WorldWideScience

Sample records for chimneys

  1. Solar chimney

    International Nuclear Information System (INIS)

    Solar Chimney is an interesting unconventional method for production of electricity from the sun. It consists of a large greenhouse which purpose is to heat the air and create air flow directing it to the base of the chimney and then through the pressure-staged turbine array. Solar Chimney can be used for pick load operation. Australia plans 200 MW solar plant for the and of 2004, which will be the tallest man made structure in the world with a height of almost 1 km and greenhouse diameter reaching 7.5 km. It is a result of Australia's commitment to find alternative energy solutions in order to reduce the environmental impact of fossil and nuclear technologies for electric power production. (Author)

  2. Fairy chimneys in Peru

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    Erosion creates beautiful landscapes. A large part of them is known just by the local population. Google Maps can help in locating the places, study them and start any project for preservation. An interesting example is given by a landscape of fairy chimneys in Peru, near San Pedro de Larcay. It is remarkable the fact that some of them have been adapted as dwelling places.

  3. Toward a Heat Recovery Chimney

    Directory of Open Access Journals (Sweden)

    Min Pan

    2011-11-01

    Full Text Available The worldwide population increase and subsequent surge in energy demand leads electricity producers to increase supply in an attempt to generate larger profit margins. However, with Global Climate Change becoming a greater focus in engineering, it is critical for energy to be converted in as environmentally benign a way as possible. There are different sustainable methods to meet the energy demand. However, the focus of this research is in the area of Waste Heat Recovery. The waste heat stored in the exiting condenser cooling water is delivered to the air flow through a water-air cross flow heat exchanger. A converging thermal chimney structure is then applied to increase the velocity of the airflow. The accelerated air can be used to turn on the turbine-generator installed on the top the thermal chimney so that electricity can be generated. This system is effective in generating electricity from otherwise wasted heat.

  4. Inclined solar chimney for power production

    International Nuclear Information System (INIS)

    Highlights: → Solar energy harnessing using inclined face of high mountains as solar chimney. → Solar chimneys with structural stability, ease of construction and lower cost. → Mathematical model developed, using complete (mechanical and thermal) energy balance. → Can harness wind power also, as wind velocities at mountain top add to power output. → Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  5. Seismic modelling of a masonry chimney

    OpenAIRE

    Pallarés Rubio, Francisco Javier; Ivorra Chorro, Salvador

    2007-01-01

    Different plastic/failure are applied to a masonry structure showing the difficulties to deal with masonry material and the results obtained for a masonry chimney under erathquake loading when two different criteria are used.

  6. Psychology and photography: chimneys dreaming and chimneys warriors

    Directory of Open Access Journals (Sweden)

    Tilde Giani Gallino

    2013-02-01

    Full Text Available The article covers two aspects related to Psychology and Art. The first aspect concerns the similarities found between photography and various Schools of experimental psychology. For instance, the scientists of Psychology of ethological theory, and Non-verbal communication (NVC, observe with particular methodologies the non-verbal messages that animals and humans transmit to their peers through expressions, posture, gestures. The same is done by photographers (those who use the “camera” with a good knowledge of the medium and a “photographic  eye” when they look around, careful to catch an expression, any unusual attitude, or a gesture of friendship. Another School of psychology, the Gestalpsychologie (Gestalt: form, figure, configuration, attributes a decisive value to the perception of space, the foreground and the background, the perspective and vanishing points, the contrast between black and white. All aspects that effectively interest psychologists just as much as photographers. Finally, the second aspect relates to the art of Antony Gaudì and makes some hypothesis about the personality and behavior of the great architect, with regard to the construction of two houses, "Casa Batllo" and "Casa Mila": particularly because of the configuration or Gestalt of the "chimneys" that dominate the two buildings. In this study, cooperate each other psychological analysis and the art of photography. The last enables us to study also the details of the work of Gaudì, as can be seen in the pictures of this essay.

  7. Evaluation of corrosion attack of chimney liners

    OpenAIRE

    Blahetová M.; Horák J.; Kubesa P.; Lasek S.; Ochodek T.

    2016-01-01

    The case study of chimney liner corrosion addresses three specific cases of damage of chimney systems from of stainless steels. These systems were used for flue of gas arising from the combustion of brown coal in small automatic boilers, which are used for heating. Detailed analyzes implied that the cause of devastating corrosion of the steel AISI 316 and 304 steel (CSN 17349, 17241) was particularly high content of halides (chlorides and fluorides), which caused a severe pitting corrosion, w...

  8. Evaluation of corrosion attack of chimney liners

    Directory of Open Access Journals (Sweden)

    Blahetová M.

    2016-06-01

    Full Text Available The case study of chimney liner corrosion addresses three specific cases of damage of chimney systems from of stainless steels. These systems were used for flue of gas arising from the combustion of brown coal in small automatic boilers, which are used for heating. Detailed analyzes implied that the cause of devastating corrosion of the steel AISI 316 and 304 steel (CSN 17349, 17241 was particularly high content of halides (chlorides and fluorides, which caused a severe pitting corrosion, which led up to the perforation of the liner material. Simultaneous reduction of the thickness of the used sheets was due to by the general corrosion, which was caused by the sulfur in the solid fuel. The condensation then led to acid environment and therefore the corrosion below the dew point of the sulfuric acid has occurred. All is documented by metallographic analysis and microanalysis of the corrosion products.

  9. Pendulum Dampers for Tall RC Chimney Subjected To Wind

    Directory of Open Access Journals (Sweden)

    Dr. B K Raghu Prasad,

    2014-10-01

    Full Text Available Chimneys are a part of industrial growth in any country. Most current chimney design standards require analysis of dynamic analysis of chimney for earthquake and wind induced loads. Because of variation in dimensions of chimney along its height structural analysis such as wind oscillations have become more critical. If ductility is an important consideration in earthquake resistant design, control of deflection become critical in wind induced vibrations. Pendulum dampers are of the devices to control the deflection. In the present work pendulum dampers of different natural frequencies have been tried. The one which has the largest equivalent logarithmic decrement is found to reduce the response significantly. The response is compared with that of chimney with a tip mass. The paper discusses the dynamic analysis of 150m high RCC chimney subjected to wind. Analysis has been carried out for fixed base case.

  10. Solar Chimney Model Parameters to Enhance Cooling PV Panel Performance

    OpenAIRE

    Mohammed Sh Elden; K. Sopian; Fatah O. Alghoul; Abdelnasser Abouhnik; Ae. Muftah M.

    2013-01-01

    The concept of using the Solar Chimney plays an important role in a wide range of topics to improve cooling system efficiency such as drying process, and single and multi-story buildings ventilation against temperature rising. In this paper, study the effective solar cooling chimney parameter model to enhance the performance of photovoltaic (PV) cooling system. First, a brief description of theoretical performance predictions of the solar cooling chimney also discusses the effect of the ambie...

  11. Simulation of a sloped solar chimney power plant in Lanzhou

    International Nuclear Information System (INIS)

    Research highlights: → A sloped solar chimney power plant in Lanzhou, China is investigated. → The configuration sizes are designed separately. → The system has high periodicity and stability but low efficiency. → The sloped solar chimney power system is of high value for Northwest China. -- Abstract: Solar chimney power system is one large-scale utilization style of solar energy, which has drawn high attentions worldwide. Though scholars all over the world have made many researches on the solar chimney power system, reports of sloped solar chimney power system are still few. A sloped solar chimney power plant, which is expected to provide electric power for remote villages in Northwest China, has been designed for Lanzhou City in this paper. The designed plant, in which the height and radius of the chimney are 252.2 m and 14 m respectively, the radius and angle of the solar collector are 607.2 m and 31o respectively, is designed to produce 5 MW electric power on a monthly average all year. The performances, such as the airflow temperature increase, pressure, the airflow speed, system efficiency and solar collector efficiency, of the built sloped solar chimney power plant are simulated and presented. Simulation results show that parameters of the sloped solar chimney power plant are symmetrical and stable; the power plant has better performances in spring and autumn days; the overall efficiency of the power plant is low. Considering the abundant solar radiation, environmental friendliness, easy management and low population density, the sloped solar chimney power system is of high value to Northwest China.

  12. Free-standing inflatable solar chimney: experiment and theory

    Science.gov (United States)

    Vorobieff, Peter; Mammoli, Andrea; Fathi, Nima; Putkaradze, Vakhtang

    2014-11-01

    Solar chimneys (or solar updraft towers) offer an attractive way to use solar energy for production of baseload power. In a power plant of this type, sunshine heats the air under a wide greenhouse-like roofed collector surrounding the central base of a tall chimney. The heated air drives an updraft flow through the tower, whose energy is harvested with turbines. For a sufficiently large plant of this type, the thermal mass of the heated ground under the collector is sufficient to drive the flow even when the sun is down. The primary challenge in building the solar chimney power plant is the construction of the chimney that generates the updraft, which must be very tall (hundreds of meters for a commercial-sized plant). Here we present a study of an inflatable chimney which is a self-supporting, deformable, free-standing stack of gas-filled tori. The structure is stabilized via a combination of shape, overpressure, and buoyancy. Theoretical considerations suggest that filling the tori with air rather than with a light gas may be advantageous for stability. The chimney shape is optimized for deformation under wind loading. A prototype chimney has demonstrated the viability of the concept, with experimental results in good agreement with theoretical predictions. This research is partially supported by the UNM Research Allocations Comittee (RAC) and UNM Center for Emerging Energy Technologies (CEET).

  13. Numerical simulation and exergetic analysis of building ventilation solar chimneys

    International Nuclear Information System (INIS)

    Highlights: • Exergetic analysis of a building ventilation solar chimney. • Numerical CFD model developed, validated and employed to study the flow. • Analysis of the solar chimney energy and exergy efficiencies. • Mechanical and thermal exergy distributions have been analysed. • Crucial points in the chimney identified to improve its performance. - Abstract: The solar chimneys used in buildings are passive solar devices which improve natural ventilation. A detailed exergetic analysis has been developed in this work, both for general balance and specific variables. To apply this analysis, a three-dimensional CFD model has been built and validated with bibliographic experimental data. The values of the variables have been examined both inside and at the exit of the solar chimney, resulting in a detailed description of the inner phenomena and parameters influencing the exergetic efficiency. The results of this study offer new tools: a numerical methodology and an exergetic analysis, to improve the design of building ventilation solar chimneys. It also affords a deeper understanding of the thermal and fluid-dynamic behaviour, and suggests some qualitative improvements. However, the numerical data obtained from the case studied, show that solar chimneys as natural ventilation systems offer quite a small efficiency and will remain within the sphere of architectural decisions

  14. A new picture of interstellar medium: chimney model

    International Nuclear Information System (INIS)

    Many observational facts which indicate a different picture of the interstellar medium from the McKee-Ostriker's three-phase model are accumulated in this decade. Based upon the sequential star formation model in molecular clouds the gigantic superbubbles are formed by sequential supernova explosions. Such superbubbles stand perpendicular to the disk like chimneys and the hot gas can go up to the halo like smoke in chimneys. About one thousand of chimneys smoke in a galaxy along, the spiral arms. At the interarm region the classical two-phase model is preferable. Here, several observational evidences for this picture are presented, and some implications to the evolution of galaxies are discussed

  15. A simple theoretical model of a solar chimney

    International Nuclear Information System (INIS)

    A simple theoretical model of a solar chimney to predict its performance under varying ambient and geometrical features was proposed. Steady state heat transfer equations were set up using a thermal resistance network and solved using matrix inversion. Surface temperatures of the heat absorbing wall and glass and induced air flow velocity in the chimney are predicted. An experiment model 2 m high x 0.45 m wide with air channel gaps of 0.1, to 0.3 m wide was constructed. Outdoor tests were performed by exposure to both direct and diffuse solar radiation. The effects of air channel gap and solar radiation intensity were investigated. Air velocities between 0.25 to 0.39 ms-1 at radiation intensities up to 650 W m-2 were obtained. No reserve air circulation was observed at the chimney exit. The model was found more suitable for solar chimney with large air gaps

  16. Experimental Investigations on Performance and Design Parameters of Solar Chimney

    OpenAIRE

    İbrahim ÜÇGÜL; KOYUN, Arif

    2010-01-01

    In this study, a solar chimney system, which is suitable for climate conditions of Isparta and its surroundings, is designed theoretically. With the aim of studying experimentally as based on that design, a prototype solar chimney has been constructed in the university campus area of Süleyman Demirel University-RACRER (Research and Application Center for Renewable Energy Resources). Additionally, after the experimental studies, the system is modelled theoretically with depending on the design...

  17. Seismic response Analyses of Hanaro in-chimney bracket structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Ryu, J.S.; Cho, Y.G.; Lee, H.Y.; Kim, J.B

    1999-05-01

    The in-chimney bracket will be installed in the upper part of chimney, which holds the capsule extension pipes in upper one-third of length. For evaluating the effects on the capsules and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response anlayses of in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE (0.1 g) and SSE (0.2 g) are performed. The maximum horizontal displacements of the flow tubes are within the minimum half gaps between close flow tubes, it is expected that these displacement will not produce any contact between neighbor flow tubes. The stress values in main points of reactor structures and in-chimney bracket for the seismic loads are also within the ASME Code limits. It is also confirmed that the fatigue usage factor is muchless than 1.0. So, any damage on structural integrity is not expected when an in-chimney bracket is installed to upper part of the reactor chimney. (author). 12 refs., 24 tabs., 37 figs.

