WorldWideScience

Sample records for chiral liquid crystal

  1. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  2. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...

  3. Macroscopic chirality of a liquid crystal from nonchiral molecules

    International Nuclear Information System (INIS)

    Jakli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-01-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment

  4. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound.

    Science.gov (United States)

    Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai

    2014-01-21

    A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.

  5. Optical defect modes in chiral liquid crystals

    International Nuclear Information System (INIS)

    Belyakov, V. A.; Semenov, S. V.

    2011-01-01

    An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM) frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure are obtained and the corresponding dependences are plotted for some values of the DM structure parameters. Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC-defect layer-CLC) are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.

  6. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    Directory of Open Access Journals (Sweden)

    Rui Yuan

    2017-01-01

    Full Text Available Adding a chiral dopant in twisted nematic (TN liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN or super TN (STN liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  7. Chiral HPLC and physical characterisation of orthoconic antiferroelectric liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Vojtylová, Terézia; Żurowska, M.; Milewska, K.; Hamplová, Věra; Sýkora, D.

    2016-01-01

    Roč. 43, č. 9 (2016), s. 1244-1250 ISSN 0267-8292 R&D Projects: GA MŠk(CZ) LD14007; GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : liquid crystals * chiral HPLC * orthoconic antiferroelectric LC Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.661, year: 2016

  8. Chirality transfer technique between liquid crystal microdroplets using microfluidic systems

    Science.gov (United States)

    Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun

    2018-02-01

    Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.

  9. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors

    NARCIS (Netherlands)

    Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M.

    2014-01-01

    Current developments in the field of thermotropic chiral-nematic liquid crystals as sensors are discussed. These one dimensional photonic materials are based on low molecular weight liquid crystals and chiral-nematic polymeric networks. For both low molecular weight LCs and polymer networks,

  10. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  11. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Visualizing Molecular Chirality in the Organic Chemistry Laboratory Using Cholesteric Liquid Crystals

    Science.gov (United States)

    Popova, Maia; Bretz, Stacey Lowery; Hartley, C. Scott

    2016-01-01

    Although stereochemistry is an important topic in second-year undergraduate organic chemistry, there are limited options for laboratory activities that allow direct visualization of macroscopic chiral phenomena. A novel, guided-inquiry experiment was developed that allows students to explore chirality in the context of cholesteric liquid crystals.…

  13. Angular dependences of the luminescence and density of photon states in a chiral liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Umanskii, B A; Blinov, L M; Palto, S P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation)

    2013-11-30

    Luminescence spectra of a laser dye-doped chiral liquid crystal have been studied in a wide range of angles (up to 60°) to the axis of its helical structure using a semicylindrical quartz prism, which made it possible to observe the shift and evolution of the photonic band gap in response to changes in angle. Using measured spectra and numerical simulation, we calculated the spectral distributions of the density of photon states in such a cholesteric crystal for polarised and unpolarised light, which characterise its structure as that of a chiral one-dimensional photonic crystal. (optics of liquid crystals)

  14. Controlling chirality with helix inversion in cholesteric liquid crystals

    NARCIS (Netherlands)

    Katsonis, Nathalie Hélène; Lacaze, E.; Ferrarini, A.

    2012-01-01

    The helical organization of cholesteric liquid crystals is omnipresent in living matter. Achieving control over the structure of the cholesteric helix consequently holds great potential for developing stimuli-responsive materials matching the level of sophistication of biological systems. In

  15. New chiral liquid crystal with unconventional dioxane terminal unit

    Czech Academy of Sciences Publication Activity Database

    Perkowski, P.; Bubnov, Alexej; Mrukiewicz, M.; Pociecha, D.; Piecek, W.; Hamplová, Věra; Kašpar, Miroslav

    2014-01-01

    Roč. 87, 10-11 (2014), s. 1024-1037 ISSN 0141-1594 R&D Projects: GA MŠk 7AMB13PL041; GA MŠk(CZ) LD14007; GA MŠk(CZ) 7AMB14PL035; GA ČR GA13-14133S Grant - others:AV ČR(CZ) M100101211; AVČR(CZ) M100101204; EU - ICT (XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : chiral liquid crysta * pentaglyform unit * structural properties * smectic phase * hexagonal ordering * self-assembling Subject RIV: JJ - Other Materials Impact factor: 0.954, year: 2014

  16. Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yablonskii, S. V., E-mail: yablonskii2005@yandex.ru; Bondarchuk, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Soto-Bustamante, E. A.; Romero-Hasler, P. N. [Universidad de Chile (Chile); Ozaki, M. [Osaka University, Department of Electronic Engineering, Faculty of Engineering (Japan); Yoshino, K. [Shimane Institute for Industrial Technology (Japan)

    2015-04-15

    In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.

  17. Molecular engineering of chiral colloidal liquid crystals using DNA origami

    Science.gov (United States)

    Siavashpouri, Mahsa; Wachauf, Christian H.; Zakhary, Mark J.; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir

    2017-08-01

    Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.

  18. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  19. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

    Science.gov (United States)

    Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor

    2017-12-01

    Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

  20. A fast anharmonic mode in electrooptical switching of liquid crystal structures based on chiral nematics

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Barnik, M I; Blinov, L M; Umanskii, B. A., E-mail: umanskii@yahoo.com; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-09-15

    Polarization, spectral, and relaxation features of a new electrooptical effect in oriented layers of chiral nematic liquid crystals (LCs) are considered. The physics behind this electrooptical effect is the induction of higher order spatial harmonics in the helical distribution of the director field, which ensures the high speed of electrooptical response. It is shown that the spectral properties of the electrooptical response can be effectively controlled by varying the optical anisotropy of the LC and the pitch of the helical structure.

  1. Electroclinic effect in the chiral lamellar α phase of a lyotropic liquid crystal

    Science.gov (United States)

    Harjung, Marc D.; Giesselmann, Frank

    2018-03-01

    In thermotropic chiral Sm -A* phases, an electric field along the smectic layers breaks the D∞ symmetry of the Sm -A* phase and induces a tilt of the liquid crystal director. This so-called electroclinic effect (ECE) was first reported by Garoff and Meyer in 1977 and attracted substantial scientific and technological interest due to its linear and submicrosecond electro-optic response [S. Garoff and R. B. Meyer, Phys. Rev. A 19, 338 (1979), 10.1103/PhysRevA.19.338]. We now report the observation of an ECE in the pretransitional regime from a lyotropic chiral lamellar Lα* phase into a lyo-Sm -C* phase, the lyotropic analog to the thermotropic Sm -C* phase which was recently discovered by Bruckner et al. [Angew. Chem. Int. Ed. 52, 8934 (2013), 10.1002/anie.201303344]. We further show that the observed ECE has all signatures of its thermotropic counterpart, namely (i) the effect is chiral in nature and vanishes in the racemic Lα phase, (ii) the effect is essentially linear in the sign and magnitude of the electric field, and (iii) the magnitude of the effect diverges hyperbolically as the temperature approaches the critical temperature of the second order tilting transition. Specific deviations between the ECEs in chiral lamellar and chiral smectic phases are related to the internal field screening effect of electric double layers formed by inevitable ionic impurities in lyotropic phases.

  2. Molecular dynamics studies and quantification of the effect of chirality on the formation of liquid crystal mesophases

    International Nuclear Information System (INIS)

    Solymosi, Miklos

    2002-01-01

    Results are presented from theoretical studies and from a series of molecular dynamics simulations undertaken to quantify the effect of chirality on the formation of liquid crystal mesophases. In the theoretical studies we have proposed a scaled chiral index with a formulation which allows comparison to be made between molecules comprising different numbers of atoms. We have undertaken chirality calculations utilizing the proposed scaled chiral index, G 0S , for one optimized static molecular geometry for a range of liquid crystal chiral dopants and ferroelectric liquid crystal molecules. The scaled chiral index, G 0S , allows a rapid calculation to be made of a pseudoscalar quantity which shows a good correlation with the helical twisting power of liquid crystal chiral dopants in a nematic liquid crystal solvent. This could prove a powerful aid in the design of novel dopant molecules where the dopant is rigid and the helical twisting is predominantly a steric effect. The same scaled chirality index, G 0S , calculation for ferroelectric liquid crystal molecules hints at an inverse correlation with spontaneous polarization agreeing with some experimental results. The scaled chiral index is a chemically useful index that can also be decomposed into atomic or functional group contributions, thereby creating a new measure of the asymmetric potential of functional groups and their different possible substitution positions. In the molecular dynamics simulation studies we have investigated two three-site Gay-Berne models, one chiral and the other achiral, each with a rotated central site forming a zigzag shape. In the chiral model one of the end site was additionally rotated out of the plane of the other two sites by a chiral angle θ c . Results from the achiral phase simulations support the theory that steric molecular shape can be associated with a driving force that leads to the smectic A - smectic C phase transition since such a transition was observed in the achiral

  3. Polarization-Independent Electrically Tunable Holographic Polymer Dispersed Liquid Crystals Grating Doped with Chiral Molecules

    Directory of Open Access Journals (Sweden)

    Hui LI

    2017-08-01

    Full Text Available This study proposes a holographic grating made of polymer dispersed liquid crystal (PDLC, with a small amount of chiral molecules doped into PDLC material. The major advantage of this grating is that it is independent of light polarization. This characteristic was verified by applying the interference beam intensity of a He-Cd laser at 150 mW/cm2, with an incidence angle between the two interference beams of 24°, for an irradiation curing duration of 120 s. The observed periodic structure of the grating is consistent with the theoretical value. As chiral molecules are doped, nematic-LC experiences a phase-change in the grating. However, the electro-optical features are only slightly affected. This proposed grating has greatly potential in 3D imaging because of its polarization-independent feature.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16312

  4. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    International Nuclear Information System (INIS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-01-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  5. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Energy Technology Data Exchange (ETDEWEB)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  6. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Science.gov (United States)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  7. Optical acetone vapor sensors based on chiral nematic liquid crystals and reactive chiral dopants

    NARCIS (Netherlands)

    Cachelin, P.; Green, J.P.; Peijs, T.; Heeney, M.; Bastiaansen, C.W.M.

    2016-01-01

    Accurate monitoring of exposure to organic vapors, such as acetone, is an important part of maintaining a safe working environment and adhering to long- and short-term exposure limits. Here, a novel acetone vapor detection system is described based on the use of a reactive chiral dopant in a nematic

  8. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals

    Science.gov (United States)

    Orlova, Tetiana; Lancia, Federico; Loussert, Charles; Iamsaard, Supitchaya; Katsonis, Nathalie; Brasselet, Etienne

    2018-04-01

    Molecular machines operated by light have been recently shown to be able to produce oriented motion at the molecular scale1,2 as well as do macroscopic work when embedded in supramolecular structures3-5. However, any supramolecular movement irremediably ceases as soon as the concentration of the interconverting molecular motors or switches reaches a photo-stationary state6,7. To circumvent this limitation, researchers have typically relied on establishing oscillating illumination conditions—either by modulating the source intensity8,9 or by using bespoke illumination arrangements10-13. In contrast, here we report a supramolecular system in which the emergence of oscillating patterns is encoded at the molecular level. Our system comprises chiral liquid crystal structures that revolve continuously when illuminated, under the action of embedded light-driven molecular motors. The rotation at the supramolecular level is sustained by the diffusion of the motors away from a localized illumination area. Above a critical irradiation power, we observe a spontaneous symmetry breaking that dictates the directionality of the supramolecular rotation. The interplay between the twist of the supramolecular structure and the diffusion14 of the chiral molecular motors creates continuous, regular and unidirectional rotation of the liquid crystal structure under non-equilibrium conditions.

  9. Electro-optic studies of the flexoelectric effect in chiral nematic liquid crystals

    International Nuclear Information System (INIS)

    Musgrave, B.

    2000-01-01

    With the advent of global telecommunications networks and the Internet, the development of portable display technology has gained a new impetus. Liquid crystal devices have played a major role in this area, most conspicuously as displays in laptop computers. To date, these liquid crystalline devices have been generally based on the rather slow (∼ 30 ms) dielectric response of the achiral nematic liquid crystal phase, although more expensive devices based on the faster ( -1 m -1 , and are the highest measured to date: the highest value previously published is 0.12 C N -1 m -1 , measured for the commercial mixture TM216. In order to interpret the effect of the bimesogens' molecular structure, achiral nematic monomesogens and bimesogens have been doped with chiral additives and the resultant mixtures' flexoelectro-optic properties have been analysed. From this work it has been possible to determine that the polar cyanobiphenyl group is the key to the strong response in the estradiol-cyanobiphenyl materials. In conclusion, a recommendation is made, for the first time, for a general molecular structure likely to exhibit a strong flexoelectro-optic response: namely, bimesogenic materials composed of highly polar end groups separated by a flexible spacer. (author)

  10. Generalized Liquid Crystals: Giant Fluctuations and the Vestigial Chiral Order of I, O, and T Matter

    Directory of Open Access Journals (Sweden)

    Ke Liu (刘科 子竞

    2016-10-01

    Full Text Available The physics of nematic liquid crystals has been the subject of intensive research since the late 19th century. However, the focus of this pursuit has been centered around uniaxial and biaxial nematics associated with constituents bearing a D_{∞h} or D_{2h} symmetry, respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point-group symmetry. Given the progress in tailoring nanoparticles with particular shapes and interactions, this vast family of “generalized nematics” might become accessible in the laboratory. Little is known because the order parameter theories associated with the highly symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here, we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high-energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three-dimensional point-group symmetries. We find that the most symmetrical generalized nematics are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point-group symmetry chiral building blocks, such as I, O, and T symmetric matter.

  11. Generalized Liquid Crystals: Giant Fluctuations and the Vestigial Chiral Order of I , O , and T Matter

    Science.gov (United States)

    Liu, Ke; Nissinen, Jaakko; Slager, Robert-Jan; Wu, Kai; Zaanen, Jan

    2016-10-01

    The physics of nematic liquid crystals has been the subject of intensive research since the late 19th century. However, the focus of this pursuit has been centered around uniaxial and biaxial nematics associated with constituents bearing a D∞ h or D2 h symmetry, respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point-group symmetry. Given the progress in tailoring nanoparticles with particular shapes and interactions, this vast family of "generalized nematics" might become accessible in the laboratory. Little is known because the order parameter theories associated with the highly symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here, we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high-energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three-dimensional point-group symmetries. We find that the most symmetrical generalized nematics are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point-group symmetry chiral building blocks, such as I , O , and T symmetric matter.

  12. Chiral domain formation from the mixture of achiral rod-like liquid crystal and tri boomerang-shaped molecule

    Science.gov (United States)

    Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-08-01

    Spontaneous formation of chiral domains such as a helical filament and a bent-broom texture was observed from the mixture of a rod-like liquid crystal octylcyano-biphenyl (8CB) and a tri boomerang-shaped 2,4,6-triphenoxy-1,3,5-triazine (triphenoxy) molecule. Although the constituent molecules were achiral, their mixture showed the chiral domains with the equal fraction of the opposite handedness. No tilt of 8CB molecules in the smectic layer was observed, implying the chirality is not due to the polar packing and tilt of the molecules. In addition, the splay and bend elastic constant of 8CB was decreased after doping triphenoxy. A structural conformation of triphenoxy and an orientational coupling between 8CB and triphenoxy are considered to be related to the chiral domain formation.

  13. Electroclinic effect in a chiral carbosilane-terminated 5-phenylpyrimidine liquid crystal with 'de Vries-like' properties.

    Science.gov (United States)

    Schubert, Christopher P J; Müller, Carsten; Wand, Michael D; Giesselmann, Frank; Lemieux, Robert P

    2015-08-14

    The chiral carbosilane-terminated liquid crystal 2-[(2S,3S)-2,3-difluorohexyloxy]-5-[4-(12,12,14,14,16,16-hexamethyl-12,14,16-trisilaheptadecyloxy)phenyl]pyrimidine () undergoes a smectic A*-smectic C* phase transition with a maximum layer contraction of only 0.2%. It exhibits an electroclinic effect (ECE) comparable to that reported for the 'de Vries-like' liquid crystal and shows no appreciable optical stripe defects due to horizontal chevron formation.

  14. Dual electrically and thermally responsive broadband reflectors based on polymer network stabilized chiral nematic liquid crystals: the role of crosslink density

    NARCIS (Netherlands)

    Khandelwal, H.; Timmermans, G.H.; Debije, M.G.; Schenning, A.P.H.J.

    2016-01-01

    A broadband reflector based on a polymer stabilized chiral nematic liquid crystal has been fabricated. The reflection bandwidth can be manually controlled by an electric field and autonomously by temperature.

  15. Bulk chirality effect for symmetric bistable switching of liquid crystals on topologically self-patterned degenerate anchoring surface.

    Science.gov (United States)

    Park, Min-Kyu; Joo, Kyung-Il; Kim, Hak-Rin

    2017-06-26

    We demonstrate a bistable switching liquid crystal (LC) mode utilizing a topologically self-structured dual-groove surface for degenerated easy axes of LC anchoring. In our study, the effect of the bulk elastic distortion of the LC directors on the bistable anchoring surface is theoretically analyzed for balanced bistable states based on a free energy diagram. By adjusting bulk LC chirality, we developed ideally symmetric and stable bistable anchoring and switching properties, which can be driven by a low in-plane pulsed field of about 0.7 V/µm. The fabricated device has a contrast ratio of 196:1.

  16. Scanning conoscopy measurement of the optical properties of chiral smectic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bitri, N. [Laboratoire de Physique de la Matiere Molle Faculte des Sciences de Tunis, 2092 El Manar TUNIS (Tunisia); Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France)], E-mail: bitri@crpp-bordeaux.cnrs.fr; Gharbi, A. [Laboratoire de Physique de la Matiere Molle Faculte des Sciences de Tunis, 2092 El Manar TUNIS (Tunisia); Marcerou, J.P. [Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France)

    2008-11-30

    We report on a new scanning conoscopic method which, by rotating the sample and analyzing the ellipticity of transmitted light, provides an accurate tool to measure the temperature dependence of the two indices n{sub e}, n{sub o} and of the optical activity for uniaxial liquid crystals. Their determination is useful to give informations about the tilt angle {theta} and the macroscopic helicity in the different phases and then on the structures of the liquid crystal phases. We tested the method with the reference compound (99% S, 1% R)MHPOBC.

  17. de Vries liquid crystals based on a chiral 5-phenylpyrimidine benzoate core with a tri- and tetra-carbosilane backbone

    Science.gov (United States)

    Sreenilayam, S. P.; Rodriguez-Lojo, D.; Agra-Kooijman, D. M.; Vij, J. K.; Panov, V. P.; Panov, A.; Fisch, M. R.; Kumar, Satyendra; Stevenson, P. J.

    2018-02-01

    New chiral de Vries smectic liquid-crystalline compounds are designed, synthesized, and investigated for perspective applications in defect-free bistable surface-stabilized ferroelectric liquid-crystal displays. In these compounds, a 5-phenyl-pyrimidine benzoate core is terminated on one side by a tri- or tetra-carbosilane group linked through an alkoxy group and an alkyl spacer and on the opposite side terminated by a chiral 2-octanol group. The stereogenic center contains either a methyl or perfluoromethyl functional group. These compounds exhibit Iso-Sm A*-Sm C*-Sm X -Cr phases under cooling from the isotropic state. Measurements of the temperature-dependent smectic layer spacing by x-ray diffraction experiments combined with the measured apparent optical tilt angle and the birefringence reveal that Sm A* phase in these compounds is of the de Vries type. In addition, the chiral compound with a tetra-carbosilane backbone, DR277, exhibits good de Vries properties with the Sm C* phase exhibited over a wide temperature range. By varying the carbosilane end group, the de Vries properties are enhanced, that is, the layer shrinkage of ˜1.9 % for the tri-carbosilane DR276 is reduced to ˜0.9 % for tetra-carbosilane DR277 at 10°C below Sm A* to Sm C* transition temperature, TAC. For DR277, the reduction factor R ≈0.22 for T =(TAC-10 )°C is reasonably low and the apparent optical tilt angle θapp=35.1°, hence this compound is a "good de Vries smectic" LC. Therefore, synthesis of the chiral mesogen with an even higher number of carbosilane groups may lead to a further reduction or even zero-layer shrinkage exhibited at TAC with Sm C* phase extending over a wide temperature range close to the room temperature for perspective suitability in device applications. Our results for 5-phenyl-pyrimidine benzoate core-based compounds support a recently drawn conclusion by Schubert et al. [J. Mater. Chem. C 4, 8483 (2016), 10.1039/C6TC03120J] from a different compound, namely

  18. Dipolar phases in liquid crystals with the chiral part based on the lactic acid

    Czech Academy of Sciences Publication Activity Database

    Glogarová, Milada; Novotná, Vladimíra; Kašpar, Miroslav; Hamplová, Věra; Pociecha, D.

    2008-01-01

    Roč. 81, 11-12 (2008), 963-970 ISSN 0141-1594 R&D Projects: GA MŠk OC 175; GA AV ČR IAA100100710 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystals * paraelectric * ferroelectric and antiferroelectric phases * TGB phases * lactate unit Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.201, year: 2008

  19. Mesomorphic and structural properties of liquid crystal possessing a chiral lactate unit

    Czech Academy of Sciences Publication Activity Database

    Das, B.; Pramanik, A.; Das, M.K.; Bubnov, Alexej; Hamplová, Věra; Kašpar, Miroslav

    2012-01-01

    Roč. 1013, APR (2012), s. 119-125 ISSN 0022-2860 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA ČR(CZ) GAP204/11/0723 Grant - others:RFASI(RU) 02.740.11.5166 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystals * phase transition * N*-TGB A * x-ray diffraction * differential scanning calorimetry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.404, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022286012000440

  20. Chiral Responsive Liquid Quantum Dots.

    Science.gov (United States)

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Central-to-axial chirality transfer revealed by liquid crystals: a combined experimental and computational approach for the determination of absolute configuration of carboxylic acids with an α chirality centre.

    Science.gov (United States)

    Ferrarini, Alberta; Ferroni, Fiammetta; Pieraccini, Silvia; Rosini, Carlo; Superchi, Stefano; Spada, Gian Piero

    2011-10-01

    The conversion into 6,7-dihydro-5H-dibenz[c,e]azepine (DAZ) N-protected amides is a viable route for the determination of the absolute configuration of chiral 2-substituted carboxylic acids. The biphenyl moiety of DAZ, besides being a probe of chirality for the electronic circular dichroism (ECD) spectroscopy, makes these systems suitable for configuration assignment by exploiting the chirality amplification which occurs in nematic liquid crystals. To assess the reliability of the liquid crystal method in detecting the absolute stereochemistry of chiral amides bound to a biphenyl group, we measured the helical twisting power of a series of DAZ-N-protected amides and compared these data with the results obtained from ECD measurements. We will show that the liquid crystal method, corroborated by HTP predictions, is trustworthy with our biphenyl derivatives, even when ECD spectra are ambiguous for the presence of aryl moieties displaying strong UV absorptions in the same range of the biphenyl chromophore. © 2011 Wiley-Liss, Inc.

  2. Chirality and helicity of poly-benzyl-L-glutamate in liquid crystals and a wave structure that mimics collagen helicity in crimp

    Directory of Open Access Journals (Sweden)

    Vidal Benedicto de Campos

    2001-01-01

    Full Text Available Ideal biocompatible polymers must show a mimetic superstructure with biological supra-organization. Collagen-rich structures like tendons and ligaments are materials with various levels of order, from molecules to bundles of fibers, which affect their biomechanical properties and cellular interactions. Poly-benzyl-L-glutamate (PBLG displaying helicity was used here to test the development of wave-like structures as those occurring in collagen fibers. Birefringence of PBLG under various crystallization conditions was studied with a lambda/4 compensator according to Sénarmont. Qualitative observations were plainly sufficient to conclude that the PBLG fibrils were supra-organized helically as a chiral object. During crystallization stretched PBLG formed a helical superstructure with characteristic striation resembling waves (crimp. Supported by optical anisotropy findings, a twisted grain boundary liquid crystal type is proposed as a transition phase in the formation of the PBLG chiral object. A similarity with the wavy organization (crimp of collagen bundles is proposed.

  3. Asymmetric polymerisation in liquid crystals and resultant electro-chiroptical effect: Structure organising polymerisation and chiral charge carrier ''chiralion''

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2014-01-01

    Electrochemical synthesis in liquid crystal (LC) affords conducting polymers having LC molecular order and electro-activity. The polymerisation method can be referred to as structure organising polymerisation (SOP). The optical textures of the polymers thus prepared appear very similar to that of the LC electrolyte solution used for the polymerisation. Especially, polymers prepared in cholesteric LC (chiral LC) having structural chirality show doping-dedoping (redox) driven change in chiroptical activity (controllable circular dichroism and optical rotation), as e lectro-chiroptical effect . The polymer films exhibit interference colour and electrochemically driven refractive index modulations. The chiroptical activity of the polymer prepared in cholesteric LC comes from axial chirality of the helical structure

  4. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  5. Fixation of chiral smectic liquid crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate using UV curing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Afrizal,, E-mail: rizalunj04@yahoo.com; Nurdelima,; Umeir [Faculty of Mathemathics and Natural Science, University of State Jakarta, Jakarta (Indonesia); Hikam, Muhammad; Soegiyono, Bambang [Department of Materials Science, University of Indonesia, Depok (Indonesia); Riswoko, Asep [Center for Material Technology, BPPT, Jl. MH.Thamrin 8 Jakarta (Indonesia)

    2014-03-24

    Chiral Smectic Liquid Crystal (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate has been synthesized using method of steglich esterification at room temperature. The mesomorphic behavior of chiral smectic at 55°C that showed schlieren texture in POM analysis. Fixation of structure chiral smectic liquid crystal by means of photopolymerization of monomer (S)-(+)-4-(2-methyl-1-butyloyloxy)phenyl 4-[1-(propenoyloxy) butiloxy] benzoate under UV irradiation which called UV curing techniques. The curing process using UV 3 lamps 100 volt at 60°C for an hour. The product of photopolymerization could be seen by analysis of FTIR spectra both monomer and polymer. FTIR spectra of monomer, two peaks for ester carbonyl and C-C double bond groups appeared at 1729.09 cm-1and 3123.46 cm{sup −1}. After UV curing process, peak for the carbonyl group at 1729.09 cm{sup −1} decreased and a new peak at 1160.21 cm{sup −1} appeared due to the carbonyl group attached to a C-C bond group and then peak at 3123.46 cm{sup −1} for C-C double bond group was disappeared.

  6. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    Sun, Jian; Wang, Huihui; Cao, Hui; Ding, Hangjun; Yang, Zhou; Yang, Huai; Wang, Ling; Xie, Hui; Luo, Xueyao; Xiao, Jiumei

    2014-01-01

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  7. First liquid single crystal elastomer containing lactic acid derivative as chiral co-monomer: synthesis and properties

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Domenici, V.; Hamplová, Věra; Kašpar, Miroslav; Zalar, B.

    2011-01-01

    Roč. 52, č. 20 (2011), s. 4490-4497 ISSN 0032-3861 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA MŠk(CZ) OC10006; GA ČR(CZ) GAP204/11/0723 Grant - others:German Czech bilateral program(XE) D4-CZ5/2010-2011; RFASI(RU) 02.740.11.5166 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystalline elastomer * ferroelectric liquid crystalline monomer * smectic A phase * X-ray diffraction * lactate chiral group * monodomain * polymer Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.438, year: 2011

  8. Liquid Crystals in Decorative and Visual Arts

    Science.gov (United States)

    Makow, David

    The following sections are included: * INTRODUCTION * PIGMENT AND STRUCTURAL COLOURS AND THEIR RELEVANCE TO LIQUID CRYSTALS * LIQUID CRYSTAL MATERIALS AND TECHNIQUES FOR DECORATIVE AND VISUAL ARTS * Free cholesteric liquid crystals (FCLC's) * Encapsulated liquid crystals (ECLC's) * Nonsteroid Chiral nematics * Polymers with liquid crystalline properties (PLCs) * COLOUR PROPERTIES OF CHOLESTERIC LIQUID CRYSTALS (CLC's) * Molecular structure and the mechanism of colour production * Dependence of perceived colours on the angle of illumination and viewing * Dependence of perceived colours on temperature * Additive colour properties * Methods of doubling the peak reflectance of cholesteric liquid crystals * Colour gamut * Colours of superimposed and pigmented coatings * Colours in transmission * ACKNOWLEDGEMENTS * REFERENCES

  9. Chirality under confinement - multidimensional constraints in liquid crystalline materials

    NARCIS (Netherlands)

    Sleczkowski, P.B.

    2014-01-01

    The first part of the thesis is devoted to studies of the self-assembled monolayers of discotic liquid crystals by the STM measurements at the liquid/solid interface. For the case of a model H5T molecule the self-assembled monolayers have evidenced both: point and organizational types of chirality,

  10. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    Science.gov (United States)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered

  11. Effects of molecular chirality on self-assembly and switching in liquid crystals at the cross-over between rod-like and bent shapes.

    Science.gov (United States)

    Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten

    2016-09-21

    A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override

  12. Nanoscopic Manipulation and Imaging of Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, Charles S. [Case Western Reserve Univ., Cleveland, OH (United States)

    2014-02-04

    This is the final project report. The project’s goals centered on nanoscopic imaging and control of liquid crystals and surfaces. We developed and refined techniques to control liquid crystal orientation at surfaces with resolution as small as 25 nm, we developed an optical imaging technique that we call Optical Nanotomography that allows us to obtain images inside liquid crystal films with resolution of 60 x 60 x 1 nm, and we opened new thrust areas related to chirality and to liquid crystal/colloid composites.

  13. Cholesteric colloidal liquid crystals from phytosterol rod-like particles

    NARCIS (Netherlands)

    Rossi, L.; Sacanna, S.; Velikov, K.P.

    2011-01-01

    We report the first observation of chiral colloidal liquid crystals of rod-like particles from a low molecular weight organic compound— phytosterols. Based on the particles shape and crystal structure, we attribute this phenomenon to chiral distribution of surface charge on the surface of

  14. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  15. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  16. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  17. Optical monitoring of gases with cholesteric liquid crystals

    NARCIS (Netherlands)

    Han, Y.; Pacheco Morillo, K.B.; Bastiaansen, C.W.M.; Broer, D.J.; Sijbesma, R.P.

    2010-01-01

    A new approach to optical monitors for gases is introduced using cholesteric liquid crystals doped with reactive chiral compounds. The approach is based on cholesteric pitch length changes caused by a change in helical twisting power (HTP) of the chiral dopants upon reaction with the analyte. The

  18. Biaxial nematic liquid crystals theory, simulation and experiment

    CERN Document Server

    Luckhurst, Geoffrey R

    2015-01-01

    Liquid Crystals are a state of matter that have properties between those of conventional liquid and those of a solid crystal. Thermotropic liquid crystals react to changes in temperature or, in some cases, pressure. The reaction of lyotropic liquid crystals, which are used in the manufacture of soaps and detergents, depends on the type of solvent they are mixed with. Since the accidental discovery of the chiral nematic (ordered) phase in 1888 many liquid crystal phases have been found, sometimes by chance and sometimes by design. The existence of one such phase was predicted by Freiser in 197

  19. Chiral ionic liquids in chromatographic and electrophoretic separations.

    Science.gov (United States)

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Liquid Crystal Colloids

    Science.gov (United States)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  1. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  2. Lateral shifting in one dimensional chiral photonic crystal

    International Nuclear Information System (INIS)

    You Yuan; Chen Changyuan

    2012-01-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  3. Lateral shifting in one dimensional chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)

    2012-07-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  4. Chiral multichromic single crystals for optical devices (LDRD 99406).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  5. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    Science.gov (United States)

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  6. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    Science.gov (United States)

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  7. Liquid crystal display

    International Nuclear Information System (INIS)

    Takami, K.

    1981-01-01

    An improved liquid crystal display device is described which can display letters, numerals and other necessary patterns in the night time using a minimized amount of radioactive material. To achieve this a self-luminous light source is placed in a limited region corresponding to a specific display area. (U.K.)

  8. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  9. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  10. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  11. Liquid crystals in tribology.

    Science.gov (United States)

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  12. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  13. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu

    2017-01-01

    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  14. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  15. Liquid Crystals in Tribology

    Directory of Open Access Journals (Sweden)

    María-Dolores Bermúdez

    2009-09-01

    Full Text Available Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs, only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs. Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  16. Liquid Crystal Airborne Display

    Science.gov (United States)

    1977-08-01

    Cum.nings, J. P., et al., Properties and Limitations oe Liquid Crystals for Aircraft Displays, Honeywell Corporate Researc ."I Center, Final Report HR-72...basic module could be used to build displays for both the commercial and military! 157- marhecs, and so would establi sh a broad and sizable market ... market for the display becomes a reality; therein lies, f TABLE 16 THE COURSE OF FUTURE DISPLAY DEVELOPMENT Today 1976-77 1980 1985 Display Size 2" 1 3.2

  17. Phosphoric acids as amplifiers of molecular chirality in liquid crystalline media

    NARCIS (Netherlands)

    Eelkema, R; Feringa, BL

    2006-01-01

    A new system for the double amplification of the molecular chirality of simple chiral amines in achiral liquid crystalline media is described. It involves a conformationally flexible phosphoric acid based receptor that by binding to chiral amines induces chirality in the liquid crystalline matrix.

  18. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    OpenAIRE

    Yujian Sun; Cuihong Zhang; Le Zhou; Hua Fang; Jianhua Huang; Haipeng Ma; Yi Zhang; Jie Yang; Lan-Ying Zhang; Ping Song; Yanzi Gao; Jiumei Xiao; Fasheng Li; Kexuan Li

    2016-01-01

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found...

