between stromal proteins. It is accomplished by ultraviolet A (UVA radiation of the cornea, which is first saturated with photosensitizing riboflavin. It has been shown that standard epithelium-off CXL (S-CXL is efficacious, and it has been recommended as the standard of care procedure for keratoconus. However, epithelial removal leads to pain, transient vision loss, and a higher risk of corneal infection. To avoid these disadvantages, transepithelial CXL was developed. Recently, iontophoresis has been adopted to increase riboflavin penetration through the epithelium. Several clinical observations have demonstrated the safety and efficacy of iontophoresis-assisted epithelium-on CXL (I-CXL for keratoconus. This review aimed to provide a comprehensive summary of the published studies regarding I-CXL and a comparison between I-CXL and S-CXL. All articles used in this review were mainly retrieved from the PubMed database. Original articles and reviews were selected if they were related to the I-CXL technique or related to the comparison between I-CXL and S-CXL.

  15. Covalent Organic

    DEFF Research Database (Denmark)

    Vutti, Surendra

    chemistry of silicon, InAs and GaAs materials, covalentsurface functionalization using organosilanes, liquid-phase, and vapor-phasefunctionalizations, diazo-transfer reaction, CuAAC click chemistry, different types ofbiorthogonal chemistries, SPAAC chemistry, and cellular interactions of chemically...... immobilization of D-amino acid adhesion peptideson azide functionalized silicon, GaAs and InAs materials by using CuAAC-click chemistry.The covalent immobilization of penetration peptide (TAT) on gold nanotips of InAs NWs isalso demonstrated.In chapter four, the covalent immobilization of GFP on silicon wafers......, GaAs wafers andGaAs NWs is demonstrated. Series of Fmoc-Pra-OH, NHS-PEG5-NHS and BCN-NHSfunctionalized silicon surfaces has been prepared, whereby GFP-N3 and GFP-bicyclononyneare immobilized by using CuAAC and SPAAC chemistry. The specific and covalentimmobilization of GFP-N3 on bicyclononyne...

  16. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    Science.gov (United States)

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  17. Chitosan-Based Polymer Blends: Current Status and applications

    International Nuclear Information System (INIS)

    Hefian, E.A.E.; Nasef, M.M.

    2014-01-01

    This paper reviews the latest developments in chitosan-based blends and their potential applications in various fields. Various blends together with other derivatives, such as composites and graft copolymers, have been developed to overcome chitosans disadvantages, including poor mechanical properties and to improve its functionality towards specific applications. The progress made in blending chitosan with synthetic and natural polymers is presented. The versatility and unique characteristics, such as hydrophilicity, film-forming ability, biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan has contributed to the successful development of various blends for medical, pharmaceutical, agricultural and environmental applications. (author)

  18. Porous Cross-Linked Polyimide-Urea Networks

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  19. Scleral lens tolerance after corneal cross-linking for keratoconus

    NARCIS (Netherlands)

    Visser, Esther Simone; Soeters, Nienke; Tahzib, Nayyirih G.

    2015-01-01

    Purpose. Subjective and objective evaluation of scleral lens tolerance and fitting before and after corneal cross-linking (CXL) for progressive keratoconus. Methods. In this prospective cohort, evaluations were made of 18 unilateral eyes in patients who underwent CXL and had been wearing scleral

  20. Fabrication of chemically cross-linked porous gelatin matrices.

    Science.gov (United States)

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  1. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Chitosan Cross-linked Reconstituted Amniotic Collagen Membrane – An Excellent Cell Substratum. The KERATINOCYTE proliferation and Differentiation into multiple layers is due to the presence of type - IV collagen in the amnion. Cultured FIBROBLASTS had good ...

  2. Swelling of cross-linked polymers: interpretations and misinterpretations

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková-Smrčková, Miroslava

    2017-01-01

    Roč. 254, 20 August (2017), s. 102 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  3. Molecular Model for HNBR with Tunable Cross-Link Density.

    Science.gov (United States)

    Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A

    2016-12-15

    We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.

  4. Lactoferrin binding to transglutaminase cross-linked casein micelles

    NARCIS (Netherlands)

    Anema, S.G.; de Kruif, C.G.|info:eu-repo/dai/nl/073609609

    2012-01-01

    Casein micelles in skim milk were either untreated (untreated milk) or were cross-linked using transglutaminase (TGA-milk). Added lactoferrin (LF) bound to the casein micelles and followed Langmuir adsorption isotherms. The adsorption level was the same in both milks and decreased the micellar zeta

  5. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  6. Practical application of thermoreversibly Cross-linked rubber products

    Science.gov (United States)

    Polgar, L. M.; Picchioni, F.; de Ruiter, E.; van Duin, M.

    2017-07-01

    Currently, rubber products cannot simply be reprocessed after their product life, due to the irreversible cross-linking methods traditionally applied. The purpose of this work is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can be used for the development of recyclable rubber products. Unfortunately, the applicability of the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature applications, because of the rapid deterioration of the compression set at elevated temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber modified with thiophene or cyclopentadiene moieties may extend the temperature application range and results in rubber products with acceptable properties. Finally, rubber products generally comprise fillers such as silica, carbon black or fibers. In this context, the reinforcing effect of short cut aramid fibers on the material properties of the newly developed thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the resulting products were found to be comparable to those of a fiber reinforced, peroxide cured reference sample.

  7. Radiation cross-linked PVC and its applications

    International Nuclear Information System (INIS)

    Lan Junming; Chen Ruyan; Jia Chaoxing; Li Min; Li Chengxin

    1990-04-01

    The radiation cross-linking technique is adopted for improving the polyvinyl chloride (PVC) heat-resistance and reducing its thermocontractibility. For examining its properties a small insulation sheath made from modified PVC material has been tested at 260 0 5 seconds. The results obtained were satisfactory

  8. Functionalisation of cross-linked polyethylenimine for the removal of ...

    African Journals Online (AJOL)

    ... and describe the experimental data. The thermodynamic study of the adsorption process indicated high activation energies (55.91 kJ mol-1) which confirms chemisorption as a mechanism of interaction between As and PCPEI. Keywords: Adsorption; arsenic; phosphonated cross-linked polyethylenimine, functionalisation ...

  9. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen.

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M; Marini, Joan C; Yamauchi, Mitsuo

    2016-04-29

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen*

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A.; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M.; Marini, Joan C.; Yamauchi, Mitsuo

    2016-01-01

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917

  11. Degradation of chitosan-based materials after different sterilization treatments

    International Nuclear Information System (INIS)

    San Juan, A; Montembault, A; Royaud, I; David, L; Gillet, D; Say, J P; Rouif, S; Bouet, T

    2012-01-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  12. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties

    DEFF Research Database (Denmark)

    Islam, Paromita; Water, Jorrit Jeroen; Bohr, Adam

    2016-01-01

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated...

  13. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    Science.gov (United States)

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA.

    Science.gov (United States)

    Scalabrin, Matteo; Quintieri, Luigi; Palumbo, Manlio; Riccardi Sirtori, Federico; Gatto, Barbara

    2017-02-20

    The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.

  15. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.

    Science.gov (United States)

    Broguiere, Nicolas; Isenmann, Luca; Zenobi-Wong, Marcy

    2016-08-01

    Hyaluronan (HA) is an essential component of the central nervous system's extracellular matrix and its high molecular weight (MW) form has anti-inflammatory and anti-fibrotic properties relevant for regenerative medicine. Here, we introduce a new hydrogel based on high MW HA which is cross-linked using the transglutaminase (TG) activity of the activated blood coagulation factor XIII (FXIIIa). These HA-TG gels have significant advantages for neural tissue engineering compared to previous HA gels. Due to their chemical inertness in the absence of FXIIIa, the material can be stored long-term, is stable in solution, and shows no cytotoxicity. The gelation is completely cell-friendly due to the specificity of the enzyme and the gelation rate can be tuned from seconds to hours at physiological pH and independently of stiffness. The gels are injectable, and attach covalently to fibrinogen and fibrin, two common bioactive components in in vitro tissue engineering, as well as proteins present in vivo, allowing the gels to covalently bind to brain or spinal cord defects. These optimal chemical and bioactive properties of HA-TG gels enabled the formation of 3D neuronal cultures of unprecedented performance, showing fast neurite outgrowth, axonal and dendritic speciation, strong synaptic connectivity in 3D networks, and rapidly-occurring and long-lasting coordinated electrical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The spectra character of photodegraded the pyridinoline cross-links by Hypocrellin B

    International Nuclear Information System (INIS)

    Zhang Jucheng; Chen Rui; Liu Wei; Chen Zhuo; Shu Lidan; Liu Yingji

    2011-01-01

    Pyridinoline cross-links is one of the cross-link formation in collagen which in cell matrix, many research shown that this cross-link cause the fibrosis. Hypocrellin B (HB) is one of the nature photosensitizers, this work investigated the pyridinoline cross-link in collagen was photodegraded by HB. The result shown HB can degrade the pyridinoline cross-link with photo. This is to say, HB may be use as the photodynamic reagent to study the fibrosis.

  17. Computer simulation of randomly cross-linked polymer networks

    International Nuclear Information System (INIS)

    Williams, Timothy Philip

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneities were observed in the swollen model networks and were analysed by considering constituent substructures of varying size. The network connectivity determined the length scales at which the majority of the substructure unfolding process occurred. Simulated stress-strain curves and diffraction patterns for uniaxially deformed swollen networks, were found to be consistent with experimental findings. Analysis of the relaxation dynamics of various network components revealed a dramatic slowdown due to the network connectivity. The cross-link junction spatial fluctuations for networks close to the sol-gel threshold, were observed to be at least comparable with the phantom network prediction. The dangling chain ends were found to display the largest characteristic relaxation time. (author)

  18. One-pot synthesis of a chitosan-based hydrogel as a potential device for magnetic biomaterial

    International Nuclear Information System (INIS)

    Paulino, Alexandre T.; Guilherme, Marcos R.; Almeida, Elisangela A.M.S. de; Pereira, Antonio G.B.; Muniz, Edvani C.; Tambourgi, Elias B.

    2009-01-01

    This describes the cross-linking/co-polymerization reaction of chitosan (CS), acrylic acid (AAc), and N, N'-methylenebisacrylamide (MBA) in the presence of citrate-covered-γ-Fe 2 O 3 nanoparticules. A gelling process was verified by means of spectroscopic methods; Fourier transform infrared (FT-IR) and solid-state 13 C-CP/MAS nuclear magnetic resonance (NMR). The corresponding signals of the gelling process, in the 13 C NMR spectra, for the magnetic hydrogel were shifted to lower values due to embedding of the citrate-covered-γ-Fe 2 O 3 nanoparticules. The X-ray diffraction (XRD) confirmed that the crystallinity of the magnetic hydrogel exhibited a different crystalline structure to that without magnetic properties. The Moessbauer and magnetization analysis revealed that the magnetic hydrogel displays a high lattice strain, due to bonded iron atom covalence and superparamagnetism. From scanning electronic microscope (SEM) micrographs, no separation phase coexists between the magnetic nanoparticules and cross-linked hydrogel, indicating an excellent dispersion throughout the hydrogel. The swelling rate was dependent on the cross-linking degree of the hydrogel and ionic strength of the aqueous solution.

  19. Cross-Linked Fluorescent Supramolecular Nanoparticles as Finite Tattoo Pigments with Controllable Intradermal Retention Times.

    Science.gov (United States)

    Choi, Jin-Sil; Zhu, Yazhen; Li, Hongsheng; Peyda, Parham; Nguyen, Thuy Tien; Shen, Mo Yuan; Yang, Yang Michael; Zhu, Jingyi; Liu, Mei; Lee, Mandy M; Sun, Shih-Sheng; Yang, Yang; Yu, Hsiao-Hua; Chen, Kai; Chuang, Gary S; Tseng, Hsian-Rong

    2017-01-24

    Tattooing has been utilized by the medical community for precisely demarcating anatomic landmarks. This practice is especially important for identifying biopsy sites of nonmelanoma skin cancer (NMSC) due to the long interval (i.e., up to 3 months) between the initial diagnostic biopsy and surgical treatment. Commercially available tattoo pigments possess several issues, which include causing poor cosmesis, being mistaken for a melanocytic lesion, requiring additional removal procedures when no longer desired, and potentially inducing inflammatory responses. The ideal tattoo pigment for labeling of skin biopsy sites for NMSC requires (i) invisibility under ambient light, (ii) fluorescence under a selective light source, (iii) a finite intradermal retention time (ca. 3 months), and (iv) biocompatibility. Herein, we introduce cross-linked fluorescent supramolecular nanoparticles (c-FSNPs) as a "finite tattoo" pigment, with optimized photophysical properties and intradermal retention time to achieve successful in vivo finite tattooing. Fluorescent supramolecular nanoparticles encapsulate a fluorescent conjugated polymer, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene] (MPS-PPV), into a core via a supramolecular synthetic approach. FSNPs which possess fluorescent properties superior to those of the free MPS-PPV are obtained through a combinatorial screening process. Covalent cross-linking of FSNPs results in micrometer-sized c-FSNPs, which exhibit a size-dependent intradermal retention. The 1456 nm sized c-FSNPs display an ideal intradermal retention time (ca. 3 months) for NMSC lesion labeling, as observed in an in vivo tattoo study. In addition, the c-FSNPs induce undetectable inflammatory responses after tattooing. We believe that the c-FSNPs can serve as a "finite tattoo" pigment to label potential malignant NMSC lesions.

  20. Preparation and properties of silk sericin/cellulose cross-linking films

    Directory of Open Access Journals (Sweden)

    Wang Kunyan

    2017-01-01

    Full Text Available Silk sericin/cellulose cross-linked films were successfully prepared using glutaraldehyde as cross-linkinger. FTIR was applied to characterize the chemical structure of films. Cross-linked silk sericin film was found the peak intensity of FTIR for cross-linked film decreased markedly compared to pure silk sericin, which indicating cross-linking reaction has been occurred. The increasing value of swelling ratio also indicated the cross-linking has been happened. The cross-linking reaction increased the thermal decomposition temperature.

  1. Entropic benefit of a cross-link in protein association.

    Science.gov (United States)

    Zaman, Muhammad H; Berry, R Stephen; Sosnick, Tobin R

    2002-08-01

    We introduce a method to estimate the loss of configurational entropy upon insertion of a cross-link to a dimeric system. First, a clear distinction is established between the loss of entropy upon tethering and binding, two quantities that are often considered to be equivalent. By comparing the probability distribution of the center-to-center distances for untethered and cross-linked versions, we are able to calculate the loss of translational entropy upon cross-linking. The distribution function for the untethered helices is calculated from the probability that a given helix is closer to its partner than to all other helices, the "Nearest Neighbor" method. This method requires no assumptions about the nature of the solvent, and hence resolves difficulties normally associated with calculations for systems in liquids. Analysis of the restriction of angular freedom upon tethering indicates that the loss of rotational entropy is negligible. The method is applied in the context of the folding of a ten turn helical coiled coil with the tether modeled as a Gaussian chain or a flexible amino acid chain. After correcting for loop closure entropy in the docked state, we estimate the introduction of a six-residue tether in the coiled coil results in an effective concentration of the chain to be about 4 or 100 mM, depending upon whether the helices are denatured or pre-folded prior to their association. Thus, tethering results in significant stabilization for systems with millimolar or stronger dissociation constants. Copyright 2002 Wiley-Liss, Inc.

  2. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Rabinarayan parhi

    2017-12-01

    Full Text Available Hydrogels are promising biomaterials because of their important qualities such as biocompatibility, biodegradability, hydrophilicity and non-toxicity. These qualities make hydrogels suitable for application in medical and pharmaceutical field. Recently, a tremendous growth of hydrogel application is seen, especially as gel and patch form, in transdermal drug delivery. This review mainly focuses on the types of hydrogels based on cross-linking and; secondly to describe the possible synthesis methods to design hydrogels for different pharmaceutical applications. The synthesis and chemistry of these hydrogels are discussed using specific pharmaceutical examples. The structure and water content in a typical hydrogel have also been discussed.

  3. Mapping protein structural changes by quantitative cross-linking

    Czech Academy of Sciences Publication Activity Database

    Kukačka, Zdeněk; Strohalm, Martin; Kavan, Daniel; Novák, Petr

    2015-01-01

    Roč. 89, NOV 2015 (2015), s. 112-120 ISSN 1046-2023 R&D Projects: GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Chemical cross-linking * Proteolysis * Mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 3.503, year: 2015

  4. Peripheral hepatic arterial embolization with cross-linked collagen fibers

    International Nuclear Information System (INIS)

    Daniels, J.R.; Kerlan, R.K. Jr.; Dodds, L.; McLaughlin, P.; La Berge, J.M.; Harrington, D.; Daniels, A.M.; Ring, E.J.

    1986-01-01

    Hepatic artery embolization with a nonimmunogenic, cross-linked collagen preparation (Angiostat, collagen for embolization, Target Therapeutics) was studied in mongrel dogs. Flow-directed technique was used to achieve complete distal arterial occlusion. Serial liver function evaluation demonstrated marked alterations at 48 to 72 hours, partial correction at 1 week, and resolution of abnormalities by 1 month. Restoration of large-vessel blood flow was angiographically demonstrable at 1 week. Recanalization, achieved by migration of endothelial cells around the collagen, resulted in complete restoration of normal hepatic vascular and tissue anatomy at 1 month. Repeated embolization at biweekly intervals was well tolerated

  5. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    Science.gov (United States)

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    Science.gov (United States)

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.

  7. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.; Koros, William J.

    2010-01-01

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a

  8. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes

    NARCIS (Netherlands)

    Shao, J.; Yu, N.; Kolwijck, E.; Wang, B.; Tan, K.W.; Jansen, J.A.; Walboomers, X.F.; Yang, F.

    2017-01-01

    AIM: To evaluate the antibacterial potential and biological performance of silver nanoparticles in chitosan-based membranes. MATERIALS & METHODS: Electrospun chitosan/poly(ethylene oxide) membranes with different amounts of silver nanoparticles were evaluated for antibacterial properties and

  9. Design and Evaluation of Chitosan-Based Novel pHSensitive Drug ...

    African Journals Online (AJOL)

    Design and Evaluation of Chitosan-Based Novel pHSensitive Drug Carrier for Sustained ... Scanning electron microscopy(SEM),Raman spectroscopy for particle size analysis. Swelling ratio, Effect of drug loading on encapsulation efficiency

  10. Damage and fatigue in cross-linked rubbers

    Science.gov (United States)

    Melnikov, Alexei

    Damage and fatigue of elastomers have not been fundamentally understood because of the complex nature of these materials. All currently existing models are completely phenomenological. Therefore two problems have been investigated in this research to address those fundamental issues. The first problem was creating an innovative concept with a mathematical modeling, which would be able to describe the damage using molecular characteristics of elastomers. The second problem is developing new approaches to study fatigue, and especially impact fatigue of elastomers. The following results have been obtained in this research. A theoretical model of damage has been developed which involves the basic molecular characteristics of cross-linked elastomers and takes into account the effects of viscoelasticity and stress-induced crystallization. This model was found very reliable and successful in description of numerous quasi-static simple extension experiments for monotonous and repeating loadings. It also roughly predicts in molecular terms the failure of elastomers with various degrees of cross-linking. Quasi-impact fatigue tests with different geometry of an indenter have also been performed. Some microscopic features of rubber damage have been investigated using optical microscopy and SEM. In particular, the accumulation of a completely de-vulcanized, liquid-like substance was observed under intense, multi-cycle impacts. All the findings discovered in quasi-impact experiments are consistent with the damage model predictions.

  11. Collagen Cross-Linking: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Marine Hovakimyan

    2012-01-01

    Full Text Available Collagen cross-linking (CXL using UVA light and riboflavin (vitamin B2 was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL.

  12. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Cross-linking e segmento de anel corneano intraestromal

    Directory of Open Access Journals (Sweden)

    Adimara da Candelaria Renesto

    2011-02-01

    Full Text Available O cross-linking corneano é um procedimento usado para a estabilização mecânica e aumento da rigidez corneana em pacientes com ceratocone (reduzindo a possibilidade de progressão, e também em processos inflamatórios de afinamento corneano. Os segmentos de anéis corneanos intraestromais têm como princípio o aplanamento central da córnea. Inicialmente utilizados para correção de baixa miopia, a principal indicação atual é em pacientes com ceratocone, para melhorar a acuidade visual não corrigida, a acuidade visual corrigida e permitir uma melhor tolerância ao uso de lentes de contato como também retardar a necessidade de um transplante de córnea. O objetivo deste artigo é revisar algumas publicações relacionadas ao cross-linking corneano e à inserção do segmento de anel intraestromal, apresentando suas indicações, resultados e complicações relatadas até o momento.

  14. A cross-linked manganese porphyrin as highly efficient ...

    Indian Academy of Sciences (India)

    The catalyst is found to oxidize the alkenes selectively and it is not destroyed even 5% in ... the catalysts have been prepared by covalent approach. These materials are ... reagents under argon or obtained as dehydrated reagent from Merck's ...

  15. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  16. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  17. Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne

    2006-01-01

    The permanent set of cross-linking networks is studied by molecular dynamics. The uniaxial stress for a bead-spring polymer network is investigated as a function of strain and cross-link density history, where cross-links are introduced in unstrained and strained networks. The permanent set...

  18. Small Strain Topological Effects of Biopolymer Networks with Rigid Cross-Links

    NARCIS (Netherlands)

    Zagar, G.; Onck, P. R.; Van der Giessen, E.; Garikipati, K; Arruda, EM

    2010-01-01

    Networks of cross-linked filamentous biopolymers form topological structures characterized by L, T and X cross-link types of connectivity 2, 3 and 4, respectively. The distribution of cross-links over these three types proofs to be very important for the initial elastic shear stiffness of isotropic

  19. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  20. CrossWork: Software-assisted identification of cross-linked peptides

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Refsgaard, Jan; Peng, Li

    2011-01-01

    Work searches batches of tandem mass-spectrometric data, and identifies cross-linked and non-cross-linked peptides using a standard PC. We tested CrossWork by searching mass-spectrometric datasets of cross-linked complement factor C3 against small (1 protein) and large (1000 proteins) search spaces, and show...

  1. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    International Nuclear Information System (INIS)

    Tan, Y.M.; Lim, S.H.; Tay, B.Y.; Lee, M.W.; Thian, E.S.

    2015-01-01

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology

  2. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.M. [Department of Mechanical Engineering, National University of Singapore (Singapore); Lim, S.H.; Tay, B.Y. [Forming Technology Group, Singapore Institute of Manufacturing Technology (Singapore); Lee, M.W. [Food Innovation and Resource Centre, Singapore Polytechnic (Singapore); Thian, E.S., E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  3. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  4. Chitosan-based nanosystems and their exploited antimicrobial activity.

    Science.gov (United States)

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Cross-linked hyaluronic acid in pressure ulcer prevention.

    Science.gov (United States)

    Beniamino, P; Vadalà, M; Laurino, C

    2016-07-02

    Long-term bedridden patients are at high risk of acquring pressure ulcers (PUs). In this group of patients, prevention is necessary to cut the health costs, improve quality of life and reduce the mortality. Here, we evaluated the effectiveness of a cross-linked hyaluronic acid (HA) as plastic bulking-agent filling and remodelling the deep dermis and subcutaneous space of the skin areas exposed to the risk of necrosis. Our work hypothesis has been to inflate a sub-dermal elastic cushion, filled with a natural ECM component, with the aim to induce a stronger tissue background resistant to the ulcerative process. All the patients had an increased risk of PUs, at the sacral, ileum or heel skin. Patients were being nursed accordingly to the standard orthopaedic ward management with a pressure relieveing air mattress. The standard protocol consisted in body mobilisation every 3 hours, 24 hours a day and accurate cleaning of the skin with liquid soap and water without any towel friction and without adding any cream or lotion for the skin protection. Our filling protocol enclosed: accurate disinfection of the skin to be injected with povidone-iodine solution, followed by a local anaesthesia with 28G 13 mm needle, injecting 1.5 ml of 1% xylocaine. Then slow, deep, subcutaneous injection of cross-linked HA was performed with a 18G long needle, in order to deliver a homogeneous, soft gel layer underneath and around the whitish erythematous skin edges at risk of ulceration. Patients' tolerability of the compound and adverse events were also recorded. There were 15 patients (78-94 years old) who participated in the study. All tolerated the procedure very well and no serious side effects were declared. No skin pressure ulceration was detected in the four weeks follow-up Conclusion: We have demonstrated the safety and tolerability of a cross-linked HA subdermal injection in PUs prevention. The compound stratifies in a soft, elastic, interstitial bulk into the deep dermis, thus

  6. Physicochemical and functional properties of ultrasonic-treated tragacanth hydrogels cross-linked to lysozyme.

    Science.gov (United States)

    Koshani, Roya; Aminlari, Mahmoud

    2017-10-01

    The purpose of this study was to prepare, characterize and investigate physiochemical and functional attributes of hen egg white lysozyme (LZM) cross-linked with ultrasonic-treated tragacanth (US-treated TGC) under mild Maillard reactions conditions. FT-IR spectroscopy together with OPA assay revealed that covalent attachment of LZM with TCG's. Under optimum condition (pH=8.5, 60°C, RH=79%, 8 days), only one of the free amino group of LZM was blocked by TGC whereas under the same condition, US treated-TGC's blocked about three amino groups. The thermal stability of the LZM-TGC conjugates differed depending on the lengths of the main and branch chains. The microstructure of LZM-TGC conjugates was characterized by scanning electron microscopy. US-treated TGC-LZM exhibited improved solubility, emulsion properties, foam capacity and stability as compared with the native LZM. Since this gum is extensively used in food industry and application of LZM as a natural antimicrobial agents in different food systems is recommended and practiced in some countries, the results of this study indicates that a conjugated product of these two polymers combines different properties into one macromolecule and improves the property of each. These properties may make the conjugate an attractive food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties.

    Science.gov (United States)

    Karimi, Ali Reza; Khodadadi, Azam

    2016-10-12

    Fabrication of hydrogels based on chitosan (CS) with superb self-healing behavior and high mechanical and electrical properties has become a challenging and fascinating topic. Most of the conventional hydrogels lack these properties at the same time. Our objectives in this research were to synthesize, characterize, and evaluate the general properties of chitosan covalently cross-linked with zinc phthalocyanine tetra-aldehyde (ZnPcTa) framework. Our hope was to access an unprecedented self-healable three-dimensional (3D) nanostructure that would harvest the superior mechanical and electrical properties associated with chitosan. The properties of cross-linker such as the structure, steric effect, and rigidity of the molecule played important roles in determining the microstructure and properties of the resulting hydrogels. The tetra-functionalized phthalocyanines favor a dynamic Schiff-base linkage with chitosan to form a 3D porous nanostructure. Based on this strategy, the self-healing ability, as demonstrated by rheological recovery and macroscopic and microscopic observations, is introduced through dynamic covalent Schiff-base linkage between NH 2 groups in CS and benzaldehyde groups at cross-linker ends. The hydrogel was characterized using FT-IR, NMR, UV/vis, and rheological measurements. In addition, cryogenic scanning electron microscopy (cryo-SEM) was employed as a technique to visualize the internal morphology of the hydrogels. Study of the surface morphology of the hydrogel showed a 3D porous nanostructure with uniform morphology. Furthermore, incorporating the conductive nanofillers, such as carbon nanotubes (CNTs), into the structure can modulate the mechanical and electrical properties of the obtained hydrogels. Interestingly, these hydrogel nanocomposites proved to have very good film-forming properties, high modulus and strength, acceptable electrical conductivity, and excellent self-healing properties at neutral pH. Such properties can be finely tuned

  8. Thermally reversible cross-linked poly(ether-urethanes

    Directory of Open Access Journals (Sweden)

    V. Gaina

    2013-07-01

    Full Text Available Cross-linked poly(ether-urethanes were prepared by Diels-Alder (DA reaction of the furan-containing poly(ether-urethane to bismaleimides and showed thermal reversibility evidenced by differential scanning calorimetry and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR-FTIR. The furan-containing poly(ether-urethanes were synthesized by the polyaddition reaction of 1,6-hexamethylene diisocyanate (HMDI or 4,4'- dibenzyl diisocyanate (DBDI to poly(tetramethylene ether glycol (PTMEG having Mn = 250, 650, 1000, 1500 and 2000 and 2-[N,N-bis(2-methyl-2-hydroxyethylamino]furfuryl as chain extender by the solution prepolymer method. The molar ratio of isocyanate: PTMEG:chain extender varied from 2:1:1 to 4:1:3, which produces a molar concentration of furyl group ranging between 3.65•10–4 and 1.25•10–3 mol/g.

  9. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    Energy Technology Data Exchange (ETDEWEB)

    Hatamie, Shadie [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India); Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 7, Engineering Drive 1, Singapore 117574 (Singapore); Kale, S.N. [Department of Electronic-Science, Fergusson College, Pune 411 004 (India)], E-mail: sangeetakale2004@gmail.com

    2009-07-15

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  10. Radiation cross-linking of PTC conductive polymers

    International Nuclear Information System (INIS)

    Doljack, F.A.; Jacobs, S.M.; Taylor, J.M.; McTavish, M.S.

    1982-01-01

    An electrical device comprising a PTC conductive polymer is irradiated so that it is very highly cross-linked. A dosage of at least 50 Mrads, preferably at least 80 Mrads, especially at least 120 Mrads is used except that where the device includes planar electrodes which are present during irradiation the minimum dose is 120 Mrads. In this way, for example, it is possible to make a circuit protection device which will continue to provide effective protection even after repeated exposure to a voltage of 200 volts. A PTC protection device may be produced by moulding carbon loaded polymer round three electrodes the centre one of which is then removed to leave an aperture between the other two electrodes. (author)

  11. Study of the Conformational State of Non-Cross-Linked and Cross-Linked Poly(alkylmethyldiallylammonium chlorides) in Aqueous Solution by Fluorescence Probing

    NARCIS (Netherlands)

    Wang, Guang-Jia; Engberts, Jan B.F.N.

    The aggregation behaviour of novel non-cross-linked and cross-linked poly(alkylmethyldiallylammonium chlorides) in aqueous solutions has been investigated by fluorescence spectroscopy using pyrene as a probe. These copolymers were found to exhibit similar aggregate properties as the corresponding

  12. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  13. Synthesis and Catalytic Properties of Non-Cross-Linked and Cross-Linked Poly(alkylmethyldiallylammonium bromides) Having Decyl, Octyl, and Hexyl Side Chains

    NARCIS (Netherlands)

    Wang, G.J; Engberts, J.B.F.N.

    1995-01-01

    A family of non-cross-linked and cross-linked copolymers containing decyl, octyl, and hexyl groups as side chains ((CL)-CopolC1-10, (CL)-CopolC1-8, and (CL)-CopolC1-6, respectively) were synthesized by radical-initiated cyclocopolymerization of alkylmethyldiallylammonium bromide monomers without and

  14. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  15. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    Science.gov (United States)

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO4, N-NO2 and N-NO3.

    Science.gov (United States)

    Jóźwiak, Tomasz; Filipkowska, Urszula; Szymczyk, Paula; Kuczajowska-Zadrożna, Małgorzata; Mielcarek, Artur

    2017-11-01

    A hydrogel chitosan sorbent ionically cross-linked with sodium citrate and covalently cross-linked with epichlorohydrin was used to remove nutrients from an equimolar mixture of P-PO 4 , N-NO 2 and N-NO 3 . The scope of the study included, among other things, determination of the influence of pH on nutrient sorption effectiveness, nutrient sorption kinetics as well as determination of the maximum sorption capacity of cross-linked chitosan sorbents regarding P-PO 4 (H 2 PO 4 - , HPO 4 2- ), N-NO 2 (HNO 2 , NO 2 - ), and N-NO 3 (NO 3 - ). The effect of the type of the cross-linking agent on the affinity of the modified chitosan to each nutrient was studied as well. The kinetics of nutrient sorption on the tested chitosan sorbents was best described with the pseudo-second order model. The model of intramolecular diffusion showed that P-PO 4 , N-NO 2 and N-NO3 sorption on cross-linked hydrogel chitosan beads proceeded in two phases. The best sorbent of nutrients turned out to be chitosan cross-linked covalently with epichlorohydrin; with P-PO 4 , N-NO 2 and N-NO 3 sorption capacity reaching: 1.23, 0.94 and 0.76mmol/g, respectively (total of 2.92mmol/g). For comparison, the sorption capacity of chitosan cross-linked ionically with sodium citrate was: 0.43, 0.39 and 0.39mmol/g for P-PO 4 , N-NO 2 and N-NO 3 , respectively (total of 1.21mmol/g). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ruizhi; Zhang Jianfeng; Fan Yuwei; Xu Xiaoming [Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 137, New Orleans, LA 70119 (United States); Stoute, Diana; Lallier, Thomas, E-mail: xxu@lsuhsc.edu [Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, 1100 Florida Avenue, Box 137, New Orleans, LA 70119 (United States)

    2011-06-15

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 {sup 0}C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  18. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    Science.gov (United States)

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  19. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.