  18. Experimental Investigations on Performance and Design Parameters of Solar Chimney

    Directory of Open Access Journals (Sweden)

    İbrahim ÜÇGÜL

    2010-03-01

    Full Text Available In this study, a solar chimney system, which is suitable for climate conditions of Isparta and its surroundings, is designed theoretically. With the aim of studying experimentally as based on that design, a prototype solar chimney has been constructed in the university campus area of Süleyman Demirel University-RACRER (Research and Application Center for Renewable Energy Resources. Additionally, after the experimental studies, the system is modelled theoretically with depending on the design. Then, this model constituted the basis for developed computer programme and performance parameters of the system are obtained. The obtained findings showed that the solar chimney, which is suitable for climate conditions of Isparta and its surroundings, are sufficient for determining design and performance parameters. The results showed that electricity generation with solar chimney is suitable for areas which have high solar incident and long sunshine duration and similar climate conditions as such as Isparta and its surroundings. When the results are evaluated, it is seen that electricity generation power of solar chimney depends on the region solar data, the chimney height and the size of greenhouse area.

  19. Experimental study for natural ventilation on a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Arce, J. [Centro de Investigacion en Energia (CIE-UNAM), Termociencias, Priv. Xochicalco S/N Col. Centro, Temixco, Morelos, CP 62580 (Mexico); Jimenez, M.J.; Guzman, J.D.; Heras, M.R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense, 22, E-28040 Madrid (Spain); Alvarez, G.; Xaman, J. [Centro Nacional de Investigacion y Desarrollo Tecnologico (CENIDET-DGEST-SEP), Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos, CP 62490 (Mexico)

    2009-12-15

    Thermal performance of a solar chimney for natural ventilation was experimentally investigated. The experimental model was implemented on full scale and real meteorological conditions, so that experimental results will be compared with the simulation results. The results show that for a maximum irradiance of 604 W/m{sup 2}, occurring around 13:00 h on September 15th, 2007, a maximum air temperature increment of 7 C was obtained through the solar chimney. Also, a volumetric air flow rate ranging from 50 to 374 m{sup 3}/h was measured on that day. Thus, an average air flow rate of 177 m{sup 3}/h was achieved from 0:00 h to 24:00 h. The experimental solar chimney discharge coefficient, C{sub d}, was 0.52. This coefficient is useful to determine the mass flow rate in the solar chimney design. It was observed that the air flow rate through the solar chimney is influenced by a pressure difference between input and output, caused by thermal gradients and wind velocity, mainly. (author)

  20. The gas chimney formation during the steam explosion premixing phase

    International Nuclear Information System (INIS)

    The crucial part in isothermal premixing experiment simulation is the correct prediction of the gas chimney, which forms when the spheres penetrate into water. The first simulation results with the developed original combined multiphase model showed that the gas chimney starts to close at the wrong place at the top of the chimney and not in the middle, like it was observed in the experiments. To find the physical explanation for this identified weakness of our numerical model a comprehensive parametric analysis (mesh size, initial water-air surface thickness, water density, momentum coupling starting position) has been performed. It was established that the reason for the unphysical gas chimney closing at the top could be the gradual air-water density transition in the experiment model, since there is due to the finite differences description always a transition layer with intermediate phases density over the pure water phase. It was shown that this difference between our numerical model and the experiment can be somewhat compensated if the spheres interfacial drag coefficient at the upmost mesh plane of the unphysical air-water transition layer is artificially risen. On this way a more correct gas chimney formation can be obtained.(author)

  1. Experimental investigations of a chimney-dependent solar crop dryer

    Energy Technology Data Exchange (ETDEWEB)

    Afriyie, J.K.; Nazha, M.A.A.; Rajakaruna, H. [School of Engineering and Technology, De Montfort University, Queens Building, The Gateway, Leicester LE1 9BH (United Kingdom); Forson, F.K. [Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana)

    2009-01-15

    An experimental investigation into the performance of a solar crop dryer with solar chimney and no air preheating is described. Tests were first performed on the cabinet dryer, using a normal chimney. The trials were repeated with a solar chimney. Still with the solar chimney, further trials were carried out with the roof of the drying chamber inclined further to form a tent dryer. The described tests include no-load tests for airflow rate measurements and drying tests, with cassava as the crop. Air velocities, temperatures, ambient relative humidity and the drop in crop moisture contents at different stages of the drying process are also presented. The effects of the various configurations described above on the drying process are deduced and discussed while comparing the experimental results with one another. In addition, the performance of the dryer in relation to other natural convection dryers is discussed. The results show that the solar chimney can increase the airflow rate of a direct-mode dryer especially when it is well designed with the appropriate angle of drying-chamber roof. However, the increase in flow rate only increases the drying rate when the relative humidity (RH) of the ambient air is below a certain mark (60% for cassava). (author)

  2. Corrosion at system chimneys made of CrNi-steels

    Energy Technology Data Exchange (ETDEWEB)

    Pajonk, Gunther [Institute of Materials Testing of Northrhine-Westfalia, D-44285 Dortmund (Germany)

    2004-07-01

    Names like 'chimney' und 'funnel' usually identify flue gas devices made of bricks. Much less known is the fact that chimney elements are still manufactured from alloys. The following article describes the particular demands ruled by legislation on building pro-ducts, just as the consequences resulting from corrosion loads by flue gas condensates. Difficulties caused by manufacturing and construction are primarily discussed. Furthermore a test procedure is introduced that allows to catch and correlate corrosion loads and technical designs systematically to corrosion behaviour and service life of flue gas devices. For the first time a tool for active quality assurance has been given by this test rig allowing to recognize construction errors systematically. This way, manufacturers of system chimneys and flue liners are enabled to optimize their products applications going ahead to the respective requests of the market. (authors)

  3. A performance analysis of solar chimney thermal power systems

    Directory of Open Access Journals (Sweden)

    Al-Dabbas Awwad Mohammed

    2011-01-01

    Full Text Available The objective of this study was to evaluate the solar chimney performance theoretically (techno-economic. A mathematical model was developed to estimate the following parameter: Power output, Pressure drop across the turbine, the max chimney height, Airflow temperature, and the overall efficiency of solar chimney. The mathematical model was validated with experimental data from the prototype in Manzanares power. It can be concluded that the differential pressure of collector-chimney transition section in the system, is increase with the increase of solar radiation intensity. The specific system costs are between 2000 Eur/kW and 5000 Eur/kW depending on the system size, system concept and storage size. Hence, a 50 MWe solar thermal power plant will cost 100-250 Eur million. At very good sites, today’s solar thermal power plants can generate electricity in the range of 0.15 Eur/kWh, and series production could soon bring down these costs below 0.10 Eur /kWh.

  4. Experimental and numerical investigation on an innovative solar chimney

    International Nuclear Information System (INIS)

    Highlights: • Intensifiers were applied to increase heat flux. • Numerical and experimental data were compered. • We investigated the rotational pattern of the air inside the SC. • This chimney is equipped with a container, placed exactly beneath the collector. - Abstract: A novel small scale model of solar chimney was investigated experimentally and numerically. Air flow, heat transfer and flow characteristics were numerically calculated and compared with the experimental results in this paper. Two intensifiers were used to intensify the heat flux radiated by the sun all around the solar chimney in the experimental case. An air tank was located downside the system to increase the absorption of the solar radiation reflected by the intensifiers. RNG k–ε model was chosen to simulate the turbulence and the well-known SIMPLE algorithm was used to solve the coupled velocity and pressure equations. Results show that utilization of intensifiers caused an increase in velocity magnitude in the chimney and consequently more power was generated. The maximum velocity of 5.12 m/s was reached which is remarkable, considering the small size of the SC structure

  5. A NUMERICAL study of solar chimney power plants in Tunisia

    Science.gov (United States)

    Bahar F, Attig; S, Guellouz M.; M, Sahraoui; S, Kaddeche

    2015-04-01

    A 3D CFD (Computational fluid dynamics) model of a Solar Chimney Power Plant (SCPP) was developed and validated through comparison with the experimental data of the Manzanares plant. Then, it was employed to study the SCPP performance for locations throughout Tunisia.

  6. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a

  7. Simulation and optimization of geometric parameters of a solar chimney in Tehran

    International Nuclear Information System (INIS)

    Highlights: • A fundamental mathematical of solar chimney model was described. • The performance of solar chimney power plant was analytically simulated. • The results of predictions were compared with the experimental data. • The velocity magnitude can be raised 4–25% in different cases. - Abstract: An analytical and numerical study for geometrical optimizing of a solar chimney prototype at University of Tehran was performed. A fundamental mathematical model that describes the flow was presented, and the performance evaluation of solar chimney was simulated with operational and geometric configurations. The numerical predictions were validated through comparison with the experimental data of the solar chimney pilot which was constructed in height of 2 m and collector radius of 3 m. The results show that, the collector inlet of 6 cm, the chimney height of 3 m, and the chimney diameter of 10 cm were the best alternatives for the constructed solar chimney pilot. It is found that the velocity magnitude can be raised to 4–25% in different cases; also the analysis indicated that the height and diameter of the chimney are the most important physical variables for solar chimney design

  8. Numerical Study of a Solar Chimney Power Plant

    Directory of Open Access Journals (Sweden)

    A. Dhahri

    2014-11-01

    Full Text Available The aim of this study is to present a numerical analysis on the performance of a solar chimney power plant using steady state Navier-Stokes and energy equations in cylindrical coordinate system. The fluid flow inside the chimney is assumed to be turbulent and simulated with the k-ε turbulent model, using the FLUENT software package. Numerical simulations were performed using the Spanish prototype as reference. The computed results are in good agreement with experimental measurements of Manzanares power plant. Besides, a theoretical model was proposed taking into account the kinetic energy difference within the solar collector. The effects of the main geometrical parameters of the collector and the solar radiation intensity on the air mass flow rate and the temperature rise in the collector have been investigated. The fluid and ground temperature distributions were also presented and analyzed.

  9. Formation of Chimneys in Mushy Layers: Experiment and Simulation

    CERN Document Server

    Anderson, Anthony M; Worster, Grae

    2011-01-01

    In this fluid dyanmics video, we show experimental images and simulations of chimney formation in mushy layers. A directional solidification apparatus was used to freeze 25 wt % aqueous ammonium chloride solutions at controlled rates in a narrow Hele-Shaw cell (1mm gap). The convective motion is imaged with schlieren. We demonstrate the ability to numerically simulate mushy layer growth for direct comparison with experiments.

  10. GPS FOM Chimney Analysis using Generalized Extreme Value Distribution

    Science.gov (United States)

    Ott, Rick; Frisbee, Joe; Saha, Kanan

    2004-01-01

    Many a time an objective of a statistical analysis is to estimate a limit value like 3-sigma 95% confidence upper limit from a data sample. The generalized Extreme Value Distribution method can be profitably employed in many situations for such an estimate. . .. It is well known that according to the Central Limit theorem the mean value of a large data set is normally distributed irrespective of the distribution of the data from which the mean value is derived. In a somewhat similar fashion it is observed that many times the extreme value of a data set has a distribution that can be formulated with a Generalized Distribution. In space shuttle entry with 3-string GPS navigation the Figure Of Merit (FOM) value gives a measure of GPS navigated state accuracy. A GPS navigated state with FOM of 6 or higher is deemed unacceptable and is said to form a FOM 6 or higher chimney. A FOM chimney is a period of time during which the FOM value stays higher than 5. A longer period of FOM of value 6 or higher causes navigated state to accumulate more error for a lack of state update. For an acceptable landing it is imperative that the state error remains low and hence at low altitude during entry GPS data of FOM greater than 5 must not last more than 138 seconds. I To test the GPS performAnce many entry test cases were simulated at the Avionics Development Laboratory. Only high value FoM chimneys are consequential. The extreme value statistical technique is applied to analyze high value FOM chimneys. The Maximum likelihood method is used to determine parameters that characterize the GEV distribution, and then the limit value statistics are estimated.

  11. D0 - Chimney Lead Quench Detection, Beta Solenoid

    International Nuclear Information System (INIS)

    The voltage drop across the superconducting chimney lead is sensed to detect a quench. The return sense lead is mounted outside the chimney. The return sense lead and the superconducting chimney wire form a loop with area A ∼ 1.7 m2 (information from R. Ru. cinski). Changing flux through area A will induce a voltage in the sense loop and could cause false quench detection. Assume that the field through A changes 1 kGauss (0.1 Wb/m2) in 10-3 sec. The induced voltage is then: e = d0/dt = dBA/dt and e = 0.1 x 1.7/10-3 = 170 V. This is probably a very pessimistic estimate, but it shows that we have to watch out. Changes of 100 Gauss in 100 msec (CDF experience?) are probably more likely and cause: e = 0.01 x 1.7/10-2 ∼ 1.7 V noise. This noise is still too high because trip levels are planned to sit at ∼50 mV? It is practically impossible to predict what the real noise values would be, but I expect them to be in the order of 1 to 10 V. This is more than we can handle and I would expect nuisance trips.