  19. Optics of anisotropic metamaterial based structurally chiral photonic crystals

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Rafayelyan, M S

    2013-01-01

    Light transmission through and reflection from a medium layer with dielectric and magnetic helicities are discussed. The axes of the dielectric permittivity tensor, ε-hat , and the magnetic permeability tensor, μ-hat , as well as the medium helix axis are all parallel to each other and they are perpendicular to the boundary surfaces. The possibilities of formation of some new types of photonic bandgaps (PBGs) are presented for large anisotropies of the medium—namely, direct and indirect nonselective PBGs (with respect to the incident light polarization, in contrast to the usual direct PBGs, which are selective with respect to the polarization of the incident light). It is shown that a transmission region can arise among the three types of PBGs, in certain conditions, of course. In this paper we generalize the concept of nihility for structurally chiral media, such as cholesteric liquid crystals (CLCs) and we identify two types of CLC nihilities. It is shown that, for certain characteristic parameters of the medium, superluminal light propagation is possible in the transmission band. The influence of the anisotropy of the medium on the reflection spectra is considered and it is shown that one can tune the width, number and frequency range of PBGs of this layer, at essentially large limits, tuning the parameters of the layer. The case of oblique light incidence on the CLC layer is also discussed. (paper)

  20. Physical Properties of Liquid Crystals

    CERN Document Server

    Gray, George W; Spiess, Hans W

    1999-01-01

    This handbook is a unique compendium of knowledge on all aspects of the physics of liquid crystals. In over 500 pages it provides detailed information on the physical properties of liquid crystals as well as the recent theories and results on phase transitions, defects and textures of different types of liquid crystals. An in-depth understanding of the physical fundamentals is a prerequisite for everyone working in the field of liquid crystal research. With this book the experts as well as graduate students entering the field get all the information they need.

  1. Wetting of cholesteric liquid crystals.

    Science.gov (United States)

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal.

  2. Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers.

    Science.gov (United States)

    Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic

    2017-09-15

    Chiral Stationary-Phase Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally separate mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the separation profiles on any possible combination of the chiral stationary phases based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline separation of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the separation of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  4. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  5. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  6. Dichroic Liquid Crystal Displays

    Science.gov (United States)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  7. Nanoparticles in liquid crystals, and liquid crystals in nanoparticles

    Science.gov (United States)

    de Pablo, Juan

    2015-03-01

    Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.

  8. Pressure sensor using liquid crystals

    Science.gov (United States)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  9. Nanoparticles Doped, Photorefractive Liquid Crystals

    National Research Council Canada - National Science Library

    Kaczmarek, Malgosia

    2005-01-01

    ...: The main objectives of this exploratory, short project will concern the study of the quality of liquid crystal cells with diluted suspensions of ferroelectric nanoparticles and their photorefractive properties...

  10. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  11. Bistable switching in dual-frequency liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Barnik, M I [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2006-06-15

    Various bistable switching modes in nematic liquid crystals with frequency inversion of the sign of dielectric anisotropy are revealed and investigated. Switching between states with different helicoidal distributions of the director field of a liquid crystal, as well as between uniform and helicoidal states, is realized by dual-frequency waveforms of a driving voltage. A distinctive feature of the dual-frequency switching is that the uniform planar distribution of the director field may correspond to a thermodynamically equilibrium state, and the chirality of an LC is not a necessary condition for switching to a helicoidal state.

  12. Chiral discotics; expression and amplification of chirality

    NARCIS (Netherlands)

    Brunsveld, L.; Meijer, E.W.; Rowan, A.E.; Nolte, R.J.M.; Denmark, S.E.; Nolte, R.J.M.; Meijer, E.W.

    2003-01-01

    In this contribution, chirality and discotic liquid crystals are discussed as a tool for studying the self-assembly of these molecules, both in solution and in the solid state. Therefore, the objective of this chapter is to summarize and elucidate how molecular chirality can be expressed in discotic

  13. Compressible Strips, Chiral Luttinger Liquids, and All That Jazz

    Science.gov (United States)

    MacDonald, A. H.

    1996-03-01

    When the quantum Hall effect occurs in a two-dimensional electron gas, all low-energy elementary excitations are localized near the system edge. The edge acts in many ways like a one-dimensional ring of electrons, except that a finite current flows around the ring in equilibrium. This article is a brief and informal review of some of the physics of quantum Hall system edges. We discuss the implications of macroscopic {\\em compressible strip} models for microscopic {chiral Luttinger liquid} models and make an important distinction between the origin of non-Fermi-liquid behavior in fractional quantum Hall edges and in usual one-dimensional electron gas systems.

  14. Liquid crystals in micron-scale droplets, shells and fibers

    Science.gov (United States)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  15. Liquid crystals in micron-scale droplets, shells and fibers

    International Nuclear Information System (INIS)

    Urbanski, Martin; Reyes, Catherine G; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P F

    2017-01-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  16. Guided mode studies of smectic liquid crystals

    International Nuclear Information System (INIS)

    Hodder, B.

    2000-03-01

    Recently there has been considerable interest in the use of ferroelectric liquid crystals in low power, fast switching display devices. At present the voltage switching process in surface stabilised ferroelectric liquid crystal (SSFLC) devices is not fully understood and a convenient theory for such cells has yet to be found. It is the primary aim of this work to characterise the optic tensor configuration (director profile) in thin cells (∼ 3.5 μm) containing ferroelectric liquid crystal (FLC) material. These results form a benchmark by which continuum theories may be tested. Polarised microscopy is, perhaps, the most common optical probe of liquid crystal cells. It should be appreciated that this technique is fundamentally limited, as the results are deduced from an integrated optical response of any given cell, and cannot be used to spatially resolve details of the director profile through the cell. The guided mode techniques used in this study are the primary non-integral probe and enable detailed spatial resolution of the director profile within liquid crystal cells. Analysis of guided mode data from cells containing homeotropically aligned FLC reveals the temperature dependence of the optical biaxiality and cone angle for a 40% chiral mixture of the commercially available FLC SCE8*. From these optical biaxiality measurements the temperature dependence of the biaxial order parameter C is determined. Guided mode studies of cells containing homogeneously aligned SCE8* (the conventional alignment for SSFLC devices) reveal the 0V equilibrium director profile from which a cone and chevron model is constructed. Subsequent studies of voltage induced elastic deformations of the director profile are presented and compared with a single elastic constant continuum theory which is shown to be inadequate. Optical guided mode techniques are not directly sensitive to the smectic layer configuration but X-ray scattering is. Here, for the first time, results are presented

  17. Fundamentals of liquid crystal devices

    CERN Document Server

    Yang, Deng-Ke

    2014-01-01

    Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reduce the response time and the number of optical components of LC-modules. Prof. Yang is a pion

  18. Liquid Crystals for Nondestructive Evaluation

    Science.gov (United States)

    1978-09-01

    polarizers (e.g., where p is the distance of alignment or pitch, X is the Nicol, Rochon, and Wollaston prisms ) are based upon peak wavelength of scattered...RANGE OF so 45" 45 - EVENT SEVENT T(°C) TEMPERATUJRE TC)4"TEMPERATURE 40RANGE OF T(°) 0-RANGE OF 40LIQUID ’ ൫" CRYSTAL S 36 3S. 30 0 IS 90 180 - I...Temperatures TI > T2 > - > TS defects was possible using the liquid crystal. are the Average TemperatursI Thes Resptivegi. Kapfer , Burns, Salvo, and Doyle

  19. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  20. Ionic Liquid Crystals: Versatile Materials.

    Science.gov (United States)

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  1. Bicontinuous liquid crystals

    CERN Document Server

    Lynch, Mathew L

    2005-01-01

    PrefaceIntroduction AcknowledgmentsBicontinuous Cubic Liquid Crystalline Materials: A Historical Perspective and Modern Assessment; Kr̄e LarssonIntermediate Phases; Michael C. Holmes and Marc S. LeaverCubic Phases and Human Skin: Theory and Practice; Steven Hoath and Lars NorlňThe Relationship between Bicontinuous Inverted Cubic Phases and Membrane Fusion; D.P. SiegelAspects of the Differential Geometry and Topology of Bicontinuous Liquid-Crystalline Phases; Robert W. CorkeryNovel L3 Phases and Their Macroscopic Properties; R. Beck and H. HoffmannBicontinuous Cubic Phases of Lipids with Entra

  2. Computer modeling of liquid crystals

    International Nuclear Information System (INIS)

    Al-Barwani, M.S.

    1999-01-01

    In this thesis, we investigate several aspects of the behaviour of liquid crystal molecules near interfaces using computer simulation. We briefly discuss experiment, theoretical and computer simulation studies of some of the liquid crystal interfaces. We then describe three essentially independent research topics. The first of these concerns extensive simulations of a liquid crystal formed by long flexible molecules. We examined the bulk behaviour of the model and its structure. Studies of a film of smectic liquid crystal surrounded by vapour were also carried out. Extensive simulations were also done for a long-molecule/short-molecule mixture, studies were then carried out to investigate the liquid-vapour interface of the mixture. Next, we report the results of large scale simulations of soft-spherocylinders of two different lengths. We examined the bulk coexistence of the nematic and isotropic phases of the model. Once the bulk coexistence behaviour was known, properties of the nematic-isotropic interface were investigated. This was done by fitting order parameter and density profiles to appropriate mathematical functions and calculating the biaxial order parameter. We briefly discuss the ordering at the interfaces and make attempts to calculate the surface tension. Finally, in our third project, we study the effects of different surface topographies on creating bistable nematic liquid crystal devices. This was carried out using a model based on the discretisation of the free energy on a lattice. We use simulation to find the lowest energy states and investigate if they are degenerate in energy. We also test our model by studying the Frederiks transition and comparing with analytical and other simulation results. (author)

  3. Thermotropic liquid crystals recent advances

    CERN Document Server

    Ramamoorthy, Ayyalusamy

    2007-01-01

    This book covers developments in the field of thermotropic liquid crystals and their functional importance. It also presents advances related to different sub-areas pertinent to this interdisciplinary area of research. This text brings together research from synthetic scientists and spectroscopists and attempts to bridge the gaps between these areas. New physical techniques that are powerful in characterizing these materials are discussed.

  4. Optical monitoring of gases with cholesteric liquid crystals.

    Science.gov (United States)

    Han, Yang; Pacheco, Katherine; Bastiaansen, Cees W M; Broer, Dirk J; Sijbesma, Rint P

    2010-03-10

    A new approach to optical monitors for gases is introduced using cholesteric liquid crystals doped with reactive chiral compounds. The approach is based on cholesteric pitch length changes caused by a change in helical twisting power (HTP) of the chiral dopants upon reaction with the analyte. The concept is demonstrated for monitoring carbon dioxide via reversible carbamate formation and for oxygen using the irreversible oxidation of a chiral dithiol to a disulfide. Monitoring of CO(2) was achieved by doping a commercial cholesteric liquid crystalline mixture (E7) with 1.6% mol of the 1:1 complex of an optically pure diamine with a TADDOL derivative. Upon exposure to carbon dioxide, the reflection band of a thin film of the mixture shifted from 637 to 495 nm as a consequence of dissociation of the complex after carbamate formation of the diamine. An O(2) monitor was obtained by doping E7 with a chiral binaphthyl dithiol derivative and a nonresponsive codopant. The reflection band of the oxygen monitor film changed from 542 to 600 nm, due to the conformational change accompanying oxidation of the dithiol to disulfide. These monitoring mechanisms hold promise for application in smart packaging, where carbon dioxide and oxygen are of special interest because of their roles in food preservation.

  5. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  6. Molecular dynamics of liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-02-01

    We derive Green-Kubo relations for the viscosities of a nematic liquid crystal. The derivation is based on the application of a Gaussian constraint algorithm that makes the director angular velocity of a liquid crystal a constant of motion. Setting this velocity equal to zero means that a director-based coordinate system becomes an inertial frame and that the constraint torques do not do any work on the system. The system consequently remains in equilibrium. However, one generates a different equilibrium ensemble. The great advantage of this ensemble is that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble. This facilitates the numerical evaluation of the viscosities by molecular dynamics simulations.

  7. Compressible strips, chiral Luttinger liquids, and all that jazz

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1996-01-01

    When the quantum Hall effect occurs in a two-dimensional electron gas, all low-energy elementary excitations are localized near the system edge. The edge acts in many ways like a one-dimensional ring of electrons, except that a finite current flows around the ring in equilibrium. This article is a brief and informal review of some of the physics of quantum Hall system edges. We discuss the implications of macroscopic compressible and incompressible strip models for microscopic chiral Luttinger liquid models and make an important distinction between the origin of non-Fermi-liquid behavior in fractional quantum Hall edges and in usual one-dimensional electron gas systems. (author). 33 refs., 2 figs

  8. Compressible strips, chiral Luttinger liquids, and all that jazz

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, A.H. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics

    1996-03-01

    When the quantum Hall effect occurs in a two-dimensional electron gas, all low-energy elementary excitations are localized near the system edge. The edge acts in many ways like a one-dimensional ring of electrons, except that a finite current flows around the ring in equilibrium. This article is a brief and informal review of some of the physics of quantum Hall system edges. We discuss the implications of macroscopic compressible and incompressible strip models for microscopic chiral Luttinger liquid models and make an important distinction between the origin of non-Fermi-liquid behavior in fractional quantum Hall edges and in usual one-dimensional electron gas systems. (author). 33 refs., 2 figs.

  9. Liquid crystals in biotribology synovial joint treatment

    CERN Document Server

    Ermakov, Sergey; Eismont, Oleg; Nikolaev, Vladimir

    2016-01-01

    This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids - containing cholesteric liquid crystals in natural synovial liquids - are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.

  10. Electrically controlled liquid crystal fiber

    Science.gov (United States)

    Corella-Madueño, A.; Reyes, J. Adrián

    2006-08-01

    We consider a cylindrical fiber whose core is a liquid crystal (LC) subject to the action of a low frequency field applied parallel to the axis of the cylinder and having initially the escaped configuration. We find the distorted textures of the nematic inside the cylinder by assuming arbitrary anchoring boundary conditions. In the optical limit we calculate the ray trajectories followed by a low intensity beam along the fiber parametrized by a low frequency electric field. Finally, we calculate exactly the spatial dependence of the transverse magnetic modes distribution in the guide, on the electric field, by using a numerical scheme. We summarize our paper and discuss our results.

  11. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Middha, Manju; Kumar, Rishi; Raina, K. K.

    2014-01-01

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence

  12. New banana-type liquid crystal with a methoxy group substituted near the central ring

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Miroslav; Hamplová, Věra; Novotná, Vladimíra; Glogarová, Milada; Vaněk, Přemysl

    2002-01-01

    Roč. 12, - (2002), s. 2221-2224 ISSN 0959-9428 Institutional research plan: CEZ:AV0Z1010914 Keywords : bent-shaped liquid crystal * nm-chiral * B 2 phase Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.683, year: 2002

  13. Nonlinear and quantum optics with liquid crystals

    International Nuclear Information System (INIS)

    Lukishova, Svetlana G

    2014-01-01

    Thermotropic liquid crystals' usual application is display technology. This paper describes experiments on light interaction with pure and doped liquid crystals under for these materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) at the single-photon level. In (1), I will outline several nonlinear optical effects under high-power, nanosecond laser irradiation which should be taken into account in the design of lasers with liquid crystal components and in fabrication of optical power limiters based on liquid crystals: (1.1) athermal helical pitch dilation and unwinding of cholesteric mirrors (both in free space and inside laser resonators); (1.2) some pitfalls in measurements of refractive nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3) the first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition rate (2-10 Hz) laser irradiation in the presence of two-photon absorption; (1.4) feedback-free kaleidoscope of patterns (hexagons, stripes, etc.) in dye-doped liquid crystals. In (2), at the single-photon level, it will be shown that with a proper selection of liquid crystals and a single-emitter dopant spectral range, liquid crystal structures can be used to control emitted single photons (both polarization and count rate). The application of the latter research is absolutely secure quantum communication with polarization coding of information. In particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in quantum dot fluorescence is reported. In (2.2), definite linear polarization of single (antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. In (2.3), some results on photon antibunching from NV-color center in nanodiamond in liquid crystal host and circularly polarized fluorescence of definite handedness from nanocrystals doped with trivalent ions of

  14. Demonstrations with a Liquid Crystal Shutter

    Science.gov (United States)

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  15. Key Developments in Ionic Liquid Crystals

    OpenAIRE

    Fernandez, A.A.; Kouwer, P.H.J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a...

  16. Enantiomeric Profiling of Chiral Pharmacologically Active Compounds in the Environment with the Usage of Chiral Liquid Chromatography 
Coupled with Tandem Mass Spectrometry

    Science.gov (United States)

    Camacho-Muñoz, Dolores; Petrie, Bruce; Castrignanò, Erika; Kasprzyk-Hordern, Barbara

    2016-01-01

    The issue of drug chirality is attracting increasing attention among the scientific community. The phenomenon of chirality has been overlooked in environmental research (environmental occurrence, fate and toxicity) despite the great impact that chiral pharmacologically active compounds (cPACs) can provoke on ecosystems. The aim of this paper is to introduce the topic of chirality and its implications in environmental contamination. Special attention has been paid to the most recent advances in chiral analysis based on liquid chromatography coupled with mass spectrometry and the most popular protein based chiral stationary phases. Several groups of cPACs of environmental relevance, such as illicit drugs, human and veterinary medicines were discussed. The increase in the number of papers published in the area of chiral environmental analysis indicates that researchers are actively pursuing new opportunities to provide better understanding of environmental impacts resulting from the enantiomerism of cPACs. PMID:27713682

  17. Liquid crystals for organic transistors (Conference Presentation)

    Science.gov (United States)

    Hanna, Jun-ichi; Iino, Hiroaki

    2016-09-01

    Liquid crystals are a new type of organic semiconductors exhibiting molecular orientation in self-organizing manner, and have high potential for device applications. In fact, various device applications have been proposed so far, including photosensors, solar cells, light emitting diodes, field effect transistors, and so on.. However, device performance in those fabricated with liquid crystals is less than those of devices fabricated with conventional materials in spite of unique features of liquid crystals. Here we discuss how we can utilize the liquid crystallinity in organic transistors and how we can overcome conventional non-liquid crystalline organic transistor materials. Then, we demonstrate high performance organic transistors fabricated with a smectic E liquid crystal of Ph-BTBT-10, which show high mobility of over 10cm2/Vs and high thermal durability of over 200oC in OFETs fabricated with its spin-coated polycrystalline thin films.

  18. Liquid crystals with novel terminal chains as ferroelectric liquid crystal hosts

    International Nuclear Information System (INIS)

    Cosquer, G.Y.

    2000-02-01

    Changes to the molecular structure of liquid crystals can have a significant effect upon their mesomorphism and ferroelectric properties. Most of the research in liquid crystal for display applications concentrates on the design and synthesis of novel mesogenic cores to which straight terminal alkyl or alkoxy chains are attached. However, little is known about the effects upon the mesomorphism and ferroelectric properties of varying the terminal chains. The compounds prepared in this work have a common core - a 2,3-difluoroterphenyl unit with a nine-atom alkyl (nonyl) or alkoxy (octyloxy) chain at the 4-position, but with an unusual chain at the 4''-position. In some cases the terminal chain contains hetero atoms such as silicon, oxygen, chlorine and bromine or has a bulky end group. In total 46 final materials were synthesised in an attempt to understand the effect of an unusual terminal chains on mesomorphism and for some of these compounds the effect upon the switching times when added to a standard ferroelectric mixture were investigated. It was found that most compounds containing a bulky end group only displayed a smectic C phase, compounds with a halogen substituent as an end unit displayed a smectic A phase and that increasing the chain flexibility by introducing an oxygen atom in the chain reduces the melting and clearing points. The electro-optical measurements carried out on ferroelectric mixtures containing a bulky end group compound showed that shorter switching times were produced than for the ferroelectric mixture containing a straight chain compound. It is suggested that a bulky end group diminishes te extent of interlayer mixing in the chiral smectic C phase and therefore the molecules move more easily with ferroelectric switching. (author)

  19. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    Science.gov (United States)

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  20. Fabrication of Supramolecular Chirality from Achiral Molecules at the Liquid/Liquid Interface Studied by Second Harmonic Generation.

    Science.gov (United States)

    Lin, Lu; Zhang, Zhen; Guo, Yuan; Liu, Minghua

    2018-01-09

    We present the investigation into the supramolecular chirality of 5-octadecyloxy-2-(2-pyridylazo)phenol (PARC18) at water/1,2-dichloroethane interface by second harmonic generation (SHG). We observe that PARC18 molecules form supramolecular chirality through self-assembly at the liquid/liquid interface although they are achiral molecules. The bulk concentration of PARC18 in the organic phase has profound effects on the supramolecular chirality. By increasing bulk concentration, the enantiomeric excess at the interface first grows and then decreases until it eventually vanishes. Further analysis reveals that the enantiomeric excess is determined by the twist angle of PARC18 molecules at the interface rather than their orientational angle. At lower and higher bulk concentrations, the average twist angle of PARC18 molecules approaches zero, and the assemblies are achiral; whereas at medium bulk concentrations, the average twist angle is nonzero, so that the assemblies show supramolecular chirality. We also estimate the coverage of PARC18 molecules at the interface versus the bulk concentration and fit it to Langmuir adsorption model. The result indicates that PARC18 assemblies show strongest supramolecular chirality in a half-full monolayer. These findings highlight the opportunities for precise control of supramolecular chirality at liquid/liquid interfaces by manipulating the bulk concentration.

  1. Small-angle neutron scattering technique in liquid crystal studies

    International Nuclear Information System (INIS)

    Shahidan Radiman

    2005-01-01

    The following topics discussed: general principles of SAS (Small-angle Neutron Scattering), liquid crystals, nanoparticle templating on liquid crystals, examples of SAS results, prospects of this studies

  2. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    Science.gov (United States)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  3. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  4. Computer simulation of liquid crystals

    International Nuclear Information System (INIS)

    McBride, C.

    1999-01-01

    Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe 2 Si) 2 O, using ab initio quantum mechanical calculations. (author)

  5. Nanoparticles in discotic liquid crystals

    Science.gov (United States)

    Kumar, Sandeep

    The self-assembly of disc-shaped molecules creates discotic liquid crystals (DLCs). These nanomaterials of the sizes ranging from 2-6 nm are emerging as a new class of organic semiconducting materials. The unique geometry of columnar mesophases formed by discotic molecules is of great importance to study the one-dimensional charge and energy migration in organized systems. A number of applications of DLCs, such as, one-dimensional conductor, photoconductor, photovoltaic solar cells, light emitting diodes and gas sensors have been reported. The conductivity along the columns in columnar mesophases has been observed to be several orders of magnitude greater than in perpendicular direction and, therefore, DLCs are described as molecular wires. On the other hand, the fields of nanostructured materials, such as gold nanoparticles, quantum dots, carbon nanotubes and graphene, have received tremendous development in the past decade due to their technological and fundamental interest. Recently the hybridization of DLCs with various metallic and semiconducting nanoparticles has been realized to alter and improve their properties. These nanocomposites are not only of basic science interest but also lead to novel materials for many device applications. This article provides an overview on the development in the field of newly immersed discotic nanoscience. After a brief introduction of DLCs, the article will cover the inclusion of various zero-, one- and two-dimensional nanoparticles in DLCs. Finally, an outlook into the future of this newly emerging intriguing field of discotic nanoscience research will be provided.

  6. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  7. Liquid crystalline biopolymers: A new arena for liquid crystal research

    International Nuclear Information System (INIS)

    Rizvi, Tasneem Zahra

    2001-07-01

    This paper gives a brief introduction to liquid crystals on the basis of biopolymers and reviews literature on liquid crystalline behaviour of biopolymers both in vitro and in vivo in relation to their implications in the fields of biology, medicine and material science. Knowledge in the field of biological liquid crystals is crucial for understanding complex phenomena at supramolecular level which will give information about processes involved in biological organization and function. The understanding of the interaction of theses crystals with electric, magnetic, optical and thermal fields will uncover mechanisms of near quantum-energy detection capabilities of biosystems

  8. Quiralidade em moléculas e cristais Chirality at molecules and crystals

    Directory of Open Access Journals (Sweden)

    Ayres Guimarães Dias

    2009-01-01

    Full Text Available The present contribution describes some concepts of stereochemistry and chirality in molecules and crystals. This paper also reports on the development of a simple and fast experiment to prepare and recognize conglomerate and true racemate of tartaric acid produced by mechanic mixture of commercial enantiomers and recristalization. Optical activity and melting point of mixtures are also used in the analysis.

  9. Complete Chiral Resolution Using Additive-Induced Crystal Size Bifurcation During Grinding

    NARCIS (Netherlands)

    Noorduin, Wim L.; Asdonk, Pim van der; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Leeman, Michel; Kellogg, Richard M.; Vlieg, Elias

    2009-01-01

    Grinding them down: By using a tailor-made additive, even in the absence of racemization in solution, abrasive grinding can yield an enantiopure solid state. This novel chiral resolution technique is based on an asymmetric bifurcation in the crystal size distribution as a result of stereoselective

  10. Chiral separation of pharmaceutical compounds using electrochemically modulated liquid chromatography (EMLC)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    This research explores the application of a new technique, termed electrochemically modulated liquid chromatography (EMLC), to the chiral separations of pharmaceutical compounds. The introduction section provides a literature review of the technique and its applications, as well as brief overview of the research described in each of the next two chapters. Chapter 2 investigates the EMLC-based enantiomeric separation of a group of chiral benzodiazepines with β-cyclodextrin as a chiral mobile phase additive. Chapter 3 demonstrates the effects of several experimental parameters on the separation efficiency of drug enantiomers. The author concludes with a general summary and possible directions for future studies. Chapters 2 and 3 are processed separately.

  11. Flexoelectricity and piezoelectricity: the reason for the rich variety of phases in antiferroelectric smectic liquid crystals.

    Science.gov (United States)

    Cepic, M; Zeks, B

    2001-08-20

    The free energy of antiferroelectric smectic liquid crystals which takes into account polar order explicitly is presented. Steric, van der Waals, piezoelectric, and flexoelectric interactions to the nearest layers, and dipolar electrostatic interactions to the nearest and to the next-nearest layers, induce indirect tilt interactions with chiral and achiral properties, which extend to the third- and to the fourth-nearest layers. Although the strength of microscopic interactions changes monotonically with decreasing temperature, the effective interlayer interactions change nonmonotonically and give rise to a nonmonotonic change of the modulation period through various phases. Increased chirality changes the phase sequence.

  12. Characterization of Crystal Chirality in Amino Acids Using Low-Frequency Raman Spectroscopy.

    Science.gov (United States)

    Aviv, Hagit; Nemtsov, Irena; Mastai, Yitzhak; Tischler, Yaakov R

    2017-10-19

    We present a new method for differentiating racemic crystals from enantiopure crystals. Recently, developments in optical filters have enabled the facile use of Raman spectroscopy to detect low-frequency vibrational (LFV) modes. Here, for the first time, we use Raman spectroscopy to characterize the LFV modes for crystalline organic materials composed of chiral molecules. The LF-Raman spectra of racemic and enantiopure crystals exhibit a significant variation, which we attribute to different hydrogen-bond networks in the chiral crystal structures. Across a representative set of amino acids, we observed that when comparing racemic versus enantiopure crystals, the available LFV modes and their relative scattering intensity are strong functions of side chain polarity. Thus, LF-Raman can be used as a method that is complementary to the currently used methods for characterizing crystal chirality due to simpler, faster, and more sensitive measurements, along with the small sample size required, which is limited by the laser-beam diameter in the focus.

  13. Characterising laser beams with liquid crystal displays

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2016-09-01

    Full Text Available the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD...

  14. Liquid crystal television spatial light modulators

    Science.gov (United States)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  15. Thermal Conductivity and Liquid Crystal Thermometers.

    Science.gov (United States)

    Edge, R. D., Ed.

    1993-01-01

    Describes using stock liquid crystal postcards as inexpensive classroom thermometers. Also suggests using these postcards as a good visual temperature indicator for classroom demonstrations such as temperature gradients. One such activity is provided. (MVL)

  16. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    Interfacial phenomena are ubiquitous and extremely important in various aspects of biological and industrial processes. For example, many liquid crystal applications start by alignment with a surface. The underlying mechanisms of the molecular organization of liquid crystals at an interface are still under intensive study and continue to be important to the display industry in order to develop better and/or new display technology. My dissertation research has been devoted to studying how complex liquid crystals can be guided to organize at an interface, and to using my findings to develop practical applications. Specifically, I have been working on developing biosensors using liquid-crystal/surfactant/lipid/protein interactions as well as the alignment of low-symmetry liquid crystals for potential new display and optomechanical applications. The biotechnology industry needs better ways of sensing biomaterials and identifying various nanoscale events at biological interfaces and in aqueous solutions. Sensors in which the recognition material is a liquid crystal naturally connects the existing knowledge and experience of the display and biotechnology industries together with surface and soft matter sciences. This dissertation thus mainly focuses on the delicate phenomena that happen at liquid interfaces. In the introduction, I start by defining the interface and discuss its structure and the relevant interfacial forces. I then introduce the general characteristics of biosensors and, in particular, describe the design of biosensors that employ liquid crystal/aqueous solution interfaces. I further describe the basic properties of liquid crystal materials that are relevant for liquid crystal-based biosensing applications. In CHAPTER 2, I describe the simulation methods and experimental techniques used in this dissertation. In CHAPTER 3 and CHAPTER 4, I present my computer simulation work. CHAPTER 3 presents insight of how liquid crystal molecules are aligned by

  17. Optical Power Limiting Liquid Crystal Composites

    Science.gov (United States)

    1994-11-10

    materials. In addition to the nonlinear studies, a separate subproject involving linear properties 0 of polymer dispersed liquid crystals in the infrared ...The horizontal axis represents on-axis laser intensity Io, defined as Io = 2P/( ww2 ), where P is the power and u0 is the beam waist. As can be seen in...I * 9 IR Shutter 1 Included in our original contract was a separate project to evaluate the use of liquid crystal composites in infrared shattering

  18. Liquid crystal boojum-colloids

    International Nuclear Information System (INIS)

    Tasinkevych, M; Silvestre, N M; Telo da Gama, M M

    2012-01-01

    Colloidal particles dispersed in a liquid crystal (LC) lead to distortions of the director field. The distortions are responsible for long-range effective colloidal interactions whose asymptotic behaviour is well understood. The short-distance behaviour depends on the structure and dynamics of the topological defects nucleated near the colloidal particles and a full nonlinear theory is required to describe it. Spherical colloidal particles with strong planar degenerate anchoring nucleate a pair of antipodal surface topological defects, known as boojums. We use the Landau-de Gennes theory to resolve the mesoscopic structure of the boojum cores and to determine the pairwise colloidal interactions. We compare the results in three (3D) and two (2D) spatial dimensions for spherical and disc-like colloidal particles, respectively. The corresponding free energy functionals are minimized numerically using finite elements with adaptive meshes. Boojums are always point-like in 2D, but acquire a rather complex structure in 3D, which depends on the combination of the anchoring potential, the radius of the colloid, the temperature and the LC elastic anisotropy. We identify three types of defect cores in 3D that we call single, double and split-core boojums, and investigate the associated structural transitions. The split-core structure is favoured by low temperatures, strong anchoring and small twist to splay or bend ratios. For sufficiently strong anchoring potentials characterized by a well-defined uniaxial minimum, the split-core boojums are the only stable configuration. In the presence of two colloidal particles, we observe substantial re-arrangements of the inner defects in both 3D and 2D. These re-arrangements lead to qualitative changes in the force-distance profile when compared to the asymptotic quadrupole-quadrupole interaction. In line with the experimental results, the presence of the defects prevents coalescence of the colloidal particles in 2D, but not in 3D

  19. Strong dielectric liquid crystal polymer (Part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Hideaki; Shibasaki, Akira

    1988-11-01

    Influence of change of molecular parameters on liquid crystal condition is studied to get the correlation between molecular structure of liquid crystal and phase structure or visco-elastic properties. Eight kinds of biphenyl type liquid crystals with polyacrilate main chain and triphenyl type liquid crystals were used as samples. Followings were found by a ploarizing microscope and X-ray diffraction: Phases are transferred from isotropic phase S/sub A/ phase S/sup *//sub C/ phase S/sub 1/ phase to solid on temperature desending sequence. Degree of polymerization changes only these transfer point but spacer length affects not only transfer points and layer distance but also liquid crystal structure itself. Visco-elasticity of isotropic phase shows Newtonian viscosity and is affected by the main chain length. Macroscopic and microscopic structures influence on viscoelasticity in S/sub A/ phase and S/sup *//sub C/ phase. Two rapid rises of viscoelasticity are found in low molecular weight liquid crystal when S/sub A/ transfer and S/sub A/ to S/sup *//sub C/ transfer occur by temperature desending from the isotropic phase. Viscoelastic behavior is contributed by the properties of domain itself and interaction between domains, and the interaction is changed by polymerization. 6 references, 13 figures, 1 table.

  20. Liquid crystals of carbon nanotubes and graphene.

    Science.gov (United States)

    Zakri, Cécile; Blanc, Christophe; Grelet, Eric; Zamora-Ledezma, Camilo; Puech, Nicolas; Anglaret, Eric; Poulin, Philippe

    2013-04-13

    Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.

  1. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    OpenAIRE

    Erny, Guillaume L.; Cifuentes, Alejandro

    2006-01-01

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc, of pharmaceuticals. In this manuscript, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including e.g., antiinflammatories, antihypertensives, relaxants, etc, by liquid chromatography-mass spectrometry and ...