    Science.gov (United States)

    Kumaraswamy, R V; Kumari, Sarita; Choudhary, Ram Chandra; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2018-07-01

    Excessive use of agrochemicals for enhancing crop production and its protection posed environmental and health concern. Integration of advanced technology is required to realize the concept of precision agriculture by minimizing the input of pesticides and fertilizers per unit while improving the crop productivity. Notably, chitosan based biodegradable nanomaterials (NMs) including nanoparticles, nanogels and nanocomposites have eventually proceeded as a key choice in agriculture due to their inimitable properties like antimicrobial and plant growth promoting activities. The foreseeable role of chitosan based NMs in plants might be in achieving sustainable plant growth through boosting the intrinsic potential of plants. In-spite of the fact that chitosan based NMs abode immense biological activities in plants, these materials have not yet been widely adopted in agriculture due to poor understanding of their bioactivity and modes of action towards pathogenic microbes and in plant protection and growth. To expedite the anticipated claims of chitosan based NMs, it is imperative to line up all the possible bioactivities which denote for sustainable agriculture. Herein, we have highlighted, in-depth, various chitosan based NMs which have been used in plant growth and protection mainly against fungi, bacteria and viruses and have also explained their modes of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2015-07-01

    Full Text Available Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP, followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ⋅ g33 for a more typical d33 value of 400 pC/N is about 11.2 GPa−1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  1. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoqing [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany); Wu, Liming [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Sessler, Gerhard M., E-mail: g.sessler@nt.tu-darmstadt.de [Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany)

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  2. Elasticity in Physically Cross-Linked Amyloid Fibril Networks

    Science.gov (United States)

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-01

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  3. Cross-linking da cornea: protocolo padrão

    Directory of Open Access Journals (Sweden)

    Marcony R. Santhiago

    Full Text Available RESUMO O objetivo desta revisão é de determinar as indicações e eficácia da cirurgia que promove novas ligações covalentes entre as fibras de colágeno da córnea, conhecida como Cross-Linking (CXL, assim como esclarecer seus objetivos. O ceratocone é uma doença ectasica da córnea, bilateral, assimétrica, que, principalmente, cursa com encurvamento e afinamentos progressivo, e se inicia em geral na segunda década de vida. O uso primário do CXL tem sido na interrupção da progressão do Ceratocone. Apesar do conhecido encurvamento no estroma da córnea ocorrer nesses pacientes, a fisiopatologia por trás do ceratocone ainda é desconhecida e parece ser multifatorial. Pela evidencia literária disponível até o momento, o CXL da córnea esta, portanto indicado nos pacientes com doença em progressão. Concluímos que existe evidencia suficiente para afirmar que o CXL da córnea é eficaz na estabilização da doença ectásica da cornea.

  4. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    Science.gov (United States)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  5. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate.

    Science.gov (United States)

    Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir

    2014-05-01

    The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Tailoring the properties of cholecyst-derived extracellular matrix using carbodiimide cross-linking.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2009-01-01

    Modulation of properties of extracellular matrix (ECM) based scaffolds is key for their application in the clinical setting. In the present study, cross-linking was used as a tool for tailoring the properties of cholecyst-derived extracellular matrix (CEM). CEM was cross-linked with varying cross-linking concentrations of N,N-(3-dimethyl aminopropyl)-N\\'-ethyl carbodiimide (EDC) in the presence of N-hydroxysuccinimide (NHS). Shrink temperature measurements and ATR-FT-IR spectra were used to determine the degree of cross-linking. The effect of cross-linking on degradation was tested using the collagenase assay. Uniaxial tensile properties and the ability to support fibroblasts were also evaluated as a function of cross-linking. Shrink temperature increased from 59 degrees C for non-cross-linked CEM to 78 degrees C for the highest EDC cross-linking concentration, while IR peak area ratios for the free -NH(2) group at 3290 cm(-1) to that of the amide I band at 1635 cm(-1) decreased with increasing EDC cross-linking concentration. Collagenase assay demonstrated that degradation rates for CEM can be tailored. EDC concentrations 0 to 0.0033 mmol\\/mg CEM were the cross-linking concentration range in which CEM showed varied susceptibility to collagenase degradation. Furthermore, cross-linking concentrations up to 0.1 mmol EDC\\/mg CEM did not have statistically significant effect on the uniaxial tensile strength, as well as morphology, viability and proliferation of fibroblasts on CEM. In conclusion, the degradation rates of CEM can be tailored using EDC-cross-linking, while maintaining the mechanical properties and the ability of CEM to support cells.

  7. The theory and art of corneal cross-linking.

    Science.gov (United States)

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  8. The theory and art of corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Rebecca McQuaid

    2013-01-01

    Full Text Available Before the discovery of corneal cross-linking (CXL, patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  9. Protein Oxidation Levels After Different Corneal Collagen Cross-Linking Methods.

    Science.gov (United States)

    Turkcu, Ummuhani Ozel; Yuksel, Nilay; Novruzlu, Sahin; Yalinbas, Duygu; Bilgihan, Ayse; Bilgihan, Kamil

    2016-03-01

    To evaluate advanced oxidation protein products (AOPP) levels, superoxide dismutase (SOD) enzyme activity, and total sulfhydryl (TSH) levels in rabbit corneas after different corneal collagen cross-linking (CXL) methods. Eighteen eyes of 9 adult New Zealand rabbits were divided into 3 groups of 6 eyes. The standard CXL group was continuously exposed to UV-A at a power setting of 3 mW/cm for 30 minutes. The accelerated CXL (A-CXL) group was continuously exposed to UV-A at a power setting of 30 mW/cm for 3 minutes. The pulse light-accelerated CXL (PLA-CXL) group received UV-A at a power setting of 30 mW/cm for 6 minutes of pulsed exposure (1 second on, 1 second off). Corneas were obtained after 1 hour of UV-A exposure, and 360-degree keratotomy was performed. SOD enzyme activity, AOPP, and TSH levels were measured in the corneal tissues. Compared with the standard CXL and A-CXL groups (133.2 ± 8.5 and 140.2 ± 6.2 μmol/mg, respectively), AOPP levels were found to be significantly increased in the PLA-CXL group (230.7 ± 30.2 μmol/mg) (P = 0.005 and 0.009, respectively). SOD enzyme activities and TSH levels did not differ between the groups (P = 0.167 and 0.187, respectively). CXL creates covalent bonds between collagen fibers because of reactive oxygen species. This means that more oxygen concentration during the CXL method will produce more reactive oxygen species and, thereby, AOPP. This means that in which CXL method occurs in more oxygen concentration that will produce more reactive oxygen species and thereby AOPP. This study demonstrated that PLA-CXL results in more AOPP formation than did standard CXL and A-CXL.

  10. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates

    Energy Technology Data Exchange (ETDEWEB)

    Fuguet, Elisabet [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands)], E-mail: eli.fuguet@gmail.com; Platerink, Chris van [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands); Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands); Janssen, Hans-Gerd [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands); van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2007-11-26

    Encapsulates having shells of cross-linked mixtures of proteins and polysaccharides are widely used in the food and pharmaceutical industry for controlled release of actives and flavour compounds. In order to be able to predict the behaviour and the release characteristics of the microcapsules, a better understanding of the nature and extent of the cross-linking reaction is needed. Several analytical techniques were applied for the characterisation of glutardialdehyde (GDA) cross-linked encapsulates made of gelatine and gum arabic. To allow the use of sensitive, high-resolution methods such as chromatography and mass spectrometry, the sample first had to be hydrolysed. In this way, a mixture of amino acids, small peptides and the cross-link moieties was obtained. High-resolution liquid chromatography coupled to high-resolution mass spectrometry (HPLC-MS) was applied to detect possible cross-link markers through a comparison of HPLC-MS mass-chromatograms obtained for cross-linked and non-cross-linked coacervates. HPLC-MS/MS was used to identify the species responsible for the differences. Cross-linking occurred between GDA molecules and lysine and hydroxylysine {epsilon}-amino groups, and up to eight cross-link products of different nature could be identified. They included pyridinium ions and Schiff bases, and also unreacted GDA condensation products. Next, based on the insight gained in the possible chemical structures present in the cross-link markers, methods for selective labelling of these functionalities were employed to allow easier detection of related reaction products. Both liquid chromatography (LC) and gas chromatography (GC) were used in these experiments. Unfortunately, these approaches failed to detect new cross-link markers, most likely as a result of the low levels at which these are present.

  11. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates

    International Nuclear Information System (INIS)

    Fuguet, Elisabet; Platerink, Chris van; Janssen, Hans-Gerd

    2007-01-01

    Encapsulates having shells of cross-linked mixtures of proteins and polysaccharides are widely used in the food and pharmaceutical industry for controlled release of actives and flavour compounds. In order to be able to predict the behaviour and the release characteristics of the microcapsules, a better understanding of the nature and extent of the cross-linking reaction is needed. Several analytical techniques were applied for the characterisation of glutardialdehyde (GDA) cross-linked encapsulates made of gelatine and gum arabic. To allow the use of sensitive, high-resolution methods such as chromatography and mass spectrometry, the sample first had to be hydrolysed. In this way, a mixture of amino acids, small peptides and the cross-link moieties was obtained. High-resolution liquid chromatography coupled to high-resolution mass spectrometry (HPLC-MS) was applied to detect possible cross-link markers through a comparison of HPLC-MS mass-chromatograms obtained for cross-linked and non-cross-linked coacervates. HPLC-MS/MS was used to identify the species responsible for the differences. Cross-linking occurred between GDA molecules and lysine and hydroxylysine ε-amino groups, and up to eight cross-link products of different nature could be identified. They included pyridinium ions and Schiff bases, and also unreacted GDA condensation products. Next, based on the insight gained in the possible chemical structures present in the cross-link markers, methods for selective labelling of these functionalities were employed to allow easier detection of related reaction products. Both liquid chromatography (LC) and gas chromatography (GC) were used in these experiments. Unfortunately, these approaches failed to detect new cross-link markers, most likely as a result of the low levels at which these are present

  12. Investigation of anisotropic thermal transport in cross-linked polymers

    Science.gov (United States)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  13. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.

    2010-05-25

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.

  14. Cell protein cross-linking by erbstatin and related compounds | Center for Cancer Research

    Science.gov (United States)

    The scheme depicts a possible mechanism of cross-linking by erbstatin and related analogues. A mechanism of action is proposed which involves initial oxidation to reactive quinone intermediates that subsequently cross-link protein nucleophiles via multiple 1,4-Michael-type additions. Similar alkylation of protein by protein-tyrosine kinase inhibitors, such as herbimycin A, has

  15. Carboxymethyl starch cross-linked by electron beam radiation in presence of acrylic acid sensitizer

    International Nuclear Information System (INIS)

    Doan Binh; Nguyen Thanh Duoc; Pham Thi Thu Hong

    2013-01-01

    Carboxymethyl starch (CMS) can be cross-linked by electron beam radiation to form a biocompatible and environment-friendly hydrogel at a high absorbed dose and a condensed CMS concentration. Acrylic acid (AAc) can be used as a sensitizer in order to reduce the absorbed doses to an acceptable certain level. At an absorbed dose of 3-4 kGy, the gel content of crosslinked CMS can be obtained about 50% with 5% (w/w) AAc concentration used. The compressive strength of CMS samples increased with increasing their cross-linked densities due to raising absorbed doses. The swelling ratio of cross-linked CMS was also attainable at a maximum of 50 times in the distilled water. The enzymatic degradation of cross-linked CMS was carried out in acetate buffer pH 4.6 with 0.1% α-amylase enzymatic solution incubated at 40℃ for 6 h. The crosslinked CMS samples were degraded slower than uncrosslinked CMS ones. The results indicated that the highly cross-linked CMS was almost fully degradable when the enzymatic hydrolysis was performed during 6 h. The FT IR spectra of cross-linked CMS in the presence of AAc were examined to observe the carboxyl group of AAc in the structure of cross-linked CMS. The hydrophilic of cross-linked CMS surface was determined by a contact-angle analysis. (authors)

  16. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    . Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes...

  17. SYNTHESIS AND CATALYTIC PROPERTIES OF CROSS-LINKED HYDROPHOBICALLY ASSOCIATING POLY(ALKYLMETHYLDIALLYLAMMONIUM BROMIDES)

    NARCIS (Netherlands)

    WANG, GJ; ENGBERTS, JBFN

    1994-01-01

    Cross-linked, hydrophobically associating homo- and copolymers were synthesized by free-radical cyclo(co)polymerization of alkylmethyldiallylammonium bromide monomers with a small amount of N,N'-methylenebisacrylamide in aqueous solution using ammonium persulfate as the initiator. The cross-linked

  18. Models for stiffening in cross-linked biopolymer networks : A comparative study

    NARCIS (Netherlands)

    van Dillen, T.; Onck, P. R.; Van der Giessen, E.

    In a recent publication, we studied the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear [Onck, P.R., Koeman, T., Van Dillen, T., Van der Giessen, E., 2005. Alternative explanation of stiffening in cross-linked

  19. Rheological properties of dispersions of enzymatically cross-linked apo-α-lactalbumin

    NARCIS (Netherlands)

    Saricay, Yunus; Wierenga, Peter A.; Vries, de Renko

    2016-01-01

    The enzymatic cross-linking of apo-α-lactalbumin (α-LA) with horseradish peroxidase (HRP) leads to the formation of hydrophilic protein aggregates with controlled size and architecture. We explore the rheological properties of dispersions of these HRP-cross-linked α-LA aggregates with a

  20. SECONDARY CYTOTOXICITY OF CROSS-LINKED DERMAL SHEEP COLLAGENS DURING REPEATED EXPOSURE TO HUMAN FIBROBLASTS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DAMINK, LHHO; DIJKSTRA, PJ; FEIJEN, J; NIEUWENHUIS, P

    1992-01-01

    We investigated commercially available dermal sheep collagen either cross-linked with hexamethylenedlisocyanate, or cross-linked with glutaraldehyde. In previous in vitro studies we could discriminate primary, i.e. extractable, and secondary cytotoxicity, due to cell-biomaterial interactions, i.e.

  1. Computational investigation of kinetics of cross-linking reactions in proteins: importance in structure prediction.

    Science.gov (United States)

    Bandyopadhyay, Pradipta; Kuntz, Irwin D

    2009-01-01

    The determination of protein structure using distance constraints is a new and promising field of study. One implementation involves attaching residues of a protein using a cross-linking agent, followed by protease digestion, analysis of the resulting peptides by mass spectroscopy, and finally sequence threading to detect the protein folds. In the present work, we carry out computational modeling of the kinetics of cross-linking reactions in proteins using the master equation approach. The rate constants of the cross-linking reactions are estimated using the pKas and the solvent-accessible surface areas of the residues involved. This model is tested with fibroblast growth factor (FGF) and cytochrome C. It is consistent with the initial experimental rate data for individual lysine residues for cytochrome C. Our model captures all observed cross-links for FGF and almost 90% of the observed cross-links for cytochrome C, although it also predicts cross-links that were not observed experimentally (false positives). However, the analysis of the false positive results is complicated by the fact that experimental detection of cross-links can be difficult and may depend on specific experimental conditions such as pH, ionic strength. Receiver operator characteristic plots showed that our model does a good job in predicting the observed cross-links. Molecular dynamics simulations showed that for cytochrome C, in general, the two lysines come closer for the observed cross-links as compared to the false positive ones. For FGF, no such clear pattern exists. The kinetic model and MD simulation can be used to study proposed cross-linking protocols.

  2. PH-Sensitive Nanogels Synthesised by Radiation-Induced Cross-Linking of Hydrogen-Bonded Interpolymer Complexes in Aqueous Solution

    International Nuclear Information System (INIS)

    Ulanski, P.; Kadłubowski, S.; Henke, A.; Olejnik, A.K.; Rokita, B.; Wach, R.; Rosiak, J.M.

    2010-01-01

    Nanogels, i.e., internally cross-linked hydrophilic polymeric particles of sub-micron sizes, gained much interest over the last years due to their possible application as components of advanced type of medicines, like drug carriers. It is expected that they can facilitate distribution and delivery of different types of biologically active substances (including proteins, peptides and oligonucleotides) in a controlled way within the human body. Nanogels and their bigger analogues – microgels, are mainly synthesised through free-radical cross-linking polymerization of monomers. This synthetic routine can be carried out in solution but more often emulsion techniques are preferred (mini- or microemulsion) due to easier size control and exclusion of the macrogelation process. Additionally, surfactant-free emulsion polymerization (SFEP) is the method of choice for the preparation of temperature-sensitive particles, mainly based on poly(N-isopropylacrylamide).Nanogels were also successfully prepared by intramolecular cross-linking of single macromolecules. More recently, covalent stabilization was utilized to obtain the self-assembled structures like micelles of amphiphilic block copolymers, held by relatively weak physical interactions. Due to low stability of these polymolecular systems against dilution or temperature changes, different chemistry-based strategies to turn them into permanent nanopaticles were proposed in the literature (e.g., independent stabilization of a core or a shell of the micelles)

  3. PH-Sensitive Nanogels Synthesised by Radiation-Induced Cross-Linking of Hydrogen-Bonded Interpolymer Complexes in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ulanski, P.; Kadłubowski, S.; Henke, A.; Olejnik, A. K.; Rokita, B.; Wach, R.; Rosiak, J.M., E-mail: slawekka@mitr.p.lodz.pl [Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland)

    2010-07-01

    Nanogels, i.e., internally cross-linked hydrophilic polymeric particles of sub-micron sizes, gained much interest over the last years due to their possible application as components of advanced type of medicines, like drug carriers. It is expected that they can facilitate distribution and delivery of different types of biologically active substances (including proteins, peptides and oligonucleotides) in a controlled way within the human body. Nanogels and their bigger analogues – microgels, are mainly synthesised through free-radical cross-linking polymerization of monomers. This synthetic routine can be carried out in solution but more often emulsion techniques are preferred (mini- or microemulsion) due to easier size control and exclusion of the macrogelation process. Additionally, surfactant-free emulsion polymerization (SFEP) is the method of choice for the preparation of temperature-sensitive particles, mainly based on poly(N-isopropylacrylamide).Nanogels were also successfully prepared by intramolecular cross-linking of single macromolecules. More recently, covalent stabilization was utilized to obtain the self-assembled structures like micelles of amphiphilic block copolymers, held by relatively weak physical interactions. Due to low stability of these polymolecular systems against dilution or temperature changes, different chemistry-based strategies to turn them into permanent nanopaticles were proposed in the literature (e.g., independent stabilization of a core or a shell of the micelles)

  4. A biomimetic porous hydrogel of gelatin and glycosaminoglycans cross-linked with transglutaminase and its application in the culture of hepatocytes

    International Nuclear Information System (INIS)

    De Colli, M; Massimi, M; Barbetta, A; Di Rosario, B L; Nardecchia, S; Dentini, M; Conti Devirgiliis, L

    2012-01-01

    The development of blended gelatin and glycosaminoglycan (GAG) scaffolds can potentially be used in many soft tissue engineering applications since these scaffolds mimic the structure and biological function of native extracellular matrix (ECM). In this study, we were able to obtain a gelatin–GAG scaffold by using a concentrated emulsion templating technique known as high internal phase emulsion (HIPE), in which a prevailing in volume organic phase is dispersed in the form of discrete droplets inside an aqueous solution of three biopolymers represented by gelatin, hyaluronic acid (HA) and chondroitin sulfate (CS) in the presence of a suitable surfactant. In order to preserve the bioactive potential of the biopolymers employed, the cross-linking procedure involved the use of transglutaminase (MTGase) that catalyzes the formation of covalent N-ε-(γ-glutamyl) lysine amide bonds. Since neither HA nor CS possess the necessary primary amino groups toward which MTGase is active, they were functionalized with the dipeptide glycine-lysine (GK). In this way the introduction of foreign cross-linking bridging units with an unpredictable biocompatibility was avoided. These enzymatic cross-linked gelatin–GAG scaffolds were tested in the culture of primary rat and C3A hepatocytes. Results underlined the good performance of this novel support in maintaining and promoting hepatocyte functions in vitro. (paper)

  5. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    Science.gov (United States)

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  6. Ligand-Induced Cross-Linking of Z-Elastin-like Polypeptide-Functionalized E2 Protein Nanoparticles for Enhanced Affinity Precipitation of Antibodies.

    Science.gov (United States)

    Swartz, Andrew R; Sun, Qing; Chen, Wilfred

    2017-05-08

    Affinity precipitation is an ideal alternative to chromatography for antibody purification because it combines the high selectivity of an affinity ligand with the operational benefits of precipitation. However, the widespread use of elastin-like polypeptide (ELP) capture scaffolds for antibody purification has been hindered by the high salt concentrations and temperatures necessary for efficient ELP aggregation. In this paper, we employed a tandem approach to enhance ELP aggregation by enlarging the dimension of the capturing scaffold and by creating IgG-triggered scaffold cross-linking. This was accomplished by covalently conjugating the Z-domain-ELP (Z-ELP) capturing scaffold to a 25 nm diameter E2 protein nanocage using Sortase A ligation. We demonstrated the isothermal recovery of IgG in the virtual absence of salt due to the significantly increased scaffold dimension and cross-linking from multivalent IgG-E2 interactions. Because IgG cross-linking is reversible at low pH, it may be feasible to achieve a high yielding IgG purification by isothermal phase separation using a simple pH trigger.

  7. Corneal changes following collagen cross linking and simultaneous topography guided photoablation with collagen cross linking for keratoconus

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2014-01-01

    Full Text Available Purpose: To compare the outcome of Collagen cross-linking (CXL with that following topography-guided customized ablation treatment (T-CAT with simultaneous CXL in eyes with progressive keratoconus. Materials and Methods: This was a prospective, non-randomized single centre study of 66 eyes with progressive keratoconus. Of these, 40 eyes underwent CXL and 26 eyes underwent T-CAT + CXL. The refractive, topographic, tomographic and aberrometric changes measured at baseline, 1, 3 and 6 months post-operatively were compared between both groups. Results: After a mean follow-up of 7.7 ± 1.3 months, the mean retinoscopic cylinder decreased by 1.02 ± 3.16 D in the CXL group ( P = 0.1 and 2.87 ± 3.22 D in the T-CAT + CXL group ( P = 0.04. The Best corrected visual acuity increased by 2 lines or more in 10% of eyes in the CXL group and in 23.3% of eyes in the T-CAT + CXL group. The mean steepest-K reduced by 0.40 ± 3.71 D ( P = 0.77 in the CXL group and by 2.91 ± 2.01D ( P = 0.03 in the T-CAT + CXL group. The sag factor and surface asymmetry index showed no significant change in the CXL group but reduced by 3.59 ± 5.94 D ( P = 0.01 and 0.72 ± 1.18 ( P = 0.02 respectively in the T-CAT + CXL group. There was a significant increase in the highest posterior corneal elevation in both groups (9.57 ± 14.93 μ in the CXL group and 7.85 ± 9.25 μ in the T-CAT + CXL group, P ≤ 0.001 for both. There was significantly greater reduction of mean coma ( P < 0.001 and mean higher-order aberrations ( P = 0.01 following T-CAT + CXL compared to CXL. Conclusions: CAT + CXL is an effective approach to confer biomechanical stability and to improve the corneal contour in eyes with keratoconus and results in better refractive, topographic and aberrometric outcomes than CXL alone.

  8. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water.

    Science.gov (United States)

    Sun, Yongjun; Zhu, Chengyu; Sun, Wenquan; Xu, Yanhua; Xiao, Xuefeng; Zheng, Huaili; Wu, Huifang; Liu, Cuiyun

    2017-05-15

    In this work, a highly efficient and environmentally friendly chitosan-based graft flocculant, namely, acrylamide- and dimethyl diallyl ammonium chloride-grafted chitosan [CS-g-P(AM-DMDAAC)], was prepared successfully through plasma initiation. FTIR results confirmed the successful polymerization of CS-g-P(AM-DMDAAC) and P(AM-DMDAAC). P(AM-DMDAAC) was the copolymer of acrylamide- and dimethyl diallyl ammonium chloride. SEM results revealed that a densely cross-linked network structure formed on the surface. XRD results verified that the ordered crystal structure of chitosan in CS-g-P(AM-DMDAAC) was changed into an amorphous structure after plasma-induced polymerization. The flocculation results of low-algal-turbidity water further showed the optimal flocculation efficiency of turbidity removal rate, COD removal rate, and Chl-a removal rate were 99.02%, 96.11%, and 92.20%, respectively. The flocculation efficiency of CS-g-P(AM-DMDAAC) were significantly higher than those obtained by cationic polyacrylamide (CPAM) and Polymeric aluminum and iron (PAFC). This work provided a valuable basis for the design of eco-friendly naturally modified polymeric flocculants to enhance the flocculation of low-algal-turbidity water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    International Nuclear Information System (INIS)

    Sarika, P.R.; Cinthya, Kuriakose; Jayakrishnan, A.; Anilkumar, P.R.; James, Nirmala Rachel

    2014-01-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture

  10. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Cinthya, Kuriakose [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Jayakrishnan, A. [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036 (India); Anilkumar, P.R., E-mail: anilkumarpr@sctimst.ac.in [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); James, Nirmala Rachel, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture.

  11. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    Science.gov (United States)

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  12. On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry

    Science.gov (United States)

    Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri

    2018-02-01

    Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.

  13. Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking.

    Science.gov (United States)

    Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon

    2017-03-29

    uptake on account of protein spreading and can be utilized in conjunction with covalent cross-linking strategies to prepare well-coated protein adlayers for improved surface passivation.

  14. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking.

    Science.gov (United States)

    Chang, Chungyu; Amer, Brendan R; Osipiuk, Jerzy; McConnell, Scott A; Huang, I-Hsiu; Hsieh, Van; Fu, Janine; Nguyen, Hong H; Muroski, John; Flores, Erika; Ogorzalek Loo, Rachel R; Loo, Joseph A; Putkey, John A; Joachimiak, Andrzej; Das, Asis; Clubb, Robert T; Ton-That, Hung

    2018-06-12

    Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA 2M ), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA 2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA 2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA 2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.

  15. A Comparative Study of the Characteristics of Cross-Linked, Oxidized and Dual-Modified Rice Starches

    OpenAIRE

    Xiao, Hua-Xi; Lin, Qin-Lu; Liu, Gao-Qiang; Yu, Feng-Xiang

    2012-01-01

    Rice starch was cross-linked with epichlorohydrin (0.3%, w/w, on a dry starch basis) and oxidized with sodium hypochlorite (2.5% w/w), respectively. Two dual-modified rice starch samples (oxidized cross-linked rice starch and cross-linked oxidized rice starch) were obtained by the oxidation of cross-linked rice starch and the cross-linking of oxidized rice starch at the same level of reagents. The physicochemical properties of native rice starch, cross-linked rice starch and oxidized rice sta...

  16. Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan, 33302 Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302 Taiwan (China); Li, Ya-Ting [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan (China)

    2010-06-15

    The delivery of intact sheet transplants to the subretinal space can prevent cell loss that is generally associated with the injection of cell suspensions or cell aggregates. The aim of this study was to develop chemically modified gelatin matrices that enhance the delivery efficiency and analyze whether the gelatin membranes cross-linked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) can be considered as potential carriers for retinal sheets. The characteristics of EDC cross-linked gelatin membranes were determined by mechanical and in vitro degradation tests, melting point measurements, cell proliferation assays, cytokine expression analyses, and tissue delivery studies. Gelatin membranes without cross-linking and glutaraldehyde cross-linked gelatin samples were used for comparison. Results of this study indicated that introduction of cross-links is capable of rendering the gelatin network more stable against mechanical stresses and deformations as well as rapid hydrolysis during intraocular delivery of delicate tissue sheets. In comparison with the glutaraldehyde treated samples, the EDC cross-linked gelatin membranes showed a better degradation profile and a relatively higher cytocompatibility. In addition, after EDC cross-linking, the gelatin matrices having an acceptable melting point could be used for the fabrication of a sandwich-like carrier with a high transfer and encapsulation efficiency. These findings suggest that the cross-linking agent type gives an influence on delivery functionality of gelatin membranes. In summary, the EDC cross-linked gelatin is an ideal candidate for use as a carrier material in retinal sheet delivery applications.

  17. Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions.

    Science.gov (United States)

    Khare, Ketan S; Khabaz, Fardin; Khare, Rajesh

    2014-05-14

    We have used amido-amine functionalized carbon nanotubes (CNTs) that form covalent bonds with cross-linked epoxy matrices to elucidate the role of the matrix-filler interphase in the enhancement of mechanical and thermal properties in these nanocomposites. For the base case of nanocomposites of cross-linked epoxy and pristine single-walled CNTs, our previous work (Khare, K. S.; Khare, R. J. Phys. Chem. B 2013, 117, 7444-7454) has shown that weak matrix-filler interactions cause the interphase region in the nanocomposite to be more compressible. Furthermore, because of the weak matrix-filler interactions, the nanocomposite containing dispersed pristine CNTs has a glass transition temperature (Tg) that is ∼66 K lower than the neat polymer. In this work, we demonstrate that in spite of the presence of stiff CNTs in the nanocomposite, the Young's modulus of the nanocomposite containing dispersed pristine CNTs is virtually unchanged compared to the neat cross-linked epoxy. This observation suggests that the compressibility of the matrix-filler interphase interferes with the ability of the CNTs to reinforce the matrix. Furthermore, when the compressibility of the interphase is reduced by the use of amido-amine functionalized CNTs, the mechanical reinforcement due to the filler is more effective, resulting in a ∼50% increase in the Young's modulus compared to the neat cross-linked epoxy. Correspondingly, the functionalization of the CNTs also led to a recovery in the Tg making it effectively the same as the neat polymer and also resulted in a ∼12% increase in the thermal conductivity of the nanocomposite containing functionalized CNTs compared to that containing pristine CNTs. These results demonstrate that the functionalization of the CNTs facilitates the transfer of both mechanical load and thermal energy across the matrix-filler interface.

  18. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    Science.gov (United States)

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  19. Characterization of solid UV cross-linked PEGDA for biological applications

    KAUST Repository

    Castro, David

    2013-10-20

    This paper reports on solid UV cross-linked Poly(ethylene)-glycol-diacrylate (PEGDA) as a material for microfluidic devices for biological applications. We have evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell viability and attachment on cross-linked PEGDA surfaces for cell culture applications, and 2) by determining if cross-linked PEGDA inhibits the polymerase chain reaction (PCR) processes for on-chip PCR. Through these studies a correlation has been found between degree of curing and cell viability, attachment, as well as on PCR outcome.

  20. Cross-linking of rubber in the presence of multi-functional cross-linking aids via thermoreversible Diels-Alder chemistry

    NARCIS (Netherlands)

    Polgar, L. M.; Fortunato, G.; Araya-Hermosilla, R.; van Duin, M.; Pucci, A.; Picchioni, F.

    Furan-functionalized polyketone (PK-FU) was added to a furan-functionalized ethylene-propylene rubber (EPM-FU). The mixture was subsequently cross-linked with a bismaleimide through Diels-Alder chemistry in order to improve the mechanical properties of the rubber. Infrared spectroscopy showed the

  1. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo

    DEFF Research Database (Denmark)

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H

    2014-01-01

    when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between...

  2. Stabilized Sulfonated Aromatic Polymers by in situ Solvothermal Cross-Linking

    Energy Technology Data Exchange (ETDEWEB)

    Di Vona, Maria Luisa, E-mail: divona@uniroma2.it; Sgreccia, Emanuela [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome (Italy); Narducci, Riccardo; Pasquini, Luca [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome (Italy); MAtériaux Divisés, Interfaces, Réactivité, ELectrochimie (MADIREL – UMR 7246), Aix Marseille Université, Marseille (France); Hou, Hongying [Faculty of Material and Engineering, Kunming University of Science and Technology, Kunming (China); Knauth, Philippe [MAtériaux Divisés, Interfaces, Réactivité, ELectrochimie (MADIREL – UMR 7246), Aix Marseille Université, Marseille (France)

    2014-10-10

    The cross-link reaction via sulfone bridges of sulfonated polyether ether ketone (SPEEK) by thermal treatment at 180°C in presence of dimethylsulfoxide is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking, and hydration number. The memory effect, which is the membrane ability to “remember” the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110°C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number (λ) of 73.

