WorldWideScience

Sample records for chiral su3 quark

  1. An Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zong-Ye; YU You-Wen; WANG Ping; DAI Lian-Rong

    2003-01-01

    The chiral SU(3) quark model is extended by including the vector meson exchanges to describe the short range interactions. The phase shifts of NN scattering are studied in this model. Compared with the results of the chiral SU(3) quark model in which only the pseudo-scalar and scalar chiralfields are considered, the phase shifts of 1 So wave are obviously improved.

  2. Strange quark matter in a chiral SU(3) quark mean field model

    OpenAIRE

    Wang, P.; Lyubovitskij, V. E.; Gutsche, Th.; Faessler, Amand

    2002-01-01

    We apply the chiral SU(3) quark mean field model to investigate strange quark matter. The stability of strange quark matter with different strangeness fraction is studied. The interaction between quarks and vector mesons destabilizes the strange quark matter. If the strength of the vector coupling is the same as in hadronic matter, strangelets can not be formed. For the case of beta equilibrium, there is no strange quark matter which can be stable against hadron emission even without vector m...

  3. QQqq Four-Quark Bound States in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye

    2008-01-01

    The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.

  4. △△ Dibaryon Structure in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong

    2005-01-01

    @@ The structure of △△ dibaryon is studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect of the vector meson fields is very similar to that of the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model, the resultant mass of the △△ dibaryon is lower than the threshold of the △△ channel but higher than that of the△Nπ channel.

  5. Structures of (ΩΩ)0+ and (([1])Ω)1+ in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zong-Ye; YU You-Wen; DAI Lian-Rong

    2003-01-01

    The structures of (ΩΩ)0+ and (([1])Ω)1+ are studied in the extended chiral SU(3) quark model in whichvector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluonexchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and (([1])Ω)1+ 's binding energyis around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega(ΩΩ)0+ deeply bound.

  6. Properties of single cluster structure of $d^*(2380)$ in chiral SU(3) quark model

    CERN Document Server

    Lü, Qi-Fang; Dong, Yu-Bing; Shen, Peng-Nian; Zhang, Zong-Ye

    2016-01-01

    The structure of $d^*(2380)$ is re-studied with the single cluster structure in the chiral SU(3) quark model which has successfully been employed to explain the scattering and binding behaviors of baryonic systems. The mass and width are explicitly calculated with two types of trial wave functions. The result shows that the $(0s)^6 [6]_{orb}$ configuration is easy to convert to the configuration with the same $[6]_{orb}$ symmetry but $2\\hbar \\omega$ excitation back and forth, however, it is seldom to turn into a two-cluster configuration with a (1s) relative motion in between. The resultant mass and width are about $2394$MeV and $25$MeV, respectively, and the stable size is about $0.75fm$, which are consistent with both the results in the two-cluster configuration calculation and the data measured by the COSY collaboration. It seems that the observed $d^*$ is a six-quark dominated exotic state with a spherical shape and breath mode in the coordinate space. Moreover, if $d^*$ does have $2\\hbar \\omega$ excitati...

  7. Quantum corrections to the masses of the octet and decuplet baryons in the SU(3) chiral quark soliton model

    CERN Document Server

    Akiyama, S; Akiyama, Satoru; Futami, Yasuhiko

    2006-01-01

    Mesonic fluctuations around the chiral solitons are investigated in the SU(3) chiral quark soliton model. Since the soliton takes the non-hedgehog shape for the hyperons and the hedgehog one for the non-hedgehog baryons in our approach, the fluctuations also change according to the baryonic state. The quantum corrections to the masses (the Casimir energies) are estimated for the octet and decuplet baryons. The lack of the confinement in this model demands the cutoff on the energy of the fluctuations. Under the assumption that the value of the cutoff energy is $2\\times$(the lightest constituent quark mass), these calculation reproduces the masses of the baryons within 15 % error.

  8. Results from the MILC collaboration's SU(3) chiral perturbation theory analysis

    CERN Document Server

    Bazavov, A; DeTar, C; Du, X; Freeman, W; Gottlieb, Steven; Heller, Urs M; Hetrick, J E; Laiho, J; Levkova, L; Oktay, M B; Osborn, J; Sugar, R; Toussaint, D; Van de Water, R S

    2009-01-01

    We present the status of the MILC collaboration's analysis of the light pseudoscalar meson sector with SU(3) chiral fits. The analysis includes data from new ensembles with smaller lattice spacing, smaller light quark masses and lighter than physical strange quark masses. Our fits include the NNLO chiral logarithms. We present results for decay constants, quark masses, Gasser-Leutwyler low energy constants, and condensates in the two- and three-flavor chiral limits.

  9. Chiral Quark Model of Mesons

    CERN Document Server

    Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin

    1999-01-01

    We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.

  10. Vector transition form factors of the $N K^*\\to\\Theta^+ $ and $N \\bar{K}^*\\to \\Sigma_{\\bar{10}}^{*-}$ in the SU(3) chiral quark-soliton model

    CERN Document Server

    Ledwig, Tim; Goeke, Klaus

    2008-01-01

    We investigate the vector transition form factors of the nucleon and vector meson $K^*$ to the pentaquark baryon $\\Theta^+$ within the framework of the SU(3) chiral quark-soliton model. We take into account the rotational $1/N_c$ and linear $m_{\\rm s}$ corrections, assuming isospin symmetry and employing the symmetry-conserving quantization. It turns out that the leading-order contributions to the form factors are almost cancelled by the rotational corrections. Because of this, the flavor SU(3) symmetry-breaking terms yield sizeable effects on the transition form factors. In particular, the main contribution to the electric transition form factor comes from the wave-function corrections, which is a consequence of the generalized Ademollo-Gatto theorem derived in the present work. We estimate with the help of the vector meson dominance the $K^*$ vector and tensor coupling constants for the $\\Theta^+$: $g_{K^{*}N\\Theta}=0.74 - 0.87$ and $f_{K^{*}N\\Theta}=0.53 - 1.16$. We argue that the outcome of the present wo...

  11. SU(3) Chiral Symmetry in Non-Relativistic Field Theory

    CERN Document Server

    Ouellette, S M

    2001-01-01

    Applications imposing SU(3) chiral symmetry on non-relativistic field theory are considered. The first example is a calculation of the self-energy shifts of the spin-3/2 decuplet baryons in nuclear matter, from the chiral effective Lagrangian coupling octet and decuplet baryon fields. Special attention is paid to the self-energy of the delta baryon near the saturation density of nuclear matter. We find contributions to the mass shifts from contact terms in the effective Lagrangian with coefficients of unknown value. As a second application, we formulate an effecive field theory with manifest SU(2) chiral symmetry for the interactions of K and eta mesons with pions at low energy. SU(3) chiral symmetry is imposed on the effective field theory by a matching calculation onto three-flavor chiral perturbation theory. The effective Lagrangian for the pi-K and pi-eta sectors is worked out to order Q^4; the effective Lagrangian for the K-K sector is worked out to order Q^2 with contact interactions to order Q^4. As an...

  12. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    OpenAIRE

    Ren, Xiu-Lei; Alvarez-Ruso, L.; Geng, Li-Sheng; Ledwig, T.; Meng, Jie; Vacas, M. J. Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants...

  13. Scalar-Quark Systems and Chimera Hadrons in SU(3)_c Lattice QCD

    CERN Document Server

    Iida, H; Takahashi, T T

    2007-01-01

    Light scalar-quarks \\phi (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)_c lattice QCD in terms of mass generation in strong interaction without chiral symmetry breaking. We investigate ``scalar-quark mesons'' \\phi^\\dagger \\phi and ``scalar-quark baryons'' \\phi\\phi\\phi which are the bound states of scalar-quarks \\phi. We also investigate the bound states of scalar-quarks \\phi and quarks \\psi, i.e., \\phi^\\dagger \\psi, \\psi\\psi\\phi and \\phi\\phi\\psi, which we name ``chimera hadrons''. All the new-type hadrons including \\phi are found to have a large mass even for zero bare scalar-quark mass m_\\phi=0 at a^{-1}\\simeq 1GeV. We find that the constituent scalar-quark and quark picture is satisfied for all the new-type hadrons. Namely, the mass of the new-type hadron composed of m \\phi's and n \\psi's, M_{{m}\\phi+{n}\\psi}, satisfies M_{{m}\\phi+{n}\\psi}\\simeq {m} M_\\phi +{n} M_\\psi, where M_\\phi and M_\\psi are the constituent scalar-quark and quark...

  14. On SU(3 Effective Models and Chiral Phase Transition

    Directory of Open Access Journals (Sweden)

    Abdel Nasser Tawfik

    2015-01-01

    Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.

  15. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  16. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  17. SU(3)-breaking corrections to the hyperon vector coupling $f_1(0)$ in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Vacas, M J Vicente

    2009-01-01

    We calculate the SU(3)-breaking corrections to the hyperon vector coupling $f_1(0)$ up to $\\mathcal{O}(p^4)$ in covariant baryon chiral perturbation theory with dynamical octet and decuplet contributions. We find that the decuplet contributions are of similar or even larger size than the octet ones. Combining both, we predict positive SU(3)-breaking corrections to all the four independent $f_1(0)$'s (assuming isospin symmetry), which are consistent, within uncertainties, with the latest results form large $N_c$ fits, chiral quark models, and quenched lattice QCD calculations.

  18. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    CERN Document Server

    Ren, Xiu-Lei; Geng, Li-Sheng; Ledwig, T; Meng, Jie; Vacas, M J Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~\\cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~\\cite{Alvarez-Ruso:2013fza}.

  19. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  20. N phi state in chiral quark model

    CERN Document Server

    Huang, F; Zhang, Z Y

    2006-01-01

    The structures of N phi states with spin-parity J^{p}=3/2^- and J^p=1/2^- are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The channel coupling of N phi and Lambda K* is considered, and the effect of the tensor force which results in the mixing of S and D waves is also investigated. The results show that the N phi state has an attractive interaction, and in the extended chiral SU(3) quark model such an attraction plus the channel coupling effect can consequently make for an N phi quasi-bound state with several MeV binding energy.

  1. Alpha-clustered hypernuclei and chiral SU(3) dynamics

    CERN Document Server

    Hiyama, Emiko; Kaiser, Norbert; Weise, Wolfram

    2013-01-01

    Light hypernuclei with an $\\alpha$ cluster substructure of the core nucleus are studied using an accurate cluster approach (the Hyper-THSR wave function) in combination with a density-dependent $\\Lambda$ hyperon-nuclear interaction derived from chiral SU(3) effective field theory. This interaction includes important two-pion exchange processes involving $\\Sigma N$ intermediate states and associated three-body mechanisms as well as effective mass and surface terms arising in a derivative expansion of the in-medium $\\Lambda$ self-energy. Applications and calculated results are presented and discussed for $_\\Lambda^9$Be and $^{13}_\\Lambda$C. Furthermore, the result of the lightest $\\alpha$ clustered hypernucleus, $^5_{\\Lambda}$He using realistic $ab initio$ four nucleon density is shown.

  2. Ω(ε)States in a Chiral Quark Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structures of Ω(ε) states with spin-parity Jp = 5/2-, 3/2-, and 1/2- are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The calculated results show that theΩ(ε) state has an attractive interaction, and in the extended chiral SU(3) quark model such attraction can make for aΩ(ε) quasi-bound state with spin-parity Jp = 3/2- or 5/2- and tie binding energy of about several MeV.

  3. Flavor SU(3 properties of beauty tetraquark states with three different light quarks

    Directory of Open Access Journals (Sweden)

    Xiao-Gang He

    2016-10-01

    Full Text Available Beauty tetraquark states X(b¯q′q″q¯ composed of b¯sud¯, b¯dsu¯, and b¯uds¯, are unique that all the four valence quarks are different. Although the claim of existence of the first two states by D0 was not confirmed by data from LHCb, the possibility of such states still generated a lot of interests and should be pursued further. Non-observation of X(b¯q′q″q¯ states by LHCb may be just due to a still lower production rate than the limit of LHCb or at some different mass ranges. In this work we use light quark SU(3 flavor symmetry as guideline to classify symmetry properties of beauty tetraquark states. The multiplets which contain states with three different light quarks must be one of 6¯ or 15 of SU(3 representations. We study possible decays of such a tetraquark state into a B meson and a light pseudoscalar octet meson by constructing a leading order chiral Lagrangian, and also provide search strategies to determine whether a given tetraquark state of this type belongs to 6¯ or 15. If X(b¯q′q″q¯ belongs to 15, there are new doubly charged tetraquark states b¯uud¯ and b¯uus¯.

  4. Flavor SU(3) properties of beauty tetraquark states with three different light quarks

    Science.gov (United States)

    He, Xiao-Gang; Ko, Pyungwon

    2016-10-01

    Beauty tetraquark states X (b bar q‧q″ q bar) composed of b bar su d bar , b bar ds u bar , and b bar ud s bar , are unique that all the four valence quarks are different. Although the claim of existence of the first two states by D0 was not confirmed by data from LHCb, the possibility of such states still generated a lot of interests and should be pursued further. Non-observation of X (b bar q‧q″ q bar) states by LHCb may be just due to a still lower production rate than the limit of LHCb or at some different mass ranges. In this work we use light quark SU (3) flavor symmetry as guideline to classify symmetry properties of beauty tetraquark states. The multiplets which contain states with three different light quarks must be one of 6 bar or 15 of SU (3) representations. We study possible decays of such a tetraquark state into a B meson and a light pseudoscalar octet meson by constructing a leading order chiral Lagrangian, and also provide search strategies to determine whether a given tetraquark state of this type belongs to 6 bar or 15. If X (b bar q‧q″ q bar) belongs to 15, there are new doubly charged tetraquark states b bar uu d bar and b bar uu s bar .

  5. Strangeness s = -3 dibaryons in a chiral quark model

    CERN Document Server

    Lian-Rong, D; Chun-Ran, L; Lei, T; Lian-Rong, Dai; Dan, Zhang; Chun-Ran, Li; Lei, Tong

    2006-01-01

    The structures of $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ with strangeness $s=-3$ are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The first model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon(NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The effect from the vector meson fields is very similar to that from the one-gluon exchange interaction, both in the chiral SU(3) quark model and the extended chiral SU(3) quark model, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems are wealy bound states. The second model parameters are also taken from our previous work by fitting the KN scattering process. when the mixing of scalar mesons are considered, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems change into unbound...

  6. Stable hybrid stars within a SU(3) quark-meson-model

    Science.gov (United States)

    Zacchi, Andreas; Hanauske, Matthias; Schaffner-Bielich, Jürgen

    2016-03-01

    The inner regions of the most massive compact stellar objects might be occupied by a phase of quarks. Since the observations of the massive pulsars PSR J1614-2230 and PSR J 0348 +0432 with about two solar masses, the equations of state constructing relativistic stellar models have to be constrained respecting these new limits. We discuss stable hybrid stars, i.e. compact objects with an outer layer composed of nuclear matter and with a core consisting of quark matter (QM). For the outer nuclear layer we utilize a density dependent nuclear equation of state and we use a chiral SU(3) quark-meson model with a vacuum energy pressure to describe the object's core. The appearance of a disconnected mass-radius branch emerging from the hybrid star branch implies the existence of a third family of compact stars, so-called twin stars. Twin stars did not emerge as the transition pressure has to be relatively small with a large jump in energy density, which could not be satisfied within our approach. This is, among other reasons, due to the fact that the speed of sound in QM has to be relatively high, which can be accomplished by an increase of the repulsive coupling. This increase on the other hand yields transition pressures that are too high for twins stars to appear.

  7. Stable hybrid stars within a SU(3) Quark-Meson-Model

    CERN Document Server

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2015-01-01

    The inner regions of the most massive compact stellar objects might be occupied by a phase of quarks. Since the observations of the massive pulsars PSR J1614-2230 and of PSR J0348+0432 with about two solar masses, the equations of state constructing relativistic stellar models have to be constrained respecting these new limits. We discuss stable hybrid stars, i.e. compact objects with an outer layer composed of nuclear matter and with a core consisting of quark matter (QM). For the outer nuclear layer we utilize a density dependent nuclear equation of state and we use a chiral SU(3) Quark-Meson model with a vacuum energy pressure to describe the objects core. The appearance of a disconnected mass-radius branch emerging from the hybrid star branch implies the existence of a third family of compact stars, so called twin stars. Twin stars did not emerge as the transition pressure has to be relatively small with a large jump in energy density, which could not be satisfied within our approach. This is, among other...

  8. Quark Yukawa pattern from spontaneous breaking of flavour $SU(3)^3$

    CERN Document Server

    Nardi, Enrico

    2015-01-01

    A $SU(3)_Q \\times SU(3)_u \\times SU(3)_d$ invariant scalar potential breaking spontaneously the quark flavour symmetry can explain the standard model flavour puzzle. The approximate alignment in flavour space of the vacuum expectation values of the up and down `Yukawa fields' results as a dynamical effect. The observed quark mixing angles, the weak CP violating phase, and hierarchical quark masses can be all reproduced at the cost of introducing additional (auxiliary) scalar multiplets, but without the need of introducing hierarchical parameters.

  9. SU(3)-breaking corrections to the hyperon vector coupling $f_1(0)$ in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Vacas, M J Vicente

    2009-01-01

    We report on a recent study of the SU(3)-breaking corrections to the hyperon vector coupling $f_1(0)$ up to $\\mathcal{O}(p^4)$ in covariant baryon chiral perturbation theory with dynamical octet and decuplet contributions. The decuplet contributions are taken into account for the first time in a covariant ChPT study and are found of similar or even larger size than the octet ones. We predict positive SU(3)-breaking corrections to all the four independent $f_1(0)$'s (assuming isospin symmetry), which are consistent, within uncertainties, with the latest results from large $N_c$ fits, chiral quark models, and quenched lattice QCD calculations. We also discuss briefly the implications of our results for the extraction of $V_{us}$ from hyperon decay data.

  10. ND^(*) and NB^(*) interactions in a chiral quark model

    CERN Document Server

    Yang, Dan; Zhang, Dan

    2015-01-01

    ND and ND^* interactions become a hot topic after the observation of new charmed hadrons \\Sigma_c(2800) and \\Lambda_c(2940)^+. In this letter, we have preliminary investigated S-wave ND and ND^* interactions with possible quantum numbers in the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving the resonating group method equation. The numerical results show that the interactions between N and D or N and D^* are both attractive, which are mainly from \\sigma exchanges between light quarks. Further bound-state studies indicate the attractions are strong enough to form ND or ND^* molecules, except for (ND)_{J=3/2} and (ND^*)_{J=3/2} in the chiral SU(3) quark model. In consequence ND system with J=1/2 and ND^* system with J=3/2 in the extended SU(3) quark model could correspond to the observed \\Sigma_c(2800) and \\Lambda_c(2940)^+, respectively. Naturally, the same method can be applied to research NB and NB^* interactions, and similar conclusions obtained, i.e. NB and NB^* attractive fo...

  11. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  12. Radiative seesaw-type mechanism of quark masses in SU(3\\)_{C}\\otimes SU(3\\)_{L}\\otimes U\\(1\\)_{X}$

    OpenAIRE

    Hernández, A. E. Cárcamo; Mart'\\inez, R.; Ochoa, F.

    2013-01-01

    We take up again the study of the mass spectrum of the quark sector in a model with gauge symmetry $SU(3)_{c}\\otimes SU(3)_{L}\\otimes U(1)_{X}$ (331). In a special type II-like 331 model, we obtain specific zero-texture mass matrices for the quarks which predict four massless quarks ($u,c,d,s$) and two massive quarks ($b,t$) at the electroweak scale ($\\sim $ GeV). By considering the mixing between the SM quarks and new exotic quarks at large scales predicted by the model, we find that a third...

  13. $\\pi K$ sum rules and the SU(3) chiral expansion

    OpenAIRE

    Ananthanarayan, B.; Büttiker, P.; Moussallam, B.

    2001-01-01

    A recently proposed set of sum rules, based on the pion-Kaon scattering amplitudes and their crossing-symmetric conjugates are analysed in detail. A key role is played by the $l=0$ $\\pi\\pi\\to K\\overline K$ amplitude which requires an extrapolation to be performed. It is shown how this is tightly constrained from analyticity, chiral counting and the available experimental data, and its stability is tested. A re-evaluation of the $O(p^4)$ chiral couplings $L_1$, $L_2$, $L_3$ is obtained, as wel...

  14. Antikaon-nucleon interaction and Λ(1405) in chiral SU(3) dynamics

    Science.gov (United States)

    Kamiya, Yuki; Miyahara, Kenta; Ohnishi, Shota; Ikeda, Yoichi; Hyodo, Tetsuo; Oset, Eulogio; Weise, Wolfram

    2016-10-01

    The properties of the Λ (1405) resonance are key ingredients for determining the antikaon-nucleon interaction in strangeness nuclear physics, and the novel internal structure of the Λ (1405) is of great interest in hadron physics, as a prototype case of a baryon that does not fit into the simple three-quark picture. We show that a quantitative description of the antikaon-nucleon interaction with the Λ (1405) is achieved in the framework of chiral SU(3) dynamics, with the help of recent experimental progress. Further constraints on the K bar N subthreshold interaction are provided by analyzing πΣ spectra in various processes, such as the K- d → πΣn reaction and the Λc → ππΣ decay. The structure of the Λ (1405) is found to be dominated by an antikaon-nucleon molecular configuration, based on its wavefunction derived from a realistic K bar N potential and the compositeness criteria from a model-independent weak-binding relation.

  15. Bound States of (Anti-)Scalar-Quarks in $SU(3)_{c}$ Lattice QCD

    CERN Document Server

    Iida, H; Takahashi, T T

    2007-01-01

    Light scalar-quarks \\phi (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)_c lattice QCD in terms of mass generation. We investigate ``scalar-quark mesons'' \\phi^\\dagger \\phi and ``scalar-quark baryons'' \\phi\\phi\\phi as the bound states of scalar-quarks \\phi. We also investigate the bound states of scalar-quarks \\phi and quarks \\psi, i.e., \\phi^\\dagger \\psi, \\psi\\psi\\phi and \\phi\\phi\\psi, which we name ``chimera hadrons''. All the new-type hadrons including \\phi are found to have a large mass due to large quantum corrections by gluons, even for zero bare scalar-quark mass m_\\phi=0 at a^{-1}\\sim 1{\\rm GeV}. We conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects.

  16. NN Interaction in Chiral Constituent Quark Models

    CERN Document Server

    Valcarce, A; González, P

    2003-01-01

    We review the actual state in the description of the NN interaction by means of chiral constituent quark models. We present a series of relevant features that are nicely explained within the quark model framework.

  17. SU(3)-breaking corrections to the baryon-octet magnetic moments in chiral perturbation theory

    CERN Document Server

    Camalich, J Martin; Geng, L S; Vacas, M J Vicente

    2009-01-01

    We report a calculation of the baryon magnetic moments using covariant chiral perturbation theory within the extended-on-mass-shell renormalization scheme including intermediate octet and decuplet contributions. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking effects coming from the lowest-order loops. We compare with previous attempts at the same order using heavy-baryon and covariant infrared chiral perturbation theory, and discuss the source of the differences.

  18. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  19. Chiral phases of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)

    2016-01-22

    We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.

  20. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3)F symmetry breaking effects are estimated and, if possible, confronted with experiment. ((orig.))

  1. Perfect Abelian dominance of confinement in quark-antiquark potential in SU(3) lattice QCD

    International Nuclear Information System (INIS)

    In the context of the dual superconductor picture for the confinement mechanism, we study maximally Abelian (MA) projection of quark confinement in SU(3) quenched lattice QCD with 324 at β=6.4 (i.e., a ≃ 0.058 fm). We investigate the static quark-antiquark potential V(r), its Abelian part VAbel(r) and its off-diagonal part Voff(r), respectively, from the on-axis lattice data. As a remarkable fact, we find almost perfect Abelian dominance for quark confinement, i.e., σAbel ≃ σ for the string tension, on the fine and large-volume lattice. We find also a nontrivial summation relation of V (r) ≃ VAbel(r)+Voff(r)

  2. Deconfining Phase Transition to a Quark-Gluon Plasma in Different SU(3) Color Representations

    Science.gov (United States)

    Mezouar, K.; Ait El Djoudi, A.; Ghenam, L.

    2016-10-01

    For a statistical description of the quark gluon plasma (QGP) considering its internal symmetry, we calculate its partition function using the group theoretical projection method. We project out the partition function of a QGP consisting of gluons, massless up and down quarks, and massive strange quarks onto the singlet representation of the SU(3) color group, as well as onto the color octet and the color 27-plet representations. A comparison of these color representations is done, by studying their effects on the behavior of some thermodynamical quantities characterizing the mixed hadronic gas-QGP system undergoing a thermal deconfining phase transition on one side, and on the free energy during the formation of a QGP droplet from the hot hadronic gas on another side.

  3. Perfect Abelian dominance of confinement in quark-antiquark potential in SU(3) lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Suganuma, Hideo [Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 606-8502 (Japan); Sakumichi, Naoyuki [Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-01-22

    In the context of the dual superconductor picture for the confinement mechanism, we study maximally Abelian (MA) projection of quark confinement in SU(3) quenched lattice QCD with 32{sup 4} at β=6.4 (i.e., a ≃ 0.058 fm). We investigate the static quark-antiquark potential V(r), its Abelian part V{sub Abel}(r) and its off-diagonal part V{sub off}(r), respectively, from the on-axis lattice data. As a remarkable fact, we find almost perfect Abelian dominance for quark confinement, i.e., σ{sub Abel} ≃ σ for the string tension, on the fine and large-volume lattice. We find also a nontrivial summation relation of V (r) ≃ V{sub Abel}(r)+V{sub off}(r)

  4. Leading SU(3)-breaking corrections to the baryon magnetic moments in Chiral Perturbation Theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We calculate the baryon magnetic moments using covariant Chiral Perturbation Theory ($\\chi$PT) within the Extended-on-mass-shell (EOMS) renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3) breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using Heavy Baryon (HB) $\\chi$PT and covariant Infrared (IR) $\\chi$PT. We also analyze the source of this improvement with particular attention on the comparison between the covariant results, and conclude that SU(3) baryon $\\chi$PT coverges better within the EOMS renormalization scheme.

  5. Leading SU(3)-breaking corrections to the baryon magnetic moments in chiral perturbation theory.

    Science.gov (United States)

    Geng, L S; Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-11-28

    We calculate the baryon magnetic moments using covariant chiral perturbation theory (chiPT) within the extended-on-mass-shell renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3)-breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using heavy-baryon chiPT and covariant infrared chiPT. We also analyze the source of this improvement with particular attention to the comparison between the covariant results.

  6. The lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory

    CERN Document Server

    Martin-Camalich, J; Vacas, M J Vicente

    2010-01-01

    We present an analysis of the baryon-octet and -decuplet masses using covariant SU(3)-flavor chiral perturbation theory up to next-to-leading order. Besides the description of the physical masses we address the problem of the lattice QCD extrapolation. Using the PACS-CS collaboration data we show that a good description of the lattice points can be achieved at next-to-leading order with the covariant loop amplitudes and phenomenologically determined values for the meson-baryon couplings. Moreover, the extrapolation to the physical point up to this order is found to be better than the linear one given at leading-order by the Gell-Mann-Okubo approach. The importance that a reliable combination of lattice QCD and chiral perturbation theory may have for hadron phenomenology is emphasized with the prediction of the pion-baryon and strange-baryon sigma terms.

  7. Polyakov SU(3) extended linear $\\sigma$-model: Sixteen mesonic states in chiral phase-structure

    CERN Document Server

    Tawfik, Abdel Nasser

    2014-01-01

    The derivative of the grand potential in mean field approximation, non-strange and strange condensates and deconfinement phase-transition in thermal and dense hadronic medium are verified in extended SU(3) linear sigma-model (eLSM). In determining the chiral phase-transition, the chiral condensates sigma_x and sigma_y are analysed. The chiral mesonic phase-structures in temperature- and density-dependence are taken as free parameters to be fitted. These parameters are classified corresponding to scalar meson nonets; (pseudo)-scalar and (axial)-vector. For deconfinement phase-transition, effective Polyakov loop-potentials phi and phi^* are utilized. We investigated the in-medium effects on the masses of sixteen mesonic states states. The results are presented for two different forms for the effective Polyakov loop-potential and compared with other models with and without anomalous terms. The Polyakov loop potential in LSM has considerable effects on the chiral phase-transition in meson masses so that the resto...

  8. Properties of Scalar-Quark Systems in SU(3)c Lattice QCD

    CERN Document Server

    Iida, Hideaki; Suganuma, Hideo

    2008-01-01

    We perform the first study for the bound states of colored scalar particles $\\phi$ ("scalar quarks") in terms of mass generation with quenched SU(3)$_c$ lattice QCD. We investigate the bound states of $\\phi$, $\\phi^\\dagger\\phi$ and $\\phi\\phi\\phi$ ("scalar-quark hadrons"), as well as the bound states of $\\phi$ and quarks $\\psi$, i.e., $\\phi^\\dagger\\psi$, $\\psi\\psi\\phi$ and $\\phi\\phi\\psi$ ("chimera hadrons"). All these new-type hadrons including $\\phi$ have a large mass of several GeV due to large quantum corrections by gluons, even for zero bare scalar-quark mass $m_\\phi=0$ at $a^{-1}\\sim 1{\\rm GeV}$. We find a similar $m_\\psi$-dependence between $\\phi^\\dagger\\psi$ and $\\phi\\phi\\psi$, which indicates their similar structure due to the large mass of $\\phi$. From this study, we conjecture that all colored particles generally acquire a large effective mass due to dressed gluons.

  9. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  10. Fragmentation functions of pions and kaons in the nonlocal chiral quark model

    Directory of Open Access Journals (Sweden)

    Kao Chung Wen

    2014-03-01

    Full Text Available We investigate the unpolarized pion and kaon fragmentation functions using the nonlocal chiral-quark model. In this model the interactions between the quarks and pseudoscalar mesons is manifested nonlocally. In addition, the explicit flavor SU(3 symmetry breaking effect is taken into account in terms of the current quark masses. The results of our model are evaluated to higher Q2 value Q2 = 4 GeV2 by the DGLAP evolution. Then we compare them with the empirical parametrizations. We find that our results are in relatively good agreement with the empirical parametrizations and the other theoretical estimations.

  11. Selected problems of baryons spectroscopy: chiral soliton versus quark models

    CERN Document Server

    Kopeliovich, Vladimir B

    2008-01-01

    Inconsistency between rigid rotator and bound state models at arbitrary number of colors, rigid rotator -- soft rotator dilemma and some other problems of baryon spectroscopy are discussed in the framework of the chiral soliton approach (CSA). Consequences of the comparison of CSA results with simple quark models are considered and the $1/N_c$ expansion for the effective strange antiquark mass is presented, as it follows from the CSA. Strong dependence of the effective strange antiquark mass on the SU(3) multiplet is required to fit the CSA predictions. The difference of `good' and `bad' diquark masses, which is about 100 Mev, is in reasonable agreement with other estimates. Multibaryons (hypernuclei) with strangeness are described and some states of interest are predicted within CSA as well.

  12. Kaon semileptonic decay (K_{l3}) form factor in the nonlocal chiral quark model

    CERN Document Server

    Nam, Seung-il

    2007-01-01

    We investigate the kaon semileptonic decay (K_{l3}) form factors within the framework of the nonlocal chiral quark model from the instanton vacuum, taking into account the effects of flavor SU(3) symmetry breaking. All theoretical calculations are carried out without any adjustable parameter. We also show that the present results satisfy the Callan-Treiman low-energy theorem as well as the Ademollo-Gatto theorem. It turns out that the effects of flavor SU(3) symmetry breaking are essential in reproducing the kaon semileptonic form factors. The present results are in a good agreement with experiments, and are compatible with other model calculations.

  13. Nucleon Properties from Approximating Chiral Quark Sigma Model

    CERN Document Server

    Abu-Shady, M

    2009-01-01

    We apply the approximating chiral quark model. This chiral quark model is based on an effective Lagrangian which the interactions between quarks via sigma and pions mesons. The field equations have been solved in the mean field approximation for the hedgehog baryon state. Good results are obtained for nucleon properties in comparison with original model.

  14. Structures of(ΩΩ)0+and([1]Ω)1+in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANGZong-Ye; YUYou-Wen; DAILian-Rong

    2003-01-01

    The structures of (ΩΩ)0+ and ([1]Ω)1+ are studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and ([1]Ω)1+ 's binding energy is around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega (ΩΩ)0+ deeply bound.

  15. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  16. Chiral phase transition scenarios from the vector meson extended Polyakov quark meson model

    CERN Document Server

    Kovács, Péter

    2015-01-01

    Chiral phase transition is investigated in an $SU(3)_L \\times SU(3)_R$ symmetric vector meson extended linear sigma model with additional constituent quarks and Polyakov loops (extended Polyakov quark meson model). The parameterization of the Lagrangian is done at zero temperature in a hybrid approach, where the mesons are treated at tree-level, while the constituent quarks at 1-loop level. The temperature and baryochemical potential dependence of the two assumed scalar condensates are calculated from the hybrid 1-loop level equations of states. The order of the phase transition along the $T=0$ and $\\mu_B=0$ axes are determined for various parameterization scenarios. We find that in order to have a first order phase transition at $T=0$ as a function of $\\mu_B$ a light isoscalar particle is needed.

  17. Chiral quark model with relativistic kinematics

    CERN Document Server

    Garcilazo, H

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  18. Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    CERN Document Server

    Akiyama, S; Akiyama, Satoru; Futami, Yasuhiko

    2003-01-01

    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.

  19. SU(3) Polyakov Linear $\\sigma$-Model in Magnetic Field: Thermodynamics, Higher-Order Moments, Chiral Phase Structure and Meson Masses

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...