  12. Piping systems, containment pre-stressing and steel ventilation chimney

    International Nuclear Information System (INIS)

    Units 5 and 6 of NPP Kozloduy have been designed initially for seismic levels which are considered too low today. In the frame of an IAEA Coordinated Research Programme, a Swiss team has been commissioned by Natsionalna Elektricheska Kompania, Sofia, to analyse the relevant piping system, the containment prestressing and the steel ventilation chimney and to recommend upgrade measures for adequate seismic capacity where applicable. Seismic input had been specified by and agreed upon earlier by IAEA experts. The necessary investigations have been performed in 1995 and discussed with internationally recognized experts. The main results may be summarized as follows: Upgrades are necessary at different piping sy ports (additional snubbers or viscous dampers). These fixes can be done easily at low cost. The containment prestressing tendons are adequately designed for the specified load combinations. However, unfavourable construction features endanger the reliability. It is therefore strongly recommended to replace the tendons stepwise and to upgrade the existing monitoring system. Finally, the steel ventilation chimney may not withstand a seismic event, however the containment and diesel generator building will not be destroyed at possible impact by the chimney. On the other hand the roof of the main building has to be reinforced partially. It is recommended to continue the project for 1996 and 1997 to implement the upgrade measures mentioned above, to analyse the remaining piping systems and to consolidate all results obtained by different research groups of the IAEA programme with respect to piping systems including components and tanks

  13. Power generation from wind turbines in a solar chimney

    Directory of Open Access Journals (Sweden)

    Tudor Foote, Ramesh K. Agarwal

    2013-01-01

    Full Text Available Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable k – ε model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  14. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  15. Seismic decoupling of an explosion centered in a granite chimney rubble -- scaled experiment results. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C. [Science & Engineering Associates, Inc., Santa Fe, NM (United States); Miller, S.; Florence, A.; Fogle, M.; Kilb, D.

    1991-12-01

    This report describes the small scale evaluation of the feasibility of significant decoupling by siting an explosion in granite rubble. The chimney characteristics scaled to laboratory dimensions were those of the PILE DRIVER event. The scaled charges were of 1 KT and 8KT in the PILE DRIVER chimney. The measure of the effect was the velocity field history in the granite outside the chimney volume with the chimney rubble and with no rubble. A number of chimney sizes and shapes were studied. The explosion process was modeled via two-din=mensional, finite-difference methods used for prediction of velocity histories at the Nevada Test Site. The result was that both the spectral shape and the magnitude of the transmitted shock wave were drastically altered. The chimney geometry was as important as the rubble characteristics.

  16. EXPERIMENTAL ANALYSIS OF A VELOCITY FIELD USING VARIABLE CHIMNEY DIAMETER FOR SOLAR UPDRAFT TOWER

    Directory of Open Access Journals (Sweden)

    Neeraj Mehla,

    2011-04-01

    Full Text Available A solar updraft tower consists of an air collector 1.4 m in diameter and 80 cm tall chimney was set upin NIT Hamirpur, Himachal-Pradesh, India. The objective of the study was to investigate the variation of velocity with essential geometricparameter of the system. The solar updraft tower system consists of three essential elements- collector, chimney height and wind turbine. The output power of a system is depended on the input velocity to the wind turbine. Turbine inlet velocity (V is the function of five parameter of the solar updraft tower systems such as collector diameter (Dc, roof glass angle (β, entrance height (h, tower's height (Ht, tower's diameter (D, out of which variable roof angle and the chimney height is analysis. It was found that the solar chimney diameter of 8 cm is having the maximum velocity for the constructed setup, and the ratio of chimney diameter to chimney heightwas found to be 0.1.

  17. Solar chimney design: Investigating natural ventilation and cooling in offices with the aid of computer simulation

    Science.gov (United States)

    Angelis, Nikolaos

    Solar chimney design is investigated as a means of improving natural ventilation and passive cooling in office buildings. Existing scientific research and built precedents are generally limited literature review findings on various features of solar chimneys were categorised and used to develop a building simulation strategy. Using UK climatic data, simulations were performed on several computer models in order to investigate solar chimney performance during a single day period and an entire cooling season. Passive cooling with a solar chimney is possible but actual reduction in temperatures in most cases examined could be negligible. Cooling potential is increased on still, warm days, while the prospects for night cooling are further improved. A solar chimney may help reduce considerably the occurrence of resultant temperatures at or above the 25 C and 28 C thresholds. Solar chimney width, height, apertures and integral use of thermal mass are the most significant parameters for cooling. Simulation results showed that a solar chimney can increase significantly natural ventilation rates. Total ventilation rates may be increased by at least 22%. During still days a solar chimney can enhance ventilation rates by 36% or more. Stack ventilation through a solar chimney is typically 20% of cross ventilation during night time this may increase to at least 40-45% and on still days it may reach 100% of typical cross ventilation rates. Solar chimney induced stack ventilation and cross ventilation are interrelated. Resultant air flow patterns may have an important effect on convective heat transfers and thermal comfort. Climate and microclimate conditions should be an integral part of solar chimney design. Key aspects and recommendations regarding solar chimneys, passive cooling and natural ventilation are provided for design guidance and feedback in further research.

  18. Improvement of the Vertical Dispersion of Pollutants Resulting From Chimneys by Thermosiphon Effect

    OpenAIRE

    A. O.M. Mahmoud; J. Zinoubi; R.B. Maad; A. Belghith

    2006-01-01

    The dispersion of pollutants, resulting from industrial chimneys, in the surrounding atmosphere made the interest in realizing emitting conditions appears. It also encourages the vertical dispersion of these pollutants. At a given wind velocity, the height of this dispersion is essentially a function of the thermal power and the flow rate at the chimney exit. To improve these qualities, we propose a system that could be integrated to the industrial chimney exit. An open-ended vertical cylinde...

  19. Natural convection enhancement in an asymmetrically heated channel-chimney system

    International Nuclear Information System (INIS)

    In this paper, a numerical study is performed in order to analyze the effect of adding a chimney to a vertical open channel. The channel is heated asymmetrically at uniform heat flux while the chimney is symmetric and wider than the channel. The thermal and dynamic aspects of the channel-chimney system (T chimney) are studied by varying the width and the height of the chimney while the aspect ratio of the channel is kept fixed. The main objective of this work is to determine the optimal geometric parameters of the chimney: the expansion ratio B (chimney width normalized by the channel width) and the extension ratio Er (chimney height normalized by the channel height), that maximize the mass flow rate (G) and the average Nusselt number (Nua). More than four hundred numerical simulations have been carried out at modified Rayleigh numbers ranging from 102 to 5x104 (laminar regime). The computations allowed the identification of three types of system responses. The flow structure and the pressure field were also analyzed to elucidate why the increase of the chimney width can improve or deteriorate the mass flow rate and the heat transfer. Finally, appropriate correlations have been proposed for determining the optimal configurations and the corresponding enhancement of the mass flow rate and the heat transfer coefficient. (authors)

  20. Growth history of hydrothermal chimneys at EPR 9―10°N: A structural and mineralogical study

    Institute of Scientific and Technical Information of China (English)

    PENG; Xiaotong; ZHOU; Huaiyang

    2005-01-01

    Based on structural and mineralogical characteristics of four hydrothermal chimney samples collected by submersible Alvin, growth history and formation environment of hydrothermal chimney at EPR 9―10°N are established. It is shown that there occur two types of hydrothermal chimney with different deposition environments at EPR 9―10°N according to differences in their shape, structure and mineral assemblage: type I chimney forms in an environment with high temperature, low pH and strong reducing hydrothermal focus flow and type II chimney forms in a relatively low temperature, high pH and rich Zn hydrothermal environment. Growth of type I chimney begins with the formation of anhydrite. Subsequently deposition of Cu-Fe-Zn sulphide in various directions of chimneys decides the final structure of this type of chimney. According to observation and analysis of mineral assemblages, the formation process of type I chimney could be divided into three stages from early, middle to late. Changes of temperature and major chemical reaction type in the process of hydrothermal chimney formation are also deduced. Different from type I chimney, quenching crystalline of pyrite and/or crystalline of sphalerite provide the growth foundation of type II chimney in the early stage of chimney formation.

  1. Solar chimney power generation project - The case for Botswana

    International Nuclear Information System (INIS)

    Import of a huge proportion of electrical energy from the Southern African Power Pool, and the geographical location and population distribution of Botswana stimulated the need to consider renewable energy as an alternative to imported power. The paper describes a systematic experimental study on a mini-solar chimney system. Particular attention is given to measurements of air velocity, temperature and solar radiation. The results for the selected 5 and 6 clear days of October and November, respectively, are presented. These results enable the relationship between average insolation, temperature difference and velocity for selected clear days to be discussed. (author)

  2. Solar ventilation: The use of solar chimneys for natural ventilation of buildings

    NARCIS (Netherlands)

    Macquoy, B.

    2011-01-01

    This paper is written for the TIDO-course AR0532 Smart & Bioclimatic Design Theory. A very old principle is the system of the solar chimney for ventilation, which in recent years has regained interests. This essay will explore the potentials of solar chimneys in a modern application.

  3. Methane seepage in the Shenhu area of the northern South China Sea: constraints from carbonate chimneys

    Science.gov (United States)

    Guan, Hongxiang; Zhang, Mei; Mao, Shengyi; Wu, Nengyou; Lu, Hongfeng; Chen, Duofu

    2016-06-01

    Two authigenic carbonate chimneys were recovered from the Shenhu area in the northern South China Sea at approximately 400 m water depth. The chimneys' mineralogy, isotopic composition, and lipid biomarkers were studied to examine the biogeochemical process that induced the formation of the chimneys. The two chimneys are composed mostly of dolomite, whereas the internal conduits and semi-consolidated surrounding sediments are dominated by aragonite and calcite. The specific biomarker patterns (distribution of lipids and their depleted δ13C values) indicate the low occurrence of methanotrophic archaea ANME-1 responsible for the chimneys' formation via anaerobic oxidation of methane. A significant input of bacteria/planktonic algae and cyanobacteria to the carbon pool during the precipitation of the carbonate chimneys is suggested by the high contributions of short-chain n-alkanes (69% of total hydrocarbons) and long-chain n-alcohols (on average 56% of total alcohols). The oxygen isotopic compositions of the carbonate mixtures vary from 3.1‰ to 4.4‰ in the dolomite-rich chimneys, and from 2.1‰ to 2.5‰ in the internal conduits, which indicates that they were precipitated from seawater-derived pore waters during a long period covering the last glacial and interglacial cycles. In addition, the mixture of methane and bottom seawater dissolved inorganic carbon could be the carbon sources of the carbonate chimneys.

  4. Methane seepage in the Shenhu area of the northern South China Sea: constraints from carbonate chimneys

    Science.gov (United States)

    Guan, Hongxiang; Zhang, Mei; Mao, Shengyi; Wu, Nengyou; Lu, Hongfeng; Chen, Duofu

    2016-02-01

    Two authigenic carbonate chimneys were recovered from the Shenhu area in the northern South China Sea at approximately 400 m water depth. The chimneys' mineralogy, isotopic composition, and lipid biomarkers were studied to examine the biogeochemical process that induced the formation of the chimneys. The two chimneys are composed mostly of dolomite, whereas the internal conduits and semi-consolidated surrounding sediments are dominated by aragonite and calcite. The specific biomarker patterns (distribution of lipids and their depleted δ13C values) indicate the low occurrence of methanotrophic archaea ANME-1 responsible for the chimneys' formation via anaerobic oxidation of methane. A significant input of bacteria/planktonic algae and cyanobacteria to the carbon pool during the precipitation of the carbonate chimneys is suggested by the high contributions of short-chain n-alkanes (69% of total hydrocarbons) and long-chain n-alcohols (on average 56% of total alcohols). The oxygen isotopic compositions of the carbonate mixtures vary from 3.1‰ to 4.4‰ in the dolomite-rich chimneys, and from 2.1‰ to 2.5‰ in the internal conduits, which indicates that they were precipitated from seawater-derived pore waters during a long period covering the last glacial and interglacial cycles. In addition, the mixture of methane and bottom seawater dissolved inorganic carbon could be the carbon sources of the carbonate chimneys.

  5. 29 CFR 1926.854 - Removal of walls, masonry sections, and chimneys.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Removal of walls, masonry sections, and chimneys. 1926.854....854 Removal of walls, masonry sections, and chimneys. (a) Masonry walls, or other sections of masonry... steel framing may be left in place during the demolition of masonry. Where this is done, all steel...