  3. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    DEFF Research Database (Denmark)

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter

    2005-01-01

    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on th......One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross......-linking on the rheological behaviour of low density polyethylene was investigated by using a combination of creep test and differential scanning calorimeter (DSC) in isotherm condition. The used peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out at 150,160, and 170 degrees C...

  4. Characterization of solid UV cross-linked PEGDA for biological applications

    KAUST Repository

    Castro, David; Ingram, Patrick; Kodzius, Rimantas; Conchouso Gonzalez, David; Yoon, Euisik; Foulds, Ian G.

    2013-01-01

    This paper reports on solid UV cross-linked Poly(ethylene)-glycol-diacrylate (PEGDA) as a material for microfluidic devices for biological applications. We have evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell

  5. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Directory of Open Access Journals (Sweden)

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  6. Development of extremely low wear cross-link polyethylene for 30 years

    International Nuclear Information System (INIS)

    Oonishi, Hironobu; Fujita, Hiroshi; Kim, Seok-Cheol; Ito, Shigeru; Masuda, Shingo; Clarke, I.C.

    2003-01-01

    In this report we present our long-term developmental and clinical results with both highly cross-linked and extensively cross-linked polyethylene materials. Beginning in 1970s, we performed wear screening studies on ultra high molecular weight polyethylene (UHMWPE) (GUR412) sterilized by gamma-irradiation in air (range 0 to 10,000 kGy). From these scientific studies the 1,000 kGy dose (100 Mrad) appeared optimal, and so we began clinical use in 1971, and that continued into 1978. The radiographic wear-rates in patients with 1,000 kGy sockets, assessed by radiography, appeared 6-fold reduced compared to our standard UHMWPE sockets. Note also that we had not used any post-sterilization heat treatment for these pioneering extensively cross-linked polyethylene sockets. With clinical use now over 30 years, it was also clear that there was no adverse oxidation created by any free radicals present in our extensively cross-linked polyethylene sockets. With these encouraging clinical results, we further studied laboratory wear results with the modern UHMWPE resins, using the irradiation doses 1,000, 5,000, 10,000 and 15,000 kGy and with both saline and serum lubricants in hip simulators. These more recent studies demonstrated that the wear in extensively cross-linked polyethylene sockets was undetectable, less even than the measurement errors in the simulator techniques. It was unfortunate that the physical properties of such extensively cross-linked polyethylene sockets did not meet the current International Organization for Standardization (ISO) and American Society for Testing and Materials (ASTM) standards. Thus, despite the excellent wear performance of these materials, we decided to investigate also the properties of the 60 kGy irradiated UHMWPE. The polyethylene sheet (GUR1050) was first irradiated with 35 kGy under N2 and then heat treated to remove free radicals. The socket liners were then machined to shape and resterilized with 25 kGy under N2 gas. The

  7. UV cross-linking of polypeptides associated with 3'-terminal exons

    International Nuclear Information System (INIS)

    Stolow, D.T.; Berget, S.M.

    1990-01-01

    Association of nuclear proteins with chimeric vertebrate precursor RNAs containing both polyadenylation signals and an intron was examined by UV cross-linking. One major difference in cross-linking pattern was observed between this chimeric precursor RNA and precursors containing only polyadenylation or splicing signals. The heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptide C cross-linked strongly to sequences downstream of the A addition site in polyadenylation precursor RNA containing only the polyadenylation signal from the simian virus 40 (SV40) late transcription unit. In contrast, the hnRNP C polypeptide cross-linked to chimeric RNA containing the same SV40 late poly(A) cassette very poorly, at a level less than 5% of that observed with the precursor RNA containing just the poly(A) site. Observation that cross-linking of the hnRNP C polypeptide to elements within the SV40 late poly(A) site was altered by the presence of an upstream intron suggests differences in the way nuclear factors associate with poly(A) sites in the presence and absence of an upstream intron. Cross-linking of C polypeptide to chimeric RNA increased with RNAs mutated for splicing or polyadenylation consensus sequences and under reaction conditions (high magnesium) that inhibited polyadenylation. Furthermore, cross-linking of hnRNP C polypeptide to precursors containing just the SV40 late poly(A) site was eliminated in the presence of competing poly(U); polyadenylation, however, was unaffected. Correlation of loss of activity with high levels of hnRNP C polypeptide cross-linking raises questions about the specificity of the interaction between the hnRNP C polypeptide and polyadenylation precursor RNAs in vitro

  8. Competition between dewetting and cross-linking in poly(N-vinylpyrrolidone)/polystyrene bilayer films.

    Science.gov (United States)

    Telford, Andrew M; Thickett, Stuart C; James, Michael; Neto, Chiara

    2011-12-06

    We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems. © 2011 American Chemical Society

  9. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    OpenAIRE

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.; Wang, Yinsheng; Gates, Kent S.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3?ddR5p) at the 3?-terminus of the strand break. Interestingly, this strand scission process leaves an electr...

  10. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    Science.gov (United States)

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  11. Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements.

    Science.gov (United States)

    Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N

    2016-04-01

    The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.

  12. Novel thermoplastic vulcanizates (TPVs based on silicone rubber and polyamide exploring peroxide cross-linking

    Directory of Open Access Journals (Sweden)

    K. Naskar

    2014-04-01

    Full Text Available Novel thermoplastic vulcanizates (TPVs based on silicone rubber (PDMS and polyamide (PA12 have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP, 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO and cumyl hydroperoxide (CHP were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E' and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.

  13. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application

    Science.gov (United States)

    Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen

    2018-01-01

    Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.

  14. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA.

    Science.gov (United States)

    Yang, Zhiyu; Price, Nathan E; Johnson, Kevin M; Wang, Yinsheng; Gates, Kent S

    2017-06-20

    Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3'ddR5p) at the 3'-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3'ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3'ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    Science.gov (United States)

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (priboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  16. Role of special cross-links in structure formation of bacterial DNA polymer

    Science.gov (United States)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim

    2018-01-01

    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  17. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    Energy Technology Data Exchange (ETDEWEB)

    He, Kongduo [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Liu, Yang [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China); Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Liang, Rongqing [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China); Ou, Qiongrong, E-mail: qrou@fudan.edu.cn [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China)

    2016-09-30

    Highlights: • Mixed acetylene and Ar plasma treatment makes the organic film surface cross-linked. • The plasma treatment for 30 s does not affect the performance of OLEDs. • Cross-linking surface can resist rinsing and corrosion of organic solvent. • The surface morphology is nearly unchanged after plasma treatment. • The plasma cross-linking method can realize solution processed multilayer OLEDs. - Abstract: Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  18. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    Science.gov (United States)

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  19. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels

    International Nuclear Information System (INIS)

    Jejurikar, Aparna; Lawrie, Gwen; Groendahl, Lisbeth; Martin, Darren

    2011-01-01

    The properties of alginate films modified using two cross-linker ions (Ca 2+ and Ba 2+ ), comparing two separate cross-linking techniques (the traditional immersion (IM) method and a new strategy in a pressure-assisted diffusion (PD) method), are evaluated. This was achieved through measuring metal ion content, water uptake and film stability in an ionic solution ([Ca 2+ ] = 2 mM). Characterization of the internal structure and mechanical properties of hydrated films were established by cryogenic scanning electron microscopy and tensile testing, respectively. It was found that gels formed by the PD technique possessed greater stability and did not exhibit any delamination after 21 day immersion as compared to gels formed by the IM technique. The Ba 2+ cross-linked gels possessed significantly higher cross-linking density as reflected in lower water content, a more dense internal structure and higher Young's modulus compared to Ca 2+ cross-linked gels. For the Ca 2+ cross-linked gels, a large improvement in the mechanical properties was observed in gels produced by the PD technique and this was attributed to thicker pore walls observed within the hydrogel structure. In contrast, for the Ba 2+ cross-linked gels, the PD technique resulted in gels that had lower tensile strength and strain energy density and this was attributed to phase separation and larger macropores in this gel.

  20. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA

    Science.gov (United States)

    Yang, Zhiyu; Price, Nathan E.; Johnson, Kevin M.

    2017-01-01

    Abstract Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems. PMID:28531327

  1. The conformational stability and flexibility of insulin with an additional intramolecular cross-link

    International Nuclear Information System (INIS)

    Brems, D.N.; Brown, P.L.; Nakagawa, S.H.; Tager, H.S.

    1991-01-01

    The conformational stability and flexibility of insulin containing a cross-link between the alpha-amino group of the A-chain to the epsilon-amino group of Lys29 of the B-chain was examined. The cross-link varied in length from 2 to 12 carbon atoms. The conformational stability was determined by guanidine hydrochloride-induced equilibrium denaturation and flexibility was assessed by H2O/D2O amide exchange. The cross-link has substantial effects on both conformational stability and flexibility which depend on its length. In general, the addition of a cross-link enhances conformational stability and decreases flexibility. The optimal length for enhanced stability and decreased flexibility was the 6-carbon link. For the 6-carbon link the Gibbs free energy of unfolding was 8.0 kcal/mol compared to 4.5 kcal/mol for insulin, and the amide exchange rate decreased by at least 3-fold. A very short cross-link (i.e. the 2-carbon link) caused conformational strain that was detectable by a lack of stabilization in the Gibbs free energy of unfolding and enhancement in the amide exchange rate compared to insulin. The effect of the cross-link length on insulin hydrodynamic properties is discussed relative to previously obtained receptor binding results

  2. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  3. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    International Nuclear Information System (INIS)

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M.; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-01-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10 −2 mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  4. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    Science.gov (United States)

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  5. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Yingchao [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Macedo, Hugo M. [Biological Systems Engineering Laboratory, Department of Chemical Engineering, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom); Jiang, Lili; Li, Chao; Mei, Guanyu [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10{sup −2} mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  6. Concentration-dependent oligomerization of cross-linked complexes between ferredoxin and ferredoxin–NADP+ reductase

    International Nuclear Information System (INIS)

    Kimata-Ariga, Yoko; Kubota-Kawai, Hisako; Lee, Young-Ho; Muraki, Norifumi; Ikegami, Takahisa; Kurisu, Genji; Hase, Toshiharu

    2013-01-01

    Highlights: •Cross-linked complexes of ferredoxin (Fd) and Fd–NADP + reductase form oligomers. •In the crystal structures, Fd- and FNR moieties swap across the molecules. •The complexes exhibit concentration-dependent oligomerization at sub-milimolar order. -- Abstract: Ferredoxin–NADP + reductase (FNR) forms a 1:1 complex with ferredoxin (Fd), and catalyzes the electron transfer between Fd and NADP + . In our previous study, we prepared a series of site-specifically cross-linked complexes of Fd and FNR, which showed diverse electron transfer properties. Here, we show that X-ray crystal structures of the two different Fd–FNR cross-linked complexes form oligomers by swapping Fd and FNR moieties across the molecules; one complex is a dimer from, and the other is a successive multimeric form. In order to verify whether these oligomeric structures are formed only in crystal, we investigated the possibility of the oligomerization of these complexes in solution. The mean values of the particle size of these cross-linked complexes were shown to increase with the rise of protein concentration at sub-milimolar order, whereas the size of dissociable wild-type Fd:FNR complex was unchanged as analyzed by dynamic light scattering measurement. The oligomerization products were detected by SDS–PAGE after chemical cross-linking of these complexes at the sub-milimolar concentrations. The extent and concentration-dependent profile of the oligomerizaion were differentiated between the two cross-linked complexes. These results show that these Fd–FNR cross-linked complexes exhibit concentration-dependent oligomerization, possibly through swapping of Fd and FNR moieties also in solution. These findings lead to the possibility that some native multi-domain proteins may present similar phenomenon in vivo

  7. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    Science.gov (United States)

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  8. A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking.

    Science.gov (United States)

    Herrmann, C; Sleep, J; Chaussepied, P; Travers, F; Barman, T

    1993-07-20

    In previous work, we studied the early steps of the Mg(2+)-ATPase activity of Ca(2+)-activated myofibrils [Houadjeto, M., Travers, F., & Barman, T. (1992) Biochemistry 31, 1564-1569]. The myofibrils were free to contract, and the results obtained refer to the ATPase cycle of myofibrils contracting with no external load. Here we studied the ATPase of myofibrils contracting isometrically. To prevent shortening, we cross-linked them with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). SDS-PAGE and Western blot analyses showed that the myosin rods were extensively cross-linked and that 8% of the myosin heads were cross-linked to the thin filament. The transient kinetics of the cross-linked myofibrils were studied in 0.1 M potassium acetate, pH 7.4 and 4 degrees C, by the rapid-flow quench method. The ATP binding steps were studied by the cold ATP chase and the cleavage and release of products steps by the Pi burst method. In Pi burst experiments, the sizes of the bursts were equal within experimental error to the ATPase site concentrations (as determined by the cold ATP chase methods) for both cross-linked (isometric) and un-cross-linked (isotonic) myofibrils. This shows that in both cases the rate-limiting step is after the cleavage of ATP. When cross-linked, the kcat of Ca(2+)-activated myofibrils was reduced from 1.7 to 0.8 s-1. This is consistent with the observation that fibers shortening at moderate velocity have a higher ATPase activity than isometric fibers.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications.

    Science.gov (United States)

    Shamekhi, Mohammad Amin; Rabiee, Ahmad; Mirzadeh, Hamid; Mahdavi, Hamid; Mohebbi-Kalhori, Davod; Baghaban Eslaminejad, Mohamadreza

    2017-11-01

    The use of various chemical cross-linking agents for the improvement of scaffolds physical and mechanical properties is a common practical method, which is limited by cytotoxicity effects. Due to exerting contract type forces, chondrocytes are known to implement shrinkage on the tissue engineered constructs, which can be avoided by the scaffold cross-linking. In the this research, chitosan scaffolds are cross-linked with hydrothermal treatment with autoclave sterilization time of 0, 10, 20 and 30min, to avoid the application of the traditional chemical toxic materials. The optimization studies with gel content and crosslink density measurements indicate that for 20min sterilization time, the gel content approaches to ~80%. The scaffolds are fully characterized by the conventional techniques such as SEM, porosity and permeability, XRD, compression, thermal analysis and dynamic mechanical thermal analysis (DMTA). FT-IR studies shows that autoclave inter-chain cross-linking reduces the amine group absorption at 1560cm -1 and increase the absorption of N-acetylated groups at 1629cm -1 . It is anticipated, that this observation evidenced by chitosan scaffold browning upon autoclave cross-linking is an indication of the familiar maillard reaction between amine moieties and carbonyl groups. The biodegradation rate analysis shows that chitosan scaffolds with lower concentrations, possess suitable degradation rate for cartilage tissue engineering applications. In addition, cytotoxicity analysis shows that fabricated scaffolds are biocompatible. The human articular chondrocytes seeding into 3D cross-linked scaffolds shows a higher viability and proliferation in comparison with the uncross-linked samples and 2D controls. Investigation of cell morphology on the scaffolds by SEM, shows a more spherical morphology of chondrocytes on the cross-linked scaffolds for 21days of in vitro culture. Copyright © 2017. Published by Elsevier B.V.

  10. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels

    International Nuclear Information System (INIS)

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-01-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe 3+ , Al 3+ , Ca 2+ , Ba 2+ and Sr 2+ )-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. (paper)

  11. Alkali reversal of psoralen cross-link for the targeted delivery of psoralen monoadduct lesion

    International Nuclear Information System (INIS)

    Yeung, A.T.; Dinehart, W.J.; Jones, B.K.

    1988-01-01

    Psoralen intercalates into double-stranded DNA and photoreacts mainly with thymines to form monoadducts and interstrand cross-links. The authors used an oligonucleotide model to demonstrate a novel mechanism: the reversal of psoralen cross-links by base-catalyzed rearrangement at 90 0 C (BCR). The BCR reaction is more efficient than the photoreversal reaction. They show that the BCR occurs predominantly on the furan side of a psoralen cross-link. The cleavage does not result in the breaking of the DNA backbone, and the thymine based freed from the cross-link by the cleavage reaction appears to be unmodified. Similarly, BCR of the furan-side monoadduct of psoralen removed the psoralen molecule and regenerated the unaltered native oligonucleotide. The pyrone-side psoralen monoadduct is relatively resistant to BCR. One can use BCR to perform efficient oligonucleotide-directed, site-specific delivery of a psoralen monoadduct. As a demonstration of this approach, they have hybridized a 19 base long oligonucleotide vehicle containing a furan-side psoralen monoadduct to a 56 base long complementary oligonucleotide target strand and formed a specific cross-link at the target site with 365-nm UV. Subsequent BCR released the oligonucleotide vehicle and deposited the psoralen at the target site

  12. Formulation and in vitro evaluation of sustained release matrix tablets using cross-linked natural gum.

    Science.gov (United States)

    Jamil, Qurratul Ain; Masood, Muhammad Irfan; Jamil, Muhammad Nauman; Masood, Imran; Iqbal, Shahid Muhammad

    2017-03-01

    Polysaccharide gums because of their biocompatibility, biodegradability and non-immunogenic properties are considered as the best choice for preparing sustained release tablets as compared to their synthetic counterpart. The cross linking of natural gums in matrix tablets increase the sustained release property of matrix tablets. Isoniazid is a first line therapy of tuberculosis, belongs to BCS I with half-life of 3-4 hours. These characteristics make isoniazid a good candidate for sustained release dosage form. Karaya gum crossed linked with trisodium tri metaphosphate was used as release rate retardant for preparing isoniazid cross-linked matrix tablet. Total 8 sustained release formulations were prepared. Both granules and tablets were evaluated under in vitro condition against different parameters. Dissolution studies were performed with all eight formulations for 12 hours using USP apparatus I. Four formulations designated as F1, F2, F3, F4 have drug and karaya gum while other four formulations F5, F6, F7, F8 have drug and crossed linked polymer in ratios of 1:1, 1:2, 1:3 and 1:4 respectively. Dissolution data was analyzed by using different kinetic models. Best fit model for most efficient formulation was zero order while release mechanism was super case I. Formulation 8 showed sufficiently slow release kinetics and about 83% of drug was released in 10 hours, indicating that cross-linked karaya gum proved efficient in preparing sustained release tablets.

  13. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative

    Directory of Open Access Journals (Sweden)

    Domenico Sagnelli

    2017-09-01

    Full Text Available Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO, an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.

  14. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative.

    Science.gov (United States)

    Sagnelli, Domenico; Hooshmand, Kourosh; Kemmer, Gerdi Christine; Kirkensgaard, Jacob J K; Mortensen, Kell; Giosafatto, Concetta Valeria L; Holse, Mette; Hebelstrup, Kim H; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas

    2017-09-30

    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi © plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material.

  15. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    Science.gov (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. WICH, a member of WASP-interacting protein family, cross-links actin filaments

    International Nuclear Information System (INIS)

    Kato, Masayoshi; Takenawa, Tadaomi

    2005-01-01

    In yeast, Verprolin plays an important role in rearrangement of the actin cytoskeleton. There are three mammalian homologues of Verprolin, WIP, CR16, and WICH, and all of them bind actin and Wiskott-Aldrich syndrome protein (WASP) and/or neural-WASP. Here, we describe a novel function of WICH. In vitro co-sedimentation analysis revealed that WICH not only binds to actin filaments but also cross-links them. Fluorescence and electron microscopy detected that this cross-linking results in straight bundled actin filaments. Overexpression of WICH alone in cultured fibroblast caused the formation of thick actin fibers. This ability of WICH depended on its own actin cross-linking activity. Importantly, the actin cross-linking activity of WICH was modified through a direct association with N-WASP. Taken together, these data suggest that WICH induces a bundled form of actin filament with actin cross-linking activity and the association with N-WASP suppresses that activity. WICH thus appears to be a novel actin bundling protein

  17. Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative

    Science.gov (United States)

    Sagnelli, Domenico; Kemmer, Gerdi Christine; Holse, Mette; Hebelstrup, Kim H.; Bao, Jinsong; Stelte, Wolfgang; Bjerre, Anne-Belinda; Blennow, Andreas

    2017-01-01

    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material. PMID:28973963

  18. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    Science.gov (United States)

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  19. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    Science.gov (United States)

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  20. Vitamin E diffused highly cross-linked polyethylene in total hip arthroplasty at five years

    DEFF Research Database (Denmark)

    Nebergall, Audrey K; Greene, M. E.; Laursen, M B

    2017-01-01

    Aims: The objective of this five-year prospective, blinded, randomised controlled trial (RCT) was to compare femoral head penetration into a Vitamin E diffused highly cross-linked polyethylene (HXLPE) liner with penetration into a medium cross-linked polyethylene control liner using......, ArComXL. This is the longest-term RCT comparing the wear performance and clinical outcome of Vitamin E diffused HXLPE with a previous generation of medium cross-linked polyethylene....... radiostereometric analysis. Patients and Methods: Patients scheduled for total hip arthroplasty (THA) were randomised to receive either the study E1 (32 patients) or the control ArComXL polyethylene (35 patients). The median age (range) of the overall cohort was 66 years (40 to 76). Results: The five-year median...

  1. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  2. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    Energy Technology Data Exchange (ETDEWEB)

    Wetz, K.; Habermehl, K.O. (Freie Univ. Berlin (Germany, F.R.))

    1982-04-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid.

  3. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    International Nuclear Information System (INIS)

    Wetz, K.; Habermehl, K.-O.

    1982-01-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid. (author)

  4. Physical Characterization Of High Amylose/Pectin Mixtures Cross-Linked With Sodium Trimetaphosphate

    International Nuclear Information System (INIS)

    Carbinatto, F.M.; Cury, B.S.F.; Evangelista, R.C.

    2010-01-01

    Some researches have reported that pectin and high amylose mixtures presented superior mechanical properties in relation to those of the isolated polymers. In this work, mixtures at different ratios (1:4; 1:1) of pectin and high amylose were crosslinked with sodium trimetaphosphate at different degrees by varying reaction conditions. All samples were characterized by rheological and X-ray diffraction analyses. Samples without cross-linker were prepared as control. The oscillatory dynamic tests showed that all samples exhibited predominant elastic behavior, although cross-linked samples presented higher G' values, suggesting that crosslinking by phosphorylation resulted in more strength structures. The diffractograms showed that cross-linked samples underwent structural modifications that resulted in increase of crystallinity due to cross-linking process. (author)

  5. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

    DEFF Research Database (Denmark)

    Ma, Wenjia; Zhao, Chengji; Yang, Jingshuai

    2012-01-01

    Diamine-cross-linked membranes were prepared from cross-linkable poly(arylene ether ketone) containing pendant cationic quaternary ammonium group (QPAEK) solution by a facile and general thermal curing method using 4,4′-diaminodiphenylmethane with rigid framework and 1,6-diaminohexane with flexible...... anchoring of the molecule. Combining the excellent thermal stability, the addition of a small amount of diamines enhanced both the chemical and mechanical stability and the phosphoric acid doping (PA) ability of membranes. Fuel cell performance based on impregnated cross-linked membranes have been...... successfully operated at temperatures up to 120 °C and 180 °C with unhumidified hydrogen and air under ambient pressure, the maximum performance of diamine-cross-linked membrane is observed at 180 °C with a current density of 1.06 A cm−2 and the peak power density of 323 mW cm−2. The results also indicate...

  6. Controlled swollen and drug release from urea-cross-linked polyether/siloxane hybrids

    International Nuclear Information System (INIS)

    Santilli, Celso V.; Lopes, Leandro; Pulcinelli, Sandra H.; Chiavacci, Leila A.; Oliveira, Anselmo G.

    2009-01-01

    From a simple synthesis method we produced transparent ureasil cross-linked polyether (poly(ethylene oxide), PEO, or poly (propylene oxide), PPO) networks, whose designed inter cross-linking distance and tunable swell ability was assessed by small angle X-ray scattering on the D11A-SAXS1 beamline of the LNLS, we demonstrated that the controlled drug release from swell able hydrophilic ureasil-PEO materials can be sustained during some days, while from the unswell able ureasil-PPO ones, during some weeks. This outstanding feature conjugated with the bio medically safe formulation of the ureasil cross-linked polyether/siloxane hybrid widen their scope of application to include the domain of soft and implantable drug delivery devices. (author)

  7. Cross-linking of streptomycin to the 16S ribosomal RNA of Escherichia coli

    International Nuclear Information System (INIS)

    Gravel, M.; Melancon, P.; Barkier-Gingras, L.

    1987-01-01

    [ 3 H]Dihydrostreptomycin was cross-linked to the 30S ribosomal subunit from Escherichia coli with the bifunctional reagent nitrogen mustard. The cross-linking primarily involved the 16S RNA. To localize the site of cross-linking of streptomycin to the 16S RNA, the authors hybridized RNA labeled with streptomycin to restriction fragments of the 16S RNA gene. Labeled RNA hybridized to DNA fragments corresponding to bases 892-917 and bases 1394-1415. These two segments of the ribosomal RNA must by juxtaposed in the ribosome, since there is a single binding site for streptomycin. This region has been implicated both in the decoding site and in the binding of initiation factor IF-3, indicating its functional importance

  8. In vitro calcification and in vivo biocompatibility of the cross-linked polypentapeptide of elastin

    International Nuclear Information System (INIS)

    Wood, S.A.; Lemons, J.E.; Prasad, K.U.; Urry, D.W.

    1986-01-01

    The in vitro calcifiability and molecular weight dependence of calcification of the polypentapeptide, (L X Val1-L X Pro2-Gly3-L X Val4-Gly5)n, which had been gamma-irradiation cross-linked have been determined when exposed to dialyzates of normal, nonaugmented fetal bovine serum. The material was found to calcify: calcifiability was found to be highly molecular weight dependent and to be most favored when the highest molecular weight polymers (n approximately equal to 240) had been used for cross-linking. The in vivo biocompatibility, biodegradability, and calcifiability of the gamma-irradiation cross-linked polypentapeptide were examined in rabbits in both soft and hard tissue sites. The material was found to be biocompatible irrespective of its physical form and to be biodegradable but with n of 200 or less it was not shown to calcify or ossify in the rabbit tibial nonunion model

  9. Genipin Cross-Linked Polymeric Alginate-Chitosan Microcapsules for Oral Delivery: In-Vitro Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Chen

    2009-01-01

    Full Text Available We have previously reported the preparation of the genipin cross-linked alginate-chitosan (GCAC microcapsules composed of an alginate core with a genipin cross-linked chitosan membrane. This paper is the further investigation on their structural and physical characteristics. Results showed that the GCAC microcapsules had a smooth and dense surface and a networked interior. Cross-linking by genipin substantially reduced swelling and physical disintegration of microcapsules induced by nongelling ions and calcium sequestrants. Strong resistance to mechanical shear forces and enzymatic degradation was observed. Furthermore, the GCAC membranes were permeable to bovine serum albumin and maintained a molecular weight cutoff at 70 KD, analogous to the widely studied alginate-chitosan, and alginate-poly-L-lysine-alginate microcapsules. The release features and the tolerance of the GCAC microcapsules in the stimulated gastrointestinal environment were also investigated. This GCAC microcapsule formulation offers significant potential as a delivery vehicle for many biomedical applications.

  10. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials

    DEFF Research Database (Denmark)

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther

    2013-01-01

    -link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. CONCLUSIONS: The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin......BACKGROUND: Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. METHODS: Small peptides containing...... and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. RESULTS: MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally...

  11. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    Science.gov (United States)

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P permeability. © 2016 Institute of Food Technologists®.

  12. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  13. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    Science.gov (United States)

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  14. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    International Nuclear Information System (INIS)

    Mathapati, Santosh; Bishi, Dillip Kumar; Guhathakurta, Soma; Cherian, Kotturathu Mammen; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Verma, Rama Shanker

    2013-01-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  15. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    2012-10-01

    Full Text Available Hyaluronic acid (HA is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5 at a constant 1-ethyl-3-(3-dimethyl aminopropyl carbodiimide (EDC concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v, the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.

  16. CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization.

    Science.gov (United States)

    Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike

    2017-07-07

    Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .

  17. Cross-linked compared with historical polyethylene in THA: an 8-year clinical study.

    Science.gov (United States)

    Geerdink, Carel H; Grimm, Bernd; Vencken, Wendy; Heyligers, Ide C; Tonino, Alphons J

    2009-04-01

    Wear particle-induced osteolysis is a major cause of aseptic loosening in THA. Increasing wear resistance of polyethylene (PE) occurs by increasing the cross-link density and early reports document low wear rates with such implants. To confirm longer-term reductions in wear we compared cross-linked polyethylene (irradiation in nitrogen, annealing) with historical polyethylene (irradiation in air) in a prospective, randomized clinical study involving 48 patients who underwent THAs with a minimum followup of 7 years (mean, 8 years; range, 7-9 years). The insert material was the only variable. The Harris hip score, radiographic signs of osteolysis, and polyethylene wear were recorded annually. Twenty-three historical and 17 moderately cross-linked polyethylene inserts were analyzed (five patients died, three were lost to followup). At 8 years, the wear rate was lower for cross-linked polyethylene (0.088 +/- 0.03 mm/year) than for the historical polyethylene (0.142 +/- 0.07 mm/year). This reduction (38%) did not diminish with time (33% at 5 years). Acetabular cyst formation was less frequent (39% versus 12%), affected fewer DeLee and Charnley zones (17% versus 4%), and was less severe for the cross-linked polyethylene. The only revision was for an aseptically loose cup in the historical polyethylene group. Moderately cross-linked polyethylene maintained its wear advantage with time and produced less osteolysis, showing no signs of aging at mid-term followup. Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  18. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  19. Photo-cross-linked PLA-PEO-PLA hydrogels from self-assembled physical networks: mechanical properties and influence of assumed constitutive relationships.

    Science.gov (United States)

    Sanabria-DeLong, Naomi; Crosby, Alfred J; Tew, Gregory N

    2008-10-01

    Poly(lactide)-block-poly(ethylene oxide)-block-poly(lactide) (PLA-PEO-PLA) triblock copolymers are known to form physical hydrogels in water as a result of the polymer's amphiphilicity. Their mechanical properties, biocompatibility, and biodegradability have made them attractive for use as soft tissue scaffolds. However, the network junction points are not covalently cross-linked, and in a highly aqueous environment these hydrogels adsorb more water, transform from gel to sol, and lose the designed mechanical properties. In this article, a hydrogel was formed by the use of a novel two-step approach. In the first step, the end-functionalized PLA-PEO-PLA triblock was self-assembled into a physical hydrogel through hydrophobic micelle network junctions, and in the second step, this self-assembled physical network structure was locked into place by photo-cross-linking the terminal acrylate groups. In contrast with physical hydrogels, the photo-cross-linked gels remained intact in phosphate-buffered solution at body temperature. The swelling, degradation, and mechanical properties were characterized, and they demonstrated an extended degradation time (approximately 65 days), an exponential decrease in modulus with degradation time, and a tunable shear modulus (1.6-133 kPa). We also discuss the various constitutive relationships (Hookean, neo-Hookean, and Mooney-Rivlin) that can be used to describe the stress-strain behavior of these hydrogels. The chosen model and assumptions used for data fitting influenced the obtained modulus values by as much as a factor of 3.5, which demonstrates the importance of clearly stating one's data fitting parameters so that accurate comparisons can be made within the literature.

  20. A photoactivatable probe for the Na+/H+ exchanger cross-links a 66-kDa renal brush border membrane protein

    International Nuclear Information System (INIS)

    Ross, W.; Bertrand, W.; Morrison, A.

    1990-01-01

    Earlier studies on LLC-PK1 cells have demonstrated two pharmacologically distinct Na+/H+ exchangers in renal epithelia. In addition, the cDNA clone for the human Na+/H+ antiporter which is growth factor activatable has been isolated and expressed. We report here the synthesis of an amiloride analogue that can be photoactivated and labeled with 125I. This analogue covalently cross-links a 66-kDa protein of bovine renal brush border membranes. A rabbit polyclonal antibody that was directed against a 20-amino acid peptide of the cytoplasmic domain of its human Na+/H+ antiporter also gives a positive Western against 66-kDa protein of bovine brush border membranes. Thus, the photoactive probe may be helpful in the isolation and purification of the brush border Na+/H+ exchanger

  1. Physical and mechanical properties of gamma radiation cross-linked polyethylene

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.; Romero, G.; Smolko, Eduardo E.