  20. A chiral matrix model of the semi-Quark Gluon Plasma in QCD

    CERN Document Server

    Pisarski, Robert D

    2016-01-01

    A chiral matrix model applicable to QCD with 2+1 flavors is developed. This requires adding a SU(3)_L x SU(3)_R x Z(3)_A nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. In addition to the usual symmetry breaking term, linear in the current quark mass m_qk, at a nonzero temperature T it is necessary to add a new term, ~ m_qk T^2. The parameters of the gluon part of the matrix model, including especially the deconfining transition temperature T_d = 270 MeV, are identical to that for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant the masses of the pions, kaons, eta, and eta'. The temperature for the chiral crossover at T_chi = 155 MeV is determined by adjusting the Yukawa coupling y. We find reasonable agreement with th...

  1. Spectrum of the SU(3) Dirac operator on the lattice Transition from random matrix theory to chiral perturbation theory

    CERN Document Server

    Göckeler, M; Rakow, P E L; Schäfer, A; Wettig, T

    2002-01-01

    We calculate complete spectra of the Kogut-Susskind Dirac operator on the lattice in quenched SU(3) gauge theory for various values of coupling constant and lattice size. From these spectra we compute the connected and disconnected scalar susceptibilities and find agreement with chiral random matrix theory up to a certain energy scale, the Thouless energy. The dependence of this scale on the lattice volume is analyzed. In the case of the connected susceptibility this dependence is anomalous, and we explain the reason for this. We present a model of chiral perturbation theory that is capable of describing the data beyond the Thouless energy and that has a common range of applicability with chiral random matrix theory.

  2. Orbital Angular Momentum in the Chiral Quark Model

    OpenAIRE

    Song, Xiaotong

    1998-01-01

    We developed a new and unified scheme for describing both quark spin and orbital angular momenta in symmetry-breaking chiral quark model. The loss of quark spin in the chiral splitting processes is compensated by the gain of the orbital angular momentum carried by quarks and antiquarks. The sum of both spin and orbital angular momenta carried by quarks and antiquarks is 1/2. The analytic and numerical results for the spin and orbital angular momenta carried by quarks and antiquarks in the nuc...

  3. QCD topological susceptibility from the nonlocal chiral quark model

    CERN Document Server

    Nam, Seung-il

    2016-01-01

    We investigate the QCD topological susceptibility $\\chi_t$ by using the nonlocal chiral quark model (NL$\\chi$QM). This model is based on the liquid instanton QCD-vacuum configuration in which $\\mathrm{SU}(3)$ flavor symmetry is explicitly broken by the current quark mass $(m_{u,d},m_s)\\approx(5,135)$ MeV. To compute $\\chi_t$, the local topological charge density operator $Q_t(x)$ is derived from the effective partition function of NL$\\chi$QM. We take into account the contributions from the leading-order (LO) ones $\\sim\\mathcal{O}(N_c)$ in the $1/N_c$ expansion. We also verify that the analytical expression of $\\chi_t$ in NL$\\chi$QM satisfy the Witten-Veneziano (WV) and the Leutwyler-Smilga (LS) formulae. Once the average instanton size and inter-instanton distance are fixed with $\\bar{\\rho}=1/3$ fm and $\\bar{R}=1$ fm, respectively, all the associated model parameters are all determined self-consistently within the model, including the $\\eta$ and $\\eta'$ weak decay constants. We obtain the results such as $F_{...

  4. Solitons in nonlocal chiral quark models

    CERN Document Server

    Broniowski, W; Ripka, G; Broniowski, Wojciech; Golli, Bojan; Ripka, Georges

    2002-01-01

    Properties of hedgehog solitons in a chiral quark model with nonlocal regulators are described. We discuss the formation of the hedgehog soliton, the quantization of the baryon number, the energetic stability, the gauging and construction of Noether currents with help of path-ordered P-exponents, and the evaluation of observables. The issue of nonlocality is thoroughly discussed, with a focus on contributions to observables related to the Noether currents. It is shown that with typical model parameters the solitons are not far from the weak nonlocality limit. The methods developed are applicable to solitons in models with separable nonlocal four-fermion interactions.

  5. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  6. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  7. Triplets, Static SU(6), and Spontaneously Broken Chiral SU(3) Symmetry

    Science.gov (United States)

    Nambu, Y.

    1966-01-01

    I would like to present here my view of the current problems of elementary particle theory. It is largely inspired by the recent successes of SU(3) and SU(6) symmetries, and more or less summarizes what I have been pursuing lately. For the details of individual problems I must refer to the original papers. However, what is emphasized here is not the details, but a coherent overall picture plus some speculations which cannot yet be formulated precisely.

  8. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Bin; SUN Wei-Min; L(U) Xiao-Fu; ZONG Hong-Shi

    2009-01-01

    The quark propagator in the Landau gauge is studied on the lattice,including the quenched and the unquenched results.No obvious unquenched effects are found by comparing the quenched quark propagator with the dynamical one.For the quenched and unquenched configurations,the results with different quark masses have been computed.For the quark mass function,a nonlinear chiral extrapolating behavior is found in the in/tared region for both the quenched and dynamical results.

  9. NN Scattering Phase Shifts in a Chiral Constituent Quark Model

    OpenAIRE

    Bartz, D.; Stancu, Fl

    2000-01-01

    We study the nucleon-nucleon interaction within a chiral constituent quark model which reproduces succesfully the baryon spectra. We calculate the 3S1 and 1S0 phase shifts by using the resonating group method. They clearly indicate the presence of a strong repulsive interaction at short distance, due to the spin-flavor symmetry of the quark-quark interaction and of the quark interchange between the two interacting nucleons. A sigma-exchange quark-quark interaction, providing a medium-range at...

  10. The nonstrange dibaryon and hidden-color effect in a chiral quark model

    Science.gov (United States)

    Dai, L. R.; Zhang, Y. N.; Sun, Y. L.; Shao, S. J.

    2016-09-01

    The exotic nonstrange ΔΔ dibaryon with I(JP) = 0(3+) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel ( CC is important. In the present work, we further investigate another exotic nonstrange ΔΔ dibaryon with I(JP) = 3(0+) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the ΔΔ - CC system with I(JP) = 3(0+) within the framework of resonating group method (RGM). We find that the binding energy of I(JP) = 3(0+) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the I(JP) = 3(0+) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ.

  11. Broken Valence Chiral Symmetry and Chiral Polarization of Dirac Spectrum in N$_f$=12 QCD at Small Quark Mass

    CERN Document Server

    Alexandru, Andrei

    2014-01-01

    The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass-degenerate fundamental quark flavors. We find that the vSChSB-ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass $m_c$ such that for $m > m_c$ the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for $m_{ch} < m < m_c$ the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses $m < m_{ch}$, but this has not yet been seen by overlap valence probe, leaving the $m_{ch}=0$ possibility open. The latter option could place massless N$_f$=12 theory outside of conformal window. Anomalou...

  12. Broken valence chiral symmetry and chiral polarization of Dirac spectrum in Nf=12 QCD at small quark mass

    Science.gov (United States)

    Alexandru, Andrei; Horváth, Ivan

    2016-01-01

    The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass-degenerate fundamental quark flavors. We find that the vSChSB-ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass mc such that for m > mc the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for mch < m < mc the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < mch, but this has not yet been seen by overlap valence probe, leaving the mch = 0 possibility open. The latter option could place massless Nf=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for mch < m < mc is qualitatively similar to one observed previously in zero and few-flavor theories as an effect of thermal agitation.

  13. Quark Mass Correction to Chiral Separation Effect and Pseudoscalar Condensate

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  14. Pseudoscalar susceptibilities and quark condensates: chiral restoration and lattice screening masses

    CERN Document Server

    Nicola, A Gomez

    2016-01-01

    We derive the formal Ward identities relating pseudoscalar susceptibilities and quark condensates in three-flavor QCD, including consistently the $\\eta$-$\\eta'$ sector and the $U_A(1)$ anomaly. These identities are verified in the low-energy realization provided by ChPT, both in the standard $SU(3)$ framework for the octet case and combining the use of the $U(3)$ framework and the large-$N_c$ expansion of QCD to account properly for the nonet sector and anomalous contributions. The analysis is performed including finite temperature corrections as well as the calculation of $U(3)$ quark condensates and all pseudoscalar susceptibilities, which together with the full set of Ward identities, are new results of this work. Finally, the Ward identities are used to derive scaling relations for pseudoscalar masses, which explain the behavior with temperature of lattice screening masses near chiral symmetry restoration.

  15. Vacuum quark condensate, chiral Lagrangian, and Bose-Einstein statistics

    International Nuclear Information System (INIS)

    In a series of articles it was recently claimed that the quantum chromodynamic (QCD) condensates are not the properties of the vacuum but of the hadrons and are confined inside them. We point out that this claim is incompatible with the chiral Lagrangian and Bose-Einstein statistics of the Goldstone bosons (pions) in chiral limit and conclude that the quark condensate must be the property of the QCD vacuum.

  16. Meson phenomenology and phase transitions in nonlocal chiral quark models

    Science.gov (United States)

    Carlomagno, J. P.; Gomez Dumm, D.; Pagura, V.; Scoccola, N. N.

    2015-07-01

    We study the features of nonlocal chiral quark models that include wave function renormalization. Model parameters are determined from meson phenomenology, considering different nonlocal form factor shapes. In this context we analyze the characteristics of the deconfinement and chiral restoration transitions at finite temperature and chemical potential, introducing the couplings of fermions to the Polyakov loop for different Polyakov potentials. The results for various thermodynamical quantities are compared with data obtained from lattice QCD calculations.

  17. Dimension 2 condensates and Polyakov Chiral Quark Models

    OpenAIRE

    Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.

    2006-01-01

    We address a possible relation between the expectation value of the Polyakov loop in pure gluodynamics and full QCD based on Polyakov Chiral Quark Models where constituent quarks and the Polyakov loop are coupled in a minimal way. To this end we use a center symmetry breaking Gaussian model for the Polyakov loop distribution which accurately reproduces gluodynamics data above the phase transition in terms of dimension 2 gluon condensate. The role played by the quantum and local nature of the ...

  18. Meson cloud effects on the pion quark distribution function in the chiral constituent quark model

    CERN Document Server

    Watanabe, Akira; Suzuki, Katsuhiko

    2016-01-01

    We investigate the valence quark distribution function of the pion $v^{\\pi}(x,Q^2)$ in the framework of the chiral constituent quark model and evaluate the meson cloud effects on $v^{\\pi}(x,Q^2)$. We explicitly demonstrate how the meson cloud effects affect $v^{\\pi}(x,Q^2)$ in detail. We find that the meson cloud correction causes an overall 32\\% reduction of the valence quark distribution and an enhancement at the small Bjorken $x$ regime. Besides, we also find that the dressing effect of the meson cloud will make the valence quark distribution to be softer in the large $x$ region.

  19. Confined Chiral Solitons in the Spectral Quark Model

    CERN Document Server

    Ruiz-Arriola, E; Golli, B; Arriola, Enrique Ruiz; Broniowski, Wojciech; Golli, Bojan

    2006-01-01

    Chiral solitons with baryon number one are investigated in the spectral quark model. In this model the quark propagator is a superposition of complex mass propagators with a suitable spectral function. As a result, the constituent quark mass is identified with saddle points of the Dirac eigenvalues. Due to this feature the valence quarks never become unbound nor dive into the negative spectrum, hence providing stable solitons as absolute minima of the action. This a manifestation of the built-in analytic confinement in the spectral quark model. Self-consistent mean field hedgehog solutions are found and some of their properties determined. Our analysis constitutes an example of a treatment of a relativistic complex mass system.

  20. Thermodynamics of quark matter with a chiral imbalance

    Science.gov (United States)

    Farias, Ricardo L. S.; Duarte, Dyana C.; Krein, Gastão; Ramos, Rudnei O.

    2016-10-01

    We show how a scheme of rewriting a divergent momentum integral can conciliate results obtained with the Nambu-Jona-Lasinio model and recent lattice results for the chiral transition in the presence of a chiral imbalance in quark matter. Purely vacuum contributions are separated from medium-dependent regularized momentum integrals in such a way that one is left with ultraviolet divergent momentum integrals that depend on vacuum quantities only. The scheme is applicable to other commonly used effective models to study quark matter with a chiral imbalance, it allows us to identify the source of their difficulties in reproducing the qualitative features of lattice results, and enhances their predictability and uses in other applications.

  1. Hadron Properties in a Chiral Quark-Sigma Model

    CERN Document Server

    Rashdan, M; El-Kholy, S; Abu-Shady, M

    2011-01-01

    Within a chiral quark sigma model in which quarks interact via the exchange of sigma and pi-mesons, hadron properties are investigated. This model of the nucleon and delta is based on the idea that strong QCD forces on very short distances (a small length scales 0.2- 1 fm) result in hidden chiral SU(2)xSU(2) symmetry and that there is a separation of roles between these forces which are responsible for binding quarks in hadrons and the forces which produce absolute confinement. We have solved the field equations in the mean field approximation for the hedgehog baryon state with different sets of model parameters. A new parametrization which well describe the nucleon properties has been introduced and compared with experimental data.

  2. Chiral superfluidity of the quark-gluon plasma

    CERN Document Server

    Kalaydzhyan, Tigran

    2013-01-01

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (Tc < T < 2 Tc) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, c...

  3. Chiral Lagrangian with Heavy Quark-Diquark Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Jie Hu; Thomas Mehen

    2005-11-29

    We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons that is invariant under heavy quark-diquark symmetry at leading order and includes the leading O(1/m{sub Q}) symmetry violating operators. The theory is used to predict the electromagnetic decay width of the J=3/2 member of the ground state doubly heavy baryon doublet. Numerical estimates are provided for doubly charm baryons. We also calculate chiral corrections to doubly heavy baryon masses and strong decay widths of low lying excited doubly heavy baryons.

  4. A Review of Heavy-Quark and Chiral Perturbation Theory

    CERN Document Server

    Naboulsi, R

    2003-01-01

    In this paper we discuss the relations between various decays that can be obtained by combining heavy-quark perturbation theory and chiral perturbation theory for the emission of soft pseudoscalar particles. In the heavy-quark limit of QCD the interactions of the heavy quark Q are simplified because of a new set of symmetries not manifestly present in the full QCD. This fact is usually used in the construction of the new effective theory where the heavy-quark mass goes to infinity $(m_Q\\gg \\Lambda_{QCD})$ with its four-velocity fixed. The spin-flavor symmetry group of this new theory with N heavy quarks is SU(2N) because the interactions of the heavy quarks are independent of their spins and flavors. This fact is widely used in the description of the semileptonic decays of $B$ mesons to $D$ and $D^\\ast$ mesons where heavy-quark symmetry allows a parameterization of the decay amplitudes in terms of the single Isgur-Wise function [1].

  5. Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

    Directory of Open Access Journals (Sweden)

    R. Yoshiike

    2015-12-01

    Full Text Available Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.

  6. Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Tositaka

    2015-01-01

    Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.

  7. The QCD phase transition with physical-mass, chiral quarks

    CERN Document Server

    Bhattacharya, Tanmoy; Christ, Norman H; Ding, H -T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-01-01

    We report on the first lattice calculation of the QCD phase transition using chiral fermions at physical values of the quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm$)^3$ and (11 fm$)^3$ and temperatures between 139 and 196 MeV . Each temperature was calculated using a single lattice spacing corresponding to a temporal Euclidean extent of $N_t=8$. The disconnected chiral susceptibility, $\\chi_{\\rm disc}$ shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability in the region of the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD ``phase transition'' is not first order but a continuous cross-over for $m_\\pi=135$ MeV. The peak location determines a pseudo-critical temperature $T_c = 155(1)(8)$ MeV. Chiral $SU(2)_L\\times SU(2)_R$ symmetry is fully restored above 164 MeV, but anomalous $U(1)_A$ symmetry breaking is non-zero above $T...

  8. Eta and kaon production in a chiral quark model

    CERN Document Server

    Golli, Bojan

    2016-01-01

    We apply a coupled-channel formalism incorporating quasi-bound quark-model states to calculate pion scattering into eta N, K Lambda and K Sigma channels, as well eta p, eta n, K+Lambda, and K0Sigma+ photo-production processes. The meson-baryon and photon-baryon vertices are determined in a SU(3) version of the Cloudy Bag Model. Our model predicts sizable amplitudes in the P11, P13, P33 and S11 partial waves in agreement with the latest MAID isobar model and the recent partial-wave analyses of the Bonn-Gatchina group. We are able to give a quark-model explanation for the apparent resonance at 1685 MeV in the eta n channel.

  9. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  10. Combined heavy-quark symmetry and large-Nc operator analysis for 2-body counterterms in the chiral Lagrangian with D mesons and charmed baryons

    Science.gov (United States)

    Samart, Daris; Nualchimplee, Chakrit; Yan, Yupeng

    2016-06-01

    In this work we construct a chiral SU(3) Lagrangian with D mesons of spin JP=0- and JP=1- and charmed baryons of spin JP=1 /2+ and JP=3 /2+. There are 42 leading two-body counterterms involving two charmed baryon fields and two D meson fields in the constructed Lagrangian. The heavy-quark spin symmetry leads to 35 sum rules, while the large-Nc operator analysis predicts 29 at the next-to leading order of the 1 /Nc expansion. The combination of the sum rules from both the heavy-quark symmetry and the large-Nc analysis results in 38 independent sum rules, which reduces the number of free parameters in the chiral Lagrangian to only four. This is a remarkable result demonstrating the consistency of the heavy-quark symmetry and large-Nc operator analysis.

  11. Combined heavy-quark symmetry and large-$N_c$ operator analysis for 2-body counterterms in the chiral Lagrangian with $D$ mesons and charmed baryons

    CERN Document Server

    Samart, Daris; Yan, Yupeng

    2016-01-01

    We construct, in the work, chiral $SU(3)$ Lagrangian with $D$ mesons of spin $J^P=0^-$ and $J^P=1^-$ and charmed baryons of spin $J^P=1/2^+$ and $J^P=3/2^+$. There are 42 leading two-body counter-terms involving two charmed baryon fields and two $D$ meson fields in the constructed Lagrangian. The heavy-quark spin symmetry leads to 35 sum rules while the large-$N_c$ operator analysis predicts 29 ones at the next-to leading order of $1/N_c$ expansion. The combination of the sum rules from both the heavy-quark symmetry and the large-$N_c$ analysis results in 38 independent sum rules which reduces the number of free parameters in the chiral Lagrangian down to 4 only. This is a remarkable result demonstrating the consistency of the heavy-quark symmetry and large-$N_c$ operator analysis.

  12. Broken valence chiral symmetry and chiral polarization of Dirac spectrum in N{sub f}=12 QCD at small quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Alexandru, Andrei [George Washington University, Washington, DC (United States); Horváth, Ivan [University of Kentucky, Lexington, KY, USA (the speaker) (United States)

    2016-01-22

    The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass–degenerate fundamental quark flavors. We find that the vSChSB–ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass m{sub c} such that for m > m{sub c} the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for m{sub ch} < m < m{sub c} the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < m{sub ch}, but this has not yet been seen by overlap valence probe, leaving the m{sub ch} = 0 possibility open. The latter option could place massless N{sub f}=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for m{sub ch} < m < m{sub c} is qualitatively similar to one observed previously in zero and few–flavor theories as an effect of thermal agitation.

  13. Non-leptonic decays in an extended chiral quark model

    CERN Document Server

    Eeg, J O

    2012-01-01

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $. We treat the $b$-quark in the heavy quark limit and the energetic light ($u,d,s$) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ is suppressed by a factor of order $\\Lambda_{QCD}/m_b$ with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for $\\bar{B_{d}^0} \\rightarrow \\pi^...

  14. Spontaneous Breaking of $SU3_{f}$ Down to Isospin

    CERN Document Server

    Törnqvist, N A

    1996-01-01

    The mechanism where flavor symmetry of the standard model is broken spontaneously within the strong interactions of QCD is generalized for models involving nonets of pseudoscalar and vector mesons. After the breaking of chiral symmetry by the vacuum, creating singlets and degenerate octets of massive vector mesons and near massless pseudoscalars, also the SU3f symmetric spectrum is shown to be unstable with respect to s quark loops, and broken into a stable isospin symmetric mass spectrum close to the physical one.

  15. Chiral Quark Soliton Model and Nucleon Spin Structure Functions

    CERN Document Server

    Wakamatsu, M

    2009-01-01

    The chiral quark soliton model (CQSM) is one of the most successful models of baryons at quark level, which maximally incorporates the most important feature of low energy QCD, i.e. the chiral symmetry and its spontaneous breakdown. Basically, it is a relativistic mean-field theory with full account of infinitely many Dirac-sea quarks in a rotational-symmetry-breaking mean field of hedgehog shape. The numerical technique established so far enables us to make a nonperturbative evaluation of Casimir effects (i.e. effects of vacuum-polarized Dirac sea) on a variety of baryon observables. This incompatible feature of the model manifests most clearly in its predictions for parton distribution functions of the nucleon. In this talk, after briefly reviewing several basic features of the CQSM, we plan to demonstrate in various ways that this unique model of baryons provides us with an ideal tool for disentangling nonperturbative aspect of the internal partonic structure of the nucleon, especially the underlying spin ...

  16. Spontaneous Magnetization of Quark Matter in Inhomogeneous Chiral Phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2015-01-01

    Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly. This spectral asymmetry gives rise to spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in magnetars. Furthermore, using the generalized Ginzburg-Landau(gGL) expansion, we show that magnetic susceptibility exhibits a peculiar feature

  17. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  18. Finite-temperature corrections in the dilated chiral quark model

    International Nuclear Information System (INIS)

    We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense and hot matter. We obtain the scaling law, fπ(T)/fπ = mQ(T)/mQ ≅ mσ(T)/mσwhile we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense and hot matter) and the RHIC experiments (hot and dilute matter) will ''see'' different hadron properties in the hadronization exit phase

  19. Strange quark asymmetry in the proton in chiral effective theory

    CERN Document Server

    Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P

    2016-01-01

    We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of $\\delta$-function contributions to the $\\bar s$ PDF at $x=0$, with a corresponding valence-like component of the $s$-quark PDF at larger $x$, which allows greater flexibility for the shape of $s-\\bar s$. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the $s$ and $\\bar s$ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange quark PDFs in global QCD analysis.

  20. Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David; Scior, Philipp; Smith, Dominik [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Schmidt, Christian [Fakultaet fuer Physik, Universitaet Bielefeld (Germany); Smekal, Lorenz von [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Institut fuer Theoretische Physik, Justus-Liebig-Universitaet, Giessen (Germany)

    2014-07-01

    In preparation of lattice studies of the two-color QCD phase diagram we study chiral restoration and deconfinement at finite temperature with two flavors of staggered quarks using an RHMC algorithm on GPUs. We first study unquenching effects in local Polyakov loop distributions, and the Polyakov loop potential obtained via Legendre transformation, in a fixed-scale approach for heavier quarks. We also present the chiral condensate and the corresponding susceptibility over the lattice coupling across the chiral transition for lighter quarks. Using Ferrenberg-Swendsen reweighting we extract the maxima of the chiral susceptibility in order to determine pseudo-critical couplings on various lattices suitable for chiral extrapolations. These are then used to fix the relation between coupling and temperature in the chiral limit.

  1. Chiral Structure of Baryon and Scalar Tetraquark Currents

    Directory of Open Access Journals (Sweden)

    Chen Hua-Xing

    2014-03-01

    Full Text Available We investigate chiral properties of local fields of baryons consisting of three quarks with flavor SU(3 symmetry. We construct explicitly independent local threequark fields belonging to definite Lorentz and flavor representations. We discuss some implications of the allowed chiral symmetry representations on physical quantities such as axial coupling constants and chiral invariant Lagrangians. We also systematically investigate chiral properties of local scalar tetraquark currents, and study their chiral transformation properties.

  2. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.

  3. Strange quark matter with dynamically generated quark masses

    OpenAIRE

    Buballa, M.; Oertel, M.

    1998-01-01

    Bulk properties of strange quark matter (SQM) are investigated within the SU(3) Nambu-Jona-Lasinio model. In the chiral limit the model behaves very similarly to the MIT bag model which is often used to describe SQM. However, when we introduce realistic current quark masses, the strange quark becomes strongly disfavored, because of its large dynamical mass. We conclude that SQM is not absolutely stable.

  4. Solitons in a chiral quark model with non-local interactions

    CERN Document Server

    Golli, B; Ripka, G; Golli, Bojan; Broniowski, Wojciech; Ripka, Georges

    1998-01-01

    Hedgehog solitons are found in a chiral quark model with non-local interactions. The solitons are stable without the chiral-circle constraint for the meson fields, as was assumed in previous Nambu-Jona--Lasinio model with local interactions.

  5. Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons

    Science.gov (United States)

    Handa, O.; Ishida, S.; Sekiguchi, M.

    1992-02-01

    By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.

  6. Dynamical quarks effects on the gluon propagation and chiral symmetry restoration

    CERN Document Server

    Bashir, A; Rodríguez-Quintero, J

    2014-01-01

    We exploit the recent lattice results for the infrared gluon propagator with light dynamical quarks and solve the gap equation for the quark propagator. Chiral symmetry breaking and confinement (intimately tied with the analytic properties of QCD Schwinger functions) order parameters are then studied.

  7. Spin Polarized versus Chiral Condensate in Quark Matter at Finite Temperature and Density

    CERN Document Server

    Matsuoka, H; da Providencia, J; Providencia, C; Yamamura, M; Bohr, H

    2016-01-01

    It is shown that the spin polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasinio-type model as a low energy effective theory of quantum chromodynamics. It is indicated within this low energy effective model that the chiral symmetry is broken again by the spin polarized condensate as increasing the quark number density, while the chiral symmetry restoration occurs in which the chiral condensate disappears at a certain density.

  8. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao;

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef......It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low......-energy effective model that the chiral symmetry is broken again by the spin-polarized condensate on increasing the quark number density, while chiral symmetry restoration occurs, in which the chiral condensate disappears at a certain density....

  9. Chiral Symmetry Restoration with a Chiral Chemical Potential: the Role of Momentum Dependent Quark Self-energy

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.

  10. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density

    Science.gov (United States)

    Ruggieri, M.; Peng, G. X.

    2016-05-01

    In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.

  11. Possible discovery channel for fourth chiral family up-quark at the LHC

    CERN Document Server

    Beser, S; Oner, B B; Sultansoy, S

    2016-01-01

    Resonant production of fourth chiral family up quark at the LHC via anomalous interactions have been analyzed. It is shown that search for resonances in W^{+}b final states could lead to discovery of the fourth chiral family and simultaneously determine scale of the new physics, presumabely related to the quark and lepton compositeness. Obtained results emphasize an importance of W-leading jet invariant mass analysis in search for W+jets final states at the LHC, both with and without b-tagging.

  12. The chiral transition on a 243 x 10 lattice with Nf = 2 clover sea quarks studied by overlap valence quarks

    International Nuclear Information System (INIS)

    Overlap fermions are particularly well suited to study the finite temperature dynamics of the chiral symmetry restoration transition of QCD, which might be just an analytic crossover. Using gauge field configurations on a 243 x 10 lattice with Nf=2 flavours of dynamical Wilson-clover quarks generated by the DIK collaboration, we compute the lowest 50 eigenmodes of the overlap Dirac operator and try to locate the transition by fermionic means. We analyse the spectral density, local chirality and localisation properties of the low-lying modes and illustrate the changing topological and (anti-) selfdual structure of the underlying gauge fields across the transition. (orig.)

  13. Vector and axial vector mesons in a nonlocal chiral quark model

    Science.gov (United States)

    Izzo Villafañe, M. F.; Gómez Dumm, D.; Scoccola, N. N.

    2016-09-01

    Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four-fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.

  14. On the Chiral Quark Soliton Model with Pauli-Villars Regularization

    OpenAIRE

    Kubota, T.; Wakamatsu, M.; Watabe, T.

    1999-01-01

    The Pauli-Villars regularization scheme is often used for evaluating parton distributions within the framework of the chiral quark soliton model with inclusion of the vacuum polarization effects. Its simplest version with a single subtraction term should however be taken with some caution, since it does not fully get rid of divergences contained in scalar and psuedoscalar quark densities appearing in the soliton equation of motion. To remedy this shortcoming, we propose here its natural exten...

  15. Vector and axial vector mesons in a nonlocal chiral quark model

    CERN Document Server

    Villafañe, M F Izzo; Scoccola, N N

    2016-01-01

    Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.

  16. The Quantum and Local Polyakov loop in Chiral Quark Models at Finite Temperature

    OpenAIRE

    Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.

    2006-01-01

    We describe results for the confinement-deconfinement phase transition as predicted by the Nambu--Jona-Lasinio model where the local and quantum Polyakov loop is coupled to the constituent quarks in a minimal way (PNJL). We observe that the leading correlation of two Polyakov loops describes the chiral transition accurately. The effects of the current quark mass on the transition are also analysed.

  17. Quenched Chiral Logarithm Diverge in Very Light Quark Region from the Overlap Lattice Quantum Chromodynamics

    Institute of Scientific and Technical Information of China (English)

    应和平; 董绍静; 张剑波

    2003-01-01

    With an exact chiral symmetry, overlap fermions allow us to reach very light quark region. In the minimummps = 179 MeV, the quenched chiral logarithm diverge is examined. The chiral logarithm parameter δ is calculatedfrom both the pseudo-scalar meson mass mp2s diverge channel and the pseudo-scalar decay constant f p channel.In both the cases, we obtain δ = 0.25 ± 0.03. We also observe that the quenchedchiral logarithm diverge occursonly in the mps ≤400 MeV region.

  18. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  19. On the role of dynamical quark mass generation in chiral symmetry breaking in QCD

    CERN Document Server

    Sazdjian, H

    2015-01-01

    The phenomenon of dynamical quark mass generation is studied in QCD within the framework of a gauge invariant formalism. An exact relationship is established between the equation satisfied by the scalar part of the two-point gauge invariant quark Green's function and the quark-antiquark bound state equation in the chiral limit. A possible nontrivial solution of the former yields a massless pseudoscalar solution of the bound state equation with vanishing total momentum. The result is also corroborated by the corresponding Ward-Takahashi identity. The problem is explicitly solved in two-dimensional QCD in the large-$N_c$ limit.

  20. Quark Spin and Orbital Angular Momentum in the Baryon

    OpenAIRE

    Song, X.

    1999-01-01

    The spin and orbital angular momentum carried by different quark flavors in the nucleon are calculated in the SU(3) chiral quark model with symmetry-breaking. The model is extended to all octet and decuplet baryons. In this model, the reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as function of the partition factor $\\kappa...

  1. Non-local regularization of chiral quark models in the soliton sector

    CERN Document Server

    Ripka, G; Ripka, Georges; Golli, Bojan

    1999-01-01

    A chiral quark model is described which is regularized in terms of Lorentz invariant non-local interactions. The model is regularized to all loop orders and it ensures the proper quantization of the baryon number. It sustains bound hedgehog solitons which, after suitable centre of mass corrections, can adequately describe the nucleon.

  2. From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    CERN Document Server

    Arriola, E Ruiz; Salcedo, L L

    2012-01-01

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  3. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    International Nuclear Information System (INIS)

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμhvp(1), is estimated

  4. SU(3) × SU(3) symmetry breaking in a simple model

    NARCIS (Netherlands)

    Wit, Bernard de

    1972-01-01

    A field-theoretical model, due to Lévy, is studied. It contains a triplet of quarks and a pseudoscalar and a scalar meson nonet. The original SU(3) × SU(3) symmetry is broken by terms linear in the scalar meson fields. A renormalization and regularization procedure is defined in order to remove the

  5. Influence of the Polyakov loop on the chiral phase transition in the two flavor chiral quark model

    Science.gov (United States)

    Markó, G.; Szép, Zs.

    2010-09-01

    The SU(2)L×SU(2)R chiral quark model consisting of the (σ,π→) meson multiplet and the constituent quarks propagating on the homogeneous background of a temporal gauge field is solved at finite temperature and quark baryon chemical potential μq using an expansion in the number of flavors Nf, both in the chiral limit and for the physical value of the pion mass. Keeping the fermion propagator at its tree level, several approximations to the pion propagator are investigated. These approximations correspond to different partial resummations of the perturbative series. Comparing their solution with a diagrammatically formulated resummation relying on a strict large-Nf expansion of the perturbative series, one concludes that only when the local part of the approximated pion propagator resums infinitely many orders in 1/Nf of fermionic contributions a sufficiently rapid crossover transition at μq=0 is achieved allowing for the existence of a tricritical point or a critical end point in the μq-T phase diagram. The renormalization and the possibility of determining the counterterms in the resummation provided by a strict large-Nf expansion are investigated.

  6. Chiral symmetry, constituent quarks and quasi-elastic electron-nucleus scattering

    Science.gov (United States)

    Henley, E. M.; Krein, G.

    1989-11-01

    The effects of chiral symmetry breaking are examined for quasi-elastic electron scattering on nuclei. Nucleons are assumed to be composed of constituent quarks with masses that depend on density. This density dependence is determined on the basis of the Nambu-Jona-Lasinio model. It is found that the effects of chiral symmetry breaking are in the right direction and the right order of magnitude to explain the discrepancies between theory and experiment. On leave from Departamento de Fisica, Universidade Federal de Santa Maria, 97100 Santa Maria, R.S., Brazil.

  7. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.

  8. Quark disconnected diagrams in chiral perturbation theory - the scalar form factor

    CERN Document Server

    Juttner, Andreas

    2012-01-01

    Expressions for the Wick contractions contributing to the scalar pion form-factor were computed model-independently in chiral perturbation theory at next-to-leading order. The results reveal correlations amongst the different contractions in terms of low-energy constants and allow for extrapolating lattice data for individual Wick contractions. The quark disconnected contribution to the real part of the form factor turns out to be suppressed with respect to the quark connected one. The corresponding contribution to the scalar radius has the same size as the connected contribution and can therefore not be neglected.