  2. Liquid nitrogen dewar for protein crystal growth

    Science.gov (United States)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  3. Key Developments in Ionic Liquid Crystals.

    Science.gov (United States)

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  4. Key Developments in Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Alexandra Alvarez Fernandez

    2016-05-01

    Full Text Available Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  5. Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.

    Science.gov (United States)

    Cai, Pengfei; Wu, Datong; Zhao, Xiaoyong; Pan, Yuanjiang

    2017-08-07

    A novel task-specific ionic liquid derived from l-phenylalaninol was prepared as an enantioselective fluorescent sensor for the first time. Fluorescent chiral ionic liquid 1 (FCIL1) is found to exhibit highly enantioselective fluorescence enhancements toward both aromatic and non-aromatic chiral amino alcohols. When (S)-FCIL1 was treated with the enantiomers of phenylalaninol, a great fluorescence enhancement at 349 nm could be observed and the value of the enantiomeric fluorescence difference (ef) is 5.92. This demonstrated that the chiral sensor (S)-FCIL1 exhibited an excellent enantioselective response behaviour to d-phenylalaninol. Besides that, both the fluorescence intensity at 349 nm (I 349 ) and the ratio of I 349 to I 282 depend linearly on the concentration of amino alcohols. Both the concentration and the enantiomeric composition could be determined by using the chiral ionic liquid. Differently, the sensor treated with the enantiomers of 2-amino-1-butanol showed an opposite result: the fluorescence intensity of the S-enantiomer is higher than that of the R-enantiomer. Furthermore, the size of the substituents on the chiral carbon might be important for the enantioselective fluorescent response.

  6. Accurate measurement of the optical activity of alanine crystals and the determination of their absolute chirality

    Science.gov (United States)

    Ishikawa, Kazuhiko; Terasawa, Yukana; Tanaka, Masahito; Asahi, Toru

    2017-05-01

    Wavelength dependence measurements of the chiroptical properties in alanine crystals have so far been unsuccessful using conventional spectroscopic techniques. We describe our attempts to measure the wavelength dependence of the optical activity in L- and D-alanine crystals along each crystallographic axis, and to determine the absolute chirality of alanine crystals by correlating the absolute structure to the optical activity using an x-ray diffractometer and a generalized high accuracy universal polarimeter. We have succeeded in accurately measuring the optical rotatory dispersion in the direction, which shows that the optical rotation of the D-alanine crystal is dextrorotatory and that of the L-alanine crystal is laevorotatory, thereby determining the absolute chirality. Furthermore, comparison with the optical activity in solution shows that the optical activity in alanine crystals is different not only in value, but also in the sign. These results have led us to conclude that the optical rotatory power in the crystalline state should not be simply the summation of molecular optical rotatory power values. We propose the necessity of a theory, which contains the contribution of molecular interactions within the crystal, in order to calculate the optical rotatory power of the crystalline state.

  7. Invited review liquid crystal models of biological materials and silk spinning.

    Science.gov (United States)

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  8. Nonlinear Raman spectroscopy of liquid crystals: orientational alignment and switching behaviour in a ferroelectric liquid crystal mixture

    Science.gov (United States)

    Grofcsik, Andras

    Picosecond inverse Raman spectroscopy has been employed to probe the alignment behaviour and switching characteristics of a 6 mum thick ferroelectric liquid crystal based on a host mixture of fluorinated phenyl biphenylcarboxylates and a chiral dopant. Optical bistability is observed in the Raman signal on application of dc electric fields of opposite polarity. For particular polarities of the applied field, the Raman signals display a cos4theta dependence on the angle of rotation around the beam direction. Reorientational rate constants of 300 mus and 590 mus are observed for the aromatic core at the high-voltage limit for the rise and decay of the 1600 cm-1 Raman signal on application of a switching ac electric field.

  9. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    Science.gov (United States)

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chirality in nonlinear optics and optical switching

    NARCIS (Netherlands)

    Meijer, E.W.; Feringa, B.L.

    1993-01-01

    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical

  11. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 285–295. Insights on some chiral ... Liquid crystals; smectics; chirality; frustrated phases; twist grain boundary phases. ... molecules are more or less packed in layers and smectic phases can be seen ..... (imaging plate or CCD camera) which was located at about 300 mm from the sample.

  12. Characterising laser beams with liquid crystal displays

    Science.gov (United States)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  13. High Resolution Displays Using NCAP Liquid Crystals

    Science.gov (United States)

    Macknick, A. Brian; Jones, Phil; White, Larry

    1989-07-01

    Nematic curvilinear aligned phase (NCAP) liquid crystals have been found useful for high information content video displays. NCAP materials are liquid crystals which have been encapsulated in a polymer matrix and which have a light transmission which is variable with applied electric fields. Because NCAP materials do not require polarizers, their on-state transmission is substantially better than twisted nematic cells. All dimensional tolerances are locked in during the encapsulation process and hence there are no critical sealing or spacing issues. By controlling the polymer/liquid crystal morphology, switching speeds of NCAP materials have been significantly improved over twisted nematic systems. Recent work has combined active matrix addressing with NCAP materials. Active matrices, such as thin film transistors, have given displays of high resolution. The paper will discuss the advantages of NCAP materials specifically designed for operation at video rates on transistor arrays; applications for both backlit and projection displays will be discussed.

  14. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure. The prese......In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  15. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  16. Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction.

    Science.gov (United States)

    Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M

    2018-03-20

    Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.

  17. Chirality in adsorption on solid surfaces.

    Science.gov (United States)

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  18. A theory of the nematic liquid crystals

    International Nuclear Information System (INIS)

    Hazoume, R.P.

    1980-09-01

    A theory of the nematic phase of liquid crystals is presented, taking explicit account of the geometry of the molecule. The three broad peaks of the neutron scattering structure factor are explained. Expressions of the order parameters (average value of Psub(2L)) are given and they can be extracted by comparison with scattering experiments. (author)

  19. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  20. Nuclear magnetic resonance of liquid crystals

    National Research Council Canada - National Science Library

    Dong, Ronald Y

    1997-01-01

    ... operator in the small-step rotational diffusion model, while appendix D contains a list of liquid crystal abbreviations used in the book. A portion of this revision is carried out while the author is on leave at the University of Pisa. The author wishes to thank Professor C.A. Veracini for his kind hospitality and many authors for their preprints....

  1. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Characteristics of bulk liquid undercooling and crystallization behaviors ... cooling rate is fixed, the change of undercooling depends on the melt processing tem- ... solidification and a deep knowledge of undercooling of ... evolution, to obtain the information for the nucleation and ..... When cooling rate is fixed, the change.

  2. Supramolecular Liquid Crystal Displays Construction and Applications

    OpenAIRE

    Hoogboom, J.T.V.

    2004-01-01

    This thesis describes chemical methodologies, which can be ued to construct alignment layers for liquid crystal display purposes in a non-clean room environment, by making use of supramolecular chemistry. These techniques are subsequently used to attain control over LCD-properties, both pre- and post-LCD construction. In addition, the thesis describes the application of LCD technology in biosensors.

  3. Lasing in liquid crystal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)], E-mail: palto@online.ru

    2006-09-15

    A lasing condition is formulated in matrix form for optically anisotropic thin films. Lasing behavior of liquid-crystal slabs is analyzed. In particular, it is shown that if the spatial extent of a liquid crystal slab is much larger than its thickness, then laser emission is feasible not only along the normal to the slab, but also in the entire angular sector. The generated laser light can be observed experimentally as a spot or as concentric rings on a screen. The lowest lasing threshold corresponds to in-plane sliding modes leaking into the substrate. The feedback required for lasing is provided by reflection from the interfaces, rather than edges, of the liquid-crystal slab operating as a planar Fabry-Perot cavity. For cholesteric liquid crystals, it is shown that energy loss to the sliding modes leaking into the substrates and escaping through their edges is a key factor that limits the efficiency of band-edge emission along the normal to the slab.

  4. TaRh2B2 and NbRh2B2: Superconductors with a chiral noncentrosymmetric crystal structure.

    Science.gov (United States)

    Carnicom, Elizabeth M; Xie, Weiwei; Klimczuk, Tomasz; Lin, Jingjing; Górnicka, Karolina; Sobczak, Zuzanna; Ong, Nai Phuan; Cava, Robert J

    2018-05-01

    It is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials-even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties of superconductors is widely appreciated, although its study presents substantial challenges. The effect of a lack of a center of symmetry in a crystal structure, for example, has long been understood to necessitate that the wave function of the collective electron state that gives rise to superconductivity has to be more complex than usual. However, few nonhypothetical materials, if any, have actually been proven to display exotic superconducting properties as a result. We introduce two new superconductors that in addition to having noncentrosymmetric crystal structures also have chiral crystal structures. Because the wave function of electrons in solids is particularly sensitive to the host material's symmetry, crystal structure chirality is expected to have a substantial effect on their superconducting wave functions. Our two experimentally obtained chiral noncentrosymmetric superconducting materials have transition temperatures to superconductivity that are easily experimentally accessible, and our basic property characterization suggests that their superconducting properties may be unusual. We propose that their study may allow for a more in-depth understanding of how chirality influences the properties of superconductors and devices that incorporate them.

  5. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further

  6. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Science.gov (United States)

    Díaz, Jairo A; Jaramillo, Natalia A; Murillo, Mauricio F

    2007-12-12

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must

  7. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    Science.gov (United States)

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  8. Application of liquid crystals in thermal nondestructive evaluation

    International Nuclear Information System (INIS)

    Panakal, J.P.; Mukherjee, S.; Ghosh, J.K.

    1983-01-01

    In recent years, thermal nondestructive evaluation using Cholestric liquid crystals have found wide applications in industry. Thermography using Cholesteric liquid crystals can be used for detection of nonbonds in metallic composites, hot spots in electronic circuits and preliminary examination of welded pressure vessels. This paper presents the results of experiments on thermography of components using encapsulated liquid crystals. (author)

  9. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals

    Science.gov (United States)

    Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-06-01

    Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.

  10. The sweet world of liquid crystals : The synthesis of non-amphiphilic carbohydrate-derived liquid crystals

    NARCIS (Netherlands)

    Smits, E

    1998-01-01

    The research in carbohydrate-derived liquid crystals was initiated by a review article by Jeffrey in 1986. This is rather late if one considers that the research on liquid crystals underwent a revival already in the 1960s after the discovery of the liquid crystal display (LCD). Carbohydrates were

  11. Smart lighting using a liquid crystal modulator

    Science.gov (United States)

    Baril, Alexandre; Thibault, Simon; Galstian, Tigran

    2017-08-01

    Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.

  12. Thermal diode made by nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Djair, E-mail: djfmelo@gmail.com [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Fernandes, Ivna [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Moraes, Fernando [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB (Brazil); Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE (Brazil); Fumeron, Sébastien [Institut Jean Lamour, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre les Nancy (France); Pereira, Erms [Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, Madalena, 50720-001 Recife, PE (Brazil)

    2016-09-07

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed. - Highlights: • An escaped radial disclination as a thermal diode made by a nematic liquid crystal. • Rectifying effects comparable to those caused by carbon and boron nitride nanotubes. • Thermal rectification increasing with radius and decreasing with height of the tube. • Asymmetric BCs cause rectification from the spatial asymmetry produced by the escape. • Symmetric BCs provide rectifications smaller than those yields by asymmetric BCs.

  13. Calculation of Optical Parameters of Liquid Crystals

    Science.gov (United States)

    Kumar, A.

    2007-12-01

    Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.

  14. Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids.

    Science.gov (United States)

    Erny, G L; Cifuentes, A

    2006-02-24

    Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc., of pharmaceuticals. In this article, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including, e.g., antiinflammatories, antihypertensives, relaxants, etc., by liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry are included. The importance and interest of the analysis of the enantiomers of the active compound and its metabolites in different biological fluids (plasma, urine, cerebrospinal fluid, etc.) are also discussed.

  15. Ultrabroadband terahertz spectroscopy of a liquid crystal

    DEFF Research Database (Denmark)

    Vieweg, N.; Fischer, B. M.; Reuter, M.

    2012-01-01

    Liquid crystals (LCs) are becoming increasingly important for applications in the terahertz frequency range. A detailed understanding of the spectroscopic parameters of these materials over a broad frequency range is crucial in order to design customized LC mixtures for improved performance. We p...... show that the spectra are dominated by multiple strong spectral features mainly at frequencies above 4 THz, originating from intramolecular vibrational modes of the weakly LC molecules....

  16. Towards Molecular Dynamics Simulations of Chiral Room-Temperature Ionic Liquids

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Chval, Z.; Storch, Jan; Izák, Pavel

    2014-01-01

    Roč. 189, SI (2014), s. 85-94 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GAP106/12/0569; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : chiral room-temperature ionic liquid * molecular dynamics simulation * non-polarizable fully flexible all-atom force field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.515, year: 2014

  17. Nanoparticle guests in lyotropic liquid crystals

    Science.gov (United States)

    Dölle, Sarah; Park, Ji Hyun; Schymura, Stefan; Jo, Hyeran; Scalia, Giusy; Lagerwall, Jan P. F.

    In this chapter we discuss the benefits, peculiarities and main challenges related to nanoparticle templating in lyotropic liquid crystals. We first give a brief bird's-eye view of the field, discussing different nanoparticles as well as different lyotropic hosts that have been explored, but then quickly focus on the dispersion of carbon nanotubes in surfactant-based lyotropic nematic phases. We discuss in some detail how the transfer of orientational order from liquid crystal host to nanoparticle guest can be verified and which degree of ordering can be expected, as well as the importance of choosing the right surfactant and its concentration for the stability of the nanoparticle suspension. We introduce a method for dispersing nanoparticles with an absolute minimum of stabilizing surfactant, based on dispersion below the Krafft temperature, and we discuss the peculiar phenomenon of filament formation in lyotropic nematic phases with a sufficient concentration of well-dispersed carbon nanotubes. Finally, we describe how the total surfactant concentration in micellar nematics can be greatly reduced by combining cat- and anionic surfactants, and we discuss how nanotubes can help in inducing the liquid crystal phase close to the isotropic-nematic boundary.

  18. Liquid Crystal Microlenses for Autostereoscopic Displays

    Directory of Open Access Journals (Sweden)

    José Francisco Algorri

    2016-01-01

    Full Text Available Three-dimensional vision has acquired great importance in the audiovisual industry in the past ten years. Despite this, the first generation of autostereoscopic displays failed to generate enough consumer excitement. Some reasons are little 3D content and performance issues. For this reason, an exponential increase in three-dimensional vision research has occurred in the last few years. In this review, a study of the historical impact of the most important technologies has been performed. This study is carried out in terms of research manuscripts per year. The results reveal that research on spatial multiplexing technique is increasing considerably and today is the most studied. For this reason, the state of the art of this technique is presented. The use of microlenses seems to be the most successful method to obtain autostereoscopic vision. When they are fabricated with liquid crystal materials, extended capabilities are produced. Among the numerous techniques for manufacturing liquid crystal microlenses, this review covers the most viable designs for its use in autostereoscopic displays. For this reason, some of the most important topologies and their relation with autostereoscopic displays are presented. Finally, the challenges in some recent applications, such as portable devices, and the future of three-dimensional displays based on liquid crystal microlenses are outlined.

  19. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  20. Adsorption phenomena and anchoring energy in nematic liquid crystals

    CERN Document Server

    Barbero, Giovanni

    2005-01-01

    Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals.The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage...

  1. Cholesteric Liquid Crystal Based Reflex Color Reflective Displays

    Science.gov (United States)

    Khan, Asad

    2012-02-01

    Bistable color cholesteric liquid crystal displays are unique LCDs that exhibit high reflectivity, good contrast, extremely low power operation, and are amenable to versatile roll-to-roll manufacturing. The display technology, now branded as Reflex has been in commercialized products since 1996. It has been the subject of extensive research and development globally by a variety of parties in both academic and industrial settings. Today, the display technology is in volume production for applications such as dedicated eWriters (Boogie Board), full color electronic skins (eSkin), and displays for smart cards. The flexibility comes from polymerization induced phase separation using unique materials unparalleled in any other display technology. The blend of monomers, polymers, cross linkers, and other components along with nematic liquid crystals and chiral dopants is created and processed in such ways so as to enable highly efficient manufactrable displays using ultra thin plastic substrates -- often as thin as 50μm. Other significant aspects include full color by stacking or spatial separation, night vision capability, ultra high resolution, as well as active matrix capabilities. Of particular note is the stacking approach of Reflex based displays to show full color. This approach for reflective color displays is unique to this technology. Owing to high transparency in wavelength bands outside the selective reflection band, three primarily color layers can be stacked on top of each other and reflect without interfering with other layers. This highly surprising architecture enables the highest reflectivity of any other reflective electronic color display technology. The optics, architecture, electro-topics, and process techniques will be discussed. This presentation will focus on the physics of the core technology and color, it's evolution from rigid glass based displays to flexible displays, development of products from the paradigm shifting concepts to consumer

  2. Observation of two regions of selective light reflection from a thin film of a cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Alaverdyan, R B; Dadalyan, T K; Chilingaryan, Yurii S

    2013-01-01

    Two regions of selective light reflection (in the short- and long- wavelength parts of the visible spectrum) from a thin film of a cholesteric liquid crystal (CLC), consisting of the mixture of two CLCs with opposite chirality and a nematic liquid crystal, are experimentally found for the first time. The spectral position of the reflection regions and the separation between them varies depending on the CLC composition and the temperature. The long-wavelength region of reflection corresponds to the region of Bragg reflection from the CLC helix, while the short-wavelength region is probably due to the defects in the structure of the CLC film. (letters)

  3. Fluorinated tolane and dioxane liquid crystals for ferroelectric display applications

    International Nuclear Information System (INIS)

    Chu Chuan Dong

    1994-05-01

    The aim of this thesis was to make low viscosity, low birefringence, large negative dielectric anisotropy liquid-crystalline materials for use in ferroelectric liquid crystal mixtures to be used in high speed display devices. Saturated heterocyclic rings, dioxane and dioxaborinane, were chosen separately to be linked with a difluorophenyl system as the main component of the mesogenic core. In order to optimise the physical properties and to reduce the cost of the chiral materials, the strategy of making dopant-host mixtures was used. In addition to the difluorobiphenyl dioxaborinanes, three types of compounds were prepared possessing difluorophenyl rings and a dioxane ring: (i) difluorophenyl dioxanes and difluorobiphenyl dioxanes with the fluorinated ring in the middle of or at the end of the core; (ii) a number of compounds with linking groups, dimethylene (CH 2 CH 2 ), ester (COO), ethenylene (CH=CH) and ethynylene (C≡C) between adjacent benzene rings or between a dioxane ring and a benzene ring; (iii) difluorobiphenyl dioxanes possessing a chiral aliphatic chain were chosen as chiral dopants whose structure matched those of the host materials. Other compounds which have been synthesised are the difluorotolanes and difluorophenyl-ethynyl compounds, which were targeted because of the low viscosity of the tolane compounds and the negative dielectric anisotropy of the difluorophenyl ring. Fifty-six 2-(2,3-difluorobiphenyl-4'-yl)-1,3-dioxanes (n = 5-9, m = 5-10 or O5-O9; or n = 9, R' = OCH 2 CH(CH 3 )C 4 H 9 ) were prepared. Smectic C and nematic phases were observed for most of the alkyl-alkoxy homologues. Conversely, most of the dialkyl compounds exhibited smectic C, smectic A and nematic phases. The birefringences (Δn) and the dielectric anisotropies (Δε) of a number of materials have been determined. Three 2-(2,3-difluorobiphenyl-4-yl)-5-alkyl-1,3-dioxanes (n = 7, m = O7-O9) were prepared and only exhibit nematic phases. Two difluorophenyl dioxanes were

  4. Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions.

    Science.gov (United States)

    Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang

    2018-01-01

    Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy

    Science.gov (United States)

    Kanazawa, N.; White, J. S.; Rønnow, H. M.; Dewhurst, C. D.; Morikawa, D.; Shibata, K.; Arima, T.; Kagawa, F.; Tsukazaki, A.; Kozuka, Y.; Ichikawa, M.; Kawasaki, M.; Tokura, Y.

    2017-12-01

    We report the engineering of spin-hedgehog crystals in thin films of the chiral magnet MnGe by tailoring the magnetic anisotropy. As evidenced by neutron scattering on films with different thicknesses and by varying a magnetic field, we can realize continuously deformable spin-hedgehog crystals, each of which is described as a superposition state of a different set of three spin spirals (a triple-q state). The directions of the three propagation vectors q vary systematically, gathering from the three orthogonal 〈100 〉 directions towards the film normal as the strength of the uniaxial magnetic anisotropy and/or the magnetic field applied along the film normal increase. The formation of triple-q states coincides with the onset of topological Hall signals, that are ascribed to skew scattering by an emergent magnetic field originating in the nontrivial topology of spin hedgehogs. These findings highlight how nanoengineering of chiral magnets makes possible the rational design of unique topological spin textures.

  6. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  7. AFM study of advanced composite materials for organic photovoltaic cells with active layer based on P3HT:PCBM and chiral photosensitive liquid crystalline dopants

    Czech Academy of Sciences Publication Activity Database

    Iwan, A.; Sikora, A.; Hamplová, Věra; Bubnov, Alexej

    2015-01-01

    Roč. 42, č. 7 (2015), s. 964-972 ISSN 0267-8292 R&D Projects: GA MŠk 7AMB13PL041; GA ČR GA13-14133S; GA MŠk(CZ) LD14007; GA MŠk 7AMB13PL038 Grant - others:AVČR(CZ) M100101204 Institutional support: RVO:68378271 Keywords : AFM * chiral liquid crystal * organic solar cells * azo compounds * photovoltaic s Subject RIV: JJ - Other Materials Impact factor: 2.244, year: 2015

  8. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement.

    Science.gov (United States)

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M; Clark, Noel A; Yoon, Dong Ki

    2017-02-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4'- n -pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions.

  9. About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Matinyan, G K; Harutyunyan, M Z

    2014-01-01

    The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. The influence of: the CLC sublayer thicknesses; incidence angle; local dielectric (magnetic) anisotropy of the CLC layers; refraction indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.

  10. Effect of lateral methoxy substitution on mesomorphic and structural properties of ferroelectric liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej M.; Kašpar, Miroslav; Novotná, Vladimíra; Hamplová, Věra; Glogarová, Milada; Kapernaum, N.; Giesselmann, F.

    2008-01-01

    Roč. 35, č. 11 (2008), s. 1329-1337 ISSN 0267-8292 R&D Projects: GA ČR GA202/05/0431; GA AV ČR IAA100100710 Grant - others:DAAD-ASCR(XE) D11-CZ7/06-07; DAAD-ASCR(XE) D7-CZ8/08-09 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric liquid crystal * chiral materials * x-ray diffraction * dielectric properties * layer shrinkage * spontaneous polarisation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2008

  11. Simulation of light generation in cholesteric liquid crystals using kinetic equations: Time-independent solution

    Energy Technology Data Exchange (ETDEWEB)

    Shtykov, N. M., E-mail: nshtykov@mail.ru; Palto, S. P.; Umanskii, B. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-08-15

    We report on the results of calculating the conditions for light generation in cholesteric liquid crystals doped with fluorescent dyes using kinetic equations. Specific features of spectral properties of the chiral cholesteric medium as a photonic structure and spatially distributed type of the feedback in the active medium are taken into account. The expression is derived for the threshold pump radiation intensity as a function of the dye concentration and sample thickness. The importance of taking into account the distributed loss level in the active medium for calculating the optimal parameters of the medium and for matching the calculated values with the results of experiments is demonstrated.

  12. Liquid crystal-based hydrophone arrays

    Science.gov (United States)

    Brodzeli, Zourab; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir G.; Guo, Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.; Ladouceur, Francois

    2012-09-01

    We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

  13. One- and two-dimensional fluids properties of smectic, lamellar and columnar liquid crystals

    CERN Document Server

    Jakli, Antal

    2006-01-01

    Smectic and lamellar liquid crystals are three-dimensional layered structures in which each layer behaves as a two-dimensional fluid. Because of their reduced dimensionality they have unique physical properties and challenging theoretical descriptions, and are the subject of much current research. One- and Two-Dimensional Fluids: Properties of Smectic, Lamellar and Columnar Liquid Crystals offers a comprehensive review of these phases and their applications. The book details the basic structures and properties of one- and two-dimensional fluids and the nature of phase transitions. The later chapters consider the optical, magnetic, and electrical properties of special structures, including uniformly and non-uniformly aligned anisotropic films, lyotropic lamellar systems, helical and chiral structures, and organic anisotropic materials. Topics also include typical and defective features, magnetic susceptibility, and electrical conductivity. The book concludes with a review of current and potential applications ...

  14. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang; Bü rck, Jochen; Bihlmeier, Angela; Liu, Jinxuan; Shekhah, Osama; Weidler, Peter G.; Azucena, Carlos; Wang, Zhengbang; Heiß ler, Stefan; Gliemann, Hartmut; Klopper, Wim; Ulrich, Anne S.; Wö ll, Christof H.

    2014-01-01

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of multilactate chiral part of liquid crystalline molecule on mesomorphic behaviour

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej M.; Novotná, Vladimíra; Hamplová, Věra; Kašpar, Miroslav; Glogarová, Milada

    2008-01-01

    Roč. 892, 1-3 (2008), 151-157 ISSN 0022-2860 R&D Projects: GA MŠk OC 175; GA AV ČR IAA100100710 Institutional research plan: CEZ:AV0Z10100520 Keywords : lactic acid derivative * liquid crystal * ferroelectric liquid crystal * antiferroelectric phase * hexatic phase * keto group * lactate group Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.594, year: 2008

  17. Liquid Photonic Crystals for Mesopore Detection.

    Science.gov (United States)

    Zhu, Biting; Fu, Qianqian; Chen, Ke; Ge, Jianping

    2018-01-02

    Nitrogen adsorption-desorption for mesopore characterization requires the using of expensive instrumentation, time-consuming processes, and the consumption of liquid nitrogen. Herein, a new method is developed to measure the pore parameters through mixing a mesoporous substance with a supersaturated SiO 2 colloidal solution at different temperatures, and subsequent rapid measurement of reflection changes of the precipitated liquid photonic crystals. The pore volumes and diameters of mesoporous silica were measured according to the positive correlation between unit mass reflection change (Δλ/m) and pore volume (V), and the negative correlation between average absorption temperature (T) and pore diameter (D). This new approach may provide an alternative method for fast, convenient and economical characterization of mesoporous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Control of liquid crystal molecular orientation using ultrasound vibration

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Satoki [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Koyama, Daisuke; Matsukawa, Mami [Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Shimizu, Yuki; Emoto, Akira [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  19. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  20. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  1. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Guzmán, Orlando [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, DF 09340, México (Mexico); Hernández-Ortiz, Juan P. [Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Pablo, Juan J. de, E-mail: depablo@uchicago.edu [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  2. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  3. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    Science.gov (United States)

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  4. Thermally controllable reflective characteristics from rupture and self-assembly of hydrogen bonds in cholesteric liquid crystals.

    Science.gov (United States)

    Hu, Wang; Cao, Hui; Song, Li; Zhao, Haiyan; Li, Sijin; Yang, Zhou; Yang, Huai

    2009-10-22

    A cholesteric liquid crystal (Ch-LC) composite, made of a series of cholesteryl esters, a nematic LC, and a hydrogen bond (H-bond) chiral dopant (HCD), was prepared and filled into a planar treated cell. When the cell was heated, the selective reflection of the cell exhibited an unusual blue shift. One of the reasonable mechanisms was that the helical twisting power (HTP) value of cholesteryl esters increased with an increasing temperature. The other one was that the H-bonds of HCD were ruptured when the temperature was above 60.0 degrees C and HCD was split into two kinds of new chiral dopants, which made the HTP value of the chiral dopants change a lot, thus changing the pitch length of the composite greatly. On the basis of this mechanism, a novel thermally controllable reflective color paper could be achieved.

  5. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong; Majumdar, Apala; Erban, Radek

    2012-01-01

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  6. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong

    2012-06-08

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  7. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME).

    Science.gov (United States)

    Luo, Mai; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng

    2013-09-01

    A rapid, simple, reliable, and environment-friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid-liquid microextraction (DLLME) pretreatment followed by chiral high-performance liquid chromatography (HPLC)-DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n-hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy-driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30-1500 µg L(-1) with the correlation coefficients (R(2)) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L(-1) (for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L(-1) (S/N = 3). © 2013 Wiley Periodicals, Inc.

  8. Electrically Tuned Microwave Devices Using Liquid Crystal Technology

    Directory of Open Access Journals (Sweden)

    Pouria Yaghmaee

    2013-01-01

    Full Text Available An overview of liquid crystal technology for microwave and millimeter-wave frequencies is presented. The potential of liquid crystals as reconfigurable materials arises from their ability for continuous tuning with low power consumption, transparency, and possible integration with printed and flexible circuit technologies. This paper describes physical theory and fundamental electrical properties arising from the anisotropy of liquid crystals and overviews selected realized liquid crystal devices, throughout four main categories: resonators and filters, phase shifters and delay lines, antennas, and, finally, frequency-selective surfaces and metamaterials.

  9. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  10. Chiral phase transition and Anderson localization in the instanton liquid model for QCD

    International Nuclear Information System (INIS)

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2006-01-01

    We study the spectrum and eigenmodes of the QCD Dirac operator in a gauge background given by an instanton liquid model (ILM) at temperatures around the chiral phase transition. Generically we find the Dirac eigenvectors become more localized as the temperature is increased. At the chiral phase transition, both the low lying eigenmodes and the spectrum of the QCD Dirac operator undergo a transition to localization similar to the one observed in a disordered conductor. This suggests that Anderson localization is the fundamental mechanism driving the chiral phase transition. We also find an additional temperature dependent mobility edge (separating delocalized from localized eigenstates) in the bulk of the spectrum which moves toward lower eigenvalues as the temperature is increased. In both regions, the origin and the bulk, the transition to localization exhibits features of a 3D Anderson transition including multifractal eigenstates and spectral properties that are well described by critical statistics. Similar results are obtained in both the quenched and the unquenched case though the critical temperature in the unquenched case is lower. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations

  11. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic...

  12. Crystal structure of (2R-1-[(methylsulfonyloxy]propan-2-aminium chloride: a chiral molecular salt

    Directory of Open Access Journals (Sweden)

    H. R. Rajegowda

    2015-10-01

    Full Text Available In the title chiral molecular salt, C4H12NO3S+·Cl−, the cation is protonated at the N atom, producing [RNH3]+, where R is CH3SO2OCH2C(HCH3. The N atom in the cation is sp3-hybridized. In the crystal, cations and anions are connected by strong N—H...Cl hydrogen bonds to generate edge-shared 12-membered rings of the form {...Cl...HNH}3. This pattern of hydrogen bonding gives rise to zigzag supramolecular layers in the ab plane. The layers are connected into a three-dimensional architecture by C—H...O hydrogen bonds. The structure was refined as an inversion twin.

  13. Circular dichroism in a three-dimensional semiconductor chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Ota, Y.; Tatebayashi, J. [Institute of Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Tajiri, T. [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Iwamoto, S.; Arakawa, Y. [Institute of Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2014-08-04

    Circular dichroism covering the telecommunication band is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC). We design a rotationally stacked woodpile PhC structure where neighboring layers are rotated by 60° and three layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. Due to the large contrast of refractive indices between GaAs and air, the experimentally obtained circular dichroism extends over a wide wavelength range, with the transmittance of right-handed circularly polarized incident light being 85% and that of left-handed light being 15% at a wavelength of 1.3 μm. The obtained results show good agreement with numerical simulations.

  14. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    Science.gov (United States)

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  15. Alignment technology and applications of liquid crystal devices

    CERN Document Server

    Takatoh, Kohki; Hasegawa, Ray; Koden, Mitsushiro; Itoh, Nobuyuki; Hasegawa, Masaki

    2005-01-01

    Alignment phenomena are characteristic of liquid crystalline materials, and understanding them is critically important in understanding the essential features and behavior of liquid crystals and the performance of Liquid Crystal Devices (LCDs). Furthermore, in LCD production lines, the alignment process is of practical importance. Alignment Technologies and Applications of Liquid Crystal Devices demonstrates both the fundamental and practical aspects of alignment phenomena in liquid crystals. The physical basis of alignment phenomena is first introduced in order to aid the understanding of the various physical phenomena observed in the interface between liquid crystalline materials and alignment layer surfaces. Methods for the characterization of surfaces, which induce the alignment phenomena, and of the alignment layer itself are introduced. These methods are useful for the research of liquid crystalline materials and devices in academic research as well as in industry. In the practical sections, the alignme...

  16. Unconventional phase transitions in liquid crystals

    Science.gov (United States)

    Kats, E. I.

    2017-12-01

    According to classical textbooks on thermodynamics or statistical physics, there are only two types of phase transitions: continuous, or second-order, in which the latent heat L is zero, and first-order, in which L ≠ 0. Present-day textbooks and monographs also mention another, stand-alone type—the Berezinskii-Kosterlitz-Thouless transition, which exists only in two dimensions and shares some features with first- and second-order phase transitions. We discuss examples of non-conventional thermodynamic behavior (i.e., which is inconsistent with the theoretical phase transition paradigm now universally accepted). For phase transitions in smectic liquid crystals, mechanisms for nonconventional behavior are proposed and the predictions they imply are examined.