    1999-01-01

    Granulated LDPE 2003 polyethylene was extruded and irradiated under nitrogen with 150, 200 and 300 kGy gamma rays doses to produce cross-linking. The study of the physical and mechanical properties shows that the product has a high degree of molecular cross-linking, can be heated up to 200 C for 2 hours without deformation and that the mechanical properties improve. Preliminary aging tests indicate that after heating at 60 C for 4 weeks no physical or mechanical deterioration can be observed. (author)

  2. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper

    2011-01-01

    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular...... weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased...

  3. Induction of DNA–protein cross-links by ionizing radiation and their elimination from the genome

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Toshiaki; Mitsusada, Yusuke [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Salem, Amir M.H. [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12311 (Egypt); Shoulkamy, Mahmoud I. [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519 (Egypt); Sugimoto, Tatsuya [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Hirayama, Ryoichi; Uzawa, Akiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Furusawa, Yoshiya [Development and Support Center, National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Ide, Hiroshi, E-mail: ideh@hiroshima-u.ac.jp [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan)

    2015-01-15

    Highlights: • Normoxic and hypoxic mouse tumors were irradiated with X-rays and C-ion beams. • DNA–protein cross-links (DPCs) and DNA double-strand breaks (DSBs) were analyzed. • C-ion beams produced more DPCs than did X-rays in normoxic and hypoxic tumor cells. • DPCs were eliminated from the genome much more slowly than DSBs. • Persisting DPCs may have deleterious effects on cells in conjunction with DSBs. - Abstract: Ionizing radiation produces various types of DNA lesions, such as base damage, single-strand breaks, double-strand breaks (DSBs), and DNA–protein cross-links (DPCs). Of these, DSBs are the most critical lesions underlying the lethal effects of ionizing radiation. With DPCs, proteins covalently trapped in DNA constitute strong roadblocks to replication and transcription machineries, and hence can be lethal to cells. The formation of DPCs by ionizing radiation is promoted in the absence of oxygen, whereas that of DSBs is retarded. Accordingly, the contribution of DPCs to the lethal events in irradiated cells may not be negligible for hypoxic cells, such as those present in tumors. However, the role of DPCs in the lethal effects of ionizing radiation remains largely equivocal. In the present study, normoxic and hypoxic mouse tumors were irradiated with X-rays [low linear energy transfer (LET) radiation] and carbon (C)-ion beams (high LET radiation), and the resulting induction of DPCs and DSBs and their removal from the genome were analyzed. X-rays and C-ion beams produced more DPCs in hypoxic tumors than in normoxic tumors. Interestingly, the yield of DPCs was slightly but statistically significantly greater (1.3- to 1.5-fold) for C-ion beams than for X-rays. Both X-rays and C-ion beams generated two types of DPC that differed according to their rate of removal from the genome. This was also the case for DSBs. The half-lives of the rapidly removed components of DPCs and DSBs were similar (<1 h), but those of the slowly removed components

  4. Chitosan-Based Coating with Antimicrobial Agents: Preparation, Property, Mechanism, and Application Effectiveness on Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yage Xing

    2016-01-01

    Full Text Available Chitosan coating is beneficial to maintaining the storage quality and prolonging the shelf life of postharvest fruits and vegetables, which is always used as the carrier film for the antimicrobial agents. This review focuses on the preparation, property, mechanism, and application effectiveness on the fruits and vegetables of chitosan-based coating with antimicrobial agents. Chitosan, derived by deacetylation of chitin, is a modified and natural biopolymer as the coating material. In this article, the safety and biocompatible and antimicrobial properties of chitosan were introduced because these attributes are very important for its application. The methods to prepare the chitosan-based coating with antimicrobial agents, such as essential oils, acid, and nanoparticles, were developed by other researchers. Meanwhile, the application of chitosan-based coating is mainly due to its antimicrobial activity and other functional properties, which were investigated, introduced, and analyzed in this review. Furthermore, the surface and mechanical properties were also investigated by researchers and concluded in this article. Finally, the effects of chitosan-based coating on the storage quality, microbial safety, and shelf life of fruits and vegetables were introduced. Their results indicated that chitosan-based coating with different antimicrobial agents would probably have wide prospect in the preservation of fruits and vegetables in the future.

  5. Applications of chitosan-based thermo-sensitive copolymers for harvesting living cell sheet

    International Nuclear Information System (INIS)

    Chen, J.-P.; Yang, T.-F.

    2008-01-01

    A thermo-sensitive chitosan-based copolymer hydrogel was used for harvesting living cell sheets. The hydrogel was tested for harvesting 3T3 cells after carrying out cell culture at 37 deg. C and incubating the confluent cells at 20 deg. C for spontaneous detachment of cell sheets from hydrogel surface without enzyme treatment. Results from cell viability assay and microscopy observations demonstrated that cells could attach to the hydrogel surface and maintain high viability and proliferation ability. Cell detachment efficiency from the hydrogel was about 80%. The detached cell sheet retained high viability and could proliferate again after transferred to a new culture surface

  6. Photoreversible Covalent Hydrogels for Soft-Matter Additive Manufacturing.

    Science.gov (United States)

    Kabb, Christopher P; O'Bryan, Christopher S; Deng, Christopher C; Angelini, Thomas E; Sumerlin, Brent S

    2018-05-16

    Reversible covalent chemistry provides access to robust materials with the ability to be degraded and reformed upon exposure to an appropriate stimulus. Photoresponsive units are attractive for this purpose, as the spatial and temporal application of light is easily controlled. Coumarin derivatives undergo a [2 + 2] cycloaddition upon exposure to long-wave UV irradiation (365 nm), and this process can be reversed using short-wave UV light (254 nm). Therefore, polymers cross-linked by coumarin groups are excellent candidates as reversible covalent gels. In this work, copolymerization of coumarin-containing monomers with the hydrophilic comonomer N, N-dimethylacrylamide yielded water-soluble, linear polymers that could be cured with long-wave UV light into free-standing hydrogels, even in the absence of a photoinitiator. Importantly, the gels were reverted back to soluble copolymers upon short-wave UV irradiation. This process could be cycled, allowing for recycling and remolding of the hydrogel into additional shapes. Further, this hydrogel can be imprinted with patterns through a mask-based, post-gelation photoetching method. Traditional limitations of this technique, such as the requirement for uniform etching in one direction, have been overcome by combining these materials with a soft-matter additive manufacturing methodology. In a representative application of this approach, we printed solid structures in which the interior coumarin-cross-linked gel is surrounded by a nondegradable gel. Upon exposure to short-wave UV irradiation, the coumarin-cross-linked gel was reverted to soluble prepolymers that were washed away to yield hollow hydrogel objects.

  7. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA

    DEFF Research Database (Denmark)

    Steen, Hanno; Petersen, Jørgen; Mann, Matthias

    2001-01-01

    acid and peptide entities present in such heteroconjugates. Sample preparation of the peptide-nucleic acid heteroconjugates is, therefore, a crucial step in any mass spectrometry-based analytical procedure. This study demonstrates the performance of four different MS-based strategies to characterize E....... coli single-stranded DNA binding protein (SSB) that was UV-cross-linked to a 5-iodouracil containing DNA oligomer. Two methods were optimized to circumvent the need for standard liquid chromatography and gel electrophoresis, thereby dramatically increasing the overall sensitivity of the analysis...

  8. Photo-degradation of poly(neopentyl isophthalate). Part II: Mechanism of cross-linking.

    NARCIS (Netherlands)

    Malanowski, P.; Benthem, van R.A.T.M.; Ven, van der L.G.J.; Laven, J.; Kisin, S.; With, de G.

    2011-01-01

    The mechanism of cross-linking of poly(neopentyl isophthalate) (PNI) by photo-degradation in nitrogen atmosphere was investigated. The exposure of PNI to UV light resulted in gel (insoluble material) formation. The gel material was collected and the morphology of the gel material was characterized

  9. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L; Francis, Michael P; Simpson, David G

    2008-01-01

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml -1 were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  10. Grafted Cross-Linked Polyolefin Substrates for Peptide Synthesis and Assays

    DEFF Research Database (Denmark)

    1999-01-01

    suited for use in solid-phase biosystems, notably bioassays, such as immunoassays, DNA hybridization assays or PCR amplification. The grafted chains may bear substituents which are such that the polymer-grafted cross-linked polyolefin substrate is swellable by water or aqueous media, in other words...

  11. Nodular Epithelial Hyperplasia after Photorefractive Keratectomy Followed by Corneal Collagen Cross-Linking

    OpenAIRE

    Bogoni, Ayla; Salerno, Liberdade Cezaro; Ghanem, Vinícius Coral; Ghanem, Ramon Coral

    2013-01-01

    This study describes a case of nodular epithelial hyperplasia and stromal alterations in a patient with keratoconus who was submitted to topography-guided photorefractive keratectomy (PRK) followed by corneal collagen cross-linking. Debridement of the epithelial nodule was performed. After a 2-year followup, a new topography-guided PRK was indicated.

  12. UV-induced cross-linking of abscisic acid to binding proteins

    International Nuclear Information System (INIS)

    Cornelussen, M.H.M.; Karssen, C.M.; Loon, L.C. van

    1995-01-01

    Conditions for UV-induced cross-linking of abscisic acid (ABA) through its enone chromophore to binding proteins were evaluated. The effects of a UV-light band between 260 and 530 nm on both unconjugated and protein-conjugated ABA, as well as on anti-ABA antibodies as models of ABA-binding proteins were determined. UV irradiation caused both isomerization and photolysis of ABA, but increasing the lower irradiation boundary to 345 nm strongly reduced photolysis and largely prevented isomerization. When conjugated to alkaline phosphatase (AP), ABA remained stable when using either a 320 or a 345 nm filter. At these wavelengths both binding of ABA to antibodies as well as AP enzymatic activity were maintained. UV-induced cross-linking of monoclonal anti-ABA antibodies to immobilized ABA was analysed by immunoassays. Optimal cross-linking was achieved after a 5 min irradiation period at 0°, using a long pass, cut-on filter to quench wavelengths below 290 nm. This cross-linking faithfully reflected cognate binding activity. (author)

  13. Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent

    Directory of Open Access Journals (Sweden)

    Alexandre Arsenault

    2011-01-01

    Full Text Available Laccase from Coriolopsis Polyzona was insolubilized as cross-linked enzyme aggregates (CLEAs for the first time with chitosan as the cross-linking agent. Concentrations between 0.01 and 1.867 g/L of chitosan were used and between 0.05 and 600 mM of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride. The laccase was precipitated using ammonium sulphate and cross-linked simultaneously. Specific activity and thermal stability of these biocatalysts were measured. Activities of up to 737 U/g were obtained when 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS was used as a substrate. Moreover, the stability of these biocatalysts was improved with regards to thermal degradation compared to free laccase when exposed to denaturing conditions of high temperature and low pH. The CLEAs stability against chemical denaturants was also tested but no significant improvement was detected. The total amount of ABTS to be oxidized during thermal degradation by CLEAs and free laccase was calculated and the insolubilized enzymes were reported to oxidize more substrate than free laccase. The formation conditions were analyzed by response surface methodology in order to determine an optimal environment for the production of efficient laccase-based CLEAs using chitosan as the cross-linking agent. After 24 hours of formation at pH 3 and at 4°C without agitation, the CLEAs exhibit the best specific activity.

  14. Constrained swelling of polymer networks: characterization of vapor-deposited cross-linked polymer thin films

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Choukourov, A.; Dušková-Smrčková, Miroslava; Biederman, H.

    2014-01-01

    Roč. 47, č. 13 (2014), s. 4417-4427 ISSN 0024-9297 R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer * elasticity Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.800, year: 2014

  15. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Science.gov (United States)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  16. Horseradish peroxidase-catalyzed cross-linking of feruloylated arabinoxylans with β-casein

    NARCIS (Netherlands)

    Boeriu, C.G.; Oudgenoeg, G.; Spekking, W.T.J.; Berendsen, L.B.J.M.; Vancon, L.; Boumans, H.; Gruppen, H.; Berkel, W.J.H. van; Laane, C.; Voragen, A.G.J.

    2004-01-01

    Heterologous conjugates of wheat arabinoxylan and β-casein were prepared via enzymatic cross-linking, using sequential addition of the arabinoxylan to a mixture of β-casein, peroxidase, and hydrogen peroxide. The maximal formation of adducts between the β-casein and the feruloylated arabinoxylan was

  17. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI

  18. Core-cross-linked polymeric micelles: a versatile nanomedicine platform with broad applicability

    NARCIS (Netherlands)

    Hu, Q.

    2015-01-01

    This dissertation addresses the broad applicability of the nanomedicine platform core-cross-linked polymeric micelles (CCL-PMs) composed of thermosensitive mPEG-b-pHPMAmLacn block copolymers. In Chapter 1, a general introduction to nanomedicines is provided, with a particular focus on polymeric

  19. Design and Preparation of Cross-Linked Polystyrene Nanoparticles for Elastomer Reinforcement

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2010-01-01

    Full Text Available Cross-linked polystyrene (PS particles in a latex form were synthesized by free radical emulsion polymerization. The nano-PS-filled elastomer composites were prepared by the energy-saving latex compounding method. Results showed that the PS particles took a spherical shape in the size of 40–60 nm with a narrow size distribution, and the glass-transition temperature of the PS nanoparticles increased with the cross-linking density. The outcomes from the mechanical properties demonstrated that when filled into styrene-butadiene rubber (SBR, nitrile-butadiene rubber (NBR, and natural rubber (NR, the cross-linked PS nano-particles exhibited excellent reinforcing capabilities in all the three matrices, and the best in the SBR matrix. In comparison with that of the carbon black filled composites, another distinguished advantage of the cross-linked PS particles filled elastomer composites was found to be light weight in density, which could help to save tremendous amount of energy when put into end products.

  20. Elastin cross-linking in the skin from patients with amyotrophic lateral sclerosis

    Science.gov (United States)

    Ono, S.; Yamauchi, M.

    1994-01-01

    Two cross-links unique to elastin, desmosine and isodesmosine were measured and compared in skin tissue (left upper arm) from 10 patients with amyotrophic lateral sclerosis (ALS) and from seven age-matched controls. The contents of desmosine and isodesmosine were significantly decreased (p elastin is affected in ALS.

  1. Preparation and Properties of Urease Immobilized onto Glutaraldehyde Cross-linked Chitosan Beads

    Institute of Scientific and Technical Information of China (English)

    Zu Pei LIANG; Ya Qing FENG; Shu Xian MENG; Zhi Yan LIANG

    2005-01-01

    Urease was immobilized onto the glutaraldehyde cross-linked chitosan beads that were prepared under microwave irradiation. The activity and the yield of activity of immobilized urease was 10.83 U/g B and 47.7%, respectively. The conditions of urease immobilization were optimized. The properties of the immobilized urease were investigated and compared with that of the free enzyme.

  2. Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links

    DEFF Research Database (Denmark)

    Hink, Steffen; Elsøe, Katrine; Cleemann, Lars Nilausen

    2015-01-01

    Udel polysulfone based membranes with 4-aminopyridine pendant groups and cross-linking imidazole units are synthesized in a simple two step reaction. The ratio of 4-aminopyridine and imidazole is varied and the materials are extensively characterized. The average phosphoric acid uptake (in 85 wt%...

  3. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links

    DEFF Research Database (Denmark)

    Lametsch, Marianne Lund; Luxford, Catherine; Skibsted, Leif Horsfelt

    2008-01-01

    of thiyl and tyrosyl radicals is consistent with the observed consumption of cysteine and tyrosine residues, the detection of di-tyrosine by HPLC and the detection of both reducible (disulfide bond) and non-reducible cross-links between myosin molecules by SDS/PAGE. The time course of radical formation...

  4. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links

    DEFF Research Database (Denmark)

    Räschle, Markus; Smeenk, Godelieve; Hansen, Rebecca K

    2015-01-01

    DNA interstrand cross-links (ICLs) block replication fork progression by inhibiting DNA strand separation. Repair of ICLs requires sequential incisions, translesion DNA synthesis, and homologous recombination, but the full set of factors involved in these transactions remains unknown. We devised ...

  5. The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution.

    Science.gov (United States)

    Monnier, V M; Glomb, M; Elgawish, A; Sell, D R

    1996-07-01

    Considerable interest has been focused in recent years on the mechanism of collagen cross-linking by high glucose in vitro and in vivo. Experiments in both diabetic humans and in animals have shown that over time collagen becomes less soluble, less digestible by collagenase, more stable to heat-induced denaturation, and more glycated. In addition, collagen becomes more modified by advanced products of the Maillard reaction, i.e., immunoreactive advanced glycation end products and the glycoxidation markers carboxymethyllysine and pentosidine. Mechanistic studies have shown that collagen cross-linking in vitro can be uncoupled from glycation by the use of antioxidants and chelating agents. Experiments in the authors' laboratory revealed that approximately 50% of carboxymethyllysine formed in vitro originates from pathways other than oxidation of Amadori products, i.e., most likely the oxidation of Schiff base-linked glucose. In addition, the increase in thermal stability of rat tail tendons exposed to high glucose in vitro or in vivo was found to strongly depend on H2O2 formation. The final missing piece of the puzzle is that of the structure of the major cross-link. We speculate that it is a nonfluorescent nonultraviolet active cross-link between two lysine residues, which includes a fragmentation product of glucose linked in a nonreducible bond labile to both strong acids and bases.

  6. TGFβ affects collagen cross-linking independent of chondrocyte phenotype but strongly depending on physical environment

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Koevoet, W.; Bart, A.C.W. de; Zuurmond, A.-M.; Bank, R.A.; Verhaar, J.A.N.; Groot, J. de; Osch, G.J.V.M. van

    2008-01-01

    Transforming growth factor beta (TGFβ) is often used in cartilage tissue engineering to increase matrix formation by cells with various phenotypes. However, adverse effects of TGFβ, such as extensive cross-linking in cultured fibroblasts, have also been reported. Our goal was to study effects of

  7. Oxidative cross-linking of casein by horseradish peroxidase and its ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... The cross-linking of casein was demonstrated by capillary zone electrophoresis analysis. .... linking reaction was started by addition of 1.0 ml 3% (w/v) H2O2 and .... by Design Expert Software (Version 7.0), keeping one variable at its ... The emulsion was immediately transferred into a 250 ml capa-.

  8. Interactions of cross-linked and uncross-linked chitosan hydrogels ...

    African Journals Online (AJOL)

    The swelling equilibrium of Chitosan and sodium tripolyphosphate (NaTPP) cross-linked chitosan hydrogels in aqueous solutions of surfactants differing in structure and hydrophobicity at 250C is reported. Anionic surfactant sodium dodecylsulfate (SDS), the cationic surfactant hexadecyltrimethylammonium bromide (HTAB) ...

  9. Application of polymers cross-linked by electron beam irradiation to electric wire industry

    International Nuclear Information System (INIS)

    Oda, Eisuke

    1976-01-01

    Applications of the polymers cross-linked by electron beam irradiation to electric wire industry as an example of dully developed utilization are reviewed. The report is divided into five parts, namely 1) radiation sources and irradiation processes, 2) development of crosslinking materials, 3) accumulation of electric charge and accumulation of heat, 4) examples of application, and 5) future prospect. Such a phenomenon as discharge destruction pattern (Lichtenberg figure) must be solved, when cable insulation materials are cross-linked by electron beam irradiation. The measures for preventing the discharge destruction are required, especially when the layers of polyethylene insulation for high voltage cables are irradiated. The accumulation of heat causes the troubles in foaming, degeneration and wire running of high potential cables, when the layers of insulation are thick. Effective promoters for cross-linking must be studied to reduce the radiation dose. The irradiators capable of irradiating wires uniformly are desirable. Electron beam accelerators will be used, as far as the radiation dose of 10 or more Mrad is required for cross-linking irradiation. If the dose of one tenth or less of the above value is required, gamma-ray sources (RI) are rather easily applicable than focused strong beam. The utilization of spent nuclear fuel is desirable. (Iwakiri, K.)

  10. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  11. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    Science.gov (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    International Nuclear Information System (INIS)

    Khabaz, Fardin; Khare, Ketan S.; Khare, Rajesh

    2014-01-01

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations

  13. Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions.

    Science.gov (United States)

    Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R

    2009-02-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.

  14. Mesoscale structure and techno-functional properties of enzymatically cross-linked a-lactalbumin nanoparticles

    NARCIS (Netherlands)

    Dhayal, S.K.

    2015-01-01

    Abstract

    The aim of this thesis is to understand the connection between molecular, meso and macroscales of enzymatically cross-linked proteins. It was hypothesised that the techno-functional properties at macroscale, such as bulk rheology and foam stability, are affected

  15. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    Science.gov (United States)

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  16. Hydrogen peroxide and ferulic acid-mediated oxidative cross-linking ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... G250 in a 4.5:4.5:1 (v/v) mixture of deionized water, methanol and glacial acetic ... mixture of 1:1:8 (v/v) methanol, glacial acetic acid and deionized water until the ..... Cross-linking of tyrosine-containing peptides by hydrogen.

  17. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    Science.gov (United States)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  18. Cross-linked polyethylene does not reduce wear in total knee arthroplasty.

    Science.gov (United States)

    Lasurt-Bachs, S; Torner, P; Maculé, F; Prats, E; Menéndez-García, F; Ríos-Guillermo, J; Torrents, A

    To compare two different types of inserts: Ultra-high molecular weight polyethylene (UHMWPE) and cross-linked polyethylene with a quantitative and qualitative study of polyethylene wear particles in synovial fluid 3 years after total knee arthroplasty. A prospective, randomized, controlled cohort study with blinded evaluation was carried out on 25 patients undergoing staged bilateral total knee replacement, 6 months apart. Knee arthrocentesis was performed on 12 patients 3 years after surgery, and the polyethylene particles were analyzed. No significant differences were found in the number of particles generated by the two different types of inserts at 3 years from total knee arthroplasty (3,000×: x¯ cross-linked=849.7; x¯ UHMWPE=796.9; P=.63; 20,000×: x¯ cross-linked=66.3; x¯ UHMWPE=73.1; P=.76). Likewise, no differences in the probability of finding elongated (χ 2 =0.19; P=.66) or rounded (χ 2 =1.44; P=.23) particles in both types of inserts were observed. However, the probability of finding fibrillar particles is 3.08 times greater in UHMWPE. Cross-linked polyethylene does not significantly reduce the generation of polyethylene particles in patients with total knee arthroplasty, 3 years after the surgical procedure. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177.2710 Section 177.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended...

  20. Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes

    International Nuclear Information System (INIS)

    Safarik, I. Ivo; Safarikova, Mirka

    2001-01-01

    New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed

  1. Discovery of undefined protein cross-linking chemistry: a comprehensive methodology utilizing 18O-labeling and mass spectrometry.

    Science.gov (United States)

    Liu, Min; Zhang, Zhongqi; Zang, Tianzhu; Spahr, Chris; Cheetham, Janet; Ren, Da; Zhou, Zhaohui Sunny

    2013-06-18

    Characterization of protein cross-linking, particularly without prior knowledge of the chemical nature and site of cross-linking, poses a significant challenge, because of their intrinsic structural complexity and the lack of a comprehensive analytical approach. Toward this end, we have developed a generally applicable workflow-XChem-Finder-that involves four stages: (1) detection of cross-linked peptides via (18)O-labeling at C-termini; (2) determination of the putative partial sequences of each cross-linked peptide pair using a fragment ion mass database search against known protein sequences coupled with a de novo sequence tag search; (3) extension to full sequences based on protease specificity, the unique combination of mass, and other constraints; and (4) deduction of cross-linking chemistry and site. The mass difference between the sum of two putative full-length peptides and the cross-linked peptide provides the formulas (elemental composition analysis) for the functional groups involved in each cross-linking. Combined with sequence restraint from MS/MS data, plausible cross-linking chemistry and site were inferred, and ultimately confirmed, by matching with all data. Applying our approach to a stressed IgG2 antibody, 10 cross-linked peptides were discovered and found to be connected via thioethers originating from disulfides at locations that had not been previously recognized. Furthermore, once the cross-link chemistry was revealed, a targeted cross-link search yielded 4 additional cross-linked peptides that all contain the C-terminus of the light chain.

  2. CD24 cross-linking induces apoptosis in, and inhibits migration of, MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Kim, Jong Bin; Bae, Ji-Yeon; Jee, Hyeon-Gun; Noh, Dong-Young; Ko, Eunyoung; Han, Wonshik; Lee, Jeong Eon; Lee, Kyung-Min; Shin, Incheol; Kim, Sangmin; Lee, Jong Won; Cho, Jihyoung

    2008-01-01

    The biological effects of CD24 (FL-80) cross-linking on breast cancer cells have not yet been established. We examined the impact of CD24 cross-linking on human breast cancer cell line MCF-7. MCF-7 and MDA-MB-231 cells were treated with anti-rabbit polyclonal IgG or anti-human CD24 rabbit polyclonal antibodies to induce cross-linking, and then growth was studied. Changes in cell characteristics such as cell cycle modulation, cell death, survival in three-dimensional cultures, adhesion, and migration ability were assayed after CD24 cross-linking in MCF-7. Expression of CD24 was analyzed by flow cytometry in MDA-MB-231 and MCF-7 cells where 2% and 66% expression frequencies were observed, respectively. CD24 cross-linking resulted in time-dependent proliferation reduction in MCF-7 cells, but no reduction in MDA-MB-231 cells. MCF-7 cell survival was reduced by 15% in three-dimensional culture after CD24 cross-linking. Increased MCF-7 cell apoptosis was observed after CD24 cross-linking, but no cell cycle arrest was observed in that condition. The migration capacity of MCF-7 cells was diminished by 30% after CD24 cross-linking. Our results showed that CD24 cross-linking induced apoptosis and inhibited migration in MCF-7 breast cancer cells. We conclude that CD24 may be considered as a novel therapeutic target for breast cancer

  3. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

    International Nuclear Information System (INIS)

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang

    2017-01-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5 vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  4. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shih-Feng [Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX 75799 (United States); Luo, Li-Jyuan [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Ma, David Hui-Kang [Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC (China); Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China)

    2017-02-01

    Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5 vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure

  5. Fluorescence spectroscopic study of the aggregation behavior of non-cross-linked and cross-linked poly(alkylmethyldiallylammonium bromides) having decyl, octyl, and hexyl side chains in aqueous solution

    NARCIS (Netherlands)

    Wang, G.J; Engberts, J.B.F.N.

    1996-01-01

    The conformational state of a series of non-cross-linked and cross-linked poly(alkylmethyldiallylammonium bromides) bearing decyl, octyl, and hexyl side chains ((CL)-CopolC1-10, (CL)-CopolC1-8, and (CL)-CopolC1-6, respectively) in aqueous solutions were investigated by fluorescence spectroscopy

  6. The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry

    NARCIS (Netherlands)

    Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco

    2016-01-01

    A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified

  7. Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro

    Science.gov (United States)

    Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi

    2012-01-01

    Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263

  8. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    Science.gov (United States)

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices

    Directory of Open Access Journals (Sweden)

    Fernanda M. Carbinatto

    2014-02-01

    Full Text Available Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations, since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs. Objective: In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated. Methods: Cross-linked samples were characterized by their micromeritic properties (size and shape, density, angle of repose and flow rate and liquid uptake ability. Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated. Results: Cross-linked samples demonstrated size homogeneity and irregular shape, with liquid uptake ability insensible to pH. Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process. The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix. Conclusion: The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.

  10. Identification and characterization of a pituitary corticotropin-releasing factor binding protein by chemical cross-linking

    DEFF Research Database (Denmark)

    Nishimura, E; Billestrup, Nils; Perrin, M

    1987-01-01

    appeared to have a molecular weight of approximately 70,000. The cross-linking was specific since an excess (1 microM) of an unrelated peptide (insulin) did not affect the appearance of the Mr 75,000 band. The concentration of CRF required to inhibit cross-linking by 50% was found to be similar...

  11. Do Fanconi anemia genes control cell response to cross-linking agents by modulating cytochrome P-450 reductase activity?

    NARCIS (Netherlands)

    Kruyt, FAE; Youssoufian, H

    2000-01-01

    The Fanconi anemia (FA) genes play an important role in maintaining chromosomal stability and the defense of mammalian cells against cross-linking agents, such as cisplatin and mitomycin C (MMC). Cells derived from FA patients display a characteristic hypersensitivity toward cross-linking agents.

  12. An electron microscopic study of the photochemical cross-linking of DNA in guinea pig epidermis by psoralen derivatives

    International Nuclear Information System (INIS)

    Cech, T.; Pathak, M.A.; Biswas, R.K.

    1979-01-01

    Albino guinea pigs were treated with psoralen derivatives plus 320-400 nm ultraviolet radiation, and DNA was extracted from their epidermis. The DNA was assayed for the presence of interstrand cross-links by standard denaturation-renaturation assays and by a new technique, electron microscopy of the DNA under totally denaturing conditions. The latter method allows individual cross-links to be directly observed and counted. When either 4,5',8-trimethylpsoralen or 8-methoxypsoralen was applied topically to the skin (8-20 μg/cm 2 ) or administered orally (10-12 mg/kg body weight), followed by exposure to 320-400 nm ultraviolet radiation, most of the epidermal DNA was found to contain a high frequency of cross-links. For example, oral or topical trimethylpsoralen treatment gave an average of one cross-link per 250 nucleotide pairs or about 3 . 10 5 cross-links per guinea pig chromosome. When the dose of either drug was decreased 20-fold to the level used in the clinical treatment of psoriasis, however, no cross-links could be detected in the epidermal DNA. The electron microscopic assay is sensitive enough that one can put an upper limit of 1 cross-link per 10 6 nucleotide pairs (80 cross-links per chromosome) for the low dose studies. The significance of these findings to the understanding of the effectiveness of psoralens in psoriasis therapy is discussed. (Auth.)

  13. Adsorption of hexavalent chromium on modified corn stalk using different cross-linking agents

    Science.gov (United States)

    Chen, Suhong; Zhu, Yi; Han, Zhijun; Feng, Gao; Jia, Yuling; Fu, Kaifang; Yue, Qinyan

    2017-12-01

    In this study, four different types of adsorbents modified from corn stalk were synthesized after the reaction with epichlorohydrin, N,N-dimethylformamide, triethylamine and different cross-linking agents. The surface functional groups and thermal stability of modified corn stalk (MCSs) were characterized using FTIR and TG analysis, respectively. The feasibility of using MCSs to remove Cr(VI) were evaluated. Adsorption isotherms were determined and modeled with Langmuir, Freundlich and Temkin equations. The experimental results showed that MCS modified using diethylenetriamine (DETA) had the best modification effect, and the adsorption capacity of Cr(VI) reached as high as 227.27 mg/g at 323 K. Thermodynamic study showed that the Cr(VI) adsorption onto MCSs was endothermic processes. As a result, MCS by using DETA as cross-linking agent has good potential for the removal of Cr(VI) from aqueous solutions.

  14. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    Science.gov (United States)

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial.

  15. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle......-linked by an amidation reaction using 3,6,9-trioxaundecandioic acid cross-linker. The cross-linked micelle was functionalized with two pH sensitive fluorophores and one reference fluorophore, which resulted in a highly uniform ratiometric pH nanosensor with a diameter of 29 nm. The use of two sensor fluorophores...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells....

  16. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2015-01-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed......-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation...... at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors.Both approaches provide stable nanosensors with similar pKa profiles and thereby...

  17. Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats

    DEFF Research Database (Denmark)

    Oturai, P S; Christensen, M; Rolin, B

    2000-01-01

    ), and a breaker of already formed AGE cross-links, N-phenacylthiazolium bromide (PTB), were investigated in streptozotocin-diabetic female Wistar rats. Diabetes for 24 weeks resulted in decreased tail collagen pepsin solubility, reflecting the formation of AGE cross-linking. Collagen solubility was significantly...... ameliorated by treatment with NNC39-0028, whereas PTB had no effect. Increased urinary albumin excretion (UAE) in diabetic rats was observed in serial measurements throughout the study period, and was not reduced by any treatment. Vascular dysfunction in the eye, measured as increased clearance of 125I......-albumin, was induced by diabetes. NNC39-0028 did not affect this abnormality. This study demonstrated a pharmacological inhibition of collagen solubility alterations in diabetic rats without affecting diabetes-induced pathophysiology such as the increase in UAE or albumin clearance. Treatment with PTB, a specific...