  9. Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model

    Science.gov (United States)

    Dahiya, Harleen; Randhawa, Monika

    2016-06-01

    We have analyzed the phenomenological dependence of the spin independent (F1p ,n and F2p ,n) and the spin dependent (g1p ,n) structure functions of the nucleon on the Bjorken scaling variable x using the unpolarized distribution functions of the quarks q (x ) and the polarized distribution functions of the quarks Δ q (x ) respectively. The chiral constituent quark model, which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of p and n . In light of the improved precision of the world data, the p and n longitudinal spin asymmetries [A1p(x ) and A1n(x )] have been calculated. The implication of the presence of the sea quarks has been discussed for the ratio of polarized to unpolarized quark distribution functions for up and down quarks in the p and n Δ/up(x ) up(x ) , Δ/dp(x ) dp(x ) , Δ/un(x ) un(x ) , and Δ/dn(x ) dn(x ) . The ratio of the n and p structure functions Rn p(x )=F/2n(x ) F2p(x ) has also been presented. The results have been compared with the recent available experimental observations. The results on the spin sum rule have also been included and compared with data and other recent approaches.

  10. Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model

    CERN Document Server

    Dahiya, Harleen

    2016-01-01

    We have analysed the phenomenological dependence of the spin independent ($F_1^{p,n}$ and $F_2^{p,n}$) and the spin dependent ($g_1^{p,n}$) structure functions of the nucleon on the the Bjorken scaling variable $x$ using the unpolarized distribution functions of the quarks $q(x)$ and the polarized distribution functions of the quarks $\\Delta q(x)$ respectively. The chiral constituent quark model ($\\chi$CQM), which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of $p$ and $n$. In light of the improved precision of the world data, the $p$ and $n$ longitudinal spin asymmetries ($A_1^p(x)$ and $A_1^n(x)$) have been calculated. The implication of the presence of the sea quarks has been discussed for ratio of polarized to unpolarized quark distribution functions for up and down quarks in the $p$ and $n$ $\\frac{\\Delta u^p(x)}{u^p(x)}$, $\\frac{\\Delta d...

  11. On the quark-mass dependence of baryon ground-state masses

    Energy Technology Data Exchange (ETDEWEB)

    Semke, Alexander

    2010-02-17

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  12. On the quark-mass dependence of baryon ground-state masses

    International Nuclear Information System (INIS)

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  13. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  14. Lattice measurement of B{sub B{sub s}} with a chiral light quark action

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, B.

    2007-01-15

    The computation on the lattice of the bag parameter B{sub B{sub s}} associated to the B{sub S}-B{sub S} mixing amplitude in the Standard Model is presented. The estimation has been made by combining the static limit of HQET and the Neuberger light quark action which preserves the chiral symmetry on the lattice. We find B{sub B{sub S}}{sup MSstat}(m{sub b})=0.92(3). (orig.)

  15. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Directory of Open Access Journals (Sweden)

    Biernat Elmar P.

    2016-01-01

    Full Text Available We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  16. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, A; Gross, F

    2015-01-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  17. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, A.; Gross, F.

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  18. Dynamical evolution of the chiral magnetic effect: applications to the quark-gluon plasma

    CERN Document Server

    Manuel, Cristina

    2015-01-01

    We study the dynamical evolution of the so-called chiral magnetic effect in an electromagnetic conductor. To this end, we consider the coupled set of corresponding Maxwell and chiral anomaly equations, and we prove that these can be derived from chiral kinetic theory. After integrating the chiral anomaly equation over space in a closed volume, it leads to a quantum conservation law of the total helicity of the system. A change in the magnetic helicity density comes together with a modification of the chiral fermion density. We study in Fourier space the coupled set of anomalous equations and we obtain the dynamical evolution of the magnetic fields, magnetic helicity density, and chiral fermion imbalance. Depending on the initial conditions we observe how the helicity might be transferred from the fermions to the magnetic fields, or vice versa, and find that the rate of this transfer also depends on the scale of wavelengths of the gauge fields in consideration. We then focus our attention on the quark-gluon pl...

  19. Strong decays of N~*(1535) in an extended chiral quark model

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The strong decays of the N*(1535) resonance are investigated in an extended chiral quark model by including the low-lying qqqqq components in addition to the qqq component.The results show that these five-quark components in N*(1535) contribute significantly to the N*(1535)→ Nπ and N*(1535) → Nη decays.The contributions to the Nη decay come from both the lowest energy and the next-to-lowest energy five-quarks components,while the contributions to the Nπ decay come from only the latter one.Taking these contributions into account,the description for the strong decays of N*(1535) is improved,especially for the puzzling large ratio of the decays to Nη and Nπ.

  20. Chiral Magnetic Wave at Finite Baryon Density and the Electric Quadrupole Moment of the Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    The chiral magnetic wave is a gapless collective excitation of quark-gluon plasma in the presence of an external magnetic field that stems from the interplay of chiral magnetic and chiral separation effects; it is composed of the waves of the electric and chiral charge densities coupled by the axial anomaly. We consider a chiral magnetic wave at finite baryon density and find that it induces the electric quadrupole moment of the quark-gluon plasma produced in heavy ion collisions: the 'poles' of the produced fireball (pointing outside of the reaction plane) acquire additional positive electric charge, and the 'equator' acquires additional negative charge. We point out that this electric quadrupole deformation lifts the degeneracy between the elliptic flows of positive and negative pions leading to v2(π+)2(π-), and estimate the magnitude of the effect.

  1. Broken SU(3) x SU(3) x SU(3) x SU(3) Symmetry

    Science.gov (United States)

    Freund, P. G. O.; Nambu, Y.

    1964-10-01

    We argue that the "Eight-fold Way" version of the SU(3) symmetry should be extended to a product of up to four separate and badly broken SU(3) groups, including the gamma{sub 5} type SU(3) symmetry. A hierarchy of subgroups (or subalgebras) are considered within this framework, and two candidates are found to be interesting in view of experimental evidence. Main features of the theory are: 1) the baryons belong to a nonet; 2) there is an octet of axial vector gauge mesons in addition to one or two octets of vector mesons; 3) pseudoscalar and scalar mesons exist as "incomplete" multiplets arising from spontaneous breakdown of symmetry.

  2. Chiral Quark-Meson model of N and DELTA with vector mesons

    International Nuclear Information System (INIS)

    Vector mesons rho, A1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)

  3. The B=2 system in the chiral quark-soliton model with broken scale invariance

    CERN Document Server

    Sarti, Valentina Mantovani; Vento, Vicente

    2013-01-01

    We study the interaction between two B=1 states in the Chiral-Dilaton Model with scale invariance where baryons are described as non-topological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for the B=1 states we construct, via a product ansatz, three possible B=2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics. We investigate the behaviour of these solutions in the range of long and intermediate distances between the two solitons. Since the product ansatz breaks down as the two solitons get close, we explore the short range distances regime by building up a six quarks bag and by evaluating the interaction energy as a function of the inter-soliton separation. We calculate the interaction energy as a function of the inter-soliton distance for the B=2 system and we show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations conne...

  4. The SU(3) Nambu-Jona-Lasinio soliton in the collective quantization formulation

    International Nuclear Information System (INIS)

    On grounds of a semibosonized Nambu-Jona-Lasinio model, which has SU(3)RxSU(3)L symmetry in the chiral limit, mass splittings for spin 1/2 and spin 3/2 baryons are studied in the presence of an explicit chiral-symmetry-breaking strange-quark mass. To this aim these strangeness-carrying baryons are understood as SU(3)-rotational excitations of an SU(2)-embedded soliton solution. Therefore, within the framework of collective quantization, the fermion determinant with the strange-quark mass is expanded up to the second order in the flavor rotation velocity and up to the first order in this quark mass. Besides, the strange and non-strange moments of inertia, which have some counterparts within the Skyrme model, some so-called anomalous moments of inertia are obtained. These can be related to the imaginary part of the effective euclidian action and contain among others the anomalous baryon current. This is shown in a gradient expansion up to the first non-vanishing order. Together with the Σ-commutator these are the solitonic ingredients of the collective hamiltonian, which is then diagnonalized by means of strict perturbation theory in the strange-quark mass and by the Yabu-Ando method. Both methods yield very good results for the masses of the spin 1/2 and 3/2 baryons. The former one reproduces some interesting mass formulas of Gell-Mann, Okubo and of Guadagnini and the latter one is able to describe the mass splittings up to a few MeV. (orig.)

  5. Chiral and U(1) axial symmetry restoration in linear sigma models with two quark flavors

    CERN Document Server

    Michalski, S

    2006-01-01

    We study the restoration of chiral symmetry in linear sigma models with two quark flavors. The models taken into consideration have a U(2) x U(2) and an O(N) internal symmetry. The physical mesons of these models are sigma, pion, \\eta and a_0 where the latter two are not present in the O(N) model. Including two-loop contributions through sunset graphs we calculate the temperature behavior of the order parameter and the masses for explicit chiral symmetry breaking with and without a U(1) axial anomaly. Decay threshold effects introduced by the sunset graphs alter the temperature dependence of the condensate and consequently that of the masses as well. Chiral symmetry tends to be restored at higher temperatures in the two-loop approximation than in the Hartree-Fock approximation. To model a dynamical restoration of the U(1) axial symmetry we imply a temperature-dependent anomaly parameter that sharply drops at about 175 MeV. This triggers the restoration of chiral symmetry before the full symmetry is restored a...

  6. SU (3) Simple Group Model and Spin Correction of Top Quark Pair Production at Linear Colliders%SU(3)简易群模型和直线对撞机上顶夸克对产生的自旋修正

    Institute of Scientific and Technical Information of China (English)

    任晓燕; 白艳宇

    2008-01-01

    SU(3)简易群模型的框架下,研究了在直线对撞机上质心能量为800GeV时顶夸克对通过e+e-→tt过程产生的自旋修正.结果表明新的规范玻色子ZH对t↑t↓态和t↓t↑态的产生截面能产生明显的修正;当1TeV ≤ MZH≤2TeV和cosθ<0时,相对修正参数的值R(t↑t↓)和R(t↓t↑)分别在18.16%~3.45%和47.6%~3.4%的范围.因而在大部分参数空间内,新的规范玻色子HZ对顶夸克对产生的自旋修正影响应该可以在未来的高能直线对撞机上被现测到.%In the context of the SU(3) simple group model, we study the spin correction of the top quark pair production via the process e+ e- → tt at the high energy linear e+ e- collider (ILC) with a centre-of-mass energy (S)=800GeV. Our numerical results show that the gauge boson ZH exchange can generate significantly corrections to the differential cross sections for the t↑t↓ and t↓t↑ states. For 1TeV ≤MZH ≤ 2TeV and cos θ < 0, the values of the relative correction parameters R (t↑t↓) and R (t↓t↑) are in the ranges of 18.16%-3.45% and 47.6%-3.4%, respectively. Thus, in most of the parameter space, the effects of the new gauge boson Z, on the spin configurations of the top quark pair production might be observed at the future ILC experiments.

  7. Charge radii of octet and decuplet baryons in chiral constituent quark model

    Indian Academy of Sciences (India)

    Neetika Sharma; Harleen Dahiya

    2013-09-01

    The charge radii of the spin-$\\dfrac{1}{2}^{+}$ octet and spin-$\\dfrac{3}{2}^{+}$ decuplet baryons have been calculated in the framework of chiral constituent quark model ( CQM) using a general parametrization method (GPM). Our results are not only comparable with the latest experimental studies but also agree with other phenomenological models. The effects of (3) symmetry breaking pertaining to the strangeness contribution and GPM parameters pertaining to the one-, two- and three-quark contributions have also been investigated in detail and are found to be the key parameters in understanding the non-zero values for the neutral octet $(n, \\sum^{0}, \\Xi, )$ and decuplet $(^{0}, \\sum^{*0}, \\Xi^{*0})$ baryons.

  8. Classifying the Phases of Gauge Theories by Spectral Density of Probing Chiral Quarks

    CERN Document Server

    Alexandru, Andrei

    2015-01-01

    We describe our recent proposal that distinct phases of gauge theories with fundamental quarks translate into specific types of low-energy behavior in Dirac spectral density. The resulting scenario is built around new evidence substantiating the existence of a phase characterized by bimodal (anomalous) density, and corresponding to deconfined dynamics with broken valence chiral symmetry. We argue that such anomalous phase occurs quite generically in these theories, including in "real world" QCD above the crossover temperature, and in zero-temperature systems with many light flavors.

  9. $Z_b(10650)$ and $Z_b(10610)$ states in a chiral quark model

    OpenAIRE

    Li, M. T.; Wang, W L; Dong, Y. B.; Zhang, Z. Y.

    2012-01-01

    We perform a systematic study of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ systems by using effective interaction in our chiral quark model. Our results show that the interactions of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ states are attractive, which consequently result in $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ bound states. The recent observed exotic-like hadrons of $Z_b(10610)$ and $Z_b(10650)$ are, therefore in our approach,...

  10. Nucleon shape and electromagnetic form factors in the chiral constituent quark model

    CERN Document Server

    Dahiya, Harleen

    2010-01-01

    The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.

  11. Generalized vector form factors of the pion in a chiral quark model

    CERN Document Server

    Broniowski, Wojciech

    2008-01-01

    Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.

  12. Possible $\\Delta\\Delta$ dibaryons in the quark cluster model

    OpenAIRE

    Q. B. Li; Shen, P. N.

    1999-01-01

    In the framework of RGM, the binding energy of one channel $\\Delta\\Delta_{(3,0)}$($d^*$) and $\\Delta\\Delta_{(0,3)}$ are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the $\\Delta\\Delta$ system makes the contribution of the relativ...

  13. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    International Nuclear Information System (INIS)

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero

  14. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Takahiro M.; Suganuma, Hideo [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502 (Japan); Iritani, Takumi [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502 (Japan)

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.

  15. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    Science.gov (United States)

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-01

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new "positive/negative symmetry" in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.

  16. Exploring the nature of chiral phase transition in two-flavor QCD using extra heavy quarks

    CERN Document Server

    Ejiri, Shinji; Yamada, Norikazu

    2015-01-01

    Chiral phase transition of two flavor QCD at finite quark masses is known to be crossover except near the chiral limit, but it can turn to a first order transition when adding many extra flavors. This property is used to explore the nature of the phase transition of massless two flavor QCD using lattice numerical simulations. The extra heavy flavors being incorporated in the form of the hopping parameter expansion through the reweighting, the number of the extra flavors and their masses appear only in a single parameter, defined by $h$. We determine the critical value of the parameter, at which the first order and the crossover regions are separated, and examine its dependence on the two flavor mass. The lattice calculations are carried out at $N_t$=4, and show that the critical value does not depend on the two flavor mass in the range we have studied ($0.46 \\le m_\\pi/m_\\rho \\le 0.66$) and appears to remain finite and positive in the chiral limit, suggesting that the phase transition of massless two flavor QC...

  17. Kaon-Baryon Couplings and the Goldberger-Treiman Relation in SU(3) x SU(3)

    CERN Document Server

    Nasrallah, N F

    2007-01-01

    The coupling constants G_(K N Lambda) and G_(K N Sigma) are obtained from the Goldberger-Treiman relation in the strange channel with chiral symmetry breaking taken into account. The results, G_(K N Lambda)=-12.3+-1.2 and G_(K N Sigma)=5.5+-.5 come close to the SU(3) values.

  18. Ratio of a strange quark mass ms to up or down quark mass mu,d predicted by a quark propagator in the framework of the chiral perturbation theory

    Institute of Scientific and Technical Information of China (English)

    PENG Jin-Song; ZHOU Li-Juan; MENG Cheng-Ju; PAN Ji-Huan; MA Wei-Xing; YUAN Tong-Quan

    2013-01-01

    Based on the fully dressed quark propagator and chiral perturbation theory,we study the ratio of the strange quark mass ms to up or down quark mass mu,d.The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron.An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications.We begin with a brief introduction to the non-perturbation QCD theory,and then study the mass ratio in the framework of the chiral perturbation theory (xPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p2-plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data.Our prediction for the ratio ms/mu,d is consistent with other model predictions such as Lattice QCD,instanton model,QCD sum rules and the empirical values used widely in the literature.As a by-product of this study,our theoretical results,together with other predictions of physical quantities that used this quark propagator in our previous publications,clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD.

  19. Vortices and the SU(3) string tension

    OpenAIRE

    Kovács, T. G.; Tomboulis, E. T.

    1998-01-01

    We present simulation results comparing the SU(3) heavy quark potential extracted from the full Wilson loop expectation to that extracted from the expectation of the Wilson loop fluctuation solely by elements of Z(3). The two potentials are found to coincide. This agreement is stable under multiple smoothings of the configurations which remove short distance fluctuations, and thus reflects long-distance physics. It strongly indicates that the asymptotic string tension arises from thick center...

  20. Direct mass limits for chiral fourth-generation quarks in all mixing scenarios.

    Science.gov (United States)

    Flacco, Christian J; Whiteson, Daniel; Tait, Tim M P; Bar-Shalom, Shaouly

    2010-09-10

    Present limits on chiral fourth-generation quark masses mb' and mt' are broadly generalized and strengthened by combining both t' and b' decays and considering a full range of t' and b' flavor-mixing scenarios with the lighter generations (to 1-‖V44‖2≈10(-13)). Various characteristic mass-splitting choices are considered. With mt'>mb' we find that CDF Collaboration limits on the b' mass vary by no more than 10%-20% with any choice of flavor mixing, while for the t' mass, we typically find stronger bounds, in some cases up to mt'>430  GeV. For mb'>mt', we find mb'>380-430  GeV, depending on the flavor mixing and the size of the mt'-mb' mass splitting.

  1. The chiral quark condensate and pion decay constant in nuclear matter at next-to-leading order

    CERN Document Server

    Lacour, A; Meißner, U -G

    2010-01-01

    Making use of the recently developed chiral power counting for the physics of nuclear matter [1,2], we evaluate the in-medium chiral quark condensate up to next-to-leading order for both symmetric nuclear matter and neutron matter. Our calculation includes the full in-medium iteration of the leading order local and one-pion exchange nucleon-nucleon interactions. Interestingly, we find a cancellation between the contributions stemming from the quark mass dependence of the nucleon mass appearing in the in-medium nucleon-nucleon interactions. Only the contributions originating from the explicit quark mass dependence of the pion mass survive. This cancellation is the reason of previous observations concerning the dominant role of the long-range pion contributions and the suppression of short-range nucleon-nucleon interactions. We find that the linear density contribution to the in-medium chiral quark condensate is only slightly modified for pure neutron matter by the nucleon-nucleon interactions. For symmetric nu...

  2. Possible $D\\bar{D}$ and $B\\bar{B}$ Molecular states in a chiral quark model

    CERN Document Server

    Li, M T; Dong, Y B; Zhang, Z Y

    2012-01-01

    We perform a systematic study of the bound state problem of $D\\bar{D}$ and $B\\bar{B}$ systems by using effective interaction in our chiral quark model. Our results show that both the interactions of $D\\bar{D}$ and $B\\bar{B}$ states are attractive, which consequently result in $I^G(J^{PC})=0^+(0^{++})$ $D\\bar{D}$ and $B\\bar{B}$ bound states.

  3. The Effect of Logarithmic Mesonic Potential on the Magnetic Catalysis in the Chiral Quark-Sigma Model

    CERN Document Server

    Abu-Shady, M

    2015-01-01

    The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.

  4. Evidence for chiral logarithms in the baryon spectrum

    CERN Document Server

    Walker-Loud, Andre

    2011-01-01

    Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...

  5. SU(3) mean field Hamiltonian

    International Nuclear Information System (INIS)

    The su(3) mean field approximation describes collective nuclear rotation in a density matrix formalism. The densities ρ=q-i l/2 are 3x3 Hermitian matrices in the su(3) dual space, where q is the expectation of the quadrupole moment and l is the expectation of the angular momentum. The mean field approximation restricts these densities to a level surface of the su(3) Casimirs. Each level surface is a coadjoint orbit of the canonical transformation group SU(3). For each density ρ, the su(3) mean field Hamiltonian h[ρ] is an element of the su(3) Lie algebra. A model su(3) energy functional and the symplectic structure on the coadjoint orbit determine uniquely the su(3) mean field Hamiltonian. The densities in time-dependent su(3) mean field theory obey the dynamical equation i ρ radical = [h[ρ],ρ] on a coadjoint orbit. The cranked mean field Hamiltonian is hΩ=h+iΩ, where Ω is the angular velocity of the rotating principal axis frame. A rotating equilibrium density ρ-tilde in the body-fixed frame is a self-consistent solution to the equation [hΩ[ρ-tilde],ρ-tilde]=0. (author)

  6. The geometry of SU(3)

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, M.

    1997-10-01

    The group SU(3) is parameterized in terms of generalized {open_quotes}Euler angles{close_quotes}. The differential operators of SU(3) corresponding to the Lie Algebra elements are obtained, the invariant forms are found, the group invariant volume element is found, and some relevant comments about the geometry of the group manifold are made.

  7. Chiral symmetry breaking, color superconductivity and quark matter phase diagram: a variational approach 12.38.Gc

    CERN Document Server

    Mishra, H

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.

  8. The Running Coupling from SU(3) Lattice Gauge Theory

    CERN Document Server

    Henty, D S; Hulsebos, A; Irving, A C; Michael, C; Stephenson, P W

    1992-01-01

    {}From an accurate determination of the inter-quark potential, one can study the running coupling constant for a range of $R$-values and hence estimate the scale $\\Lambda_{\\msbar} $. Detailed results are presented for $SU(3)$ pure gauge theory.

  9. Three-Triplet Model with Double SU(3) Symmetry

    Science.gov (United States)

    Han, M. Y.; Nambu, Y.

    1965-01-01

    With a view to avoiding some of the kinematical and dynamical difficulties involved in the single triplet quark model, a model for the low lying baryons and mesons based on three triplets with integral charges is proposed, somewhat similar to the two-triplet model introduced earlier by one of us (Y. N.). It is shown that in a U(3) scheme of triplets with integral charges, one is naturally led to three triplets located symmetrically about the origin of I{sub 3} - Y diagram under the constraint that Nishijima-Gell-Mann relation remains intact. A double SU(3) symmetry scheme is proposed in which the large mass splittings between different representations are ascribed to one of the SU(3), while the other SU(3) is the usual one for the mass splittings within a representation of the first SU(3).

  10. Chiral symmetry breaking and chiral polarization: Tests for finite temperature and many flavors

    Directory of Open Access Journals (Sweden)

    Andrei Alexandru

    2015-02-01

    Full Text Available It was recently conjectured that, in SU(3 gauge theories with fundamental quarks, valence spontaneous chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chiral polarization scale Λch. Here we consider more general association involving the low-energy layer of chirally polarized modes which, in addition to its width (Λch, is also characterized by volume density of participating modes (Ω and the volume density of total chirality (Ωch. Few possible forms of the correspondence are discussed, paying particular attention to singular cases where Ω emerges as the most versatile characteristic. The notion of finite-volume “order parameter”, capturing the nature of these connections, is proposed. We study the effects of temperature (in Nf=0 QCD and light quarks (in Nf=12, both in the regime of possible symmetry restoration, and find agreement with these ideas. In Nf=0 QCD, results from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature Tc is strictly smaller than the overlap–valence chiral transition temperature Tch in real Polyakov line vacuum. Somewhat similar intermediate phase (in quark mass is also seen in Nf=12. It is suggested that deconfinement in Nf=0 is related to indefinite convexity of absolute X-distributions.

  11. SU(3) flavour symmetry breaking and charmed states

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Hyogo (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, School of Chemistry and Physics; Collaboration: QCDSF-UKQCD Collaborations

    2013-11-15

    By extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses we propose a method to determine charmed quark hadron masses including possible QCD isospin breaking effects. Initial results for some open charmed pseudoscalar meson states and singly and doubly charmed baryon states are encouraging and demonstrate the potential of the procedure. Essential for the method is the determination of the scale using singlet quantities, and to this end we also give here a preliminary estimation of the recently introduced Wilson flow scales.

  12. Leptonic SU(3), grand unification, and higher-dimensionality gravidynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, N.S. (International Centre for Theoretical Physics, Trieste (Italy) Dahr el Chir Science Centre, Dhour el Choueir (Lebanon))

    1990-06-01

    Two considerations pertaining to the electroweak symmetry of leptons, and to higher-dimensionality gravidynamic spacetime-internal unification, lead us to suggest the gauging of SU(15), for each generation of leptons and quarks. On one hand, the electroweak leptonic sector is governed by SU(3), while the quark sector is standard. On the other hand, the Lorentz symmetry of Weyl fermions is generalized to spin-containing SU(2{ital n},C). Sketching the basic elements of the corresponding higher-dimensionality gravidynamics, we point out an associated quark-lepton unification scheme which does not require {ital V}+{ital A} generations.

  13. Level Statistics of SU(3)-SU(3)* Transitional Region

    CERN Document Server

    Jafarizadeh, M A; Sabri, H; gavifekr, P Hossein nezhade; Ranjbar, Z

    2012-01-01

    The level statistics of SU(3)-SU(3)* transitional region of IBM is described by the nearest neighbor spacing distribution statistics. The energy levels are determined by using the SO(6)representation of eigenstates. By employing the MLE technique, the parameter of Abul-Magd distribution is estimated where suggest less regular dynamics for transitional region in compare to dynamical symmetry limits. Also, the O(6)dynamical symmetry which is known as the critical point of this transitional region, describes a deviation to more regular dynamics.

  14. A chiral quark model for meson electro-production in the S11 partial wave

    CERN Document Server

    Golli, Bojan

    2011-01-01

    We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain consistent predictions for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model suggests that the N(1535) resonance is dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons.

  15. Realistic $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ model with type-II Dirac neutrino seesaw mechanism

    CERN Document Server

    Reig, Mario; Vaquera-Araujo, C A

    2016-01-01

    Here we propose a realistic $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ electroweak gauge model with enlarged Higgs sector. The scheme allows for the natural implementation of a type-II seesaw mechanism for Dirac neutrinos, while charged lepton and quark masses are reproduced with natural flavor conservation in the scalar sector. The new $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ energy scale characterizing neutrino mass generation could be accessible to the current LHC experiments.

  16. Realistic SU (3 )c⊗SU (3 )L⊗U (1 )X model with a type II Dirac neutrino seesaw mechanism

    Science.gov (United States)

    Reig, Mario; Valle, José W. F.; Vaquera-Araujo, C. A.

    2016-08-01

    Here we propose a realistic SU (3 )c⊗SU (3 )L⊗U (1 )X electroweak gauge model with enlarged Higgs sector. The scheme allows for the natural implementation of a type II seesaw mechanism for Dirac neutrinos, while charged lepton and quark masses are reproduced in a natural way thanks to the presence of new scalars. The new SU (3 )c⊗SU (3 )L⊗U (1 )X energy scale characterizing neutrino mass generation could be accessible to the current LHC experiments.

  17. SU(3) gauge theory with four degenerate fundamental fermions on the lattice

    CERN Document Server

    Aoki, Yasumichi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2015-01-01

    As a part of the project studying large $N_f$ QCD, the LatKMI Collaboration has been investigating the SU(3) gauge theory with four fundamental fermions (four-flavor QCD). The main purpose of studying four-flavor QCD is to provide a qualitative comparison to $N_f= 8$, $12$, $16$ QCD; however, a quantitative comparison to real-world QCD is also interesting. To make such comparisons more meaningful, it is desirable to use the same kind of lattice action consistently, so that qualitative difference of different theories are less affected by artifacts of lattice discretization. Here, we adopt the highly-improved staggered quark action with the tree-level Symanzik gauge action (HISQ/tree), which is exactly the same as the setup for our simulations for $SU(3)$ gauge theories with $N_f=8$, $12$ and $16$ fundamental fermions~\\cite{Aoki:2013xza, Aoki:2012eq, Aoki:2014oma}. In the next section, we show the fermion mass dependence of $F_\\pi$, $\\langle\\bar{\\psi}\\psi\\rangle$, $M_\\pi$, $M_\\rho$, $M_N$ and their chiral extr...

  18. Evidence for non-analytic light quark mass dependence in the baryon spectrum

    CERN Document Server

    Walker-Loud, Andre

    2011-01-01

    Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...

  19. Valence-quark distribution functions in the kaon and pion

    CERN Document Server

    Chen, Chen; Roberts, Craig D; Wan, Shaolong; Zong, Hong-Shi

    2016-01-01

    We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed-quarks carry all a meson's momentum at a characteristic hadronic scale and vanishing as $(1-x)^2$ when Bjorken-$x\\to 1$. Comparing such distributions within the pion and kaon, it is apparent that the size of SU(3)-flavour symmetry breaking in meson parton distribution functions is modulated by the flavour dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulae may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison...

  20. Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions

    OpenAIRE

    Shanahan, P. E.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia)

    2013-01-01

    We present a determination, from lattice QCD, of charge symmetry violation in the spin- independent and spin-dependent parton distribution functions of the nucleon. This is done by chirally extrapolating recent QCDSF/UKQCD Collaboration lattice simulations of the first several Mellin moments of the parton distribution functions of octet baryons to the physical point. We find small chiral corrections for the polarized moments, while the corrections are quantitatively significant in the unpolar...

  1. Composite quarks and leptons in higher space-time dimensions

    CERN Document Server

    Chaichian, Masud; Kobakhidze, A B

    2002-01-01

    A new approach towards the composite structure of quarks and leptons in the context of the higher dimensional unified theories is proposed. Owing to the certain strong dynamics, much like an ordinary QCD, every possible vectorlike set of composites appears in higher dimensional bulk space-time, however, through a proper Sherk-Schwarz compactification only chiral multiplets of composite quarks and leptons survive as the massless states in four dimensions. In this scenario restrictions related with the 't Hooft's anomaly matching condition are turned out to be avoided and, as a result, the composite models look rather simple and economic. We demonstrate our approach by an explicit construction of model of preons and their composites unified in the supersymmetric SU(5) GUT in five space-time dimensions. The model predicts exactly three families of the composite quarks and leptons being the triplets of the chiral horizontal symmetry SU(3)_h which automatically appears in the composite spectrum when going to ordin...

  2. The fate of pion condensation in quark matter: from the chiral to the real world

    CERN Document Server

    Abuki, H; Gatto, R; Pellicoro, M; Ruggieri, M

    2008-01-01

    We study aspects of the pion condensation in a two-flavor neutral quark matter using the Nambu--Jona-Lasinio (NJL) model of QCD at finite density. We investigate the role of electric charge neutrality, and explicit symmetry breaking via quark mass, both of which control the onset of the charged pion $(\\pi^c)$ condensation. We show that the equality between the electric chemical potential and the in-medium pion mass, $\\mu_{e}=M_{\\pi^-}$, as a threshold, persists even for composite pion system in the medium, provided the transition to the pion condensed phase is of the second order. Moreover we find that the pion condensate in the neutral quark matter is extremely fragile to the symmetry breaking effect via a current quark mass $m$, being ruled out for $m$ larger than the order of 10 keV.

  3. SU(3) Polyakov Linear Sigma-Model in an External Magnetic Field

    CERN Document Server

    Tawfik, Abdel Nasser

    2014-01-01

    In the present work, we analyse the effects of an external magnetic field on the chiral critical temperature $T_c$ of strongly interacting matter. In doing this, we can characterize the magnetic properties of the quantum chromodynamics (QCD) strong interacting matter, the quark-gluon plasma (QGP). We investigate this in the framework of the SU(3) Polyakov linear sigma-model (PLSM). To this end, we implement two approaches representing two systems, in which the Polyakov-loop potential added to PLMS either renormalized or non-normalized. The effects of Landau quantization on the strongly interacting matter is conjectures to reduce the electromagnetic interactions between quarks. In this case, the color interactions will be dominant and increasing, which - in turn - can be achieved by increasing of the Polyakov-loop fields. Obviously, each of them equips us with a different understanding about the critical temperature under the effect of an external magnetic field. In both systems, we obtain a paramagnetic respo...

  4. From quarks and gluons to hadrons: Chiral symmetry breaking in dynamical QCD

    Science.gov (United States)

    Braun, Jens; Fister, Leonard; Pawlowski, Jan M.; Rennecke, Fabian

    2016-08-01

    We present an analysis of the dynamics of two-flavor QCD in the vacuum. Special attention is paid to the transition from the high-energy quark-gluon regime to the low-energy regime governed by hadron dynamics. This is done within a functional renormalization group approach to QCD amended by dynamical hadronization techniques. These techniques allow us to describe conveniently the transition from the perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a fine-tuning of model parameters. In the present work, we apply these techniques to two-flavor QCD with physical quark masses and show how the dynamics of the dominant low-energy degrees of freedom emerge from the underlying quark-gluon dynamics.

  5. Fixed point SU(3) gauge actions: scaling properties and glueballs

    International Nuclear Information System (INIS)

    We present a new parametrization of a SU(3) fixed point (FP) gauge action using smeared ('fat') gauge links. We report on the scaling behaviour of the FP action on coarse lattices by means of the static quark-antiquark potential, the hadronic scale r0, the string tension σ and the critical temperature Tc of the deconfining phase transition. In addition, we investigate the low lying glueball masses where we observe no scaling violations within the statistical errors

  6. SU(3) Polyakov linear-sigma model: Conductivity and viscous properties of QCD matter in thermal medium

    CERN Document Server

    Tawfik, Abdel Nasser; Hussein, M T

    2016-01-01

    In mean field approximation, the grand canonical potential of SU(3) Polyakov linear-$\\sigma$ model (PLSM) is analysed for chiral phase-transition, $\\sigma_l$ and $\\sigma_s$ and for deconfinement order-parameters, $\\phi$ and $\\phi^*$ of light- and strange-quarks, respectively. Various PLSM parameters are determined from the assumption of global minimization of the real part of the potential. Then, we have calculated the subtracted condensates ($\\Delta_{l,s}$). All these results are compared with recent lattice QCD simulations. Accordingly, essential PLSM parameters are determined. The modelling of the relaxation time is utilized in estimating the conductivity properties of the QCD matter in thermal medium, namely electric [$\\sigma_{el}(T)$] and heat [$\\kappa(T)$] conductivities. We found that the PLSM results on the electric conductivity and on the specific heat agree well with the available lattice QCD calculations. Also, we have calculated bulk and shear viscosities normalized to the thermal entropy, $\\xi/s$...