  6. Thermal management of a symmetrically heated channel-chimney system

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, A. [Universita degli Studi di Napoli Federico II, Dipt. di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Napoli (Italy); Buonomo, B.; Manca, O. [Seconda Universita degli Studi di Napoli, Dipt. di Ingegneria Aerospaziale e Meccanica, (CE) (Italy)

    2009-03-15

    A parametric analysis of natural convection in air, in a channel-chimney system, symmetrically heated at uniform heat flux, obtained by means of a numerical simulation, is carried out. The analyzed regime is two-dimensional, laminar and steady-state. Results are presented in terms of wall temperature profiles in order to show the more thermally convenient configurations which correspond to the channel-chimney system with the lowest maximum wall temperature. For the considered Rayleigh number, the difference between the highest and the lowest maximum wall temperatures increases with increasing the channel aspect ratio. The optimal expansion ratio values depend strongly on the Rayleigh number and extension ratio values and slightly on the channel aspect ratio. Correlations for dimensionless mass flow rate, maximum wall temperature and average Nusselt number, in terms of Rayleigh number and dimensionless geometric parameters are presented in the ranges: 5{<=}Ra{sup *}{<=}2.0 x 10{sup 4}, 1.5{<=}L/L{sub h}{<=}4.0 and 1.0{<=}B/b{<=}4.0. (authors)

  7. Thermal management of a symmetrically heated channel-chimney system

    International Nuclear Information System (INIS)

    A parametric analysis of natural convection in air, in a channel-chimney system, symmetrically heated at uniform heat flux, obtained by means of a numerical simulation, is carried out. The analyzed regime is two-dimensional, laminar and steady-state. Results are presented in terms of wall temperature profiles in order to show the more thermally convenient configurations which correspond to the channel-chimney system with the lowest maximum wall temperature. For the considered Rayleigh number, the difference between the highest and the lowest maximum wall temperatures increases with increasing the channel aspect ratio. The optimal expansion ratio values depend strongly on the Rayleigh number and extension ratio values and slightly on the channel aspect ratio. Correlations for dimensionless mass flow rate, maximum wall temperature and average Nusselt number, in terms of Rayleigh number and dimensionless geometric parameters are presented in the ranges: 5≤Ra*≤2.0 x 104, 1.5≤L/Lh≤4.0 and 1.0≤B/b≤4.0. (authors)

  8. Parameterization Studies of Solar Chimneys in the Tropics

    Directory of Open Access Journals (Sweden)

    Alex Yong Kwang Tan

    2013-01-01

    Full Text Available The paper examines the effect of the solar chimney’s stack height, depth, width and inlet position on the interior performance (air temperature and speed at 1.20 m height above the ground as well as proposes an optimal tropical solar chimney design. Simulations show that the output air temperature remains constant while the solar chimney’s width is the most significant factor influencing output air speed. The solar chimney’s inlet position has limited influence on the output air speed although regions near the solar chimney’s inlet show an increase in air speed. Furthermore, a regression model is developed based on the solar chimney’s stack height, depth and width to predict the interior air speed. To optimize solar chimney in the tropics, the recommendation is to first maximize its width as the interior’s width, while allowing its stack height to be the building’s height. Lastly, the solar chimney’s depth is determined from the regression model by allocating the required interior air speed.

  9. Experimental study of temperature field in a solar chimney power setup

    International Nuclear Information System (INIS)

    A pilot experimental solar chimney power setup consisted of an air collector 10 m in diameter and an 8 m tall chimney has been built. The temperature distribution in the solar chimney power setup was measured. Temperature difference between the collector outlet and the ambient usually can reach 24.1 deg. C, which generates the driving force of airflow in the setup. This is the greenhouse effect produced in the solar collector. It is found that air temperature inversion appears in the latter chimney after sunrise both on a cool day and on a warm day. Air temperature inversion is formed by the increase of solar radiation from the minimum and clears up some time later when the absorber bed is heated to an enough high temperature to make airflow break through the temperature inversion layer and flow through the chimney outlet

  10. Experimental study of temperature field in a solar chimney power setup

    International Nuclear Information System (INIS)

    A pilot experimental solar chimney power setup consisted of an air collector 10 m in diameter and an 8 m tall chimney has been built. The temperature distribution in the solar chimney power setup was measured. Temperature difference between the collector outlet and the ambient usually can reach 24.1 C, which generates the driving force of airflow in the setup. This is the greenhouse effect produced in the solar collector. It is found that air temperature inversion appears in the latter chimney after sunrise both on a cool day and on a warm day. Air temperature inversion is formed by the increase of solar radiation from the minimum and clears up some time later when the absorber bed is heated to an enough high temperature to make airflow break through the temperature inversion layer and flow through the chimney outlet. (author)

  11. Tree cavity use by Chimney Swifts: implications for forestry and population recovery

    Directory of Open Access Journals (Sweden)

    Carolyn Zanchetta

    2014-12-01

    Full Text Available The Chimney Swift (Chaetura pelagica is an aerial insectivore and a cavity-nesting/roosting specialist designated as threatened in several jurisdictions. As the occurrence of suitable chimneys declines, Chimney Swifts may increasingly nest and roost in tree cavities. It is therefore important to identify characteristics of suitable nest or roost trees and assess their frequency of occurrence. We reviewed 59 historic and modern records of trees used by Chimney Swifts to understand characteristics of suitable nest or roost trees. Chimney Swifts used at least 13 different deciduous and coniferous tree species. All of the trees were greater than 0.5 m diameter at breast height (DBH and were described as hollow or having cavities. Nest or roost tree height was 12.7 ± 7.0 m (mean ± SD; range: 3.6-28.0 m; n = 25 and DBH was 1.0 m ± 0.5 m (range 0.5-2.1 m; n = 21. According to our description of used trees, the number of suitably hollow Chimney Swift nest or roost trees may be two to three times higher, although still rare, in most unlogged compared to logged hardwood forests. Whether the current total supply of suitable nest or roost trees is sufficient to carry the anticipated increase in use by Chimney Swifts as chimney habitat is modified or deteriorates is unknown. Monitoring the frequency of use of tree cavities by nesting and roosting Chimney Swifts over time, and more robustly quantifying the availability of suitable tree cavities in different forest types for nesting and roosting Chimney Swifts, particularly in unlogged versus logged forests, are fruitful areas for future research.

  12. Full scale monitoring of the twin chimneys of the rovinari power plant

    Directory of Open Access Journals (Sweden)

    Bayati I.

    2015-01-01

    Full Text Available The presented paper deals with the structural identification and monitoring of two twin chimneys in very close arrangement. Due to twin arrangement, important interference effects are expected to modify the chimney response to wind action, causing vortex shedding and state-dependent excitation associated to the oscillatory motion of the leeward chimney, in and out of the windward chimney wake. The complexity of the physics of this problem is increased by the dependency of the aerodynamics of circular cylinders on Reynolds number; however, there is a weakness of literature about cylinders behaviour at critical and super-critical range of Reynolds number, due to experimental limitations. Also the International Committee on Industrial Chimneys (CICIND does not provide, at present, any specific technical guideline about twin chimneys whose interaxis distance is less or equal two times the diameter, as in this case. For this reason a Tuned Mass Damper (TMD has been installed in order to increase the damping of the chimney, as merely suggested. This work aims at assessing the effectiveness of the installed TMD and characterizing the tower dynamic behaviour itself due to the wind excitation, as well as providing full scale measurements for twin cylinders configuration at high Reynolds numbers.

  13. Effect of solar chimney inclination angle on space flow pattern and ventilation rate

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Korah, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2009-02-15

    The solar chimney is a simple and practical idea that is applied to enhance space natural ventilation. The chimney could be vertical or inclined. The chimney inclination angle is an important parameter that greatly affects space flow pattern and ventilation rate. In the present study, the effect of chimney inclination angle on air change per hour and indoor flow pattern was numerically and analytically investigated. A numerical simulation using Ansys, a FEM-based code, was used to predict flow pattern. Then the results were compared with published experimental measurements. A FORTRAN program was developed to iteratively solve the mathematical model that was obtained through an overall energy balance on the solar chimney. The analytical results showed that an optimum air flow rate value was achieved when the chimney inclination is between 45 and 70 for latitude of 28.4 . The numerically predicted flow pattern inside the space supports this finding. Moreover, in the present study a correlation to predict the air change per hour was developed. The correlation was tested within a solar intensity greater than or equal to 500 W/m{sup 2}, and chimney width from 0.1 m to 0.35 m for different inclination angles with acceptable values. (author)

  14. ChEVAS: Combining Suprarenal EVAS with Chimney Technique

    Energy Technology Data Exchange (ETDEWEB)

    Torella, Francesco, E-mail: f.torella@liverpool.ac.uk [Royal Liverpool University Hospital, Liverpool Vascular & Endovascular Service (United Kingdom); Chan, Tze Y., E-mail: tze.chan@rlbuht.nhs.uk; Shaikh, Usman, E-mail: usman.shaikh@rlbuht.nhs.uk [Royal Liverpool University Hospital, Department of Radiology (United Kingdom); England, Andrew, E-mail: a.england@salford.ac.uk [University of Salford, Department of Radiography (United Kingdom); Fisher, Robert K., E-mail: robert.fisher@rlbuht.nhs.uk [Royal Liverpool University Hospital, Liverpool Vascular & Endovascular Service (United Kingdom); McWilliams, Richard G., E-mail: richard.mcwilliams@rlbuht.nhs.uk [Royal Liverpool University Hospital, Department of Radiology (United Kingdom)

    2015-10-15

    Endovascular sealing with the Nellix{sup ®} endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when more conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible.

  15. ChEVAS: Combining Suprarenal EVAS with Chimney Technique

    International Nuclear Information System (INIS)

    Endovascular sealing with the Nellix® endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when more conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible

  16. Numerical investigation on thermal and fluid dynamic behaviors of solar chimney building systems

    International Nuclear Information System (INIS)

    Full text: Buildings as big energy-consuming systems require large amount of energy to operate. Globally, buildings are responsible for approximately 40% of total world annual energy consumption. Sustainable buildings with renewable energy systems are trying to operate independently without consumption of conventional resources. Renewable energy is a significant approach to reduce resource consumption in sustainable building. A solar chimney is essentially divided into two parts, one - the solar air heater (collector) and second - the chimney. Two configurations of solar chimney are usually used: vertical solar chimney with vertical absorber geometry, and roof solar chimney. For vertical solar chimney, vertical glass is used to gain solar heat. Designing a solar chimney includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance. In this paper a numerical investigation on a prototypal solar chimney system integrated in a south facade of a building is presented. The analysis is carried out on a three-dimensional model in air flow and the governing equations are given in terms of k-s turbulence model. Two geometrical configurations are investigated: 1) a channel with vertical parallel walls and 2) a channel with principal walls one vertical and the other inclined. The problem is solved by means of the commercial code Ansys-Fluent and the results are performed for a uniform wall heat flux on the vertical wall is equal to 300 and 600 W/m2. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles in order to evaluate the differences between the two base configurations and thermal and fluid dynamic behaviors. Further, the ground effect on thermal performances is examined. key words: mathematical modeling, solar chimney

  17. A laboratory and theoretical study of the growth of ``black smoker'' chimneys

    Science.gov (United States)

    Turner, J. S.; Campbell, I. H.

    1987-03-01

    Observational evidence suggests that black smoker chimneys are formed by the precipitation of anhydrite from seawater producing a solid framework which is replaced successively by iron, zinc and copper sulfides. We have demonstrated the feasibility of this process using a laboratory model in which KNO 3 is first crystallized from a warm, nearly saturated solution round an inflowing plume of cold K 2CO 3. The chimney grows in length at a nearly constant rate and, at the same time, it thickens as heat conduction causes further crystallization. The dynamic replacement process has been modelled separately, with CuSO 4 passed through a previously formed chimney of KNO 3 and flowing out through the porous walls when the flow rate, and hence the pressure difference, is increased. The formation of chimneys at a line or slit source has also been investigated in the laboratory. It has been shown that, in this case, the slit is quickly blocked off by crystallization over most of its length and that the growth is concentrated at just a few points to form a small number of nearly axisymmetric chimneys. A theory has been developed which predicts both the diameter of the outlet vent and the sign of the pressure difference between the inside and the outside of an axisymmetric chimney of constant internal diameter for a specified flow rate and density difference. It suggests that changes in flow rate or in the internal diameter of the chimney can cause fluid to flow in or out through the porous wall, leading to changes in the position of mineral stability fields within the evolving chimney. The theory has been extended to describe the pressure distribution in tapering interior conduits and it leads to the conclusion that the direction of flow through a porous chimney can reverse along its length.

  18. Finite Element Analysis and Linear Regression of Maximum Temperature for Inner Wall of Chimney Foundation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The uniform design method was adopted and the twenty-four groups of different geometric and physical parameters were chosen. The finite element model was built. Comparisons between the simulation results and the test results prove that the simulation results are correct. The distribution of the temperature field of the chimney foundation was analyzed. The multivariate linear regression of the hightest tomperature was performed on the inner wall of the chimney foundation by the numerical calculated results. The fitting property of the highest temperature with six influence factors was obtained. A simple method for the calculation of the temperature field of the chimney foundation was provided.

  19. Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

    Science.gov (United States)

    Vanreken, T. M.; Nenes, A.