  18. Simulations of tensile failure in glassy polymers: effect of cross-link density

    International Nuclear Information System (INIS)

    Panico, M; Narayanan, S; Brinson, L C

    2010-01-01

    Molecular dynamics simulations are adopted to investigate the failure mechanisms of glassy polymers, particularly with respect to increasing density of cross-links. In our simulations thermosetting polymers, which are cross-linked, exhibit an embrittlement compared with uncross-linked thermoplastics in a similar fashion to several experimental investigations (Levita et al 1991 J. Mater. Sci. 26 2348; Sambasivam et al 1997 J. Appl. Polym. Sci. 65 1001; Iijima et al 1992 Eur. Polym. J. 28 573). We perform a detailed analysis of this phenomenon and propose an interpretation based on the predominance of chain scission process over disentanglement in thermosetting polymers. We also elucidate the brittle fracture response of the thermosetting polymers

  19. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men

    DEFF Research Database (Denmark)

    Couppé, C; Hansen, P; Kongsgaard, M

    2009-01-01

    were higher in OM than in YM (73 +/- 13 vs. 11 +/- 2 mmol/mol; P appreciably influence the dimensions or mechanical properties of the human patellar tendon in vivo. Collagen concentration was reduced, whereas both enzymatic......Age-related loss in muscle mass and strength impairs daily life function in the elderly. However, it remains unknown whether tendon properties also deteriorate with age. Cross-linking of collagen molecules provides structural integrity to the tendon fibrils and has been shown to change with age...... in animals but has never been examined in humans in vivo. In this study, we examined the mechanical properties and pyridinoline and pentosidine cross-link and collagen concentrations of the patellar tendon in vivo in old (OM) and young men (YM). Seven OM (67 +/- 3 years, 86 +/- 10 kg) and 10 YM (27 +/- 2...

  20. Model experiments on the sensitization of polyethylene cross-linking of oligobutadienes

    International Nuclear Information System (INIS)

    Brede, O.; Beckert, D.; Hoesselbarth, B.; Specht, W.; Tannert, F.; Wunsch, K.

    1988-01-01

    In presence of ≥ 1 % of 1,2-oligobutadiene the efficiency of the radiation-induced cross-linking of polyethylene was found to be increased in comparison to the pure matrix. Model experiments with solutions of the sensitizer in long chain n-alkanes showed that after addition of alkyl radicals onto the oligobutadiene (reaction with the vinyl groups) the sensitizer forms an own network which is grafted by the alkyl groups. In comparison to this grafting reaction proceeding with G of about 5 the vinyl consumption happened with about the threefold of it indicating a short (intra- and intermolecular) vinyl reaction chain. Pulse radiolysis measurements in solutions of the 1,2-oligobutadiene in n-hexadecane and in molten PE blends resulted in the observation of radical transients of the cross-linking reaction. (author)

  1. MeV ion beam interaction with polymer films containing cross-linking agents

    International Nuclear Information System (INIS)

    Evelyn, A. L.

    1999-01-01

    Polymer films containing cross linking enhancers were irradiated with MeV alpha particles to determine the effects of MeV ion beam interaction on these materials. The contributed effects from the electronic and nuclear stopping powers were separated by irradiating stacked thin films of polyvinyl chloride (PVC), polystyrene (PS) and polyethersulfone (PES). This layered system allowed most of the effects of the electronic energy deposited to be experienced by the first layers and the last layers to receive most of the effects of the nuclear stopping power. RGA, Raman microprobe analysis, RBS and FTIR measured changes in the chemical structures of the irradiated films. The characterization resolved the effects of the stopping powers on the PVC, PS and PES and the results were compared with those from previously studied polymers that did not contain any cross linking agents

  2. In vitro cross-linking of bovine lens proteins photosensitized by promazines

    International Nuclear Information System (INIS)

    Merville, M.P.; Decuyper, J.; Piette, J.; Calberg-Bacq, C.M.; Van de Vorst, A.

    1984-01-01

    Promazine derivatives induce cross-linking of bovine lens crystallins in vitro by irradiation with near-ultraviolet (UV) light in the presence of O 2 , as revealed by electrophoresis after denaturation. With the five derivatives tested (promazine [PZ], chlorpromazine [CPZ], triflupromazine [TFPZ], methoxypromazine [MTPZ], and acepromazine [ACPZ]), single-hit kinetics are observed. Evidence implicating the cation radicals of the PZ derivatives as the causative agent of this in vitro effect is presented. Hydroxyl radicals do not appear to be involved in the photo-cross-linking reaction. Sodium ascorbate protects against damage induced either by PZ derivatives plus light or by PZ cation radicals in the dark. These findings are discussed with respect to development of cataracts induced by these drugs in vivo

  3. Cross-linked sulfonated aromatic ionomers via SO2 bridges: Conductivity properties

    Science.gov (United States)

    Di Vona, M. L.; Pasquini, L.; Narducci, R.; Pelzer, K.; Donnadio, A.; Casciola, M.; Knauth, P.

    2013-12-01

    The proton conductivity of SPEEK membranes in situ cross-linked by thermal treatment at 180 °C for various times was investigated by impedance spectroscopy. The conductivity measurements were made on fully humidified membranes between 25 and 65 °C and on membranes exposed to different relative humidity between 80 and 140 °C. The Ionic Exchange Capacity (IEC) was determined by acid-base titration and the water uptake by gravimetry. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. A curve of proton conductivity vs. hydration number allows predicting that in order to reach a value of 0.1 S/cm at 100 °C a hydration number above 20 is necessary. The measured conductivity at this temperature is 0.16 S/cm for a hydration number of 60.

  4. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  5. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    Science.gov (United States)

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of electron beam-cross-linked gels on the rheological properties of raw natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Suman; Chattopadhyay, Santanu [Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Bharadwaj, Y.K.; Sabharwal, S. [Radiation Technology Development Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Bhowmick, Anil K. [Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India)], E-mail: anilkb@rtc.iitkgp.ernet.in

    2008-05-15

    Electron beam (EB)-cross-linked natural rubber (NR) gels were prepared from latex and characterized by various techniques. The addition of a small amount of these gels to raw NR was found to reduce the apparent shear viscosity and die swell remarkably. This effect was further enhanced with the addition of butyl acrylate as a sensitizer. The apparent shear viscosity first decreased up to 8 phr of gel loading and then increased. However, the percent die swell value decreased steadily upon gel loading. These were explained by calculating principal normal stress difference, the activation energy of melt flow and characteristics of EB-cross-linked gels. These effects were also reflected in the changes of mechanical and dynamic mechanical properties of gel-filled raw NR. Tailoring of the above properties could be done with the help of these gels.

  7. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair.

    Science.gov (United States)

    Liu, Ting; Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie; Huang, Jun

    2010-08-06

    Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.

  8. The properties of water in swollen cross-linked polystyrene sulfo acids

    Science.gov (United States)

    Gagarin, A. N.; Tokmachev, M. G.; Kovaleva, S. S.; Ferapontov, N. B.

    2008-11-01

    The properties of water in polystyrene sulfo acid gels with various cross-linking degrees were studied by optical volumetry and dynamic desorption porosimetry. The isotherms of water desorption obtained by dynamic desorption porosimetry coincided with isopiestic isotherms, which allowed this method to be recommended for the determination of the amount of water in polymer gels. Joint optical volumetry and dynamic desorption porosimetry studies showed that the interphase boundary in the cross-liked hydrophilic polymer-water system did not coincide with the visible gel boundary, because gels were two-phase systems, which contained water of two types, “free” and “bound.” The influence of the degree of polymer cross-linking on the amounts and properties of water of the two types was studied. It was shown that constants of water distribution in the polymer could be calculated from the dynamic desorption porosimetry data.

  9. Adsorption equilibrium studies of uranium (VI) onto cross-linked chitosan-citric acid

    International Nuclear Information System (INIS)

    Ho Thi Yeu Ly; Nguyen Van Suc; Vo Quang Mai; Nguyen Mong Sinh

    2011-01-01

    Investigation of U(VI) adsorption by the cross- linked chitosan with citric acid was conduced by bath method. Effect of parameters such as pH, contact time, adsorbent dosage and other metal cations was determined. The maximum adsorption capacity of U(VI) at pH 4 was found to be 71.43 mg U(VI) / g cross-linked chitosan - citric acid after 300 min of contact time. The Langmuir and Freundlich isotherm models were used to describe adsorption equilibrium. The correction values, R 2 of two models were found to be 0.991 and 0.997, respectively. Therefore, it could be concluded that the adsorption equilibrium for U(VI) was followed the Langmuir and the Freundlich isotherm models. (author)

  10. Use of a chitosan based natural coating materials to reduce spoilage and pathogenic bacteria on poultry products

    Science.gov (United States)

    Chitosan is a natural compound with proven antimicrobial activity having GRAS status (generally recognized as safe) as determined by the United States Food and Drug Administration (Smith et al., 2014). Efforts are underway to develop and improve the use of chitosan based films as packaging material...

  11. Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage

    OpenAIRE

    Zhang, Pan; Herbig, Utz; Coffman, Frederick; Lambert, Muriel W.

    2013-01-01

    Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid ?-spectrin (?IISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that ?IISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recrui...

  12. Mapping protein-RNA interactions by RCAP, RNA-cross-linking and peptide fingerprinting.

    Science.gov (United States)

    Vaughan, Robert C; Kao, C Cheng

    2015-01-01

    RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein-RNA contacts within virions.

  13. Cross-Linking in Collagen by Nonenzymatic Glycation Increases the Matrix Stiffness in Rabbit Achilles Tendon

    OpenAIRE

    Reddy, G. Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174–180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendo...

  14. Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon.

    Science.gov (United States)

    Reddy, G Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174-180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendon. The glycation process was initiated by incubating the Achilles tendons (n = 6) in phosphate-buffered saline containing ribose, whereas control tendons (n = 6) were incubated in phosphate-buffered saline without ribose. Eight weeks following glycation, the biomechanical attributes as well as the degree of collagen cross-linking were determined to examine the potential associations between matrix stiffness and molecular properties of collagen. Compared to nonglycated tendons, the glycated tendons showed increased maximum load, stress, strain, Young's modulus of elasticity, and toughness indicating that glycation increases the matrix stiffness in the tendons. Glycation of tendons resulted in a considerable decrease in soluble collagen content and a significant increase in insoluble collagen and pentosidine. Analysis of potential associations between the matrix stiffness and degree of collagen cross-linking showed that both insoluble collagen and pentosidine exhibited a significant positive correlation with the maximum load, stress, and strain, Young's modulus of elasticity, and toughness (r values ranging from.61 to.94) in the Achilles tendons. However, the soluble collagen content present in neutral salt buffer, acetate buffer, and acetate buffer containing pepsin showed an inverse relation with the various biomechanical attributes tested (r values ranging from.22 to.84) in the Achilles tendons. The results of the study demonstrate that glycation-induced collagen cross-linking

  15. Chemical cross-linking and mass spectrometry as structure determination tools

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Giannakopulos, A.

    2007-01-01

    Roč. 13, - (2007), s. 105-113 ISSN 1469-0667 R&D Projects: GA AV ČR KJB400200501; GA MŠk LC545 Grant - others:SE(XE) Marie Curie Actions TOK, Contract No. MTKD-CT-2004-014407 Institutional research plan: CEZ:AV0Z50200510 Keywords : cross-linking * protein * high order structure Subject RIV: EE - Microbiology, Virology Impact factor: 1.198, year: 2007

  16. Characterization and effects of cross-linked potassium polyacrylate as soil amendment

    OpenAIRE

    Sanz Gómez, Jorge

    2016-01-01

    Falta palabras clave Cross-linked potassium polyacrylate (Luquasorb®1280R) is a granular anionic superabsorbent polymer with the ability to absorb large amounts of water. The objectives of this study were the physicochemical characterization of the material and its effects when used as soil amendment together with the evaluation of the impact on agronomical parameters when it was applied to processing varieties of tomato (Solanum lycopersicum L.) grown under Mediterranean climate condit...

  17. Long-term results of cornea collagen cross-linking with riboflavin for keratoconus

    Directory of Open Access Journals (Sweden)

    Vinay Agrawal

    2013-01-01

    Full Text Available Corneal collagen cross-linking with riboflavin and UVA light (CXL is the only method designed to arrest the progression of keratoconus. Visual improvement generally starts 3 months after treatment. Reduction is coma seen on aberrometry in early postoperative phase is also responsible for the improvement in visual acuity. In the light of currently available data we can thus say that CXL is a safe procedure that is successful in arresting keratoconus.

  18. Wear of a 5 megarad cross-linked polyethylene liner: a 6-year RSA study.

    Science.gov (United States)

    Callary, Stuart A; Campbell, David G; Mercer, Graham; Nilsson, Kjell G; Field, John R

    2013-07-01

    One cross-linked polyethylene (XLPE) liner is manufactured using a lower dose of radiation, 5 Mrad, which may result in less cross-linking. The reported in vivo wear rate of this XLPE liner in patients undergoing THA has varied, and has included some patients in each reported cohort who had greater than 0.1 mm/year of wear, which is an historical threshold for osteolysis. Previous studies have measured wear on plain radiographs, an approach that has limited sensitivity. We therefore measured the amount and direction of wear at 6 years using Radiostereometric analysis (RSA) in patients who had THAs that included a cross-linked polyethylene liner manufactured using 5 Mrad radiation. We prospectively reviewed wear in 30 patients who underwent primary THAs with the same design of cross-linked acetabular liner and a 28-mm articulation. Tantalum markers were inserted during surgery and all patients had RSA radiographic examinations at 1 week, 6 months, 1, 2, and 6 years postoperatively. The mean proximal, two-dimensional (2-D) and three-dimensional (3-D) wear rates calculated between 1 year and 6 years were 0.014, 0.014, and 0.018 mm/per year, respectively. The direction of the head penetration recorded between 1 week and 6 years was in a proximal direction for all patients, proximolateral for 16 of 24 patients, and proximomedial for eight of 24 patients. The proximal, 2-D and 3-D wear of a XLPE liner produced using 5 Mrad of radiation was low but measurable by RSA after 6 years. No patients had proximal 2-D or 3-D wear rates exceeding 0.1 mm/year. Further followup is needed to evaluate the effect of XLPE wear particles on the development of long-term osteolysis.

  19. 3.3. Sorption activity of cross-linked polymers of ethynyl-piperidol

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption activity of cross-linked polymers of ethynyl-piperidol was studied. The bilirubin sorption was studied as well. The kinetic of bilirubin sorption and human serum albumin at their joint presence in hydrogel solutions was defined. Bilirubin sorption and change of albumin composition was considered. The sorption of middle molecular peptides was considered as well. The sorption of endogenous toxin by means of ethynyl-piperidol polymers was done.

  20. In vitro Antiglycation and Cross-Link Breaking Activities of Sri ...

    African Journals Online (AJOL)

    Purpose: To investigate the antiglycation and cross-link breaking activities of Sri Lankan low-grown orthodox Orange Pekoe grade black tea (Camellia sinensis L) Methods: Five concentrations (6.25, 12.5, 25.0, 50.0 or 100.0 ìg/ml) of Black tea brew (BTB) were made using Sri Lankan low-grown Orange Pekoe (O.P.) grade ...

  1. Impact of corneal cross-linking combined with photorefractive keratectomy on blurring strength

    OpenAIRE

    Labiris, Georgios; Sideroudi, Haris; Angelonias, Dimitris; Georgantzoglou, Kimonas; Kozobolis, Vassilios P

    2016-01-01

    Georgios Labiris,1,2 Haris Sideroudi,2 Dimitris Angelonias,2 Kimonas Georgantzoglou,2 Vassilios P Kozobolis1,21Department of Ophthalmology, University Hospital of Alexandroupolis, 2Eye Institute of Thrace, Alexandroupolis, GreecePurpose: The aim of this study was to evaluate the impact of corneal cross-linking combined with photorefractive keratectomy (PRK) on blurring strength.Methods: A total of 63 patients with keratoconus were recruited for this study, and two study groups were formed acc...

  2. Procedure for the fabrication of a cross-linked polyester material

    International Nuclear Information System (INIS)

    D'Alelio, G.F.

    1972-01-01

    The procedures are described for the production of a cross-linked polyester material by means of the irradiation of a radiosensitive polyester with a dose of over 0.5 megarad and under 8 megarads high energy, ionising radiation, corresponding to at least 100,000 ev. The polyester is of the telomerised diacrylpolyester type, and may be in a mixture containing about 1% of a coplymerisable aliphatic monomer, or about 30-90% of an unsaturated aliphatic alkyd resin. (JIW)

  3. Studies in cross-linking PVC footwear soling compounds using gamma-irradiation

    International Nuclear Information System (INIS)

    Bloom, L.I.

    1983-01-01

    Irradiation cross-linking of polymeric materials has been known for some time, but it is only in recent years that it has been put to commercial advantage. Well known uses are the modification of PVC for higher temperature applications. Fundamental studies were carried out on amongst other materials, plasticised PVC compounds for use in cable applications. The results of this work, encouraged the author to investigate cross-linkable PVC in areas such as footwear soling

  4. Fluorescence imaging of tryptophan and collagen cross-links to evaluate wound closure ex vivo

    Science.gov (United States)

    Wang, Ying; Ortega-Martinez, Antonio; Farinelli, Bill; Anderson, R. R.; Franco, Walfre

    2016-02-01

    Wound size is a key parameter in monitoring healing. Current methods to measure wound size are often subjective, time-consuming and marginally invasive. Recently, we developed a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds. This method exploits the fluorescence of native molecules to tissue as functional and structural markers. The objective of the present study is to demonstrate the feasibility of using variations in the fluorescence intensity of tryptophan and cross-links of collagen to evaluate proliferation of keratinocyte cells and quantitate size of wound during healing, respectively. Circular dermal wounds were created in ex vivo human skin and cultured in different media. Two serial fluorescence images of tryptophan and collagen cross-links were acquired every two days. Histology and immunohistology were used to validate correlation between fluorescence and epithelialization. Images of collagen cross-links show fluorescence of the exposed dermis and, hence, are a measure of wound area. Images of tryptophan show higher fluorescence intensity of proliferating keratinocytes forming new epithelium, as compared to surrounding keratinocytes not involved in epithelialization. These images are complementary since collagen cross-links report on structure while tryptophan reports on function. HE and immunohistology show that tryptophan fluorescence correlates with newly formed epidermis. We have established a fluorescence imaging method for studying epithelialization processes during wound healing in a skin organ culture model, our approach has the potential to provide a non-invasive, non-contact, quick, objective and direct method for quantitative measurements in wound healing in vivo.

  5. Production of RNA-protein cross links in γ irradiated E. Coli ribosomes

    International Nuclear Information System (INIS)

    Ekert, Bernard; Giocanti, Nicole

    1976-01-01

    γ irradiation in de-aerated conditions of E. coli MRE 600 ribosomes, labelled with 14 C uracil, leads to a decrease of extractibility of 14 C RNA by lithium chloride 4 M-urea 8 M. On the other hand, the radioactivity of the protein fraction increases with irradiation. These results strongly suggest that RNA-protein cross links are formed in irradiated ribosomes [fr

  6. Gamma-radiation induced cross-links in ethylene-propylene rubber studied by CP-MAS NMR

    International Nuclear Information System (INIS)

    Sohma, J.; Shiotani, M.; Murakami, S.

    1983-01-01

    A new technique of 13 C-NMR, the CP-MAS method, was applied to study a chemistry of cross-links induced by #betta#-irradiation of ethylene-propylene rubber. The chemical species of cross-linking points were specified with their relative concentrations by the analysis of the CP-MAS spectra obtained before and after the irradiation. It was found that the short branches were also formed by the irradiation. A comparison was made between the cross-links detected by the CP-MAS method and those obtained by the Charlesby-Pinner analysis of the gelation caused by the #betta#-irradiation. The conventional 13 C-NMR of the cross-linked and swollen EPR provided us an information on the sol parts of the sample but little information on the cross-links in the gel parts. (author)

  7. Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Li, Hui; Frigaard, Niels-Ulrik; Bryant, Donald A

    2006-01-01

    type and mutants lacking a single chlorosome protein were cross-linked with the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and analyzed by gel electrophoresis. Similar cross-linking products were observed when the time and temperature were varied or when EDC...... was replaced with glutaraldehyde. Specific interactions between chlorosome proteins in cross-linked products were identified by immunoblotting with polyclonal antibodies raised against recombinant chlorosome proteins. We confirmed these interactions by demonstrating that these products were missing...... in appropriate mutants. Confirming the location of CsmA in the paracrystalline baseplate, cross-linking showed that CsmA forms dimers, trimers, and homomultimers as large as dodecamers and that CsmA directly interacts with the Fenna-Matthews-Olson protein. Cross-linking further suggests that the precursor form...

  8. Three-Year Outcomes of Cross-Linking PLUS (Combined Cross-Linking with Femtosecond Laser Intracorneal Ring Segments Implantation for Management of Keratoconus

    Directory of Open Access Journals (Sweden)

    Mohammed Iqbal Hafez Saleem

    2018-01-01

    Full Text Available Purpose. To analyze the results of three-year outcomes of combined epithelium-on cross-linking with femtosecond laser ICRS (cross-linking PLUS for keratoconus management. Design. A retrospective multicenter clinical study. Methods. 43 eyes of 38 patients were subjected to preoperative and postoperative UCVA, BCVA, refraction, Pentacam pachymetry, and keratometry examinations at 3-, 6-, 12-, 24-, and 36-month follow-up period. Results. The preoperative and postoperative mean UCVA was 1.30 ± 0.48 (logMAR ± SD and 0.82 ± 0.22 respectively. The preoperative and postoperative mean BCVA was 0.90 ± 0.40 and 0.60 ± 0.30, respectively. The preoperative and postoperative mean K average was 50.63 ± 0.87 (D ± SD and 45.56 ± 0.98, respectively. The preoperative and postoperative mean pachymetry was 471 ± 92.36 (μm ± SD and 423 ± 39.58, respectively. The preoperative and postoperative mean astigmatism was 7.55 ± 1.75 and 3.39 ± 1.26, respectively. One eye showed ICRS edge exposure while 6 eyes showed progression of keratoconus. Conclusion. CXL PLUS was proved to be a successful procedure to halt progression (mainly by CXL and to correct the refractive status of the keratoconic eye (mainly by ICRS. CXL PLUS performed a synergistic action correcting and maintaining the correction of both myopic and astigmatic components of keratoconus.

  9. Conventional Corneal Collagen Cross-Linking Versus Transepithelial Diluted Alcohol and Iontophoresis-Assisted Corneal Cross-Linking in Progressive Keratoconus.

    Science.gov (United States)

    Bilgihan, Kamil; Yesilirmak, Nilufer; Altay, Yesim; Yuvarlak, Armagan; Ozdemir, Huseyin Baran

    2017-12-01

    To compare clinical outcomes of conventional corneal cross-linking (C-CXL) and diluted alcohol and iontophoresis-assisted corneal cross-linking (DAI-CXL) for the treatment of progressive keratoconus (KC). Ninety-three eyes of 80 patients with KC were treated by C-CXL (n = 47) or DAI-CXL (n = 46). Visual acuity, keratometry, KC indexes, pachymetry, and aberrations were recorded before treatment and 1, 3, 6, and 12 months after treatment. The demarcation line was assessed 1 month after treatment. A significant improvement in visual acuity was observed at month 3 and month 6 after DAI-CXL and C-CXL, respectively. A significant decrease in maximum keratometry was observed in both groups at month 6. The front symmetry index significantly improved in both groups after 6 months, whereas the Baiocchi Calossi Versaci index significantly improved only after DAI-CXL at month 12 (P = 0.01). Average keratometry and other KC indexes were stable during 12 months of follow-up. Central corneal thickness decreased by 28.6 and 40.2 μm after DAI-CXL and C-CXL at month 1, respectively (P < 0.01), and it reached baseline at the 12th month (P = 0.14) only in the DAI-CXL group. Higher-order aberrations, coma, and spherical aberration significantly worsened at month 1 (P < 0.01) only after C-CXL; however, they improved significantly at month 12 compared with baseline (P < 0.05) in both groups. The demarcation line was visible in all cases at month 1 at a mean depth of 302 ± 56 μm and 311 ± 57 μm after DAI-CXL and C-CXL, respectively (P = 0.7). The DAI-CXL protocol seems as effective as the C-CXL protocol in halting KC progression after 1 year of follow-up.

  10. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying; Dal-Cin, Mauro M D; Pinnau, Ingo; Nicalek, Andrzej; Robertson, Gilles P.; Guiver, Michael D.

    2011-01-01

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adenovirus type 5 DNA-protein complexes from formaldehyde cross-linked cells early after infection

    International Nuclear Information System (INIS)

    Spector, David J.; Johnson, Jeffrey S.; Baird, Nicholas L.; Engel, Daniel A.

    2003-01-01

    We report here the properties of viral DNA-protein complexes that purify with cellular chromatin following formaldehyde cross-linking of intact cells early after infection. The cross-linked viral DNA fractionated into shear-sensitive (S) and shear- resistant (R) components that were separable by sedimentation, which allowed independent characterization. The R component had the density and sedimentation properties expected for DNA-protein complexes and contained intact viral DNA. It accounted for about 50% of the viral DNA recovered at 1.5 h after infection but less than 20% by 4.5 h. The proportion of R component was independent of multiplicity of infection, even at less than one particle per cell. Viral hexon and protein VII, but not protein VI, were detected in the fractions containing the R component. These properties are consistent with those of partially uncoated virions associated with the nuclear envelope. A substantial proportion of the S component viral DNA had the same density as cellular chromatin. Protein VII was the most abundant viral protein present in gradient fractions that contained the S component. Complexes containing USF transcription factor cross-linked to the adenovirus major late promoter were detected by viral chromatin immunoprecipitation of the fractions containing S component. The S component probably contained uncoated nuclear viral DNA that assembles into early viral transcription complexes

  12. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation

    KAUST Repository

    Du, Naiying

    2011-03-11

    Cross-linked polymers of intrinsic microporosity (PIM)s for gas separation membranes, were prepared by a nitrene reaction from a representative PIM in the presence of two different diazide cross-linkers. The reaction temperature was optimized using TGA. The homogenous membranes were cast from THF solutions of different ratios of PIM to azides. The resulting cross-linked structures of the PIMs membranes were formed at 175 °C after 7.5 h and confirmed by TGA, XPS, FT-IR spectroscopy and gel content analysis. These resulting cross-linked polymeric membranes showed excellent gas separation performance and can be used for O 2/N 2 and CO 2/N 2 gas pairs, as well as for condensable gases, such as CO 2/CH 4, propylene/propane separation. Most importantly, and differently from typical gas separation membranes derived from glassy polymers, the crosslinked PIMs showed no obvious CO 2 plasticization up to 20 atm pressure of pure CO 2 and CO 2/CH 4 mixtures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  14. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. Copyright © 2016. Published by Elsevier Ltd.

  15. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread.

    Science.gov (United States)

    Buksa, Krzysztof; Nowotna, Anna; Ziobro, Rafał

    2016-02-01

    The role of water extractable arabinoxylan with varying molar mass and structure (cross-linked vs. hydrolyzed) in the structure formation of rye bread was examined using a model bread. Instead of the normal flour, the dough contained starch, arabinoxylan and protein, which were isolated from rye wholemeal. It was observed that the applied mixes of these constituents result in a product closely resembling typical rye bread, even if arabinoxylan was modified (by cross-linking or hydrolysis). The levels of arabinoxylan required for bread preparation depended on its modification and mix composition. At 3% protein, the maximum applicable level of poorly soluble cross-linked arabinoxylan was 3%, as higher amounts of this preparation resulted in an extensively viscous dough and diminished bread volume. On the other hand highly soluble, hydrolyzed arabinoxylan could be used at a higher level (6%) together with larger amounts of rye protein (3% or 6%). Further addition of arabinoxylan leads to excessive water absorption, resulting in a decreased viscosity of the dough during baking and insufficient gas retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps.

    Science.gov (United States)

    Csomós, Krisztián; Kristóf, Endre; Jakob, Bernadett; Csomós, István; Kovács, György; Rotem, Omri; Hodrea, Judit; Bagoly, Zsuzsa; Muszbek, Laszlo; Balajthy, Zoltán; Csősz, Éva; Fésüs, László

    2016-08-11

    Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system.

  17. An atomistic model for cross-linked HNBR elastomers used in seals

    Science.gov (United States)

    Molinari, Nicola; Sutton, Adrian; Stevens, John; Mostofi, Arash

    2015-03-01

    Hydrogenated nitrile butadiene rubber (HNBR) is one of the most common elastomeric materials used for seals in the oil and gas industry. These seals sometimes suffer ``explosive decompression,'' a costly problem in which gases permeate a seal at the elevated temperatures and pressures pertaining in oil and gas wells, leading to rupture when the seal is brought back to the surface. The experimental evidence that HNBR and its unsaturated parent NBR have markedly different swelling properties suggests that cross-linking may occur during hydrogenation of NBR to produce HNBR. We have developed a code compatible with the LAMMPS molecular dynamics package to generate fully atomistic HNBR configurations by hydrogenating initial NBR structures. This can be done with any desired degree of cross-linking. The code uses a model of atomic interactions based on the OPLS-AA force-field. We present calculations of the dependence of a number of bulk properties on the degree of cross-linking. Using our atomistic representations of HNBR and NBR, we hope to develop a better molecular understanding of the mechanisms that result in explosive decompression.

  18. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    Science.gov (United States)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  19. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Elizabeth Sánchez-Bustos

    2016-01-01

    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  20. Collagen cross-linking in sun-exposed and unexposed sites of aged human skin

    Science.gov (United States)

    Yamauchi, M.; Prisayanh, P.; Haque, Z.; Woodley, D. T.

    1991-01-01

    A recently described nonreducible, acid-heat stable compound, histidinohydroxylysinonorleucine (HHL), is a collagen cross-link isolated from mature skin tissue. Its abundance is related to chronologic aging of skin. The present communication describes the quantity of HHL from aged human skin of the same individuals in sun-exposed (wrist) and unexposed (buttock) sites. Punch biopsies were obtained from these sites from nine people of age 60 or older. HHL contents (moles/mole of collagen) at these sites were for wrist 0.13 +/- 0.07 and for buttock 0.69 +/- 0.17 (mean +/- SD, p less than 0.001). In addition, it was found that acute irradiation of the cross-linked peptides with UVA (up to 250 J/cm2) and UVB (up to 1 J/cm2) had no effect on HHL structure. The same treatment significantly degraded another nonreducible, stable collagen cross-link, pyridinoline. The results suggest that chronic sunlight exposure may be associated with an impediment to normal maturation of human dermal collagen resulting in tenuous amount of HHL. Thus, the process of photoaging in dermal collagen is different from that of chronologic aging in human skin.

  1. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou, E-mail: duyk@suda.edu.cn

    2017-07-31

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt{sup 2+} were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt{sup 2+} to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  2. Capacity of cognitive radio under imperfect secondary and cross link channel state information

    KAUST Repository

    Sboui, Lokman

    2011-09-01

    In this paper, we study the ergodic capacity of secondary user channel in a spectrum sharing scenario in which the secondary transmitter is instantaneously aware of estimated versions of the cross link (between the secondary transmitter and the primary receiver) and the secondary link Channel State Information (CSI). The secondary link optimal power profile along with the ergodic capacity are derived for a class of fading channels, under an average power constraint and an instantaneous interference outage constraint. We also show that our framework is rather general as it encompasses several previously studied spectrum sharing settings as special cases. In order to gain some insights on the capacity behavior, numerical results are shown for independent Rayleigh fading channels where it is found for instance, that at low SNR regime, only the secondary channel estimation matters and that the cross link CSI has no effect on the ergodic capacity; whereas at high SNR regime, the capacity is rather driven by the cross link CSI. © 2011 IEEE.

  3. Radiation cross-linked plastics: a versatile material solution for packaging, automotive, Electrotechnic and Electronics

    International Nuclear Information System (INIS)

    Rouif, Sophie

    2004-01-01

    Used since the beginning of the 1970s for the production of halogen-free and heat-resistant cables and wires, for conditioning polyethylene hot-water pipes or for the manufacture of heat shrinkable tubes and of tyres, radiation cross-linking is developing fastly today on the scale of plastic-moulded parts, and not only by the mean of EB, but also under gamma rays. Indeed, it improves considerably the performances of a great number of plastics among thermoplastics, elastomers and thermoplastic elastomers (TPE). Radiation cross-linking reinforces the dimensional stability of polymers in chemically aggressive and high-temperature conditions. Radiation cross-linked-based engineering plastics offers OEM and end users in many branches of industry both technical and economical advantages in comparison with high-performances plastics. They constitute a technical and economical compromise between engineering plastics that failed and high-performances plastic, often over-tailored and expensive. This modern industrial technology gives way to new applications and perspectives in various sectors (packaging, automotive, electrotechnic and electronics, including connectors, surface-mounted devices, integrated circuits, 3D-MID, etc.) that are described in the paper

  4. Location of DNA-protein cross-links in mammalian cell nuclei

    International Nuclear Information System (INIS)

    Oleinick, N.L.