  7. Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J

    2012-01-01

    We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.

  8. Quark-lepton unification in SU(N>5)

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, N.S.

    1980-04-01

    We discuss a class of flavor-unification models for quarks and leptons based on the unitary groups SU(N>5). The spontaneous breaking of SU(N) is proposed to go via SU(3)/sub c/ x (SU(N-3) x U(1))/sub f/, then through successive stages down to SU(3)/sub c/ x SU(2) x U(1). Our models are anomaly-free and have the distinctive feature of associating several left-handed neutral partners to charged leptons. Quark-lepton assignments, weak currents, and fermion mass generation are discussed for SU(6), SU(7), and SU(8). The embedding of the SU(6) model in E/sub 6/ is also indicated. The SU(7) model is noted as the most economical three-generation model (49 chiral fields).

  9. Initial nucleon structure results with chiral quarks at the physical point

    CERN Document Server

    Syritsyn, S; Engelhardt, M; Green, J; Izubuchi, T; Jung, C; Krieg, S; Lin, M; Meinel, S; Negele, J; Ohta, S; Pochinsky, A; Shintani, E

    2014-01-01

    We report initial nucleon structure results computed on lattices with 2+1 dynamical M\\"obius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently available statistics, we estimate the stochastic accuracy of the determination of $g_A$ and $_{u-d}$ to be around 10%, and we expect to reduce that to 5% within the next year. To reduce the computational cost of our calculations, we extensively use acceleration techniques such as low-eigenmode deflation and all-mode-averaging (AMA). We present a method for choosing optimal AMA parameters.

  10. From Quarks and Gluons to Hadrons: Chiral Symmetry Breaking in Dynamical QCD

    OpenAIRE

    Braun, Jens; Fister, Leonard; Pawlowski, Jan M; Rennecke, Fabian

    2016-01-01

    We present an analysis of the dynamics of two-flavour QCD in the vacuum. Special attention is payed to the transition from the high energy quark-gluon regime to the low energy regime governed by hadron dynamics. This is done within a functional renormalisation group approach to QCD amended by dynamical hadronisation techniques. The latter allow us to describe conveniently the transition from the perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a f...

  11. B_s-\\bar{B_s} mixing with a chiral light quark action

    CERN Document Server

    Becirevic, D; Boucaud, P; Leroy, J P; Le Yaouanc, A; Pène, O; Boucaud, Ph.

    2005-01-01

    We study the $B^0_s-\\bar{B^0_s}$ mixing amplitude in Standard Model by computing the relevant hadronic matrix element in the static limit of lattice HQET with the Neuberger light quark action. In the quenched approximation, and after matching to the $\\bar{\\rm MS}$ scheme in QCD, we obtain $B^{\\bar{\\rm MS}}_{B_s}(m_b)=0.940(16)(22)$.

  12. Why the proton spin is not due to quarks

    International Nuclear Information System (INIS)

    Recent EMC data on the spin-dependent proton structure function suggest that very little of the proton spin is due to the helicity of the quarks inside it. We argue that, at leading order in the 1/N/sub c/ expansion, none of the proton spin would be carried by quarks in the chiral limit where m/sub q/ = 0. This model-independent result is based on a physical picture of the nucleon as a soliton solution of the effective chiral Lagrangian of large-N/sub c/ QCD. The Skyrme model is then used to estimate quark contribution to the proton spin when chiral symmetry and flavor SU(3) are broken: this contribution turns out to be small, as suggested by the EMC. Next, we discuss the other possible contributions to the proton helicity in the infinite-momentum frame---polarized gluons (ΔG), and orbital angular momentum (L/sub z/). We argue on general grounds and by explicit example the ΔG = 0 and that if the parameters of the chiral Lagrangian are adjusted so that gluons carry /approximately/50% of the proton momentum, most of the orbital angular momentum L/sub z/ is carried by quarks. We mention several experiments to test the EMC results and their interpretation. 43 refs., 3 figs

  13. Chiral symmetry of heavy-light scalar mesons with UA(1) symmetry breaking

    Science.gov (United States)

    Dmitrašinović, V.

    2012-07-01

    In a previous paper, based on a calculation in the nonrelativistic quark model, we advanced the hypothesis that the Ds(2317), D0(2308) mesons are predominantly four-quark states lowered in mass by the flavor-dependent Kobayashi-Kubo-Maskawa ’t Hooft UA(1) symmetry breaking effective interaction. Here we show similar results and conclusions in a relativistic effective chiral model calculation, based on three-light-quark (i.e., two q plus one q¯) local interpolators. To this end we classify the four-quark (three light plus one heavy quark) local interpolators according to their chiral transformation properties and then construct chiral invariant interactions. We evaluate the diagonal matrix elements of the Kobayashi-Kubo-Maskawa ’t Hooft interaction between different interpolating fields and show that the lowest-lying one is always the (antisymmetric) SU(3)F antitriplet belonging to the chiral (3, 3) multiplet. We predict bottom-strange Bs0 and the bottom-nonstrange B0 scalar mesons with equal masses at 5720 MeV, the strange meson being some 100 MeV lower than in most of the quark potential models. We also predict the JP=1+ bottom-nonstrange B1 and the bottom-strange Bs1 meson masses as 5732 MeV and 5765 MeV, respectively, using the Bardeen-Hill-Nowak-Rho-Zahed scalar-vector mass relation.

  14. Dibaryonic states and the SU(3) symmetry

    International Nuclear Information System (INIS)

    The experimental information on dibaryon resonances with and without strangeness is analyzed, with the purpose of finding criteria for their especification as members of SU(3) multiplets formed by six quarks. The identification of a 10 multiplet with J(sup)P =1+ (spin triplet) and a 27 with J(sup)P = 2+ (spin singlet) is suggested. The conventional mass formula is used in this analysis, predicting the masses and decaying properties of several dibaryon states. The possible existence, in the 27, J(sup)P = 2+ representation, of strange states which are stable against strong interactions is discussed, and their experimental search is estimulated. Reactions in which the existence of dibaryon resonances can be detected are discussed, special attention being given to elastic K+d and K-d scattering, for which it is shown that the magnitude of the contributions of dibaryon resonances in intermediate states is of the same order of magnitude as those observed in the differential cross sections. (Author)

  15. Combined analysis of the $\\pi^-p\\rightarrow K^0\\Lambda$, $\\eta n$ reactions in a chiral quark model

    CERN Document Server

    Xiao, Li-Ye; Zhong, Xian-Hui

    2016-01-01

    A combined analysis of the reactions $\\pi^-p\\rightarrow K^0\\Lambda$ and $\\eta n$ is carried out with a chiral quark model. The data in the center-of-mass (c.m.) energy range from threshold up to $W\\simeq 1.8$ GeV are reasonably described. For $\\pi^-p\\rightarrow K^0\\Lambda$, it is found that $N(1535)S_{11}$ and $N(1650)S_{11}$ paly crucial roles near threshold. The $N(1650)S_{11}$ resonance contributes to the reaction through configuration mixing with $N(1535)S_{11}$. The constructive interference between $N(1535)S_{11}$ and $N(1650)S_{11}$ is responsible for the peak structure around threshold in the total cross section. The $n$-pole, $u$- and $t$-channel backgrounds provide significant contributions to the reaction as well. While, for the $\\pi^-p\\rightarrow \\eta n$ process, the "first peak" in the total cross section is dominant by $N(1535)S_{11}$, which has a sizeable destructive interference with $N(1650)S_{11}$. Around $P_\\pi \\simeq $ 1.0 GeV/c ($W\\simeq 1.7$ GeV), there seems to be a small bump structure...

  16. Baryons with Two Heavy Quarks as Solitons

    OpenAIRE

    Bander, Myron; Subbaraman, Anand

    1994-01-01

    Using the chiral soliton model and heavy quark symmetry we study baryons containing two heavy quarks. If there exists a stable (under strong interactions) meson consisting of two heavy quarks and two light ones, then we find that there always exists a state of this meson bound to a chiral soliton and to a chiral anti-soliton, corresponding to a two heavy quark baryon and a baryon containing two heavy anti-quarks and five light quarks, or a ``heptaquark".

  17. Thermodynamics of Constituent Quarks

    OpenAIRE

    Pirner, H. J.; Wachs, M

    1997-01-01

    We investigate the thermal behavior of quarks and antiquarks interacting via a temperature-dependent linear potential. The quarks are constituent quarks with dynamically generated masses from the background linear $\\sigma$-model.We find a transition from a system of bound mesons to a correlated quark gas at the same temperature as the chiral transition temperature.

  18. Chiral phase transition in an extended linear sigma model: initial results

    CERN Document Server

    Wolf, Gy; Szép, Zs

    2014-01-01

    We investigate the scalar meson mass dependence on the chiral phase transition in the framework of an SU(3), (axial)vector meson extended linear sigma model with additional constituent quarks and Polyakov loops. We determine the parameters of the Lagrangian at zero temperature in a hybrid approach, where we treat the mesons at tree-level, while the constituent quarks at 1-loop level. We assume two nonzero scalar condensates and together with the Polyakov-loop variables we determine their temperature dependence according to the 1-loop level field equations.

  19. Effects of (axialvector mesons on the chiral phase transition: initial results

    Directory of Open Access Journals (Sweden)

    Kovács P.

    2014-01-01

    Full Text Available We investigate the effects of (axialvector mesons on the chiral phase transition in the framework of an SU(3, (axialvector meson extended linear sigma model with additional constituent quarks and Polyakov loops. We determine the parameters of the Lagrangian at zero temperature in a hybrid approach, where we treat the mesons at tree-level, while the constituent quarks at 1-loop level. We assume two nonzero scalar condensates and together with the Polyakov-loop variables we determine their temperature dependence according to the 1-loop level field equations.

  20. String formation and chiral symmetry breaking in the heavy-light quark-antiquark system in QCD

    NARCIS (Netherlands)

    Simonov, YA; Tjon, JA

    2000-01-01

    The effective quark Lagrangian is written for a light quark in the field of a static antiquark, explicitly containing field correlators as coefficient functions of products of quark operators. At large N-c the closed system of equations for the gauge-invariant quark Green's function in the field of

  1. Pion scattering and electro-production on nucleons in the resonance region in chiral quark models

    CERN Document Server

    Sirca, Simon; Fiolhais, Manuel; Alberto, Pedro

    2011-01-01

    Pion scattering and electro-production amplitudes have been computed in a coupled-channel framework incorporating quasi-bound quark-model states, based on the Cloudy Bag model. All relevant low-lying nucleon resonances in the P33, P11, and S11 partial waves have been covered, including the Delta(1232), the N*(1440), N*(1535), and N*(1650). Consistent results have been obtained for elastic and inelastic scattering (two-pion, eta-N, and K-Lambda channels), as well as for electro-production. The meson cloud has been shown to play a major role, in particular in electro-magnetic observables in the P33 and P11 channels.

  2. SU(3)F breaking in D → P1P8 and D → P1P1

    International Nuclear Information System (INIS)

    We perform a SU(3) flavor analysis of nonleptonic charm decays to a pseudoscalar octet and singlet and to two pseudoscalar singlets. The analysis includes linear breaking effects caused by different quark masses ms ≠ mu,d.

  3. Renormalized quark-anti-quark free energy

    OpenAIRE

    Zantow, F.; Kaczmarek, O.; Karsch, F.; Petreczky, P.

    2003-01-01

    We present results on the renormalized quark-anti-quark free energy in SU(3) gauge theory at finite temperatures. We discuss results for the singlet, octet and colour averaged free energies and comment on thermal relations which allow to extract separately the potential energy and entropy from the free energy.

  4. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    CERN Document Server

    Aoki, S; Feng, X; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T

    2015-01-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi \\simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy...

  5. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    Science.gov (United States)

    Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.

    2016-02-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.

  6. SU(3) breaking in hyperon transition vector form factors

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [ARC Centre of Excellence in Particle Physics at the Terascale, Adelaide (Australia); Centre for the Subatomic Structure of Matter (CSSM), Adelaide, SA (Australia); Adelaide Univ., SA (Australia). Dept. of Physics; Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-08-15

    We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p{sup 4}) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q{sup 2}=-(M{sub B{sub 1}}-M{sub B{sub 2}}){sup 2}, which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ{sup -}→n and Ξ{sup 0}→Σ{sup +} transition form factors. Hence we determine lattice-informed values of f{sub 1} at the physical point. This work constitutes progress towards the precise determination of vertical stroke V{sub us} vertical stroke from hyperon semileptonic decays.

  7. A novel improved action for SU(3) lattice gauge theory

    OpenAIRE

    Langfeld, Kurt

    2004-01-01

    SU(3) lattice gauge theory is studied by means of an improved action where a $2 \\times 2$ Wilson loop is supplemented to the standard plaquette term. By contrast to earlier studies using a tree level improvement, the prefactor of the $2 \\times 2$ Wilson term is determined by minimizing the breaking of rotational symmetry detected from the static quark-antiquark potential. On coarse lattices, the novel action is superior to the Iwasaki action and comparable with DBW2 action. The scaling behavi...

  8. Top quark forward-backward asymmetry from the 3-3-1 model

    Science.gov (United States)

    Barreto, E. Ramirez; Coutinho, Y. A.; Sá Borges, J.

    2011-03-01

    The forward-backward asymmetry AFB in top quark pair production, measured at the Tevatron, is probably related to the contribution of new particles. The Tevatron result is more than a 2σ deviation from the standard model prediction and motivates the application of alternative models introducing new states. However, as the standard model predictions for the total cross section σtt and invariant mass distribution Mtt for this process are in good agreement with experiments, any alternative model must reproduce these predictions. These models can be placed into two categories: One introduces the s-channel exchange of new vector bosons with chiral couplings to the light quarks and to the top quark, and another relies on the t-channel exchange of particles with large flavor-violating couplings in the quark sector. In this work, we employ a model which introduces both s- and t-channel nonstandard contributions for the top quark pair production in proton-antiproton collisions. We use the minimal version of the SU(3)C⊗SU(3)L⊗U(1)X model (3-3-1 model) that predicts the existence of a new neutral gauge boson, called Z'. This gauge boson has both flavor-changing couplings to up and top quarks and chiral coupling to the light quarks and to the top quark. This very peculiar model coupling can correct the AFB for top quark pair production for two ranges of Z' mass while leading to a cross section and invariant mass distribution quite similar to the standard model ones. This result reinforces the role of the 3-3-1 model for any new physics effect.

  9. Coupled SU(3)-structures and Supersymmetry

    CERN Document Server

    Fino, Anna

    2015-01-01

    We review coupled ${\\rm SU}(3)$-structures, also known in the literature as restricted half-flat structures, in relation to supersymmetry. In particular, we study special classes of examples admitting such structures and the behaviour of flows of ${\\rm SU}(3)$-structures with respect to the coupled condition.

  10. Quark Orbital Angular Momentum in the Baryon

    OpenAIRE

    Song, Xiaotong

    2000-01-01

    Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor $\\kappa$ and the chiral splitting probability $a$ is shown...

  11. SU(3)-flavour breaking in octet baryon masses and axial couplings

    OpenAIRE

    Carrillo-Serrano, Manuel E.; Cloët, Ian C.; Thomas, Anthony W.(CSSM and ARC Centre of Excellence for Particle Physics at the Tera-scale, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia 1 1 http://www.physics.adelaide.edu.au/cssm .)

    2014-01-01

    The lightest baryon octet is studied within a covariant and confining Nambu--Jona-Lasinio model. By solving the relativistic Faddeev equations including scalar and axialvector diquarks, we determine the masses and axial charges for \\Delta S = 0 transitions. For the latter the degree of violation of SU(3) symmetry arising because of the strange spectator quark(s) is found to be up to 10%.

  12. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  13. Partial quenching and chiral symmetry breaking

    OpenAIRE

    Creutz, Michael

    2014-01-01

    Partially quenched chiral perturbation theory assumes that valence quarks propagating on gauge configurations prepared with sea quarks of different masses will form a chiral condensate as the valence quark mass goes to zero. I present a counterexample involving non-degenerate sea quarks where the valence condensate does not form.

  14. Combined analysis of the π-p →K0Λ , η n reactions in a chiral quark model

    Science.gov (United States)

    Xiao, Li-Ye; Ouyang, Fan; Wang, Kai-Lei; Zhong, Xian-Hui

    2016-09-01

    A combined analysis of the reactions π-p →K0Λ and η n is carried out with a chiral quark model. The data in the center-of-mass (c.m.) energy range from threshold up to W ≃1.8 GeV are reasonably described. For π-p →K0Λ , it is found that N (1535 ) S11 and N (1650 ) S11 play crucial roles near threshold. The N (1650 ) S11 resonance contributes to the reaction through configuration mixing with N (1535 ) S11 . The constructive interference between N (1535 ) S11 and N (1650 ) S11 is responsible for the peak structure around threshold in the total cross section. The n -pole, u -, and t -channel backgrounds provide significant contributions to the reaction as well. For the π-p →η n process, the "first peak" in the total cross section is dominated by N (1535 ) S11 , which has a sizeable destructive interference with N (1650 ) S11 . Around Pπ≃ 1.0 GeV/c (W ≃1.7 GeV), there seems to be a small bump structure in the total cross section, which might be explained by the interference between the u channel and N (1650 ) S11 . The N (1520 ) D13 resonance affects the angle distributions of the cross sections notably, although no obvious effects are seen in the total cross section. The role of P -wave state N (1720 ) P13 should be further confirmed by future experiments. If N (1720 ) P13 has a narrow width of Γ ≃120 MeV as found in our previous work by a study of the π0 photoproduction processes, obvious evidence should be seen in the π-p →K0Λ and η n processes as well. Finally, we give our predictions of the s -channel isospin-1/2 resonance contributions to the π N →π N reactions.

  15. The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions

    Science.gov (United States)

    Takahashi, Y.; Eby, P. B.

    1985-01-01

    Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.

  16. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    , to which it is related through a Fierz transformation. Flavor SU(2) and flavor SU(3) quark matter are considered. A second-order phase transition is predicted at densities about 5 times the normal nuclear matter density. It is also found that in flavor SU(3) quark matter, a first-order transition from...

  17. Three particle Poincare states and SU(6) x SU(3) as a classification group for baryons

    International Nuclear Information System (INIS)

    A complete set of democratic quantum numbers is introduced to classify the states of an irreducible unitary representation (IUR) of the Poincare group obtained from the decomposition of the direct products of three I.U.R. Such states are identified with the baryon states constituted of three free relativistic quarks. The transformation from current to constituent quarks is then easily reobtained. Moreover, the group SU(6) x SU(3) appears naturally as a collinear classification group for baryons. Results similar to those of the symmetric harmonic oscillator quark model are obtained

  18. Quark masses without Yukawa hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Fanchiotti, H.; Garcia-Canal, C. [Plata Univ. Nacional, Laboratorio de Fisica Teorica, Dept. de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina); Ponce, W.A. [Antioquia Univ., Instituto de Fisica, Colombia La (Argentina)

    2005-12-15

    A model based on the local gauge group SU(3){sub c}*SU(3){sub L}*U(1){sub X} without particles with exotic electric charges is shown to be able to provide the quark mass spectrum and their mixing, by means of universal see-saw mechanisms, avoiding a hierarchy in the Yukawa coupling constants. (authors)

  19. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  20. Higgs Phenomenology in the Minimal $SU(3)_L\\times U(1)_X$ Model

    CERN Document Server

    Okada, Hiroshi; Orikasa, Yuta; Yagyu, Kei

    2016-01-01

    We investigate the phenomenology of a model based on the $SU(3)_c\\times SU(3)_L\\times U(1)_X$ gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three $SU(3)_L$ triplet Higgs fields, and this corresponds to the minimal form to realize phenomenologically acceptable scenario. After the spontaneous symmetry breaking $SU(3)_L\\times U(1)_X\\to SU(2)_L\\times U(1)_Y$, our Higgs sector effectively becomes that with two $SU(2)_L$ doublet scalar fields, in which the first and the second generation quarks couple to the different Higgs doublet from that couples to the third generation quarks. This structure causes the flavour changing neutral current mediated by Higgs bosons at the tree level. By taking an alignment limit of the mass matrix for the CP-even Higgs bosons, which is naturally realized in the case with the breaking scale of $SU(3)_L\\times U(1)_X$ to be much larger than that of $SU(2)_L\\times U(1)_Y$, we can avoid current constraints from flavour...

  1. Residual Chiral Symmetry Breaking in Domain-Wall Fermions

    International Nuclear Information System (INIS)

    We study the effective quark mass induced by the finite separation of the domain walls in the domain-wall formulation of chiral fermion as the function of the size of the fifth dimension (Ls), the gauge coupling (β) and the physical volume (V). We measure the mass by calculating the small eigenvalues of the hermitian domain-wall Dirac operator (HDWF(m0 = 1.8)) in the topologically-nontrivial quenched SU(3) gauge configurations. We find that the induced quark mass is nearly independent of the physical volume, decays exponentially as a function of Ls, and has a strong dependence on the size of quantum fluctuations controlled by β. The effect of the choice of the lattice gluon action is also studied

  2. Residual Chiral Symmetry Breaking in Domain-Wall Fermions

    International Nuclear Information System (INIS)

    The authors study the effective quark mass induced by the finite separation of the domain walls in the domain-wall formulation of chiral fermion as the function of the size of the fifth dimension ($L-s$), the gauge coupling $beta$ and the physical volume $V$. They measure the mass by calculating the small eigenvalues of the hermitian domain-wall Dirac operator ($H-[rm DWF](m-0))$ in the topologically-nontrivial quenched SU(3) gauge configurations. The authors find that the induced quark mass is nearly independent of the physical volume, decays exponentially as a function of $L-s$, and has a strong dependence on the size of quantum fluctuations controlled by $beta$. The effect of the choice of the lattice gluon action is also studied

  3. Strange magnetic moments of octet baryons under SU(3) breaking

    Institute of Scientific and Technical Information of China (English)

    CAO Lu; WANG Biao; CHEN Hong

    2012-01-01

    Magnetic moments of octet baryons are parameterized to all orders of the flavor SU(3) breaking with the irreducible tensor technique in order to extract the contribution of each flavor quark to the magnetic moments of the octet baryons.The not-yet measured magnetic moment of Σ0 is predicted to be 0.649 μN.Our parameterized forms for the magnetic moments are explicitly flavor-dependent,and hence each flavor component of the magnetic moments can be evaluated directly via the flavor projection operator.It is fouud that the strange magnetic moment of the nucleon is suppressed due to the small isoscalar anomalous magnetic moment of the nucleon.In particular,the strange magnetic form factor of the nucleon turns out to be positive,(G(s)N) (0) =0.428 μN,which is consistent with recent data.

  4. The Polyakov loop and its correlators in higher representations of SU(3) at finite temperature

    OpenAIRE

    Hübner, Kay A.

    2006-01-01

    We have calculated the Polyakov loop in representations D=3,6,8,10,15a,15s,24,27 and diquark and baryonic Polyakov loop correlation functions with fundamental sources in SU(3) pure gauge theory and 2-flavour QCD with staggered quarks and Qbar Q-singlet correlation functions with sources in the fundamental and adjoint representation in SU(3) pure gauge theory. We have tested a new renormalisation procedure for the Polyakov loop and extracted the adjoint Polyakov loop below T_c, binding energy ...

  5. SU(3)simple group model and single top production at the e-γ colliders

    Institute of Scientific and Technical Information of China (English)

    LIU Yao-Bei; WANG Xue-Lei; REN Xiao-Yan; CAO Yong-Hua

    2008-01-01

    In the framework of the SU(3) simple group model,we consider the single top quark production process e-γ→,νebt.We find that the correction effects on the process mainly come from the terms of the tree-level Wqq'couplings.In the reasonable parameter space of the SU(3) simple group model,the deviation of the total production cross section σtot from its SM value is larger than 5%,which might be detected in the future high energy linear e+e- coUider (LC) experiments.

  6. A Nearly Quaternionic Structure on SU(3)

    CERN Document Server

    Macia, Oscar

    2009-01-01

    It is shown that the compact Lie group SU(3) admits an Sp(2)Sp(1)-structure whose distinguished 2-forms $\\omega_1,\\omega_2,\\omega_3$ span a differential ideal. This is achieved by first reducing the structure further to a subgroup isomorphic to SO(3).

  7. Axially symmetric SU(3) gravitating skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora [Maths Division, School of Technology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: ti3@auth.gr; Kleihaus, Burkhard [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)]. E-mail: kleihaus@theorie.physik.uni-oldenburg.de; Zakrzewski, Wojtek [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)]. E-mail: w.j.zakrzewski@durham.ac.uk

    2004-10-21

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [J. Math. Phys. 40 (1999) 6353]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail.

  8. Axially symmetric SU(3) Gravitating Skyrmions

    CERN Document Server

    Ioannidou, T A; Zakrzewski, W J; Ioannidou, Theodora; Kleihaus, Burkhard; Zakrzewski, Wojtek

    2004-01-01

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [1]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail.

  9. Axially symmetric SU(3) gravitating skyrmions

    International Nuclear Information System (INIS)

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [J. Math. Phys. 40 (1999) 6353]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail

  10. Phenomenology of the SU(3)_C \\otimes SU(2)_L \\otimes SU(3)_R \\otimes U(1)_X gauge model

    CERN Document Server

    Dong, P V; Loi, D V; Nhuan, N T; Ngan, N T K

    2016-01-01

    We study the left-right asymmetric model based on SU(3)_C\\otimes SU(2)_L \\otimes SU(3)_R\\otimes U(1)_X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields that the fermion generation number is three, and the tree-level flavor-changing neutral currents arise in both gauge and scalar sectors. Also, it can provide the observed neutrino masses as well as dark matter automatically. Further, we investigate the mass spectrum of the gauge and scalar fields. All the gauge interactions of the fermions and scalars are derived. We examine the tree-level contributions of the new neutral vector, Z'_R, and new neutral scalar, H_2, to flavor-violating neutral meson mixings, say K-\\bar{K}, B_d-\\bar{B}_d, and B_s-\\bar{B}_s, which strongly constrain the new physics scale as well as the elements of the right-handed quark mixing matrices. The bounds for the new physics scale are in agreement with those coming from the \\rho-parameter as we...

  11. How sharp is the chiral crossover phenomenon for realistic meson masses?

    CERN Document Server

    Meyer-Ortmanns, H; Meyer-Ortmanns, Hildegard; Schaefer, Bernd Jochen

    1996-01-01

    The mass dependence of the chiral phase transition is studied in the linear SU(3)\\times SU(3) sigma-model to leading order in a 1/N_f-expansion, N_f denoting the number of flavours. For realistic meson masses we find a smooth crossover between T\\sim181.5 to 192.6~[MeV]. The crossover looks more rapid in the light quark condensate than in thermodynamic quantities like the energy and entropy densities. The change in the light quark condensate in this temperature interval is \\sim~50\\% of the zero-temperature condensate value, while the entropy density increases by (5.5\\pm0.8)\\cdot10^{-3}~[GeV^3]. Since the numerical error is particularly large in this region, we cannot rule out a finite latent heat smaller than 0.2~[GeV/fm^3]. The chiral transition is washed out for an average pseudoscalar meson octet mass of 203~[MeV]. This gives an upper bound on the first-order transition region in the meson mass parameter space. The corresponding ratio of critical to realistic light current quark masses m^{crit}_{u,d}/m_{u,d...

  12. Proton Spin Based On Chiral Dynamics

    OpenAIRE

    Weber, H. J.

    1999-01-01

    Chiral spin fraction models agree with the proton spin data only when the chiral quark-Goldstone boson couplings are pure spinflip. For axial-vector coupling from soft-pion physics this is true for massless quarks but not for constituent quarks. Axial-vector quark-Goldstone boson couplings with {\\bf constituent} quarks are found to be inconsistent with the proton spin data.

  13. Asymmetries of quark sea in nucleon

    OpenAIRE

    Dahiya Harleen

    2014-01-01

    The effects of “quark sea” in determining the flavor structure of the octet baryons have been investigated in the chiral constituent quark model. The chiral constituent quark model is able to qualitatively generate the requisite amount of quark sea and is also known to provide a satisfactory explanation of the proton spin and related issues in the nonperturbative regime. The phenomenological implications of the quark sea asymmetries in the nucleon have been investigated to understand the impo...

  14. Composite Models of Quarks and Leptons.

    Science.gov (United States)

    Geng, Chaoqiang

    1987-09-01

    We review the various constraints on composite models of quarks and leptons. Some dynamical mechanisms for chiral symmetry breaking in chiral preon models are discussed. We have constructed several "realistic candidate" chiral preon models satisfying complementarity between the Higgs and confining phases. The models predict three to four generations of ordinary quarks and leptons.

  15. Duality between quark-quark and quark-antiquark pairing in 1+1 dimensional large N models

    OpenAIRE

    Thies, Michael

    2003-01-01

    We identify a canonical transformation which maps the chiral Gross-Neveu model onto a recently proposed Cooper pair model. Baryon number and axial charge are interchanged. The same physics can be described either as chiral symmetry breaking (quark-antiquark pairing) or as superconductivity (quark-quark pairing).

  16. Finite-temperature study of eight-flavor SU(3) gauge theory

    CERN Document Server

    Schaich, David; Rinaldi, Enrico

    2015-01-01

    We present new lattice investigations of finite-temperature transitions for SU(3) gauge theory with Nf=8 light flavors. Using nHYP-smeared staggered fermions we are able to explore renormalized couplings $g^2 \\lesssim 20$ on lattice volumes as large as $48^3 \\times 24$. Finite-temperature transitions at non-zero fermion mass do not persist in the chiral limit, instead running into a strongly coupled lattice phase as the mass decreases. That is, finite-temperature studies with this lattice action require even larger $N_T > 24$ to directly confirm spontaneous chiral symmetry breaking.

  17. Hadronization in the SU(3) Nambu - Jona-Lasinio model

    CERN Document Server

    Rehberg, P

    1995-01-01

    The hadronization process for quarks combining into two mesons, q\\bar q\\to MM' at temperature T is described within the SU(3) Nambu- Jona-Lasinio model with finite current quark masses. Invariant matrix elements, cross-sections and transition rates are calculated to leading order in a 1/N_c expansion. Four independent classes, u\\bar d, u\\bar s, u\\bar u and s\\bar s\\to hadrons are analysed, and the yield is found to be dominated by pion production. Threshold behaviour is determined by the exothermic or endothermic nature of the processes constituting the hadronization class. A strong suppression of transition rates is found at the pionic Mott temperature T_{M\\pi}=212 MeV, at which the pion becomes a resonant state. The mean time for hadronization is calculated to be 2-4 fm/c near the Mott temperature. The calculation of strangeness changing processes indicates that hadronization accounts for a 1% increase in the absolute value of the kaon to pion ratio at T=150 MeV.

  18. Dynamical symmetry breaking: Exotic quarks and the strong CP problem

    Energy Technology Data Exchange (ETDEWEB)

    Furlong, R.C.

    1988-10-01

    Decuplet quarks (quens) transforming as 10's under SU(3)/sub C/ are shown to be superior to sextet quarks (quixes) in their ability to resolve the Strong CP problem, resulting in composite invisible axions (CIAs). 8 refs.

  19. The Polyakov loop and its correlators in higher representations of SU(3) at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, K.A.

    2006-09-15

    We have calculated the Polyakov loop in representations D=3,6,8,10,15,15',24,27 and diquark and baryonic Polyakov loop correlation functions with fundamental sources in SU(3) pure gauge theory and 2-flavour QCD with staggered quarks and Q anti Q-singlet correlation functions with sources in the fundamental and adjoint representation in SU(3) pure gauge theory. We have tested a new renormalisation procedure for the Polyakov loop and extracted the adjoint Polyakov loop below T{sub c}, binding energy of the gluelump and string breaking distances. Moreover, we could show Casimir scaling for the Polyakov loop in different representations in SU(3) pure gauge theory above T{sub c}. Diquark antitriplet and baryonic singlet free energies are related to the Q anti Q-singlet free energies by the Casimir as well. (orig.)

  20. The Polyakov loop and its correlators in higher representations of SU(3) at finite temperature

    International Nuclear Information System (INIS)

    We have calculated the Polyakov loop in representations D=3,6,8,10,15,15',24,27 and diquark and baryonic Polyakov loop correlation functions with fundamental sources in SU(3) pure gauge theory and 2-flavour QCD with staggered quarks and Q anti Q-singlet correlation functions with sources in the fundamental and adjoint representation in SU(3) pure gauge theory. We have tested a new renormalisation procedure for the Polyakov loop and extracted the adjoint Polyakov loop below Tc, binding energy of the gluelump and string breaking distances. Moreover, we could show Casimir scaling for the Polyakov loop in different representations in SU(3) pure gauge theory above Tc. Diquark antitriplet and baryonic singlet free energies are related to the Q anti Q-singlet free energies by the Casimir as well. (orig.)

  1. Magnetic monopole and confinement/deconfinement phase transition in SU(3) Yang-Mills theory

    CERN Document Server

    Shibata, Akihiro; Kato, Seikou; Shinohara, Toru

    2015-01-01

    We have proposed the non-Abelian dual superconductivity in SU(3) Yang-Mills theory for the mechanism of quark confinement,and we presented the numerical evidences in preceding lattice conferences by using the proposed gauge link decomposition to extract magnetic monopole in the gauge invariant way. In this talk, we focus on the dual Meissner effects in view of the magnetic monopole in SU(3) Yang-Mills theory. We measure the chromoelectric and chromomagnetic flux due to a pair of quark and antiquark source at finite temperature. Then, we measure the correlation function of Polyakov loops and Polyakov loop average at various temperatures, and investigate chromomagnetic monopole current induced by chromo-magnetic flux in both confinement and deconfinement phase. We will discuss the role of the chromoelectric monopole in confinement/deconfinement phase transition.