    2006-12-01

    The mounting negative impacts of our dependence on fossil fuels make obvious the need for continued development of alternative power generation technologies. One promising technology is the solar chimney power plant, the concept of which is straightforward and consists of three main components: a solar air collector, the chimney itself, and a power turbine. The solar collector is a large, circular, greenhouse-like structure that gently slopes toward its center; air enters at the outer edge, and as the air parcel warms buoyancy causes it to move upward and toward the center of the collector. When the air has reached the center of the collector, its temperature has increased by an amount ΔT, at which point it enters the chimney. The chimney functions as the main thermal engine in the power plant; the available power for electrical conversion is a function of the maximum potential air velocity through the chimney, which depends primarily on its height and on ΔT. The actual air velocity is determined by the efficiency of the turbine, which is placed between the solar collector and the chimney. A pilot-scale solar chimney power plant has operated in Manzanares, Spain for two decades, and larger facilities have been proposed in China and Australia. As with all new technologies, it is important to consider the potential adverse impacts of solar chimney power generation facilities. This study considers one such impact- the potential for water vapor in solar chimney plumes to affect both the performance of the facility and the local meteorology. Using a cloud parcel model, the progress of a plume up through and out of a solar chimney was simulated for a range of conditions consistent with the proposed Australian facility. As might be expected, in the absence of any water vapor enhancement the plume demonstrated minimal cloud forming potential. However, our results indicate that in cases of moderate water vapor enhancement, cloud formation can occur after the plume exits

  20. Design and measured performance of a solar chimney for natural-circulation solar-energy dryers

    International Nuclear Information System (INIS)

    The design and construction of a solar chimney which was undertaken as part of a study on natural-circulation solar-energy dryers is reported. The experimental solar chimney consists of a 5.3m high and 1.64m diameter cylindrical polyethylene-clad vertical chamber, supported structurally by steel framework and draped internally with a selectively-absorbing surface. The performance of the chimney which was monitored extensively with and without the selective surface in place (to study the effectiveness of this design option) is also reported. (author). 14 refs, 7 figs

  1. Analytical study of the closure flow inside the ETRR-2 core chimney

    Energy Technology Data Exchange (ETDEWEB)

    El-Din El-Morshdy, S. [Atomic Energy Authority, Cairo (Egypt). Reactors Dept.

    2006-12-15

    The present work is carried out in order to study the closure flow inside the core chimney of the Egypt second research reactor (ETRR-2). Based on the finite difference technique, a two dimensional model is developed to simulate the coolant flow inside the chimney. The model is verified by FEHT finite element program. Then a study of different closure flow values inside the chimney was made using the developed model where a flow map is plotted showing the stagnation depth for each closure flow. The flow map shows that for a closure flow greater than 0.16 m{sup 3}/h, no active water ascends from the core to the pool through the chimney. The model results are analyzed and discussed. (orig.)

  2. Analytical study of the closure flow inside the ETRR-2 core chimney

    Energy Technology Data Exchange (ETDEWEB)

    El-Morshdy, Salah El-Din [Reactors Department, Atomic Energy Authority, Cairo (Egypt)]. E-mail: selmorshedy@etrr2-aea.org.eg

    2007-03-15

    The present work is carried out in order to study the closure flow inside the core chimney of the Egypt second research reactor (ETRR-2). Based on the finite difference technique, a two dimensional model is developed to simulate the coolant flow inside the chimney. The model is verified by FEHT finite element program. Then a study of different closure flow values inside the chimney was made using the developed model where a flow maps is plotted showing the stagnation depth for each closure flow. The flow maps shows that for a closure flow greater than 0.16 m{sup 3}/h, no radioactive water ascends from the core to the pool through the chimney. The model results are analyzed and discussed.

  3. Dynamic characteristic and seismic response analyses for installation of in-chimney bracket structures in HANARO

    International Nuclear Information System (INIS)

    The in-chimney bracket structures will be installed on the upper part of chimney, which holds the capsule extension pipes in upper one-third of length. For evaluating the seismic effects on the capsules and related reactor structures by installation of the in-chimney bracket, an ANSYS analysis model is developed, and the dynamic characteristics are analyzed. The seismic response analyses of in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of SSE(0.2g) are performed. The several candidated designs of the capsule extension pipes and support spring stiffness to meet the displacement limit of the flow tubes in core region are proposed

  4. Analytical study of the closure flow inside the ETRR-2 core chimney

    International Nuclear Information System (INIS)

    The present work is carried out in order to study the closure flow inside the core chimney of the Egypt second research reactor (ETRR-2). Based on the finite difference technique, a two dimensional model is developed to simulate the coolant flow inside the chimney. The model is verified by FEHT finite element program. Then a study of different closure flow values inside the chimney was made using the developed model where a flow map is plotted showing the stagnation depth for each closure flow. The flow map shows that for a closure flow greater than 0.16 m3/h, no active water ascends from the core to the pool through the chimney. The model results are analyzed and discussed. (orig.)

  5. Analytical study of the closure flow inside the ETRR-2 core chimney

    International Nuclear Information System (INIS)

    The present work is carried out in order to study the closure flow inside the core chimney of the Egypt second research reactor (ETRR-2). Based on the finite difference technique, a two dimensional model is developed to simulate the coolant flow inside the chimney. The model is verified by FEHT finite element program. Then a study of different closure flow values inside the chimney was made using the developed model where a flow maps is plotted showing the stagnation depth for each closure flow. The flow maps shows that for a closure flow greater than 0.16 m3/h, no radioactive water ascends from the core to the pool through the chimney. The model results are analyzed and discussed

  6. Numerical simulation and comparison of conventional and sloped solar chimney power plants: the case for Lanzhou.

    Science.gov (United States)

    Cao, Fei; Li, Huashan; Zhang, Yang; Zhao, Liang

    2013-01-01

    The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights. PMID:24489515

  7. Modelling and simulation of condensation phenomena of acid gases in an industrial chimney

    OpenAIRE

    Serris, Eric; Cournil, Michel; Peultier, Jérôme

    2007-01-01

    Coal power stations as well as waste incinerators produce humid acid gases which condensate in industrial chimneys. These condensates may cause corrosion of the internal cladding made of stainless steels, nickel base alloys or non metallic materials. In the aim of polluting emission reduction and material optimal choice, it is necessary to determine all the phenomena which occur throughout the chimney such as condensation and dissolution of acid gases (in this particular case, sulphur dioxide...

  8. Effect of cold inflow on chimney height of natural draft cooling towers

    International Nuclear Information System (INIS)

    Highlights: ► Natural convection data were obtained from an air-cooled heat exchanger model. ► The extent of cold inflow was quantified to relate to the decrease in effective chimney height. ► Installation of wire mesh screen on chimney outlet blocked off cold inflow to improve the chimney efficiency. ► Evidence of existence of effective plume-chimney for when cold inflow was blocked off warrants further work. - Abstract: Temperature and pressure drop data obtained from an air-cooled heat exchanger model with cross-sectional flow areas of 0.56 m2, 1.00 m2 and 2.25 m2 operating under natural convection are presented that indicate significant cold inflow, resulting in the reduction of effective chimney height. Cold inflows encountered in actual applications where the Froude number is typically 0.2, may not be as severe as described in this paper, which was of the order of 10−6–10−4. Additional tests on smaller scale models appeared to favor the explanation that the occurrence of cold inflow in the air-cooled heat exchanger model was primarily due to the relative ease in either drawing cold air from inlet or from outlet, and to a lesser extent the Froude number of the chimney or the critical velocity estimated by formula. A CFD study will bring much understanding of the phenomenon for the different situations.

  9. Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system

    International Nuclear Information System (INIS)

    Highlights: • A 3-D model for hybrid cooling-tower-solar-chimney system is developed. • The inclusion of heat exchangers into solar chimney boosts the power output. • The huge jump in power output is at the expense of heat dissipation capacity. • The heat exchanger as second heat source has greater impact on system performance. - Abstract: The hybrid cooling-tower-solar-chimney system (HCTSC), combining solar chimney with natural draft dry cooling tower, generates electricity and dissipates waste heat for the coupled geothermal power plant simultaneously. Based on a developed 3-D model, performance comparisons between the HCTSC system, solar chimney and natural draft dry cooling tower were performed in terms of power output of turbine and heat dissipation capacity. Results show that compared to the traditional solar chimney with similar geometric dimensions, HCTSC system can achieve over 20 times increase in the power output of turbine. However, this huge jump in power output is at the expense of heat dissipation capacity, which may lead to the malfunction of the coupled thermal power plant. By increasing the heat transfer area of the heat exchanger, the HCTSC system can manage to recover its heat dissipation capacity

  10. Experimental study of the resulting flow of plume-thermosiphon interaction: application to chimney problems

    Energy Technology Data Exchange (ETDEWEB)

    Zinoubi, J.; Maad, R.B.; Belghith, A. [Faculte des Sciences de Tunis, Tunis (Tunisia). Departement de Physique, Laboratoire d' Energetique et des Transferts de Chaleur et de Masse

    2005-03-01

    The quality of the surrounding air depends on the various dismissals of the combustion gases (exhaust cars, smokes of chimneys, ...), their scattering in the environment. Urban development around industrial zones and overexploitation of lands near factories triggered responsible interest in the problem of pollution. In order to decrease the impact of air pollution, several chimneys have been constructed in the different industrial facilities. So the improvement of the industrial chimney range became one of the current research problems. In order to improve the industrial chimney efficiency and to increase the vertical scattering of combustion products, we studied a system that could be integrated to the industrial chimney exit. This system is essentially constituted of an open-ended vertical cylinder of larger diameter. Thermal radiance emitted by smoke heats the internal cylinder wall. The heating of the fluid at the cylinder-inlet is the cause of the thermosiphon effect around the thermal plume. To study the problem in the laboratory we simulated the plume exiting of a chimney by a disk heated uniformly by the Joule effect at constant temperature. Different configurations were studied, while acting, on the source-cylinder spacing and the cylinder height. The study of the average fields permits, in a first stage, to get better information about the mechanism of the resulting flow development, and in a second stage, to determine the spacing of the source-cylinder and cylinder height optima, for which a clean increase of fluid flow rate is obtained. (author)

  11. Development of the lined masonry chimney oil appliance

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.; Strasser, J. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    This paper describes the development of the lined masonry chimney venting tables form the output of the Oil Heat Analysis Program 9OHVAP. These new tables are different from the prior format, offered in the Proceedings of the 1995 Oil Heat Technology Conference and Workshop, paper No. 95-4. Issues expressed by representatives of the oil heat industry at last years conference during the Venting Technology Workshop resulted in subsequent discussions. A full day meeting was held, co-sponsored by BNL and the Oilheat Manufacturers Association (OMA), to address revision of the format of the venting tables prior to submission to the National Fire Protection Association (NFPA) Standard 31 Technical Committee. The resulting tables and text were submitted to NFPA during the first week of October, 1995. Since then minor changes were made reflecting the addition of data obtained by including intermediate firing rates (0.4, 0.65, and 0.85 gph) not included in the original tables which were developed in increments of 0.25 gph. The new tables address the specific question; {open_quotes}If remediation is required, what is the recommendation for the sizing of a metal liner and the appropriate firing rate range to be used with that liner?{close_quotes}

  12. Beautiful heat: a master chimney sweep talks about burning issues

    Energy Technology Data Exchange (ETDEWEB)

    Hederich, M.P.

    2001-07-01

    Fire has played a major role in mankind's life from the beginning. Used for heating and cooking, its various uses have evolved to include controlled explosions shortly after the development of gunpowder, and the generation of electricity made other uses possible. The author, a certified solid fuel technician and chimney sweep, as well as a licensed technician for natural gas and propane, has written this book to enable the reader to enjoy safe and dependable wood fires year round by taking the necessary steps. The first recommendation made is against the homeowner installing himself/herself any solid fuel system. It is a job better left to the professionals, considering the substantial product and regulation knowledge and experience required. Specific information related to solid fuel burning technology is included in this book, to be used as a guide. Part 1 of the book deals with the fuel, touching on issues such as energy and the environment, wood combustion and air pollution, buying firewood, wood ashes, cleaning your heating system and others. Part 2 is devoted to the heating system. It introduces topics ranging from the systems advisor to the location and installation of the system, the principles of space heating, high efficiency wood burning, inspections, to name just a few. 22 refs., tabs., figs.

  13. Effects of industrial chimney gases on the Nif Mountain vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Cireli, B.

    1975-01-01

    This investigation has been carried out on vegetation in order to find out changes in the morphology, anatomy and ultrastructure of cells brought about by the chimney gases from the surrounding factories. Different dicots and monocots have been used as experimental material. Results obtained are summarized as follows: (A) In all the experimental plants affected by the pollutants, an inhibition of the elongation has been observed. (B) Anatomical studies revealed that the epidermis, palisade and spongy parenchymatic tissues and cells of pollutant-affected plants appeared to be different from those of control plants. (C) Along with the anatomical changes, ultrastructural modifications have also been observed between pollutant-affected and control plants. (D) In order to investigate the causes of loss of green color in pollutant-affected plants, spectrophotometric pigmentation determinations have been carried out. The results have indicated such a decrease in pigment contents of pollutant-affected plants. (E) Calcium, magnesium and sulphate contents of control and pollutant-affected plants have been determined with an atomic absorption spectrophotometer. Pollutant-affected plants appeared to contain less calcium and magnesium and more sulphate than control plants. (F) Comparative oil analyses of fruits of pollutant-affected and control Olea plants have been carried out. (G) It has been concluded that air pollutants, affecting the various metabolic activities of the cells, cause modifications in the cell ultrastructure and cell anatomy and consequently give rise to typical morphological changes manifested in the form of growth inhibition.