    1985-01-01

    DNA-protein cross-links (DPCs) occur in 1-3% of the bulk DNA of unirradiated cells, and dose-dependent increases in DPCs with γ- or UV-radiation can be detected by filter-binding. DPCs may contribute to cell lethality, since their formation is prevented by radical scavengers. Since the environment of DNA varies within eukaryotic nuclei, we have probed the composition and sub-nuclear location of DPCs. Both before and after irradiation, the major proteins cross-linked to DNA have molecular weights similar to known proteins of the nuclear matrix. The DNA cross-linked to protein is enriched in sequences which hybridize to mRNA or rRNA transcripts; such sequences are also found preferentially in preparations of nuclear matrix. When histone-depleted, matrix-associated DNA is separated from the DNA of the supercoiled ''loops'' by digestion with EcoRI and assayed for DPCs by filter binding, the frequency of DPCs is greater in the matrix. During repair of DPCs, protein-associated DNA becomes depleted in actively transcribing DNA, followed by reconstitution of the active-gene-enriched nuclear matrix. These data are consistent with known properties of the matrix and suggest the hypothesis that in intact cells, radiation-induced DPCs are primarily a product of matrix-associated DNA sequences and matrix protein

  5. Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yin Xiong; Tan Weiwei; Xiang Wangchun; Lin Yuan; Zhang Jingbo; Xiao Xurui; Li Xueping; Zhou Xiaowen; Fang Shibi

    2010-01-01

    Poly(vinylpyridine-co-ethylene glycol methyl ether methacrylate) (P(VP-co-MEOMA)) and α,ω-diiodo poly(ethylene oxide-co-propylene oxide) (I[(EO) 0.8 -co-(PO) 0.2 ] y I) were synthesized and used as chemically cross-linked precursors of the electrolyte for dye-sensitized solar cells. Meanwhile, α-iodo poly(ethylene oxide-co-propylene oxide) methyl ether (CH 3 O[(EO) 0.8 -co-(PO) 0.2 ] x I) was synthesized and added into the electrolyte as an internal plasticizer. Novel polymer electrolyte resulting from chemically cross-linked precursors was obtained by the quaterisation at 90 o C for 30 min. The characteristics for this kind of electrolyte were investigated by means of ionic conductivity, thermogravimetric and photocurrent-voltage. The ambient ionic conductivity was significantly enhanced to 2.3 x 10 -4 S cm -1 after introducing plasticizer, modified-ionic liquid. The weight loss of the solid state electrolyte at 200 o C was 1.8%, and its decomposition temperature was 287 o C. Solid state dye-sensitized solar cell based on chemically cross-linked electrolyte presented an overall conversion efficiency of 2.35% under AM1.5 irradiation (100 mW cm -2 ). The as-fabricated device maintained 88% of its initial performance at room temperature even without sealing for 30 days, showing a good stability.

  6. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    International Nuclear Information System (INIS)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-01-01

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt 2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt 2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  7. Characterization of radiation-cross-linked, high-density polyethylene for thermal energy storage

    International Nuclear Information System (INIS)

    Whitaker, R.B.; Craven, S.M.; Etter, D.E.; Jendrek, E.F.; Nease, A.B.

    1983-01-01

    Electron beam cross-linked high-density polyethylene (HDPE) pellets (DuPont Alathon, 0.93 MI) have been characterized for potential utility in thermal energy storage applications, before and after up to 500 melt-freeze cycles in ethylene glycol. Up to 95% of the HDPE's initial DSC differential scanning calorimetry Δ H/sub f/ value (44.7 cal/g) (at 1.25 0 C/min cooling rates) was retained up to 9.0 Mrad radiation dosage. Form-stability after 500 melt-freeze cycles was very good at this dosage level. X-ray diffraction measurements showed little difference between irradiated HDPE's and the unirradiated control, indicating that cross-linking occurred primarily in the amorphous regions. FTIR spectroscopy showed the pellets to be uniformly reacted. The ratios of the 965-cm -1 absorption band (trans RCH=CRH') to the 909-cm -1 band (RCH=CH 2 ) increased with increasing radiation dosage, up to 18 Mrad. Gel contents reached a maximum of 75% at the 13.5 Mrad dosage, indicating that other reactions, in addition to cross-linking, occurred at the highest (18 Mrad) dosage level. 15 references, 5 figures, 4 tables

  8. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Elena Manaila

    2016-06-01

    Full Text Available The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  9. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    Science.gov (United States)

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    Directory of Open Access Journals (Sweden)

    Edismauro Garcia Freitas Filho

    2016-01-01

    Full Text Available Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  11. Sieving of Hot Gases by Hyper-Cross-Linked Nanoscale-Hybrid Membranes

    NARCIS (Netherlands)

    Raaijmakers, Michiel; Hempenius, Mark A.; Schön, Peter Manfred; Vancso, Gyula J.; Nijmeijer, Arian; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    Macromolecular networks consisting of homogeneously distributed covalently bonded inorganic and organic precursors are anticipated to show remarkable characteristics, distinct from those of the individual constituents. A novel hypercross-linked ultrathin membrane is presented, consisting of a giant

  12. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  13. Studies for improving and formulating of chitosan-based coatings by radiation treatment for fruit preservation

    International Nuclear Information System (INIS)

    Nguyen Duy Lam; Tran Bang Diep; Tran Minh Quynh; Le Thi Dinh; Nguyen Van Binh; Ho Minh Duc; Vo Van Thuan

    2003-01-01

    Presented are the investigations: effect of chitosan on fruit - spoiling microorganism and enhancement of antifungal activity by radiation treatment; improvement of antimicrobial activity of chitosan by its derivatives synthesis in combination with radiation treatment; dependence of chitosan antimicrobial activity on molecular weight and distribution of molecular weight; comparative study on the antifungal activity of chitosan of various origins tested in different conditions of radiation treatment and culture mediums; formulation of chitosan membranes and for their properties in mango coating; effectiveness of chitosan-based coatings on fresh fruit appearance and quality during storage; influence of irradiated chitosan on rice plant growing in media contaminated with salt and heavy metals; effect of chitosan solution varied in concentration and molecular weight on seed germination and seedling growth of groundnut, soybean and cabbage. (NHA)

  14. Data in support of covalent attachment of tyrosinase onto cyanuric chloride crosslinked magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Kourosh Abdollahi

    2016-12-01

    Full Text Available Preparation and characterization of cross linked amine-functionalized magnetic nanoparticles as an appropriate support for covalent immobilization on tyrosinase was presented in the study "Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: synthesis and characterization of the recyclable nanobiocatalyst" (Abdollahi et al., 2016 [1]. Herein, complementary data regarding X-ray powder diffraction (XRD to characterize the synthesized magnetic nanoparticles, and transmission electron microscopy (TEM to determine the size and morphology of tyrosinase immobilized magnetic nanoparticles (tyrosinase-MNPs were reported. The purification results of the extracted tyrosinase from mushroom Agaricus bisporus were provided in a purification table. The covalent immobilization of tyrosinase onto cyanuric chloride functionalized magnetic nanoparticles was proved by performing thermo-gravimetric and energy-dispersive X-ray spectroscopy analyses. The operational stability of immobilized tyrosinase was investigated by incubating tyrosinase-MNPs at different pH and temperatures.

  15. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Directory of Open Access Journals (Sweden)

    Cordula Klockenbusch

    2010-01-01

    Full Text Available Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively.

  16. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Science.gov (United States)

    Klockenbusch, Cordula; Kast, Juergen

    2010-01-01

    Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879

  17. Sub- T g Cross-Linking of a Polyimide Membrane for Enhanced CO 2 Plasticization Resistance for Natural Gas Separation

    KAUST Repository

    Qiu, Wulin

    2011-08-09

    Decarboxylation-induced thermal cross-linking occurs at elevated temperatures (∼15 °C above glass transition temperature) for 6FDA-DAM:DABA polyimides, which can stabilize membranes against swelling and plasticization in aggressive feed streams. Despite this advantage, such a high temperature might result in collapse of substructure and transition layers in the asymmetric structure of a hollow fibers based on such a material. In this work, the thermal cross-linking of the 6FDA-DAM:DABA at temperatures much below the glass transition temperature (∼387 °C by DSC) was demonstrated. This sub-Tg cross-linking capability enables extension to asymmetric structures useful for large scale membranes. The resulting polymer membranes were characterized by swelling in known solvents for the un-cross-linked materials, TGA analysis, and permeation tests of aggressive gas feed stream at higher pressure. The annealing temperature and time clearly influence the degree of cross-linking of the membranes, and results in a slight difference in selectivity for membranes under various cross-linking conditions. Results indicate that the sub-Tg thermal cross-linking of 6FDA-DAM:DABA dense film membrane can be carried out completely even at a temperature as low as 330 °C. Permeabilities were tested for the polyimide membranes using both pure gases (He, O2, N2, CH4, CO2) and mixed gases (CO2/CH4). The selectivity of the cross-linked membrane can be maintained even under very aggressive CO2 operating conditions that are not possible without cross-linking. Moreover, the plasticization resistance was demonstrated up to 700 psia for pure CO 2 gas or 1000 psia for 50% CO2 mixed gas feeds. © 2011 American Chemical Society.

  18. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Nop M.B.K., E-mail: n.willems@acta.nl [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Langenbach, Geerling E.J. [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Stoop, Reinout [Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden (Netherlands); Toonder, Jaap M.J. den [Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Mulder, Lars [Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Zentner, Andrej [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Everts, Vincent [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands)

    2014-09-01

    The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2 M ribose at 37 °C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness. - Highlights: • The assessment of effects of glycation in bone using HPLC, microCT, and nanoindentation • Ribose incubation: 300‐fold increase in the number of pentosidine cross-links • 300‐fold increase in the number of pentosidine cross-links: no changes in bone tissue stiffness.

  19. Affect the Cross Linking Degree and Polymer Composition on the Mechanical Properties of Poly (vinyl alcohol/ Pullu-lan Films

    Directory of Open Access Journals (Sweden)

    Shemaa Abdul Satar Soud

    2018-04-01

    Full Text Available In this study Cross-linked PVA/Pullulan film was prepared. Cross-linking reaction done by addi-tion of gluteraldehyde at different reaction time (10,30and 60 min. Chemical interaction, me-chanical, thermal properties, water solubility and film morphology was studied for cross-linked PVA/Pullulan, PVA and Pullulan only. Thus FTIR investigated formation of hydrogen bonding between pullulan and PVA with (GA. Tensile strength, tensile modulus and elongation (% at break for PVA/Pullulan film was improved with addition of (GA as the reaction time proceed equivalent with increasing PVA content

  20. Two DD-carboxypeptidases from Mycobacterium smegmatis affect cell surface properties through regulation of peptidoglycan cross-linking and glycopeptidolipids.

    Science.gov (United States)

    Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S

    2018-05-07

    During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression

  1. Identification of mammalian proteins cross-linked to DNA by ionizing radiation.

    Science.gov (United States)

    Barker, Sharon; Weinfeld, Michael; Zheng, Jing; Li, Liang; Murray, David

    2005-10-07

    Ionizing radiation (IR) is an important environmental risk factor for various cancers and also a major therapeutic agent for cancer treatment. Exposure of mammalian cells to IR induces several types of damage to DNA, including double- and single-strand breaks, base and sugar damage, as well as DNA-DNA and DNA-protein cross-links (DPCs). Little is known regarding the biological consequences of DPCs. Identifying the proteins that become cross-linked to DNA by IR would be an important first step in this regard. We have therefore undertaken a proteomics study to isolate and identify proteins involved in IR-induced DPCs. DPCs were induced in AA8 Chinese hamster ovary or GM00637 human fibroblast cells using 0-4 gray of gamma-rays under either aerated or hypoxic conditions. DPCs were isolated using a recently developed method, and proteins were identified by mass spectrometry. We identified 29 proteins as being cross-linked to DNA by IR under aerated and/or hypoxic conditions. The identified proteins include structural proteins, actin-associated proteins, transcription regulators, RNA-splicing components, stress-response proteins, cell cycle regulatory proteins, and GDP/GTP-binding proteins. The involvement of several proteins (actin, histone H2B, and others) in DPCs was confirmed by using Western blot analysis. The dose responsiveness of DPC induction was examined by staining one-dimensional SDS-polyacrylamide gels with SYPRO Tangerine followed by analysis using fluorescence imaging. Quantitation of the fluorescence signal indicated no significant difference in total yields of IR-induced DPCs generated under aerated or hypoxic conditions, although differences were observed for several individual protein bands.

  2. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity.

    Science.gov (United States)

    Bignon, Emmanuelle; Chan, Chen-Hui; Morell, Christophe; Monari, Antonio; Ravanat, Jean-Luc; Dumont, Elise

    2017-09-18

    Biogenic polyamines, which play a role in DNA condensation and stabilization, are ubiquitous and are found at millimolar concentration in the nucleus of eukaryotic cells. The interaction modes of three polyamines-putrescine (Put), spermine (Spm), and spermidine (Spd)-with a self-complementary 16 base pair (bp) duplex, are investigated by all-atom explicit-solvent molecular dynamics. The length of the amine aliphatic chain leads to a change of the interaction mode from minor groove binding to major groove binding. Through all-atom dynamics, noncovalent interactions that stabilize the polyamine-DNA complex and prefigure the reactivity, leading to the low-barrier formation of deleterious DNA-polyamine cross-links, after one-electron oxidation of a guanine nucleobase, are unraveled. The binding strength is quantified from the obtained trajectories by molecular mechanics generalized Born surface area post-processing (MM-GBSA). The values of binding free energies provide the same affinity order, Putcross-link formation through the extraction of average approaching distances between the C8 atom of guanines and the ammonium group. These results imply that the formation of DNA-polyamine cross-links involves deprotonation of the guanine radical cation to attack the polyamines, which must be positively charged to lie in the vicinity of the B-helix. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preparation and properties of new cross-linked polyurethane acrylate electrolytes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, P.; Vasudevan, T.; Gopalan, A. [Department of Industrial Chemistry, Alagappa University, Karaikudi-630 003 (India); Lee, Kwang-Pill [Department of Chemistry Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2006-09-29

    A cross-linked polyurethane acrylate (PUA) is synthesized by end-capping a hexamethylene diisocyanate, hexamethylene diisocyanate/poly(ethylene glycol)-based prepolymer with hydroxy butyl methacrylate (HBMA). Significant interactions of lithium ions with the soft and hard segments of the host polymer are observed for the PUA complexed with lithium perchlorate (LiClO{sub 4}) by means of differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy measurements. The DSC results indicate the formation of transient cross-links with the ether oxygen of the soft segment and mixing of soft and hard phases induced by the Li{sup +} ions. The results of FT-IR spectroscopy and thermogravimetric analysis measurements support the formation of different types of complexes by interaction of Li{sup +} ions with different coordination sites of PUA. No detectable interactions are found between Li{sup +} ions and groups in HBMA. In addition, PUA follows the Arrhenius relationship for ion transport. Predominant formation of contact ion-pairs of LiClO{sub 4} is observed through a.c. conductivity and DSC measurements. The lithium stripping-plating process is reversible and this implies better electrochemical stability over the working voltage range. Also, the PUA electrolyte shows better compatibility with lithium metal as inferred from impedance measurements and has a good cationic transference number that is suitable for the material to be used as a solid polymer electrolyte. Addition of HBMA into the PU matrix improves the tensile strength of the cross-linked PUA. Swelling measurements of PUA with plasticizer indicate better dimensional stability. A cell is constructed with PUA as the electrolyte and its performance is evaluated. (author)

  4. A cross-linking study on the particle species of human plasma high density lipoproteins.

    Science.gov (United States)

    Yachida, Y; Minari, O

    1983-08-01

    The present investigation was on the particle species of human plasma high density lipoprotein (HDL) characterized by the stoichiometry of their apoprotein components. HDL2-1, HDL2-2, HDL3-1, and HDL3-2 isolated from normal human plasma by sequential ultracentrifugal flotation were further subfractionated by Bio Gel A-5m gel chromatography or hydroxyapatite column chromatography, and three distinct subfractions were obtained. Subfraction 1 was obtained from all the HDL fractions and it contained mostly apolipoprotein A-I (A-I). Subfraction 2 was obtained from HDL2-2 and HDL3-1 and it contained A-I and apolipoprotein A-II (A-II) in the molar ratio of one to one, and subfraction 3 from HDL2-2 and HDL3-1 contained A-I and apolipoprotein C (C). Each subfraction was treated with bifunctional cross-linking reagents, and the intraparticle cross-linked products of apolipoproteins were examined by SDS-polyacrylamide gel electrophoresis. The results of the cross-linking studies indicated that the HDL2 fraction consisted mainly of lipoprotein particles of the (A-I)4 type and a few of the (A-I)5, (A-I)2(A-II)2, and (A-I)4(C)2 types, and that the HDL3 fraction consisted mainly of (A-I)2(A-II)2 type particles and a few (A-I)4, (A-I)3, (A-I)2, (A-I), and (A-I)3(C)2 type particles. From the results of analyses of the lipid components in the HDL of each type, it was suggested that the function of the particle species of the (A-I)n type (n = 1--5), which contained more cholesteryl ester than the (A-I)2(A-II)2 type, was concerned mainly with cholesterol metabolism.

  5. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  6. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability

    OpenAIRE

    Lambert, Muriel W

    2016-01-01

    Non-erythroid alpha spectrin (?IISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. ?IISp?s interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear ?IISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in ma...

  7. Irradiation effects on properties of reverse osmosis membrane based on cross-linked aromatic polyamide

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Yanagi, Tadashi; Uemura, Tadahiro.

    1994-01-01

    In order to develop a membrane suitable for reverse osmotic condensation of radioactive liquid wastes, a new cross-linked aromatic polyamide composite reverse osmosis membrane (ROM) was irradiated in water or in wet system, and its mechanical and some thermal properties, and the separation performance for inorganic salt were investigated. A membrane was degraded by irradiation more severely in wet system than in dry system, probably due to the reaction with OH-radicals. In the separation performance for NaCl, the salt rejection of the membrane was kept over 88% until irradiation reached 2MGy, maintaining about 90% of its original water flux. (author)

  8. Electronic structure and self-assembly of cross-linked semiconductor nanocrystal arrays

    International Nuclear Information System (INIS)

    Steiner, Dov; Azulay, Doron; Aharoni, Assaf; Salant, Assaf; Banin, Uri; Millo, Oded

    2008-01-01

    We studied the electronic level structure of assemblies of InAs quantum dots and CdSe nanorods cross-linked by 1,4-phenylenediamine molecules using scanning tunneling spectroscopy. We found that the bandgap in these arrays is reduced with respect to the corresponding ligand-capped nanocrystal arrays. In addition, a pronounced sub-gap spectral structure commonly appeared which can be attributed to unpassivated nanocrystal surface states or associated with linker-molecule-related levels. The exchange of the ligands by the linker molecules also affected the structural array properties. Most significantly, clusters of close-packed standing CdSe nanorods were formed

  9. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin

    Directory of Open Access Journals (Sweden)

    Kornilovskiy IM

    2016-04-01

    Full Text Available Igor M Kornilovskiy,1 Elmar M Kasimov,2 Ayten I Sultanova,2 Alexander A Burtsev1 1Department of Eye Diseases, Federal State Budgetary Institution “National Pirogov Medical Surgical Centre”, Ministry of Health, Moscow, Russia; 2Department of Eye Diseases, Zarifa Aliyeva National Ophthalmology Center, Ministry of Health, Baku, Azerbaijan Aim: To estimate the biomechanical effect of the laser-induced cross-linking resulting from photorefractive ablation of the cornea with riboflavin.Methods: Excimer laser ablation studies were performed ex vivo (32 eyes of 16 rabbits by phototherapeutic keratectomy (PTK and in vivo (24 eyes of 12 rabbits by transepithelial photorefractive keratectomy (TransPRK, with and without riboflavin saturation of the stroma. Then, we performed corneal optical coherence tomography on 36 eyes of 18 patients with varying degrees of myopia at different times after the TransPRK was performed with riboflavin saturation of the stroma.Results: Biomechanical testing of corneal samples saturated with riboflavin revealed cross-linking effect accompanied by the increase in tensile strength and maximum strength. PTK showed increase in tensile strength from 5.1±1.4 to 7.2±1.6 MPa (P=0.001, while TransPRK showed increase in tensile strength from 8.8±0.9 to 12.8±1.3 MPa (P=0.0004. Maximum strength increased from 8.7±2.5 to 12.0±2.8 N (P=0.005 in PTK and from 12.8±1.6 to 18.3±1.2 N (P=0.0004 in TransPRK. Clinical optical coherence tomography studies of the biomicroscopic transparent cornea at different times after TransPRK showed increased density in the surface layers of the stroma and membrane-like structure beneath the epithelium.Conclusion: Photorefractive ablation of the preliminary corneal stroma saturation with riboflavin causes the effect of laser-induced cross-linking, which is attended with an increase in corneal tensile strength, maximum strength, increased density in the surface layers of the stroma, and formation of

  10. Corneal cross-linking in a child with osteogenesis imperfecta syndrome and keratoconus

    Directory of Open Access Journals (Sweden)

    Sergio Kwitko

    2017-07-01

    Full Text Available Cross-linking (CXL is a well-established procedure in children with keratoconus (KC, but cases of CXL and osteogenesis imperfecta (OI have not been published in the literature, despite the association between physiopathology of these diseases. This is the first case, to the best of our knowledge, of a young girl with both OI and KC that underwent a CXL treatment. In this case, CXL was performed at 6-years-old prior to an expected progression, without complications and probably stopped further keratoconus progression.

  11. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    Science.gov (United States)

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  12. Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Tyrode, Eric

    2015-01-01

    Interactions between a silica surface and a surface coated with a grafted cross-linked hydrogel made from chitosan/PAA multilayers are investigated, utilizing colloidal probe atomic force microscopy. Attractive double-layer forces are found to dominate the long-range interaction over a broad range...... of pH and ionic strength conditions. The deduced potential at the hydrogel/aqueous interface is found to be very low. This situation is maintained in the whole pH-range investigated, even though the degree of protonation of chitosan changes significantly. This demonstrates that pH-variations change...

  13. Evaluation of cross-linked chitosan microparticles containing acyclovir obtained by spray-drying

    International Nuclear Information System (INIS)

    Stulzer, Hellen Karine; Tagliari, Monika Piazzon; Parize, Alexandre Luis; Silva, Marcos Antonio Segatto; Laranjeira, Mauro Cesar Marghetti

    2009-01-01

    The aim of this study was to obtain microparticles containing acyclovir (ACV) and chitosan cross-linked with tripolyphosphate using the spray-drying technique. The resultant system was evaluated through loading efficiency, differential scanning calorimetry (DSC), thermogravimetric analysis (TG), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), in vitro release and stability studies. The results obtained indicated that the polymer/ACV ratio influenced the final properties of the microparticles, with higher ratios giving the best encapsulation efficiency, dissolution profiles and stability. The DSC and XRPD analyses indicated that the ACV was transformed into amorphous form during the spray-drying process

  14. Studies in cross-linking PVC footwear soling compounds using gamma-irradiation

    International Nuclear Information System (INIS)

    Bloom, L.I.

    1983-01-01

    Irradiation cross-linking of polymeric materials has been known for some time but it is only in recent years that it has been put to commercial advantage. Well known uses are the modification of PVC for high temperature applications such as under-bonnet wiring, stove wiring, post office telecommunication wire and shrink tubing. In South Africa interest in developing commercial applications for cross-linkable polymeric materials was initially stimulated through the work of the Atomic Energy Board at Pelindaba in late 1971 using a cobalt - 60 gamma radiation unit

  15. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC

  16. Epithelium-on photorefractive intrastromal cross-linking (PiXL for reduction of low myopia

    Directory of Open Access Journals (Sweden)

    Lim WK

    2017-06-01

    Full Text Available Wee Kiak Lim,1,2 Zhi Da Soh,1 Harold Kah Yen Choi,1 Julian Thiam Siew Theng1,3 1Eagle Eye Centre, Mount Alvernia Hospital, 2Department of Ophthalmology, Tan Tock Seng Hospital, 3Department of Ophthalmology, Khoo Teck Puat Hospital, Singapore Purpose: To report the 9–12-month outcomes of a novel procedure for reduction of low myopia through epithelium-on photorefractive intrastromal cross-linking (PiXL with customized control of topographic distribution of ultraviolet (UV-fluence. Method: Myopic patients with normal (non-ectatic corneas underwent the PiXL procedure for reduction of low myopia. PiXL treatments were delivered through selective application of UVA light based on the refractive error of each patient. Clinical evaluation included safety (corrected distance visual acuity, endothelial cell count, central corneal thickness, anterior ocular health and efficacy (uncorrected distance visual acuity, manifest refraction, K-mean examinations. In addition, a patient satisfaction survey was conducted at 9 months post-procedure to evaluate patients’ subjective experience with the procedure. Results: Fourteen myopic eyes (mean manifest refraction spherical equivalent –1.62±0.6D; range –0.75 to –2.65D of 8 subjects (mean age 30 years old; range 24–51 years old were enrolled in the study. At 12 months post-procedure, a mean manifest refraction spherical equivalent reduction of 0.72±0.43D (P<0.001 was observed, with a corresponding gain in uncorrected visual acuity of 0.25 logMAR and mean K-mean flattening of 0.47±0.46D. All patients achieved best corrected visual acuity of 20/20 or better from 1 month onward. There were no cases of ocular infection or secondary changes to the crystalline lens and retina due to UV exposure, while transient corneal haze subsided gradually. Conclusion: The epithelium-on PiXL procedure was safe and effective in reducing myopic refractive error in this study with up to 12 months follow-up. Early results of

  17. Scleral wound healing with cross-link technique using riboflavin and ultraviolet A on rabbit eyes

    Directory of Open Access Journals (Sweden)

    Damasceno NA

    2017-07-01

    Full Text Available Nadyr A Damasceno,1 Nadia C Miguel,2 Marcelo Palis Ventura,3 Miguel Burnier Jr,4 Marcos P Avila,5 Eduardo F Damasceno3 1Ophthalmology Department, Hospital Naval Marcílio Dias, 2Laboratory of Neurohistology and Cell Ultrastructure, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 3Ophthalmology Department, Universidade Federal Fluminense, Niterói, Brazil; 4Ophthalmology Department, McGill University, Montreal, QC, Canada; 5Ophthalmology Department, Universidade Federal de Goiás, Goiania, Brazil Purpose: The aim of study was to evaluate the cross-link using riboflavin and ultraviolet A (UVA for improving scleral wound healing.Materials and methods: This was an experimental study involving four New Zealand rabbits (eight eyes. Therapy procedure was chosen for the right eye and control procedure for the left one. UVA irradiation of 365 nm with a surface irradiance of 3 mW/cm2 and a photosensitizer of riboflavin drops were applied for 30 minutes on the right eye at 2 mm from the limbus. Sclerotomy incision was performed at 2 mm from the limbus in both right (on the cross-link-treated area and left eye. Then, 30 days after surgery, a morphological analysis and histological staining with hematoxylin–eosin and picrosirius red were performed, and the sclerotomy cicatrization of right and left eyes was compared. The variables investigated were as follows: sclerotomy incision pictures and measurements were made using the ImageJ Software. Scleral thickness was measured (employing the anterior optical coherence tomography and the digital caliper. Collagen fiber density stained with picrosirius red staining was measured using the Image Pro Plus software.Results: The morphological analysis showed that in all samples, the right eye presented sclerotomy closure, and in two eyes, among them, there were no visible edges of the sclerotomies incision. The left eye presented sclerotomy closure and incision edges

  18. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chenyu; Deng, Jia [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Xiang, Lin; Wu, Yingying [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wei, Xiawei [State Key Laboratory of Biotherapy and Laboratory for Aging Research, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 (China); Qu, Yili [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Man, Yi, E-mail: manyi780203@126.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  19. Formation of covalent linkages between nuclear and protein constituents of ribosomes of E. coli MRE 600 irradiated by gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Ekert, B; Giocanti, N [Institut du Radium, 91 - Orsay (France)

    1977-04-01

    Gamma irradiation of E.coli MRE 600 ribosomes in aqueous suspensions led to covalent linkages between the RNA and some ribosomal proteins. The presence of oxygen during the irradiation strongly inhibited this phenomenon. It appears clearly that only a few proteins were able to participate in these cross-linking reactions, which occurred simultaneously in the two sub-units. The radiochemical yield was determined at several concentrations and was relatively low.

  20. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling† †Electronic supplementary information (ESI) available: FTIR, NMR spectra of synthesized polymers, XPS spectra and AFM images of non-cross linked and cross linked LBLA and LBLB films, UV-Visible absorption spectra of copper complexation with PAH-His, QCM data of LBLA and LBLB films and stability of the films are provided in the electronic supplementary information. See DOI: 10.1039/c4sc02367f Click here for additional data file.

    Science.gov (United States)

    Puniredd, Sreenivasa Reddy; Go, Dewi Pitrasari; Zhu, Xiaoying; Guo, Shifeng; Ming Teo, Serena Lay; Chen Lee, Serina Siew

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross-linking were used in the fabrication process. Two methods of LbL film formation have been investigated using alternate polyelectrolyte deposition namely non-imprinted LbLA, and imprinted LbLB. Both LbL films were cross linked at mild temperature to yield covalent bridging of the layers for improved stability in a sea water environment. A comparative study of the non-imprinted LbLA films and imprinted LbLB films for Cu2+ ion binding capacity, leaching rate and stability of the films was performed. The results reveal that the imprinted films possess enhanced affinity to retain metal ions due to the preorganization of imidazole bearing histidine receptors. As a result the binding capacity of the films for Cu2+ could be improved by seven fold. Antifouling properties of the resulting materials in a marine environment have been demonstrated against the settlement of barnacle larvae, indicating that controlled release of Cu ions was achieved. PMID:28966763

  1. Turning the pore size of nanoporous membranes using layer-by-layer cross-linking polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Min Seon; Park, Ji Woong [School of Materials Science and Engineering and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2017-01-15

    Covalent organic networks consisting of molecular nodes and links are promising for preparation of nanostructured materials that are key to the technologies for molecular separation, storage, and catalysis. The network of covalent bonds provides high-dimensional stability, which is essential for maintaining the functionality of the nanostructure under various chemical and thermal environments. However, most of network materials are synthesized as insoluble precipitates or gels formed directly from polymerization of network-forming monomers, being severely limited in chemical functionalization or post-processing needed for their applications. The synthesis method for network materials with facile size or shape controllability is crucial for their exploitation for various potential applications.

  2. Sharp kink of DNA at psoralen-cross-link site deduced from crystal structure of psoralen-thymine monoadduct

    International Nuclear Information System (INIS)

    Kim, S.H.; Peckler, S.; Graves, B.; Kanne, D.; Rapoport, H.; Hearst, J.E.

    1983-01-01

    Light-induced cross-linking of double-stranded nucleic acids by psoralens has been exploited to locate, in vivo or in vitro, those double-helical regions of DNA or RNA that can accommodate any structural changes caused by the psoralen cross-links. To determine three-dimensional structural parameters of the cross-link, we have solved the crystal structure of the psoralen-thymine monoadduct formed in photoreaction between calf thymus DNA and 8-methoxypsoralen (8MOP). There are eight possible configurations for psoralen-thymine monoadducts and 64 for diadducts. We describe here the structural details of a psoralen-thymine monoadduct obtained in a biological environment and the consequences of the photo-cross-link between 8MOP and double-helical DNA

  3. Glutaraldehyde Cross-Linking of TendonMechanical Effects at the Level of the Tendon Fascicle and Fibril

    DEFF Research Database (Denmark)

    Hansen, P.; Svensson, R.B.; Aagaard, P.

    2009-01-01

    were examined by atomic force microscopy. Peak forces increased from 1379 to 2622 pN while an extended Hertz fit of force-indentation data showed a 24 fold increase in Young's modulus on indentation. The effect of glutaraldehyde cross-linking on the tensile properties of a single collagen fibril......Conclusive insight into the microscopic principles that govern the strength of tendon and related connective tissues is lacking and the importance of collagen cross-linking has not been firmly established. The combined application of whole-tissue mechanical testing and atomic force spectroscopy...... allowed for a detailed characterization of the effect of cross-linking in rat-tail tendon. The cross-link inducing agent glutaraldehyde augmented the tensile strength of tendon fascicles. Stress at failure increased from 8 MPa to 39 MPa. The mechanical effects of glutaraldehyde at the tendon fibril level...