  2. Discriminating between two reformulations of SU(3) Yang-Mills theory on a lattice

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Akihiro [Computing Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kondo, Kei-Ichi; Shinohara, Toru [Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Kato, Seikou [Fukui National College of Technology, Sabae 916-8507 (Japan)

    2016-01-22

    In order to investigate quark confinement, we give a new reformulation of the SU (N) Yang-Mills theory on a lattice and present the results of the numerical simulations of the SU (3) Yang-Mills theory on a lattice. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the “Abelian” dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc.

  3. Chiral symmetry and lattice fermions

    CERN Document Server

    Creutz, Michael

    2013-01-01

    Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.

  4. Polyakov loop fluctuations in SU(3) lattice gauge theory and an effective gluon potential

    OpenAIRE

    Lo, Pok Man; Friman, Bengt; Kaczmarek, Olaf; Redlich, Krzysztof; Sasaki, Chihiro

    2013-01-01

    We calculate the Polyakov loop susceptibilities in the SU(3) lattice gauge theory using the Symanzik improved gauge action on different-sized lattices. The longitudinal and transverse fluctu- ations of the Polyakov loop, as well as, that of its absolute value are considered. We analyze their properties in relation to the confinement-deconfinement phase transition. We also present results based on simulations of (2+1)-flavor QCD on 32^3 x 8 lattice using Highly Improved Staggered Quark (HISQ) ...

  5. A chiral quark model for meson electro-production in the region of D-wave resonances

    CERN Document Server

    Golli, Bojan

    2013-01-01

    The meson scattering and electroproduction amplitudes in the D13, D33 and D15 partial waves are calculated in a coupled-channel formalism incorporating quasi-bound quark-model states, extending our previous studies of the P11, P33 and S11 partial waves. The vertices of the baryon-meson interaction including the s- and d-wave pions and $\\rho$-mesons, the s-wave $\\eta$-meson, and the $s$- and p-wave $\\sigma$-mesons are determined in the Cloudy Bag Model, with some changes of the parameters to reproduce the widths of the resonances. The helicity amplitudes and the electroproduction amplitudes exhibit consistent behavior in all channels but tend to be too weak compared to the experiment. We discuss possible origins of this discrepancy which arises also in the constituent quark model calculations.

  6. A chiral quark-motivated meson model and the CP violation in K → 3π decays

    International Nuclear Information System (INIS)

    The Nambu-Jona-Lasinio model is introduced as an approximation of the QCD, and in section 2 from this a meson model is derived by means of the functional integration. On the basis of the effective quark model of Vainstain-Shifman-Sacharov, which describes the weak interaction of quarks, weak and electromagnetic meson currents are derived. The so obtained meson model describes strong, weak, and electromagnetic interactions of mesons. In the 3rd section K → 2π, 3π decays are studied. After an analysis of experimental data a prediction on the direct CP violation in charged K → 3π decays is made. Starting from this estimation an experiment for the measurement of the CP asymmetry of the decay K± → π±π0π0 at an existing facility at the accelerator U-70 in Serpukhov is proposed. (orig./HSI)

  7. The chiral magnetic effect in hydrodynamical approach

    OpenAIRE

    Sadofyev, A. V.; Isachenkov, M. V.

    2010-01-01

    In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...

  8. Charged Fermion Masses and Mixing from a SU(3) Family Symmetry Model

    CERN Document Server

    Hernandez-Galeana, Albino

    2016-01-01

    Within the framework of a Beyond Standard Model (BSM) with a local $SU(3)$ family symmetry, we report an updated fit of parameters which account for the known spectrum of quarks and charged lepton masses and the quark mixing in a $4\\times 4$ non-unitary $V_{CKM}$. In this scenario, ordinary heavy fermions, top and bottom quarks and tau lepton, become massive at tree level from Dirac See-saw mechanisms implemented by the introduction of a new set of $SU(2)_L$ weak singlet vector-like fermions, $U,D,E,N$, with $N$ a sterile neutrino. The $N_{L,R}$ sterile neutrinos allow the implementation of a $8\\times 8$ general See-saw Majorana neutrino mass matrix with four massless eigenvalues at tree level. Hence, light fermions, including neutrinos, obtain masses from loop radiative corrections mediated by the massive $SU(3)$ gauge bosons. $SU(3)$ family symmetry is broken spontaneously in two stages, whose hierarchy of scales yield an approximate $SU(2)$ global symmetry associated with the $Z_1, Y_1^\\pm$ gauge boson mas...

  9. Quark matter or new particles?

    Science.gov (United States)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  10. SU(3) flavour breaking and baryon structure

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration

    2013-11-15

    We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.

  11. Reducing democratic type II supergravity on SU(3) x SU(3) structures

    CERN Document Server

    Cassani, Davide

    2008-01-01

    Type II supergravity on backgrounds admitting SU(3) x SU(3) structure and general fluxes is considered. Using the generalized geometry formalism, we study dimensional reductions leading to N=2 gauged supergravity in four dimensions, possibly with tensor multiplets. In particular, a geometric formula for the full N=2 scalar potential is given. Then we implement a truncation ansatz, and derive the complete N=2 bosonic action. While the NSNS contribution is obtained via a direct dimensional reduction, the contribution of the RR sector is computed starting from the democratic formulation and demanding consistency with the reduced equations of motion.

  12. SU(3) breaking corrections to the D, D⁎, B, and B⁎ decay constants

    International Nuclear Information System (INIS)

    We report on a first next-to-next-to-leading order calculation of the decay constants of the D (D⁎) and B (B⁎) mesons using a covariant formulation of chiral perturbation theory. It is shown that, using the state-of-the-art lattice QCD results on fDs/fD as input, one can predict quantitatively the ratios of fDs⁎/fD⁎, fBs/fB, and fBs⁎/fB⁎ taking into account heavy-quark spin-flavor symmetry breaking effects on the relevant low-energy constants. The predicted relations between these ratios, fDs⁎/fD⁎Ds/fD and fBs/fB>fDs/fD, and their light-quark mass dependence should be testable in future lattice QCD simulations, providing a stringent test of our understanding of heavy quark spin-flavor symmetry, chiral symmetry and their breaking patterns.

  13. Chiral symmetry

    CERN Document Server

    Ecker, G

    1999-01-01

    Broken chiral symmetry has become the basis for a unified treatment of hadronic interactions at low energies. After reviewing mechanisms for spontaneous chiral symmetry breaking, I outline the construction of the low--energy effective field theory of the Standard Model called chiral perturbation theory. The loop expansion and the renormalization procedure for this nonrenormalizable quantum field theory are developed. Evidence for the standard scenario with a large quark condensate is presented, in particular from high--statistics lattice calculations of the meson mass spectrum. Elastic pion--pion scattering is discussed as an example of a complete calculation to O(p^6) in the low--energy expansion. The meson--baryon system is the subject of the last lecture. After a short summary of heavy baryon chiral perturbation theory, a recent analysis of pion--nucleon scattering to O(p^3) is reviewed. Finally, I describe some very recent progress in the chiral approach to the nucleon--nucleon interaction.

  14. Study of the conformal region of the SU(3) gauge theory with domain-wall fermions

    CERN Document Server

    Noaki, J; Ishikawa, K-I; Iwasaki, Y; Yoshie, T

    2015-01-01

    We investigate the phase structure of the SU(3) gauge theory with $N_f=8$ by numerical simulations employing the massless Domain-Wall fermions.Our aim is to study directly the massless quark region, since it is the most important region to clarify the properties of conformal theories. When the number of flavor is within the conformal window, it is claimed recently with Wilson quarks that there is the conformal region at the small quark mass region in the parameter space in addition to the confining phase and the deconfining phase. We study the properties of the conformal region investing the spatial Polyakov loops and the temporal meson propagators. Our data imply that there is the conformal region, and a phase transition between the confining phase and the conformal region takes place. These results are consistent with the claim that the conformal window is between $7$ and $16$. Progress reports on other related studies are also presented.

  15. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion; Bosonizacao do modelo de Nambu-Jona-Lasinio SU(3) generalizado na expansao 1/N

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Francisco Antonio Pena

    1995-12-31

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author) 32 refs., 11 figs., 5 tabs.

  16. Chiral phase transition in the vector meson extended linear sigma model

    CERN Document Server

    Kovács, Péter; Wolf, György

    2015-01-01

    In the framework of an SU(3) (axial)vector meson extended linear sigma model with additional constituent quarks and Polyakov loops, we investigate the effects of (axial)vector mesons on the chiral phase transition. The parameters of the Lagrangian are set at zero temperature and we use a hybrid approach where in the effective potential the constituent quarks are treated at one-loop level and all the mesons at tree-level. We have four order parameters, two scalar condensates and two Polyakov loop variables and their temperature and baryochemical potential dependence are determined from the corresponding field equations. We also investigate the changes of the tree-level scalar meson masses in the hot and dense medium.

  17. Simulation of quantum chromodynamics on the lattice with exactly chiral lattice fermions

    Science.gov (United States)

    Aoki, Sinya; Chiu, Ting-Wai; Cossu, Guido; Feng, Xu; Fukaya, Hidenori; Hashimoto, Shoji; Hsieh, Tung-Han; Kaneko, Takashi; Matsufuru, Hideo; Noaki, Jun-Ichi; Onogi, Tetsuya; Shintani, Eigo; Takeda, Kouhei

    2012-09-01

    Numerical simulation of the low-energy dynamics of quarks and gluons is now feasible based on the fundamental theory of strong interaction, i.e. quantum chromodynamics (QCD). With QCD formulated on a 4D hypercubic lattice (called lattice QCD or LQCD), one can simulate the QCD vacuum and hadronic excitations on the vacuum using teraflop-scale supercomputers, which have become available in the last decade. A great deal of work has been done on this subject by many groups around the world; in this article we summarize the work done by the JLQCD and TWQCD collaborations since 2006. These collaborations employ Neuberger's overlap fermion formulation, which preserves the exact chiral and flavor symmetries on the lattice, unlike other lattice fermion formulations. Because of this beautiful property, numerical simulation of the formulation can address fundamental questions on the QCD vacuum, such as the microscopic structure of the quark-antiquark condensate in the chirally broken phase of QCD and its relation to SU(3) gauge field topology. Tests of the chiral effective theory, which is based on the assumption that the chiral symmetry is spontaneously broken in the QCD vacuum, can be performed, including the pion-loop effect test. For many other phenomenological applications, we adopt the all-to-all quark propagator technique, which allows us to compute various correlation functions without substantial extra cost. The benefit of this is not only that the statistical signal is improved but that disconnected quark-loop diagrams can be calculated. Using this method combined with the overlap fermion formulation, we study a wide range of physical quantities that are of both theoretical and phenomenological interest.

  18. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  19. SU(3) colorsingletness, Z(3) symmetry, Polyakov Loop and dynamical recombination

    CERN Document Server

    Islam, Chowdhury Aminul; Mustafa, Munshi G; Ghosh, Sanjay K; Ray, Rajarshi

    2012-01-01

    Based on quantum statistical mechanics we show that the SU(3) colorsinglet ensemble of a quark-gluon gas exhibits a Z(3) symmetry through the normaized character in fundamental representation and also becomes equivalent, within a stationary point approximation, to the ensemble given by Polyakov Loop. The probability of the normalized character in SU(3) is found to be maximum at a particular value exhibiting a long range color correlation. This clearly indicates a transition from a color correlated to uncorrelated phase or vise-versa. A dynamical recombination of ionized Z(3) color charges to a color singlet Z(3) symmetric confined phase is evident along with a lower bound that originates from an exchange of a pair of massive magnetic gluons between two Polyakov Loops.

  20. $SU(3)_{F}$ Gauge Family Model and New Symmetry Breaking Scale From FCNC Processes

    CERN Document Server

    Bao, Shou-Shan; Wu, Yue-Liang

    2015-01-01

    Based on the $SU(3)_{F}$ gauge family symmetry model which was proposed to explain the observed mass and mixing pattern of neutrinos, we investigate the symmetry breaking, the mixing pattern in quark and lepton sectors, and the contribution of the new gauge bosons to some flavor changing neutral currents (FCNC) processes at low energy. With the current data of the mass differences in the neutral pseudo-scalar $P^{0}-\\bar{P}^{0}$ systems, we find that the $SU(3)_{F}$ symmetry breaking scale can be as low as 300TeV and the mass of the lightest gauge boson be about $100$TeV. Other FCNC processes, such as the lepton flavor number violation process $\\mu^{-}\\rightarrow e^{-}e^{+}e^{-}$ and the semi-leptonic rare decay $K\\rightarrow \\pi \\bar{\

  1. Overlap Quark Propagator in Coulomb Gauge QCD

    CERN Document Server

    Mercado, Ydalia Delgado; Schröck, Mario

    2014-01-01

    The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.

  2. Chiral Odd GPDs

    Directory of Open Access Journals (Sweden)

    Goldstein Gary R.

    2015-01-01

    Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.

  3. Analysis on B→VV with the Flavour SU (3) Symmetry

    Institute of Scientific and Technical Information of China (English)

    LIU Shao-Min; JIN Hong-Ying; LI Xue-Qian

    2008-01-01

    It is noted that the rescattering and annihilation effects are significant in the penguin-dominant B→VV decays. In this work, we suggest to use a unique operator at the quark level to describe all the rescattering and the penguin-induced annihilation effects in B→φK*, and the coefficient of the operator depends on the polarizations of the produced mesons. By the flavour SU(3) symmetry, we apply the same scenario to all the penguin-dominant B→VV modes.

  4. Phase transition from hadronic matter to quark matter

    OpenAIRE

    Wang, P.; Thomas, A W; Williams, A. G.

    2006-01-01

    We study the phase transition from nuclear matter to quark matter within the SU(3) quark mean field model and NJL model. The SU(3) quark mean field model is used to give the equation of state for nuclear matter, while the equation of state for color superconducting quark matter is calculated within the NJL model. It is found that at low temperature, the phase transition from nuclear to color superconducting quark matter will take place when the density is of order 2.5$\\rho_0$ - 5$\\rho_0$. At ...

  5. A note on Quarks and numbers theory

    OpenAIRE

    Hage-Hassan, Mehdi

    2013-01-01

    We express the basis vectors of Cartan fundamental representations of unitary groups by binary numbers. We determine the expression of Gel'fand basis of SU (3) based on the usual subatomic quarks notations and we represent it by binary numbers. By analogy with the mesons and quarks we find a new property of prime numbers.

  6. On some properties of SU(3) Fusion Coefficients

    CERN Document Server

    Coquereaux, Robert

    2016-01-01

    Three aspects of the SU(3) fusion coefficients are revisited: the generating polynomials of fusion coefficients are written explicitly; some curious identities generalizing the classical Freudenthal-de Vries formula are derived; and the properties of the fusion coefficients under conjugation of one of the factors, previously analysed in the classical case, are extended to the affine algebra of su(3) at finite level.

  7. Non-Abelian dual Meissner effect and confinement/deconfinement phase transition in SU(3) Yang-Mills theory

    CERN Document Server

    Shibata, Akihiro; Kato, Seikou; Shinohara, Toru

    2014-01-01

    The dual superconductivity is a promising mechanism for quark confinement. We proposed the non-Abelian dual superconductivity picture for SU(3) Yang-Mills theory, and demonstrated the restricted field dominance (called conventionally "Abelian" dominance), and non-Abelian magnetic monopole dominance in the string tension. In the last conference, we have demonstrated by measuring the chromoelectric flux that the non-Abelian dual Meissner effect exists and determined that the dual superconductivity for SU(3) case is of type I, which is in sharp contrast to the SU(2) case: the border of type I and type II. In this talk, we focus on the confinement/deconfinemen phase transition and the non-Abelian dual superconductivity at finite temperature: We measure the chromoelectric flux between a pair of static quark and antiquark at finite temperature, and investigate its relevance to the phase transition and the non-Abelian dual Meissner effect.

  8. ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ, M.

    2005-07-25

    With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.

  9. Lattice QCD thermodynamics with Wilson quarks

    OpenAIRE

    Ejiri, Shinji

    2007-01-01

    We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.

  10. Hyperon polarization in the constituent quark model

    International Nuclear Information System (INIS)

    A mechanism for hyperon polarization in the inclusive production is considered. The main role belongs to the orbital angular momentum and polarization of strange quark-antiquark pairs in the internal structure of constituent quarks. The nonperturbative hadron structure is based on the results of chiral quark models

  11. Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics

    CERN Document Server

    Ruggieri, M; Chernodub, M

    2016-01-01

    We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.

  12. Chiral Baryon with Quantized Pions

    CERN Document Server

    McNeil, J A

    1993-01-01

    We study a hybrid chiral model for the nucleon based on the linear sigma model with explicit quarks. We solve the model using a Fock-space configuration consisting of three quarks plus three quarks and a pion as the ground state ansatz in place of the ``hedgehog'' ansatz. We minimize the expectation value of the chiral hamiltonian in this ground state configuration and solve the resulting equations for nucleon quantum numbers. We calculate the canonical set of nucleon observables and compare with previous work.

  13. Quark Masses and Renormalization Constants from Quark Propagator and 3-point Functions

    OpenAIRE

    Becirevic, D.; Lubicz, V.; Martinelli, G.; Testa, M.(INFN Laboratori Nazionali di Frascati, Frascati, Italy)

    1999-01-01

    We have computed the light and strange quark masses and the renormalization constants of the quark bilinear operators, by studying the large-p^2 behaviour of the lattice quark propagator and 3-point functions. The calculation is non-perturbatively improved, at O(a), in the chiral limit. The method used to compute the quark masses has never been applied so far, and it does not require an explicit determination of the quark mass renormalization constant.

  14. General Majorana Neutrino Mass Matrix from a Low Energy SU(3) Family Symmetry with Sterile Neutrinos

    CERN Document Server

    Hernandez-Galeana, Albino

    2014-01-01

    Within the framework of a local SU(3) family symmetry model, we report a general analysis of the mechanism for neutrino mass generation and mixing, including light sterile neutrinos. In this scenario, ordinary heavy fermions, top and bottom quarks and tau lepton, become massive at tree level from Dirac See-saw mechanisms implemented by the introduction of a new set of $SU(2)_L$ weak singlet vector-like fermions, U,D,E,N, with N a sterile neutrino. Right-handed and the $N_{L,R}$ sterile neutrinos allow the implementation of a 8x8 general Majorana neutrino mass matrix with four or five massless neutrinos at tree level. Hence, light fermions, including light neutrinos get masses from radiative corrections mediated by the massive SU(3) gauge bosons. We report the corresponding Majorana neutrino mass matrix up to one loop. Previous numerical analysis of the free parameters show out solutions for quarks and charged lepton masses within a parameter space region where the vector-like fermion masses $M_U, M_D, M_E$, a...

  15. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Directory of Open Access Journals (Sweden)

    Tomoya Hayata

    2015-05-01

    Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  16. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-05-11

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  17. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Science.gov (United States)

    Hayata, Tomoya; Yamamoto, Arata

    2015-05-01

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  18. Skyrmions from SU(3) harmonic maps and their quantization

    CERN Document Server

    Kopeliovich, V B; Zakrzewski, W J

    2000-01-01

    Static properties of SU(3) multiskyrmions with baryon number up to 6(classical masses and momenta of inertia) are estimated. The calculations arebased on the recently suggested generalization of the SU(2) rational mapansaetze applied to the SU(3) model. Both SU(2) embedded skyrmions and genuineSU(3) solutions are considered, and it is shown that although, at the classicallevel, the energy of embeddings is lower, the quantum corrections can alterthis conclusion. This correction to the energy of lowest state, bilinear in theWess-Zumino (WZ) term, is presented for the most general case as a convolutionof the inverse tensor of inertia and the components of the WZ-term.

  19. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  20. The baryon axial current in large $N_c$ chiral perturbation theory

    CERN Document Server

    Hernandez-Ruiz, Maria A

    2014-01-01

    In this thesis we calculate the baryon axial current within the combined framework of the $1/N_c$ expansion and chiral perturbation theory, where $N_c$ is the number of colors. This calculation shall consider Feynman diagrams to order of one-loop, octet and decuplet intermediaries states. We obtain corrections due to one-loop and perturbative SU(3) symmetry breaking. The first corrections come from Feynman diagrams, then talk about a broken chiral symmetry in the implicit limit $m_q \\rightarrow 0$, where $m_q$ is the quark mass and the second corrections are obtained by ignoring isospin breaking and in that case the SU(3) symmetry breaking a first-order perturbation is included, leading an explicit break symmetry. The matrix elements of the spatial components of the axial operator between the states of the spin flavor symmetry, give the typical values of the axial vector coupling. For the baryon octet, links axial vector are $g_A$, just as they are defined in experiments of baryon semileptonic decays, where $...

  1. Critical endline of the finite temperature phase transition for 2+1 flavor QCD around the SU(3)-flavor symmetric point

    CERN Document Server

    Kuramashi, Yoshinobu; Takeda, Shinji; Ukawa, Akira

    2016-01-01

    We investigate the critical endline of the finite temperature phase transition of QCD around the SU(3)-flavor symmetric point at zero chemical potential. We employ the renormalization-group improved Iwasaki gauge action and non-perturbatively $O(a)$-improved Wilson-clover fermion action. The critical endline is determined by using the intersection point of kurtosis, employing the multi-parameter, multi-ensemble reweighting method to calculate observables off the SU(3)-symmetric point, at the temporal size $N_{\\rm T}$=6 and lattice spacing as low as $a \\approx 0.19$ fm. We confirm that the slope of the critical endline takes the value of $-2$, and find that the second derivative is positive, at the SU(3)-flavor symmetric point on the Columbia plot parametrized with the strange quark mass $m_s$ and degenerated up-down quark mass $m_{\\rm l}$.

  2. Test of SU(3) Symmetry in Hyperon Semileptonic Decays

    CERN Document Server

    Pham, T N

    2013-01-01

    Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann Okubo(GMO) baryon mass formula which is satisfied to a few percents and provides evidence for SU(3) symmetry breaking in the divergence of the vector current matrix element. In this paper, we shall present a similar GMO relation for the hyperon semileptonic decay axial vector form factors. Using these relations and the measured axial vector current to vector current form factor ratios, we show that SU(3) symmetry breaking in hyperon semileptonic decays is of 5-11%.

  3. Test of SU(3) Symmetry in Hyperon Semileptonic Decays

    CERN Document Server

    Pham, T N

    2014-01-01

    Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann--Okubo (GMO) baryon mass formula which is satisfied to a few percents, showing evidence for a small SU(3) symmetry breaking effect in the GMO mass formula. In this talk, I would like to present a similar GMO relation obtained in a recent work for hyperon semileptonic decay axial vector current matrix elements. Using these generalized GMO relations for the measured axial vector current to vector current form factor ratios, it is shown that SU(3) symmetry breaking in hyperon semileptonic decays is of $5-11%$ and confirms the validity of the Cabibbo model for hyperon semi-leptonic decays.

  4. Soliton Solution of SU(3) Gauge Fields at Finite Temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan

    2005-01-01

    @@ Starting from a soliton model of SU(3) gauge fields, we investigate the behaviour of the model at finite temperature. it is found that colour confinement at zero temperature can be melted away under high temperatures.

  5. II. The mass gap and solution of the quark confinement problem in QCD

    OpenAIRE

    Gogokhia, V.

    2007-01-01

    We have investigated a closed system of equations for the quark propagator, obtained earlier within our general approach to QCD at low energies. It implies quark confinement (the quark propagator has no pole, indeed), as well as the dynamical breakdown of chiral symmetry (a chiral symmetry preserving solution is forbidded). This system can be solved exactly in the chiral limit. We have established the space of the smooth test functions (consisting of the Green's functions for the quark propag...

  6. Thermodynamics and higher order moments in SU(3) linear $\\sigma$-model with gluonic quasi-particles

    CERN Document Server

    Tawfik, Abdel Nasser

    2014-01-01

    In framework of linear $\\sigma$-model (LSM) with three quark flavors, the chiral phase-diagram at finite temperature and density is investigated. At temperatures higher than the critical temperature ($ T_c $), we added to LSM the gluonic sector from the quasi-particle model (QPM), which assumes that the interacting gluons in the strongly interacting matter, the quark-gluon plasma (QGP), are phenomenologically the same as non-interacting massive quasi-particles. The dependence of the chiral condensates of strange and non-strange quarks on temperature and chemical potential is analysed. Then, we have calculated the thermodynamics in the new approach (combination of LSM and QPM). Confronting the results with recent lattice QCD simulations shows an excellent agreement in almost all thermodynamic quantities. The first and second order moments of particle multiplicity are studied in dependence on the chemical potential but at fixed temperature and on the chemical potential but at fixed temperature. These are implem...

  7. Quark and pion effective couplings from polarization effects

    CERN Document Server

    Braghin, Fabio L

    2016-01-01

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks. Within a longwavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant pion self interaction terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found correspondin...

  8. Propagators and Masses of Light Quarks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; ZHU Ji-Zhen; MA Wei-Xing

    2003-01-01

    Based on Dyson-Schwinger equations in "rainbow" approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.

  9. Propagators and Masses of Light Quarks

    Institute of Scientific and Technical Information of China (English)

    ZHOULi-Juan; ZHUJi-Zhen; MAWei-Xing

    2003-01-01

    Based on Dyson-Schwinger equations in “rainbow” approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.

  10. Neutrino emissivities in 2SC color-superconducting quark matter

    OpenAIRE

    Berdermann, J.

    2007-01-01

    The phase structure and equation of state for two-flavor quark matter under compact star constraints is studied within a nonlocal chiral quark model. Chiral symmetry breaking leads to rather large, density dependent quark masses at the phase transition to quark matter. The influence of diquark pairing gaps and quark masses on density dependent emissivities for the direct URCA is discussed. Since m_u>m_d, the direct URCA process due to quark masses cannot occur. We present cooling curves for m...

  11. Quark-hadron phase structure and QCD equations of state in vanishing and finite magnetic field

    CERN Document Server

    Tawfik, Abdel Nasser; Hussein, M T

    2016-01-01

    In characterizing the quark-hadron phase structure, determining various thermodynamic quantities and investigating their temperature dependencies on vanishing and finite magnetic field, SU(3) Polyakov linear-sigma model (PLSM) is utilized. The dependence of the chiral order-parameter on vanishing and finite magnetic field is calculated in mean-field approximation. In a wide range of temperatures and magnetic field strengths, the thermodynamic observables including trace anomaly, speed of sound squared, entropy density, specific heat and magnetization are presented. An excellent agreement is found when these are confronted to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous result that the transition temperature is reduced with magnetic field. Furthermore, the temperature dependence of magnetization verifies the conclusion that the QCD matter has paramagnetic properties near and far above the critical temperature. The excellent agreement with recent lattice ...

  12. Small eigenvalues of the SU(3) Dirac operator on the lattice and in Random Matrix Theory

    CERN Document Server

    Göckeler, M; Rakow, P E L; Schäfer, A; Wettig, T

    1999-01-01

    We have calculated complete spectra of the staggered Dirac operator on the lattice in quenched SU(3) gauge theory for \\beta = 5.4 and various lattice sizes. The microscopic spectral density, the distribution of the smallest eigenvalue, and the two-point spectral correlation function are analyzed. We find the expected agreement of the lattice data with universal predictions of the chiral unitary ensemble of random matrix theory up to a certain energy scale, the Thouless energy. The deviations from the universal predictions are determined using the disconnected scalar susceptibility. We find that the Thouless energy scales with the lattice size as expected from theoretical arguments making use of the Gell-Mann--Oakes--Renner relation.

  13. Wide scalar gluonium and the quark-antiquark scalar nonet

    International Nuclear Information System (INIS)

    The couplings of scalar gluonium as well as quark-antiquark scalar nonet states to the pseudoscalar mesons are discussed on the basis of the low-energy theorems of broken chiral symmetry and scale invariance implemented using phenomenological Lagrangian. Mixing between pure gluonium σ and the SU(3)F singlet quarkonium S0 is considered. Taking for the mases of S0 and σ the values based on estimates of the quark model and of recent QCD lattice calculations, respectively, and using the ''standard'' values of the gluon condensate, the mixture of S0 and σ in the physical states G and ε is predicted to be approximately half-and-half. G is predicted to have properties consistent with the F0(1590) meson, while ε is predicted to be the wide effective gluonium state below 1 GeV. On this basis it is suggested that a possible consistent description of the whole scalar qq-bar nonet. The picture contains S*(975) neither as qq-bar nor as qq state and thus still more exotic interpretation of the S*(975) effect is supported

  14. Simulations with different lattice Dirac operators for valence and sea quarks

    OpenAIRE

    Baer, O.; Rupak, G.; Shoresh, N

    2002-01-01

    We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a "mixed" action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence quarks. The local Symanzik action for this mixed theory is derived t...

  15. SU(3) symmetry and scissors mode vibrations in nuclei

    CERN Document Server

    Sun Yang; Bhatt, K; Guidry, M

    2002-01-01

    We show that a nearly perfect SU(3) symmetry emerges from an extended projected shell model. Starting from a deformed potential we construct separate bases for neutron and proton collective rotational states by exact angular momentum projection. These rotational states are then coupled by diagonalizing a residual pairing plus quadrupole interaction. The states obtained exhibit a one-to-one correspondence with an SU(3) spectrum up to high angular momentum and excitation, and their wave functions have a near-maximal overlap with the SU(3) states. They can also be classified as rotational bands built on spin-1 Planck constant phonon excitations, which correspond to a geometrical scissors mode and its generalizations. This work is a direct demonstration that numerical angular momentum projection theory extends the Elliott's original idea to heavy nuclear systems.

  16. Spectrum of heavy baryons in the quark model

    CERN Document Server

    Yoshida, Tetsuya; Hosaka, Atsushi; Oka, Makoto; Sadato, Katsunori

    2015-01-01

    Single- and double- heavy baryons are studied in the constituent quark model. The model Hamiltonian is chosen as a standard one with two exceptions : (1) The color-Coulomb term depend on quark masses, and (2) an antisymmetric $LS$ force is introduced. Model parameters are fixed by the strange baryon spectra, $\\Lambda$ and $\\Sigma$ baryons. The masses of the observed charmed and bottomed baryons are, then, fairly well reproduced. Our focus is on the low-lying negative-parity states, in which the heavy baryons show specific excitation modes reflecting the mass differences of heavy and light quarks. By changing quark masses from the SU(3) limit to the strange quark mass, further to the charm and bottom quark masses, we demonstrate that the spectra change from the SU(3) symmetry patterns to the heavy quark symmetry ones.

  17. Personal recollections on chiral symmetry breaking

    Science.gov (United States)

    Kobayashi, Makoto

    2016-07-01

    The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.

  18. SU(2) Higher-order effective quark interactions from polarization

    Science.gov (United States)

    Braghin, Fábio L.

    2016-10-01

    Higher order quark effective interactions are found for SU(2) flavor by departing from a non-local quark-quark interaction. By integrating out a component of the quark field, the determinant is expanded in chirally symmetric and symmetry breaking effective interactions up to the fifth order in the quark bilinears. The resulting coupling constants are resolved in the leading order of the longwavelength limit and exact numerical ratios between several of these coupling constants are obtained in the large quark mass limit. In this level, chiral invariant interactions only show up in even powers of the quark bilinears, i.e. O(ψ bar ψ) 2 n (n = 1 , 2 , 3 , . .), whereas (explicit) chiral symmetry breaking terms emerge as O(ψ bar ψ) n being always proportional to some power of the Lagrangian quark mass.

  19. Variational Calculation in SU(3) Lattice Gauge Theory

    Institute of Scientific and Technical Information of China (English)

    YANG Chun; ZHANG Qi-Ren; GAO Chun-Yuan

    2001-01-01

    Using the Hamiltonian lattice gauge theory, we perform some variational calculations to obtain the ground-state energy of SU(3) gauge field and scalar (0++) glueball mass. The agreement of our data with the strong and weak expansion results in the corresponding limits indicates that this method can provide us with reliable information in the most interesting medium region. The trial wavefunction used in our variational method is also proven to be a good first approximation of the ground-state of the SU(3) gauge field. Upgrading this function according to correlations of adjacent plaquettes may mean better results.

  20. One dimensional SU(3) bosons with $\\delta$ function interaction

    OpenAIRE

    Li, You-Quan; Gu, Shi-Jian; Ying, Zu-Jian

    2003-01-01

    In this paper we solve one dimensional SU(3) bosons with repulsive $\\delta$-function interaction by means of Bethe ansatz method. The features of ground state and low-lying excited states are studied by both numerical and analytic methods. We show that the ground state is a SU(3) color ferromagnetic state. The configurations of quantum numbers for the ground state are given explicitly. For finite $N$ system the spectra of low-lying excitations and the dispersion relations of four possible ele...

  1. A Model of Fermion Masses and Flavor Mixings with Family Symmetry $SU(3)\\otimes U(1)$

    CERN Document Server

    Yang, Wei-Min; Zhong, Jin-Jin

    2011-01-01

    The family symmetry $SU(3)\\otimes U(1)$ is proposed to solve flavor problems about fermion masses and flavor mixings. It's breaking is implemented by some flavon fields at the high-energy scale. In addition a discrete group $Z_{2}$ is introduced to generate tiny neutrino masses, which is broken by a real singlet scalar field at the middle-energy scale. The low-energy effective theory is elegantly obtained after all of super-heavy fermions are integrated out and decoupling. All the fermion mass matrices are regularly characterized by four fundamental matrices and thirteen parameters. The model can perfectly fit and account for all the current experimental data about the fermion masses and flavor mixings, in particular, it finely predicts the first generation quark masses and the values of $\\theta^{\\,l}_{13}$ and $J_{CP}^{\\,l}$ in neutrino physics. All of the results are promising to be tested in the future experiments.