  14. Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant

    International Nuclear Information System (INIS)

    Graphical abstract: This work is aimed at optimizing the geometry of the major components of a solar chimney power plant using ANSYS-CFX. The collector inlet opening, collector height, collector outlet diameter, the chimney throat diameter and the chimney divergence angle were varied for the same chimney height and collector diameter and the performance of the plant was studied in terms of the available power and an optimum configuration was obtained. The temperature and velocity variations in the collector and along the chimney height were also studied. - Highlights: • Geometry of the major components of a solar chimney power plant optimized using CFX. • Collector inlet opening, height, outlet diameter, chimney throat diameter, and the chimney divergence angle were varied. • Temperature and velocity variations and available power were obtained for different configurations. • Optimum values of collector outlet height and diameter and the divergence angle were obtained. - Abstract: A solar chimney power plant (SCPP) is a renewable-energy power plant that transforms solar energy into electricity. The SCPP consists of three essential elements – solar air collector, chimney tower, and wind turbine(s). The present work is aimed at optimizing the geometry of the major components of the SCPP using a computational fluid dynamics (CFD) software ANSYS-CFX to study and improve the flow characteristics inside the SCPP. The overall chimney height and the collector diameter of the SCPP were kept constant at 10 m and 8 m respectively. The collector inlet opening was varied from 0.05 m to 0.2 m. The collector outlet diameter was also varied from 0.6 m to 1 m. These modified collectors were tested with chimneys of different divergence angles (0°–3°) and also different chimney inlet openings of 0.6 m to 1 m. The diameter of the chimney was also varied from 0.25 m to 0.3 m. Based on the CFX computational results, the best configuration was achieved using the chimney

  15. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Ying eHe

    2013-06-01

    Full Text Available Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.

  16. Vibration test for HANARO in-chimney bracket and instrumented fuel assembly

    International Nuclear Information System (INIS)

    The vibration characteristics and structural integrity of the instrumented fuel assembly and in-chimney bracket structures, which is recently installed in HANARO reactor chimney, are investigated. For this purpose, four acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured and analyzed. In time domain analysis, maximum amplitudes and RMS values of accelerations and displacements are obtained from the measured vibration signal. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable limit, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures, the static analysis for ANSYS finite element model is carried out. The maximum displacements of the measured vibration signals are used as the load inputs. These analysis results show that the maximum stresses and within the allowable stresses of the ASME code, and the maximum displacement at the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket

  17. An analytical and numerical study of solar chimney use for room natural ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Koura, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2008-07-01

    The solar chimney concept used for improving room natural ventilation was analytically and numerically studied. The study considered some geometrical parameters such as chimney inlet size and width, which are believed to have a significant effect on space ventilation. The numerical analysis was intended to predict the flow pattern in the room as well as in the chimney. This would help optimizing design parameters. The results were compared with available published experimental and theoretical data. There was an acceptable trend match between the present analytical results and the published data for the room air change per hour, ACH. Further, it was noticed that the chimney width has a more significant effect on ACH compared to the chimney inlet size. The results showed that the absorber average temperature could be correlated to the intensity as: (T{sub w} = 3.51I{sup 0.461}) with an accepted range of approximation error. In addition the average air exit velocity was found to vary with the intensity as ({nu}{sub ex} = 0.013I{sup 0.4}). (author)

  18. Numerical simulation of turbulent flow mixing inside a square chimney structure of a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, S.; Bhatnagar, A. [Bhabha Atomic Research Centre, Mumbai (India). Research Reactor Design and Projects Div.; Vijayan, P.K. [Bhabha Atomic Research Centre, Mumbai (India). Reactor Engineering Div.; Singh, R.K. [Bhabha Atomic Research Centre, Mumbai (India). Reactor Safety Div.; Raina, V.K. [Bhabha Atomic Research Centre, Mumbai (India). Reactor Group

    2013-11-15

    Numerical simulation was performed to study the turbulent mixing behavior of two opposing flows inside a square chimney structure of a research reactor. The chimney design facilitates drawing pool water in the downward direction and thereby suppresses the upward flow of radioactive water jet to limit the radiation field at the reactor pool top. Analyses were carried out considering a mass flow rate of 750 kg/s for the upward flowing hot water from the core, which corresponds to Reynolds number of 3 x 10{sup 6}. Mass flow ratios of the downward flow and the upward flow were 0.0, 0.05, 0.1 and 0.15. The effects of mass flow ratio, chimney height on the velocity and temperature distribution inside three-dimensional chimney structure was evaluated using CFD code PHOENICS. The effect of temperature difference between the opposing flows on velocity was also analysed. It is observed that increase in downward flow causes the jet height to decrease due to the opposing momentum of downward flow against the upward jet. The effects of chimney height and temperature difference on the jet height are found to be marginal because of dominating inertial force over buoyancy force for the study. (orig.)

  19. Feasibility study on optimization of a typical solar chimney power plant

    Science.gov (United States)

    Najmi, Mohsen; Nazari, Ali; Mansouri, Hossein; Zahedi, Ghazzanfar

    2012-03-01

    The solar chimney which has been built in Kerman (Kerman city-Iran) is a small scale electrical power plant. The chimney of this unit has 60 m height and 3 m diameter. The collector of this unit is 40 m × 40 m square. To reach nominal power of this unit of power plant, parameters which are effective in optimization are studied. In this regard, we deliberate and propose suggestions to maximize usage of solar energy and kinetic energy. The calculation of maximum power is one of the objectives of this study, so the paper present economic analysis for Kerman solar chimney. A home code has been written for this modeling, in MATLAB.

  20. Studies of the thermohydraulics of the Irradiation Research Facility (IRF) chimney using computational fluid dynamics

    International Nuclear Information System (INIS)

    AECL is developing a concept for a new Irradiation Research Facility (IRF) that will be used to support ongoing development of CANDU technology and advanced materials research after the NRU reactor shuts down. As part of the IRF Pre-Project Engineering Program, computational fluid dynamics (CFD) analyses of the flow patterns and heat transfer within four reactor components - the inlet plenum, reflector tank, chimney, and the pool - were done to support the design. This paper describes the results of the CFD analyses of the IRF chimney. (author)

  1. Structural Integrity Evaluation of an New In-Chimney Bracket Structures for HANARO

    International Nuclear Information System (INIS)

    In HANARO are there provided three hexagonal irradiation holes (CT, IR1 and IR2) in the central region of the core while four circular irradiation holes (OR3 ∼ OR6) in the outer core. There exist two types of irradiation facilities: uninstrumented or instrumented. The uninstrumented irradiation facility is little influenced by the coolant flow. But the dynamic behavior by the flow-induced vibration (FIV) and seismic loads is expected to largely occur in case of the instrumented test facility due to the long guide tube to protect the instrumentation cables. To suppress this dynamic behavior of the facility, the in-chimney bracket was designed. As a supplementary supporting structure for irradiation facility, this bracket will hold guide tubes whose holding position of the instrumented facility in CT or IR is the middle part of the instrumented facility between the hole spider and the robot arm already provided in the reactor pool liner. On the while, the bracket will grip the upper part of the guide tube when it is applied to hold the instrumented facility loaded in OR sites. Therefore it is believed that the irradiation test can be successfully conducted since this bracket can reduce the FIV and dynamic response to seismic load as well. In new in-chimney bracket, IR1 is reserved for IPS(In-Pile Section) so only CT/IR2 guide tubes are supported by CT/IR clamp units and the shape of In-chimney bracket is redesigned. For evaluating the structural integrity on the new in-chimney bracket and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response analyses of new in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE(0.1g) and SSE(0.2g) are performed. The response shows that the stress values for main points on the reactor structures and the new in-chimney bracket for seismic loads are within the ASME Code limits. It is

  2. Structural Integrity Evaluation of an New In-Chimney Bracket Structures for HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Lee, Jung Hee; Jung, Hoan Sung; Seo, Choon Gyo; Shin, Jin Won

    2007-12-15

    In HANARO are there provided three hexagonal irradiation holes (CT, IR1 and IR2) in the central region of the core while four circular irradiation holes (OR3 {approx} OR6) in the outer core. There exist two types of irradiation facilities: uninstrumented or instrumented. The uninstrumented irradiation facility is little influenced by the coolant flow. But the dynamic behavior by the flow-induced vibration (FIV) and seismic loads is expected to largely occur in case of the instrumented test facility due to the long guide tube to protect the instrumentation cables. To suppress this dynamic behavior of the facility, the in-chimney bracket was designed. As a supplementary supporting structure for irradiation facility, this bracket will hold guide tubes whose holding position of the instrumented facility in CT or IR is the middle part of the instrumented facility between the hole spider and the robot arm already provided in the reactor pool liner. On the while, the bracket will grip the upper part of the guide tube when it is applied to hold the instrumented facility loaded in OR sites. Therefore it is believed that the irradiation test can be successfully conducted since this bracket can reduce the FIV and dynamic response to seismic load as well. In new in-chimney bracket, IR1 is reserved for IPS(In-Pile Section) so only CT/IR2 guide tubes are supported by CT/IR clamp units and the shape of In-chimney bracket is redesigned. For evaluating the structural integrity on the new in-chimney bracket and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response analyses of new in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE(0.1g) and SSE(0.2g) are performed. The response shows that the stress values for main points on the reactor structures and the new in-chimney bracket for seismic loads are within the ASME Code limits

  3. On the form of the power equation for modeling solar chimney power plant systems

    CERN Document Server

    Fathi, Nima; Vorobieff, Peter

    2015-01-01

    Recently several mathematical models of a solar chimney power plant were derived, studied for a variety of boundary conditions, and compared against CFD calculations. The importance of these analyses is about the accuracy of the derived pressure drop and output power equation for solar chimney power plant systems (SCPPS). We examine the assumptions underlying the derivation and present reasons to believe that some of the derived equations, specifically the power equation in this model, may require a correction to be applicable in more realistic conditions. The analytical resutls are compared against the available experimental data from the Manzanares power plant.

  4. Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, B.; Kaiser, A.S. [Dpto. Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, Doctor Fleming s/n, 30202 Cartagena (Spain)

    2010-09-15

    In a solar chimney, the buoyancy induced flow of air generates ventilation of the building where the chimney is attached. When atmospheric wind blows over the upper part of a solar chimney, a mixed buoyancy-wind driving induced flow appears, and then the thermal behaviour of the chimney changes drastically. Assuming that the chimney is devoid of any protective device at its upper part, numerical results for the pressure difference coefficients, average Nusselt number and the induced mass flow rate are obtained for values of Rayleigh number varying from 10{sup 7} to 10{sup 12} (symmetrically, isothermal heating condition) and 10{sup 11} to 10{sup 15} (symmetrically, uniform heat flux heating condition), with wind speeds from 0 to 10 m/s. A correlation for the non-dimensional mass flow rate is presented, which is valid for the complete range of relevant parameters regarded, with an average deviation about 6%. (author)

  5. Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Lin, T. J.; Ver Eecke, H. C.; Breves, E. A.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Dahle, H.; Bishop, J. L.; Lane, M. D.; Butterfield, D. A.; Kelley, D. S.; Lilley, M. D.; Baross, J. A.; Holden, J. F.

    2016-02-01

    Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2- oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall.

  6. Upward-migrating methane induced seismic chimney formation in the Nordland Group, Southern Viking Graben

    Science.gov (United States)

    Kempka, Thomas; Unger, Victoria; Kühn, Michael

    2016-04-01

    The Nordland Group in the Southern Viking Graben hosts seismic chimneys, represented by anomalies in seismic data and determined by residual methane accumulations. These seismic chimneys are generally interpreted as focused fluid flow structures, and thus pose the risk of potential fluid leakage in geological subsurface utilization. The aim of the present study was to assess two popular scientific hypotheses on seismic chimney formation in the Nordland Group. The first one assumes excess pore pressure to result from buoyancy effects caused by upward-migrating methane and the development of a gas column with a thickness of several hundred meters, whereas the second one considers the load of the Fennoscandian ice sheet to be responsible for occurrence of hydraulic fracturing. In this context, we applied coupled hydromechanical simulations to determine the mechanism inducing the formation of these potential leakage pathways. Our simulation results demonstrate that hydraulic fracturing in the Nordland Group already occurs before the maximum methane column heights develop below. Consequently, the load of the Fennoscandian ice sheet is not initiating seismic chimneys formation.

  7. Influence of Chimney Flow Pattern on Natural Convection Heat Transfer of Open Channel Finned Plates

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung-Hyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The enhancement of the efficiency and effectiveness of the passive cooling system, have long been the topic of those studies. In this study, we investigated the heat transfer enhancement of finned plates, especially the chimney effect appeared in finned plates. The fin not only enlarges the heat transfer area but also draws fresh fluid from the open side of the channel composed of the base plate and fins, which further enhances the cooling capability of finned plate – a chimney flow pattern. This study aims at investigating the influence of the chimney flow pattern on the natural convection heat transfer of the finned plate. To analyze the phenomenological study, both experimental and numerical analyses were performed. Numerical analysis was performed for the natural convection heat transfer of a finned plate in an open channel. In order to investigate the influence of the chimney flow pattern the heat transfer, several fin height were simulated and compared. The temperature profiles varied drastically depending on the values of the Prandtl number. As the Prandtl number increases, the thermal boundary layer reduces.