  4. Sub- T g Cross-Linking of a Polyimide Membrane for Enhanced CO 2 Plasticization Resistance for Natural Gas Separation

    KAUST Repository

    Qiu, Wulin; Chen, Chien-Chiang; Xu, Liren; Cui, Lili; Paul, Donald R.; Koros, William J.

    2011-01-01

    Decarboxylation-induced thermal cross-linking occurs at elevated temperatures (∼15 °C above glass transition temperature) for 6FDA-DAM:DABA polyimides, which can stabilize membranes against swelling and plasticization in aggressive feed streams

  5. Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics

    KAUST Repository

    Zhang, Zhen; Bilalis, Panagiotis; Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Aggregation-induced emission (AIE) active core cross-linked multiarm star polymers, carrying polystyrene (PS), polyethylene (PE), or polyethylene-b-polycaprolactone (PE-b-PCL) arms, have been synthesized through an “arm-first” strategy, by atom

  6. Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing.

    Science.gov (United States)

    Boekema, Bouke K H L; Vlig, Marcel; Olde Damink, Leon; Middelkoop, Esther; Eummelen, Lizette; Bühren, Anne V; Ulrich, Magda M W

    2014-02-01

    Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were tested in porcine full-thickness wounds in combination with autologous split skin mesh grafts (SSG). Effect on wound healing was evaluated both macro- and microscopically. CE scaffolds with a pore size of 80 or 100 μm resulted in good wound healing after one-stage grafting. Application of scaffolds with a larger average pore size (120 μm) resulted in more myofibroblasts and more foreign body giant cells (FBGC). Moderate crosslinking impaired wound healing as it resulted in more wound contraction, more FBGC and increased epidermal thickness compared to no cross-linking. In addition, take rate and redness were negatively affected compared to SSG only. Vascularization and the number of myofibroblasts were not affected by cross-linking. Surprisingly, stability of cross-linked scaffolds was not increased in the wound environment, in contrast to in vitro results. Cross-linking reduced the proliferation of fibroblasts in vitro, which might explain the reduced clinical outcome. The non-cross-linked CE substitute with unidirectional pores allowed one-stage grafting of SSG, resulting in good wound healing. In addition, only a very mild foreign body reaction was observed. Cross-linking of CE scaffolds negatively affected wound healing on several important parameters. The optimal non-cross-linked CE substitute is a promising candidate for future clinical evaluation.

  7. Characterization​ and ​analysis of ​m​otion ​m​echanism​ of electroactive​ chitosan-based actuator.

    Science.gov (United States)

    Altınkaya, Emine; Seki, Yoldaş; Çetin, Levent; Gürses, Barış Oğuz; Özdemir, Okan; Sever, Kutlay; Sarıkanat, Mehmet

    2018-02-01

    In order to analyze the bending mechanism of the electroactive​ chitosan-based actuator, different amounts of poly(diallyldimethylammonium chloride) (PDAD) were incorporated in chitosan solution. The effects of PDAD concentration on electromechanical performance of chitosan actuator were investigated under various excitation voltages. With the incorporation of PDAD into chitosan solution, crosslinked chitosan film acts as an actuator showing a considerable displacement behavior. However it can be noted that higher incorporation of PDAD into chitosan solution decreased the performance of the actuators. Thermal, viscoelastic, and crystallographic properties of the chitosan films were examined by thermogravimetric analysis, dynamic mechanical analysis, and X-ray diffraction analysis, respectively. The effect of incorporation of PDAD in chitosan-based film on morphological properties of chitosan film was determined by scanning electron microscopy. It was observed that the films involving PDAD have larger pore size than the PDAD free film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enzymatic cross-linking of soy proteins within non-fat set yogurt gel.

    Science.gov (United States)

    Soleymanpuori, Rana; Madadlou, Ashkan; Zeynali, Fariba; Khosrowshahi, Asghar

    2014-08-01

    Soy proteins as the health-promoting ingredients and candidate fat substitutes in dairy products are good substrates for the cross-linking action of the enzyme transglutaminase. Non-fat set yogurt samples were prepared from the milks enriched with soy protein isolate (SPI) and/or treated with the enzyme transglutaminase. The highest titrable acidity was recorded for the yogurt enriched with SPI and treated with the enzyme throughout the cold storage for 21 d. SPI-enrichment of yogurt milk increased the water holding capacity. Although enrichment with SPI did not influence the count of Streptococcus themophilus, increased that of Lactobacillus bulgaricus ∼3 log cycles. The enzymatic treatment of SPI-enriched milk however, suppressed the bacteria growth-promoting influence of SPI due probably to making the soy proteins inaccessible for Lactobacillus. SPI-enrichment and enzymatic treatment of milk decreased the various organic acids content in yoghurt samples; influence of the former was more significant. The cross-linking of milk proteins to soy proteins was confirmed with the gel electrophoresis results.

  9. Long-term healing of mildly cross-linked decellularized bovine pericardial aortic patch.

    Science.gov (United States)

    Umashankar, P R; Sabareeswaran, A; Shenoy, Sachin J

    2017-10-01

    Glutaraldehyde treated bovine pericardium is extensively used in cardiovascular surgery. However, frequent occurrence of failure modes, such as calcification and structural failure, has hard pressed the need for finding an alternate technology. Decellularized bovine pericardium is an emerging technology. Mildly cross-linked decellularized bovine pericardium promotes positive remodeling with insignificant calcification and acute inflammation. In the present study, mildly cross-linked decellularized bovine pericardium was evaluated as a cardiovascular patch by studying mechanical strength as well as graft remodeling, resistance to calcific degeneration and inflammatory response using long duration porcine aortic implantation. It was observed that decellularized bovine pericardium, although thinner and less elastic had equivalent tensile properties such as tensile strength and stiffness when compared to commercially available glutaraldehyde-treated bovine pericardium. It showed the potential for site appropriate remodeling evidenced by host cell incorporation, thinner neointima, graft degradation, and neocollagenisation making it suitable for vascular patch application, whereas glutaraldehyde-treated pericardium failed to integrate with host tissue through timely degradation and host cell incorporation or neocollagenization. Conversely, it elicited persistent acute inflammation and produced calcification. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2145-2152, 2017. © 2016 Wiley Periodicals, Inc.

  10. Patterning the Stiffness of Elastomeric Nanocomposites by Magnetophoretic Control of Cross-linking Impeder Distribution

    Directory of Open Access Journals (Sweden)

    Suvojit Ghosh

    2015-01-01

    Full Text Available We report a novel method to pattern the stiffness of an elastomeric nanocomposite by selectively impeding the cross-linking reactions at desired locations while curing. This is accomplished by using a magnetic field to enforce a desired concentration distribution of colloidal magnetite nanoparticles (MNPs in the liquid precursor of polydimethysiloxane (PDMS elastomer. MNPs impede the cross-linking of PDMS; when they are dispersed in liquid PDMS, the cured elastomer exhibits lower stiffness in portions containing a higher nanoparticle concentration. Consequently, a desired stiffness pattern is produced by selecting the required magnetic field distribution a priori. Up to 200% variation in the reduced modulus is observed over a 2 mm length, and gradients of up to 12.6 MPa·mm−1 are obtained. This is a significant improvement over conventional nanocomposite systems where only small unidirectional variations can be achieved by varying nanoparticle concentration. The method has promising prospects in additive manufacturing; it can be integrated with existing systems thereby adding the capability to produce microscale heterogeneities in mechanical properties.

  11. Characterization of Chemical and Physical Properties of Hydroxypropylated and Cross-linked Arrowroot (Marantha arundinacea Starch

    Directory of Open Access Journals (Sweden)

    Rijanti Rahaju Maulani

    2013-12-01

    Full Text Available The modern food industry and a variety of food products require tolerant starch as raw material for processing in a broad range of techniques, from preparation to storage and distribution. Dual modification of arrowroot starch using hydroxypropylation and cross-linking was carried out to overcome the lack of native arrowroot starch in food processing application. The modifications applied were: combined propylene oxide (8%, 10%, and 12%; sodium tri meta phosphate/STMP (1%, 2%, and 3%; and sodium tri poly phosphate/STPP (4%, 5%, and 6%. These modifications significantly affected the composition of the amylose and amylopectin and the amount of phosphorus in the granules. Higher amounts of phosphate salt gave a higher phosphorus content, which increased the degree of substitution (DS and the degree of cross-link. Arrowroot starch that was modified using a concentration of 8-10% propylene oxide and 1-2% STMP : 3-5% STPP produced a starch with < 0.4% phosphorus content. A higher concentration of propylene oxide provided a higher degree of hydroxypropyl. The changed physical properties of the modified granular arrowroot starch were examined through SEM testing, and its changed crystalline patterns through X-ray diffraction measurements. Especially, provision of a high concentration of propylene oxide (12% combined with 3% STMP : 6% STPP affected the granular morphology and the crystallinity.

  12. A comparison of UV cross-linking and vacuum baking for nucleic acid immobilization and retention

    International Nuclear Information System (INIS)

    Nierzwicki-Bauer, S.A.; Gebhardt, J.S.; Linkkila, L.; Walsh, K.

    1990-01-01

    The effectiveness of UV cross-linking and in vacuo baking for the immobilization and retention of DNA to various solid supports was investigated. Optimal immobilization treatments for supported and unsupported nitrocellulose and nylon membranes were: UV cross-linking at 254 nm with an exposure of 120 milliJoules/cm 2 , or baking in vacuo for two hours at 80 degrees C. UV-immobilized nitrocellulose-based membranes showed no increase in sensitivity when compared to baked membranes. An increase in sensitivity was observed for UV-immobilized nylon membranes as compared with baked nylon membranes in some instances, although this varied within lots of the membranes tested. Repeated strippings and heterologous reprobings resulted in loss of target DNA from UV-immobilized nylon membranes as compared to baked nylon membranes. Loss of target DNA from UV-immobilized nitrocellulose-based membranes due to repeated strippings and reprobings was even more pronounced. In vacuo baking of supported and unsupported nitrocellulose and nylon membranes was more effective for immobilization, and more importantly, for retention of target DNA through many reprobings of the same blot

  13. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    Science.gov (United States)

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  14. Radiation-induced cross-linking and scissoring of proteins in egg white

    International Nuclear Information System (INIS)

    Josimovic, L.; Radojcic, M.; Milosavljevic, B.H.

    1996-01-01

    Two kinds of radiation-induced protein damages, cross-linking and scissoring, were studied using a thin fraction of avian egg white. It was found that at a dose of 10 kGy in N 2 O saturated samples only one third of the affected protein molecules underwent aggregation, while, contrary to the results obtained with diluted protein solutions, the rest took part in the fragmentation reaction. The fragments obtained had a uniform molecular weight distribution. The overall G-value was found to be 0.25. In air saturated samples the scissoring dominated ten times over cross-linking with the fragments of discrete and well resolved molecular weights. The overall G-value was equal to 0.3. Both G-values are three times smaller than the corresponding values obtained in the experiments with denatured and purified proteins. The egg white radiation stability was found to be, at least in part, due to the presence of glucose which, in turn, acts as an antioxidant. Other relevant factors which may affect the radiation chemistry of the egg white protein composite are also discussed. (author)

  15. Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash

    International Nuclear Information System (INIS)

    Bustard, M.; McHale, A.P.

    1997-01-01

    Residual biomass from a whiskey distillery was examined for its ability to function as a biosorbent for uranium. Biomass recovered and lyophilised exhibited a maximum biosorption capacity of 165-170 mg uranium/g dry weight biomass at 15 C. With a view towards the development of continuous or semi-continuous flow biosorption processes it was decided to immobilize the material by (1) cross-linking with formaldehyde and (2) introducing that material into alginate matrices. Cross-linking the recovered biomass resulted in the formation of a biosorbent preparation with a maximum biosorption capacity of 185-190 mg/g dry weight biomass at 15 C. Following immobilization of biomass in alginate matrices it was found that the total amount of uranium bound to the matrix did not change with increasing amounts of biomass immobilized. It was found however, that the proportion of uranium bound to the biomass within the alginate-biomass matrix increased with increasing biomass concentration. Further analysis of these preparations demonstrated that the alginate-biomass matrix had a maximum biosorption capacity of 220 mg uranium/g dry weight of the matrix, even at low concentrations of biomass. (orig.). With 3 figs., 1 tab

  16. DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.

    Science.gov (United States)

    Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav

    2018-02-08

    Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.

  17. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    Science.gov (United States)

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-08-01

    Full Text Available A redox-responsive polycationic system was synthesized via copolymerization of N,N-diethylacrylamide (DEAAm and 2-(dimethylaminoethyl methacrylate (DMAEMA. N,N’-bis(4-chlorobutanoylcystamine was used as disulfide-containing cross-linker to form networks by the quaternization of tertiary amine groups. The insoluble cationic hydrogels become soluble by reduction of disulfide to mercaptanes by use of dithiothreitol (DTT, tris(2-carboxyethylphosphine (TCEP or cysteamine, respectively. The soluble polymeric system can be cross-linked again by using oxygen or hydrogen peroxide under basic conditions. The redox-responsive polymer networks can be used for molecular inclusion and controlled release. As an example, phenolphthalein, methylene blue and reactive orange 16 were included into the network. After treatment with DTT a release of the dye could be recognized. Physical properties of the cross-linked materials, e.g., glass transition temperature (Tg, swelling behavior and cloud points (Tc were investigated. Redox-responsive behavior was further analyzed by rheological measurements.

  19. Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Saravanan Muniyandy

    2015-06-01

    Full Text Available In the present work, we report for the first time the complex coacervation of carboxymethyl sago pulp (CMSP with gelatine for sustained drug delivery. Toluene saturated with glutaraldehyde and aqueous aluminum chloride was employed as cross-linkers. Measurements of zeta potential confirm neutralization of two oppositely charged colloids due to complexation, which was further supported by infrared spectroscopy. The coacervates encapsulated a model drug ibuprofen and formed microcapsules with a loading of 29%–56% w/w and an entrapment efficiency of 85%–93% w/w. Fresh coacervates loaded with drug had an average diameter of 10.8 ± 1.93 µm (n = 3 ± s.d.. The coacervates could encapsulate only the micronized form of ibuprofen in the absence of surfactant. Analysis through an optical microscope evidenced the encapsulation of the drug in wet spherical coacervates. Scanning electron microscopy revealed the non-spherical geometry and surface roughness of dried drug-loaded microcapsules. X-ray diffraction, differential scanning calorimetry and thermal analysis confirmed intact and crystalline ibuprofen in the coacervates. Gas chromatography indicated the absence of residual glutaraldehyde in the microcapsules. Dual cross-linked microcapsules exhibited a slower release than mono-cross-linked microcapsules and could sustain the drug release over the period of 6 h following Fickian diffusion.

  20. Gastrin receptor characterization: affinity cross-linking of the gastrin receptor on canine gastric parietal cells

    International Nuclear Information System (INIS)

    Matsumoto, M.; Park, J.; Yamada, T.

    1987-01-01

    The authors applied affinity cross-linking methods to label the gastrin receptor on isolated canine gastric parietal cells in order to elucidate the nature of its chemical structure. 125 I-labeled Leu 15 -gastrin and 125 I-labeled gastrin/sub 2-17/ bound to intact parietal cells and their membranes with equal affinity, and half-maximal inhibition of binding was obtained at an incubation concentration of 3.2 x 10 -10 M unlabeled gastrin. 125 I-gastrin/sub 2-17/ was cross-linked to plasma membranes or intact parietal cells by incubation in disuccinimidyl suberate. The membrane pellets were solubilized with or without dithiothreitol and applied to electrophoresis on 7.5% sodium dodecyl sulfate polyacrylamide gels. Autoradiograms revealed a band of labeling at M/sub r/ 76,000 and labeling of this band was inhibited in a dose-dependent fashion by addition of unlabeled gastrin to the incubation mixture. Dithiothreitol in concentrations as high as 100 mM did not later the electrophoretic mobility of the labeled band. After taking into account the molecular weight of 125 I-gastrin/sub 2-17/, the results suggest that the gastrin receptor on parietal cells is a single protein of M/sub r/ 74,000 without disulfide-linked subunits

  1. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    Science.gov (United States)

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  2. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein

    Directory of Open Access Journals (Sweden)

    Cheng-Liang Xie

    2014-01-01

    Full Text Available Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50 of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR. The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  3. Low-Temperature Cross-Linking of PEDOT:PSS Films Using Divinylsulfone.

    Science.gov (United States)

    Mantione, Daniele; Del Agua, Isabel; Schaafsma, Wandert; ElMahmoudy, Mohammed; Uguz, Ilke; Sanchez-Sanchez, Ana; Sardon, Haritz; Castro, Begoña; Malliaras, George G; Mecerreyes, David

    2017-05-31

    Recent interest in bioelectronics has prompted the exploration of properties of conducting polymer films at the interface with biological milieus. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) from a commercially available source has been used as a model system for these studies. Different cross-linking schemes have been used to stabilize films of this material against delamination and redispersion, but the cost is a decrease in the electrical conductivity and/or additional heat treatment. Here we introduce divinylsulfone (DVS) as a new cross-linker for PEDOT:PSS. Thanks to the higher reactiveness of the vinyl groups of DVS, the cross-linking can be performed at room temperature. In addition, DVS does not reduce electronic conductivity of PEDOT:PSS but rather increases it by acting as a secondary dopant. Cell culture studies show that PEDOT:PSS:DVS films are cytocompatible and support neuroregeneration. As an example, we showed that this material improved the transconductance value and stability of an organic electrochemical transistor (OECT) device. These results open the way for the utilization of DVS as an effective cross-linker for PEDOT:PSS in bioelectronics applications.

  4. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    Science.gov (United States)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-07-01

    A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  5. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    Directory of Open Access Journals (Sweden)

    Xuefei Song

    2015-01-01

    Full Text Available Purpose. The purpose of this study was to determine the impact of cross-linking (CXL on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham’s F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2 during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA. Results. Following CXL, cell viability and proliferation decreased (P0.06. Five hours after CXL, FGFb secretion increased significantly (P=0.037; however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P>0.12. Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours, normalizing after 24 hours.

  6. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification.

    Science.gov (United States)

    Thombare, Nandkishore; Jha, Usha; Mishra, Sumit; Siddiqui, M Z

    2017-07-15

    With the aim to explore new adsorbents for water purification, guar gum based hydrogels were synthesized by cross-linking with borax at different percentage. The cross-linking was confirmed through characterization by FTIR spectroscopy, SEM morphology, thermal studies and water absorption capacity. To examine the adsorption/absorption performance of different grades of hydrogels, their flocculation efficiency was studied in kaolin suspension at different pH by standard jar test procedure. The flocculation efficiency of the test materials was compared with the commercially used coagulant, alum and also residues of Al and K left in the treated water were comparatively studied. The synthesized hydrogels were also tested for their efficiency of removing Aniline Blue dye by UV-vis spectrophotometer study. The best grade hydrogel outperformed alum, at extremely low concentration and also showed dye removing efficiency up to 94%. The single step synthesized green products thus exhibited great potential as water purifying agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition.

    Science.gov (United States)

    Kuroki, Hidenori; Ito, Taichi; Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-15

    We present for the first time a biomolecule-recognition gating system that responds to small signals of biomolecules by the cooperation of biorecognition cross-linking and polymer phase transition in nanosized pores. The biomolecule-recognition gating membrane immobilizes the stimuli-responsive polymer, including the biomolecule-recognition receptor, onto the pore surface of a porous membrane. The pore state (open/closed) of this gating membrane depends on the formation of specific biorecognition cross-linking in the pores: a specific biomolecule having multibinding sites can be recognized by several receptors and acts as the cross-linker of the grafted polymer, whereas a nonspecific molecule cannot. The pore state can be distinguished by a volume phase transition of the grafted polymer. In the present study, the principle of the proposed system is demonstrated using poly(N-isopropylacrylamide) as the stimuli-responsive polymer and avidin-biotin as a multibindable biomolecule-specific receptor. As a result of the selective response to the specific biomolecule, a clear permeability change of an order of magnitude was achieved. The principle is versatile and can be applied to many combinations of multibindable analyte-specific receptors, including antibody-antigen and lectin-sugar analogues. The new gating system can find wide application in the bioanalytical field and aid the design of novel biodevices.

  8. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release

    International Nuclear Information System (INIS)

    Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai

    2017-01-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326 °C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3 h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. - Highlights: • It's first time to prepare microencapsulation with gelatin and oxidized corn starch. • The microencapsulation material can be biodegradable completely. • The production technology of microcapsule is convenient. • This work explores the potential to use oxidized starch cross-linked gelatin. • The microencapsulation material can be used for drug release.

  9. Structuring of Amide Cross-Linked Non-Bridged and Bridged Alkyl-Based Silsesquioxanes.

    Science.gov (United States)

    Nunes, S C; de Zea Bermudez, V

    2018-02-06

    The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer

    International Nuclear Information System (INIS)

    Gao, Hejun; Kan, Taotao; Zhao, Siyuan; Qian, Yixia; Cheng, Xiyuan; Wu, Wenli; Wang, Xiaodong; Zheng, Liqiang

    2013-01-01

    Highlights: • Equilibrium, kinetic and thermodynamic of adsorption of dyes onto PDVB-IL was investigated. • PDVB-IL has a high adsorption capacity to treat dyes solution. • Higher adsorption capacity is due to the functional groups of PDVB-IL. • Molecular structure of dyes influences the adsorption capacity. -- Abstract: A novel functional ionic liquid based cross-linked polymer (PDVB-IL) was synthesized from 1-aminoethyl-3-vinylimidazolium chloride and divinylbenzene for use as an adsorbent. The physicochemical properties of PDVB-IL were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The adsorptive capacity was investigated using anionic azo dyes of orange II, sunset yellow FCF, and amaranth as adsorbates. The maximum adsorption capacity could reach 925.09, 734.62, and 547.17 mg/g for orange II, sunset yellow FCF and amaranth at 25 °C, respectively, which are much better than most of the other adsorbents reported earlier. The effect of pH value was investigated in the range of 1–8. The result shows that a low pH value is found to favor the adsorption of those anionic azo dyes. The adsorption kinetics and isotherms are well fitted by a pseudo second-order model and Langmuir model, respectively. The adsorption process is found to be dominated by physisorption. The introduction of functional ionic liquid moieties into cross-linked poly(divinylbenzene) polymer constitutes a new and efficient kind of adsorbent

  11. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    Science.gov (United States)

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

  12. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    Science.gov (United States)

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  13. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.

    Science.gov (United States)

    Wang, Steven S S; Hsieh, Ping-Lun; Chen, Pei-Shan; Chen, Yu-Tien; Jan, Jeng-Shiung

    2013-11-01

    Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, M. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine (United Kingdom); McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine (United Kingdom)

    1997-08-01

    Residual biomass from a whiskey distillery was examined for its ability to function as a biosorbent for uranium. Biomass recovered and lyophilised exhibited a maximum biosorption capacity of 165-170 mg uranium/g dry weight biomass at 15 C. With a view towards the development of continuous or semi-continuous flow biosorption processes it was decided to immobilize the material by (1) cross-linking with formaldehyde and (2) introducing that material into alginate matrices. Cross-linking the recovered biomass resulted in the formation of a biosorbent preparation with a maximum biosorption capacity of 185-190 mg/g dry weight biomass at 15 C. Following immobilization of biomass in alginate matrices it was found that the total amount of uranium bound to the matrix did not change with increasing amounts of biomass immobilized. It was found however, that the proportion of uranium bound to the biomass within the alginate-biomass matrix increased with increasing biomass concentration. Further analysis of these preparations demonstrated that the alginate-biomass matrix had a maximum biosorption capacity of 220 mg uranium/g dry weight of the matrix, even at low concentrations of biomass. (orig.). With 3 figs., 1 tab.

  15. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Xugang; Yang, Mao; Shan, Zhihua [National Engineering Laboratory for Clean Technology Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065 (China); Mansouri, Shahnaz [Department of Chemical Engineering, Monash University, VIC 3800 (Australia); May, Bee K [School of Applied Science, RMIT University, 124 La Trobe St, Melbourne, VIC 3001 (Australia); Chen, Xiaodong [Department of Chemical Engineering, Monash University, VIC 3800 (Australia); School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University (China); Chen, Hui, E-mail: leather2088@sina.com [National Engineering Laboratory for Clean Technology Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065 (China); Department of Chemical Engineering, Monash University, VIC 3800 (Australia); Woo, Meng Wai, E-mail: meng.woo@monash.edu [Department of Chemical Engineering, Monash University, VIC 3800 (Australia)

    2017-05-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326 °C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3 h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. - Highlights: • It's first time to prepare microencapsulation with gelatin and oxidized corn starch. • The microencapsulation material can be biodegradable completely. • The production technology of microcapsule is convenient. • This work explores the potential to use oxidized starch cross-linked gelatin. • The microencapsulation material can be used for drug release.

  16. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2018-05-01

    Full Text Available Improving the thermal and chemical stabilities of classical polymer membranes will be beneficial to extend their applications in the high temperature or aggressive environment. In this work, the asymmetric ultrafiltration membranes prepared from the polyacrylonitrile (PAN were used to fabricate the cross-linking asymmetric (CLA PAN membranes via thermal cross-linking in air to improve their thermal and chemical stabilities. The effects of thermal cross-linking parameters such as temperature and holding time on the structure, gas separation performance, thermal and chemical stabilities of PAN membranes were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, positron annihilation lifetime spectroscopy (PALS, scanning electron microscopy (SEM, thermogravimetic analysis (TGA and gas permeation test. The thermal cross-linking significantly influences the chemical structure, microstructure and pore structure of PAN membrane. During the thermal cross-linking, the shrinkage of membrane and coalescence or collapse of pore and microstructure make large pores diminish, small pores disappear and pore volumes reduce. The gas permeances of CLA-PAN membranes increase as the increasing of cross-linking temperature and holding time due to the volatilization of small molecules. The CLA-PAN membranes demonstrate excellent thermal and chemical stabilities and present good prospects for application in ultrafiltration for water treatment and for use as a substrate for nanofiltration or gas separation with an aggressive and demanding environment.

  17. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Directory of Open Access Journals (Sweden)

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  18. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    Science.gov (United States)

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization.

    Science.gov (United States)

    Moreno, Miguel; Pow, Poh Yih; Tabitha, Tan Su Teng; Nirmal, Sonali; Larsson, Andreas; Radhakrishnan, Krishna; Nirmal, Jayabalan; Quah, Soo Tng; Geifman Shochat, Susana; Agrawal, Rupesh; Venkatraman, Subbu

    2017-08-01

    This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.

  20. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  1. Mechanism of Action of Electrospun Chitosan-Based Nanofibers against Meat Spoilage and Pathogenic Bacteria.

    Science.gov (United States)

    Arkoun, Mounia; Daigle, France; Heuzey, Marie-Claude; Ajji, Abdellah

    2017-04-06

    This study investigates the antibacterial mechanism of action of electrospun chitosan-based nanofibers (CNFs), against Escherichia coli , Salmonella enterica serovar Typhimurium, Staphylococcus aureus and Listeria innocua , bacteria frequently involved in food contamination and spoilage. CNFs were prepared by electrospinning of chitosan and poly(ethylene oxide) (PEO) blends. The in vitro antibacterial activity of CNFs was evaluated and the susceptibility/resistance of the selected bacteria toward CNFs was examined. Strain susceptibility was evaluated in terms of bacterial type, cell surface hydrophobicity, and charge density, as well as pathogenicity. The efficiency of CNFs on the preservation and shelf life extension of fresh red meat was also assessed. Our results demonstrate that the antibacterial action of CNFs depends on the protonation of their amino groups, regardless of bacterial type and their mechanism of action was bactericidal rather than bacteriostatic. Results also indicate that bacterial susceptibility was not Gram-dependent but strain-dependent, with non-virulent bacteria showing higher susceptibility at a reduction rate of 99.9%. The susceptibility order was: E. coli > L. innocua > S. aureus > S. Typhimurium. Finally, an extension of one week of the shelf life of fresh meat was successfully achieved. These results are promising and of great utility for the potential use of CNFs as bioactive food packaging materials in the food industry, and more specifically in meat quality preservation.

  2. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    International Nuclear Information System (INIS)

    Shukur, M F; Yusof, Y M; Zawawi, S M M; Illias, H A; Kadir, M F Z

    2013-01-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH 4 SCN). The sample containing 40 wt% NH 4 SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10 −4  S cm −1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10 −3  S cm −1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (E a ) was calculated for both systems and it is found that the sample with 40 wt% NH 4 SCN in the salted system obtained an E a value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH 4 SCN salt. Changes in the C–O stretching vibration band intensity are observed at 1067 cm −1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems. (paper)

  3. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  4. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    Science.gov (United States)

    Shukur, M. F.; Yusof, Y. M.; Zawawi, S. M. M.; Illias, H. A.; Kadir, M. F. Z.

    2013-11-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH4SCN). The sample containing 40 wt% NH4SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10-4 S cm-1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10-3 S cm-1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (Ea) was calculated for both systems and it is found that the sample with 40 wt% NH4SCN in the salted system obtained an Ea value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH4SCN salt. Changes in the C-O stretching vibration band intensity are observed at 1067 cm-1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.

  5. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    Science.gov (United States)

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  6. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    Science.gov (United States)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  7. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    F. Widhi Mahatmanti

    2014-07-01

    Full Text Available Recently, development of film materials is focused on finding the films with high chemical and physical stabilities. Organic based material such as chitosan produces films with low physical stability, and hence addition of inorganic materials necessary. In this research, the effect of silica and polyethylene glycol (PEG addition on the properties of chitosan based films has been investigated. Precursors used to produce films included chitosan with the deacetylation degree of 83% and sodium silicate solution as the silica source. A simple synthesis in a one-pot process was carried out by mixing 1%(w of chitosan solution in 2%(v/v acetate acid and sodium silicate solution (27% SiO2 in various composition ratios and casting the solution on a glass dish. The tensile strength and percentage of elongation decrease with increasing the silica content. The tensile strength tends to decline with addition of PEG, but the elongation percentage of the film increases. Hydrophilicity of the film decreases with the addition of silica and increases with the addition of PEG. The addition of silica and PEG does not change significantly the morphology of the film and functional groups indicating the domination of physical interaction among active sites in the film components.

  8. Carbon-based sputtered coatings for enhanced chitosan-based films properties

    Science.gov (United States)

    Fernandes, C.; Calderon V., S.; Ballesteros, Lina F.; Cerqueira, Miguel A.; Pastrana, L. M.; Teixeira, José A.; Ferreira, P. J.; Carvalho, S.

    2018-03-01

    In order to make bio-based packaging materials competitive in comparison to petroleum-based one, some of their properties need to be improved, among which gas permeability is of crucial importance. Thus, in this work, carbon-based coatings were applied on chitosan-based films by radiofrequency reactive magnetron sputtering aiming to improve their barrier properties. Chemical and morphological properties were evaluated in order to determine the effect of the coatings on the chemical structure, surface hydrophobicity and barrier properties of the system. Chemical analysis, performed by electron energy loss spectroscopy and Fourier transform infrared spectroscopy, suggests similar chemical characteristics among all coatings although higher incorporation of hydrogen as the acetylene flux increases was observed. On the other hand, scanning transmission electron microscopy revealed that the porosity of the carbon layer can be tailored by the acetylene flux. More importantly, the chitosan oxygen permeability showed a monotonic reduction as a function of the acetylene flux. This study opens up new opportunities to apply nanostructured coatings on bio-based polymer for enhanced oxygen barrier properties.

  9. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    International Nuclear Information System (INIS)

    Wang, Feng; Wang, Mingbo; She, Zhending; Fan, Kunwu; Xu, Cheng; Chu, Bin; Chen, Changsheng; Shi, Shengjun; Tan, Rongwei

    2015-01-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation

  10. Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method.

    Science.gov (United States)

    Casimiro, Maria Helena; Lancastre, Joana J H; Rodrigues, Alexandra P; Gomes, Susana R; Rodrigues, Gabriela; Ferreira, Luís M

    2017-02-01

    In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices' properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.