  17. Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography

    Science.gov (United States)

    Li, Sen-Sen; Shen, Yuan; Chang, Zhen-Ni; Li, Wen-Song; Xu, Yan-Chao; Fan, Xing-Yu; Chen, Lu-Jian

    2017-12-01

    A convenient approach to modulate the fingerprint textures of methyl red (MR) doped cholesteric liquid crystals by asymmetric photoalignment in the green-light waveband is presented, resulting in the generation of voltage-controllable helical superstructures. The interaction between the MR molecules and the incident light polarization determines the initial twisted planar geometry, providing a multivariant control over the stripe directions of fingerprint textures by applying a proper electric field. The key factors for precise manipulation of fingerprint stripes in a predictable and rewritable manner are analyzed theoretically and investigated experimentally, which involves the alignment asymmetry, the ratio of cell gap to natural pitch length, and the chirality of chiral dopant. Dynamic periodic fingerprint textures in shapes of dashed curve and dashed line are further demonstrated by utilizing a facile one-step polarization holography process using two beams with orthogonal circular and orthogonal linear polarizations, respectively. It is believed that the practical approach described in this study would enrich the research contents of self-assembled hierarchical superstructures using soft liquid crystal building blocks.

  18. Diversity of Knot Solitons in Liquid Crystals Manifested by Linking of Preimages in Torons and Hopfions

    Science.gov (United States)

    Ackerman, Paul J.; Smalyukh, Ivan I.

    2017-01-01

    Topological solitons are knots in continuous physical fields classified by nonzero Hopf index values. Despite arising in theories that span many branches of physics, from elementary particles to condensed matter and cosmology, they remain experimentally elusive and poorly understood. We introduce a method of experimental and numerical analysis of such localized structures in liquid crystals that, similar to the mathematical Hopf maps, relates all points of the medium's order parameter space to their closed-loop preimages within the three-dimensional solitons. We uncover a surprisingly large diversity of naturally occurring and laser-generated topologically nontrivial solitons with differently knotted nematic fields, which previously have not been realized in theories and experiments alike. We discuss the implications of the liquid crystal's nonpolar nature on the knot soliton topology and how the medium's chirality, confinement, and elastic anisotropy help to overcome the constraints of the Hobart-Derrick theorem, yielding static three-dimensional solitons without or with additional defects. Our findings will establish chiral nematics as a model system for experimental exploration of topological solitons and may impinge on understanding of such nonsingular field configurations in other branches of physics, as well as may lead to technological applications.

  19. Lattice modes of the chirally pure and racemic phases of tyrosine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Belyanchikov, M. A. [Moscow Institute of Physics and Technology (Russian Federation); Gorelik, V. S., E-mail: gorelik@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Gorshunov, B. P. [Moscow Institute of Physics and Technology (Russian Federation); Pyatyshev, A. Yu., E-mail: jb-valensia@mail.ru [Bauman Moscow State Technical University (Russian Federation)

    2017-01-15

    High-Q librational modes have been found to be present in the infrared absorption and Raman spectra of chirally pure L-tyrosine. Such modes can serve as terahertz radiation detectors and generators in chirally pure biostructures.

  20. Electrically modulated transparent liquid crystal-optical grating projection

    DEFF Research Database (Denmark)

    Buss, Thomas; Smith, Cameron; Kristensen, Anders

    2013-01-01

    A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows...

  1. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals

    OpenAIRE

    Kim, Yuna; Frigoli, Michel; Vanthuyne, Nicolas; Tamaoki, Nobuyuki

    2017-01-01

    The first photoresponsive cholesteric liquid crystal comprising a photoisomerizable helical naphthopyran derivative dopant and a nematic liquid crystal is reported. An unprecedented helical twisting power switching ratio of over 90% allowed us to demonstrate multi-cycle rotational motion of micro-objects by UV light irradiation.

  2. Liquid-crystal intraocular adaptive lens with wireless control

    NARCIS (Netherlands)

    Simonov, A.N.; Vdovine, G.V.; Loktev, M.

    2007-01-01

    We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively.

  3. Polarization-independent nematic liquid crystal waveguides for optofluidic applications

    NARCIS (Netherlands)

    d'Alessandro, A.; Martini, L.; Gilardi, G.; Beccherelli, R.; Asquini, R.

    2015-01-01

    We present the fabrication and the characterization of waveguides made of a nematic liquid crystal infiltrated in poly(dimethylsiloxane) channels. They are made by means of cast and molding technique and patterned using soft photolithography. The orientation of the nematic liquid crystal molecules

  4. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  5. Using chiral ionic liquid additives to enhance asymmetric induction in a Diels-Alder reaction.

    Science.gov (United States)

    Goodrich, P; Nimal Gunaratne, H Q; Hall, L; Wang, Y; Jin, L; Muldoon, M J; Ribeiro, A P C; Pombeiro, A J L; Pârvulescu, V I; Davey, P; Hardacre, C

    2017-01-31

    A bis-oxazoline ligand has been complexed using Cu(ii) and Zn(ii) trifluoromethanesulfonate and a range of chiral ionic liquid (CIL) additives based on natural products were used as a co-catalyst for a Diels-Alder reaction. The catalytic performance of these systems was compared for the asymmetric Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene with and without the presence of a CIL additive. In the absence of the CIL, both catalysts resulted in low enantioselectivities in conventional solvents and ionic liquids. However, whilst only a minor effect of the CIL was observed for the Cu based catalyst, in the case of the Zn based catalyst, significant enhancements in endo enantioselectivity of up to 50% were found on the addition of a CIL.

  6. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field

    Science.gov (United States)

    Liu, Zheng-Xin; Normand, B.

    2018-05-01

    Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  7. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.

    Science.gov (United States)

    Liu, Zheng-Xin; Normand, B

    2018-05-04

    Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  8. Insertion of liquid crystal molecules into hydrocarbon monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Piotr, E-mail: ppopov@kent.edu; Mann, Elizabeth K. [Department of Physics, Kent State University, Kent, Ohio 44242 (United States); Lacks, Daniel J. [Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Jákli, Antal [Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001 (United States)

    2014-08-07

    Atomistic molecular dynamics simulations were carried out to investigate the molecular mechanisms of vertical surface alignment of liquid crystals. We study the insertion of nCB (4-Cyano-4{sup ′}-n-biphenyl) molecules with n = 0,…,6 into a bent-core liquid crystal monolayer that was recently found to provide good vertical alignment for liquid crystals. The results suggest a complex-free energy landscape for the liquid crystal within the layer. The preferred insertion direction of the nCB molecules (core or tail first) varies with n, which can be explained by entropic considerations. The role of the dipole moments was found to be negligible. As vertical alignment is the leading form of present day liquid crystal displays (LCD), these results will help guide improvement of the LCD technology, as well as lend insight into the more general problem of insertion of biological and other molecules into lipid and surfactant layers.

  9. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  10. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  11. Magnetic, electric and optic properties of liquid crystals

    International Nuclear Information System (INIS)

    Florea, St.C.

    1980-01-01

    We study the nematic liquid crystals of thermotrop type. We also studied the crystals whose mesomorphism occured both at temperature increasing and decreasing and during the supercooling phase (monotrope). Investigation results performed by us have had in view the following: clearing up and experimental support of a new mechanism of nuclear relaxation in liquid crystals, proposed by author; usage of experimental techniques and methods for to characterize and test some mesomorph media used in very important applications, such as color TV. (author)

  12. Liquid Crystal Gel Reduces Age Spots by Promoting Skin Turnover

    OpenAIRE

    Mina Musashi; Ariella Coler-Reilly; Teruaki Nagasawa; Yoshiki Kubota; Satomi Kato; Yoko Yamaguchi

    2014-01-01

    Studies have shown that liquid crystals structurally resembling the intercellular lipids in the stratum corneum can beneficially affect the skin when applied topically by stimulating the skin’s natural regenerative functions and accelerating epidermal turnover. In the present study, the effects of applying low concentrations of a liquid crystal gel of our own creation were evaluated using epidermal thickening in mouse skin as an assay for effective stimulation of epidermal turnover. A liquid ...

  13. H-Bond stabilized columnar discotic liquid crystals

    NARCIS (Netherlands)

    Paraschiv, I.

    2007-01-01

    Since 1977, more than 2300 publications on discotic (disk-like) liquid crystalline materials have appeared. Discotic liquid crystals, which usually consist of polyaromatic molecules surrounded by long peripheral alkyl tails, can form liquid crystalline mesophases in a wide temperature range. Within

  14. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems.

    Science.gov (United States)

    Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J

    2012-07-16

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chiral crystal of a C2v-symmetric 1,3-diazaaulene derivative showing efficient optical second harmonic generation

    KAUST Repository

    Ma, Xiaohua

    2011-03-01

    Achiral nonlinear optical (NLO) chromophores 1,3-diazaazulene derivatives, 2-(4â€-aminophenyl)-6-nitro-1,3-diazaazulene (APNA) and 2-(4â€-N,N-diphenylaminophenyl)-6-nitro-1,3-diazaazulene (DPAPNA), were synthesized with high yield. Despite the moderate static first hyperpolarizabilities (β0) for both APNA [(136 ± 5) à - 10-30 esu] and DPAPNA [(263 ± 20) à - 10-30 esu], only APNA crystal shows a powder efficiency of second harmonic generation (SHG) of 23 times that of urea. It is shown that the APNA crystallization driven cooperatively by the strong H-bonding network and the dipolar electrostatic interactions falls into the noncentrosymmetric P2 12121 space group, and that the helical supramolecular assembly is solely responsible for the efficient SHG response. To the contrary, the DPAPNA crystal with centrosymmetric P-1 space group is packed with antiparalleling dimmers, and is therefore completely SHG-inactive. 1,3-Diazaazulene derivatives are suggested to be potent building blocks for SHG-active chiral crystals, which are advantageous in high thermal stability, excellent near-infrared transparency and high degree of designing flexibility. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Optical crystals based on 1,3-diazaazulene derivatives are reported as the first example of organic nonlinear optical crystal whose second harmonic generation activity is found to originate solely from the chirality of their helical supramolecular orientation. The strong H-bond network forming between adjacent choromophores is found to act cooperatively with dipolar electrostatic interactions in driving the chiral crystallization of this material. Copyright © 2011 Wiley Periodicals, Inc.

  16. Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis.

    Science.gov (United States)

    Chen, Jiaquan; Du, Yingxiang; Sun, Xiaodong

    2017-12-01

    The combined use of chiral ionic liquids (ILs) and chiral selectors in capillary electrophoresis (CE) to establish a synergistic system has proven to be an effective approach for enantioseparation. In this article, tetramethylammonium-L-arginine, a kind of amino acid chiral IL, was applied to investigate its potential synergistic effect with maltodextrin in CE enantioseparation. The established maltodextrin-based synergistic system showed markedly improved enantioseparations compared with the single maltodextrin system. Parameters such as the chiral IL concentration, maltodextrin concentration, buffer pH, applied voltage, and capillary temperature were optimized. Satisfactory enantioseparation of the five studied drugs, including nefopam, duloxetine, ketoconazole, cetirizine, and citalopram was achieved in 50 mM Tris-H 3 PO 4 buffer solution (pH 3.0) containing 7.0% (m/v) maltodextrin and 60 mM tetramethylammonium-L-arginine. In addition, the chiral configuration of tetramethylammonium-L-arginine was also investigated to demonstrate the existence of a synergistic effect between chiral ILs and maltodextrin. © 2017 Wiley Periodicals, Inc.

  17. Crystal-liquid-gas phase transitions and thermodynamic similarity

    CERN Document Server

    Skripov, Vladimir P; Schmelzer, Jurn W P

    2006-01-01

    Professor Skripov obtained worldwide recognition with his monograph ""Metastable liquids"", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase tra

  18. New scintillating media based on liquid crystals for particle detectors

    International Nuclear Information System (INIS)

    Barnik, M.I.; Yudin, S.G.; Vasil'chenko, V.G.; Golovkin, S.V.; Medvedkov, A.M.; Solovjev, A.S.

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors

  19. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  20. Computer simulation of confined liquid crystal dynamics

    International Nuclear Information System (INIS)

    Webster, R.E.

    2001-11-01

    Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results show /that relaxation timescales of medium sized systems are accessible. Following this, simulations are performed of relaxation in hybrid aligned nematic systems, where each surface induces a different alignment. Flow patterns associated with director reorientation are observed. The damped oscillatory nature of the relaxation process suggests that the behaviour of these systems is dominated by orientational elastic forces and that the observed director motion and flow do not correspond to the macroscopic processes of backflow and kickback. Chevron structures can occur in confined smectic cells which develop two domains of equal and opposite layer tilt on cooling. Layer lilting is thought to be caused by a need to reconcile a mismatch between bulk and surface smectic layer spacing. Here, simulations are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. (author)

  1. Computer simulation of confined liquid crystal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Webster, R.E

    2001-11-01

    Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results show /that relaxation timescales of medium sized systems are accessible. Following this, simulations are performed of relaxation in hybrid aligned nematic systems, where each surface induces a different alignment. Flow patterns associated with director reorientation are observed. The damped oscillatory nature of the relaxation process suggests that the behaviour of these systems is dominated by orientational elastic forces and that the observed director motion and flow do not correspond to the macroscopic processes of backflow and kickback. Chevron structures can occur in confined smectic cells which develop two domains of equal and opposite layer tilt on cooling. Layer lilting is thought to be caused by a need to reconcile a mismatch between bulk and surface smectic layer spacing. Here, simulations are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. (author)

  2. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    Science.gov (United States)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  3. Artificial muscles based on liquid crystal elastomers.

    Science.gov (United States)

    Li, Min-Hui; Keller, Patrick

    2006-10-15

    This paper presents our results on liquid crystal (LC) elastomers as artificial muscle, based on the ideas proposed by de Gennes. In the theoretical model, the material consists of a repeated series of main-chain nematic LC polymer blocks, N, and conventional rubber blocks, R, based on the lamellar phase of a triblock copolymer RNR. The motor for the contraction is the reversible macromolecular shape change of the chain, from stretched to spherical, that occurs at the nematic-to-isotropic phase transition in the main-chain nematic LC polymers. We first developed a new kind of muscle-like material based on a network of side-on nematic LC homopolymers. Side-on LC polymers were used instead of main-chain LC polymers for synthetic reasons. The first example of these materials was thermo-responsive, with a typical contraction of around 35-45% and a generated force of around 210 kPa. Subsequently, a photo-responsive material was developed, with a fast photochemically induced contraction of around 20%, triggered by UV light. We then succeeded in preparing a thermo-responsive artificial muscle, RNR, with lamellar structure, using a side-on nematic LC polymer as N block.Micrometre-sized artificial muscles were also prepared. This paper illustrates the bottom-up design of stimuli-responsive materials, in which the overall material response reflects the individual macromolecular response, using LC polymer as building block.

  4. Stability of Disclinations in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Wang Yusheng; Yang Guohong; Tian Lijun; Duan Yishi

    2006-01-01

    In the light of φ-mapping method and topological current theory, the stability of disclinations around a spherical particle in nematic liquid crystals is studied. We consider two different defect structures around a spherical particle: disclination ring and point defect at the north or south pole of the particle. We calculate the free energy of these different defects in the elastic theory. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclinations. The other is the free energy density of disclinations themselves, which is shown to be concentrated at the defect and to be topologically quantized in the unit of (k-k 24 )π/2. It is shown that in the presence of saddle-splay elasticity a dipole (radial and hyperbolic hedgehog) configuration that accompanies a particle with strong homeotropic anchoring takes the structure of a small disclination ring, not a point defect.

  5. Liquid crystal polyester-carbon fiber composites

    Science.gov (United States)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  6. Shear flow in smectic A liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Stewart, F

    2009-01-01

    This paper considers the onset of a shear-induced instability in a sample of smectic A liquid crystal. Unlike many previous models, the usual director n need not necessarily coincide with the local smectic layer normal a; the traditional Oseen constraint (∇xa=0) is not imposed when flow is present. A recent dynamic theory for smectic A (Stewart 2007 Contin. Mech. Thermodyn. 18 343-60) will be used to examine a stationary instability in a simple model when the director reorientation and smectic layer distortions are, firstly, assumed not to be coupled to the velocity and, secondly, are supposed coupled to the velocity. A critical shear rate at which the onset of the instability occurs will be identified, together with an accompanying critical director tilt angle and critical wavenumber for the associated smectic layer undulations. Despite some critical phenomena being largely unaffected by any coupling to the flow, it will be shown that the influence of some material parameters, especially the smectic layer compression constant B 0 and the coupling constant B 1 , upon the critical shear rate and critical tilt angle can be greatly affected by flow.

  7. Convolving optically addressed VLSI liquid crystal SLM

    Science.gov (United States)

    Jared, David A.; Stirk, Charles W.

    1994-03-01

    We designed, fabricated, and tested an optically addressed spatial light modulator (SLM) that performs a 3 X 3 kernel image convolution using ferroelectric liquid crystal on VLSI technology. The chip contains a 16 X 16 array of current-mirror-based convolvers with a fixed kernel for finding edges. The pixels are located on 75 micron centers, and the modulators are 20 microns on a side. The array successfully enhanced edges in illumination patterns. We developed a high-level simulation tool (CON) for analyzing the performance of convolving SLM designs. CON has a graphical interface and simulates SLM functions using SPICE-like device models. The user specifies the pixel function along with the device parameters and nonuniformities. We discovered through analysis, simulation and experiment that the operation of current-mirror-based convolver pixels is degraded at low light levels by the variation of transistor threshold voltages inherent to CMOS chips. To function acceptable, the test SLM required the input image to have an minimum irradiance of 10 (mu) W/cm2. The minimum required irradiance can be further reduced by adding a photodarlington near the photodetector or by increasing the size of the transistors used to calculate the convolution.

  8. 2D director calculation for liquid crystal optical phased array

    International Nuclear Information System (INIS)

    Xu, L; Zhang, J; Wu, L Y

    2005-01-01

    A practical numerical model for a liquid crystal cell is set up based on the geometrical structure of liquid crystal optical phased arrays. Model parameters include width and space of electrodes, thickness of liquid crystal layer, alignment layers and glass substrates, pre-tilted angles, dielectric constants, elastic constants and so on. According to electrostatic field theory and Frank-Oseen elastic continuum theory, 2D electric potential distribution and 2D director distribution are calculated by means of the finite difference method on non-uniform grids. The influence of cell sizes on director distribution is analyzed. The fringe field effect between electrodes is also discussed

  9. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  10. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  11. NATO Advanced Research Workshop on Incommensurate Crystals, Liquid Crystals, and Quasi-Crystals

    CERN Document Server

    Clark, N

    1988-01-01

    In this NATO-sponsored Advanced Research Workshop we succeeded in bringing together approximately forty scientists working in the three main areas of structurally incommensurate materials: incommensurate crystals (primarily ferroelectric insulators), incommensurate liquid crystals, and metallic quasi-crystals. Although these three classes of materials are quite distinct, the commonality of the physics of the origin and descrip­ tion of these incommensurate structures is striking and evident in these proceedings. A measure of the success of this conference was the degree to which interaction among the three subgroups occurred; this was facili­ tated by approximately equal amounts of theory and experiment in the papers presented. We thank the University of Colorado for providing pleasant housing and conference facilities at a modest cost, and we are especially grate­ ful to Ann Underwood, who retyped all the manuscripts into camera-ready form. J. F. Scott Boulder, Colorado N. A. Clark v CONTENTS PART I: INCO...

  12. Chiral spin liquids at finite temperature in a three-dimensional Kitaev model

    Science.gov (United States)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2017-11-01

    Chiral spin liquids (CSLs) in three dimensions and thermal phase transitions to paramagnet are studied by unbiased Monte Carlo simulations. For an extension of the Kitaev model to a three-dimensional tricoordinate network dubbed the hypernonagon lattice, we derive low-energy effective models in two different anisotropic limits. We show that the effective interactions between the emergent Z2 degrees of freedom called fluxes are unfrustrated in one limit, while highly frustrated in the other. In both cases, we find a first-order phase transition to the CSL, where both time-reversal and parity symmetries are spontaneously broken. In the frustrated case, however, the CSL state is highly exotic—the flux configuration is subextensively degenerate while showing a directional order with broken C3 rotational symmetry. Our results provide two contrasting archetypes of CSLs in three dimensions, both of which allow approximation-free simulation for investigating the thermodynamics.

  13. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

    Science.gov (United States)

    Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan

    2016-12-30

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  14. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    Directory of Open Access Journals (Sweden)

    Yujian Sun

    2016-12-01

    Full Text Available Polymer-dispersed liquid crystal (PDLC films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  15. Infrared absorption spectroscopy characterization of liquid-solid interfaces: The case of chiral modification of catalysts

    Science.gov (United States)

    Zaera, Francisco

    2018-03-01

    An overview is provided here of our work on the characterization of chiral modifiers for the bestowing of enantioselectivity to metal-based hydrogenation catalysts, with specific reference to the so-called Orito reaction. We start with a brief discussion of the use of infrared absorption spectroscopy (IR) for the characterization of chemical species at liquid-solid interfaces, describing the options available as well as the information that can be extracted from such experiments and the advantages and disadvantages associated with the technique. We then summarize the main results that we have reported to date from our IR study of the adsorption of cinchona alkaloids and related compounds from solutions onto platinum surfaces. Several observations are highlighted and placed in context in terms of the existing knowledge and their relevance to catalysis. Key conclusions include the uniqueness of the nature of the adsorbed species when in the presence of the solvent (versus when the uptake is done under vacuum, or versus the pure or dissolved molecules), the fact that each modifier adopts unique and distinct adsorption geometries on the surface and that those change with the concentration of the solution in ways that correlate well with the performance of the catalyst, the potential tendency of at least some of these chiral modifiers to bind to the surface primarily via the nitrogen atom of the amine group, not the aromatic ring as it is often assumed, and the observation that the ability of one modifier to dominate the catalytic chemistry in solutions containing mixtures of two or more of those is linked to their capacity for displacing each other from the surface, which in turn is determined by a balance between the strength of their binding to the surface and their solubility in the liquid solvent.

  16. Synthesis, crystal structure and bioactivity of manganese complexes with asymmetric chiral Schiff base

    Science.gov (United States)

    Zhang, Enfeng; Wei, Yi; Huang, Fuping; Yu, Qing; Bian, Hedong; Liang, Hong; Lei, Fuhou

    2018-03-01

    A couple of chiral unsymmtrical Schiff base ligands, (1R,2R) (-)chxn (salH) (naftalH) and (1S,2S) (-)chxn (salH) (naftalH) had been synthesized by the condensation of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with two isomers of (1R,2R)-trans-1,2-cyclohexanediamin and (1S,2S)-trans-1,2-cyclohexanediamin, respectively. At the same time, two manganese complexes have been synthesized and fully characterized by FT-IR spectrum, elemental analyses, single crystal X-ray diffraction. The interaction of the two Mn (III) complexes with bovine serum albumin (BSA) was investigated by spectroscopic techniques. The result reveals that the complexes can strongly quench the intrinsic fluorescence of BSA through a static quenching mechanism. The binding constant and binding mode has been determined. The secondary structure and the amino acid residues microenvironment of BSA change in the presence of these complexes. SOD-like activity and ABTS free radical scavenging ability were also studied. The antioxidant capacity of the compounds showed that the complexes and their corresponding BSA adducts showed some SOD activity. The results of ABTS free radical scavenging showed that the activity of the BSA adduct was more obvious than that of the complex.

  17. Hydrogen bonding discotic liquid crystals: Synthesis, self-assembly, and molecular recognition

    Science.gov (United States)

    Bushey, Mark Lawrence

    The triamides shown below form discotic liquid crystalline phases with intermolecular hydrogen bonding stabilizing the columnar structure, A and B. The mesomorphic orientations of the columns are dependent on the amide side chain. Three mesophasic orientations are described: columns aligned perpendicular to the surface, columns aligned parallel to the surface in a radial pattern, and columns aligned parallel to the surface in a parallel or aligned pattern. The aggregation of the tridodecyloxy-triamides show N-H shifting in the IR at elevated temperatures, an indication that hydrogen bonding is important in the association of liquid crystalline mesophases. Powder X-ray diffraction studies indicate packing of the columns into a hexagonal lattice.* Studies on triamides with chiral side chains result in molecules stacking into columns displaying a helical pitch. In concentrated solutions of dodecane, molecules with chiral side chains display behavior consistent with chiral nematic liquid crystals; a super helical packing of the chiral columns. These superhelical packed systems show temperature dependent selective reflection of visible light and fingerprint textures. Atomic force microscopy (AFM) confirms in sub-monolayer films, that molecules preferring an edge-on orientation form long columns on highly ordered pyrolytic graphite (HOPG), those that prefer a face-on orientation form large amorphous domains. Electrostatic force microscopy (EFM) images of the domains of molecules in the edge-on orientation provides no discernible polarity, imaging of the domains of molecules in the face-on orientation indicates a negative polar orientation. Scanning probe measurements (SPM) of the tridodecynyl-triamide have shown similar edge-on orientations of other tridodecyloxy-triamides. Powder X-ray diffraction of these liquid crystalline phases shows a hexagonal packing of the columnar assembly. Electro-optic switching studies indicate a piezoelectric switching mechanism, possibly

  18. Diversity of Knot Solitons in Liquid Crystals Manifested by Linking of Preimages in Torons and Hopfions

    Directory of Open Access Journals (Sweden)

    Paul J. Ackerman

    2017-01-01

    Full Text Available Topological solitons are knots in continuous physical fields classified by nonzero Hopf index values. Despite arising in theories that span many branches of physics, from elementary particles to condensed matter and cosmology, they remain experimentally elusive and poorly understood. We introduce a method of experimental and numerical analysis of such localized structures in liquid crystals that, similar to the mathematical Hopf maps, relates all points of the medium’s order parameter space to their closed-loop preimages within the three-dimensional solitons. We uncover a surprisingly large diversity of naturally occurring and laser-generated topologically nontrivial solitons with differently knotted nematic fields, which previously have not been realized in theories and experiments alike. We discuss the implications of the liquid crystal’s nonpolar nature on the knot soliton topology and how the medium’s chirality, confinement, and elastic anisotropy help to overcome the constraints of the Hobart-Derrick theorem, yielding static three-dimensional solitons without or with additional defects. Our findings will establish chiral nematics as a model system for experimental exploration of topological solitons and may impinge on understanding of such nonsingular field configurations in other branches of physics, as well as may lead to technological applications.

  19. Magnetic, electrical and optical properties of liquid crystals

    International Nuclear Information System (INIS)

    Florea, S.C.

    1980-01-01

    This thesis lays stress on the study of thermotrop nematic liquid crystals. But the crystals whose mesomorphism is achieved by an increase and decrease in temperature and the crystal category exhibiting a mesomorphism in a deep freezing phase are also studied. The results of the research carried out in the laboratory of ''active media, lasers and matter-radiation interactions'' of the Institute for Physics and Technology of Radiation Apparata as well as in the laboratories of liquid crystals and nuclear magnetic resonance of the Polytechnical Institute of Bucharest during seven years have had in view two main objectives: to elucidate and prove experimentally a new mechanism of nuclear relaxation in liquid crystals, proposed by the author; to use the current experimental techniques and methods applied in the above-mentioned laboratories to characterize and test some foreign mesomorphic media which are synthesized locally, providing a wide range of applications, such as colour television. (author)

  20. Static and dynamic continuum theory liquid crystals a mathematical introduction

    CERN Document Server

    Stewart, Iain W

    2004-01-01

    Providing a rigorous, clear and accessible text for graduate students regardless of scientific background, this text introduces the basic continuum theory for nematic liquid crystals in equilibria, and details its various simple applications.

  1. Heat and electrical conductivity of thermotropic liquid crystals

    International Nuclear Information System (INIS)

    Saidov, N.S.; Majidov, H.; Saburov, B.S.; Safarov, M.M.

    1989-01-01

    A results of thermal conduction and electrical conduction of chemo tropic liquid crystals are brought in this article. An installation dependence formula of thermal conduction investigating things from the electrical conduction and temperatures is constructed

  2. Resolution of D- and L-glucoses by chiral N-octyl-beta-D-glycoside-Cu(II) complex adsorbed at the gas/liquid interface of small bubbles

    NARCIS (Netherlands)

    Sakai, M.; Miyazawa, K.; Jitsumatsu, H.; Kamio, K.; Mitsuiki, S.; Toh, N.; Sugihara, G.; Norde, W.

    2010-01-01

    A new technique of the jet drop method (JDM) was applied to a chiral molecular discrimination of optically active D- or L-glucose (guest) by chiral N-octyl-beta-D-glycoside (O beta DG)-Cu(II) complex (host) at the gas/liquid interface of small bubbles. The discrimination of glucoses as the guests is

  3. Variational Approach in the Theory of Liquid-Crystal State

    Science.gov (United States)

    Gevorkyan, E. V.

    2018-03-01

    The variational calculus by Leonhard Euler is the basis for modern mathematics and theoretical physics. The efficiency of variational approach in statistical theory of liquid-crystal state and in general case in condensed state theory is shown. The developed approach in particular allows us to introduce correctly effective pair interactions and optimize the simple models of liquid crystals with help of realistic intermolecular potentials.

  4. New developments in flexible cholesteric liquid crystal displays

    Science.gov (United States)

    Schneider, Tod; Davis, Donald J.; Franklin, Sean; Venkataraman, Nithya; McDaniel, Diaz; Nicholson, Forrest; Montbach, Erica; Khan, Asad; Doane, J. William

    2007-02-01

    Flexible Cholesteric liquid crystal displays have been rapidly maturing into a strong contender in the flexible display market. Encapsulation of the Cholesteric liquid crystal permits the use of flexible plastic substrates and roll-to-roll production. Recent advances include ultra-thin displays, laser-cut segmented displays of variable geometry, and smart card applications. Exciting technologies such as simultaneous laser-edge sealing and singulation enable high volume production, excellent quality control and non-traditional display geometries and formats.

  5. Liquid Crystals of Lithium Dodecylbenzenesulfonate for Electric Double Layer Capacitors

    International Nuclear Information System (INIS)

    Kuzmin, Andrey Vasil’evich; Yurtov, Evgeny V.

    2016-01-01

    Ionic lyotropic liquid crystals based on lithium dodecylbenzenesulfonate were used as electrolytes for electric double layer capacitors with carbon fibrous electrodes. The capacitors were tasted by cyclic voltammetry, galvanostatic charge and discharge, and impedance spectroscopy. The highest specific capacitance was achieved for electrical double layer capacitor equipped with ionic lyotropic liquid crystal of lithium dodecylbenzenesulfonate 35 wt% in water. The specific capacitance of capacitor was calculated from galvanostatic discharge curves – 15 F/g of carbon fibrous material

  6. All-optical image processing with nonlinear liquid crystals

    Science.gov (United States)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  7. Order parameters in smectic liquid crystals

    International Nuclear Information System (INIS)

    Beldon, Stephen M.

    2001-01-01

    This thesis explores some of the important mechanisms for switching in smectic liquid crystals. It is mainly concerned with the interaction of the electric field and various order parameters in smectic phases. Distortion of these order parameters and also the layer structures associated with smectics are discussed in depth. Initial work is concentrated on the electroclinic effect of commercially available FLC mixtures, where experimental results suggest the presence of non-uniformity in the molecular director profile. Two possible models are suggested assuming a variation of the order parameter θ through the cell. The first model assumes that the smectic layers remain bookshelf-like, and the second that the layers tilt in a vertical chevron structure when a cone angle is induced electroclinically or otherwise. The latter model is the first 'order parameter' model of an electric field induced vertical chevron. The presence of non-uniformity in the director profile is sensed by a method similar to wavelength extinction spectroscopy. Investigations are undertaken on racemic smectic materials with high dielectric biaxiality. Modelling of such a material reveals a new electroclinic effect which shows a discrete second order phase transition on application of a field. It is suggested that a bistable electroclinic effect stabilised with a high frequency ac field may be realised if a residual polarisation is present in the high biaxiality material, and that this might be useful in the displays industry. Experimental investigations of such a material confirm the above effects close to the smectic A-C transition. Finally a higher order smectic phase, the smectic I* phase, is considered. The distortion of the hexagonal bond orientational order is investigated experimentally during application of an electric field. The first dynamic model of the switching process is presented, showing good agreement with the experimental results. It is suggested that the bond orientational

  8. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Evans, Sian E; Davies, Paul; Lubben, Anneke; Kasprzyk-Hordern, Barbara

    2015-07-02

    This is the first study presenting a multi-residue method allowing for comprehensive analysis of several chiral pharmacologically active compounds (cPACs) including beta-blockers, antidepressants and amphetamines in wastewater and digested sludge at the enantiomeric level. Analysis of both the liquid and solid matrices within wastewater treatment is crucial to being able to carry out mass balance within these systems. The method developed comprises filtration, microwave assisted extraction and solid phase extraction followed by chiral liquid chromatography coupled with tandem mass spectrometry to analyse the enantiomers of 18 compounds within all three matrices. The method was successfully validated for 10 compounds within all three matrices (amphetamine, methamphetamine, MDMA, MDA, venlafaxine, desmethylvenlafaxine, citalopram, metoprolol, propranolol and sotalol), 7 compounds validated for the liquid matrices only (mirtazapine, salbutamol, fluoxetine, desmethylcitalopram, atenolol, ephedrine and pseudoephedrine) and 1 compound (alprenolol) passing the criteria for solid samples only. The method was then applied to wastewater samples; cPACs were found at concentration ranges in liquid matrices of: 1.7 ng L(-1) (metoprolol) - 1321 ng L(-1) (tramadol) in influent, liquid and solid matrices. This demonstrates that not analysing the solid fraction of wastewater may lead to over-estimation of the removal rates of cPACs as well as possible misrepresentation of the enantiomeric fraction of the compounds as they leave the wastewater treatment plant. Consequently risks from cPACs entering the environment might be higher than

  9. Liquid crystals: a new topic in physics for undergraduates

    International Nuclear Information System (INIS)

    Pavlin, Jerneja; Čepič, Mojca; Vaupotič, Nataša

    2013-01-01

    This paper presents a teaching module about liquid crystals. Since liquid crystals are linked to everyday student experiences and are also a topic of current scientific research, they are an excellent candidate for a modern topic to be introduced into education. We show that liquid crystals can provide a pathway through several fields of physics such as thermodynamics, optics and electromagnetism. We discuss what students should learn about liquid crystals and what physical concepts they should know before considering them. In the presentation of the teaching module, which consists of a lecture and experimental work in a chemistry and physics laboratory, we focus on experiments on phase transitions, polarization of light, double refraction and colours. A pilot evaluation of the module was performed among pre-service primary school teachers who have no special preference for natural sciences. The evaluation shows that the module is very efficient in transferring knowledge. A prior study showed that the informally obtained pre-knowledge on liquid crystals of the first-year students from several different fields of study was negligible. Since social science students are the least interested in natural sciences, it can be expected that students in any study programme will on average achieve at least as good qualitative knowledge of phenomena related to liquid crystals as the group involved in the pilot study. (paper)

  10. Tunable photoluminescence of porous silicon by liquid crystal infiltration

    International Nuclear Information System (INIS)

    Ma Qinglan; Xiong Rui; Huang Yuanming

    2011-01-01

    The photoluminescence (PL) of porous silicon films has been investigated as a function of the amount of liquid crystal molecules that are infiltrated into the constricted geometry of the porous silicon films. A typical nematic liquid crystal 4-pentyl-4'-cyanobiphenyl was employed in our experiment as the filler to modify the PL of porous silicon. It is found that the originally red PL of porous silicon films can be tuned to blue by simply adjusting the amount of liquid crystal molecules in the microchannels of the porous films. The chromaticity coordinates are calculated for the recorded PL spectra. The mechanism of the tunable PL is discussed. Our results have demonstrated that the luminescent properties of porous silicon films can be efficiently tuned by liquid crystal infiltration. - Highlights: → Liquid crystal infiltration can tune the photoluminescence of porous silicon. → Red emission of porous silicon can be switched to blue by the infiltration. → Chromaticity coordinates are calculated for the tuned emissions. → White emission is realized for porous silicon by liquid crystal infiltration.