  8. Influence of Chimney Flow Pattern on Natural Convection Heat Transfer of Open Channel Finned Plates

    International Nuclear Information System (INIS)

    The enhancement of the efficiency and effectiveness of the passive cooling system, have long been the topic of those studies. In this study, we investigated the heat transfer enhancement of finned plates, especially the chimney effect appeared in finned plates. The fin not only enlarges the heat transfer area but also draws fresh fluid from the open side of the channel composed of the base plate and fins, which further enhances the cooling capability of finned plate – a chimney flow pattern. This study aims at investigating the influence of the chimney flow pattern on the natural convection heat transfer of the finned plate. To analyze the phenomenological study, both experimental and numerical analyses were performed. Numerical analysis was performed for the natural convection heat transfer of a finned plate in an open channel. In order to investigate the influence of the chimney flow pattern the heat transfer, several fin height were simulated and compared. The temperature profiles varied drastically depending on the values of the Prandtl number. As the Prandtl number increases, the thermal boundary layer reduces

  9. Annual performance analysis of the solar chimney power plant in Sinkiang, China

    International Nuclear Information System (INIS)

    Highlights: • A theoretical model was developed concerning hourly variation of solar radiation. • A limitation on maximum collector radius of an SCPP with a given chimney exists. • Annual performance of a 100 MW SCPP was predicted in hourly interval. • The Hami region is considered suitable for the construction of SCPP. - Abstract: To obtain more accurate prediction of the annual performance of solar chimney power plants (SCPPs), a comprehensive theoretical model is developed by taking into account the hourly variation of solar radiation. The effects of the collector and chimney radii on the power output of the SCPP are analyzed, and the results reveal that a limitation on the maximum collector radius exists for the maximum attainable power output of the SCPP. Then four designs of 100 MW SCPPs with different combinations of collector and chimney radii are proposed and the most cost effective one is chosen from among the four SCPPs. The annual power output of the chosen SCPP in the Hami region is estimated at an interval of 1 h for a whole year. The results indicate that the power generation of SCPP presents obvious seasonal variation. Furthermore, the use of 14% of the unused land in the Hami region for the installation of SCPPs would satisfy the annual power requirement for the whole of the Sinkiang region

  10. DESIGN OF A SMALL – SCALE SOLAR CHIMNEY FOR SUSTAINABLE POWER

    Science.gov (United States)

    After several months of design and testing it has been determined that a small scale solar chimney can be built using nearly any local materials and simple hand tools without needing superior construction knowledge. The biggest obstacle to over come was the weather conditions....

  11. Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region

    International Nuclear Information System (INIS)

    This paper analyzes the feasibility of solar chimney power plants as an environmentally acceptable energy source for small settlements and islands of countries in the Mediterranean region. For the purpose of these analyses, two characteristic geographic locations (Split and Dubrovnik) in Croatia were chosen and simplified model for calculation of produced electric power output is also developed. These locations possess typical characteristics of the Mediterranean climate. The solar characteristics of the chosen geographic locations are shown along with characteristic meteorological data. A solar chimney (SC) power plant with a chimney height of 550 m and a collector roof diameter of 1250 m would produce 2.8-6.2 MW of power. The average annual electric power production of this SC power plant would range between 4.9 and 8.9 GWh/year, but in reality from 5.0 to 6.0 GWh/year in average. An approximate costs analysis, which included a total investment estimate, was performed. The levelized electricity cost was also calculated. It is found that the price of produced electric energy by solar chimney power plant in Mediterranean region is considerably higher compared to the other power sources. (author)

  12. Numerical analysis on the performance of solar chimney power plant system

    International Nuclear Information System (INIS)

    Power generating technology based on renewable energy resources will definitely become a new trend of future energy utilization. Numerical simulations on air flow, heat transfer and power output characteristics of a solar chimney power plant model with energy storage layer and turbine similar to the Spanish prototype were carried out in this paper, and mathematical model of flow and heat transfer for the solar chimney power plant system was established. The influences of solar radiation and pressure drop across the turbine on the flow and heat transfer, output power and energy loss of the solar chimney power plant system were analyzed. The numerical simulation results reveal that: when the solar radiation and the turbine efficiency are 600 W/m2 and 80%, respectively, the output power of the system can reach 120 kW. In addition, large mass flow rate of air flowing through the chimney outlet become the main cause of energy loss in the system, and the collector canopy also results in large energy loss.

  13. A Cost Effective Desalination Plant Using a Solar Chimney with Recycled Aluminum Can Collector

    Directory of Open Access Journals (Sweden)

    Singuru Rajesh

    2016-01-01

    Full Text Available The main objective of the work was to use solar energy for desalination of water. A solar chimney desalination system, which includes the solar chimney, solar collector, evaporation system, and passive condenser, was designed and built. The air enters into collector and gets heated and released at the bottom of chimney. Due to draught effect dry air goes upward. The air is humidified by spraying salt water into the hot air stream using a mistifier at the middle of chimney. Then, the partial vapours contained in the air are condensed to give desalinated water. The performance of the integrated system including power and potable water production was estimated and the results were discussed. With a 3.4 m height setup, experimental test rig was capable of evaporating 3.77 L water daily condensing 2.3 L water. It is compact in nature as it is easy to assemble and dissemble. It can be used for purifying rain water in summer under rain water harvesting. Because of using country wood, recycled Al cans, and GI sheet in fabrication, it is lower in cost.

  14. 78 FR 72060 - Chimney Rock National Monument Management Plan; San Juan National Forest; Colorado

    Science.gov (United States)

    2013-12-02

    .... Forest Service (USFS) planning regulations (36 CFR part 219) as allowed by the transition provision of the 2012 forest planning regulations. The 1982 planning regulations are available at http://www.fs.fed...; ] DEPARTMENT OF AGRICULTURE Forest Service Chimney Rock National Monument Management Plan; San Juan...

  15. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh)-1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  16. Geochemical processes and fluxes at a methane gas chimney on the Hikurangi Margin (New Zealand)

    Science.gov (United States)

    Dale, A.; Haffert, L.; Hütten, E.; Crutchley, G.; Greinert, J.; de Haas, H.; de Stigter, H.; Bialas, J.

    2012-04-01

    The initial results presented in this study focus on the pore water geochemistry of Takahe methane seep located at 1050 m water depth on the Hikurangi Margin. The main objectives are to characterize and quantify the geochemical processes occurring in the upper meters of sediment. Parasound images of the study site showed a well-defined seismic blanking zone of around 230 m in diameter that is likely generated by trapped methane gas. At the northern edge of this seismic gas chimney bubble release has been observed by using hydroacoustic methods (singlebeam and multibeam echosounders). At the seafloor the more northern part of the chimney area showed white Beggiatoa bacterial mats and in places dark sediment patches due to geochemically reduced environments. No other "seep specific" fauna as tube worms or clams as well as no massive chemoherm carbonate where found in the area. This points towards a rather young seepage history. Geochemical data measured in 8 gravity cores across the gas chimney support this notion and gas hydrate layers several cm thick were observed in several cores. Sulphate and total alkalinity concentrations varied little from seawater values in the upper 50 to 100 cm towards the southerly end of the seismic gas chimney area; a feature attributed to irrigation by escaping methane gas bubbles. At these stations, the pore fluids were highly enriched in biogenic methane. However, the dissolved methane was mostly consumed anaerobically by sulphate, resulting in steep gradients of sulphate, methane, total alkalinity and hydrogen sulphide. Geochemical gradients at reference site immediately outside the chimney area were essentially vertical, indicating very little upwards transport and dissolution of methane. The geochemical data are applied to a numerical reaction-transport model to quantify the total upward flux of methane at each station and, ultimately, for the entire gas chimney. Temperature measurements of thermistor probes attached to the barrel

  17. Experimental and numerical characterization of wind-induced pressure coefficients on nuclear buildings and chimney exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Laurent, E-mail: laurent.ricciardi@irsn.fr; Gélain, Thomas; Soares, Sandrine

    2015-10-15

    Highlights: • Experiments on scale models of nuclear buildings and chimney exhausts were performed. • Pressure coefficient fields on buildings are shown for various wind directions. • Evolution of pressure coefficient vs U/W ratio is given for various chimney exhausts. • RANS simulations using SST k–ω turbulence model were performed on most studied cases. • A good agreement is overall observed, with Root Mean Square Deviation lower than 0.15. - Abstract: Wind creates pressure effects on different surfaces of buildings according to their exposure to the wind, in particular at external communications. In nuclear facilities, these effects can change contamination transfers inside the building and can even lead to contamination release into the environment, especially in damaged (ventilation stopped) or accidental situations. The diversity of geometries of facilities requires the use of a validated code for predicting pressure coefficients, which characterize the wind effect on the building walls and the interaction between the wind and chimney exhaust. The first aim of a research program launched by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), was therefore to acquire experimental data of the mean pressure coefficients for different geometries of buildings and chimneys through wind tunnel tests and then to validate a CFD code (ANSYS CFX) from these experimental results. The simulations were performed using a steady RANS approach and a two-equation SST k–ω turbulence model. After a mesh sensitivity study for one configuration of building and chimney, a comparison was carried out between the numerical and experimental values for other studied configurations. This comparison was generally satisfactory, averaged over all measurement points, with values of Root Mean Square Deviations lower than 0.15 for most cases.

  18. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan

    Institute of Scientific and Technical Information of China (English)

    ZENG; ZhiGang; LIU; ChangHua; CHEN; ChenTung; A; YIN; XueBo; CHEN; DaiGeng; WANG; XiaoYuan; WANG; XiaoMei; ZHANG; GuoLiang

    2007-01-01

    Analyses of rare earth and trace element concentrations of native sulfur samples from the Kueishantao hydrothermal field were performed at the Seafloor Hydrothermal Activity Laboratory of the Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences.Using an Elan DRC II ICP-MS,and combining the sulfur isotopic compositions of native sulfur samples,we studied the sources and formation of a native sulfur chimney.The results show,when comparing them with native sulfur from crater lakes and other volcanic areas,that the native sulfur content of this chimney is very high (99.96%),the rare earth element (REE) and trace element constituents of the chimney are very low (ΣREE<21×10-9),and the chondrite-normalized REE patterns of the native sulfur samples are similar to those of the Kueishantao andesite,implying that the interaction of subseafloor fluid-andesite at the Kueishantao hydrothermal field was of short duration.The sulfur isotopic compositions of the native sulfur samples reveal that the sulfur of the chimney,from H2S and SO2,originated by magmatic degassing and that the REEs and trace elements are mostly from the Kueishantao andesite and partly from seawater.Combining these results with an analysis of the thermodynamics,it is clear that from the relatively low temperature (<116℃),the oxygenated and acidic environment is favorable for formation of this native sulfur chimney in the Kueishantao hydrothermal field.

  19. Experimental and numerical characterization of wind-induced pressure coefficients on nuclear buildings and chimney exhausts

    International Nuclear Information System (INIS)

    Highlights: • Experiments on scale models of nuclear buildings and chimney exhausts were performed. • Pressure coefficient fields on buildings are shown for various wind directions. • Evolution of pressure coefficient vs U/W ratio is given for various chimney exhausts. • RANS simulations using SST k–ω turbulence model were performed on most studied cases. • A good agreement is overall observed, with Root Mean Square Deviation lower than 0.15. - Abstract: Wind creates pressure effects on different surfaces of buildings according to their exposure to the wind, in particular at external communications. In nuclear facilities, these effects can change contamination transfers inside the building and can even lead to contamination release into the environment, especially in damaged (ventilation stopped) or accidental situations. The diversity of geometries of facilities requires the use of a validated code for predicting pressure coefficients, which characterize the wind effect on the building walls and the interaction between the wind and chimney exhaust. The first aim of a research program launched by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), was therefore to acquire experimental data of the mean pressure coefficients for different geometries of buildings and chimneys through wind tunnel tests and then to validate a CFD code (ANSYS CFX) from these experimental results. The simulations were performed using a steady RANS approach and a two-equation SST k–ω turbulence model. After a mesh sensitivity study for one configuration of building and chimney, a comparison was carried out between the numerical and experimental values for other studied configurations. This comparison was generally satisfactory, averaged over all measurement points, with values of Root Mean Square Deviations lower than 0.15 for most cases

  20. Geochemistry and mineralogy of a silica chimney from an inactive seafloor hydrothermal field (East Pacific Rise, 18°S)

    OpenAIRE

    Dekov, V.M.; Lalonde, S.V.; Kamenov, G.D.; Bayon, G.; Shanks, W. C.; Fortin, D.; Fouquet, Y.; Moscati, R.J.

    2015-01-01

    An inactive vent field comprised of dead chimneys was discovered on the ultrafast East Pacific Rise (EPR) at 18 degrees S during the research campaign NAUDUR with the R/V Le Nadir in December 1993. One of these chimneys was sampled, studied and found to be largely composed of silica-mineralized bacterial-like filaments. The filaments are inferred to be the result of microbial activity leading to silica (+/- Fe-oxyhydroxide) precipitation. The chimney grew from the most external layer (precipi...