  2. Phenomenological aspects of a left-right model based on SU(3)

    Energy Technology Data Exchange (ETDEWEB)

    Doas, Alex G.; Nishi, Celso C. [Universidade Federal do ABC (UFABC), SP (Brazil)

    2011-07-01

    Full text: Motivated by the problem of explaining the observed maximal parity violation in the electroweak interactions, we develop a model based on the SU(3){sub L} x SU(3){sub R} x U(1){sub X} gauge symmetry, where anomalies cancellation restricts the number of families is restricted to be a multiple of three. Left-right symmetry is fully realized in the model and the standard model arises in the low energy limit. The fermionic representation content has, besides standard model fields, nine additional neutrinos which could be linked with problems like neutrino oscillation, warm dark matter and baryogenesis; six new quarks which could show up at the TeV; and also new gauge bosons whose production and associated effects observed in colliders shall indicate the parity restoration. Our focus will be mainly on the spontaneous symmetry breakdown patterns leading to a compatible scenario for particle interactions with the well tested standard model. In order to break the symmetries we take into account a set of scalar fields representation content composed by: two sextets and two bi-triplets. These fields are sufficient to implement a successful mass generation mechanisms, furnishing also a consistent mixing among the fermions. We discuss the main phenomenological issues of the model. (author)

  3. The Economical SU(3C⊗SU(3L⊗U(1X Model

    Directory of Open Access Journals (Sweden)

    P. V. Dong

    2008-08-01

    Full Text Available The SU(3C⊗SU(3L⊗U(1X gauge model with minimal scalar sector, two Higgs triplets, is presented in detail. One of the vacuum expectation values u is a source of lepton-number violations and a reason for mixing among charged gauge bosons—the standard model W± and the bilepton gauge bosons Y±, as well as among the neutral non-Hermitian bilepton X0 and neutral gauge bosons—the Z and the new Z′. An exact diagonalization of the neutral gauge boson sector is derived, and bilepton mass splitting is also given. Because of these mixings, the lepton-number violating interactions exist in both charged and neutral gauge boson sectors. Constraints on vacuum expectation values of the model are estimated and u≃𝒪(1 GeV, v≃vweak=246 GeV, and ω≃𝒪(1 TeV. In this model, there are three physical scalars, two neutral and one charged, and eight Goldstone bosons—the needed number for massive gauge bosons. The minimal scalar sector can provide all fermions including quarks and neutrinos consistent masses in which some of them require one-loop radiative corrections.

  4. Instanton vacuum at finite density of quark matter

    OpenAIRE

    Molodtsov, S. V.; Zinovjev, G. M.

    2002-01-01

    We study light quark interactions in the instanton liquid at finite quark/baryon number density analyzing chiral and diquark condensates and investigate the behaviors of quark dynamical mass and both condensates together with instanton liquid density as a function of quark chemical potential. We conclude the quark impact (estimated in the tadpole approximation) on the instanton liquid could shift color superconducting phase transition to higher values of the chemical potential bringing critic...

  5. Extended Quark Potential Model From Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENGWei-Zhen; CHENXiao-Lin; 等

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approximation.The effective quark interaction preserves the important QCD properties-chiral symmetry and confinement simultaneously.A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quark potential model.

  6. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  7. Topological susceptibility in the SU(3) gauge theory

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Giusti, Leonardo; Pica, Claudio

    2004-01-01

    We compute the topological susceptibility for the SU(3) Yang--Mills theory by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to chi=(191 +/- 5 MeV)^4 if F_K is used to set...

  8. Elementary results for the fundamental representation of SU(3)

    CERN Document Server

    Curtright, Thomas L

    2015-01-01

    A general group element for the fundamental representation of SU(3) is expressed as a second order polynomial in the hermitian generating matrix H, with coefficients consisting of elementary trigonometric functions dependent on the sole invariant det(H), in addition to the group parameter $theta$.

  9. Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.

  10. Unexpected manifestation of quark condensation

    Energy Technology Data Exchange (ETDEWEB)

    Zinovjev, G. M., E-mail: Gennady.Zinovjev@cern.ch [National Academy of Sciences of Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine); Molodtsov, S. V. [Joint Institute for Nuclear Research (Russian Federation)

    2015-05-15

    A comparative analysis of some quark ensembles governed by a four-fermion interaction is performed. Arguments in support of the statement that the presence of a gas-liquid phase transition is a feature peculiar to them are adduced. The instability of small quark droplets is discussed and is attributed to the formation of a chiral soliton. The stability of baryon matter is due to a mixed phase of the vacuum and baryon matter.

  11. Quark-Resonance model

    OpenAIRE

    Pallante, E.; R. Petronzio(INFN RM2)

    1994-01-01

    We construct an effective Lagrangian for low energy hadronic interactions through an infinite expansion in inverse powers of the low energy cutoff Λχ of all possible chiral invariant non-renormalizable interactions between quarks and mesons degrees of freedom arising from the bosonization of a general Nambu-Jona Lasinio type Lagrangian including all multiquark effective interactions. We restrict our analysis to the leading terms in the 1/Nc expansion and to the divergent part of the resonan...

  12. Quenched QCD near the chiral limit

    CERN Document Server

    Göckeler, M; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G

    2000-01-01

    A numerical study of quenched QCD for light quarks is presented using O(a)improved fermions. Particular attention is paid to the possible existence anddetermination of quenched chiral logarithms. A `safe' region to use for chiralextrapolations appears to be at and above the strange quark mass.

  13. Magnetic properties in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2016-01-01

    We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.

  14. SU(2) higher-order effective quark interactions from polarization

    CERN Document Server

    Braghin, Fábio L

    2016-01-01

    Higher order quark effective interactions are found for SU(2) flavor by departing from a non local quark-quark interaction. By integrating out a component of the quark field, the determinant is expanded in chirally symmetric and symmetry breaking effective interactions up to the fifh order in the quark bilinears. The resulting coupling constants are resolved in the leading order of the longwavelength limit and exact numerical ratios between several of these coupling constants are obtained in the large quark mass limit. In this level, chiral invariant interactions only show up in even powers of the quark bilinears, i.e. ${\\cal O}(\\bpsi \\psi)^{2 n}$ ($n=1,2,3,..$), and chiral symmetry breaking terms emerge as ${\\cal O}(\\bpsi \\psi)^{n}$.

  15. Light-quark, heavy-quark systems: An update

    International Nuclear Information System (INIS)

    The author reviews many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorm, he describes striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of |Bcb|. He discusses factorization and compares with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. He compiles many interesting results and discuss the validity of the calculations

  16. Octet-baryon axial-vector charges and SU(3)-breaking effects in the semileptonic hyperon decays

    CERN Document Server

    Ledwig, T; Geng, L S; Vacas, M J Vicente

    2014-01-01

    The octet-baryon axial-vector charges and the g1/f1 ratios measured in the semileptonic hyperon decays are studied up to O(p^3) using the covariant baryon chiral perturbation theory with explicit decuplet contributions. We clarify the role of different low-energy constants and find a good convergence for the chiral expansion of the axial-vector charges of the baryon octet, g1(0), with O(p^3) corrections typically around 20% of the leading ones. This is a consequence of strong cancellations between different next-to-leading order terms. We show that considering only non-analytic terms is not enough and that analytic terms appearing at the same chiral order play an important role in this description. The same effects still hold for the chiral extrapolation of the axial-vector charges and result in a rather mild quark-mass dependence. As a result, we report a determination of the leading order chiral couplings, D=0.623(61)(17) and F=0.441(47)(2), as obtained from a completely consistent chiral analysis up to O(p...

  17. Unifying Nucleon and Quark Dynamics at Finite Baryon Number Density

    OpenAIRE

    Meyer, J.; Schwenzer, K.; Pirner, H. -J.

    1999-01-01

    We present a model of baryonic matter which contains free constituent quarks in addition to bound constituent quarks in nucleons. In addition to the common linear sigma-model we include the exchange of vector-mesons. The percentage of free quarks increases with baryon density but the nucleons resist a restoration of chiral symmetry.

  18. Heterotic domain wall solutions and SU(3) structure manifolds

    CERN Document Server

    Gray, James; Lust, Dieter

    2012-01-01

    We examine compactifications of heterotic string theory on manifolds with SU(3) structure. In particular, we study N = 1/2 domain wall solutions which correspond to the perturbative vacua of the 4D, N =1 supersymmetric theories associated to these compactifications. We extend work which has appeared previously in the literature in two important regards. Firstly, we include two additional fluxes which have been, heretofore, omitted in the general analysis of this situation. This allows for solutions with more general torsion classes than have previously been found. Secondly, we provide explicit solutions for the fluxes as a function of the torsion classes. These solutions are particularly useful in deciding whether equations such as the Bianchi identities can be solved, in addition to the Killing spinor equations themselves. Our work can be used to straightforwardly decide whether any given SU(3) structure on a six-dimensional manifold is associated with a solution to heterotic string theory. To illustrate how...

  19. Quark Matter in a Strong Magnetic Background

    CERN Document Server

    Gatto, Raoul

    2012-01-01

    In this chapter, we discuss several aspects of the theory of strong interactions in presence of a strong magnetic background. In particular, we summarize our results on the effect of the magnetic background on chiral symmetry restoration and deconfinement at finite temperature. Moreover, we compute the magnetic susceptibility of the chiral condensate and the quark polarization at zero temperature. Our theoretical framework is given by chiral models: the Nambu-Jona-Lasinio (NJL), the Polyakov improved NJL (or PNJL) and the Quark-Meson (QM) models. We also compare our results with the ones obtained by other groups.

  20. An algebraic method for solving the SU(3) Gauss law

    CERN Document Server

    Salmela, A

    2003-01-01

    A generalisation of existing SU(2) results is obtained. In particular, the source-free Gauss law for SU(3)-valued gauge fields is solved using a non-Abelian analogue of the Poincare lemma. When sources are present, the colour-electric field is divided into two parts in a way similar to the Hodge decomposition. Singularities due to coinciding eigenvalues of the colour-magnetic field are also analysed.

  1. Using Wilson flow to study the SU(3) deconfinement transition

    CERN Document Server

    Datta, Saumen; Lytle, Andrew

    2015-01-01

    We explore the use of Wilson flow to study the deconfinement transition in SU(3) gauge theory. We use the flowed Polyakov loop as a renormalized order parameter for the transition, and use it to renormalize the Polyakov loop. We also study the flow properties of the electric and magnetic gluon condensates, and demonstrate that the difference of the flowed operators shows rapid change across the transition point.

  2. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  3. String completion of an $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ electroweak model

    CERN Document Server

    Addazi, Andrea; Vaquera-Araujo, C A

    2016-01-01

    The extended electroweak $\\mathrm{SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X}$ symmetry framework "explaining" the number of fermion families is revisited. While $331$-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and R-parity violation strictly forbidden.

  4. String completion of an SU(3)c ⊗ SU(3)L ⊗ U(1)X electroweak model

    Science.gov (United States)

    Addazi, Andrea; Valle, J. W. F.; Vaquera-Araujo, C. A.

    2016-08-01

    The extended electroweak SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry framework "explaining" the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  5. String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2016-08-01

    Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  6. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    OpenAIRE

    Tomoya Hayata; Arata Yamamoto

    2015-01-01

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement...

  7. Novel Lifshitz point for chiral transition in the magnetic field

    Directory of Open Access Journals (Sweden)

    Toshitaka Tatsumi

    2015-04-01

    Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.

  8. Chiral Superfluidity for the Heavy Ion Collisions

    CERN Document Server

    Kalaydzhyan, T

    2013-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate tempera...

  9. $X$ Meson aka $\\eta'$ and Kobayashi-Maskawa-'t Hooft Six-quark Vertex -- $U(1)_A$ Anomaly and Generalized Nambu-Jona-Lasinio Model --

    CERN Document Server

    Kunihiro, Teiji

    2009-01-01

    In 1970, Kobayashi and Maskawa concluded that an effective six-quark vertex with a determinantal form is necessary in the chiral effective models to account for the large mass of $X$ meson, which is now called the $\\eta'$. The determinantal interaction has an $SU(3)_L \\otimes SU(3)_R$ symmetry but not $U(3)_L \\otimes U(3)_R$, and, hence accounts for the explicit breaking of $U(1)_A$ symmetry in quantum chromodynamics (QCD); the vertex was later derived by 't Hooft as an instanton-induced quark interaction. The vertex, which may be called the Kobayashi-Maskawa-'t Hooft (KMT) term, is widely used in quantitative analyses of hadron physics and QCD phase transitions at finite temperature and density. An account is made for the KMT term with recent extensive applications. Described are also personal experiences with Professor Maskawa and Professor Kobayashi,including an encounter with Professor Maskawa when the author first presented his work on the KMT term.

  10. Composite Leptons and Quarks from Hexad Preons

    CERN Document Server

    Wang, Shun-Zhi

    2011-01-01

    A Hexad Preon model where leptons, quarks and W Z bosons are composite is proposed. Six Hexad Preons transform under $U(3)\\otimes U(3)$ local gauge theory which is identified with $U(1)_Q\\otimes SU(3)_C\\otimes SU(3)_f\\otimes U(1)_w$. All salient features of the standard model can be obtained from the compositeness of leptons and quarks: There are exactly six quarks and six leptons with evident three families (generations); All quantum numbers of leptons and quarks can be given out of that of preons; QED and QCD are given by electro-strong interaction $U(1)_Q\\otimes SU(3)_C$ ; The weak interaction is residual "Van der Waals" forces between preons and dipreons. It is shown that all processes in standard model are just reshuffle of preons. In addition, a possible dark matter candidate is presented. Other questions like the electroweak symmetry breaking, the spin of fermions, the origin of quark and lepton mixing, \\textit{etc.}, are also addressed.

  11. Chemical Potential Dependence of the Dressed—Quark Propagator from an Effective Quark—Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; PINGJia-Lun; 等

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagator from the dressed-quark propagator,which provides a means of determining the behavior of the chiral and deconfinement order parameters.A comparison with the results of previous researches is given.

  12. Implications of Local Chiral Symmetry Breaking

    CERN Document Server

    La, H S

    2003-01-01

    The spontaneous symmetry breaking of a local chiral symmetry to its diagonal vector symmetry naturally realizes a complete geometrical structure more general than that of Yang-Mills (YM) theory, rather similar to that of gravity. A good example is the Quantum Chromodynamics (QCD) with respect to the Chiral Color model. Also, a new anomaly-free particle content for a Chiral Color model is introduced: the Chiral Color can be realized without introducing whole new generations of quarks and leptons, but by simply enlarging each generation with new exotic fermions.

  13. A simplified SO(6,2) model of SU(3)

    International Nuclear Information System (INIS)

    A new realization is obtained of the representation of so(6,2) which has been shown recently by Flath and Biedenharn, and also by Bracken and MacGibbon, to define a model of SU(3). In contrast to the realization in terms of six pairs of boson operators used previously, which involved cubic expressions, the new realization involves only quadratic expressions in eight pairs of boson operators, and is manifestly hermitian. Properties of this new ''oscillator realization'', and in particular its advantages over the old realization, are discussed briefly. It is deduced that the representation of so(6,2) is integrable to a unitary group representation. (orig.)

  14. Topological susceptibility for the SU(3) Yang--Mills theory

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Giusti, Leonardo; Pica, Claudio

    2004-01-01

    We present the results of a computation of the topological susceptibility in the SU(3) Yang--Mills theory performed by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to chi......=(191 \\pm 5 MeV)^4 if F_K is used to set the scale. Our result supports the Witten--Veneziano explanation for the large mass of the eta'....

  15. Fortran code for SU(3) lattice gauge theory with and without MPI checkerboard parallelization

    Science.gov (United States)

    Berg, Bernd A.; Wu, Hao

    2012-10-01

    .5. Nature of problem: Physics of pure SU(3) Quantum Field Theory (QFT). This is relevant for our understanding of Quantum Chromodynamics (QCD). It includes the glueball spectrum, topological properties and the deconfining phase transition of pure SU(3) QFT. For instance, Relativistic Heavy Ion Collision (RHIC) experiments at the Brookhaven National Laboratory provide evidence that quarks confined in hadrons undergo at high enough temperature and pressure a transition into a Quark-Gluon Plasma (QGP). Investigations of its thermodynamics in pure SU(3) QFT are of interest. Solution method: Markov Chain Monte Carlo (MCMC) simulations of SU(3) Lattice Gauge Theory (LGT) with the Wilson action. This is a regularization of pure SU(3) QFT on a hypercubic lattice, which allows approaching the continuum SU(3) QFT by means of Finite Size Scaling (FSS) studies. Specifically, we provide updating routines for the Cabibbo-Marinari heatbath with and without checkerboard parallelization. While the first is suitable for pedagogical purposes and small scale projects, the latter allows for efficient parallel processing. Targetting the geometry of RHIC experiments, we have implemented a Double-Layered Torus (DLT) lattice geometry, which has previously not been used in LGT MCMC simulations and enables inside and outside layers at distinct temperatures, the lower-temperature layer acting as the outside boundary for the higher-temperature layer, where the deconfinement transition goes on. Restrictions: The checkerboard partition of the lattice makes the development of measurement programs more tedious than is the case for an unpartitioned lattice. Presently, only one measurement routine for Polyakov loops is provided. Unusual features: We provide three different versions for the send/receive function of the MPI library, which work for different operating system +compiler +MPI combinations. This involves activating the correct row in the last three rows of our latmpi.par parameter file. The

  16. Extended Quark Potential Model from Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENG Wei-Zhen; CHEN Xiao-Lin; LU Da-Hai; YANG Li-Ming

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.

  17. Expectation values of four-quark operators in the nucleon

    OpenAIRE

    Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.; Lyubovitskij, V. E.; Gutsche, Th.; Faessler, Amand

    2003-01-01

    We calculate expectation values of QCD operators consisting of the products of the four operators of the light quarks corresponding to the scalar, pseudoscalar, vector, pseudovector (axial) and tensor Lorentz structures in the nucleon. All combinations of the light flavors are considered. For the evaluation we use elements of the Perturbative Chiral Quark Model (PCQM), approximating the contribution of the valence quarks by the contribution of the PCQM constituent quarks. The contribution of ...

  18. Flavor Asymmetry of the Sea Quarks in the Baryon Octet

    OpenAIRE

    Koretune, Susumu

    1998-01-01

    We show that the chiral $SU(n)\\otimes SU(n)$ flavor symmetry on the null-plane severely restricts the sea quarks in the baryon octet. It predicts large asymmetry for the light sea quarks $(u,d,s)$, and universality and abundance for the heavy sea quarks. Further it is shown that existence of the heavy sea quarks constrained by the same symmetry reduces the theoretical value of the Ellis-Jaffe sum rule substantially.

  19. Quarks in the Bootstrap Era

    Science.gov (United States)

    Horn, D.

    2015-03-01

    The quark model emerged from the Gell-Mann-Ne'eman flavor SU(3) symmetry. Its development, in the context of strong interactions, took place in a heuristic theoretical framework, referred to as the Bootstrap Era. Setting the background for the dominant ideas in strong interaction of the early 1960s, we outline some aspects of the constituent quark model. An independent theoretical development was the emergence of hadron duality in 1967, leading to a realization of the Bootstrap idea by relating hadron resonances (in the s-channel) with Regge pole trajectories (in t- and u-channels). The synthesis of duality with the quark-model has been achieved by duality diagrams, serving as a conceptual framework for discussing many aspects of hadron dynamics toward the end of the 1960s.

  20. Chiral symmetry breaking and vacuum polarization in a bag

    CERN Document Server

    Yasui, S

    2006-01-01

    We study the effects of a finite quark mass in the hedgehog configuration in the two phase chiral bag model. We discuss the chiral properties, such as the fractional baryon number and the chiral Casimir energy, by using the Debye expansion for the analytical calculation and the Strutinsky's smearing method for the numerical computation. It is shown that the fractional baryon number carried by massive quarks in the vacuum is canceled by that in the meson sector. A finite term of the chiral Casimir energy is obtained with subtraction of the logarithmic divergence term.

  1. $SU(3)_{C}\\otimes SU(3)_{L}\\otimes U(1)_{X}$ models in view of the 750 GeV diphoton signal

    CERN Document Server

    Martinez, R; Sierra, C F

    2016-01-01

    We analyze the recent diphoton signal reported by ATLAS and CMS collaborations in the context of the $SU(3)_{C}\\otimes SU(3)_{L}\\otimes U(1)_{X}$ anomaly free models , with a 750 GeV scalar candidate which can decay into two photons. This models may explain the 750GeV signal by means of one loop decays to $\\gamma\\gamma$ through both charged vector and charged Higgs bosons, as well as top-, bottom- and electron-like exotic particles that arise naturally from the condition of anomalies cancellation of the $SU(3)_{C}\\otimes SU(3)_{L}\\otimes U(1)_{X}$ models.

  2. Quarks and gluons in a magnetic field

    CERN Document Server

    Watson, Peter

    2013-01-01

    The quark gap equation under the rainbow truncation, with two versions of a phenomenological one-gluon exchange interaction and in the presence of a uniform magnetic field is considered. It is argued that in order to describe the quark condensate in the limit of vanishing magnetic fields, one must sum over the Landau levels. The resulting chiral quark condensate rises quadratically for small magnetic fields and linearly for large fields, in qualitative agreement with various recent lattice results. It is observed that when discussing quarks, the magnitude of the magnetic field must be considered relative to the scale of the strong interaction.

  3. Transversity of quarks in a nucleon

    Indian Academy of Sciences (India)

    K Bora; D K Choudhury

    2003-11-01

    The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon’s properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (infinite) momentum. It is a chiral-odd twist-two distribution function – gluons do not couple to it. Quarks in a nucleon/hadron are relativistically bound and transversity is a measure of the relativistic nature of bound quarks in a nucleon. In this work, we review some important aspects of this less familiar distribution function which has not been measured experimentally so far.

  4. Investigation of the scalar spectrum in SU(3) with eight degenerate flavors

    CERN Document Server

    Rinaldi, Enrico

    2015-01-01

    The Lattice Strong Dynamics collaboration is investigating the properties of a SU(3) gauge theory with $N_f = 8$ light fermions on the lattice. We measure the masses of the lightest pseudoscalar, scalar and vector states using simulations with the nHYP staggered-fermion action on large volumes and at small fermion masses, reaching $M_{\\rho}/M_{\\pi} \\approx 2.2$. The axial-vector meson and the nucleon are also studied for the same range of fermion masses. One of the interesting features of this theory is the dynamical presence of a light flavor-singlet scalar state with $0^{++}$ quantum numbers that is lighter than the vector resonance and has a mass consistent with the one of the pseudoscalar state for the whole fermion mass range explored. We comment on the existence of such state emerging from our lattice simulations and on the challenges of its analysis. Moreover we highlight the difficulties in pursuing simulations in the chiral regime of this theory using large volumes.

  5. Non-Gaussianities in the topological charge distribution of the SU(3) Yang--Mills theory

    CERN Document Server

    Cé, Marco; Engel, Georg P; Giusti, Leonardo

    2015-01-01

    We study the topological charge distribution of the SU(3) Yang--Mills theory with high precision in order to be able to detect deviations from Gaussianity. The computation is carried out on the lattice with high statistics Monte Carlo simulations by implementing a naive discretization of the topological charge evolved with the Yang--Mills gradient flow. This definition is far less demanding than the one suggested from Neuberger's fermions and, as shown in this paper, in the continuum limit its cumulants coincide with those of the universal definition appearing in the chiral Ward identities. Thanks to the range of lattice volumes and spacings considered, we can extrapolate the results for the second and fourth cumulant of the topological charge distribution to the continuum limit with confidence by keeping finite volume effects negligible with respect to the statistical errors. Our best results for the topological susceptibility is t_0^2*chi=6.67(7)*10^-4, where t_0 is a standard reference scale, while for the...

  6. Sigma Terms and Strangeness Contents of Baryon Octet in Modified Chiral Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ya; L(U) Xiao-Fu

    2006-01-01

    In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limit decay constants is taken into account. Calculated to one loop at O(p3), the sigma terms and strangeness contents of baryon octet are obtained.

  7. IR fixed points in SU(3 gauge theories

    Directory of Open Access Journals (Sweden)

    K.-I. Ishikawa

    2015-09-01

    Full Text Available We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the SU(3 gauge theories with Nf fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cutoff, which we cannot remove in the conformal field theories in sharp contrast to the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for Nf=16,12,8 and Nf=7 and indeed identify the location of the IR fixed points in all cases.

  8. IR fixed points in $SU(3)$ gauge Theories

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, Y

    2015-01-01

    We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the $SU(3)$ gauge theories with $N_f$ fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cut-off, which we cannot remove in the conformal field theories in sharp contrast with the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for $N_f=16, 12, 8 $ and $N_f=7$ and indeed identify the location of the IR fixed points in all cases.

  9. Interweaving Chiral Spirals

    CERN Document Server

    Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D

    2011-01-01

    We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...

  10. Parton Distribution in Pseudoscalar Mesons with a Light-Front Constituent Quark Model

    CERN Document Server

    de Melo, J P B C; Tsushima, Kazuo

    2015-01-01

    We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $\\bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.

  11. Hyperon decay form factors in chiral perturbation theory

    CERN Document Server

    Lacour, Andre; Meißner, Ulf-G

    2007-01-01

    We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p^4) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p^4).

  12. S3 discrete group as a source of the quark mass and mixing pattern in 331 models

    International Nuclear Information System (INIS)

    We propose a model based on the SU(3)C⊗SU(3)L⊗U(1)X gauge symmetry with an extra S3⊗Z2⊗Z4⊗Z12 discrete group, which successfully accounts for the SM quark mass and mixing pattern. The observed hierarchy of the SM quark masses and quark mixing matrix elements arises from the Z4 and Z12 symmetries, which are broken at a very high scale by the SU(3)L scalar singlets (σ,ζ) and τ, charged under these symmetries, respectively. The Cabbibo mixing arises from the down-type quark sector whereas the up quark sector generates the remaining quark mixing angles. The obtained magnitudes of the CKM matrix elements, the CP violating phase, and the Jarlskog invariant are in agreement with the experimental data

  13. Neutral B-meson mixing from three-flavor lattice QCD: Determination of the SU(3)-breaking ratio \\xi

    CERN Document Server

    Bazavov, A; Bouchard, C M; DeTar, C; Di Pierro, M; El-Khadra, A X; Evans, R T; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Hetrick, J E; Jain, R; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S

    2012-01-01

    We study SU(3)-breaking effects in the neutral B_d-\\bar B_d and B_s-\\bar B_s systems with unquenched N_f=2+1 lattice QCD. We calculate the relevant matrix elements on the MILC collaboration's gauge configurations with asqtad-improved staggered sea quarks. For the valence light-quarks (u, d, and s) we use the asqtad action, while for b quarks we use the Fermilab action. We obtain \\xi=f_{B_s}\\sqrt{B_{B_s}}/f_{B_d}\\sqrt{B_{B_d}}=1.268+-0.063. We also present results for the ratio of bag parameters B_{B_s}/B_{B_d} and the ratio of CKM matrix elements |V_{td}|/|V_{ts}|. Although we focus on the calculation of \\xi, the strategy and techniques described here will be employed in future extended studies of the B mixing parameters \\Delta M_{d,s} and \\Delta\\Gamma_{d,s} in the Standard Model and beyond.

  14. QCD thermodynamics with colour-sextet quarks

    CERN Document Server

    Sinclair, D K

    2009-01-01

    We study QCD with two flavours of colour-sextet quarks as a candidate walking-Technicolor theory. We simulate lattice QCD with two flavours of colour-sextet staggered quarks at finite temperatures to observe the scales of confinement and chiral-symmetry breaking. These should give us some indication as to whether the massless theory has an infrared fixed point making it a conformal field theory, or whether it exhibits confinement and chiral symmetry breaking with a slowly varying coupling constant, i.e. `walks'. We find that unlike the case with fundamental quarks, the deconfinement and chiral-symmetry restoration transitions are far apart. The values of $\\beta=6/g^2$ for both transitions increase when $Ta$ is decreased from 1/4 to 1/6 as would be expected for finite temperature transitions of an asymptotically-free field theory. So far we see no suggestion of conformal behaviour.

  15. Staggered Heavy Baryon Chiral Perturbation Theory

    CERN Document Server

    Bailey, Jon A

    2007-01-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms the order of the cubed pion mass, which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms the order of the squared lattice spacing. The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in d...

  16. Quark Propagation in the Quark-Gluon Plasma

    CERN Document Server

    Li, Xiangdong; Shakin, C M; Sun, Qing; Li, Xiangdong; Li, Hu; Sun, Qing

    2004-01-01

    It has recently been suggested that the quark-gluon plasma formed in heavy-ion collisions behaves as a nearly ideal fluid. That behavior may be understood if the quark and antiquark mean-free- paths are very small in the system, leading to a "sticky molasses" description of the plasma, as advocated by the Stony Brook group. This behavior may be traced to the fact that there are relatively low-energy $q\\bar{q}$ resonance states in the plasma leading to very large scattering lengths for the quarks. These resonances have been found in lattice simulation of QCD using the maximum entropy method (MEM). We have used a chiral quark model, which provides a simple representation of effects due to instanton dynamics, to study the resonances obtained using the MEM scheme. In the present work we use our model to study the optical potential of a quark in the quark-gluon plasma and calculate the quark mean-free-path. Our results represent a specific example of the dynamics of the plasma as described by the Stony Brook group...

  17. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  18. Neutral B Mixing in Staggered Chiral Perturbation Theory

    CERN Document Server

    Bernard, C

    2013-01-01

    I calculate, at one loop in staggered chiral perturbation theory, the matrix elements of the complete set of five local operators that may contribute to B mixing both in the Standard Model and in beyond-the-Standard-Model theories. Lattice computations of these matrix elements by the Fermilab Lattice/MILC collaborations (and earlier by the HPQCD collaboration) convert a light staggered quark into a naive quark, and construct the relevant 4-quark operators as local products of two local bilinears, each involving the naive light quark and the heavy quark. This particular representation of the operators turns out to be important in the chiral calculation, and it results in the presence of "wrong-spin" operators, whose contributions however vanish in the continuum limit. If the matrix elements of all five operators are computed on the lattice, then no additional low energy constants are required to describe wrong-spin chiral effects.

  19. The SU(3)/Z_3 QCD(adj) deconfinement transition via the gauge theory/"affine" XY-model duality

    CERN Document Server

    Anber, Mohamed M; Poppitz, Erich

    2012-01-01

    Earlier, two of us and M. Unsal [arXiv:1112.6389] showed that some 4d gauge theories, compactified on a small spatial circle of size L and considered at temperatures 1/beta near deconfinement, are dual to 2d "affine" XY-spin models. We use the duality to study deconfinement in SU(3)/Z_3 theories with n_f>1 massless adjoint Weyl fermions, QCD(adj) on R^2 x S^1_beta x S^1_L. The"affine" XY-model describes two "spins" - compact scalars taking values in the SU(3) root lattice, with nearest-neighbor interactions and subject to an "external field" preserving the topological Z_3^t and a discrete Z_3^chi subgroup of the chiral symmetry of the 4d gauge theory. The equivalent Coulomb gas representation of the theory exhibits electric-magnetic duality, which is also a high-/low-temperature duality. A renormalization group analysis suggests - but is not convincing, due to the onset of strong coupling - that the self-dual point is a fixed point, implying a continuous deconfinement transition. Here, we study the nature of ...

  20. Perturbative renormalization factors of quark operators for domain-wall QCD

    OpenAIRE

    Aoki, Sinya; Izubuchi, Taku; Noaki, Junichi; Kuramashi, Yoshinobu; Taniguchi, Yusuke

    1999-01-01

    We calculate one-loop renormalization factors of several quark operators including bilinear, three- and four-quark operator for domain-wall fermion action. Since Green functions are constructed for external physical quark fields, our renormalization method is simple and can be easily applied to calculation of any quark operators. Our results show that these renormalized quark operators preserve several chiral properties of continuum massless QCD, which can be understood by the property of ext...

  1. Chiral effective model with the Polyakov loop

    OpenAIRE

    Fukushima, Kenji

    2003-01-01

    We discuss how the simultaneous crossovers of deconfinement and chiral restoration can be realized. We propose a dynamical mechanism assuming that the effective potential gives a finite value of the chiral condensate if the Polyakov loop vanishes. Using a simple model, we demonstrate that our idea works well for small quark mass, though there should be further constraints to reach the perfect locking of two phenomena.

  2. Composite reweighting with Imaginary Chemical Potentials in SU(3)

    CERN Document Server

    Crompton, P R

    2002-01-01

    We review the overlap pathology of the Glasgow reweighting method for finite density QCD, and discuss the sampling bias that effects the determination of the ensemble-averaged fugacity polynomial expansion coefficients that form the Grand Canonical Partition function. The expectation of the difference in free energies between canonical partition functions generated with different measures is presented as an indicator of a systematic quark number dependent biasing in the reweighting approach. The advantages of building up an unbiased polynomial expansion for the Grand Canonical Partition function through a series of parallel ensembles generated by reweighting with imaginary chemical potentials are then contrasted with addressing the overlap pathology through a secondary reweighting.

  3. Quark mass and mixing in the 3-3-1 model with neutral leptons based on $D_4$ flavor symmetr

    CERN Document Server

    Vien, V V

    2014-01-01

    The $D_4$ flavor model based on $\\mathrm{SU}(3)_C \\otimes \\mathrm{SU}(3)_L \\otimes \\mathrm{U}(1)_X$ gauge symmetry is updated in which the quark mixing matrix is concentrated. After spontaneous breaking of flavor symmetry, with the constraint on Higgs VEVs in the Yukawa couplings, all of quarks have consistent masses and a small deviation from the unity is obtained at the tree-level. To obtain the quark mixing matrix consistent with experimental data in 2012, the violation terms with $\\underline{1}'$ under $D_4$ are introduced. The realistic quark mass and mixing are derived.

  4. Chiral Electronics

    OpenAIRE

    Kharzeev, Dmitri E.; Yee, Ho-Ung

    2012-01-01

    We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...