  11. Simulation of liquid crystals. Disclinations and surface modification

    International Nuclear Information System (INIS)

    Downton, M.

    2001-01-01

    In this thesis we investigate the behaviour of molecular models liquid crystals in several different situations. Basic introductory material on liquid crystals and computer simulations is discussed in the first two chapters, we then discuss the research. The third chapter investigates the interaction between a liquid crystal and a modified surface. A confined system of hard spherocylinders in a slab geometry is examined. The surface consists of planar hard walls with elongated molecules grafted perpendicularly onto them. The concentration of grafted molecules is varied to give different surfaces. Several different behaviours are found including planar, homeotropic and tilted anchorings of the liquid crystal. Molecular dynamics simulations of a nematic liquid crystal in slab geometry with twisted boundary conditions are performed. By arranging the initial configuration suitably it is possible to create a simulation cell with two regions of opposite twist separated by a strength half disclination line. The properties of the line are examined both with and without an applied external field. Finally, we again examine the system of grafted molecules on a flat substrate using an atomistic model of both the liquid crystal and the surface molecules. Again the effect of varying the density of grafted molecules is found to change the anchoring characteristics of the surface; both homeotropic and planar anchorings are observed. (author)

  12. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    Science.gov (United States)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  13. NMR studies of liquid crystals and molecules dissolved in liquid crystal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Drobny, Gary Peter [Univ. of California, Berkeley, CA (United States)

    1982-11-01

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic BA, smectic BC, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from

  14. Non-equilibrium dynamics of 2D liquid crystals driven by transmembrane gas flow.

    Science.gov (United States)

    Seki, Kazuyoshi; Ueda, Ken; Okumura, Yu-ichi; Tabe, Yuka

    2011-07-20

    Free-standing films composed of several layers of chiral smectic liquid crystals (SmC*) exhibited unidirectional director precession under various vapor transfers across the films. When the transferred vapors were general organic solvents, the precession speed linearly depended on the momentum of the transmembrane vapors, where the proportional constant was independent of the kind of vapor. In contrast, the same SmC* films under water transfer exhibited precession in the opposite direction. As a possible reason for the rotational inversion, we suggest the competition of two origins for the torques, one of which is microscopic and the other macroscopic. Next, we tried to move an external object by making use of the liquid crystal (LC) motion. When a solid or a liquid particle was set on a film under vapor transfer, the particle was rotated in the same direction as the LC molecules. Using home-made laser tweezers, we measured the force transmitted from the film to the particle, which we found to be several pN.

  15. Effect of chiral photosensitive liquid crystalline dopants on theperformance of organic solar cells

    Czech Academy of Sciences Publication Activity Database

    Iwan, A.; Boharewicz, B.; Tazbir, I.; Hamplová, Věra; Bubnov, Alexej

    2015-01-01

    Roč. 104, Feb (2015), s. 53-60 ISSN 0038-1101 R&D Projects: GA MŠk 7AMB13PL041; GA ČR GA13-14133S; GA MŠk(CZ) LD14007 Grant - others:AVČR(CZ) M100101204 Institutional support: RVO:68378271 Keywords : organic solar cell * composite with liquid crystal Subject RIV: CG - Electrochemistry Impact factor: 1.345, year: 2015

  16. Studies of switching structures in ferroelectric liquid crystal devices

    International Nuclear Information System (INIS)

    Pabla, D.S.

    1998-01-01

    The fast, bistable electro-optic response of ferroelectric liquid crystal (FLC) devices has made them prime candidates for use in display applications. However, before these applications can become widely commercially viable a number of key issues relating to the switching within these devices need to be addressed. One of these is related to the fact that while there has been much work done on modelling the switching process in FLC devices, with some moderate success, in the main these models have not accurately accounted for the physical processes taking place. In order to rectify this situation we present a simple, multi-variable approach which includes important physical phenomenon such as stressed states, partial and domain switching. Through using this model we learn more about the dynamic molecular profiles which may exist in devices, and use this as a springboard to undertake a comprehensive theoretical and experimental study of the molecular profiles of chevron structures under different types of addressing pulses and voltages. This entails modelling the dynamic profiles using a simple non flow reorientation theory and comparing these simulations directly with experimental data obtained through the use of two different optical characterisation techniques. Our findings show quite conclusively that for monopolar addressing within low and high voltage regimes and for low voltage bipolar pulses during the early stages of switching, the dynamic reorientation near the surfaces and central regions of the device lags the reorientation within the bulk. The reverse however being true for the high voltage bipolar addressing case. These results for chevron structures differ from previous theoretical predictions made by others using equations derived from the flow coupled chiral smectic C continuum theory. These flow coupled simulations however, refer to reorientation in bookshelf structures rather than the chevron type structures thought to exist in FLC devices. As

  17. Studies of switching structures in ferroelectric liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Pabla, D.S

    1998-07-01

    The fast, bistable electro-optic response of ferroelectric liquid crystal (FLC) devices has made them prime candidates for use in display applications. However, before these applications can become widely commercially viable a number of key issues relating to the switching within these devices need to be addressed. One of these is related to the fact that while there has been much work done on modelling the switching process in FLC devices, with some moderate success, in the main these models have not accurately accounted for the physical processes taking place. In order to rectify this situation we present a simple, multi-variable approach which includes important physical phenomenon such as stressed states, partial and domain switching. Through using this model we learn more about the dynamic molecular profiles which may exist in devices, and use this as a springboard to undertake a comprehensive theoretical and experimental study of the molecular profiles of chevron structures under different types of addressing pulses and voltages. This entails modelling the dynamic profiles using a simple non flow reorientation theory and comparing these simulations directly with experimental data obtained through the use of two different optical characterisation techniques. Our findings show quite conclusively that for monopolar addressing within low and high voltage regimes and for low voltage bipolar pulses during the early stages of switching, the dynamic reorientation near the surfaces and central regions of the device lags the reorientation within the bulk. The reverse however being true for the high voltage bipolar addressing case. These results for chevron structures differ from previous theoretical predictions made by others using equations derived from the flow coupled chiral smectic C continuum theory. These flow coupled simulations however, refer to reorientation in bookshelf structures rather than the chevron type structures thought to exist in FLC devices. As

  18. Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers

    Science.gov (United States)

    Dingemans, Theo; Weiser, Erik; Hou, Tan; Jensen, Brian; St. Clair, Terry

    2004-01-01

    One of the major challenges for NASA's next-generation reusable-launch-vehicle (RLV) program is the design of a cryogenic lightweight composite fuel tank. Potential matrix resin systems need to exhibit a low coefficient of thermal expansion (CTE), good mechanical strength, and excellent barrier properties at cryogenic temperatures under load. In addition, the resin system needs to be processable by a variety of non-autoclavable techniques, such as vacuum-bag curing, resin-transfer molding (RTM), vacuum-assisted resin-transfer molding (VaRTM), resin-film infusion (RFI), pultrusion, and advanced tow placement (ATP). To meet these requirements, the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center developed a new family of wholly aromatic liquid-crystal oligomers that can be processed and thermally cross-linked while maintaining their liquid-crystal order. All the monomers were polymerized in the presence of a cross-linkable unit by use of an environmentally benign melt-condensation technique. This method does not require hazardous solvents, and the only side product is acetic acid. The final product can be obtained as a powder or granulate and has an infinite shelf life. The obtained oligomers melt into a nematic phase and do not exhibit isotropization temperatures greater than the temperatures of decomposition (Ti > T(sub dec)). Three aromatic formulations were designed and tested and included esters, ester-amides, and ester-imides. One of the major advantages of this invention, named LaRC-LCR or Langley Research Center-Liquid Crystal Resin, is the ability to control a variety of resin characteristics, such as melting temperature, viscosity, and the cross-link density of the final part. Depending on the formulation, oligomers can be prepared with melt viscosities in the range of 10-10,000 poise (100 rad/s), which can easily be melt-processed using a variety of composite-processing techniques. This capability provides NASA with custom

  19. Reflective and transflective liquid crystal displays

    Science.gov (United States)

    Zhou, Fushan

    Recently transflective liquid crystal displays (LCD) received a lot of attention. A transflective display has a transmissive mode and a reflective mode. It combines the high contrast, high brightness of the transmissive mode with energy-saving of reflective mode and has good performance in various illumination conditions. However, state-of-the-art transflective displays have problems such as different electro-optical properties, difficulty in compatibility and optimization of both modes, low efficiency of light utilization, and complexity in structure. This dissertation focuses on finding new designs of transflective displays that address those problems. One way to do this is to study film compensation of LCD. We first studied film compensation of bistable twisted nematic (BTN) LCD. Starting form the reduced (3x3) Mueller matrices, we derived and simplified the conditions that film compensated BTN can be optimized. Based on these relations, electro-optical properties of some particular configurations, and designs of transflective BTN with high brightness and contrast were given. To confirm and get a better understanding of the results, we use the Poincare sphere to analyze film compensated BTN. The key to this approach is the existence of "fixed points". Compared with the matrix approach, this approach is more simple, elegant, and efficient. We then generalized the Poincare sphere approach to a universal approach of LCD. We applied the universal approach to film compensation of ECB and IPS, and the design of achromatic birefringent filters. We also give two more new designs of transflective displays. In the first design, a dichroic mirror is used to split the visible spectrum into two parts used in transmissive and reflective modes, respectively. Both modes can be optimized. It has a simple structure and good light utilization. A design for a full-color transflective display with good performance is also given. In the second design, each pixel is divided into two

  20. Recent Advances in Discotic Liquid Crystal-Assisted Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ashwathanarayana Gowda

    2018-03-01

    Full Text Available This article primarily summarizes recent advancement in the field of discotic liquid crystal (DLC nanocomposites. Discotic liquid crystals are nanostructured materials, usually 2 to 6 nm size and have been recognized as organic semiconducting materials. Recently, it has been observed that the dispersion of small concentration of various functionalized zero-, one- and two-dimensional nanomaterials in the supramolecular order of mesophases of DLCs imparts negligible impact on liquid crystalline properties but enhances their thermal, supramolecular and electronic properties. Synthesis, characterization and dispersion of various nanoparticles in different discotics are presented.

  1. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  2. Do protein crystals nucleate within dense liquid clusters?

    International Nuclear Information System (INIS)

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  3. Molecular dynamics simulations of liquid crystals at interfaces

    International Nuclear Information System (INIS)

    Shield, Mark

    2002-01-01

    Molecular dynamics simulations of an atomistic model of 4-n-octyl-4'-cyanobiphenyl (8CB) were performed for thin films of 8CB on solid substrates (a pseudopotential representation of the molecular topography of the (100) crystal surface of polyethylene (PE), a highly ordered atomistic model of a pseudo-crystalline PE surface and an atomistic model of a partially orientated film of PE), free standing thin films of 8CB and 8CB droplets in a hexagonal pit. The systems showed strong homeotropic anchoring at the free volume interface and planar anchoring at the solid interface whose strength was dependent upon the surface present. The free volume interface also demonstrated weak signs of smectic wetting of the bulk. Simulations of thin free standing films of liquid crystals showed the ordered nature of the liquid crystals at the two free volume interfaces can be adopted by the region of liquid crystal molecules between the homeotropic layer at each interface only if there is a certain number of liquid crystal molecules present. The perpendicular anchoring imposed by the free volume interface and the solid interface for the thin films on the solid substrates resulted in some evidence for the liquid crystal director undergoing a continual rotation at low temperatures and a definite discontinuous change at higher temperatures. The liquid crystal alignment imparted by these substrates was found to depend upon the topography of the surface and not the direction of the polymer chains in the substrate. The liquid crystal was found to order via an epitaxy-like mechanism. The perpendicular anchoring results in a drop in the order - disorder transition temperature for the molecules in the region between the homeotropic layer at the free volume interface and the planar layers at the solid interface. An increase in the size of this region does not alter the transition temperature. The shape of the liquid crystal molecules is dependent upon the degree of order and thus the nematic

  4. Dynamics of Active Nematic Liquid Crystals

    Science.gov (United States)

    DeCamp, Stephen J.

    liquid crystal by assembling microtubule bundles into a quasi-2D film confined to a large, flat oil-water interface. Internal stresses generated by kinesin motors drive the system far from equilibrium which precludes a uniformly aligned nematic ground state through the continuous creation and annihilation of +/-1/2 motile defects. First, we demonstrate that the nematic is extensile by observing the deformation of a photobleached spot which undergoes extension along the nematic director and contraction perpendicular to the director. We map the experimentally tunable parameter, ATP concentration, to the intrinsic activity of the sample measured by the characteristic time of the contractile dynamics. Then, we characterize the flow of individual microtubules by measuring their relative velocity within the nematic and find a flow field consistent with a force dipole but where the magnitude of the extension and contraction velocity are proportional to the separation between the filaments. The extensile and contractile flow velocities can be tuned by the ATP concentration and can be as large as 6 mum/s. Then we spatially map microtubule concentration, alignment, and flow near topological defect cores. We test a theory which predicts that flows are directly proportional to the local alignment of the nematic and find our results inconsistent with that theory. Finally, we measure large scale velocity and vorticity distributions as well as vortex area distributions and find agreement with other recent theoretical predictions. Next, we turn our attention to the complex behavior of defects in the active nematic. Using defect tracking algorithms developed by Gabriel S. Redner, we measure the +/-1/2 defect velocity and lifetime distributions as well as MSD and average defect density. We find that average velocities, lifetimes, and densities are tunable by varying the ATP concentration. The MSDs reveal that motile +1/2 defects stream ballistically through the sample (up to 15 mum

  5. Submicrosecond electro-optic switching in the liquid-crystal smectic A phase: The soft-mode ferroelectric effect

    Science.gov (United States)

    Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.

    1987-08-01

    A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.

  6. Nanoscience with liquid crystals from self-organized nanostructures to applications

    CERN Document Server

    Li, Quan

    2014-01-01

    This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active player

  7. Chiral HPLC for a study of the optical purity of new liquid crystalline materials derived from lactic acid

    Czech Academy of Sciences Publication Activity Database

    Vojtylová, Terézia; Kašpar, Miroslav; Hamplová, Věra; Novotná, Vladimíra; Sýkora, D.

    2014-01-01

    Roč. 87, č. 8 (2014), s. 758-769 ISSN 0141-1594 R&D Projects: GA ČR GA13-14133S Institutional support: RVO:68378271 Keywords : lactic acid derivative * smectic phase * high performance liquid chromatography * chiral separation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.954, year: 2014 http://www.tandfonline.com/doi/abs/10.1080/01411594.2014.893344#.VGxWfVeNrcs

  8. Light scattering from crystals, glasses and liquids

    International Nuclear Information System (INIS)

    Subbaswamy, K.R.

    1984-09-01

    The theory of inelastic light scattering from a model system in the crystalline, disordered and liquid phases is analyzed. The roles of disorder induced first order scattering and second order scattering are clarified in the context of the classical liquid. The correlation functions appropriate for the various contributions are identified and useful ways of processing experimental data are pointed out. (author)

  9. Liquid crystals: high technology materials for potential applications

    International Nuclear Information System (INIS)

    Saeed, M.A.; Badaruddin; Rizvi, T.Z.

    1993-01-01

    Liquid crystals have very rapidly emerged as a basis of many high technology fields within the last few decades. These materials because of their intriguing physical properties are regarded as the fourth state of matter. At present the applications of liquid crystals are established in digital display devices, electro-optical switches, optical computing, acousto-optics, thermo-indicators, laser thermo-recording, photo-chemical image recording and optical communication networks. More recently due to the concept of molecularly based electronics (MBE): the logical extreme for miniaturization of electronic device, liquid crystals are foreseen to play a vital role in the future optics based technologies. This paper gives a brief introduction to liquid crystals, the types of meso phases found in these materials together with their applications in research and industry. Some technical details of the construction liquid crystal cells for some typical applications in digital displays and other electro optical devices have also been discussed with special emphasis on relevant physical processes occurring at molecular level. (author)

  10. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    Science.gov (United States)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  11. Double hydrogen bonded ferroelectric liquid crystals: A study of field induced transition (FiT)

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2009-12-01

    A novel series of chiral hydrogen bonded liquid crystals have been isolated. Hydrogen bond was formed between chiral nonmesogen ingredient levo tartaric acid and mesogenic p-n-alkoxybenzoic acids. Phase diagram was constructed from the transition temperatures obtained by DSC and polarizing optical microscopic (POM) studies. Thermal and electrical properties exhibited by three complexes namely LTA+8BA, LTA+7BA and LTA+5BA were discussed. Salient feature of the present work was the observation of a reentrant smectic ordering in LTA+8BA complex designated as C r∗ phase. This reentrant phenomenon was confirmed by DSC thermograms, optical textures of POM and temperature variation of capacitance and dielectric loss studies. Tilt angle was measured in smectic C ∗ and reentrant smectic C r∗ phases. Another interesting feature of the present investigation was the observation of a field induced transition (FiT) in the LTA+ nBA homologous series. Three threshold field values were noticed which give rise to two new phases (E 1 and E 2) induced by electric field and on further enhancement of the applied field the mesogen behaves like an optical shutter. FiT is reversible in the sense that when applied field is removed the original texture was restored.

  12. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  13. Study on the determination and chiral inversion of R-salbutamol in human plasma and urine by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Ting; Zeng, Jing; Liu, Shan; Zhao, Ting; Wu, Jie; Lai, Wenshi; He, Mingzhi; Xu, Beining; Qu, Shanshan; Xu, Ling; Tan, Wen

    2015-10-01

    The chiral inversion has been a concerned issue during the research and development of a chiral drug. In this study, a sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for determination of salbutamol enantiomers in human plasma and urine. The chiral inversion mechanism of R-salbutamol was fully investigated for the first time by studying the effects of physicochemical factors, including pH, temperature and time. A fitted model to predict the chiral inversion ratio of R-salbutamol was proposed using a Box-Behnken design. All the samples were separated on an Astec Chirobiotic T column and detected by a tandem mass spectrometer in multiple reaction monitoring mode. Lower limit of quantification of 0.100ng/mL was achieved under the optimized conditions. The method was fully validated and successfully applied to the clinical pharmacokinetic study of R-salbutamol in healthy volunteers. Chiral inversion of R-salbutamol to S-salbutamol has been detected in urine samples. The results indicated that pH and temperature were two dominant factors that caused the chiral inversion of R-salbutamol, which should be taken into consideration during the analysis of chiral drugs. The chiral inversion of R-salbutamol determined in this study was confirmed resulted from the gastric acid in stomach rather than caused by the analysis conditions. Moreover, the calculated results of the fitted model matched very well with the enantioselective pharmacokinetic study of R-salbutamol, and the individual difference of the chiral inversion ratio of R-salbutamol was related to the individual gastric environment. On the basis of the results, this study provides important and concrete information not only for the chiral analysis but also for the metabolism research of chiral drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Old and new ideas in ferroelectric liquid crystal technology

    Science.gov (United States)

    Lagerwall, Sven T.; Matuszczyk, M.; Matuszczyk, T.

    1998-02-01

    Ferroelectric liquid crystals (FLC) are to conventional liquid crystal what Gallium Arsenide is to Silicon in the semiconductor area. The first generation of FLC displays in now present on the market and has some outstanding features based on the symmetric bistability which may be achieved in these materials. One of the greatest challenges for the next generation is to achieve an analog grey scale out of an essentially digital principle. We will analyze in some detail which major problems had to be solved to reach the present state and show how the final steps could be taken toward a new state-of-the-art level in liquid crystal devices. In the last decade university research and industrial R and D have almost equally contributed to treat the very serious complications caused by the so-called chevron structures We will review this important topic in particular detail.

  15. Thin aligned organic polymer films for liquid crystal devices

    International Nuclear Information System (INIS)

    Foster, Kathryn Ellen

    1997-01-01

    This project was designed to investigate the possibility of producing alignment layers for liquid crystal devices by cross-linking thin films containing anisotropic polymer bound chromophores via irradiation with polarised ultraviolet light. Photocross-linkable polymers find use in microelectronics, liquid crystal displays, printing and UV curable lacquers and inks; so there is an increasing incentive for the development of new varieties of photopolymers in general. The synthesis and characterisation of two new photopolymers that are suitable as potential alignment layers for liquid crystal devices are reported in this thesis. The first polymer contains the anthracene chromophore attached via a spacer unit to a methacrylate backbone and the second used a similarly attached aryl azide group. Copolymers of the new monomers with methyl methacrylate were investigated to establish reactivity ratios in order to understand composition drift during polymerisation. (author)

  16. Young-Laplace equation for liquid crystal interfaces

    Science.gov (United States)

    Rey, Alejandro D.

    2000-12-01

    This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.

  17. Monolayer self-assembly at liquid-solid interfaces: chirality and electronic properties of molecules at surfaces

    International Nuclear Information System (INIS)

    Amabilino, David B; Gomar-Nadal, Elba; Veciana, Jaume; Rovira, Concepcio; Iavicoli, Patrizia; PuigmartI-Luis, Josep; Feyter, Steven De; Abdel-Mottaleb, Mohamed M; Mamdouh, Wael; Psychogyiopoulou, Krystallia; Xu Hong; Lazzaroni, Roberto; Linares, Mathieu; Minoia, Andrea

    2008-01-01

    The spontaneous formation of supramolecular assemblies at the boundary between solids and liquids is a process which encompasses a variety of systems with diverse characteristics: chemisorbed systems in which very strong and weakly reversible bonds govern the assembly and physisorbed aggregates which are dynamic thanks to the weaker interactions between adsorbate and surface. Here we review the interest and advances in the study of chiral systems at the liquid-solid interface, and also the application of this configuration for the study of systems of interest in molecular electronics, self-assembled from the bottom up

  18. Vitrification and Crystallization of Phase-Separated Metallic Liquid

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-02-01

    Full Text Available The liquid–liquid phase separation (LLPS behavior of Fe50Cu50 melt from 3500 K to 300 K with different rapid quenching is investigated by molecular dynamics (MD simulation based on the embedded atom method (EAM. The liquid undergoes metastable phase separation by spinodal decomposition in the undercooled regime and subsequently solidifies into three different Fe-rich microstructures: the interconnected-type structure is kept in the glass and crystal at a higher cooling rate, while the Fe-rich droplets are found to crystalize at a lower cooling rate. During the crystallization process, only Fe-rich clusters can act as the solid nuclei. The twinning planes can be observed in the crystal and only the homogeneous atomic stacking shows mirror symmetry along the twinning boundary. Our present work provides atomic-scale understanding of LLPS melt during the cooling process.

  19. Chiral Induction and amplification in supramolecular systems at the liquid-solid interface

    NARCIS (Netherlands)

    Xu, Hong; Ghijsens, E.; George, S.J.; Wolffs, M.; Tomovic, Z.; Schenning, A.P.H.J.; Feyter, de S.

    2013-01-01

    Chiral induction and amplification in surface-confined supramolecular monolayers are investigated at the liquid–solid interface. Scanning tunneling microscopy (STM) proves that achiral molecules can self-assemble into globally chiral patterns through a variety of approaches, including induction by

  20. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru [Russian Academy of Science, Landau Institute for Theoretical Physics (Russian Federation); Semenov, S. V. [National Research Center “Kurchatov Institute,” (Russian Federation)

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  1. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    Science.gov (United States)

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Shrink, twist, ripple and melt: Studies of frustrated liquid crystals

    Science.gov (United States)

    Fernsler, Jonathan G.

    Complex structures can arise out of a simple system with more than one competing influence on its behavior. The protypical example of this is the two-dimensional triangular lattice Ising model. The ferromagnetic model has two simple degenerate ground states of all spins up or down, but the antiferromagnetic model is a frustrated system. Its geometry does not allow satisfaction of the antiferro condition everywhere, which produces complex ordered structures with dimerization of the spins [1]. Without frustration, the complex structures and phase behavior are lost. All of the topics discussed in this thesis concern smectic liquid crystals. Liquid crystals are perhaps uniquely adept at manifesting frustrated phases. Their combination of periodicity in one or more dimensions allows ordered structures, yet their fluid nature in remaining dimensions allows creation of defects and extraordinarily complex structures in ways that a normal crystal could not tolerate. Liquid crystals contain a huge menagerie of frustrated phases and effects including the polarization modulated [2], vortex lattice [3], twist grain boundary [4], and blue [5] phases, as well as frustrated structures such as cholesteric or SmC* helix unwinding [6], defect lattices in thin films [7], and bend melted grain boundary defects [8], arising from boundary conditions and field effects. In this thesis, we study four liquid crystal systems that show unusual phase behavior or complex structures, deriving from the effects of frustration. Frustration, despite some human prejudices against the word, leaves nature all the more interesting and beautiful.

  3. NMR and molecular dynamics of small solutes in liquid crystals

    International Nuclear Information System (INIS)

    Luyten, P.R.

    1984-01-01

    NMR relaxation measurements, using a wide variety of modern pulse techniques, can yield valuable information about molecular motions. In this thesis the applicability of theories developed to describe spin relaxation phenomena in partially ordered media is studied for small solutes in liquid crystals. 1 H, 2 H, 13 C and 14 N relaxation measurements are interpreted by means of a model, in which fast anisotropic re-orientational motion in an orienting potential combined with contributions from cooperative fluctuations in the surrounding liquid crystal molecules, induce the observed frequency dependent relaxation behavior. (orig.)

  4. Chemistry of Discotic Liquid Crystals From Monomers to Polymers

    CERN Document Server

    Kumar, Sandeep

    2010-01-01

    Compiling the scattered literature into a single seminal work, this book describes the basic design principles, synthesis, and mesomorphic properties of discotic liquid crystals. Of fundamental importance as models for the study of energy and charge migration in self-organized systems, discotic liquid crystals find functional application as one-dimensional conductors, photoconductors, light emitting diodes, photovoltaic solar cells, field-effect transistors, and gas sensors. This book highlights the scientific concepts behind the hierarchical self-assembly of these disc-shaped molecules alongs

  5. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  6. Flexoelectricity in an oxadiazole bent-core nematic liquid crystal

    OpenAIRE

    Kaur, Sarabjot; Panov, V. P.; Greco, C.; Ferrarini, A.; Görtz, Verena; Goodby, John W.; Gleeson, Helen F.

    2014-01-01

    We have determined experimentally the magnitude of the difference in the splay and bend flexoelectric coefficients, |e 1 − e 3|, of an oxadiazole bent-core liquid crystal by measuring the critical voltage for the formation of flexodomains together with their wave number. The coefficient |e 1 − e 3| is found to be a factor of 2–3 times higher than in most conventional calamitic nematic liquid crystals, varying from 8 pCm−1 to 20 pCm−1 across the ∼60 K—wide nematic regime. We have also calculat...

  7. A flexible optically re-writable color liquid crystal display

    Science.gov (United States)

    Zhang, Yihong; Sun, Jiatong; Liu, Yang; Shang, Jianhua; Liu, Hao; Liu, Huashan; Gong, Xiaohui; Chigrinov, Vladimir; Kowk, Hoi Sing

    2018-03-01

    It is very difficult to make a liquid crystal display (LCD) that is flexible. However, for an optically re-writable LCD (ORWLCD), only the spacers and the substrates need to be flexible because the driving unit and the display unit are separate and there are no electronics in the display part of ORWLCD. In this paper, three flexible-spacer methods are proposed to achieve this goal. A cholesteric liquid crystal colored mirror with a polarizer behind it is used as the colored reflective backboard of an ORWLCD. Polyethersulfone substrates and flexible spacers are used to make the optically re-writable cell insensitive to mechanical force.

  8. Synthesis of carbonated hydroxyapatite nanorods in liquid crystals

    Directory of Open Access Journals (Sweden)

    Daniella Dias Palombino de Campos

    2009-09-01

    Full Text Available Syntheses of calcium phosphate nanoparticles, carried out in systems formed from surfactant, oil and water, have resulted in materials with promising possibilities for application. The calcium phosphate particles were synthesized using two different liquid crystals, formed from RenexTM, cyclohexane and a salts solution. The morphology of the nanoparticles synthesized in the liquid crystals is similar to that of hydroxyapatite particles that form bone mineral, where collagen fibers connect these particles so as to form a composite. Therefore, the synthesis of calcium phosphate nanoparticles in the systems used in this work can advance current understanding of mineralization processes that result in the formation of bone mineral.

  9. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  10. Hydrothermal decomposition of liquid crystal in subcritical water

    International Nuclear Information System (INIS)

    Zhuang, Xuning; He, Wenzhi; Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao

    2014-01-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H 2 O 2 supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment

  11. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  12. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  13. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  14. Improvement in device performance from a mixture of a liquid crystal and photosensitive acrylic prepolymer with the photoinduced vertical alignment method

    Directory of Open Access Journals (Sweden)

    Czung-Yu Ho, Fa-Hsin Lin, Yu-Tai Tao and Jiunn-Yih Lee

    2011-01-01

    Full Text Available In a multicomponent nematic liquid crystal (NLC mixture of a liquid crystal (negative-type NLC and a photosensitive acrylic prepolymer, photopolymerization upon UV irradiation induces the separation of the LC and photosensitive acrylic prepolymer layers, thereby leading to a vertical arrangement of LC molecules. In this study, we propose a simple vertical alignment method for LC molecules, by adding a chiral smectic A (SmA* liquid crystal having homeotropic texture characteristics to an NLC mixture solution. Measurements of electro-optical properties revealed that the addition of the SmA* LC not only strengthened the anchoring force of the copolymer alignment film surface, but also significantly enhanced the contrast ratio (~73%, response time and grayscale switching performance of the device.

  15. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    OpenAIRE

    Potisk, Tilen; Mertelj, Alenka; Sebastian, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals t...

  16. Liquid Crystals - The 'Fourth' Phase of Matter

    Indian Academy of Sciences (India)

    possibilities of novel technological applications. Liquid crystalline materials ... advanced instrumentation, including laptops and futuristic flat panel displays. .... The twist grain-boundary phase is formed when the layers of a smectic A phase are .... the optic axis) is uniformly oriented parallel to the glass plate. (see Figure IIa).

  17. Simulation of nuclear magnetic resonance spectra of liquid crystals, polymers liquid crystals and conventional polymers

    International Nuclear Information System (INIS)

    Gerard, H.

    1993-01-01

    The aim of this study is the simulation and the exploitation of NMR spectra of nematic liquid crystals and of polymers. The NMR forms of lines are analysed owing to two complementary models. The first (single conformation model) describes the purely molecular contribution (geometry and internal movements in the molecule), the second the contribution of collective movements (visco elastic modes). Recallings on the NMR method and the orientational order notion within the nematic phase, are given in the first part, where these two models are also described. In a second part these models are applied to data relative to nematic molecules of weak molecular mass and to nematic polymers. This application allows to obtain informations on the structure and the internal movements of the molecule, the orientational order prevailing within the phase and the visco-elastic properties of the studied material. At last it is demonstrated that extension of these models to NMR data of polymers which don't present nematic phase in pure phase allows to obtain similar informations if we consider that their amorphous phase presents locally a nematic order. 136 refs., 46 figs., 4 tabs

  18. Validation of a Chiral Liquid Chromatographic Method for the Degradation Behavior of Flumequine Enantiomers in Mariculture Pond Water.