  11. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    Science.gov (United States)

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  12. Effects of cross-linking modification with phosphoryl chloride (POCl3 on pysiochemical properties of barely starch

    Directory of Open Access Journals (Sweden)

    Zahra Malekpour

    2016-05-01

    Full Text Available Chemical methods are one of the comon method in starch modification. This study aimed at investigating of cross-link affection of phosphoryl chloride with two different levels 0.5 and 1g.kg-1 in order to enhance funciotnal proeprties and physiochemical changes on extracted starch from barely variety Bahman which cultivates in Chahr-Mahal Bakhtiari Province of Iran. Obtained results indicated that cross-linking leads to reduce sweeling power of strach granuls compred to natural starch and the amount of reduciton increase via the substitituin level. Powerfull cross-linkingnetween starch chains casue more resistance of granules to seweeling which is increased by means of cross-linking dgree. Additioally,  investigationresults from synersis revealed that releasing water percentage in cross-linked starches increase in comparison to natural starches and this amount depends onthe amount of cross-link surface with a significantly difference in (α <0.05. Gelatinization temperature in both levels negligibly increased by modification where in low level of cross-linking was more. Furthermoe evaluating gelation temperatures of both natural and cross-linked modified starches showed that addition of phosphate groups in starch and creating extra coovalent bonds make granues more compressed reulting in slight increase of To, Tp, Tcin barely starch. Icreasing of temperature observed more in less concentration of cross-links. Evaluation of viscosity changes also revealed that this modification depending on increasing the amount of Phosphoryl Chloride led to increasing peak temperature, diminish peak and setback viscosity. Result also exhibited that in morphological level, cross-link causes to incidence changes in particles' diameter size. The comparison of diameter average and frequency between natural starch and cross-links starch exhibited that in cross-linkd treatment with 0.5% phosphoryl chloride, increase in frequency of granules with diameter of 6 - 10µm

  13. [Riboflavin photoprotection with cross-linking effect in photorefractive ablation of the cornea].

    Science.gov (United States)

    Kornilovskiy, I M; Sultanova, A I; Burtsev, A A

    2016-01-01

    Photorefractive ablation is inevitably accompanied by oxidative stress of the cornea and weakening of its biomechanical and photoprotective properties. To validate the expediency of riboflavin use in photorefractive ablation for photoprotection of the cornea and cross-linking. The effects of riboflavin use in photorefractive ablation was first studied in a series of in vitro and in vivo experiments performed on 56 eyes of 28 rabbits, and then on 232 eyes of 142 patients with different degrees of myopia. Biomechanical testing of corneal samples was performed with Zwick/RoellВZ 2.5/TN1S tensile-testing machine. Transepithelial photorefractive keratectomy (TransPRK) and femtosecond laser-assisted in situ keratomileusis (Femto-LASIK) were performed on Wavelight-Allegretto200, MEL-80, and WaveLight-EX500 excimer laser systems and also VisuMax and WaveLight-FS200 femtosecond lasers. For preliminary examinations, an appropriate set of diagnostic tools was used. In vivo experiments have proved that, in the absence of conservative therapy, riboflavin is able to produce both photoprotective and cross-linking effects to the cornea. Corneal syndrome was thus reduced and re-epithelialization after TransPRK accelerated. Biomechanical testing of corneal samples revealed an increase in tolerated load from 12.9±1.4 N to 18.3±1.2 N (p=0.0002) and tensile strength from 8.6±1.7 MPa to 12.4±1.7 MPa (p=0.007). Clinical studies conducted in a group of patients with mild to moderate myopia have also confirmed the photoprotective effect of riboflavin at months 1-12 after TransPRK. There were no significant differences in uncorrected visual acuity (ranged from 0.80±0.16 to 0.85±0.15) and corrected visual acuity at baseline (0.83±0.14). Evaluation of the optical and refractive effect achieved after Femto-LASIK with riboflavin photoprotection in the fellow eye has shown that this technique is not inferior to the traditional one as to its refractive accuracy, but provides better

  14. Characterization of the somatogenic receptor in rat liver. Hydrodynamic properties and affinity cross-linking

    International Nuclear Information System (INIS)

    Husman, B.; Haldosen, L.A.; Andersson, G.; Gustafsson, J.A.

    1988-01-01

    Rat liver somatogenic receptors have been characterized by gel permeation chromatography, sucrose density gradients in H 2 O and D 2 O, and affinity cross-linking using 125 I-bovine growth hormone (bGH) as a specific somatogenic receptor ligand. Cross-linking of 125 I-bovine growth hormone to a Triton X-100-treated low density fraction isolated from livers of late pregnant rats followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis under reducing conditions showed three major binders with Mr 95,000, 86,000, and 43,000 and a minor binder of Mr 55,000, after correction for bound ligand assuming a 1:1 binding ratio of ligand-receptor. The Mr 86,000, 55,000, and 43,000 species were recovered in the detergent-soluble supernatant after high-speed centrifugation, whereas the Mr 95,000 species remained Triton X-100 insoluble. Detergent-soluble 125 I-bGH-receptor complexes were further analyzed by sedimentation into sucrose density gradients. The sedimentation coefficient was S20,w = 5.2 S and the partial specific volume v = 0.72 ml/g. Gel permeation chromatography on a Sepharose S-400 column indicated a Stokes radius of 61 A for the 125 I-bGH-receptor-Triton X-100 complex. Based on these figures, the molecular weight of the complex was calculated as 131,100. The molecular weight of the ligand-free receptor-Triton X-100 complex was calculated as Mr 109,100. Affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the 61 A peak from Sephacryl S-400 chromatography (cf. above) showed two binding entities, one major and one minor with Mr values 86,000 and 43,000, respectively, in the absence of reductant. When electrophoresis was run in the presence of reductant the Mr 43,000 species was the major binding entity

  15. Use of cross-linked carboxymethyl cellulose for soft-tissue augmentation: preliminary clinical studies

    Directory of Open Access Journals (Sweden)

    Mauro Leonardis

    2010-11-01

    Full Text Available Mauro Leonardis1, Andrea Palange2, Rodrigo FV Dornelles3, Felipe Hund41Department of Plastic Surgery, Salvator Mundi International Hospital, Roma, Italy; 2Department of Aesthetic Medicine, Fisiobios, Roma, Italy; 3Department of Plastic Surgery, Núcleo de Plástica Avançada, São Paulo, SP, Brazil; 4Department of Plastic Surgery, Consultorio de Cirurgia Plastica, Criciuma, SC, BrazilPurpose: The continual search for new products for soft-tissue augmentation has in recent years led to the introduction of long lasting alternatives to hyaluronic acids and collagen that are composed of other polymers able to improve clinical persistence over time. This is the first report in which sodium carboxymethyl cellulose (CMC has been chemically treated by the cross-linking process and thus used as a hydrogel for soft-tissue augmentation through injection with thin needles. The study evaluates, from a clinical point of view, the behavior of cross-linked carboxymethyl cellulose hydrogel used in the aesthetic field and its side effects so as to check the safety and performance of the polymer following intradermal injections.Patients and methods: This work shows the preliminary results of an ongoing clinical study conducted between 2006 and 2009, performed on 84 healthy volunteers (62 females, 22 males aged between 18 and 72 years, for the treatment of 168 nasolabial folds, 45 perioral wrinkles, and 39 lip volume.Results: Study results show an excellent correction of facial defects. Tolerance and aesthetic quality of the correction obtained indicate considerable safety features and absence of side effects. From a clinical point of view, hydrogel is gradually absorbed into the injection site without migration issues.Conclusion: Cross-linked CMC hydrogel proves to be an ideal agent for soft tissue augmentation with regard to safety and ease of application. It did not cause infection, extrusion, migration, or adverse reactions in the patients who have been

  16. Antigen-decorated shell cross-linked nanoparticles: synthesis, characterization, and antibody interactions.

    Science.gov (United States)

    Joralemon, Maisie J; Smith, Norah L; Holowka, David; Baird, Barbara; Wooley, Karen L

    2005-01-01

    Antigen-decorated shell cross-linked knedel-like nanoparticles (SCKs) were synthesized and studied as multivalent nanoscale surfaces from which antibody-binding units were presented in a manner that was designed to approach virus particle surfaces. The SCK nanostructures were fabricated with control over the number of antigenic groups, from mixed micellization of amphiphilic diblock copolymer building blocks that contained either an antigen (2,4-dinitrophenyl) or an ethylpropionate group at the hydrophilic alpha-chain terminus. Amphiphilic diblock copolymers were synthesized by atom transfer radical polymerization of tert-butyl acrylate and methyl acrylate sequentially from either a 2,4-dinitrophenyl-functionalized initiator or ethyl 2-bromopropionate, followed by selective removal of the tert-butyl groups to afford 2,4-dinitrophenyl-poly(acrylic acid)60-b-poly(methyl acrylate)60 (DNP-PAA(60)-b-PMA60) and poly(acrylic acid)70-b-poly(methyl acrylate) (PAA70-b-PMA70). Micelles were assembled via addition of water to THF solutions of the polymers in 0:1, 1:1, and 1:0 molar ratios of DNP-PAA60-b-PMA60 to PAA70-b-PMA70, followed by dialysis against water. The acrylic acid groups of the micelle coronas were partially cross-linked (nominally 50%) with 2,2'-(ethylenedioxy)bis(ethylamine), in the presence of 1-(3'-dimethylaminopropyl)-3-ethylcarbodiimide methiodide. Following extensive dialysis against water, the 0%, 50%, and 100% dinitrophenylated shell cross-linked nanoparticles (DNP-SCKs) were characterized with dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), infrared and UV-vis spectroscopies, and analytical ultracentrifugation (AU). The surface accessibility and bioavailability of the DNP units upon the DNP-SCKs were investigated by performing quenching titrations of fluorescein-labeled IgE antibody in solution and degranulation of Ig

  17. Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid)--a new generation of multifunctional polymers.

    Science.gov (United States)

    Bonengel, Sonja; Haupstein, Sabine; Perera, Glen; Bernkop-Schnürch, Andreas

    2014-10-01

    The aim of this study was to create a novel multifunctional polymer by covalent attachment of l-cysteine to the polymeric backbone of hydrophobically modified cross-linked poly(acrylic acid) (AC1030). Secondly, the free thiol groups of the resulting thiomer were activated using 2-mercaptonicotinic acid (2-MNA) to provide full reactivity and stability. Within this study, 1167.36 μmol cysteine and 865.72 μmol 2-MNA could be coupled per gram polymer. Studies evaluating mucoadhesive properties revealed a 4-fold extended adherence time to native small intestinal mucosa for the thiomer (AC1030-cysteine) as well as an 18-fold prolonged adhesion for the preactivated thiomer (AC1030-Cyst-2-MNA) compared to the unmodified polymer. Modification of the polymer led to a higher tablet stability concerning the thiomer and the S-protected thiomer, but a decelerated water uptake could be observed only for the preactivated thiomer. Neither the novel conjugates nor the unmodified polymer showed severe toxicity on Caco-2 cells. Evaluation of emulsification capacity proofed the ability to incorporate lipophilic compounds like medium chain triglycerides and the preservation of the emulsifying properties after the modifications. According to these results thiolated AC1030 as well as the S-protected thiolated polymer might provide a promising tool for solid and semisolid formulations in pharmaceutical development. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering.

    Science.gov (United States)

    Wu, Shu-Wei; Liu, Xifeng; Miller, A Lee; Cheng, Yu-Shiuan; Yeh, Ming-Long; Lu, Lichun

    2018-07-15

    In the present study, we fabricated non-toxic, injectable, and thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for introduction of disulfide cross-linking strategy. Previously, NIPAAm and chitosan copolymer has been proven to have excellent biocompatibility, biodegradability and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly limit their potential for biomedical fields. In order to overcome this issue, we incorporated thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties. After oxidation of thiols into disulfide bonds, modified NC hydrogels did improve the compressive modulus over 9 folds (11.4 kPa). Oscillatory frequency sweep showed a positive correlation between storage modulus and cross-liking density as well. Additionally, there was no cytotoxicity observed to mesenchymal stem cells, fibroblasts and osteoblasts. We suggested that the thiol-modified thermo-sensitive polysaccharide hydrogels are promising to be a cell-laden biomaterial for tissue regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo; Oh, Shin Bi; Lee, Hyuck Jin; Earnest, Kaylin G.; Suh, Nayoung; Peck, Kristy L.; Ozbil, Mehmet; Korshavn, Kyle J.; Ramamoorthy, Ayyalusamy; Prabhakar, Rajeev; Merino, Edward J.; Shearer, Jason; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2015-11-25

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand–peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.

  20. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics.

    Science.gov (United States)

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells.

  1. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    Science.gov (United States)

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation. © IMechE 2015.

  2. Linear rheology of cross-linked polypropylene oxide as a pressure sensitive adhesive

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Bach, A.; Hassager, Ole

    2009-01-01

    are carefully considered. Two main mechanisms must be considered when studying adhesives, that is the debonding and bonding mechanisms. Linear rheology is used to study the debonding mechanisms to gain better understanding of the peeling process of the PSAs. A variety of PSAs are prepared by mixing a linear......-linked networks. The adhesive performance was tested with 90 degrees peel tests at three peel rates and thicknesses, and it was observed that the peel force varies with r, M and f and also the peel rate. The fundamental viscoelastic parameters that govern the PSA performance of cross-linked systems were used...... to state an empirical relation for the peel force. The relation is combining the peel force with the loss tangent at the peel frequency and the equilibrium modulus. Based on this, basic guidelines for selecting the appropriate polymer/cross-linker system to achieve the target performance are given....

  3. Formation and repair of DNA-protein cross-links (DPCs) in newly replicated DNA

    International Nuclear Information System (INIS)

    Chiu, S.; Friedman, L.R.; Oleinick, N.L.

    1987-01-01

    DPCs preferentially involve proteins of the nuclear matrix, the site of replication and transcription. To elucidate the relationship with replication, the formation and repair of DPCs has been studied in newly replicated DNA. Log-phase V79 cells were pulsed with /sup 3/H-TdR (10-20 μCi/ml) for 30-90 sec at 22 0 followed by up to a 60 min chase at 37 0 . Irradiation (0-100 Gy) immediately after the pulse increases the labeled DNA in DPCs with a dose-dependence that is unaffected by the initial level of labeled DPC or by chase time. When cells are irradiated before the pulse, DNA synthesis is inhibited; however, release of pulse-labeled DPCs appears normal. The data suggest that during replication, DNA is cross-linked to (matrix) protein, contributing to background DPCs

  4. Red emissive cross-linked chitosan and their nanoparticles for imaging the nucleoli of living cells.

    Science.gov (United States)

    Wang, Ke; Yuan, Xun; Guo, Zhenpeng; Xu, Jiying; Chen, Yi

    2014-02-15

    Biocompatible glutaraldehyde-cross-linked chitosan with new red fluorescence were prepared for the first time and were shaped into nanoparticles via inverse-microemulsion method. They could luminesce at ca. 670 nm either as powders and nanoparticles or in real and gelling solutions or suspensions, having a lifetime of 1.353 ns and a quantum yield of 0.08 in solution or 0.01 in solid state. The new-formed pyridinium structures and the intramolecular charge transfer effect are considered to be responsible for the new red emission, which have been proved by FTIR, (13)C NMR, and some calculation using Gaussian 09, respectively. Strikingly, they are quite inert and anti-photobleaching, with only nucleoli of living HeLa cells with low cytotoxicity for high contrast imaging inspections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Simultaneous topography-guided PRK followed by corneal collagen cross-linking for keratoconus.

    Science.gov (United States)

    Kymionis, George D; Kontadakis, Georgios A; Kounis, George A; Portaliou, Dimitra M; Karavitaki, Alexandra E; Magarakis, Michael; Yoo, Sonia; Pallikaris, Ioannis G

    2009-09-01

    To present the results after simultaneous photorefractive keratectomy (PRK) followed by corneal collagen cross-linking (CXL) for progressive keratoconus. Twelve patients (14 eyes) with progressive keratoconus were prospectively treated with customized topography-guided PRK with the Pulzar Z1 (wavelength 213 nm, CustomVis) immediately followed by corneal collagen CXL with the use of riboflavin and ultraviolet A irradiation. Mean follow-up was 10.69+/-5.95 months (range: 3 to 16 months). Mean preoperative spherical equivalent refraction (SE) was -3.03+/-3.23 diopters (D) and defocus was 4.67+/-3.29 D; at last follow-up SE and defocus were statistically significantly reduced to -1.29+/-2.05 D and 3.04+/-2.53 D, respectively (PPRK followed by CXL seems to be a promising treatment capable of offering functional vision in patients with keratoconus. Copyright 2009, SLACK Incorporated.

  6. Microbiologic Examination of Bandage Contact Lenses Used after Corneal Collagen Cross-linking Treatment.

    Science.gov (United States)

    Yuksel, Erdem; Yalcin, Nuriye Gokçen; Kilic, Gaye; Cubuk, Mehmet Ozgur; Ozmen, Mehmet Cuneyt; Altay, Aylin; Çağlar, Kayhan; Bilgihan, Kamil

    2016-01-01

    To investigate the agents of bacterial contamination of contact lenses after corneal collagen cross-linking (CCL), and to present the possible changes of ocular flora after riboflavin/ultraviolet A. Seventy-two contact lenses of patients who underwent CCL and 41 contact lenses of patients who underwent photorefractive keratectomy (PRK) as control group were enrolled to the study. After 48 h of incubation, broth culture media was transferred to plates. Samples were accepted as positive if one or more colony-forming units were shown. There were positive cultures in 12 (16.7%) contact lenses in the CCL group and 5 (12.2%) had positive cultures in PRK group. Coagulase-negative staphlycocci (CNS) were the most frequent microorganism. Alpha hemolytic streptococci and Diphteroid spp. were the other isolated microorganisms. Bacterial colonization can occur during and early after the CCL procedure in epithelial healing. To prevent corneal infections after the treatment, prophylactic antibiotics should be prescribed.

  7. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair.

    Science.gov (United States)

    Knipscheer, Puck; Räschle, Markus; Smogorzewska, Agata; Enoiu, Milica; Ho, The Vinh; Schärer, Orlando D; Elledge, Stephen J; Walter, Johannes C

    2009-12-18

    Fanconi anemia is a human cancer predisposition syndrome caused by mutations in 13 Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand cross-links (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. Using a cell-free system, we showed that FANCI-FANCD2 is required for replication-coupled ICL repair in S phase. Removal of FANCD2 from extracts inhibits both nucleolytic incisions near the ICL and translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S-phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised.

  8. Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration.

    Science.gov (United States)

    Xin, Jiwen; Afrasiabi, Cyrus; Lelong, Sebastien; Adesara, Julee; Tsueng, Ginger; Su, Andrew I; Wu, Chunlei

    2018-02-01

    Application Programming Interfaces (APIs) are now widely used to distribute biological data. And many popular biological APIs developed by many different research teams have adopted Javascript Object Notation (JSON) as their primary data format. While usage of a common data format offers significant advantages, that alone is not sufficient for rich integrative queries across APIs. Here, we have implemented JSON for Linking Data (JSON-LD) technology on the BioThings APIs that we have developed, MyGene.info , MyVariant.info and MyChem.info . JSON-LD provides a standard way to add semantic context to the existing JSON data structure, for the purpose of enhancing the interoperability between APIs. We demonstrated several use cases that were facilitated by semantic annotations using JSON-LD, including simpler and more precise query capabilities as well as API cross-linking. We believe that this pattern offers a generalizable solution for interoperability of APIs in the life sciences.

  9. Cross-Linked Hyaluronan Gel Reduces the Acute Rectal Toxicity of Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wilder, Richard B.; Barme, Greg A.; Gilbert, Ronald F.; Holevas, Richard E.; Kobashi, Luis I.; Reed, Richard R.; Solomon, Ronald S.; Walter, Nancy L.; Chittenden, Lucy; Mesa, Albert V.; Agustin, Jeffrey; Lizarde, Jessica; Macedo, Jorge; Ravera, John; Tokita, Kenneth M.

    2010-01-01

    Purpose: To prospectively analyze whether cross-linked hyaluronan gel reduces the mean rectal dose and acute rectal toxicity of radiotherapy for prostate cancer. Methods and Materials: Between September 2008 and March 2009, we transperitoneally injected 9mL of cross-linked hyaluronan gel (Hylaform; Genzyme Corporation, Cambridge, MA) into the anterior perirectal fat of 10 early-stage prostate cancer patients to increase the separation between the prostate and rectum by 8 to 18mm at the start of radiotherapy. Patients then underwent high-dose rate brachytherapy to 2,200cGy followed by intensity-modulated radiation therapy to 5,040cGy. We assessed acute rectal toxicity using the National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 grading scheme. Results: Median follow-up was 3 months. The anteroposterior dimensions of Hylaform at the start and end of radiotherapy were 13 ± 3mm (mean ± SD) and 10 ± 4mm, respectively. At the start of intensity-modulated radiation therapy, daily mean rectal doses were 73 ± 13cGy with Hylaform vs. 106 ± 20cGy without Hylaform (p = 0.005). There was a 0% incidence of National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 Grade 1, 2, or 3 acute diarrhea in 10 patients who received Hylaform vs. a 29.7% incidence (n = 71) in 239 historical controls who did not receive Hylaform (p = 0.04). Conclusions: By increasing the separation between the prostate and rectum, Hylaform decreased the mean rectal dose. This led to a significant reduction in the acute rectal toxicity of radiotherapy for prostate cancer.

  10. Absorbed Pb2+ and Cd2+ Ions in Water by Cross-Linked Starch Xanthate

    Directory of Open Access Journals (Sweden)

    Kai Feng

    2017-01-01

    Full Text Available A cross-linked starch xanthate was prepared by graft copolymerization of acrylamide and sodium acrylate onto starch xanthate using potassium persulfate and sodium hydrogen sulfite initiating system and N,N′-methylenebisacrylamide as a cross-linker. As this kind of cross-linked potato starch xanthate can effectively absorb heavy metal ions, it was dispersed in aqueous solutions of divalent heavy metal ions (Pb2+ and Cd2+ to investigate their absorbency by the polymer. Factors that can influence absorbency were investigated, such as the ratio of matrix to monomers, the amount of initiator and cross-linker, pH, and the concentration of metal ions. Results were reached and conclusion was drawn that the best synthetic conditions for the polymer adsorbing Pb2+ and Cd2+ were as follows: the quality ratio of matrix to monomers was 1 : 12 and 1 : 11, the amount of initiator was 2.4% and 3.2% of matrix, and the amount of cross-linker was 12 mg and 13 mg. When the initial concentration of ions was 10 mg/L, the highest quantities of adsorption of Pb2+ and Cd2+ were 47.11 mg/g and 36.55 mg/g. Adsorption mechanism was discussed by using Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, Energy Dispersive X-Ray Spectroscopy (EDS test, and adsorption kinetic simulation.

  11. Corneal Absorption of a New Riboflavin-Nanostructured System for Transepithelial Collagen Cross-Linking

    Science.gov (United States)

    Bottos, Katia M.; Oliveira, Anselmo G.; Bersanetti, Patrícia A.; Nogueira, Regina F.; Lima-Filho, Acácio A. S.; Cardillo, José A.; Schor, Paulo; Chamon, Wallace

    2013-01-01

    Corneal collagen cross-linking (CXL) has been described as a promising therapy for keratoconus. According to standard CXL protocol, epithelium should be debrided before treatment to allow penetration of riboflavin into the corneal stroma. However, removal of the epithelium can increase procedure risks. In this study we aim to evaluate stromal penetration of a biocompatible riboflavin-based nanoemulsion system (riboflavin-5-phosphate and riboflavin-base) in rabbit corneas with intact epithelium. Two riboflavin nanoemulsions were developed. Transmittance and absorption coefficient were measured on corneas with intact epithelia after 30, 60, 120, 180, and 240 minutes following exposure to either the nanoemulsions or standard 0.1% or 1% riboflavin-dextran solutions. For the nanoemulsions, the epithelium was removed after measurements to assure that the riboflavin had passed through the hydrophobic epithelium and retained within the stroma. Results were compared to de-epithelialized corneas exposed to 0.1% riboflavin solution and to the same riboflavin nanoemulsions for 30 minutes (standard protocol). Mean transmittance and absorption measured in epithelialized corneas receiving the standard 0.1% riboflavin solution did not reach the levels found on the debrided corneas using the standard technique. Neither increasing the time of exposure nor the concentration of the riboflavin solution from 0.1% to 1% improved riboflavin penetration through the epithelium. When using riboflavin-5-phosphate nanoemulsion for 240 minutes, we found no difference between the mean absorption coefficients to the standard cross-linking protocol (p = 0.54). Riboflavin nanoemulsion was able to penetrate the corneal epithelium, achieving, after 240 minutes, greater stromal concentration when compared to debrided corneas with the standard protocol (p = 0.002). The riboflavin-5-phosphate nanoemulsion diffused better into the stroma than the riboflavin-base nanoemulsion. PMID:23785497

  12. CrossLink: a novel method for cross-condition classification of cancer subtypes.

    Science.gov (United States)

    Ma, Chifeng; Sastry, Konduru S; Flore, Mario; Gehani, Salah; Al-Bozom, Issam; Feng, Yusheng; Serpedin, Erchin; Chouchane, Lotfi; Chen, Yidong; Huang, Yufei

    2016-08-22

    We considered the prediction of cancer classes (e.g. subtypes) using patient gene expression profiles that contain both systematic and condition-specific biases when compared with the training reference dataset. The conventional normalization-based approaches cannot guarantee that the gene signatures in the reference and prediction datasets always have the same distribution for all different conditions as the class-specific gene signatures change with the condition. Therefore, the trained classifier would work well under one condition but not under another. To address the problem of current normalization approaches, we propose a novel algorithm called CrossLink (CL). CL recognizes that there is no universal, condition-independent normalization mapping of signatures. In contrast, it exploits the fact that the signature is unique to its associated class under any condition and thus employs an unsupervised clustering algorithm to discover this unique signature. We assessed the performance of CL for cross-condition predictions of PAM50 subtypes of breast cancer by using a simulated dataset modeled after TCGA BRCA tumor samples with a cross-validation scheme, and datasets with known and unknown PAM50 classification. CL achieved prediction accuracy >73 %, highest among other methods we evaluated. We also applied the algorithm to a set of breast cancer tumors derived from Arabic population to assign a PAM50 classification to each tumor based on their gene expression profiles. A novel algorithm CrossLink for cross-condition prediction of cancer classes was proposed. In all test datasets, CL showed robust and consistent improvement in prediction performance over other state-of-the-art normalization and classification algorithms.

  13. The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels.

    Science.gov (United States)

    Malana, Muhammad A; Zohra, Rubab

    2013-01-18

    Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels. Ter-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA) were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol% EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism. Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n) derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n > 0.5 > 1) showing swelling controlled mechanism. The mechanical strength and controlled release capability of the systems indicate that these co-polymeric hydrogels have a great potential to

  14. Cross-linking by protein oxidation in the rapidly setting gel-based glues of slugs

    Science.gov (United States)

    Bradshaw, Andrew; Salt, Michael; Bell, Ashley; Zeitler, Matt; Litra, Noelle; Smith, Andrew M.

    2011-01-01

    SUMMARY The terrestrial slug Arion subfuscus secretes a glue that is a dilute gel with remarkable adhesive and cohesive strength. The function of this glue depends on metals, raising the possibility that metal-catalyzed oxidation plays a role. The extent and time course of protein oxidation was measured by immunoblotting to detect the resulting carbonyl groups. Several proteins, particularly one with a relative molecular mass (Mr) of 165×103, were heavily oxidized. Of the proteins known to distinguish the glue from non-adhesive mucus, only specific size variants were oxidized. The oxidation appears to occur within the first few seconds of secretion. Although carbonyls were detected by 2,4-dinitrophenylhydrazine (DNPH) in denatured proteins, they were not easily detected in the native state. The presence of reversible cross-links derived from carbonyls was tested for by treatment with sodium borohydride, which would reduce uncross-linked carbonyls to alcohols, but stabilize imine bonds formed by carbonyls and thus lead to less soluble complexes. Consistent with imine bond formation, sodium borohydride led to a 20–35% decrease in the amount of soluble protein with a Mr of 40–165 (×103) without changing the carbonyl content per protein. In contrast, the nucleophile hydroxylamine, which would competitively disrupt imine bonds, increased protein solubility in the glue. Finally, the primary amine groups on a protein with a Mr of 15×103 were not accessible to acid anhydrides. The results suggest that cross-links between aldehydes and primary amines contribute to the cohesive strength of the glue. PMID:21525316

  15. Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and Chemical Cross-Linking

    Science.gov (United States)

    Wittig, Sabine; Haupt, Caroline; Hoffmann, Waldemar; Kostmann, Susann; Pagel, Kevin; Schmidt, Carla

    2018-06-01

    Synaptobrevin-2 is a key player in signal transmission in neurons. It forms, together with SNAP25 and Syntaxin-1A, the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and mediates exocytosis of synaptic vesicles with the pre-synaptic membrane. While Synaptobrevin-2 is part of a four-helix bundle in this SNARE complex, it is natively unstructured in the absence of lipids or other SNARE proteins. Partially folded segments, presumably SNARE complex formation intermediates, as well as formation of Synaptobrevin-2 dimers and oligomers, were identified in previous studies. Here, we employ three Synaptobrevin-2 variants—the full-length protein Syb(1-116), the soluble, cytosolic variant Syb(1-96) as well as a shorter version Syb(49-96) containing structured segments but omitting a trigger site for SNARE complex formation—to study oligomerisation in the absence of interaction partners or when incorporated into the lipid bilayer of liposomes. Combining native mass spectrometry with chemical cross-linking, we find that the truncated versions show increased oligomerisation. Our findings from both techniques agree well and confirm the presence of oligomers in solution while membrane-bound Synaptobrevin-2 is mostly monomeric. Using ion mobility mass spectrometry, we could further show that lower charge states of Syb(49-96) oligomers, which most likely represent solution structures, follow an isotropic growth curve suggesting that they are intrinsically disordered. From a technical point of view, we show that the combination of native ion mobility mass spectrometry with chemical cross-linking is well-suited for the analysis of protein homo-oligomers. [Figure not available: see fulltext.

  16. Rheological Behavior, Granule Size Distribution and Differential Scanning Calorimetry of Cross-Linked Banana (Musa paradisiaca) Starch.

    Science.gov (United States)

    Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo

    2008-07-01

    Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.

  17. Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications

    Science.gov (United States)

    Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria

    2017-12-01

    We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.

  18. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Hon-Meng [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Bee, Soo-Tueen, E-mail: beest@utar.edu.my [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-01-15

    Highlights: • Investigation of trimethylopropane trimethacrylate (TMPTMA) on electron beam irradiated PLA. • Irradiated PLA blends were weakened by incorporation of high amount of TMPTMA. • TMPTMA interacts with polymer free radicals to build crosslinking network. -- Abstract: The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3–5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25–250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples.

  19. Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid

    International Nuclear Information System (INIS)

    Ng, Hon-Meng; Bee, Soo-Tueen; Ratnam, C.T.; Sin, Lee Tin; Phang, Yee-Yao; Tee, Tiam-Ting; Rahmat, A.R.

    2014-01-01

    Highlights: • Investigation of trimethylopropane trimethacrylate (TMPTMA) on electron beam irradiated PLA. • Irradiated PLA blends were weakened by incorporation of high amount of TMPTMA. • TMPTMA interacts with polymer free radicals to build crosslinking network. -- Abstract: The purpose of this research was to investigate the effects of various loading levels of trimethylopropane trimethacrylate (TMPTMA) on the properties of polylactic acid (PLA) cross-linked via electron-beam irradiation. PLA was compounded with 3–5 wt.% of TMPTMA to induce cross-linking upon subjection to electron-beam irradiation doses of 25–250 kGy. The physical properties of the PLA samples were characterised by means of X-ray diffraction, gel fraction and scanning electron microscopy analyses on fractured surfaces after tensile tests. The presence of TMPTMA in PLA was found to effectively increase the crystallite size and gel fraction. However, higher loading levels of TMPTMA could compromise the properties of the PLA/TMPTMA samples, indicating that a larger amount of monomer free radicals might promote degradation within the substantially cross-linked amorphous phase. Irradiation-induced cross-linking in the samples could improve the cross-linking density while decreasing the elongation and interfering with the crystallisation. These effects are caused by the intensive irradiation-induced chain scission that is responsible for the deterioration of the mechanical and crystalline properties of the samples

  20. Chitosan-based coatings in the prevention of intravascular catheter-associated infections.

    Science.gov (United States)

    Mendoza, Gracia; Regiel-Futyra, Anna; Tamayo, Alejandra; Monzon, Marta; Irusta, Silvia; de Gregorio, Miguel Angel; Kyzioł, Agnieszka; Arruebo, Manuel

    2018-01-01

    Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.