  5. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  6. Embedded monopoles in quark eigenmodes in quenched SU(2) QCD

    CERN Document Server

    Chernodub, M N

    2006-01-01

    We study the embedded QCD monopoles (``quark monopoles'') using low-lying eigenmodes of the overlap Dirac operator in zero- and finite-temperature quenched SU(2) gauge theory on the lattice. These monopoles correspond to gauge-invariant hedgehogs in the quark-antiquark condensates. The monopoles were suggested to be agents of the chiral symmetry restoration since their cores should suppress the chiral condensate. We study numerically the scalar, axial and chirally invariant definitions of the embedded monopoles and show that the monopole densities are in fact globally anti-correlated with the density of the Dirac eigenmodes. We observe, that the embedded monopoles corresponding to low-lying Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally broken (low temperature) phase. We find that the scaling of the scalar and axial monopole densities towards the continuum limit is similar to the scaling of the string-like objects while the chirally invariant monopole...

  7. An O(a) modified lattice set-up of the Schr\\"odinger functional in SU(3) gauge theory

    CERN Document Server

    Pérez-Rubio, Paula; Takeda, Shinji

    2011-01-01

    The set-up of the QCD Schr\\"odinger functional (SF) on the lattice with staggered quarks requires an even number of points $L/a$ in the spatial directions, while the Euclidean time extent of the lattice, $T/a$, must be odd. Identifying a unique renormalisation scale, $L=T$, is then only possible up to O($a$) lattice artefacts. In this article we study such lattices in the pure SU(3) gauge theory, where we can also compare to the standard set-up. We consider the SF coupling as obtained from the variation of an SU(3) Abelian and spatially constant background field. The O($a$) lattice artefacts can be cancelled by the existing O($a$) boundary counterterm. However, its coefficient, $\\ct$, differs at the tree-level from its standard value, so that one first needs to re-determine the induced background gauge field. The perturbative one-loop correction to the coupling allows to determine $\\ct$ to one-loop order. A few numerical simulations serve to demonstrate that residual cutoff effects in the step scaling functio...

  8. Chiral symmetry breaking from Ginsparg-Wilson fermions

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2000-01-01

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.

  9. Continuum Study of Heavy Quark Diffusion

    CERN Document Server

    Neuhaus, Thomas

    2015-01-01

    We report on a lattice investigation of heavy quark momentum diffusion within the pure SU(3) plasma above the deconfinement transition with the quarks treated to leading order in the heavy mass expansion. We measure the relevant "colour-electric" Euclidean correlator and based on several lattice spacing's perform the continuum extrapolation. This is necessary not only to remove cut-off effects but also the analytic continuation for the extraction of transport coefficients is well-defined only when a continuous function of the Euclidean time variable is available. We pay specific attention to scale setting in SU(3). In particular we present our determination for the critical temperature $T_c=1/({N_\\tau}a) $ at values of $N_\\tau \\le 22$.

  10. Instanton density in a theory with massless quarks

    International Nuclear Information System (INIS)

    Effect of the complex structure of the QCD vacuum on the density of small-sized instantons is discussed. The method which allows to account for this effect of vacuum quark and gluon condensate is developed. Evaluation of the instanton density is given in the framework of the theory with one, two or three massless quarks. The results of the paper are presented for the cases of SU(2) and SU(3) color groups

  11. Chiral symmetry in hadron physics methods and ideas of chiral symmetry

    International Nuclear Information System (INIS)

    Methods and ideas of chiral symmetry is presented based on a lecture note to help the future researches in hadron dynamics along with the chiral symmetry. The chiral symmetry was originally developed as the symmetry between currents before the discovery of QCD. It has come to be understood in principle by now that the symmetry is spontaneously broken and only the part of flavor symmetry remains explicitly. In QCD, however, the chiral symmetry has come to be regarded as the base of the symmetry of the global flavor space of quarks. One of the recent topics of the lattice gauge theory is how the hadron properties will change when the broken symmetry is going to be restored. Since the chiral symmetry is global, it is different from gauge symmetry which is local. It explains the degeneracy of hadron masses and relations between the elements of S-matrix in which same number of particles are included. In practice, however, the symmetry of the axial part is spontaneously broken and pions which behave like gauge particles come to play. Chiral symmetry is defined as the (internal) flavor symmetry for the two independent chirality states of quarks. It discriminates two different fundamental quarks defined for the Lorentz groups O(4) - SL(2, C). The symmetry transformation itself is, however, different from the chirality. They should not be confused. In this lecture note, fundamental properties of pions are described on the basis of the interaction with nucleons at first. General properties of the chiral symmetry and some of the low energy theorems on current algebra are introduced. Then, linear sigma model and nonlinear sigma model are introduced. Then the Skyrme-model, which provides an idea as important as quarks, is explained. One of the interesting topics at present is to restore the broken axial symmetry experimentally to investigate the mechanism of symmetry breaking. (S. Funahashi)

  12. Relativistic Chiral Theory of Nuclear Matter and QCD Constraints

    OpenAIRE

    Chanfray, G.; Ericson, M.

    2009-01-01

    Talk given by G. Chanfray at PANIC 08, Eilat (Israel), november 10-14, 2008 We present a relativistic chiral theory of nuclear matter which includes the effect of confinement. Nuclear binding is obtained with a chiral invariant scalar background field associated with the radial fluctuations of the chiral condensate Nuclear matter stability is ensured once the scalar response of the nucleon depending on the quark confinement mechanism is properly incorporated. All the parameters are fixed o...

  13. Metastable strange matter and compact quark stars

    CERN Document Server

    Malheiro, M; Taurines, A R

    2003-01-01

    Strange quark matter in beta equilibrium at high densities is studied in a quark confinement model. Two equations of state are dynamically generated for the {\\it same} set of model parameters used to describe the nucleon: one corresponds to a chiral restored phase with almost massless quarks and the other to a chiral broken phase. The chiral symmetric phase saturates at around five times the nuclear matter density. Using the equation of state for this phase, compact bare quark stars are obtained with radii and masses in the ranges $R\\sim 5 - 8$ km and $M\\sim M_\\odot$. The energy per baryon number decreases very slowly from the center of the star to the periphery, remaining above the corresponding values for the iron or the nuclear matter, even at the edge. Our results point out that strange quark matter at very high densities may not be absolutely stable and the existence of an energy barrier between the two phases may prevent the compact quarks stars to decay to hybrid stars.

  14. Finite Temperature Quark Confinement via Chromomagnetic Fields

    OpenAIRE

    Ogilvie, Michael

    1997-01-01

    A natural mechanism for finite temperature quark confinement arises via the coupling of the adjoint Polyakov loop to the chromomagnetic field. Lattice simulations and analytical results both support this hypothesis. Finite temperature SU(3) lattice simulations show that a large external coupling to the chromomagnetic field restores confinement at temperatures above the normal deconfining temperature. A one-loop calculation of the effective potential for SU(2) gluons in a background field show...

  15. NJL model approach to diquarks and baryons in quark matter

    OpenAIRE

    Blaschke, D.; Dubinin, A.; Zablocki, D.

    2015-01-01

    We describe baryons as quark-diquark bound states at finite temperature and density within the NJL model for chiral symmetry breaking and restoration in quark matter. Based on a generalized Beth-Uhlenbeck approach to mesons and diquarks we present in a first step the thermodynamics of quark-diquark matter which includes the Mott dissociation of diquarks at finite temperature. In a second step we solve the Bethe-Salpeter equation for the baryon as a quark-diquark bound state in quark-diquark m...

  16. Higgs Phenomenology in the Minimal $SU(3)_L\\times U(1)_X$ Model

    OpenAIRE

    Okada, Hiroshi; Okada, Nobuchika; Orikasa, Yuta; Yagyu, Kei

    2016-01-01

    We investigate the phenomenology of a model based on the $SU(3)_c\\times SU(3)_L\\times U(1)_X$ gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three $SU(3)_L$ triplet Higgs fields, and this corresponds to the minimal form to realize phenomenologically acceptable scenario. After the spontaneous symmetry breaking $SU(3)_L\\times U(1)_X\\to SU(2)_L\\times U(1)_Y$, our Higgs sector effectively becomes that with two $SU(2)_L$ doublet...

  17. SU(3) magnet: finite-gap integration on the lowest genus curve

    International Nuclear Information System (INIS)

    We consider the integrable system of isotropic SU(3) Landau-Lifshits equation as a Hamiltonian system on a coadjoint orbit of the SU(3) loop group. We connect the mentioned equation with an isotropic SU(3) magnet because it describes the mean fields of magnetic and quadrupole moments in a spin-1 lattice. For the system of isotropic SU(3) Landau-Lifshits equation we perform separation of variables in Sklyanin's manner, and integrate in the lowest finite gap where the spectral curve is elliptic

  18. Creation and annihilation operators for SU(3) in an SO(6,2) model

    International Nuclear Information System (INIS)

    Creation and annihilation operators are defined which are Wigner operators (tensor shift operators) for SU(3). While the annihilation operators are simply boson operators, the creation operators are cubic polynomials in boson operators. Together they generate under commutation the Lie algebra of SO(6,2). A model for SU(3) is defined. The different SU(3) irreducible representations appear explicitly as manifestly covariant, irreducible tensors, whose orthogonality and normalisation properties are examined. Other Wigner operators for SU(3) can be constructed simply as products of the new creation and annihilation operators, or sums of such products. (author)

  19. Quark-hadron phase transition in massive gravity

    Science.gov (United States)

    Atazadeh, K.

    2016-11-01

    We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  20. Single quark entropy and the Polyakov loop

    CERN Document Server

    Weber, Johannes Heinrich

    2016-01-01

    We study Quantum Chromodynamics (QCD) with 2+1 flavors with almost physical quark masses using the highly improved staggered quark action (HISQ). We calculate the Polyakov loop in a wide temperature range, obtain the free energy and the entropy of a single static quark and discuss the QCD crossover region in detail. We show that the entropy has a peak close to the chiral crossover and consider the consequences for the deconfinement aspects of the crossover phenomena. We study the renormalized Polyakov loop susceptibilities and place them into the context of the crossover. We also obtain a quantitative result for the onset of weak coupling behavior at high temperatures.

  1. Nucleon-nucleon interaction and the quark model

    International Nuclear Information System (INIS)

    The NN phase shifts are calculated using the quark model with a QCD inspired quark-quark force. The short range part of the NN force is given by quark and gluon exchange. The long range part is described by π and σ-meson exchange. The data fitted in the model are five values connected with three quarks only: the nucleon mass, the Δ mass, the root mean square radius of the charge distribution of the proton including the pion cloud, the π-N and the σ-N coupling constant at zero momentum transfer. The 1S and 3S phase shifts are nicely reproduced. The short range repulsion is decisively influenced by the node in the [42]r relative wave function. Very important is the colour magnetic quark-quark force which enlarges the [42]r admixture. In the OBEP's the short range repulsion is connected with the exchange of the ω-meson. But to reproduce the short range repulsion one had to blow up the ω-N coupling constant by a factor 2 to 3 compared to flavour SU3. With quark and gluon exchange the best fit to the ω-N coupling constant lies close to the SU3 flavour value. This fact strongly supports the notion that the real nature of the short range repulsion of the NN interaction have been found

  2. The Phase Structure of the Polyakov--Quark-Meson Model

    OpenAIRE

    Schaefer, Bernd-Jochen; Pawlowski, Jan M.; Wambach, Jochen

    2007-01-01

    The relation between the deconfinement and chiral phase transition is explored in the framework of an Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N_f-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral...

  3. Quark matter symmetry energy and quark stars

    OpenAIRE

    Chu, Peng-Cheng; Chen, Lie-Wen

    2012-01-01

    We extend the confined-density-dependent-mass (CDDM) model to include isospin dependence of the equivalent quark mass. Within the confined-isospin-density-dependent-mass (CIDDM) model, we study the quark matter symmetry energy, the stability of strange quark matter, and the properties of quark stars. We find that including isospin dependence of the equivalent quark mass can significantly influence the quark matter symmetry energy as well as the properties of strange quark matter and quark sta...

  4. Strangeness at high temperatures: from hadrons to quarks.

    Science.gov (United States)

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2013-08-23

    Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.

  5. In Search of the Chiral Regime

    CERN Document Server

    Beane, S R

    2004-01-01

    A critical appraisal is given of a recent analysis of the quark-mass and finite-size dependence of unquenched lattice QCD data for the nucleon mass. We use this forum to estimate the boundary of the chiral regime for nucleon properties.

  6. Wess-Zumino-Witten action and photons from the Chiral Magnetic Effect

    OpenAIRE

    Fukushima, Kenji; Mameda, Kazuya

    2012-01-01

    We revisit the Chiral Magnetic Effect (CME) using the chiral Lagrangian. We demonstrate that the electric-current formula of the CME is derived immediately from the contact part of the Wess-Zumino-Witten action. This implies that the CME could be, if observed, a signature for the local parity violation, but a direct evidence for neither quark deconfinement nor chiral restoration. We also discuss the reverse Chiral Magnetic Primakoff Effect, i.e. the real photon production through the vertex a...

  7. Notes on TQFT wire models and coherence equations for SU(3) triangular cells

    CERN Document Server

    Coquereaux, R; Schieber, G

    2010-01-01

    After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of SU(3) at level k. We show how to solve these equations in a number of examples.

  8. Chiral symmetry breaking in QCD Lite

    CERN Document Server

    Engel, Georg P; Lottini, Stefano; Sommer, Rainer

    2014-01-01

    A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensat...

  9. Heavy-baryon quark model picture from lattice QCD

    CERN Document Server

    Vijande, J; Garcilazo, H

    2015-01-01

    The ground state and excited spectra of baryons containing three identical heavy quarks, $b$ or $c$, have been recently calculated in nonperturbative lattice QCD. The energy of positive and negative parity excitations has been determined with high precision. Lattice results constitute a unique opportunity to learn about the quark-confinement mechanism as well as elucidating our knowledge about the nature of the strong force. We analyze the nonperturbative lattice QCD results by means of heavy-quark static potentials derived using SU(3) lattice QCD. We make use of different numerical techniques for the three-body problem.

  10. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    .5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization

  11. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  12. Chiral Superconductors

    OpenAIRE

    Kallin, Catherine; Berlinsky, John

    2015-01-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a c...

  13. Quark mass deformation of holographic massless QCD

    International Nuclear Information System (INIS)

    We propose several quark mass deformations of the holographic model of massless QCD using the D4/D8/D8-bar-brane configuration proposed by Sakai and Sugimoto. The deformations are based on introducing additional D4- or D6-branes away from the QCD D4-branes. The idea is similar to extended technicolor theories, where the chiral symmetry breaking by additional D-branes is mediated to QCD to induce non-zero quark masses. In the D-brane picture, as well as the holographic dual gravity description, the quark and the pion masses are generated by novel worldsheet instantons with finite area. We also derive the Gell-Mann-Oakes-Renner relation, and find the value of the chiral condensate in the Sakai-Sugimoto model. (author)

  14. Staggered heavy baryon chiral perturbation theory

    Science.gov (United States)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  15. From enemies to friends chiral symmetry on the lattice

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2002-01-01

    The physics of strong interactions is invariant under the exchange of left-handed and right-handed quarks, at least in the massless limit. This invariance is reflected in the chiral symmetry of quantum chromodynamics. Surprisingly, it has become clear only recently how to implement this important symmetry in lattice formulations of quantum field theories. We will discuss realizations of exact lattice chiral symmetry and give an example of the computation of a physical observable in quantum chromodynamics where chiral symmetry is important. This calculation is performed by relying on finite size scaling methods as predicted by chiral perturbation theory.

  16. Topological susceptibility with three flavors of staggered quarks

    CERN Document Server

    Aubin, C; Billeter, B; DeTar, C; Gottlieb, S; Gregory, E; Heller, U M; Hetrick, J E; Osborn, J; Sugar, R L; Toussaint, D; Billeter, Brian; Gottlieb, Steven

    2005-01-01

    As one test of the validity of the staggered-fermion fourth-root determinant trick, we examine the suppression of the topological susceptibility of the QCD vacuum in the limit of small quark mass. The suppression is sensitive to the number of light sea quark flavors. Our study is done in the presence of 2+1 flavors of dynamical quarks in the improved staggered fermion formulation. Variance-reduction techniques provide better control of statistical errors. New results from staggered chiral perturbation theory account for taste-breaking effects in the low-quark mass behavior of the susceptibility, thereby reducing scaling violations from this source. Measurements over a range of quark masses at two lattice spacings permit a rough continuum extrapolation to remove the remaining lattice artifacts. The results are consistent with chiral perturbation theory with the correct flavor counting.

  17. Non-Abelian dual Meissner effect in SU(3) Yang-Mills theory and confinement/deconfinement phase transition at finite temperature

    CERN Document Server

    Shibata, Akihiro; Kato, Seikou; Shinohara, Toru

    2014-01-01

    The dual superconductivity is a promising mechanism for quark confinement. We have proposed the non-Abelian dual superconductivity picture for SU(3) Yang-Mills theory, and showed the restricted field dominance (called conventionally Abelian dominance), and non-Abelian magnetic monopole dominance in the string tension. We have further demonstrated by measuring the chromoelectric flux that the non-Abelian dual Meissner effect exists and determined that the dual superconductivity for SU(3) case is of type I, which is in sharp contrast to the SU(2) case: the border of type I and type II. In this talk, we focus on the confinement/deconfinement phase transition and the non-Abelian dual superconductivity at a finite temperature: We measure the Polyakov loop average and correlator and investigate the restricted field dominance in the Polyakov loop. Then, we measure the chromoelectric flux between a pair of static quark and antiquark created by a pair of Polyakov loops, and investigate the non-Abelian dual Meissner ef...

  18. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  19. Meson spectroscopy, quark mixing and quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A.T.

    1979-04-01

    A semiphenomenological theory of the quark-antiquark meson mass spectrum is presented. Relativistic kinematic effects due to unequal quark masses and SU (3) -breaking effects in the slopes of Regge trajectories and in radially excited states are taken into account. Violation of the OZI rule is accounted for by means of a mixing matrix for the quark wave functions, which is given by QCD. To describe the dependence of the mixing parameters on the meson masses, a simple extrapolation of the QCD expressions is proposed from the ''asymptotic-freedom'' region to the ''infrared-slavery'' region. To calculate the masses and mixing angles of the pseudoscalar mesons, the condition for a minimal pion mass is proposed. The eta-meson mass is then shown to be close to its maximum. The predictions of the theory for meson masses and mixing angles are in good agreement with experiment.

  20. Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks

    CERN Document Server

    Blossier, B; Carrasco, N; Dimopoulos, P; Du, X; Frezzotti, R; Gimenez, V; Herdoiza, G; Jansen, K; Lubicz, V; Palao, D; Pallante, E; Pene, O; Petrov, K; Reker, S; Rossi, G C; Sanfilippo, F; Scorzato, L; Simula, S; Urbach, C

    2011-01-01

    We present preliminary results of the non-perturbative computation of the RI-MOM renormalisation constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalisation constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit.

  1. Connections between chiral Lagrangians and QCD sum-rules

    Science.gov (United States)

    Fariborz, Amir H.; Pokraka, A.; Steele, T. G.

    2016-01-01

    In this paper, it is shown how a chiral Lagrangian framework can be used to derive relationships connecting quark-level QCD correlation functions to mesonic-level two-point functions. Crucial ingredients of this connection are scale factor matrices relating each distinct quark-level substructure (e.g. quark-antiquark, four-quark) to its mesonic counterpart. The scale factors and mixing angles are combined into a projection matrix to obtain the physical (hadronic) projection of the QCD correlation function matrix. Such relationships provide a powerful bridge between chiral Lagrangians and QCD sum-rules that are particularly effective in studies of the substructure of light scalar mesons with multiple complicated resonance shapes and substantial underlying mixings. The validity of these connections is demonstrated for the example of the isotriplet a0(980)-a0(1450) system, resulting in an unambiguous determination of the scale factors from the combined inputs of QCD sum-rules and chiral Lagrangians. These scale factors lead to a remarkable agreement between the quark condensates in QCD and the mesonic vacuum expectation values that induce spontaneous chiral symmetry breaking in chiral Lagrangians. This concrete example shows a clear sensitivity to the underlying a0-system mixing angle, illustrating the value of this methodology in extensions to more complicated mesonic systems.

  2. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  3. Chiral susceptibility and the scalar Ward identity.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Liu, Y.-X.; Roberts, C. D.; Shi, Y.-M.; Sun, W.-M.; Zong, H.-S.; Physics; Inst. of Applied Physics and Computational Mathematics; Peking Univ.; National Lab. of Heavy Ion Accelerator; Univ. of New South Wales; Nanjing Univ.; Joint Center for Particle, Nuclear Physics and Cosmology

    2009-03-01

    The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.

  4. Preon Trinity a new model of leptons and quarks

    CERN Document Server

    Dugne, J J; Hansson, J; Predazzi, Enrico; Dugne, Jean-Jacques; Fredriksson, Sverker; Hansson, Johan; Predazzi, Enrico

    1999-01-01

    A new model for the substructure of quarks, leptons and weak gauge bosons, is discussed. It is based on three fundamental and absolutely stable spin-1/2 preons. Its preon flavour SU(3) symmetry leads to a prediction of nine quarks, nine leptons and nine heavy vector bosons. One of the quarks has charge $-4e/3$, and is speculated to be the top quark (whose charge has not been measured). The flavour symmetry leads to three conserved lepton numbers in all known weak processes, except for some neutrinos, which might either oscillate or decay. There is also a (Cabibbo) mixing of the $d$ and $s$ quarks due to an internal preon-antipreon annihilation channel. An identical channel exists inside the composite $Z^0$, leading to a relation between the Cabibbo and Weinberg mixing angles.

  5. Introduction to lattice gaugefixing and effective quark and gluon masses

    International Nuclear Information System (INIS)

    We report on the status of quark and gluon propagators in quenched, gaugefixed lattice QCD. In Landau gauge we find that the effective quark mass in the chiral limit is Mq ∼ 350(40)MeV. Quark and gluon propagators, the slope of the quark dispersion relation, and effective masses all appear to depend on gauge. A link-chain picture of lattice gaugefixing in the color N → ∞ and strong coupling limit, where the system becomes almost solvable, supports the gauge variance of these numerical results

  6. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  7. Quark Interchange Model of Baryon Interactions.

    Science.gov (United States)

    Maslow, Joel Neal

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point -like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and we assume that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (qq) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of Yn scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  8. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  9. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  10. Generation of strong magnetic fields in dense quark matter driven by the electroweak interaction of quarks

    CERN Document Server

    Dvornikov, Maxim

    2016-01-01

    We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field $10^{12}\\,\\text{G}$ to the strengths $(10^{14}-10^{15})\\,\\text{G}$. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.

  11. Punctuated Chirality

    Science.gov (United States)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  12. Punctuated Chirality

    CERN Document Server

    Gleiser, Marcelo; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  13. The Weak Mixing Angle from an SU(3) Symmetry at a TeV

    CERN Document Server

    Dimopoulos, Savas K; Dimopoulos, Savas; Kaplan, David Elazzar

    2002-01-01

    The measured values of two electroweak gauge couplings appear to obey an approximate 5% SU(3) relation. Unless this is an accident caused by fortuitous Planck-scale physics, it suggests the presence of an SU(3) symmetry near the electroweak scale. We propose this to be a local SU(3) which spontaneously ``mixes'' with SU(2) x U(1) near a TeV. Although all the particles of the standard model are SU(3)-singlets, this symmetry relates the electroweak gauge couplings and can successfully predict the weak mixing angle with a precision of a few percent. Since this mechanism operates at a TeV, it does not require an energy desert and consequently can be embedded in theories of TeV-gravity.

  14. Triaxial rotor in the SU(3) limit of the interacting boson model

    Science.gov (United States)

    Zhang, Yu; Pan, Feng; Dai, Lian-Rong; Draayer, J. P.

    2014-10-01

    A mapping from a triaxial rotor Hamiltonian to that of the SU(3) limit description in the interacting boson model (IBM) is established, which is achieved by the SU(3) realization of the triaxial rotor. A detailed comparison between the triaxial dynamics generated from the quadrupole-deformed rotor and those from the IBM image is made. The results indicate that the mapping can be well realized. A preliminary test for Ba128 further confirms the finite-N effect of the mapping. It thus provides an alternative way to understand the triaxiality in the finite-N system and additional insight into understanding the SU(3) IBM theory from microscopic point of view via the SU(3) shell model.

  15. Chiral symmetry and scalars

    International Nuclear Information System (INIS)

    The suggestion by Jaffe that if σ is a light q2q-bar2 state 0++ then even the fundamental chiral transformation properties of the σ becomes unclear, has stimulated much interest. Adler pointed out that in fact the seminal work on chiral symmetry via PCAC consistency, is really quite consistent with the σ being predominantly q2q-bar2. This interpretation was actually backed by subsequent work on effective Lagrangian methods for linear and non linear realizations. More recent work of Achasov suggests that intermediate four-quark states determine amplitudes involving other scalars a0(980) and f0(980) below 1 GeV, and the report by Ning Wu that study on σ meson in J/ψ → ωπ+π- continue to support a non qq-bar σ with mass as low as 390 MeV. It is also noted that more recent re-analysis of πK scattering by S. Ishida et al. together with the work of the E791 Collaboration, support the existence of the scalar κ particle with comparatively light mass as well

  16. Quark confinement mechanism for baryons

    CERN Document Server

    Goncharov, Yu P

    2013-01-01

    The confinement mechanism proposed earlier and then successfully applied to meson spectroscopy by the author is extended over baryons. For this aim the wave functions of baryons are built as tensorial products of those corresponding to the 2-body problem underlying the confinement mechanism of two quarks. This allows one to obtain the Hamiltonian of the quark interactions in a baryon and, accordingly, the possible energy spectrum of the latter. Also one may construct the electric and magnetic form factors of baryon in a natural way which entails the expressions for the root-mean-square radius and anomalous magnetic moment. To ullustrate the formalism in the given Chapter for the sake of simplicity only symmetrical baryons (i.e., composed from three quarks of the same flavours) $\\Delta^{++}$, $\\Delta^{-}$, $\\Omega^-$ are considered. For them the masses, the root-mean-square radii and anomalous magnetic moments are expressed in an explicit analytical form through the parameters of the confining SU(3)-gluonic fi...

  17. Heavy-light quarks interactions in QCD vacuum

    CERN Document Server

    Musakhanov, Mirzayusuf

    2014-01-01

    QCD vacuum instantons induce very strong interactions between light quarks, which generate large dynamical light quark mass M for initially almost massless quarks and can bound these quarks to produce almost massless pions in accordance with the spontaneous breaking of chiral symmetry ($S\\chi$SB). On the other hand, the QCD vacuum instantons generate heavy-light quark interactions terms, which are responsible for the effects of $S\\chi$SB in a heavy-light quark system. Summing the re-scattering series that lead to the total light quark propagator and making few further steps, we get the fermionized representation of low-frequencies light quark determinant in the presence of the quark sources, which is relevant for our problems. The next important step in the line of this strategy is to derive the equation and calculate the heavy quark propagator in the instanton media and in the presence of light quarks. This one provide finally the heavy and N_f light quark interaction term. As an example, we derive heavy-lig...

  18. Small quark stars in the chromodielectric model

    CERN Document Server

    Malheiro, M; Nuss, L G; Fiolhais, M; Taurines, A R

    2001-01-01

    The Chromodielectric Model with a quartic potential is used to describe homogeneous strange quark matter, in beta equilibrium, at high densities. Two equations of state (EOS) are obtained for the same set of model parameters: one corresponds to a chiral restored phase with almost massless quarks and no electrons, and the other to a chiral broken phase. Depending on the model parameters, a phase transition between the two phases may occur. With those EOS the structure of compact stars is investigated and two types of stars are obtained: larger ones with radius $R\\sim 10 - 12$ km, a hadron mantle and a mass $M\\sim 1- 2 M_\\odot$, and smaller pure quark stars, in a chiral restored phase, with $R\\sim 5 - 8$ km, $M\\sim M_\\odot$ and a large baryon density at the edge. The phenomenology of the compact object RX J185635-3754, whose best fit for the radius and mass is $R\\sim 6$ km and $M\\sim 0.9 M_\\odot$, lies in the class of small quark stars predicted by the chromodielectric model.

  19. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  20. The Chiral Magnetic Effect and Anomaly-Induced Transport

    CERN Document Server

    Kharzeev, Dmitri E

    2013-01-01

    The Chiral Magnetic Effect (CME) is the phenomenon of electric charge separation along the external magnetic field that is induced by the chirality imbalance. The CME is a macroscopic quantum effect - it is a manifestation of the chiral anomaly creating a collective motion in Dirac sea. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of systems possessing chiral fermions, from the quark-gluon plasma to chiral materials. The goal of the present review is to provide an elementary introduction into the main ideas underlying the physics of CME, a historical perspective, and a guide to the rapidly growing literature on this topic.

  1. Chiral medium produced by parallel electric and magnetic fields

    CERN Document Server

    Ruggieri, Marco; Chernodub, Maxim

    2016-01-01

    We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.

  2. Chiral spiral induced by a strong magnetic field

    CERN Document Server

    Abuki, H

    2016-01-01

    We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it totally washes the tricritical point out of the phase diagram, bringing the continent for the chiral spiral. This is the case no matter how small is the intensity of the magnetic field. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  3. SU(3) Polyakov linear-sigma model: bulk and shear viscosity of QCD matter in finite magnetic field

    CERN Document Server

    Tawfik, Abdel Nasser; Hussein, T M

    2016-01-01

    Due to off-center relativistic motion of the charged spectators and the local momentum-imbalance of the participants, a short-lived huge magnetic field is likely generated, especially in relativistic heavy-ion collisions. In determining the temperature dependence of bulk and shear viscosities of the QCD matter in vanishing and finite magnetic field, we utilize mean field approximation to the SU($3$) Polyakov linear-sigma model (PLSM). We compare between the results from two different approaches; Green-Kubo correlation and Boltzmann master equation with Chapman-Enskog expansion. We find that both approaches have almost identical results, especially in the hadron phase. In the temperature dependence of bulk and shear viscosities relative to thermal entropy at the critical temperature, there is a rapid decrease in the chiral phase-transition and in the critical temperature with increasing magnetic field. As the magnetic field strength increases, a peak appears at the critical temperature ($T_c$). This can be und...

  4. The axial charge of the nucleon: lattice results compared with chiral perturbation theory

    International Nuclear Information System (INIS)

    We present recent Monte Carlo data for the axial charge of the nucleon obtained by the QCDSF-UKQCD collaboration for Nf=2 dynamical quarks. A comparison with chiral perturbation theory in finite and infinite volume is attempted

  5. Chiral density wave in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Achim [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Giacosa, Francesco [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Rischke, Dirk H. [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany)

    2015-01-15

    Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4ρ{sub 0}, where ρ{sub 0} is the nuclear matter ground-state density.

  6. Chiral superfluidity for the heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)

    2013-02-15

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate temperatures (T{sub c}

  7. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  8. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    S C Pathak

    2006-04-01

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV. I find that the mass of the state can be fitted to the experimentally observed mass by invoking a color neutral vector field and its interaction with the quarks.

  9. Chiral Symmetry Breaking from Center Vortices

    CERN Document Server

    Höllwieser, Roman; Schweigler, Thomas; Heller, Urs M

    2014-01-01

    We analyze the creation of near-zero modes from would-be zero modes of various topological charge contributions from classical center vortices in SU(2) lattice gauge theory. We show that colorful spherical vortex and instanton configurations have very similar Dirac eigenmodes and also vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry breaking via the Banks-Casher formula. We discuss the influence of the magnetic vortex fluxes on quarks and how center vortices may break chiral symmetry.

  10. Heavy-tailed chiral random matrix theory

    CERN Document Server

    Kanazawa, Takuya

    2016-01-01

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  11. Does There Exist Only One Solution of the Dyson-Schwinger Equation for the Quark Propagator in the Case of Non-Zero Current Quark Mass

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min; PING Jia-Lun; L(U) Xiao-Fu; WANG Fan

    2005-01-01

    @@ It is shown on general ground that there exist two qualitatively distinct solutions of the Dyson-Schwinger equation for the quark propagator in the case of non-zero current quark mass. One solution corresponds to the "NambuGoldstone" phase and the other one corresponds to the "Wigner" phase in the chiral limit.

  12. A new procedure for constructing basis vectors of SU(3)⊃SO(3)

    Science.gov (United States)

    Pan, Feng; Yuan, Shuli; Launey, Kristina D.; Draayer, Jerry P.

    2016-08-01

    A simple and effective algebraic angular momentum projection procedure for constructing basis vectors of SU (3) ⊃ SO (3) ⊃ SO (2) from the canonical U (3) ⊃ U (2) ⊃ U (1) basis vectors is outlined. The expansion coefficients are components of the null-space vectors of a projection matrix with, in general, four nonzero elements in each row, where the projection matrix is derived from known matrix elements of the U (3) generators in the canonical basis. The advantage of the new procedure lies in the fact that the Hill-Wheeler integral involved in the Elliott's projection operator method used previously is avoided, thereby achieving faster numerical calculations with improved accuracy. Selected analytical expressions of the expansion coefficients for the SU (3) irreps [n13 ,n23 ], or equally, (λ , μ) = (n13 -n23 ,n23) with λ and μ the SU (3) labels familiar from the Elliott model, are presented as examples for n23 ≤ 4. Explicit formulae for evaluating SO (3)-reduced matrix elements of SU (3) generators are derived. A general formula for evaluating the SU (3) ⊃ SO (3) Wigner coefficients is given, which is expressed in terms of the expansion coefficients and known U (3) ⊃ U (2) and U (2) ⊃ U (1) Wigner coefficients. Formulae for evaluating the elementary Wigner coefficients of SU (3) ⊃ SO (3), i.e., for the SU (3) coupling [n13 ,n23 ] ⊗ [ 1 , 0 ], are explicitly given with some analytical examples shown to check the validity of the results. However, the Gram-Schmidt orthonormalization is still needed in order to provide orthonormalized basis vectors.