    Science.gov (United States)

    Wang, Yan-Fei; Gao, Xiao-Feng; Jin, Huo-Xi; Wang, Yang-Guang; Wu, Wei-Jian; Ouyang, Xiao-Kun

    2016-09-01

    In this work, flumequine (FLU) enantiomers were separated using a Chiralpak OD-H column, with n-hexane-ethanol (20:80, v/v) as the mobile phase at a flow rate of 0.6 mL/min. Solid phase extraction (SPE) was used for cleanup and enrichment. The limit of detection, limit of quantitation, linearity, precision, and intra/interday variation of the chiral high-performance liquid chromatography (HPLC) method were determined. The developed method was then applied to investigate the degradation behavior of FLU enantiomers in mariculture pond water samples. The results showed that the degradation of FLU enantiomers under natural, sterile, or dark conditions was not enantioselective. Chirality 28:649-655, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  20. Penetration of RBD palm olein in a lyotropic liquid crystal

    International Nuclear Information System (INIS)

    Hamdan bin Suhaimi; Anuar bin Kasim

    1993-01-01

    The inner structure of lamellar liquid crystal before and after addition of RDB palm olein was characterised employing small-angle X-ray scattering (SAXS) technique and optical microscopy. Results show that the addition of RDB palm olein to both layered structure indicate a temporary disturbance resulting in penetration of RDB palm olein into the layered structure

  1. Surface dynamics and mechanics in liquid crystal polymer coatings

    NARCIS (Netherlands)

    Liu, D.; Broer, D.J.; Chien, L.-C.; Coles, H.J.; Kikuchi, H.; Smalyukh, I.I.

    2015-01-01

    Based on liquid crystal networks we developed 'smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that

  2. Liquid Crystal Gel Reduces Age Spots by Promoting Skin Turnover

    Directory of Open Access Journals (Sweden)

    Mina Musashi

    2014-07-01

    Full Text Available Studies have shown that liquid crystals structurally resembling the intercellular lipids in the stratum corneum can beneficially affect the skin when applied topically by stimulating the skin’s natural regenerative functions and accelerating epidermal turnover. In the present study, the effects of applying low concentrations of a liquid crystal gel of our own creation were evaluated using epidermal thickening in mouse skin as an assay for effective stimulation of epidermal turnover. A liquid crystal gel was also applied topically to human facial skin, and analysis was conducted using before-and-after photographs of age spots, measurements of L* values that reflect degree of skin pigmentation, single-layer samples of the stratum corneum obtained via tape-stripping, and measurements of trans-epidermal water loss that reflect the status of the skin’s barrier function. The results suggested that cost-effective creams containing as low as 5% liquid crystal gel might be effective and safely sold as skin care products targeting age spots and other problems relating to uneven skin pigmentation.

  3. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic-analysis/asy1348

  4. On a hyperbolic system arising in liquid crystals modeling

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Rocca, E.; Schimperna, G.; Zarnescu, A.

    2018-01-01

    Roč. 15, č. 1 (2018), s. 15-35 ISSN 0219-8916 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : dissipative solution * liquid crystal * weak-strong uniqueness Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.940, year: 2016 https://www.worldscientific.com/doi/abs/10.1142/S0219891618500029

  5. Liquid crystal elastomer coatings with programmed response of surface profile

    NARCIS (Netherlands)

    Babakhanova, G.; Turiv, T.; Guo, Y.; Hendrikx, M.; Wei, Q.H.; Schenning, A.P.H.J.; Broer, D.J.; Lavrentovich, O.D.

    2018-01-01

    Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated

  6. Ultraviolet-pumped liquid-crystal dye-laser

    International Nuclear Information System (INIS)

    Bertolotti, M.; Sbrolli, L.; Scudieri, F.; Papa, T.

    1981-01-01

    The possibility offered by the orientation properties of liquid crystals as a matrix for dye lasers is shown. In particular, the linear polarization of emitted light can be changed by acting with an external magnetic field on the molecular nematic director. (author)

  7. Advances in chemical physics advances in liquid crystals

    CERN Document Server

    Prigogine, Ilya; Vij, Jagdish K

    2009-01-01

    Prigogine and Rice's highly acclaimed series, Advances in Chemical Physics, provides a forum for critical, authoritative reviews of current topics in every area of chemical physics. Edited by J.K. Vij, this volume focuses on recent advances in liquid crystals with significant, up-to-date chapters authored by internationally recognized researchers in the field.

  8. Alignment of carbon nanotubes in nematic liquid crystals

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.; Popa-Nita, V.; Kralj, S.

    2008-01-01

    The self-organizing properties of nematic liquid crystals can be used to align carbon nanotubes dispersed in them. Because the nanotubes are so much thinner than the elastic penetration length, the alignment is caused by the coupling of the unperturbed director field to the anisotropic interfacial

  9. The finite-size effect in thin liquid crystal systems

    Science.gov (United States)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  10. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic- analysis /asy1348

  11. Metric approach for sound propagation in nematic liquid crystals

    Science.gov (United States)

    Pereira, E.; Fumeron, S.; Moraes, F.

    2013-02-01

    In the eikonal approach, we describe sound propagation near topological defects of nematic liquid crystals as geodesics of a non-Euclidian manifold endowed with an effective metric tensor. The relation between the acoustics of the medium and this geometrical description is given by Fermat's principle. We calculate the ray trajectories and propose a diffraction experiment to retrieve information about the elastic constants.

  12. Fases estacionárias quirais para cromatografia líquida de alta eficiência Chiral stationary phases for high-performance liquid chromatography

    OpenAIRE

    Tiago de Campos Lourenço; Neila Maria Cassiano; Quezia B. Cass

    2010-01-01

    The development of Chiral Stationary Phases (CSPs) for high performance liquid chromatography has been studied by various researches around the world, especially, since 1980. This simple interest has been transformed into a tool of great technological value for the industrial community and scholars in general providing the existence of several CSPs, which act through different mechanisms of chiral discrimination. This paper describes the main types of CSPs that are used for the resolution of ...

  13. NMR studies of macroscopic and microscopic properties of liquid crystals

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1998-03-01

    The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)

  14. Supported liquid membrane stability in chiral resolution by chemically and physically modified membranes

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, R.; Argurio, P. [Arcavata di Rende Univ. of Calabria, Arcavata di Rende, CS (Italy). Dept. of Chemical and Materials Engineering

    2001-04-01

    In the present work some stability studies on Supported Liquid Membranes (SLMs) to be used for chiral separations were realized. In particular, primary aim was to determine how a modification of the support surface influences the SLM stability. First, the procedure for support modification was optimised, making a screening of various compounds (sulphuric acid, nitric acid, chromic acid, sodium dodecyl sulphate (SDS), glycerol, oleic alcohol, propylene glycol (PPG), bovine serum albumin (BSA)) and testing their performance by means of contact angle measurements. Next, a second screening was realized by permeation tests in a stirred cell. Finally, to compare the stability of modified with unmodified support in a process of interest for chemical and/or biochemical industries, some permeation tests for resolution of DNB-DL-Leucine were realized in a re-circulation system. Results showed a better surface hydrophilization of chemically modified support and better stability of the sulphonated support. However, in operating conditions a little high stability of the unmodified support was obtained. [Italian] Nel presente lavoro sono stati realizzati degli studi di stabilita' di Membrane Liquide Supportate (SLMs) da impiegare in separazioni chirali. In particolare, obiettivo principale e' stato quello di determinare l'influenza che una modifica della superficie del supporto ha sulla stabilita' della SLM. Cosi', in un primo momento, e' stata ottimizzata le procedura di modifica del supporto, facendo una selezione tra vari composti (acido solforico, acido nitrico, acido cromico, sodio dodecil solfato (SDS), glicerolo, alcool oleico, glicole propilenico (PPG), siero di albumina bovina (BSA)) basata su misure dell'angolo di contatto. Successivamente, e' stata realizzata una seconda selezione mediante prove di permeazione in una cella agitata. Infine, con lo scopo di confrontare la stabilita' della SLM con supporto modificato rispetto

  15. Asymmetric Strecker Synthesis of α-Amino Acids via a Crystallization-Induced Asymmetric Transformation Using (R)-Phenylglycine Amide as Chiral Auxiliary

    NARCIS (Netherlands)

    Boesten, Wilhelmus H.J.; Seerden, Jean-Paul G.; Lange, Ben de; Dielemans, Hubertus J.A.; Elsenberg, Henk L.M.; Kaptein, Bernard; Moody, Harold M.; Kellogg, Richard M.; Broxterman, Quirinus B.

    2001-01-01

    Diastereoselective Strecker reactions based on (R)-phenylglycine amide as chiral auxiliary are reported. The Strecker reaction is accompanied by an in situ crystallization-induced asymmetric transformation, whereby one diastereomer selectively precipitates and can be isolated in 76-93% yield and dr

  16. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    OpenAIRE

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders Overgaard

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability ...

  17. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  18. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    International Nuclear Information System (INIS)

    Kuehnel, Matthias

    2014-02-01

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  19. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  20. Analytical and semipreparative chiral separation of cis-itraconazole on cellulose stationary phases by high-performance liquid chromatography.

    Science.gov (United States)

    Kurka, Ondřej; Kučera, Lukáš; Bednář, Petr

    2016-07-01

    cis-Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis-itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis-itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two-step high-performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris-(4-methylbenzoate) and cellulose tris-(3,5-dimehylphenylcarbamate) columns with complementary selectivity for cis-itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography.

    Science.gov (United States)

    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik

    2016-02-01

    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Liquid crystals for organic thin-film transistors

    Science.gov (United States)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  3. Magneto-optic dynamics in a ferromagnetic nematic liquid crystal

    Science.gov (United States)

    Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel

    2018-01-01

    We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

  4. Mixing effects in the crystallization of supercooled quantum binary liquids

    International Nuclear Information System (INIS)

    Kühnel, M.; Kalinin, A.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.; Tramonto, F.; Galli, D. E.; Nava, M.; Grisenti, R. E.

    2015-01-01

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH 2 ) or orthodeuterium (oD 2 ) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH 2 and oD 2 crystal growth rates, similarly to what found in our previous work on supercooled pH 2 -oD 2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites

  5. Mixing effects in the crystallization of supercooled quantum binary liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  6. Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide

    Science.gov (United States)

    Stephen, Mark A. (Inventor)

    2018-01-01

    An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.

  7. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    International Nuclear Information System (INIS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-01-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage

  8. Variation along liquid isomorphs of the driving force for crystallization

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Adrjanowicz, Karolina; Niss, Kristine

    2017-01-01

    at a reference temperature. More general analysis allows interpretation of experimental data for molecular liquids such as dimethyl phthalate and indomethacin, and suggests that the isomorph scaling exponent γ in these cases is an increasing function of density, although this cannot be seen in measurements......We investigate the variation of the driving force for crystallization of a supercooled liquid along isomorphs, curves along which structure and dynamics are invariant. The variation is weak, and can be predicted accurately for the Lennard-Jones fluid using a recently developed formalism and data...

  9. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    Science.gov (United States)

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  10. Large Electro-Optic Kerr-Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    Science.gov (United States)

    Schlick, Michael Christian; Kapernaum, Nadia; Neidhardt, Manuel; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Gießelmann, Frank

    2018-06-06

    The electro-optic Kerr effect in the isotropic phase of two ionic liquid crystals (ILCs) is investigated and compared to the Kerr effect in non-ionic liquid crystals (LCs) with same phase sequences, namely direct isotropic to hexagonal columnar transitions and direct isotropic to smectic-A transitions. Up to electric field amplitudes of some 106 V m-1, the optical birefringence induced in the isotropic phases follows Kerr's law and strongly increases when the temperature approaches the transition temperature into the particular liquid crystalline phase. Close to the transition, maximum Kerr constants in the order of 10-11 m V-2 are found, which are more than ten times higher than the Kerr constant of nitrobenzene, a strongly dipolar fluid with a huge Kerr effect applied in optical shutters and phase modulators. In comparison to their non-ionic LC counterparts the Kerr effect in ILCs is found to be enhanced in magnitude, but slowed-down in speed, showing rise times in the order of ten milliseconds. These remarkable differences are attributed to the presence of counterion polarization well-known from complex ionic fluids such as polyelectrolytes or ionic micellar solutions. ILCs thus combine the Kerr effect features of liquid crystals and complex ionic fluids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Crystallization of glass-forming liquids: Specific surface energy

    International Nuclear Information System (INIS)

    Schmelzer, Jürn W. P.; Abyzov, Alexander S.

    2016-01-01

    A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbull relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.

  12. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  13. Modeling texture transitions in cholesteric liquid crystal droplets

    Science.gov (United States)

    Selinger, Robin; Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Konya, Andrew

    2012-02-01

    Cholesteric liquid crystals can be switched reversibly between planar and focal-conic textures, a property enabling their application in bistable displays, liquid crystal writing tablets, e-books, and color switching ``e-skins.'' To explore voltage-pulse induced switching in cholesteric droplets, we perform simulation studies of director dynamics in three dimensions. Electrostatics calculations are solved at each time step using an iterative relaxation method. We demonstrate that as expected, a low amplitude pulse drives the transition from planar to focal conic, while a high amplitude pulse drives the transition from focal conic back to the planar state. We use the model to explore the effects of droplet shape, aspect ratio, and anchoring conditions, with the goal of minimizing both response time and energy consumption.

  14. Neutron scattering studies of molecular conformations in liquid crystal polymers

    Science.gov (United States)

    Noirez, L.; Moussa, F.; Cotton, J. P.; Keller, P.; Pépy, G.

    1991-03-01

    A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.

  15. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    Science.gov (United States)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  16. Dynamics of cylindrical domain walls in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Wigham, E J

    2009-01-01

    An analysis of the dynamics of cylindrical domain walls in planar aligned samples of smectic C liquid crystals is presented. A circular magnetic field, induced by an electric current, drives a time-dependent reorientation of the corresponding radially dependent director field. Nonlinear approximations to the relevant nonlinear dynamic equation, derived from smectic continuum theory, are solved in a comoving coordinated frame: exact solutions are found for a π-wall and numerical solutions are calculated for π/2-walls. Each calculation begins with an assumed initial state for the director that is a prescribed cylindrical domain wall. Such an initial wall will proceed to expand or contract as its central core propagates radially inwards or outwards, depending on the boundary conditions for the director, the elastic constants, the magnitude of the field and the sign of the magnetic anisotropy of the liquid crystal

  17. Thermodynamic properties of a liquid crystal carbosilane dendrimer

    Science.gov (United States)

    Samosudova, Ya. S.; Markin, A. V.; Smirnova, N. N.; Ogurtsov, T. G.; Boiko, N. I.; Shibaev, V. P.

    2016-11-01

    The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6-370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions C p ° ( T), H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) are calculated from the obtained experimental data for the region of T → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at T = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.

  18. Proton irradiation of liquid crystal based adaptive optical devices

    International Nuclear Information System (INIS)

    Buis, E.J.; Berkhout, G.C.G.; Love, G.D.; Kirby, A.K.; Taylor, J.M.; Hannemann, S.; Collon, M.J.

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10 10 p/cm 2 ). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  19. Proton irradiation of liquid crystal based adaptive optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Buis, E.J., E-mail: ernst-jan.buis@tno.nl [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Berkhout, G.C.G. [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Love, G.D.; Kirby, A.K.; Taylor, J.M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hannemann, S.; Collon, M.J. [cosine Research BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands)

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10{sup 10}p/cm{sup 2}). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  20. Color Gamut of a Nematic Liquid Crystal Display

    Science.gov (United States)

    Shimomura, Teruo; Mada, Hitoshi; Kobayashi, Shunsuke

    1980-05-01

    The theoretical color gamut of a nematic liquid crystal display is described. The color gamut of a tunable birefringence mode and a guest host mode are revealed with the CIE chromaticity diagram and color solid. In order to account for the quantitative color gamut, color matching between the given chromaticity coordinates and those calculated is investigated. Color matching is performed by a combination of three liquid crystal subcells (A, B, C), where each subcell receives the voltage VA, VB, VC or contains the dye amount a, b, c. Calculation of the value of voltage or dye amount was executed by the matrix representation method. The calculated data are in good agreement with the given data within 0.50 CIE-UNIT color difference in the 1964 CIE (U*, V*, W*) color scale.

  1. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  2. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

    Science.gov (United States)

    Yang, Jun; Xia, Tianyu; Jing, Shuaicheng; Deng, Guangsheng; Lu, Hongbo; Fang, Yong; Yin, Zhiping

    2018-02-01

    We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

  3. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  4. Soft Elasticity in Main Chain Liquid Crystal Elastomers

    Directory of Open Access Journals (Sweden)

    Anselm C. Griffin

    2013-06-01

    Full Text Available Main chain liquid crystal elastomers exhibit several interesting phenomena, such as three different regimes of elastic response, unconventional stress-strain relationship in one of these regimes, and the shape memory effect. Investigations are beginning to reveal relationships between their macroscopic behavior and the nature of domain structure, microscopic smectic phase structure, relaxation mechanism, and sample history. These aspects of liquid crystal elastomers are briefly reviewed followed by a summary of the results of recent elastic and high-resolution X-ray diffraction studies of the shape memory effect and the dynamics of the formation of the smectic-C chevron-like layer structure. A possible route to realizing auxetic effect at molecular level is also discussed.

  5. A numerical method for eigenvalue problems in modeling liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Baglama, J.; Farrell, P.A.; Reichel, L.; Ruttan, A. [Kent State Univ., OH (United States); Calvetti, D. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1996-12-31

    Equilibrium configurations of liquid crystals in finite containments are minimizers of the thermodynamic free energy of the system. It is important to be able to track the equilibrium configurations as the temperature of the liquid crystals decreases. The path of the minimal energy configuration at bifurcation points can be computed from the null space of a large sparse symmetric matrix. We describe a new variant of the implicitly restarted Lanczos method that is well suited for the computation of extreme eigenvalues of a large sparse symmetric matrix, and we use this method to determine the desired null space. Our implicitly restarted Lanczos method determines adoptively a polynomial filter by using Leja shifts, and does not require factorization of the matrix. The storage requirement of the method is small, and this makes it attractive to use for the present application.

  6. Liquid crystal blue phases: stability, field effects and alignment

    OpenAIRE

    Gleeson, HF; Miller, RJ; Tian, L; Görtz, V; Goodby, JW

    2015-01-01

    The blue phases are fascinating structures in liquid crystals, fluids that exhibit cubic structures that have true crystalline order. The blue phases were discovered in the 1970s and were the subject of extensive research in the 1980s, when a deep understanding of many of their properties was established. The discovery that the blue phases could be stabilised to exist over wide temperature ranges meant that they became more than scientific curiosities and led to a recent resurgence in researc...

  7. Two-Dimensional Spatial Solitons in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Zhong Weiping; Xie Ruihua; Goong Chen; Belic, Milivoj; Yang Zhengping

    2009-01-01

    We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Gaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.

  8. Smectic liquid crystal cell with heat pulse and laser

    International Nuclear Information System (INIS)

    Mash, D.H.

    1984-01-01

    A method of operating a homeotropically aligned smectic liquid crystal cell in which the cell is turned from a clear to a scattering state by illumination with an intense flash of light after which a focused laser beam is scanned across the layer to leave clear tracks where homeotropic alignment has been restored thereby producing a display providing, in projection, bright lines on a dark background

  9. Liquid crystal foil for the detection of breast cancer

    Science.gov (United States)

    Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk

    2016-09-01

    Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.

  10. Directional Scattering of Semiconductor Nanoparticles Embedded in a Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Braulio García-Cámara

    2014-04-01

    Full Text Available Light scattering by semiconductor nanoparticles has been shown to be more complex than was believed until now. Both electric and magnetic responses emerge in the visible range. In addition, directional effects on light scattering of these nanoparticles were recently obtained. In particular, zero backward and minimum-forward scattering are observed. These phenomena are very interesting for several applications such as, for instance, optical switches or modulators. The strong dependence of these phenomena on the properties of both the particle and the surrounding medium can be used to tune them. The electrical control on the optical properties of liquid crystals could be used to control the directional effects of embedded semiconductor nanoparticles. In this work, we theoretically analyze the effects on the directional distribution of light scattering by these particles when the refractive index of a surrounded liquid crystal changes from the ordinary to the extraordinary configuration. Several semiconductor materials and liquid crystals are studied in order to optimize the contrast between the two states.

  11. Evidence for several dipolar quasi-invariants in liquid crystals

    Science.gov (United States)

    Bonin, C. J.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    The quasi-equilibrium states of an observed quantum system involve as many constants of motion as the dimension of the operator basis which spans the blocks of all the degenerate eigenvalues of the Hamiltonian that drives the system dynamics, however, the possibility of observing such quasi-invariants in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several quasi-invariants, in the proton NMR of small spin clusters, like nematic liquid crystal molecules, in which the use of thermodynamic arguments is not justified. We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks, solids, and liquid crystals. We observe that the signals can be explained with two dipolar quasi-invariants only within a range of short preparation times, however at longer times liquid crystal signals show an echo-like behaviour whose description requires assuming more quasi-invariants. We study the multiple quantum coherence content of such signals on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Therefore, we show that the NMR signals within the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple quasi-invariants which we experimentally isolate.

  12. Recent advances in IR liquid crystal spatial light modulators

    Science.gov (United States)

    Peng, Fenglin; Twieg, Robert J.; Wu, Shin-Tson

    2015-09-01

    Liquid crystal (LC) is an amazing class of electro-optic media; its applications span from visible to infrared, millimeter wave, and terahertz regions. In the visible and short-wavelength infrared (SWIR) regions, most LCs are highly transparent. However, to extend the electro-optic application of LCs into MWIR and LWIR, several key technical challenges have to be overcome: (1) low absorption loss, (2) high birefringence, (3) low operation voltage, and (4) fast response time. In the MWIR and LWIR regions, several fundamental molecular vibration bands and overtones exist, which contribute to high absorption loss. The absorbed light turns to heat and then alters the birefringence locally, which in turns causes spatially non-uniform phase modulation. To suppress the optical loss, several approaches have been investigated: (1) Employing thin cell gap by choosing a high birefringence LC mixture; (2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination, or chlorination; (3) Reducing the overtone absorption by using a short alkyl chain. In this paper, we report some recently developed chlorinated LC compounds and mixtures with low absorption loss in the SWIR and MWIR regions. To achieve fast response time, we demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms. Approaches to extend such a liquid crystal spatial light modulator to long-wavelength infrared will be discussed.

  13. Smectic liquid crystals in anisotropic colloidal silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Dennis [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borthwick, Matthew A [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Leheny, Robert L [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2004-05-19

    We report x-ray scattering studies of the smectic liquid crystal octylcyano-biphenol (8CB) confined by strained colloidal silica gels. The gels, comprised of aerosil particles, possess an anisotropic structure that stabilizes long-range nematic order in the liquid crystal while introducing random field effects that disrupt the smectic transition. The short-range smectic correlations that form within this environment are inconsistent with the presence of a topologically ordered state predicted for 3D random field XY systems and are quantitatively like the correlations of smectics confined by isotropic gels. Detailed analysis reveals that the quenched disorder suppresses the anisotropic scaling of the smectic correlation lengths observed in the pure liquid crystal. These results and additional measurements of the smectic-A to smectic-C transition in 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8barS5) indicate that the observed smectic behaviour is dictated by random fields coupling directly to the smectic order while fields coupling to the nematic director play a subordinate role.

  14. The opto-thermal effect on encapsulated cholesteric liquid crystals

    Science.gov (United States)

    Liu, Yu-Sung; Lin, Hui-Chi; Yang, Kin-Min

    2017-12-01

    In this study, we implemented a micro-encapsulated CLC electronic paper that is optically addressed and electrically erasable. The mechanism that forms spot diameters on the CLC films is discussed and verified through various experimental parameters, including the thickness of CLCs and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), pump intensity, and pumping time. The opto-thermal effect, brought on by the PEDOT:PSS absorbing layer, causes the spot diameters on the cholesteric liquid crystal thin films to vary. According to our results, the spot diameter is larger for a sample with a thinner cholesteric liquid crystal layer with the same excitation conditions and same thickness of the PEDOT layer. The spot diameter is also larger for a sample with a thicker PEDOT under the same excitation conditions and same thickness of the cholesteric liquid crystal layer. We proposed a simple heat-conducting model to explain the experimental results, which qualitatively agree with this theoretical model.

  15. IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses

    Directory of Open Access Journals (Sweden)

    Jeong In Han

    2013-12-01

    Full Text Available IR sensor synchronizing active shutter glasses for three-dimensional high definition television (3D HDTV were developed using a flexible liquid crystal (FLC lens. The FLC lens was made on a polycarbonate (PC substrate using conventional liquid crystal display (LCD processes. The flexible liquid crystal lens displayed a maximum transmission of 32% and total response time of 2.56 ms. The transmittance, the contrast ratio and the response time of the flexible liquid crystal lens were superior to those of glass liquid crystal lenses. Microcontroller unit and drivers were developed as part of a reception module with power supply for the IR sensor synchronizing active shutter glasses with the flexible liquid crystal lens prototypes. IR sensor synchronizing active shutter glasses for 3D HDTV with flexible liquid crystal lenses produced excellent 3D images viewing characteristics.

  16. Magnetic fluctuations and correlations in MnSi : Evidence for a chiral skyrmion spin liquid phase

    NARCIS (Netherlands)

    Pappas, C.; Lelièvre-Berna, E.; Bentley, P.; Falus, P.; Fouquet, P.; Farago, B.

    2011-01-01

    We present a comprehensive analysis of high-resolution neutron scattering data involving neutron spin echo spectroscopy and spherical polarimetry, which confirm the first-order nature of the helical transition in MnSi. The experiments reveal the existence of a totally chiral dynamic phase in a very

  17. Liquid crystal designs for high-contrast field sequential color liquid crystal on silicon (LCoS) microdisplays (Invited Paper)

    Science.gov (United States)

    Anderson, James; Chen, Cheng; Bos, Philip J.

    2005-04-01

    Single or dual panel microdisplay systems are becoming more popular in the marketplace. Consequently, Liquid Crystal on Silicon (LCoS) microdisplays are constantly being pushed to achieve faster switching times as well as higher contrast, while becoming simpler and allowing simpler optics engine design. Currently, most products use a Twisted Nematic (TN) mode with a retardation film. The most promising solution in research now is the Vertically Aligned Nematic (VAN) mode, which does not require a retarder.

  18. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tercjak, A; Garcia, I; Mondragon, I [Materials-Technologies Group, Departamento IngenierIa Quimica y M Ambiente, Escuela Politecnica, Universidad PaIs Vasco/Euskal Herriko Unibertsitatea, Plaza Europa 1, E-20018 Donostia-San Sebastian (Spain)], E-mail: scptesza@sc.ehu.es, E-mail: inaki.mondragon@ehu.es

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  20. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal.

    Science.gov (United States)

    Tercjak, A; Garcia, I; Mondragon, I

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  1. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    International Nuclear Information System (INIS)

    Tercjak, A; Garcia, I; Mondragon, I

    2008-01-01

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface

  2. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    International Nuclear Information System (INIS)

    Leaw, W.L.; Mamat, C.R.; Triwahyono, S.; Jalil, A.A.; Bidin, N.

    2016-01-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen. • Enhanced

  3. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Leaw, W.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Mamat, C.R., E-mail: che@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Jalil, A.A. [Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Centre of Hydrogen Energy, Institute of Future Energy, Univerisiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Bidin, N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia)

    2016-12-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  4. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  5. The spin chirality in MnSi single crystal probed by small angle scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Okorokov, A.I.; Grigoriev, S.V.; Chetverikov, Yu.O.; Georgii, R.; Boeni, P.; Eckerlebe, H.; Pranzas, K.; Roessli, B.

    2004-01-01

    The weak itinerant ferromagnet MnSi orders with a left-handed helical spin structure below T C =29 K. The helicity with a vector m=[S 1 xS 2 ]/S 2 along the crystallographic axis [1 1 1] is realized by an antisymmetric Dzyaloshinski-Moriya interaction. The small angle diffraction study with polarized neutrons on a single MnSi crystal was performed within the temperature range from 10 K to T C and the magnetic field B from 1 to 350 mT. The single crystal was oriented in such a way that two axes [1 1 1] and [1 1 -1] were set in a plane perpendicular to the incident beam. Four major diffraction peaks at ±q 1 and ±q 2 along the axes and four minor peaks at q=±q 1 ±q 2 were observed. The intensity I p =I(+P 0 )+I(-P 0 ), the polarization P p =[I(+P 0 )-I(-P 0 )]/I p and the position q p of the peaks were measured as a function of the temperature and the magnetic field. From intensity of the peaks the chiral critical exponent is obtained as β=0.47±0.04

  6. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...... laser was coupled into the fiber together with the pulsed pump laser of 2.3 mW and we have demonstrated a modulation frequency of up to 2 kHz....

  7. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  8. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    Science.gov (United States)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  9. Soap, science, and flat-screen TVs a history of liquid crystals

    CERN Document Server

    Dunmur, David

    2011-01-01

    The terms 'liquid crystal' or 'liquid crystal display' (LCD) are well-known in the context of flat-screen televisions, but the properties and history of liquid crystals are little understood. This book tells the story of liquid crystals, from their controversial discovery at the end of the nineteenth century, to their eventual acceptance as another state of matter to rank alongside gases, liquids and solids. As their story unfolds, the scientists involved and their works are put into illuminating broader socio-political contexts. In recent years, liquid crystals have had a major impact on the display industry, culminating in the now widely available flat-screen televisions; this development is described in detail over three chapters, and the basic science behind it is explained in simple terms accessible to a general reader. New applications of liquid crystals in materials, bio-systems, medicine and technology are also explained.

  10. Synthesis of novel liquid crystal compounds and their blood compatibility as anticoagulative materials

    International Nuclear Information System (INIS)

    Tu Mei; Cha Zhenhang; Feng Bohua; Zhou Changren

    2006-01-01

    The objective of this study was to synthesize new types of cholesteric liquid crystal compounds and study the anticoagulative properties of their composite membranes. Three kinds of cholesteric liquid crystal compounds were synthesized and characterized by infrared spectroscopy, differential scanning calorimetry and optical polarizing microscope. The polysiloxane, as a substrate, was blended with three liquid crystal compounds and was then used as membranes. The anticoagulative property of different polysiloxane liquid crystal composite membranes was identified by the blood compatibility tests. Three cholesteryl liquid crystals synthesized in this work contained hydrophilic soft chains and presented iridescent texture owned by cholesteric liquid crystals in the range of their liquid crystal state temperature, but only cholesteryl acryloyl oxytetraethylene glycol carbonate was in the liquid crystal state at body temperature. When liquid crystals were blended with polysiloxane to form polysiloxane/liquid crystal composite membranes, the haemocompatibility of these membranes could be improved to some extent. The blood compatibility of composite membranes whose hydrophilic property was the best was more excellent than that of other composite membranes, fewer platelets adhered and spread, and showed little distortion on the surface of materials

  11. A roadmap to uranium ionic liquids: Anti-crystal engineering

    International Nuclear Information System (INIS)

    Yaprak, Damla; Spielberg, Eike T.; Baecker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-01-01

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C_4mim) cation. As dithiocarbamate ligands binding to the UO_2"2"+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. A roadmap to uranium ionic liquids: anti-crystal engineering.

    Science.gov (United States)

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct enantioseparation of nitrogen-heterocyclic pesticides on cellulose-based chiral column by high-performance liquid chromatography.

    Science.gov (United States)

    Chai, Tingting; Yang, Wenwen; Qiu, Jing; Hou, Shicong

    2015-01-01

    The enantiomeric separation of eight pesticides including bitertanol (), diclobutrazol (), fenbuconazole (), triticonazole (), imazalil (), triapenthenol (), ancymidol (), and carfentrazone-ethyl () was achieved, using normal-phase high-performance liquid chromatography on two cellulosed-based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol (), triticonazole (), imazalil () with the (+)-enantiomer eluted first and fenbuconazole () with the (-)-enantiomer eluted first on Lux Cellulose-2 and Lux Cellulose-3. (+)-Enantiomers of diclobutrazol () and triapenthenol () were first eluted on Lux Cellulose-2. (-)-Carfentrazone-ethyl () were eluted first on Lux Cellulose-2 and Lux Cellulose-3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)-Ancymidol was first eluted on Lux Cellulose-2 while on Lux Cellulose-3 (-)-ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. © 2014 Wiley Periodicals, Inc.

  14. Large Three-Dimensional Photonic Crystals Based on Monocrystalline Liquid Crystal Blue Phases (Postprint)

    Science.gov (United States)

    2017-09-28

    a pair of glass slides with plastic spacers to determine the cell gap: 100 and 300 μm for the polymer-free BPLCs and 12 μm for the polymer-stabilized...Nissan) and rubbed with cloth to induce uniform planar alignment. Measurements. Reflection and transmission spectra were taken using a spectro- meter...thermal recycles . Opt. Mater. Express 2, 1149–1155 (2012). 34. Onusseit, H. & Stegemeyer, H. Liquid single crystals of cholesteric blue phases. Z

  15. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    Science.gov (United States)

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Piezoelectricity of a ferroelectric liquid crystal with a glass transition.

    Science.gov (United States)

    Jákli, A; Tóth-Katona, T; Scharf, T; Schadt, M; Saupe, A

    2002-07-01

    Pressure-electric (hydrostatic piezoelectric) measurements are reported on bookshelf textures of a ferroelectric smectic-C (Sm C*) liquid crystal with a glass transition. The continuous variation of a partially fluid state to the solid glass enables one to trace how the piezoelectric effect depends on the consistency of the material. It was observed that in the Sm C* samples with poled glass the piezoelectric constants are comparable to conventional piezoelectric crystals and poled piezoelectric polymers. This implies their application possibilities. The magnitude of the piezoelectric constant in the glassy state depends very much on the poling conditions. The studies indicate that there are two counteracting effects, which cancel each other out in the Sm C* phase near the glass transition. Our analysis indicates that the pressure-induced director tilt change has a dominating effect both in the fluid and the glassy Sm C* states.

  17. Liquid-crystal laser optics: design, fabrication, and performance

    International Nuclear Information System (INIS)

    Jacobs, S.D.; Cerqua, K.A.; Marshall, K.L.; Schmid, A.; Guardalben, M.J.; Skerrett, K.J.

    1988-01-01

    We describe the development of laser optics utilizing liquid crystals. Devices discussed constitute passive optical elements for both low-power and high-power laser systems, operating in either the pulsed or cw mode. Designs and fabrication methods are given in detail for wave plates, circular polarizers, optical isolators, laser-blocking notch filters, and soft apertures. Performance data in the visible to near infrared show these devices to be useful alternatives to other technologies based on conventional glasses, crystals, or thin films. The issue of laser damage is examined on the basis of off-line threshold testing and daily use in OMEGA, the 24-beam Nd:glass laser system at the Laboratory for Laser Energetics. Results demonstrate that long-term survivability has been achieved

  18. Asymmetric flavone-based liquid crystals: synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Daren J. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Jordan, Abraham J. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Kirchon, Angelo A. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Murthy, N. Sanjeeva [New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Siemers, Troy J. [Department of Applied Mathematics, Virginia Military Institute, Lexington, VA, USA; Harrison, Daniel P. [Department of Chemistry, Virginia Military Institute, Lexington, VA, USA; Slebodnick, Carla [Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

    2017-02-01

    A series of flavones (n-F) substituted at the 4', and 6 positions was prepared, characterised by NMR (1H,13C), HRMS, and studied for liquid crystal properties. The 4'-alkoxy,6-methoxyflavones (4-F–16-F) exhibit varying ranges of nematic and smectic A phases as evidenced by polarised optical microscopy and differential scanning calorimetry (DSC). As the tail length is increased, the smectic phase becomes more prevalent. Smectic phases for (8-F–16-F) were further analysed by powder X-ray diffraction (XRD), and the rate of structural transformations was explored by combined DSC/XRD studies. Flavonol 6-F–OH was also prepared but no mesogenic behaviour was observed. The molecular structures of 6-F and 6-F–OH were determined by single-crystal XRD and help to explain the differences in material properties. Additionally, fluorescence and electrochemical studies were conducted on solutions of n-F.

  19. Asymmetric electrooptic response in a nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dascalu, Constanta [Politechnica University of Bucharest, Bucharest (Romania)

    2001-06-01

    An asymmetric electrooptic response in nematic liquid crystal (LC) has been obtained. The liquid crystal hybrid cell was made by using a standard configuration. One of the ITO (Indium Tin Oxide) electrodes was covered with a surfactant, which induces a homeotropic alignment. The second of the indium tin oxide electrodes was covered by a thin layer of photopolymer, which was previously mixed with an acid, which favours a process of release of protons. Such cations are responsible of electrochemical process in the LC leading to an asymmetric electrooptic response, which depend on the polarity of the applied electric field. This fact is due to an internal field, which change the effective voltage thresholds for the reorientation of the liquid crystal. During the anodic polarization, the optical switching is inhibited because the effective field decreases below the threshold value. On contrary for the opposite polarization the effective field is enough to determine a homeotropic alignment. [Spanish] Se ha obtenido una respuesta electro-optica asimetrica en cristales liquidos neumaticos. La celula hibrida de cristal liquido fue construida utilizando una configuracion estandar. Uno de los electrodos ITO fue cubierto con una pelicula delgada de material organico para inducir una alineacion homeotropa. El otro electrodo ITO fue cubierto con una pelicula delgada de fotopolimero anteriormente mezclada con un acido para favorecer la emision de protones. Estos cationes son responsables del proceso electroquimico en LC, conduciendo a una respuesta electro-optica asimetrica que depende de la polaridad del campo electrico aplicado. Este efecto es originado por un campo interno que cambia el umbral efectivo del voltaje para la reorientacion del cristal liquido. Durante la polarizacion anodica, la conmutacion optica se inhibe debido a que el campo efectivo disminuye abajo del valor del umbral. Por el contrario, para la polarizacion opuesta el campo efectivo es suficiente para

  20. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    Science.gov (United States)

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  1. Local structural ordering in surface-confined liquid crystals

    Science.gov (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  2. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    Science.gov (United States)

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  3. A novel composite alignment layer for transflective liquid crystal display

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuangyao; Li Xuan [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Tao Du; Chigrinov, Vladimir; Kwok, Hoi Sing, E-mail: eechigr@ust.h [Center for Display Research, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-10-20

    A novel composite photoalignment layer for transflective liquid crystal displays is explored. The key technique is to introduce a functional photo-crosslinkage into a rewritable azodye material with proper mixing. Bearing good alignment quality derived from the azodye material, the composite layer provides strong azimuthal and polar anchoring energy comparable to that of rubbed polyimide layers. The capability of dual modes fabrication in one cell exhibited by azodyes could be well retained and the new alignment film exhibits a display resolution of up to 2 {mu}m. Furthermore, after exposure to strong LED unpolarized light the composite layer shows much better stability than that with a pure azodye material.

  4. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    the waveguiding mechanism of LC filled PCFs. The principle of tunable fibers based on LCs is thereafter discussed and an alignment and coating study of LC in capillaries is presented. Next, the Liquid Crystal Photonic BandGap (LCPBG) fiber is presented and the waveguiding mechanism is analyzed through plane...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...

  5. The mathematics of instabilities in smectic C liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.A

    2001-07-01

    The theoretical effects of applying a magnetic or electric field to samples of smectic A and smectic C{sup *} liquid crystals are studied in this thesis. In Chapter 2 general background material on liquid crystals is introduced as well as the continuum theory which we shall use in subsequent chapters. We consider a planar sample of ferroelectric smectic C{sup *} liquid crystal in Chapter 3, where an electric field is applied perpendicular to the smectic layers. In particular, we obtain an exact solution to a dynamic equation which governs director reorientation (within a sample which is bounded in the z direction) which appears in the literature. We then consider the linear stability of this solution by applying a perturbation, in both space and time, and examine its growth. In Chapter 4 we again consider the stability of a planar sample of ferroelectric smectic C{sup *} when an electric field is applied perpendicular to the smectic planes. However, unlike in Chapter 3, we derive the relevant governing equation. After having introduced the relevant theory, the linear and nonlinear stability of a constant equilibrium state in both finite and infinite domains is examined. We then obtain information upon the relaxation times for each of these cases. The relaxation time gives an indication of how quickly the director relaxes back to equilibrium. The dynamic equation which is derived in Chapter 4 is extended in Chapter 5 to include the effects of lilting the applied electric field. The equilibrium equation which we then obtain is not tractable explicitly due to the form of the sinusoidal nonlinearity which appears in it. We therefore solve a simplified approximating dynamic equation as well as the full sinusoidal nonlinearity case numerically. In both cases the linear stability of the equilibrium solution is examined. Finally, in Chapter 6 we consider the layer deformations in a cylindrical sample of smectic A liquid crystal when a magnetic field is applied across the

  6. Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy

    Science.gov (United States)

    Nag, Okhil K.; Naciri, Jawad; Delehanty, James B.

    2018-02-01

    The main principle of photodynamic therapy (PDT) is to kill malignant cells by generation of reactive oxygen species (ROS). PDT appeared highly effective when ROS can be produced in subcellular location such as plasma membrane. The plasma membrane maintains the structural integrity of the cell and regulates multiple important cellular processes, such as endocytosis, trafficking, and apoptotic pathways, could be one of the best points to kill the cancer cells. Previously, we have developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs. Here we highlight the utility of this LCNP for membrane targeted delivery and imaging for a photosensitizer (PS) for PDT applications.

  7. Diffraction and signal processing experiments with a liquid crystal microdisplay

    International Nuclear Information System (INIS)

    MartInez, Jose Luis; Moreno, Ignacio; Ahouzi, Esmail

    2006-01-01

    In this work, we show some diffraction experiments performed with a liquid crystal display (LCD) that shows how useful this device can be to teach and experience diffraction optics and signal processing experiments. The LCD acts as a programmable pixelated diffractive mask. The Fourier spectrum of the image displayed in the LCD is visualized through a simple free propagation diffraction experiment. This optical system allows easy testing of different diffractive elements. As a demonstration we include experimental results with well-known diffractive elements like diffraction gratings or Fresnel lenses, and with more complicated elements like computer-generated holograms

  8. Diffraction and signal processing experiments with a liquid crystal microdisplay

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Jose Luis [Departamento de Ciencia y TecnologIa de Materiales, Universidad Miguel Hernandez de Elche, Alicante (Spain); Moreno, Ignacio [Departamento de Ciencia y TecnologIa de Materiales, Universidad Miguel Hernandez de Elche, Alicante (Spain); Ahouzi, Esmail [Institut National des Postes et Telecomunications (INTP), Madinat Al Irfane, Rabat (Morocco)

    2006-09-01

    In this work, we show some diffraction experiments performed with a liquid crystal display (LCD) that shows how useful this device can be to teach and experience diffraction optics and signal processing experiments. The LCD acts as a programmable pixelated diffractive mask. The Fourier spectrum of the image displayed in the LCD is visualized through a simple free propagation diffraction experiment. This optical system allows easy testing of different diffractive elements. As a demonstration we include experimental results with well-known diffractive elements like diffraction gratings or Fresnel lenses, and with more complicated elements like computer-generated holograms.

  9. Experimental investigations on weakly polar liquid crystal-aerosil composites

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Chethan V; Prasad, S Krishna; Yelamaggad, C V [Centre for Liquid Crystal Research, Jalahalli, Bangalore 560013 (India)

    2006-01-25

    We have carried out differential scanning calorimetric and dielectric studies on composites of hydrophilic aerosil with a liquid crystal that does not possess a terminal polar group. While the shift in the nematic-isotropic transition temperature is in agreement with the general behaviour observed for such composites, the dielectric studies show, contrary to the commonly observed feature, that there is a systematic increase in the relaxation frequency associated with the rotation of the molecules around their short axis, as the aerosil concentration in the composite is increased.

  10. The mathematics of instabilities in smectic C liquid crystals

    International Nuclear Information System (INIS)

    Anderson, D.A.

    2001-01-01

    The theoretical effects of applying a magnetic or electric field to samples of smectic A and smectic C * liquid crystals are studied in this thesis. In Chapter 2 general background material on liquid crystals is introduced as well as the continuum theory which we shall use in subsequent chapters. We consider a planar sample of ferroelectric smectic C * liquid crystal in Chapter 3, where an electric field is applied perpendicular to the smectic layers. In particular, we obtain an exact solution to a dynamic equation which governs director reorientation (within a sample which is bounded in the z direction) which appears in the literature. We then consider the linear stability of this solution by applying a perturbation, in both space and time, and examine its growth. In Chapter 4 we again consider the stability of a planar sample of ferroelectric smectic C * when an electric field is applied perpendicular to the smectic planes. However, unlike in Chapter 3, we derive the relevant governing equation. After having introduced the relevant theory, the linear and nonlinear stability of a constant equilibrium state in both finite and infinite domains is examined. We then obtain information upon the relaxation times for each of these cases. The relaxation time gives an indication of how quickly the director relaxes back to equilibrium. The dynamic equation which is derived in Chapter 4 is extended in Chapter 5 to include the effects of lilting the applied electric field. The equilibrium equation which we then obtain is not tractable explicitly due to the form of the sinusoidal nonlinearity which appears in it. We therefore solve a simplified approximating dynamic equation as well as the full sinusoidal nonlinearity case numerically. In both cases the linear stability of the equilibrium solution is examined. Finally, in Chapter 6 we consider the layer deformations in a cylindrical sample of smectic A liquid crystal when a magnetic field is applied across the circular cross

  11. Controlling Active Liquid Crystal Droplets with Temperature and Surfactant Concentration

    Science.gov (United States)

    Shechter, Jake; Milas, Peker; Ross, Jennifer

    Active matter is the study of driven many-body systems that span length scales from flocking birds to molecular motors. A previously described self-propelled particle system was made from liquid crystal (LC) droplets in water with high surfactant concentration to move particles via asymmetric surface instabilities. Using a similar system, we investigate the driving activity as a function of SDS surfactant concentration and temperature. We then use an optical tweezer to trap and locally heat the droplets to cause hydrodynamic flow and coupling between multiple droplets. This system will be the basis for a triggerable assembly system to build and couple LC droplets. DOD AROMURI 67455-CH-MUR.

  12. Infiltration liquid crystal in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Bang, Ole

    2009-01-01

    7 is then infiltrated into about 6 cm of the length of mPOF by using capillary forces with the duration of 45 minutes. The transmission spectrum is measured by an optical spectrum analyzer with 1 nm resolution, and normalized to that of the unfilled fiber as shown by the solid line. The difference......POF is butt-coupled to a conventional single mode fiber (SMF) with the broadband light from a supercontinuum source. It is clear to see the colour of the guided modes is red, since some wavelengths are attenuated by the material loss of PMMA in visible region. A positive dielectric anisotropy liquid crystal E...

  13. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim

    2012-01-01

    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  14. Distributed hydrophone array based on liquid crystal cell

    Science.gov (United States)

    Brodzeli, Zourab; Ladouceur, Francois; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir; Guo, Grace Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.

    2012-02-01

    We describe a fibre optic hydrophone array system that could be used for underwater acoustic surveillance applications e.g. military, counter terrorist and customs authorities in protecting ports and harbors, offshore production facilities or coastal approaches as well as various marine applications. In this paper we propose a new approach to underwater sonar systems using voltage-controlled Liquid Crystals (LC) and simple multiplexing method. The proposed method permits measurements of sound under water at multiple points along an optical fibre using low cost components (LC cells), standard single mode fibre, without complex interferometric measurement techniques, electronics or demodulation software.

  15. Adaptive Holography in Liquid Crystal Light-Valves

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Huignard

    2012-08-01

    Full Text Available By performing two-wave mixing experiments in a liquid crystal light-valve, optical beam amplification is obtained as a strongly resonant process to which a narrow frequency bandwidth is associated. This property is exploited to realize adaptive holographic interferometric systems able to efficiently detect displacements as small as fraction of picometers. Pressure radiation induced deformations of a reflecting membrane are measured with the same type of system. Then, when used with complex wavefronts, like speckle fields, the LCLV-based interferometer allows to detect extremely small phase modulations. The examples shown demonstrate the potentialities of the light-valve for dynamic holography applications.

  16. Imaging spectrometer using a liquid crystal tunable filter

    Science.gov (United States)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  17. A novel composite alignment layer for transflective liquid crystal display

    International Nuclear Information System (INIS)

    Li Shuangyao; Li Xuan; Tao Du; Chigrinov, Vladimir; Kwok, Hoi Sing

    2010-01-01

    A novel composite photoalignment layer for transflective liquid crystal displays is explored. The key technique is to introduce a functional photo-crosslinkage into a rewritable azodye material with proper mixing. Bearing good alignment quality derived from the azodye material, the composite layer provides strong azimuthal and polar anchoring energy comparable to that of rubbed polyimide layers. The capability of dual modes fabrication in one cell exhibited by azodyes could be well retained and the new alignment film exhibits a display resolution of up to 2 μm. Furthermore, after exposure to strong LED unpolarized light the composite layer shows much better stability than that with a pure azodye material.

  18. Synthesis and characterization of liquid crystals and their thermoset films

    International Nuclear Information System (INIS)

    Ahn, Yong-Ho; Jung, Myung-Sup; Chang, Jin-Hae

    2010-01-01

    We prepared a series of aromatic liquid crystals (LCs) based on aromatic ester units with the reactive end groups methyl-maleimide and nadimide, and the resulting LCs were thermally cross-linked to produce liquid crystalline thermoset (LCT) films by means of solution-casting and heat treatment. The synthesized LCs and LCTs were characterized with Fourier transform infrared (FT-IR) spectroscopy, 1 H nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and polarizing optical microscopy with a hot stage. We found that all these LCs form nematic phases. The coefficients of thermal expansion (CTEs) of the LCT films are strongly affected by the reactive end group and the mesogen units in their main-chain structures. The methyl-maleimide-terminated biphenyl LCT was found to have the lowest CTE.

  19. Biaxiality in Nematic and Smectic Liquid Crystals. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satyendra [Kent State Univ., Kent, OH (United States); Li, Quan [Kent State Univ., Kent, OH (United States); Srinivasarao, Mohan [Georgia Inst. of Technology, Atlanta, GA (United States); Agra-Kooijman, Dena M. [Kent State Univ., Kent, OH (United States); Rey, Alejandro [McGill Univ., Montreal, QC (Canada)

    2017-01-24

    During the award period, the project team explored several phenomena in a diverse group of soft condensed matter systems. These include understanding of the structure of the newly discovered twist-bend nematic phase, solving the mystery of de Vries smectic phases, probing of interesting associations and defect structures in chromonic liquid crystalline systems, dispersions of ferroelectric nanoparticles in smectic liquid crystals, investigations of newly synthesized light sensitive and energy harvesting materials with highly desirable transport properties. Our findings are summarized in the following report followed by a list of 36 publications and 37 conference presentations. We achieved this with the support of Basic Sciences Division of the US DOE for which we are thankful.

  20. Enantioseparation of dansyl amino acids by ultra-high pressure liquid chromatography using cationic β-cyclodextrins as chiral additives.

    Science.gov (United States)

    Xiao, Yin; Tan, Timothy Thatt Yang; Ng, Siu-Choon

    2011-04-07

    This work reports the application of ultra-high pressure liquid chromatography (UHPLC) for reasonably fast enantiorecognition of some dansyl amino acids by employing three cationic β-cyclodextrins (β-CDs) as chiral additives. Good resolutions were obtained on an Agilent C18 column (2.1 mm i.d.; 1.8 μm; 50 mm length) with 1% (v/v) triethylammonium acetate buffered at pH 4.7 and acetonitrile as the mobile phase. Most of the analytes could be baseline resolved within 10 min. Increased cationic CD concentration or acetonitrile proportion in the mobile phase results in a decreased retention factor but accentuated selectivity. Furthermore, molecular mechanics calculation was performed and found to be consistent with the experimental results. © The Royal Society of Chemistry 2011

  1. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  2. Dye-Induced Enhancement of Optical Nonlinearity in Liquids and Liquid Crystals

    International Nuclear Information System (INIS)

    Muenster, R.; Jarasch, M.; Zhuang, X.; Shen, Y.

    1997-01-01

    Optical nonlinearity of liquid crystals (LC) in the isotropic phase can be enhanced by 1 order of magnitude by dissolving 0.1% of anthraquinone dye in the LC. The enhancement decreases by ∼30% when the LC transforms into the nematic phase. The same guest-host effect also exists in non-LC liquids. It can be explained by a model based on the change of guest-host interaction induced by optical excitations of the dye. copyright 1996 The American Physical Society

  3. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    Science.gov (United States)

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  4. Self-organized internal architectures of chiral micro-particles

    International Nuclear Information System (INIS)

    Provenzano, Clementina; Mazzulla, Alfredo; Desiderio, Giovanni; Pagliusi, Pasquale; De Santo, Maria P.; Cipparrone, Gabriella; Perrotta, Ida

    2014-01-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials

  5. Validation of a chiral liquid chromatography-tandem mass spectrometry method for the determination of pantoprazole in dog plasma.

    Science.gov (United States)

    Chen, Meixia; Xia, Yu; Ma, Zhiyu; Li, Liang; Zhong, Dafang; Chen, Xiaoyan

    2012-10-01

    Pantoprazole (PAN), a selective proton pump inhibitor, is used clinically as a racemic mixture for the treatment of acid-related gastrointestinal disorders. To investigate its stereoselective pharmacokinetics, a chiral liquid chromatography-tandem mass spectrometry method was developed and validated to determine the pantoprazole enantiomers in dog plasma. After liquid-liquid extraction, a baseline resolution of enantiomers was achieved on an ovomucoid column using the mobile phase of methanol:acetonitrile:10mM ammonium formate (pH 7) (10.4:2.6:87, v/v/v) at 30°C within 10min. Stable isotopically labeled (+)-d(3)-pantoprazole and (-)-d(3)-pantoprazole were used as internal standards. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode via positive atmospheric pressure chemical ionization. The method was linear in the concentration range of 20.0-10,000ng/mL for each enantiomer using 25μL of dog plasma. The lower limit of quantification (LLOQ) for each enantiomer was 20.0ng/mL. Intra- and inter-day precision ranged from 3.2% to 10.3% for (+)-pantoprazole and 3.7-10.0% for (-)-pantoprazole. Accuracy varied from -1.4% to -0.2% for (+)-pantoprazole and -1.6% to 0.8% for (-)-pantoprazole. The validated method was applied successfully for stereoselective pharmacokinetic studies of racemic pantoprazole. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Room-temperature single-photon sources with definite circular and linear polarizations based on single-emitter fluorescence in liquid crystal hosts

    International Nuclear Information System (INIS)

    Winkler, Justin M; Lukishova, Svetlana G; Bissell, Luke J

    2013-01-01

    Definite circular and linear polarizations of room-temperature single-photon sources, which can serve as polarization bases for quantum key distribution, are produced by doping planar-aligned liquid crystal hosts with single fluorescence emitters. Chiral 1-D photonic bandgap microcavities for a single handedness of circularly polarized light were prepared from both monomeric and oligomeric cholesteric liquid crystals. Fluorescent emitters, such as nanocrystal quantum dots, nitrogen vacancy color centers in nanodiamonds, and rare-earth ions in nanocrystals, were doped into these microcavity structures and used to produce circularly polarized fluorescence of definite handedness. Additionally, we observed circularly polarized resonances in the spectrum of nanocrystal quantum dot fluorescence at the edge of the cholesteric microcavity's photonic stopband. For this polarization we obtained a ∼4.9 enhancement of intensity compared to the polarization of the opposite handedness that propagates without photonic bandgap microcavity effects. Such a resonance is indicative of coupling of quantum dot fluorescence to the cholesteric microcavity mode. We have also used planar-aligned nematic liquid crystal hosts to align DiI dye molecules doped into the host, thereby providing a single-photon source of linear polarization of definite direction. Antibunching is demonstrated for fluorescence of nanocrystal quantum dots, nitrogen vacancy color centers, and dye molecules in these liquid crystal structures.

  7. Viewing angle switching of patterned vertical alignment liquid crystal display

    International Nuclear Information System (INIS)

    Lim, Young Jin; Jeong, Eun; Chin, Mi Hyung; Lee, Seung Hee; Ji, Seunghoon; Lee, Gi-Dong

    2008-01-01

    Viewing angle control of a patterned vertical alignment (PVA) liquid crystal display using only one panel is investigated. In conventional PVA modes, a vertically aligned liquid crystal (LC) director tilts down in four directions making 45 deg. with respect to crossed polarizers to exhibit a wide viewing angle. In the viewing angle control device, one pixel was divided into two sub-pixels such that the LC director in the main pixel is controlled to be tilted down in multiple directions making an angle with the polarizer, playing the role of main display with the wide viewing angle, while the LC director in the sub-pixel is controlled to be tilted down to the polarizer axis, playing the role of sub-pixel to the viewing angle control for the narrow viewing angle. Using sub-pixel control, light leakage or any type of information such as characters and image can be generated in oblique viewing directions without distorting the image quality in the normal direction, which will prevent others from peeping at the displayed image by overlapping the displayed image with the made image

  8. Optics of Confined Liquid Crystals for Gas Detection

    Science.gov (United States)

    Charles, William; Carrozzi, Daniel; Vigilia, Lee Anne; Wang, Xiaoyurui; Guzman, Violet; Shibayev, Petr; Fordham University Students of Undergraduate Physics Team

    Cholesteric liquid crystals (CLCs) of a wide range of viscosities were studied experimentally in relation to their use as gas sensors and sensors of volatile organic compounds (VOCs), specifically ethanol, cyclohexane, toluene, acetic acid, and pyridine. CLCs were obtained by mixing low molar mass liquid crystals (MBBA and cholesterol derivatives with siloxane based oligomers). The droplets of CLCs were placed in containers with controlled atmospheres. The shift of the selective reflection band, predominantly from shorter to longer wavelengths, and the color changes were observed in the CLC illuminated by light coming from the various directions. Visible optical changes were observed in droplets with viscosities of CLCs ranging from c.a. 4 Pa*s to 105 Pa*s. The most responsive droplets in which the shift of the selective reflection band occurs at lower concentrations of VOCs were prepared from CLC mixtures with the lowest viscosities. Higher viscosities of CLCs lead to a slower response to VOCs, but the rate of response is different for each pair of VOC and CLC with a certain viscosity. This finding opens a possibility for selective detection of VOCs by CLCs with different viscosities. The mechanism of VOCs diffusion, interaction with CLC matrix and optical changes is discusse

  9. Switchable Liquid Crystal Contact Lenses for the Correction of Presbyopia

    Directory of Open Access Journals (Sweden)

    James Bailey

    2018-01-01

    Full Text Available Presbyopia is an age-related disorder where the lens of the eye hardens so that focusing on near objects becomes increasingly difficult. This complaint affects everyone over the age of 50. It is becoming progressively more relevant, as the average age of the global population continues to rise. Bifocal or varifocal spectacles are currently the best solution for those that require near and far vision correction. However, many people prefer not to wear spectacles and while multifocal contact lenses are available, they are not widely prescribed and can require significant adaptation by wearers. One possible solution is to use liquid crystal contact lenses that can change focal power by applying a small electric field across the device. However, the design of these contact lenses must be carefully considered as they must be comfortable for the user to wear and able to provide the required change in focal power (usually about +2D. Progress towards different lens designs, which includes lens geometry, liquid crystal choices and suitable alignment modes, are reviewed. Furthermore, we also discuss suitable electrode materials, possible power sources and suggest some methods for switching the lenses between near and far vision correction.

  10. Intrinsic frame transport for a model of nematic liquid crystal

    Science.gov (United States)

    Cozzini, S.; Rull, L. F.; Ciccotti, G.; Paolini, G. V.

    1997-02-01

    We present a computer simulation study of the dynamical properties of a nematic liquid crystal model. The diffusional motion of the nematic director is taken into account in our calculations in order to give a proper estimate of the transport coefficients. Differently from other groups we do not attempt to stabilize the director through rigid constraints or applied external fields. We instead define an intrinsic frame which moves along with the director at each step of the simulation. The transport coefficients computed in the intrinsic frame are then compared against the ones calculated in the fixed laboratory frame, to show the inadequacy of the latter for systems with less than 500 molecules. Using this general scheme on the Gay-Berne liquid crystal model, we evidence the natural motion of the director and attempt to quantify its intrinsic time scale and size dependence. Through extended simulations of systems of different size we calculate the diffusion and viscosity coefficients of this model and compare our results with values previously obtained with fixed director.

  11. Surface dynamics and mechanics in liquid crystal polymer coatings

    Science.gov (United States)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  12. New chiral and restricted-access materials containing glycopeptides as selectors for the high-performance liquid chromatographic determination of chiral drugs in biological matrices.

    Science.gov (United States)

    Gasparrini, Francesco; Cancelliere, Giovanna; Ciogli, Alessia; D'Acquarica, Ilaria; Misiti, Domenico; Villani, Claudio

    2008-05-16

    Two new chiral and restricted-access materials containing glycopeptide antibiotics as chiral selectors (chiro-Glyco-RAM) were designed, suitable for the direct HPLC injection of biological fluids containing chiral drugs without any sample pre-treatment or pre-columns coupling. The external surface of the porous silica support was covered with a bio-compatible hydrophilic polymeric network (polyvinyl alcohol, PVA) while the chiral phase based on either teicoplanin (TE) or teicoplanin aglycone (TAG) was exclusively confined to the internal region. The chiro-Glyco-RAM supports were synthesized by the following steps: (a) introduction of 3-aminopropyl groups on 100 A pore size silica gel; (b) activation of the aminopropylated silica with 1,6-diisocyanatohexane; (c) functionalization of the external region of the porous silica with PVA; (d) covalent linking of TE/TAG to the internal surface. The average pore diameter of the chiro-Glyco-RAM supports, calculated by inverse size-exclusion chromatography (ISEC), was about 80 A and able to exclude macromolecules heavier than about 20,000 Da (such as the most abundant serum proteins) from the pores. The recovery of bovine serum albumin (BSA) was almost quantitative. HPLC analyses of model chiral drugs were performed using hydro-organic mobile phases consisting of an organic solvent (acetonitrile or methanol) and aqueous solutions of ammonium acetate (0.020 M) or ammonium formate (0.0025-0.0050 M).

  13. Investigation of the liquid crystal alignment layer: effect on electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ouada, Hafedh Ben [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000 Monastir (Tunisia)], E-mail: asma_abderrahmen@yahoo.fr

    2008-04-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit.

  14. Investigation of the liquid crystal alignment layer: effect on electrical properties

    International Nuclear Information System (INIS)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh; Ouada, Hafedh Ben

    2008-01-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit

  15. Application of Thin Films of Conjugated Polymers in Novel LED's and Liquid Crystal 'Light Valves'

    National Research Council Canada - National Science Library

    MacDiarmid, A

    1997-01-01

    .... Flexible, completely organic polymer dispersed liquid crystal light valves have been fabricated from transparent plastic substrates on which a conducting film of polypyrrole has been deposited...

  16. muSR-Investigation of a Liquid Crystal Containing Iron Atoms

    CERN Document Server

    Mamedov, T N; Galyametdinov, Yu G; Gritsaj, K I; Herlach, D; Kormann, O; Major, J V; Rochev, V Ya; Stoikov, A V; Zimmermann, U

    2000-01-01

    The work is devoted to the investigation of properties of a liquid crystal whose molecule contains iron atom. The compounds of this type are of interest from the point of view of obtaining liquid crystals with magnetic properties. The temperature dependence of the polarization and relaxation rate of positive muon spin in the liquid crystal was measured in the temperature range 4-300 K. The results obtained do not contradict the suggestion that the iron ions from an antiferromagnetically-ordered structure in this liquid crystal at the temperatures below 80 K.

  17. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface

    Science.gov (United States)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang

    2017-09-01

    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  18. A roadmap to uranium ionic liquids: Anti-crystal engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yaprak, Damla; Spielberg, Eike T.; Baecker, Tobias; Richter, Mark; Mallick, Bert [Inorganic Chemistry III, Ruhr-University Bochum (Germany); Klein, Axel [Institut fuer Anorganische Chemie, Koeln Univ. (Germany); Mudring, Anja-Verena [Inorganic Chemistry III, Ruhr-University Bochum (Germany); Materials Science and Engineering, Iowa State University and Critical Materials Institute, Ames Laboratory, Ames, IA (United States)

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C{sub 4}mim) cation. As dithiocarbamate ligands binding to the UO{sub 2}{sup 2+} unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    Science.gov (United States)

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations.

    Science.gov (United States)

    Quevillon, Michael J; Whitmer, Jonathan K

    2018-01-02

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

  1. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  2. Creation of tunable absolute bandgaps in a two-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal

    International Nuclear Information System (INIS)

    Liu Chenyang

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the tunable absolute bandgap in a two-dimensional anisotropic photonic crystal structures modulated by a nematic liquid crystal. The PC structure composed of an anisotropic-dielectric cylinder in the liquid crystal medium is studied by solving Maxwell's equations using the plane wave expansion method. The photonic band structures are found to exhibit absolute bandgaps for the square and triangular lattices. Numerical simulations show that the absolute bandgaps can be continuously tuned in the square and triangular lattices consisting of anisotropic-dielectric cylinders by infiltrating nematic liquid crystals. Such a mechanism of bandgap adjustment should open up a new application for designing components in photonic integrated circuits

  3. Thermal conductivity of Glycerol's liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures.

    Science.gov (United States)

    Andersson, Ove; Johari, G P

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κcrystal is 3.6-times the κliquid value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T(-0.95); (ii) the ratio κliquid (p)/κliquid (0.1 MPa) is 1.45 GPa(-1) at 280 K, which, unexpectedly, is about the same as κcrystal (p)/κcrystal (0.1 MPa) of 1.42 GPa(-1) at 298 K; (iii) κglass is relatively insensitive to T but sensitive to the applied p (1.38 GPa(-1) at 150 K); (iv) κglass-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κcrystal of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.

  4. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  5. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.

    Science.gov (United States)

    Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won

    2017-03-15

    The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.

  6. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    Science.gov (United States)

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  7. Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R.; Zhang, Fei; MacCulloch, Tara; Fahmi, Noureddine; Stephanopoulos, Nicholas; Liu, Yan; Seeman, Nadrian C. [Department; Yan, Hao

    2017-08-02

    The foundational goal of structural DNA nanotechnology—the field that uses oligonucleotides as a molecular building block for the programmable self-assembly of nanostructured systems—was to use DNA to construct three-dimensional (3D) lattices for solving macromolecular structures. The programmable nature of DNA makes it an ideal system for rationally constructing self-assembled crystals and immobilizing guest molecules in a repeating 3D array through their specific stereospatial interactions with the scaffold. In this work, we have extended a previously described motif (4 × 5) by expanding the structure to a system that links four double-helical layers; we use a central weaving oligonucleotide containing a sequence of four six-base repeats (4 × 6), forming a matrix of layers that are organized and dictated by a series of Holliday junctions. In addition, we have assembled mirror image crystals (l-DNA) with the identical sequence that are completely resistant to nucleases. Bromine and selenium derivatives were obtained for the l- and d-DNA forms, respectively, allowing phase determination for both forms and solution of the resulting structures to 3.0 and 3.05 Å resolution. Both right- and left-handed forms crystallized in the trigonal space groups with mirror image 3-fold helical screw axes P32 and P31 for each motif, respectively. The structures reveal a highly organized array of discrete and well-defined cavities that are suitable for hosting guest molecules and allow us to dictate a priori the assembly of guest–DNA conjugates with a specified crystalline hand.