  13. Need for spontaneous breakdown of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Salomone, A.; Schechter, J.; Tudron, T.

    1981-07-15

    The question of whether the chiral symmetry of the theory of strong interactions (with massless quarks) is required to be spontaneously broken is examined in the framework of a previously discussed effective Lagrangian for quantum chromodynamics. The assumption that physical masses of the theory be finite leads in a very direct way to the necessity of spontaneous breakdown. This result holds for all N/sub F/> or =2, where N/sub F/ is the number of different flavors of light quarks. The atypical cases N/sub F/ = 1,2 are discussed separately.

  14. Heavy quarks

    International Nuclear Information System (INIS)

    We discuss the results accumulated during the last five years in heavy quark physics and try to draw a simple general picture of the present situation. The survey is based on a unified point of view resulting from quantum chromodynamics. (orig.)

  15. Scalar resonances as two-quark states

    International Nuclear Information System (INIS)

    On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)

  16. Dynamical lepton and quark mass generation and its consequences

    CERN Document Server

    Hosek, Jiri

    2016-01-01

    We assign the chiral fermion fields of three generations of the Standard model (SM) to triplets of flavor SU(3)_f symmetry, add one triplet of sterile right-handed neutrino fields, and gauge that symmetry. We demonstrate that the resulting asymptotically free, anomaly free quantum flavor dynamics (q.f.d.), strongly coupled in the infrared underlies the Higgs sector of SM and yields a number of testable predictions.

  17. Effective Chiral Symmetry Restoration for Heavy-Light Mesons

    CERN Document Server

    Sazonov, V K; Wagenbrunn, R F

    2014-01-01

    We study the spectrum of heavy-light mesons within a model with linear instantaneous confining potential. The single-quark Green function and spontaneous breaking of chiral symmetry are obtained from the Schwinger-Dyson (gap) equation. For the meson spectrum we derive a Bethe-Salpeter equation (BSE). We solve thiss equation numerically in the heavy-light limit and obtain effective restoration of chiral and $U(1)_A$ symmetries at large spins.

  18. Chiral condensate from the twisted mass Dirac operator spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.

  19. Chiral soliton model vs. pentaquark structure for (1540)

    Indian Academy of Sciences (India)

    R Ramachandran

    2005-09-01

    The exotic baryon + (1540 MeV) is visualized as an expected (iso) rotational excitation in the chiral soliton model. It is also argued as a pentaquark baryon state in a constituent quark model with strong diquark correlations. I contrast these two points of view; observe the similarities and differences between the two pictures. Collective excitation, the characteristic of chiral soliton model, points toward small mixing of representations in the wake of (3) breaking. In contrast, constituent quark models prefer near `ideal' mixing, similar to - mixing.

  20. Z-Z' Mixing and Z-Mediated FCNCs in SU(3)_C x SU(3)_L x U(1)_X Models

    CERN Document Server

    Buras, Andrzej J; Girrbach-Noe, Jennifer

    2014-01-01

    Most of the existing analyses of FCNC processes in the 331 models, based on the gauge group SU(3)_C x SU(3)_L x U(1)_X, take only into account tree-level exchanges of a new heavy neutral gauge boson Z'. However due to the Z-Z' mixing also corresponding contributions from Z boson are present that are usually neglected. We calculate the impact of these contributions on Delta F=2 processes and rare K, B_s and B_d decays for different values of a parameter beta, which distinguishes between various 331 models and for different fermion representations under the SU(3)_L group. We find a general expression for the Z-Z' mixing in terms beta, M_Z, M_Z' and tan(bar{beta}), familiar from 2 Higgs Doublet models, that differs from the one quoted in the literature. We study in particular the models with beta=+-n/sqrt{3} with n=1,2 which have recently been investigated by us in the context of new data on B_{s,d}->mu^+ mu^- and B_d->K^*(K)mu^+ mu^-. We find that these new contributions can indeed be neglected in the case of D...

  1. Hot Quark Matter with an Axial Chemical Potential

    CERN Document Server

    Gatto, Raoul

    2011-01-01

    We analyze the phase diagram of hot quark matter in presence of an axial chemical potential, $\\mu_5$. The latter is introduced to mimic the chirality transitions induced, in hot Quantum Chromodynamics, by the strong sphaleron configurations. In particular, we study the curvature of the critical line at small $\\mu_5$, the effects of a finite quark mass and of a vector interaction. Moreover, we build the mixed phase at the first order phase transition line, and draw the phase diagram in the chiral density and temperature plane. We finally compute the full topological susceptibility in presence of a background of topological charge.

  2. Phase diagram and critical end point for strongly interacting quarks.

    Science.gov (United States)

    Qin, Si-xue; Chang, Lei; Chen, Huan; Liu, Yu-xin; Roberts, Craig D

    2011-04-29

    We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential-temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical end point at (μ(E),T(E))∼(1.0,0.9)T(c), where T(c) is the critical temperature for chiral-symmetry restoration at μ=0, and find that a domain of phase coexistence opens at the critical end point whose area increases as a confinement length scale grows.

  3. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    CERN Document Server

    Vargas, C E; Draayer, J P

    2000-01-01

    The Quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in the Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In a recent work was shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible represntations (irreps) of SU(3) are needed to describe the Yrast band, the leading S = 0 irrep augmented with the leading S = 1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a "realistic but schematic" Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20-Ne, 22-Ne, 24-Mg and 28-Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well ...

  4. Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory

    CERN Document Server

    Aubin, C

    2007-01-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\\schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \\schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass depende...

  5. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  6. Extended van Royen-Weisskopf formalism for lepton-antilepton meson decay widths within non-relativistic quark models

    OpenAIRE

    Blanco, L. A.; Bonnaz, R.; Silvestre-Brac, B.; Fernandez, F; Valcarce, A.

    2001-01-01

    The classical van Royen-Weisskopf formula for the decay width of a meson into a lepton-antilepton pair is modified in order to include non-zero quark momentum contributions within the meson as well as relativistic effects. Besides, a phenomenological electromagnetic density for quarks is introduced. The meson wave functions are obtained from two different models: a chiral constituent quark model and a quark potential model including instanton effects. The modified van Royen-Weisskopf formula ...

  7. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  8. Chiral streamers

    Science.gov (United States)

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken

    2015-10-01

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  9. Non-uniform chiral phase studied within the Polyakov NJL model

    OpenAIRE

    Partyka, Tomasz L.

    2010-01-01

    We consider how does the introduction of a Polyakov loop affects the spatially inhomogeneous quark condensate. The primary result of our work is that the existence of the spatially non-uniform chiral phase is confirmed within the Polyakov NJL model in a chiral limit. These findings are obtained both in a 3d-cutoff and in a Schwinger (proper time) regularization schemes.

  10. NJL model approach to diquarks and baryons in quark matter

    CERN Document Server

    Blaschke, D; Zablocki, D

    2015-01-01

    We describe baryons as quark-diquark bound states at finite temperature and density within the NJL model for chiral symmetry breaking and restoration in quark matter. Based on a generalized Beth-Uhlenbeck approach to mesons and diquarks we present in a first step the thermodynamics of quark-diquark matter which includes the Mott dissociation of diquarks at finite temperature. In a second step we solve the Bethe-Salpeter equation for the baryon as a quark-diquark bound state in quark-diquark matter. We obtain a stable, bound baryon even beyond the Mott temperature for diquark dissociation since the phase space occupation effect (Pauli blocking for quarks and Bose enhancement for diquarks) in the Bethe-Salpeter kernel for the nucleon approximately cancel so that the nucleon mass follows the in-medium behaviour of the quark and diquark masses towards chiral restoration. In this situation the baryon is obtained as a "borromean" three-quark state in medium because the two-particle state (diquark) is unbound while ...

  11. Account of Nonpolynomial SU(3)-Breaking Effects By Use of Quantum Groups As Flavor Symmetries

    CERN Document Server

    Gavrilik, A M

    1998-01-01

    Using instead of ordinary flavour symmetries SU(n_f) their corresponding quantum (q-deformed) analogs yields new baryon mass sum rules of extreme accuracy. We show, in the 3-flavour case, that such approach accounts for highly nonlinear (nonpolynomial) SU(3)-breaking effects both in the octet and decuplet baryon masses. A version of this approach is considered that involves q-covariant ingredients in the mass operator. The resulting new 'q-deformed' mass relation (q-MR) is simpler than previously derived q-MRs, but requires, for its empirical validity, a fitting to fix the value of the deformation parameter q. Well-known Gell-Mann--Okubo (GMO) octet mass sum rule is found to result not only from usual SU(3), but also from some exotic symmetry corresponding to the q=-1 (i.e., singular) limit of the q-algebra U_q(su_3).

  12. AdS/dCFT one-point functions of the SU(3) sector

    CERN Document Server

    de Leeuw, Marius; Mori, Stefano

    2016-01-01

    We propose a closed formula for the tree-level one-point functions of non-protected operators belonging to an SU(3) sub-sector of the defect CFT dual to the D3-D5 probe brane system with background gauge field flux, k, valid for k=2. The formula passes a number of non-trivial analytical and numerical tests. Our proposal is based on expressing the one-point functions as an overlap between a Bethe eigenstate of the SU(3) spin chain and a certain matrix product state, deriving various factorization properties of the Gaudin norm and performing explicit computations for shorter spin chains. As its SU(2) counterpart, the one-point function formula for the SU(3) sub-sector is of determinant type. We discuss the the differences with the SU(2) case and the challenges in extending the present formula beyond k=2.

  13. Phase diagram and nucleation in the Polyakov-loop-extended Quark-Meson truncation of QCD with the unquenched Polyakov-loop potential

    OpenAIRE

    Stiele, Rainer; Schaffner-Bielich, Juergen

    2016-01-01

    Unquenching of the Polyakov-loop potential showed to be an important improvement for the description of the phase structure and thermodynamics of strongly-interacting matter at zero quark chemical potentials with Polyakov-loop extended chiral models. This work constitutes the first application of the quark backreaction on the Polyakov-loop potential at nonzero density. The observation is that it links the chiral and deconfinement phase transition also at small temperatures and large quark che...

  14. A Statistical Model Of A Heavy Quark Meson

    CERN Document Server

    Smith, A L

    1999-01-01

    An effective field approximation, similar to the Thomas- Fermi model of an atom, is proposed for studying the thermodynamic properties of a heavy quark meson within a quark-gluon plasma. The approximation for the case of an SU(2) gauge theory with central monopole and dipole point charges is shown to be plagued with singularities. For the case of SU(3) with a central core, to which the quark is confined, an approximation is developed for a high density low temperature system. Thermodynamic quantities are calculated as functions of of environmental parameters and the heavy quark meson is shown to be unstable. Instability is shown to increase with increased density. QCD corrections to the model are expected to render the configuration stable for sufficiently low density and temperature.

  15. Note on Strange Quarks in the Nucleon

    CERN Document Server

    Steininger, K

    1994-01-01

    Scalar matrix elements involving strange quarks are studied in several models. Apart from a critical reexamination of results obtained in the Nambu and Jona-Lasinio model we study a scenario, motivated by instanton physics, where spontaneous chiral symmetry breaking is induced by the flavor-mixing 't Hooft interaction only. We also investigate possible contributions of virtual kaon loops to the strangeness content of the nucleon.

  16. Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    A systematic study of contraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with spatial angular momenta they turn out to be nonholonomic. The complete elimination of the unphysical gauge and rotatinal degrees of freedom is achieved using Dirac's constraint formalism. We present an effective unconstrained formulation of the general SU(2) Yang-Mills classical mechanics as well as for SU(3) in the subspace of vanishing spatial angular momenta that is well suited for further explicit dynamical investigations. (orig.)

  17. Topological susceptibility in the SU(3) random vortex world-surface model

    CERN Document Server

    Engelhardt, M

    2008-01-01

    The topological charge is constructed for SU(3) center vortex world-surfaces composed of elementary squares on a hypercubic lattice. In distinction to the SU(2) case investigated previously, it is necessary to devise a proper treatment of the color structure at vortex branchings, which arise in the SU(3) case, but not for SU(2). The construction is used to evaluate the topological susceptibility in the random vortex world-surface model of infrared Yang-Mills dynamics. Results for the topological susceptibility are reported as a function of temperature, including both the confined as well as the deconfined phase.

  18. On the thermodynamically consistent quasiparticle model of quark gluon plasma

    CERN Document Server

    Kadam, Guru Prakash

    2016-01-01

    We give the alternative formulation of quasiparticle model of quark gluon plasma with medium dependent dispersion relation. The model is thermodynamically consistent provided the medium dependent contribution to the energy density is taken in to account. We establish the connection of our model with other variants of quasiparticle models which are thermodynamically consistent. We test the model by comparing the equation of state with the lattice gauge theory simulations of SU(3) pure gluodynamics .

  19. Quark model

    OpenAIRE

    Amsler, C.; DeGrand, T.; Krusche, B.

    2008-01-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and re...

  20. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  1. The no-drag frame for anomalous chiral fluid

    CERN Document Server

    Stephanov, Mikhail A

    2015-01-01

    We show that for an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. However, unlike ordinary superfluid flow, the anomalous chiral currents do transport entropy in this frame. We show that the second law of thermodynamics completely determines the amounts of these anomalous non-dissipative currents in the "no-drag frame" as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and quark-gluon plasma at high temperature.

  2. The neutron anomaly in the gamma N --> eta N cross section through the looking glass of the flavour SU(3) symmetry

    CERN Document Server

    Boika, T; Polyakov, M V

    2014-01-01

    We study the implications of the flavour SU(3) symmetry for various interpretations of the neutron anomaly in the $\\gamma N\\to\\eta N$ cross section. We show that the explanation of the neutron anomaly due to interference of known N(1535) and N(1650) resonances implies that N(1650) resonance should have a huge coupling to $\\phi$-meson -- at least 5 times larger than the corresponding $\\rho^0$ coupling. In terms of quark degrees of freedom this means that the well-known N(1650) resonance must be a "cryptoexotic pentaquark"-- its wave function should contain predominantly an $s\\bar s$ component. It turns out that the "conventional" interpretation of the neutron anomaly by the interference of known resonances metamorphoses into unconventional physics picture of N(1650).

  3. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  4. Chiral geometry in multiple chiral doublet bands

    CERN Document Server

    Zhang, Hao

    2015-01-01

    The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \

  5. Dynamics and Stability of Chiral Fluid

    CERN Document Server

    Mishustin, Igor N; Denicol, Gabriel S; Torrieri, Giorgio

    2014-01-01

    Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equilibrium this model leads to a chiral phase transition which, depending on the choice of the quark-meson coupling constant, could be a crossover or a first order one. We investigate the stability of the chiral fluid in the static and expanding backgrounds by considering the evolution of perturbations with respect to the mean-field solution. In the static background the spectrum of plane-wave perturbations consists of two branches, one corresponding to the sound waves and another to the sigma-meson excitations. For large couplings these two branches "cross" and the excitation spectrum acquires exponentially growing modes. The stability analysis is also done for the Bjorken-like background solution by explicitly solving the time-dependent differential equation for per...

  6. Covariant meson-baryon scattering with chiral and large Nc constraints

    International Nuclear Information System (INIS)

    We give a review of recent progress on the application of the relativistic chiral SU(3) Lagrangian to meson-baryon scattering. It is shown that a combined chiral and 1/Nc expansion of the Bethe-Salpeter interaction kernel leads to a good description of the kaon-nucleon, antikaon-nucleon and pion-nucleon scattering data typically up to laboratory momenta of plab ≅ 500 MeV. We solve the covariant coupled channel Bethe-Salpeter equation with the interaction kernel truncated to chiral order Q3 where we include only those terms which are leading in the large Nc limit of QCD. (orig.)

  7. Neutrino emissivities and bulk viscosity in neutral two flavor quark matter

    CERN Document Server

    Berdermann, J; Fischer, T; Kachanovich, A

    2016-01-01

    We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter under compact star constraints within a NJL-type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark matter leads to a density dependent change of quark masses, chemical potentials and diquark gap. A self-consistent treatment of these physical quantities influences on the microscopic calculations of transport properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfill the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare our results with the phenomenologically successful, but yet heuristic 2SC+X phase. We show that the microscopically founded iso-CSL phase can replace the purely phenomenological 2SC+X phase in modern simulations of the cooling evolution for compact stars with color superconducting quark matter interior.

  8. Predictive CP violating relations for charmless two-body decays of beauty baryons Ξb-,0 and Λb0 with flavor SU (3) symmetry

    Science.gov (United States)

    He, Xiao-Gang; Li, Guan-Nan

    2015-11-01

    Several baryons containing a heavy b-quark have been discovered. The decays of these states provide new platform for testing the standard model (SM). We study CP violation in SM for charmless two-body decays of the flavor SU (3) anti-triplet beauty baryon (b-baryon) B = (Ξb-, Ξb0, Λb0) in a model independent way. We found, in the flavor SU (3) symmetry limit, a set of new predictive relations among the branching ratio Br and CP asymmetry ACP for B decays, such as ACP (Ξb- →K0Ξ-) /ACP (Ξb- →Kbar0Σ-) = - Br (Ξb- →Kbar0Σ-) / Br (Ξb- →K0Σ-), ACP (Λb0 →π- p) /ACP (Ξb0 →K-Σ+) = - Br (Ξb0 →K-Σ+)τ Λb0 / Br (Λb0 →π- p)τ Ξb0, and ACP (Λb0 →K- p) /ACP (Ξb0 →π-Σ+) = - Br (Ξb0 →π-Σ+)τ Λb0 / Br (Λb0 →K- p)τ Ξb0. Future data from LHCb can test these relations and also other relations found.

  9. Quark mass dependence of H-dibaryon

    CERN Document Server

    Yamaguchi, Yasuhiro

    2016-01-01

    The H-dibaryon is the exotic multiquark state with baryon number 2 and strangeness $-2$. The existence of the deeply bound H-dibaryon is excluded by the observation of the double hypernuclei. However the recent Lattice QCD simulations have found the bound state below the $\\Lambda\\Lambda$ threshold with large quark masses by HALQCD and NPLQCD collaborations. In this talk, the quark mass dependence of the H-dibaryon mass is discussed using the pionless effective field theory (EFT) where a bare H-dibaryon field is coupled with two-baryon states. We determine the parameters in this theory by fitting the recent Lattice QCD results in the SU(3) limit. As a result, we obtain the attractive scattering length at the physical point where the H-dibaryon is unbound.

  10. Chiral matrix model of the semi-QGP in QCD

    Science.gov (United States)

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-08-01

    Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the

  11. Evidence for hard chiral logarithms in quenched lattice QCD

    CERN Document Server

    Kim, S; Kim, Seyong; Sinclair, D K

    1995-01-01

    We present the first direct evidence that quenched QCD differs from full QCD in the chiral (m_q \\rightarrow 0) limit, as predicted by chiral perturbation theory, from our quenched lattice QCD simulations at \\beta = 6/g^2 = 6.0. We measured the spectrum of light hadrons on 16^3 \\times 64, 24^3 \\times 64 and 32^3 \\times 64, using staggered quarks of masses m_q=0.01, m_q=0.005 and m_q=0.0025. The pion masses showed clear evidence for logarithmic violations of the PCAC relation m_{\\pi}^2 \\propto m_q, as predicted by quenched chiral perturbation theory. The dependence on spatial lattice volume precludes this being a finite size effect. No evidence was seen for such chiral logarithms in the behaviour of the chiral condensate \\langle\\bar{\\psi}\\psi\\rangle.

  12. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    CERN Document Server

    Buballa, Michael

    2015-01-01

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color-superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking...

  13. On chiral symmetry breaking, topology and confinement

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, Edward

    2014-08-15

    We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice results further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of “origin of mass” and Brown–Rho scaling: a number of empirical facts contradicts to the idea that masses of quarks and such hadrons as ρ,N decrease near T{sub c}. We argue that while at T=0 the main contribution to the effective quark mass is chirally odd m{sub χ/}, near T{sub c} it rotates to chirally-even component m{sub χ}, because “infinite clusters” of topological solitons gets split into finite ones. Recent progress in understanding of topology require introduction of nonzero holonomy 〈A{sub 0}〉≠0, which splits instantons into N{sub c} (anti)selfdual “instanton–dyons”. Qualitative progress, as well as first numerical studies of the dyon ensemble are reported. New connections between chiral symmetry breaking and confinement are recently understood, since instanton–dyons generate holonomy potential with a minimum at confining value, if the ensemble is dense enough.

  14. Calculation of the glueball mass-spectrum of SU(2) and SU(3) non-abelian lattice gauge theories II: SU(3)

    International Nuclear Information System (INIS)

    We calculate the glueball mass spectrum in the SU(3) lattice regularized gauge theory. We find four light glueballs: the 0++, 2++, 0-+, and, most interestingly from the experimental point of view, the oddball 1-+. We calculate the 0++ and 2++ masses over a range of β values and find that both states conform to continuum renormalization group behaviour to a very significant degree. The question of metastable states and temperature is addressed in detail. Finally we discuss and resolve contrary claims in the recent literature. (orig.)

  15. Lattice QCD study of partial restoration of chiral symmetry in the flux-tube

    CERN Document Server

    Iritani, Takumi; Hashimoto, Shoji

    2014-01-01

    Using the overlap-Dirac eigenmodes, we study the spatial distribution of the chiral condensate around static color sources in lattice QCD. Between the color sources, there appears a color-flux tube, which leads a linear confining potential. By measuring a local value of the chiral condensate, we show that the magnitude of the condensate is reduced inside the flux-tube for both quark-antiquark and three-quark systems. These results suggest that chiral symmetry is partially restored in the flux-tube. The reduction of the condensate is estimated to be about 20 $\\sim$ 30% at the center of the flux.

  16. Invariant Differential Operators for Non-Compact Lie Groups: the Reduced SU(3,3) Multiplets

    CERN Document Server

    Dobrev, V K

    2013-01-01

    In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact algebras $su(n,n)$. Earlier were given the main multiplets of indecomposable elementary representations for $n\\leq 4$, and the reduced ones for $n=2$. Here we give the reduced multiplets for the algebra $su(3,3)$.

  17. Fortran MPI Checkerboard Code for SU(3) Lattice Gauge Theory II

    OpenAIRE

    Berg, Bernd A.; Wu, Hao

    2009-01-01

    We study the performance of MPI checkerboard code for SU(3) lattice gauge theory as function of the number of MPI processes, which run in parallel on an identical number of CPU cores. Computing platforms explored are a small PC cluster at FSU and the Cray at NERSC.

  18. Properties of the Z(3) interface in (2+1)-D SU(3) gauge theory

    CERN Document Server

    West, S T

    1995-01-01

    A study is made of some properties of this interface in the SU(3) pure gauge theory in 2+1 dimensions. At high temperatures, the interface tension is measured and shows agreement with the perturbative prediction. Near the critical temperature, the behaviour of the interface is examined, and its fluctuations compared to a scalar field theory model.

  19. Monte Carlo Renormalization Group study for SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    A special Monte Carlo Renormalization Group method, the so-called ratio method is discussed. Possible systematic error of the method is investigated, and a systematic improvement is proposed based on perturbation theory. The method is applied to determine the β-function of 4 dimensional SU(3) pure gauge theory

  20. Splitting the spectral flow and the SU(3) Casson invariant for spliced sums

    DEFF Research Database (Denmark)

    Boden, Hans U.; Himpel, Benjamin

    2009-01-01

    We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3–manifolds split along a torus....

  1. The strong CP problem and nucleon stability in the [SU(3)]3 trinification model

    International Nuclear Information System (INIS)

    We argue the Peccei-Quinn mechanism in the [SU(3)]3 trinification model. It turns out that the introduction of the Peccei-Quinn symmetry by allowing a third Higgs 27-plet leads to baryon-number conservation. Related discussions are included also. (orig.)

  2. Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang

    2005-01-01

    Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.

  3. Spin polarization in high density quark matter under a strong external magnetic field

    CERN Document Server

    Tsue, Yasuhiko; Providencia, Constanca; Yamamura, Masatoshi; Bohr, Henrik

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the Nambu-Jona-Lasinio model with axial vector-type four-point interaction or tensor-type four-point interaction between quarks. In the axial vector-type interaction, it is shown that a quark spin polarized phase is realized in all region of the quark chemical potential under a strong external magnetic field within the lowest Landau level approximation. Each phase is characterized by the chiral condensate or dynamical quark mass. On the other hand, in the tensor-type interaction, it is also shown that the quark spin polarized phase does not appear even if there exists the strong external magnetic field. However, if the anomalous magnetic moment of quark is taken into account, it may be possible to realize the quark spin polarized phase.

  4. Hadronic Lorentz Violation in Chiral Perturbation Theory

    CERN Document Server

    Kamand, Rasha; Schindler, Matthias R

    2016-01-01

    Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-four Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. The resulting bounds on four pion parameters are at the $10^{-23}$ level, representing improvements of ten orders of magnitude.

  5. The effect of the Polyakov loop on the chiral phase transition

    OpenAIRE

    Szép Zs.; Markó G.

    2010-01-01

    The Polyakov loop is included in the SU(2)_L x SU(2)_R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (sigma,pi) meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors N_f. Keeping the fermion propagator at i...

  6. The NJL Model for Quark Fragmentation Functions

    Energy Technology Data Exchange (ETDEWEB)

    T. Ito, W. Bentz, I. Cloet, A W Thomas, K. Yazaki

    2009-10-01

    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain the reason why the elementary (lowest order) fragmentation process q → qπ is completely inadequate to describe the empirical data, although the “crossed” process π → qq describes the quark distribution functions in the pion reasonably well. Then, taking into account cascade-like processes in a modified jet-model approach, we show that the momentum and isospin sum rules can be satisfied naturally without introducing any ad-hoc parameters. We present numerical results for the Nambu-Jona-Lasinio model in the invariant mass regularization scheme, and compare the results with the empirical parametrizations. We argue that this NJL-jet model provides a very useful framework to calculate the fragmentation functions in an effective chiral quark theory.

  7. Up quark mass in lattice QCD with three light dynamical quarks and implications for strong CP invariance.

    Science.gov (United States)

    Nelson, Daniel R; Fleming, George T; Kilcup, Gregory W

    2003-01-17

    A standing mystery in the standard model is the unnatural smallness of the strong CP violating phase. A massless up quark has long been proposed as one potential solution. A lattice calculation of the constants of the chiral Lagrangian essential for the determination of the up quark mass, 2alpha(8)-alpha(5), is presented. We find 2alpha(8)-alpha(5)=0.29+/-0.18, which corresponds to m(u)/m(d)=0.410+/-0.036. This is the first such calculation using a physical number of dynamical light quarks, N(f)=3.

  8. Quark masses and their hierarchies

    Science.gov (United States)

    Ida, M.

    1987-12-01

    Electroweak symmetry breaking is attributed to dynamical generation of quark masses. Quarks q (and leptons l) are assumed to be produced by hypercolor confinement of preons at an intermediate scale Λ hc. Hierarchies observed in the q mass spectra can be explained by a BCS mechanism if the color interaction is enough asymptotically free and if residual ones emerging by the confinement are medium strong. The former assumption claims that N≦4, where N is the family number of q and l. Dynamical equations to determine q masses and mixings are given, but they require knowledge on the physics at Λ hc. A phenomenological approach is also made on the basis of an SU(7)× SU(7) chiral preon model with N=4. The mass ratio m t/ mb is related to ( m c/ m s)ηB with η B≃1.1 and m t'/ mb' to ( m u/ m d)ηA with η A≃1.4. In this scheme the fourth down quark is the heaviest (˜ 110 GeV) and contributes dominantly to F 2, where F is the Fermi scale.

  9. Calcium quarks.

    Science.gov (United States)

    Niggli, Ernst; Egger, Marcel

    2002-05-01

    Elementary subcellular Ca2+ signals arising from the opening of single ion channels may offer the possibility to examine the stochastic behavior and the microscopic chemical reaction rates of these channel proteins in their natural environment. Such an analysis can yield detailed information about the molecular function that cannot be derived from recordings obtained from an ensemble of channels. In this review, we summarize experimental evidence suggesting that Ca2+ sparks, elementary Ca2+ signaling events of cardiac and skeletal muscle excitation contraction coupling, may be comprised of a number of smaller Ca2+ signaling events, the Ca2+ quarks.

  10. Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge

    CERN Document Server

    Reinhardt, H

    2016-01-01

    The chiral and deconfinement phase transitions are investigated within the variational Hamiltonian approach to QCD in Coulomb gauge. The temperature $\\beta^{-1}$ is introduced by compactifying a spatial dimension. Thereby the whole temperature dependence is encoded in the vacuum state on the spatial manifold $\\mathbb{R}^2 \\times S^1(\\beta)$. The chiral quark condensate and the dual quark condensate (dressed Polyakov loop) are calculated as function of the temperature. From their inflection points the pseudo-critical temperatures for the chiral and deconfinement crossover transitions are determined. Using the zero-temperature quark and gluon propagators obtained within the variational approach as input, we find 226 MeV and 262 MeV, respectively, for the chiral and deconfinement transition.

  11. Parity-violating $\\pi NN$ coupling constant from the flavor-conserving effective weak chiral Lagrangian

    CERN Document Server

    Hyun, Chang Ho; Lee, Hee-Jung

    2016-01-01

    We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.

  12. Chiral Lagrangians at finite temperature and the Polyakov Loop

    OpenAIRE

    Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.

    2004-01-01

    Heat kernel expansions at finite temperature of massless QCD and chiral quark models generate effective actions relevant for both low and high temperature QCD. The key relevance of the Polyakov Loop to maintain the large and non-perturbative gauge invariance at finite temperature is stressed.

  13. Twisted mass quarks and the phase structure of lattice QCD

    International Nuclear Information System (INIS)

    The phase structure of zero temperature twisted mass lattice QCD is investigated. We find strong metastabilities in the plaquette observable when the untwisted quark mass assumes positive or negative values. We provide interpretations of this phenomenon in terms of chiral symmetry breaking and the effective potential model of Sharpe and Singleton. (orig.)

  14. Massive Quark Propagator in the Colour-Superconducting Phase

    Institute of Scientific and Technical Information of China (English)

    黄梅; 庄鹏飞; 赵维勤

    2002-01-01

    A more general expression for the quark propagator including both chiral and diquark condensates has been derived by using energy projectors. This makes it possible to study the phase transition from the hadron phase to the colour-superconductivity phase in the moderate baryon density region by using the Feynman diagrammatic method or the Green function method.

  15. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  16. pi-pi and pi-K scatterings in three-flavour resummed chiral perturbation theory

    CERN Document Server

    Descotes-Genon, S

    2008-01-01

    The (light but not-so-light) strange quark may play a special role in the low-energy dynamics of QCD. The presence of strange quark pairs in the sea may have a significant impact of the pattern of chiral symmetry breaking : in particular large differences can occur between the chiral limits of two and three massless flavours (i.e., whether m_s is kept at its physical value or sent to zero). This may induce problems of convergence in three-flavour chiral expansions. To cope with such difficulties, we introduce a new framework, called Resummed Chiral Perturbation Theory. We exploit it to analyse pi-pi and pi-K scatterings and match them with dispersive results in a frequentist framework. Constraints on three-flavour chiral order parameters are derived.

  17. Reduction of the chiral order parameter by a nuclear medium

    International Nuclear Information System (INIS)

    We propose a model independent procedure to deduce from the 1s-binding energy of heavy, neutron rich pionic atoms, the isovector scattering length b1 of the pion nucleus interaction. It is related to the pion decay constant fπ, the order parameter of spontaneous chiral symmetry breaking and thus to the value of the chiral quark condensate. Based on the results with pionic 205Pb, we find with the assertion that only the isovector part of the pion-nucleus interaction be modified by a QCD effect, a reduction of the quark condensate by 30% in a 205Pb nucleus. Forthcoming experiments to measure pionic 1s-binding energies in Sn-isotopes, including isotope shifts, will yield decisive information on the quark condensate without assertion. (orig.)

  18. Nucleating quark droplets in the core of magnetars

    CERN Document Server

    Kroff, Daniel

    2014-01-01

    To assess the possibility of homogeneous nucleation of quark matter in magnetars, we investigate the formation of chirally symmetric droplets in a cold and dense environment in the presence of an external magnetic field. As a framework, we use the one-loop effective potential of the two-flavor quark-meson model. Within the thin-wall approximation, we extract all relevant nucleation parameters and provide an estimate for the typical time scales for the chiral phase conversion in magnetized compact star matter. We show how the critical chemical potential, critical radius, correlation length and surface tension are affected, and how their combination to define the nucleation time seems to allow for nucleation of quark droplets in magnetar matter even for not so small values of the surface tension.

  19. Inside the Quarks

    OpenAIRE

    Rodionov, E. N.

    1994-01-01

    We build a model which is based on the assumption that the {\\bf c} and {\\bf s,b} quarks are excited states of {\\bf u} and {\\bf d} quarks. This model predicts the non-existence of the {\\bf top} quark and estimates the size of the quarks to be of order $10^{-7}$ fm.

  20. Heterotic and type II orientifold compactifications on SU(3) structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Benmachiche, I.

    2006-07-15

    We study the four-dimensional N=1 effective theories of generic SU(3) structure compactifications in the presence of background fluxes. For heterotic and type IIA/B orientifold theories, the N=1 characteristic data are determined by a Kaluza-Klein reduction of the fermionic actions. The Kaehler potentials, superpotentials and the D-terms are entirely encoded by geometrical data of the internal manifold. The background flux and the intrinsic torsion of the SU(3) structure manifold, gives rise to contributions to the four-dimensional F-terms. The corresponding superpotentials generalize the Gukov-Vafa-Witten superpotential. For the heterotic compactification, the four-dimensional fermionic supersymmetry variations, as well as the conditions on supersymmetric vacua, are determined. The Yukawa couplings of the theory turn out to be similar to their Calabi-Yau counterparts. (Orig.)