  8. Spontaneous Generation of Chirality in Simple Diaryl Ethers.

    Science.gov (United States)

    Lennartson, Anders; Hedström, Anna; Håkansson, Mikael

    2015-07-01

    We studied the spontaneous formation of chiral crystals of four diaryl ethers, 3-phenoxybenzaldehyde, 1; 1,3-dimethyl-2-phenoxybenzene, 2; di(4-aminophenyl) ether, 3; and di(p-tolyl) ether, 4. Compounds 1, 3, and 4 form conformationally chiral molecules in the solid state, while the chirality of 2 arises from the formation of supramolecular helices. Compound 1 is a liquid at ambient temperature, but 2-4 are crystalline, and solid-state CD-spectroscopy showed that they could be obtained as optically active bulk samples. It should be noted that the optical activity arise upon crystallization, and no optically active precursors were used. Indeed, even commercial samples of 3 and 4 were found to be optically active, giving evidence for the ease at which total spontaneous resolution may occur in certain systems. © 2015 Wiley Periodicals, Inc.

  9. Progressive Transformation between Two Magnetic Ground States for One Crystal Structure of a Chiral Molecular Magnet.

    Science.gov (United States)

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-03-21

    We report the exceptional observation of two different magnetic ground states (MGS), spin glass (SG, T(B) = 7 K) and ferrimagnet (FI, T(C) = 18 K), for one crystal structure of [{Mn(II)(D/L-NH2ala)}3{Mn(III)(CN)6}]·3H2O obtained from [Mn(CN)6](3-) and D/L-aminoalanine, in contrast to one MGS for [{Mn(II)(L-NH2ala)}3{Cr(III)(CN)6}]·3H2O. They consist of three Mn(NH2ala) helical chains bridged by M(III)(CN)6 to give the framework with disordered water molecules in channels and between the M(III)(CN)6. Both MGS are characterized by a negative Weiss constant, bifurcation in ZFC-FC magnetizations, blocking of the moments, both components of the ac susceptibilities, and hysteresis. They differ in the critical temperatures, absolute magnetization for 5 Oe FC (lack of spontaneous magnetization for the SG), and the shapes of the hysteresis and coercive fields. While isotropic pressure increases both T(crit) and the magnetizations linearly and reversibly in each case, dehydration progressively transforms the FI into the SG as followed by concerted in situ magnetic measurements and single-crystal diffraction. The relative strengths of the two moderate Mn(III)-CN-Mn(II) antiferromagnetic (J1 and J2), the weak Mn(II)-OCO-Mn(II) (J3), and Dzyaloshinkii-Moriya antisymmetric (DM) interactions generate the two sets of characters. Examination of the bond lengths and angles for several crystals and their corresponding magnetic properties reveals a correlation between the distortion of Mn(III)(CN)6 and the MGS. SG is favored by higher magnetic anisotropy by less distorted Mn(III)(CN)6 in good accordance with the Mn-Cr system. This conclusion is also born out of the magnetization measurements on orientated single crystals with fields parallel and perpendicular to the unique c axis of the hexagonal space group.

  10. Flat liquid crystal diffractive lenses with variable focus and magnification

    Science.gov (United States)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera

  11. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation

    Science.gov (United States)

    Mills, Ryan D.

    2013-01-01

    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  12. The Optical Resolution of Chiral Tetrahedrone-type Clusters Contai- ning SCoFeM (M=Mo or W) Using High Performance Liquid Chromatography Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amylose tris (phenylcarbamate) chiral stationary phase (ATPC-CSP) was prepared and used for optical resolution of clusters 1 and 2. n-Hexane/2-propanol ( 99/1; v/v) were found to be the most suitable mobile phase on ATPC-CSP.

  13. Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

    Science.gov (United States)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2018-04-01

    We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.

  14. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala; Ockendon, John; Howell, Peter; Surovyatkina, Elena

    2013-01-01

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  15. Four-dimensional Printing of Liquid Crystal Elastomers.

    Science.gov (United States)

    Ambulo, Cedric P; Burroughs, Julia J; Boothby, Jennifer M; Kim, Hyun; Shankar, M Ravi; Ware, Taylor H

    2017-10-25

    Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.

  16. Polymer dispersed liquid crystals. Pt.1 Concept, Preparation and Materials

    International Nuclear Information System (INIS)

    Hakemi, H. A.; Santangelo, M.

    1998-01-01

    It is more than a decade since Polymer Dispersed Liquid Crystal (PDLC) film technology became the subject of a world-wide scientific and industrial research and development for commercial applications as large-area reflective displays and electrooptical windows, for privacy, security and light transmission control. In view of current interest and intensive fundamental and industrial research on PDLC, the authors attempt to provide a review of the state-of-art of this technology, from concept to its industrial production, in a series of articles. In the present introductory part, the authors discuss the basic concept, the principle of operation, the materials and the preparation techniques of a PDLC device by phase separation method [it

  17. Study of memory effects in polymer dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Han, Jinwoo

    2006-01-01

    In this work, we have studied the memory effects in polymer dispersed liquid crystal films. We found that optical responses, such as the memory effects, of the films depended strongly on the morphology. For example, memory effects were observed for films with polymer ball morphologies; however, only weak hysteresis effects were observed for films with droplet morphologies. In particular, a stronger memory effect was observed for films with more complicated polymer ball structures. Coincidentally, T TE , the temperature at which the memory state is thermally erased, was generally higher for the films exhibiting a stronger memory effect. In addition, studies of the temporal evolution of the films show that the memory effects become stronger after films have been kept on the shelf for a period of time. This change is likely to be associated with a modification of surface anchoring properties at the LC-polymer interface.

  18. Elastic energy of liquid crystals in convex polyhedra

    International Nuclear Information System (INIS)

    Majumdar, A; Robbins, J M; Zyskin, M

    2004-01-01

    We consider nematic liquid crystals in a bounded, convex polyhedron described by a director field n(r) subject to tangent boundary conditions. We derive lower bounds for the one-constant elastic energy in terms of topological invariants. For a right rectangular prism and a large class of topologies, we derive upper bounds by introducing test configurations constructed from local conformal solutions of the Euler-Lagrange equation. The ratio of the upper and lower bounds depends only on the aspect ratios of the prism. As the aspect ratios are varied, the minimum-energy conformal state undergoes a sharp transition from being smooth to having singularities on the edges. (letter to the editor)

  19. Stabilization of liquid crystal dispersions with acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, M.H.; Lee, J.R. [Korea Research Institute of Chemical Technology, Taejon (Korea, Republic of)

    1999-03-01

    The effects of hydrophobic moieties(styrene and methyl methacrylate) on the stability of a liquid crystal(LC, E-7)-in-water dispersion stabilized by copolymers of hydrophilic acrylamide with hydrophobic monomers have been studied in terms of nematic curvilinear aligned phase(NCAP) system. It was observed that the preferential adsorption hydrophobic moieties onto LC droplet surface resulted in steric stabilization of the dispersion, due to increasing the interfacial tension of LC and reducing the LC droplet size. According to the interfacial tension, coalescence time, and sedimented layer thickness measurements, it was proposed that the presence of hydrophobic moieties allows to form the apolar microenvironment in the round of LC droplet and finally reduces the anchoring effect between LC and the polymeric wall. 16 refs., 10 figs.

  20. Emerging Applications of Liquid Crystals Based on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jung Inn Sohn

    2014-03-01

    Full Text Available Diverse functionalities of liquid crystals (LCs offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices.

  1. Anisotropic ultrasound propagation in a smectic-C liquid crystal

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Umrigar, C.J.; Ketterson, J.B.

    1976-01-01

    The results of longitudinal ultrasound propagation in a magnetically aligned smectic-C liquid crystal (p-p' Heptyloxyazoxy benzene) are reported. In the smectic-C phase the plane normals can lie anywhere on a cone with the axis along the magnetic field direction in which the sample was cooled. The effects of the layer normal direction and the molecular orientation within the planes on the velocity anisotropy were separated by cooling the sample into the smectic-C phase at particular orientations of the magnetic field and subsequently rotating the magnetic field. The results were analyzed on the basis of a multidomain model where the azimuthal angle of the plane normal around the field direction was averaged over

  2. Poly-Phenylene-Quinonediimine as a possible conducting liquid crystal

    Science.gov (United States)

    Hall, H. K.

    1986-06-01

    The synthesis of stable electrically conducting, fabricable polymers of known structure represents an important goal of current polymer science. It seems to us that conductive, processable, and stable materials of defined structure should not be beyond the reach of the modern synthetic polymer chemist. Our approach has been to utilize a wide variety of polycondensation reactions to see whether they are useful for the synthesis of potentially conducting, stable, processable polymers. Polycondensation routes are preferred because they will lead to polymers of rational, known structure. Standard techniques of polymer chemistry such as copolymerization, use of unsymmetrical monomers, and introduction of softening substituents can be used to enhance processability. Further, the extended para structures preferred for conductivity may also lead to liquid crystal behavior, another potential tool for fabrication.

  3. In Silico Measurement of Elastic Moduli of Nematic Liquid Crystals

    Science.gov (United States)

    Sidky, Hythem; de Pablo, Juan J.; Whitmer, Jonathan K.

    2018-03-01

    Experiments on confined droplets of the nematic liquid crystal 5CB have questioned long-established bounds imposed on the elastic free energy of nematic systems. This elasticity, which derives from molecular alignment within nematic systems, is quantified through a set of moduli which can be difficult to measure experimentally and, in some cases, can only be probed indirectly. This is particularly true of the surfacelike saddle-splay elastic term, for which the available experimental data indicate values on the cusp of stability, often with large uncertainties. Here, we demonstrate that all nematic elastic moduli, including the saddle-splay elastic constant k24, may be calculated directly from atomistic molecular simulations. Importantly, results obtained through in silico measurements of the 5CB elastic properties demonstrate unambiguously that saddle-splay elasticity alone is unable to describe the observed confined morphologies.

  4. Morphological studies of polymer dispersed liquid crystal materials

    International Nuclear Information System (INIS)

    Han, Jin-Woo

    2006-01-01

    In this work, we have studied the morphologies of polymer dispersed liquid crystals (PDLCs) based on E7/NOA61. Scanning electron microscope studies show that the PDLC morphology is strongly affected by the LC concentration and the cure temperature. A typical PDLC morphology with isolated LC droplets dispersed in a polymer matrix is only observed at low LC compositions and at low cure temperatures. Increasing either the LC composition or the cure temperature results in a polymer ball morphology, in which LCs exist in irregularly shaped voids in the polymer network structure. It is shown that the transition between these two morphologies can be qualitatively explained using a pseudo-binary phase diagram.

  5. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  6. Introduction to optical methods for characterizing liquid crystals at interfaces.

    Science.gov (United States)

    Miller, Daniel S; Carlton, Rebecca J; Mushenheim, Peter C; Abbott, Nicholas L

    2013-03-12

    This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and nonplanar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically functionalized, and biomolecular interfaces, are described in this Instructional Review on a level that can be easily understood by a nonexpert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories.

  7. Bistable cholesteric liquid crystal light shutter with multielectrode driving.

    Science.gov (United States)

    Li, Cheng-Chang; Tseng, Heng-Yi; Pai, Tsung-Wei; Wu, Yu-Ching; Hsu, Wen-Hao; Jau, Hung-Chang; Chen, Chun-Wei; Lin, Tsung-Hsien

    2014-08-01

    An electrically activated bistable light shutter that exploits polymer-stabilized cholesteric liquid crystal film was developed. Under double-sided three-terminal electrode driving, the device can be bistable and switched between focal conic and homeotropic textures with a uniform in-plane and vertical electrical field. The transparent state with a transmittance of 80% and the opaque/scattering state with a transmittance of 13% can be realized without any optical compensation film, and each can be simply switched to the other by applying a pulse voltage. Also, gray-scale selection can be performed by varying the applied voltage. The designed energy-saving bistable light shutter can be utilized to preserve privacy and control illumination and the flow of energy.

  8. Liquid Crystal Microlens Using Nanoparticle-Induced Vertical Alignment

    Directory of Open Access Journals (Sweden)

    Shug-June Hwang

    2015-01-01

    Full Text Available The nanoparticle-induced vertical alignment (NIVA of the nematic liquid crystals (LC is applied to achieve an adaptive flat LC microlens with hybrid-aligned nematic (HAN mode by dropping polyhedral oligomeric silsesquioxane (POSS nanoparticle solution on a homogeneous alignment layer. The vertical alignment induced by the POSS nanoparticles resulted in the formation of a hybrid-aligned LC layer with concentric nonuniform distribution of the refractive index in the planar LC cell, which subsequently played the role of the lens, even in the absence of any applied voltages. The dimensions of the concentric HAN structure significantly depend on the volume of the microdroplet and the POSS concentration. The focus effect of this flat microlens was observed while electrically controlling its focal length using the applied voltages from −50 mm to −90 mm.

  9. Optical solitons in nematic liquid crystals: model with saturation effects

    Science.gov (United States)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  10. Shape Changing Nonlocal Molecular Deformations in a Nematic Liquid Crystal

    International Nuclear Information System (INIS)

    Kavitha, L.; Venkatesh, M.; Gopi, D.

    2010-07-01

    The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation mapped onto an integro-differential perturbed Nonlinear Schroedinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property, as a result of the relation between the coherence of the solitary deformation and the nonlocality, reveals a strong need for deeper understanding in the theory of self-localization in NLC systems. (author)

  11. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  12. Electro-optical switching of liquid crystals of graphene oxide

    Science.gov (United States)

    Song, Jang-Kun

    Electric field effects on aqueous graphene-oxide (GO) dispersions are reviewed in this chapter. In isotropic and biphasic regimes of GO dispersions, in which the inter-particle friction is low, GO particles sensitively respond to the application of electric field, producing field-induced optical birefringence. The electro-optical sensitivity dramatically decreases as the phase transits to the nematic phase; the increasing inter-particle friction hinders the rotational switching of GO particles. The corresponding Kerr coefficient reaches the maximum near the isotropic to biphasic transition concentration, at which the Kerr coefficient is found be c.a. 1:8 · 10-5 mV-2, the highest value ever reported in all Kerr materials. The exceptionally large Kerr effect arises from the Maxwell- Wagner polarization of GO particles with an extremely large aspect ratio and a thick electrical double layer (EDL). The polarization sensitively depends on the ratio of surface and bulk conductivities in dispersions. As a result, low ion concentration in bulk solvent is highly required to achieve a quality electro-optical switching in GO dispersions. Spontaneous vinylogous carboxylic reaction in GO particles produces H+ ions, resulting in spontaneous degradation of electro-optical response with time, hence the removal of residual ions by using a centrifuge cleaning process significantly improves the electro-optical sensitivity. GO particle size is another important parameter for the Kerr coefficient and the response time. The best performance is observed in a GO dispersion with c.a. 0.5 μm mean size. Dielectrophoretic migration of GO particles can be also used to manipulate GO particles in solution. Using these unique features of GO dispersions, one can fabricate GO liquid crystal devices similar to conventional liquid crystal displays; the large Kerr effect allows fabricating a low power device working at extremely low electric fields.

  13. Active liquid-crystal deflector and lens with Fresnel structure

    Science.gov (United States)

    Shibuya, Giichi; Yamano, Shohei; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-02-01

    A new type of tunable Fresnel deflector and lens composed of liquid crystal was developed. Combined structure of multiple interdigitated electrodes and the high-resistivity (HR) layer implements the saw-tooth distribution of electrical potential with only the planar surfaces of the transparent substrates. According to the numerical calculation and design, experimental devices were manufactured with the liquid crystal (LC) material sealed into the sandwiched flat glass plates of 0.7 mm thickness with rubbed alignment layers set to an anti-parallel configuration. Fabricated beam deflector with no moving parts shows the maximum tilt angle of +/-1.3 deg which can apply for optical image stabilizer (OIS) of micro camera. We also discussed and verified their lens characteristics to be extended more advanced applications. Transparent interdigitated electrodes were concentrically aligned on the lens aperture with the insulator gaps under their boundary area. The diameter of the lens aperture was 30 mm and the total number of Fresnel zone was 100. Phase retardation of the beam wavefront irradiated from the LC lens device can be evaluated by polarizing microscope images with a monochromatic filter. Radial positions of each observed fringe are plotted and fitted with 2nd degree polynomial approximation. The number of appeared fringes is over 600 in whole lens aperture area and the correlation coefficients of all approximations are over 0.993 that seems enough ideal optical wavefront. The obtained maximum lens powers from the approximations are about +/-4 m-1 which was satisfied both convex and concave lens characteristics; and their practical use for the tunable lens grade eyeglasses became more prospective.

  14. Some topics in continuum theory of liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Claire

    2000-07-01

    Since advancements by Ericksen and Leslie in the 1960's, interest in the continuum theory for liquid crystals has escalated. In this thesis, we present the well established continuum theory for nematics, and apply it to the simple Tsvetkov experiment. This analysis is further extended by studying a similar geometric setup which allows additional degrees of freedom. Steady state solutions are studied, and stable/unstable solutions discussed. The bulk of this thesis however, is concerned with the smectic continuum theory. The theory presented allows variable layer spacing, and hence goes beyond the scope of that proposed by Leslie, Stewart and Nakagawa in 1991. With this theory, we initially study a sample of SmA liquid crystal in the bookshelf geometry between two parallel plates, and subject to a strongly anchored pretilt at the boundaries. Weakly anchored solutions are also briefly discussed at the end of this chapter. This work is extended by considering the same problem with a SmC sample, and the distinct differences between the SmA and SmC solutions are highlighted. Symmetric chevron solutions of C1 and C2 type are discussed fully, and energy considerations are made to find the physically realistic configurations. Again, the last part of this chapter is dedicated to solutions subject to weak anchoring. Finally, we take a brief look at Freedericksz transitions when a magnetic field is applied across a cell containing a SmA sample in the bookshelf geometry. The Freedericksz thresholds for two possible deformations are obtained by linearising the appropriate equation, and solving the resulting eigenvalue problem. Numerical calculations finally show where the transitions occur, and confirm the accuracy of the threshold values obtained analytically. (author)

  15. Some topics in continuum theory of liquid crystals

    International Nuclear Information System (INIS)

    Anderson, Claire

    2000-01-01

    Since advancements by Ericksen and Leslie in the 1960's, interest in the continuum theory for liquid crystals has escalated. In this thesis, we present the well established continuum theory for nematics, and apply it to the simple Tsvetkov experiment. This analysis is further extended by studying a similar geometric setup which allows additional degrees of freedom. Steady state solutions are studied, and stable/unstable solutions discussed. The bulk of this thesis however, is concerned with the smectic continuum theory. The theory presented allows variable layer spacing, and hence goes beyond the scope of that proposed by Leslie, Stewart and Nakagawa in 1991. With this theory, we initially study a sample of SmA liquid crystal in the bookshelf geometry between two parallel plates, and subject to a strongly anchored pretilt at the boundaries. Weakly anchored solutions are also briefly discussed at the end of this chapter. This work is extended by considering the same problem with a SmC sample, and the distinct differences between the SmA and SmC solutions are highlighted. Symmetric chevron solutions of C1 and C2 type are discussed fully, and energy considerations are made to find the physically realistic configurations. Again, the last part of this chapter is dedicated to solutions subject to weak anchoring. Finally, we take a brief look at Freedericksz transitions when a magnetic field is applied across a cell containing a SmA sample in the bookshelf geometry. The Freedericksz thresholds for two possible deformations are obtained by linearising the appropriate equation, and solving the resulting eigenvalue problem. Numerical calculations finally show where the transitions occur, and confirm the accuracy of the threshold values obtained analytically. (author)

  16. Liquid crystal true 3D displays for augmented reality applications

    Science.gov (United States)

    Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-01

    Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.

  17. Regularity of solutions to the liquid crystals systems in R2 and R3

    International Nuclear Information System (INIS)

    Dai, Mimi; Qing, Jie; Schonbek, Maria

    2012-01-01

    In this paper, we establish regularity and uniqueness for solutions to density dependent nematic liquid crystals systems. The results presented extend the regularity and uniqueness for constant density liquid crystals systems, obtained by Lin and Liu (1995 Commun. Pure Appl. Math. XLVIII 501–37)

  18. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and ...

  19. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  20. Photosensitive bent-core liquid crystals based on methyl substituted 3-hydroxybenzoic acid.

    Czech Academy of Sciences Publication Activity Database

    Kohout, M.; Alaasar, M.; Poryvai, A.; Novotná, Vladimíra; Poppe, S.; Tschierske, C.; Svoboda, J.

    2017-01-01

    Roč. 7, č. 57 (2017), s. 35805-35813 ISSN 2046-2069 R&D Projects: GA ČR GA16-12150S Institutional support: RVO:68378271 Keywords : liquid crystals * photosensitivity * bent-core liquid crystals * 3-hydroxybenzoic acid Subject RIV: JJ - Other Materials OBOR OECD: Nano-materials (production and properties) Impact factor: 3.108, year: 2016

  1. Liquid Crystal Phases of Colloidal Platelets and their Use as Nanocomposite Templates

    NARCIS (Netherlands)

    Mourad, M.C.D.|info:eu-repo/dai/nl/304837563

    2009-01-01

    This thesis explores the gelation and liquid crystal phase behavior of colloidal dispersions of platelike particles as well as the use of such dispersions for the generation of nanocomposites. We report on the sol-gel, sol-glass and liquid crystal phase transitions of positively charged colloidal

  2. Spectroscopic investigation of the far-infrared properties of liquid crystals

    DEFF Research Database (Denmark)

    Reuter, M.; Vieweg, N.; Fischer, B. M.

    2013-01-01

    Liquid crystals are one of the most promising base materials for switchable devices at THz frequencies. Therefore, a precise understanding of the optical parameters is crucial. Here, we present the refractive indices and absorption coefficients for 5 CB and an isothiocyanate terminated liquid...... crystal over a broad frequency range from 0.3 THz to 15 THz....

  3. Nematic quantum liquid crystals of bosons in frustrated lattices

    Science.gov (United States)

    Zhu, Guanyu; Koch, Jens; Martin, Ivar

    2016-04-01

    The problem of interacting bosons in frustrated lattices is an intricate one due to the absence of a unique minimum in the single-particle dispersion where macroscopic number of bosons can condense. Here, we consider a family of tight-binding models with macroscopically degenerate lowest energy bands, separated from other bands by a gap. We predict the formation of exotic states that spontaneously break rotational symmetry at relatively low filling. These states belong to three nematic phases: Wigner crystal, supersolid, and superfluid. The Wigner crystal phase is established exactly at low filling. Supersolid and superfluid phases, at larger filling, are obtained by making use of a projection onto the flat band, construction of an appropriate Wannier basis, and subsequent mean-field treatment. The nematic superfluid that we predict is uniform in real space but has an anisotropic momentum distribution, providing a novel scenario for Bose condensation with an additional nematic order. Our findings open up a promising direction of studying microscopic quantum liquid crystalline phases of bosons.

  4. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    Directory of Open Access Journals (Sweden)

    Amanda García-García

    2016-06-01

    Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  5. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  6. Induced Magnetic Anisotropy in Liquid Crystals Doped with Resonant Semiconductor Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vicente Marzal

    2016-01-01

    Full Text Available Currently, there are many efforts to improve the electrooptical properties of liquid crystals by means of doping them with different types of nanoparticles. In addition, liquid crystals may be used as active media to dynamically control other interesting phenomena, such as light scattering resonances. In this sense, mixtures of resonant nanoparticles hosted in a liquid crystal could be a potential metamaterial with interesting properties. In this work, the artificial magnetism induced in a mixture of semiconductor nanoparticles surrounded by a liquid crystal is analyzed. Effective magnetic permeability of mixtures has been obtained using the Maxwell-Garnett effective medium theory. Furthermore, permeability variations with nanoparticles size and their concentration in the liquid crystal, as well as the magnetic anisotropy, have been studied.

  7. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  8. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies.

    Science.gov (United States)

    da Rocha-Filho, Pedro Alves; Maruno, Mônica; Ferrari, Márcio; Topan, José Fernando

    2016-06-09

    The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L.) oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w) was combined with liquid vaseline (25.0% w/w) employing a natural self-emulsifying base (SEB) derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions.

  9. Crystal Structure and Properties of Imidazo-Pyridine Ionic Liquids.

    Science.gov (United States)

    Farren-Dai, Marco; Cameron, Stanley; Johnson, Michel B; Ghandi, Khashayar

    2018-07-05

    Computational studies were performed on novel protic ionic liquids imidazolium-[1,2-a]-pyridine trifluoroacetate [ImPr][TFA] synthesized by the reaction of imidazo-[1,2a]-pyridine (ImPr) with trifluoroacetic acid (TFA), and on fused salt imidazolium-[1,2-a]-pyridine maleamic carbonate [ImPr][Mal] synthesized by reaction of ImPr with maleamic acid (Mal). Synthesis was performed as one-pot reactions, which applies green chemistry tenets. Both these compounds begin to decompose at 180°C. Our computational studies suggest another thermal reaction channel, in which [ImPr][Mal] can also thermally polymerizes to polyacrylamide which then cyclizes. This is thermal product remains stable up to 700 degrees, consistent with our thermogravimetric studies. [ImPr][TFA] exhibited good conductivity and ideal ionic behavior, as evaluated by a Walden plot. X-ray crystallography of [ImPr][TFA] revealed a tightly packed system for the crystals as a result of strong ionic interaction, pi-stacking, and fluorine-CH interactions. Both synthesized compounds exhibited some CO 2 absorptivity, with [ImPr][Mal] outperforming [ImPr][TFA] in this regard. The quantum chemistry based computational methods can shed light on many properties of these ionic liquids, but they are challenged in fully describing their ionic nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Evaluation of the chiral recognition properties and the column performances of three chiral stationary phases based on cellulose for the enantioseparation of six dihydropyridines by high-performance liquid chromatography.

    Science.gov (United States)

    Yu, Jia; Tang, Jing; Yuan, Xiaowei; Guo, Xingjie; Zhao, Longshan

    2017-03-01

    Separations of six dihydropyridine enantiomers on three commercially available cellulose-based chiral stationary phases (Chiralcel OD-RH, Chiralpak IB, and Chiralpak IC) were evaluated with high-performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol-modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n-hexane/isopropanol (85:15, v/v) for nimodipine (R = 5.80) and cinildilpine (R = 5.65); n-hexane/isopropanol (92:8, v/v) for nicardipine (R = 1.76) and nisoldipine (R = 1.92); and n-hexane/isopropanol/ethanol (97:2:1, v/v/v) for felodipine (R = 1.84) and lercanidipine (R = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column. © 2017 Wiley Periodicals, Inc.

  11. "Heart-cut" bidimensional achiral-chiral liquid chromatography applied to the evaluation of stereoselective metabolism, in vivo biological activity and brain response to chiral drug candidates targeting the central nervous system.

    Science.gov (United States)

    Battisti, Umberto M; Citti, Cinzia; Larini, Martina; Ciccarella, Giuseppe; Stasiak, Natalia; Troisi, Luigino; Braghiroli, Daniela; Parenti, Carlo; Zoli, Michele; Cannazza, Giuseppe

    2016-04-22

    A "heart-cut" two-dimensional achiral-chiral liquid chromatography triple-quadrupole mass spectrometry method (LC-LC-MS/MS) was developed and coupled to in vivo cerebral microdialysis to evaluate the brain response to the chiral compound (±)-7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide ((±)-1), a potent positive allosteric modulator (PAM) of AMPA receptor. The method was successfully employed to evaluate also its stereoselective metabolism and in vitro biological activity. In particular, the LC achiral method developed, employs a pentafluorinated silica based column (Discovery HS-F5) to separate dopamine, acetylcholine, serotonin, (±)-1 and its two hepatic metabolites. In the "heart-cut" two-dimension achiral-chiral configuration, (±)-1 and (±)-1-d4 eluted from the achiral column (1st dimension), were transferred to a polysaccharide-based chiral column (2nd dimension, Chiralcel OD-RH) by using an automatic six-port valve. Single enantiomers of (±)-1 were separated and detected using electrospray positive ionization mode and quantified in selected reaction monitoring mode. The method was validated and showed good performance in terms of linearity, accuracy and precision. The new method employed showed several possible applications in the evaluation of: (a) brain response to neuroactive compounds by measuring variations in the brain extracellular levels of selected neurotransmitters and other biomarkers; (b) blood brain barrier penetration of drug candidates by measuring the free concentration of the drug in selected brain areas; (c) the presence of drug metabolites in the brain extracellular fluid that could prove very useful during drug discovery; (d) a possible stereoselective metabolization or blood brain barrier stereoselective crossing of chiral drugs. Finally, compared to the methods reported in the literature, this technique avoids the necessity of euthanizing an animal at each time point to measure drug

  12. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    Science.gov (United States)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  13. Blue Shifting Tuning of the Selective Reflection of Polymer Stabilized Cholesteric Liquid Crystals (Postprint)

    Science.gov (United States)

    2017-08-08

    crystal (MLC-2079, Merck). The polymer stabi- lizing network was formed within the samples by photoinitiated polymerization with 50–700 mW cm2 of 365...AFRL-RX-WP-JA-2017-0347 BLUE-SHIFTING TUNING OF THE SELECTIVE REFLECTION OF POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS (POSTPRINT...BLUE-SHIFTING TUNING OF THE SELECTIVE REFLECTION OF POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-16-F

  14. Evidence of nanodiamond-self-assembly in a liquid crystal, and the consequent impacts on the liquid crystal properties

    Directory of Open Access Journals (Sweden)

    Rajratan Basu

    2017-07-01

    Full Text Available A small quantity of nanodiamonds (NDs was dispersed in a nematic liquid crystal (LC, and the NDs were found to exhibit an anisotropic self-assembly along the nematic director. The anisotropic assembly of the NDs in the LC matrix was probed by measuring the dielectric anisotropy, Δε, of the LC+ND system, which showed a significant increase in Δε. Additional studies revealed that the presence of NDs reduced the rotational viscosity and the pretilt angle of the LC. The studies were carried out with several ND concentrations in the LC and the experimental results coherently suggest that there exists an optimal concentration of ND. Above this optimal ND concentration, the anisotropic assembly of the NDs was found to be not effective anymore. The rotational viscosity and the pretilt angle of the LC were found to increase above the optimal concentration of ND.

  15. Evidence of nanodiamond-self-assembly in a liquid crystal, and the consequent impacts on the liquid crystal properties

    Science.gov (United States)

    Basu, Rajratan; Skaggs, Nicole; Shalov, Samuel; Brereton, Peter

    2017-07-01

    A small quantity of nanodiamonds (NDs) was dispersed in a nematic liquid crystal (LC), and the NDs were found to exhibit an anisotropic self-assembly along the nematic director. The anisotropic assembly of the NDs in the LC matrix was probed by measuring the dielectric anisotropy, Δɛ, of the LC+ND system, which showed a significant increase in Δɛ. Additional studies revealed that the presence of NDs reduced the rotational viscosity and the pretilt angle of the LC. The studies were carried out with several ND concentrations in the LC and the experimental results coherently suggest that there exists an optimal concentration of ND. Above this optimal ND concentration, the anisotropic assembly of the NDs was found to be not effective anymore. The rotational viscosity and the pretilt angle of the LC were found to increase above the optimal concentration of ND.

  16. Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory

    Science.gov (United States)

    Holt, J. W.; Kaiser, N.; Whitehead, T. R.

    2018-05-01

    We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.

  17. Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: Impact of optical rotation

    International Nuclear Information System (INIS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Sluckin, T. J.; Cook, G.; Evans, D. R.

    2014-01-01

    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters

  18. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    Science.gov (United States)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic

  19. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Mohan, R.

    1992-01-01

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  20. Research Article. The Influence of Some Parameters on Chiral Separation of Ibuprofen by High-Performance Liquid Chromatography and Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Balint Alina

    2017-03-01

    Full Text Available Objective: The aim of the study was to compare the influence of mobile phase composition and temperature on chiral separation of racemic ibuprofen by capillary electrophoresis and high performance liquid chromatography with UV detection. Materials and methods: Racemic ibuprofen was analysed on a chiral OVM column with an HPLC system 1100 Agilent Technologies, under isocratic elution, by using potassium dihydrogen phosphate 20 mM and ethanol in mobile phase. The flow rate was set at 1 mL/min, UV detector at 220 nm and different column temperatures were tested. For electrophoresis separation an Agilent CE G1600AX Capillary Electrophoresis System system, with UV detection, was used. The electrophoresis analysis was performed at different pH values and temperatures, with phosphate buffer 25 mM and methyl-β-cyclodextrin as chiral selector. Results: The chromatograhic analysis reveals a high influence of mobile phase pH on ibuprofen enantiomers separation. An elution with a mixture of potassium dihydrogen phosphate 20 mM pH=3 and ethanol, at 25°C, allowed enantiomers separation with good resolution in less than 8 min. Conclusions: The proposed HPLC method proved suitable for the separation of ibuprofen enantiomers with a good resolution, but the capillary electrophoresis tested parameters did not allow chiral discrimination.