  1. A study on thermo-hydraulic instability of boiling natural circulation loop with a chimney. 4. An analytical consideration of the stability and thermo-hydraulic characteristics in the chimney in high pressure

    International Nuclear Information System (INIS)

    Thermo-hydraulic instabilities of a boiling natural circulation loop with a chimney under high pressure were investigated using linear stability analysis. Drift-flux model was used for two-phase flow model. The instability regions as well as the thermo-hydraulic characteristics in the chimney such as wavy feature were examined, which were compared with the characteristics in low pressure. Instability could occur when exit quality was relatively low, which was the same manner as the characteristics in low pressure. In high-pressure, void was generated near channel exit, and void wave propagated in the chimney. In low pressure, steam was generated only near the chimney exit due to gravity induced flashing, and single-phase enthalpy wave, that is, temperature wave propagated in single-phase flow region. Though flow could be very stable in the high pressure and high power condition, the decay ratio of higher mode could be larger than that of lower mode. (author)

  2. Iron-sulfide-bearing chimneys as potential catalytic energy traps at life's emergence.

    Science.gov (United States)

    Mielke, Randall E; Robinson, Kirtland J; White, Lauren M; McGlynn, Shawn E; McEachern, Kavan; Bhartia, Rohit; Kanik, Isik; Russell, Michael J

    2011-12-01

    The concept that life emerged where alkaline hydrogen-bearing submarine hot springs exhaled into the most ancient acidulous ocean was used as a working hypothesis to investigate the nature of precipitate membranes. Alkaline solutions at 25-70°C and pH between 8 and 12, bearing HS(-)±silicate, were injected slowly into visi-jars containing ferrous chloride to partially simulate the early ocean on this or any other wet and icy, geologically active rocky world. Dependent on pH and sulfide content, fine tubular chimneys and geodal bubbles were generated with semipermeable walls 4-100 μm thick that comprised radial platelets of nanometric mackinawite [FeS]±ferrous hydroxide [∼Fe(OH)(2)], accompanied by silica and, at the higher temperature, greigite [Fe(3)S(4)]. Within the chimney walls, these platelets define a myriad of micropores. The interior walls of the chimneys host iron sulfide framboids, while, in cases where the alkaline solution has a pH>11 or relatively low sulfide content, their exteriors exhibit radial flanges with a spacing of ∼4 μm that comprise microdendrites of ferrous hydroxide. We speculate that this pattern results from outward and inward radial flow through the chimney walls. The outer Fe(OH)(2) flanges perhaps precipitate where the highly alkaline flow meets the ambient ferrous iron-bearing fluid, while the intervening troughs signal where the acidulous iron-bearing solutions could gain access to the sulfidic and alkaline interior of the chimneys, thereby leading to the precipitation of the framboids. Addition of soluble pentameric peptides enhances membrane durability and accentuates the crenulations on the chimney exteriors. These dynamic patterns may have implications for acid-base catalysis and the natural proton motive force acting through the matrix of the porous inorganic membrane. Thus, within such membranes, steep redox and pH gradients would bear across the nanometric platelets and separate the two counter-flowing solutions

  3. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys.

    Science.gov (United States)

    Olins, H C; Rogers, D R; Frank, K L; Vidoudez, C; Girguis, P R

    2013-05-01

    Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the

  4. Scientific and Cost Effective Monitoring: The Case of an Aerial Insectivore, the Chimney Swift

    Directory of Open Access Journals (Sweden)

    Sébastien Rioux

    2010-12-01

    Full Text Available The increased pace of species listing worldwide, coupled with the scarcity of conservation funding, promote the use of targeted monitoring. We applied the recommendations of Nichols and Williams (Trends in Ecology and Evolution 2006 24:668-673 to optimize the Québec Chimney Swift Monitoring Program, an ongoing volunteer-based monitoring initiative launched in 1998. Past objectives of the program were to fill knowledge gaps about occupancy patterns at roosts sites, determine spatial and temporal distribution of Chimney Swifts (Chaetura pelagica across the province, locate active nest sites, and monitor temporal fluctuations of the population. By applying an adaptive management framework, we modified the current monitoring scheme into a more focused initiative testing newly developed hypotheses about the state of the system. This new approach yielded significant scientific gains as well as annual savings of 19.6%. It may prove pertinent to current and future swift monitoring initiatives and to other aerial insectivore species.

  5. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J.M.

    1985-12-01

    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented.

  6. DESIGN NOTE: Ultrasonic velocity meter to evaluate the behaviour of a solar chimney

    Science.gov (United States)

    Olmos, P.

    2004-07-01

    The addition of solar chimneys represents a substantial improvement in the natural ventilation scheme of a building and is thus an important component of so-called passive cooling, mainly in warm climates. In order to evaluate and/or control its performance, an accurate measurement of the velocity and temperature of the air passing through the duct is needed. Normal commercial equipment, developed for other applications, does not suit this particular scenario very well. An ultrasonic velocity meter has been specially designed, manufactured and tested inside an actual chimney, proving that this approach is a reliable solution to the problem of measuring the ventilation parameters. Here a detailed description of the instrument is given, along with a presentation of its first operational tests.

  7. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    International Nuclear Information System (INIS)

    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented

  8. Solar chimney: A sustainable approach for ventilation and building space conditioning

    Directory of Open Access Journals (Sweden)

    Lal, S.,

    2013-03-01

    Full Text Available The residential and commercial buildings demand increase with rapidly growing population. It leads to the vertical growth of the buildings and needs proper ventilation and day-lighting. The natural air ventilation system is not significantly works in conventional structure, so fans and air conditioners are mandatory to meet the proper ventilation and space conditioning. Globally building sector consumed largest energy and utmost consumed in heating, ventilation and space conditioning. This load can be reduced by application of solar chimney and integrated approaches in buildings for heating, ventilation and space conditioning. It is a sustainable approach for these applications in buildings. The authors are reviewed the concept, various method of evaluation, modelings and performance of solar chimney variables, applications and integrated approaches.

  9. Active reduction of the dominant clear tone component of the noise pollution from power plant chimneys

    International Nuclear Information System (INIS)

    An investigation of a system for active reduction of an irritating dominant clear tone emitted as a part of the noise pollution from a power plant chimney is described. Experiments were carried out on a scale model with diameters 3-4 times less than the actual chimney. Reduction of 25-30 decibels was achieved in relation to the clear tone in the frequency range in connection with which it could be expected that the noise-muffling system would work. The system was also seen to be able to follow the expected variation in the noise signals and to be stable during a longer period of time. The theories on which the experiment was based, the experimental setup and measurement methods and results are presented. (AB)

  10. Scientific and Cost Effective Monitoring: The Case of an Aerial Insectivore, the Chimney Swift

    OpenAIRE

    Sébastien Rioux; Savard, Jean-Pierre L.; François Shaffer

    2010-01-01

    The increased pace of species listing worldwide, coupled with the scarcity of conservation funding, promote the use of targeted monitoring. We applied the recommendations of Nichols and Williams (Trends in Ecology and Evolution 2006 24:668-673) to optimize the Québec Chimney Swift Monitoring Program, an ongoing volunteer-based monitoring initiative launched in 1998. Past objectives of the program were to fill knowledge gaps about occupancy patterns at roosts sites, determine spatial and tempo...

  11. Lung function in woodsmoke-exposed Guatemalan children following a chimney stove intervention.

    OpenAIRE

    Heinzerling, AP; Guarnieri, MJ; Mann, JK; Diaz, JV; Thompson, LM; Diaz, A.; Bruce, NG; Smith, KR; Balmes, JR

    2016-01-01

    Household air pollution (HAP) from solid fuel combustion is a major contributor to the global burden of disease, with considerable impact from respiratory infections in children. The impact of HAP on lung function is unknown.The Childhood Exposure to Respirable Particulate Matter (CRECER) prospective cohort study followed Guatemalan children who participated in the Randomised Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) trial of a chimney stove intervention to determi...

  12. Uranium prospecting in alkaline mountain chimneys of Serra Negra and Salitre - Minas Gerais, Brasil

    International Nuclear Information System (INIS)

    The occurence of radioactive minerals such as apatite and pyrochlore, in the alkaline chimneys of Serra Negra and Salitre (Minas Gerais, Brazil), is discussed. Also mentioned are other minerals of interest associated with the alkaline magma such as columbite, fluorite, monazite, zircon, baddeleyite, etc, which in favourable conditions may occur in deposits of great economical value, and which may present high contents of rare earths, thorium and uranium

  13. Performance analysis of conventional and sloped solar chimney power plants in China

    International Nuclear Information System (INIS)

    The solar chimney power plant (SCPP) has been accepted as one of the most promising approaches for future large-scale solar energy applications. This paper reports on a heat transfer model that is used to compare the performance of a conventional solar chimney power plant (CSCPP) and two sloped solar chimney power plants (SSCPPs) with the collector oriented at 30° and 60°, respectively. The power generation from SCPPs at different latitudes in China is also analyzed. Results indicate that the larger solar collector angle leads to improved performance in winter but results in lower performance in summer. It is found that the optimal collector angle to achieve the maximum power in Lanzhou, China, is around 60°. Main factors that influence the performance of SCPPs also include the system height and the air thermophysical characteristics. The ground energy loss, reflected solar radiation, and kinetic loss at the chimney outlet are the main energy losses in SCPPs. The studies also show SSCPPs are more suitable for high latitude regions in Northwest China, but CSCPPs are suggested to be built in southeastern and eastern parts of China with the combination to the local agriculture. - Highlights: ► The optimum collector angle for maximum power generation is 60° in Lanzhou. ► Main parameters influencing performances are the system height and air property. ► Ground loss, reflected loss and outlet kinetic loss are the main energy losses. ► The sloped styles are suitable for Northwest China. ► The conventional styles are suitable for Southeast and East China.

  14. The application of masonry chimney venting tables for oil-fired appliances

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Strasser, J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    This paper presents an overview of the results of work in developing a set of rational guidelines for the venting of modern oil-fired appliances. The activities included the continued development and completion of the Oil-Heat Vent Analysis Program (OHVAP), Version 1.0 and the interpretation of nearly 2,000 runs in preparing recommendations for presentation in table form. These results are presented in the form of venting tables for the installation of chimney vent systems for mid- and high-efficiency oil-fired heating appliances using masonry chimneys. A brief description of OHVAP is given as well as a discussion of what the program does. Recommendations based on the results of OHVAP are presented in the form of five tables spanning oil-fired appliance Steady state Efficiencies (Eff{sub ss}) of 80% to 88%. The assumptions used in the calculations and examples of the computed results are presented as well as a discussion of the rationale for masonry chimney system treatment. Working examples are given with suggested diagnostic approaches for application of the table recommendations.

  15. Numerical investigation of a plume from a power generating solar chimney in an atmospheric cross flow

    Science.gov (United States)

    Zhou, Xinping; Yang, Jiakuan; Ochieng, Reccab M.; Li, Xiangmei; Xiao, Bo

    2009-01-01

    A plume in an atmospheric cross flow from a power generating solar chimney is investigated using a three-dimensional numerical simulation model. The simulation model is validated by comparing the data calculated using our model with the numerical simulated results for one-dimensional buoyancy-driven compressible flow in a proposed 1500 m high solar chimney. In this paper, the parametric performances including static pressure, static temperature, density, streamline, and relative humidity field of the flow at the symmetry plane, at the cross plane 2700 m high and at the cross plane 750 m high in the geometry are simulated. It is found that relative humidity of the plume is greatly increased due to the jet of a plume into the surroundings colder than the plume. In addition to a great amount of tiny granules in the plume originating from the ground as effective condensation nuclei of moisture, a condensation would occur, a cloud system and precipitation e.g. rainfall, snow and hail would be formed around the plume when vapor is supersaturated. It is also found that with an increase in chimney height or relative humidity of atmosphere, or a reduction in wind velocity, relative humidity is increased, and increases the probability of precipitation and the potential precipitation areas. Furthermore, the latent heat released from the condensation of supersaturated vapor can aid the plume to keep on rising.

  16. Heat transfer by convection, conduction and radiation in solar chimney systems for ventilation of dwellings

    International Nuclear Information System (INIS)

    Numerical study by conjugate heat transfer is carried out of solar chimney systems for heating and ventilation of dwellings. Conservation equations are solved by finite difference-control volume numerical method. The governing parameters were: the Rayleigh numbers from 5 x 108 to 1011, the Prandtl number, Pr = 0.7, constant for air, the chimney aspect ratio, A = H/L from 6 to 15, the air channel width l'/L = 0.2 to 0.5, the air entrance port size, h/L = 0.167-0.667, the wall thickness l/L = 0.25-0.4, the conductivity ratio kr from 5 to 50 and the surface emissivity, ε from 0 to 1. The Nusselt number, the dimensionless volume flow rate V. and radiation heat flux ratio qr/qtot are calculated as a function of the governing parameters, and streamlines and isotherms are produced. The results show that the surface radiation modifies the flow and temperature fields, affects the Nusselt number and the volume flow rate, both in a positive way, and improves the ventilation performance of the chimneys

  17. Basement Kind Effects on Air Temperature of a Solar Chimney in Baghdad - Iraq Weather

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2011-01-01

    Full Text Available A solar updraft tower power plant (solar tower is a solar thermal power plant that utilizes a combination of solar air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity. This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009. The results show that the best chimney efficiency attained was 49.7% for pebbles base. The highest collected air temperature reached was 49ºC when using the black pebbles basement also.also, the maximum basement temperature measured was 59ºC for black pebbles. High increaments in collected air temperatures were achieved in comparison with the ambient air temperatures for the three basement kinds. The highest temperature difference reached was 22ºC with the pebble ground.

  18. A scaling investigation of the laminar convective flow in a solar chimney for natural ventilation

    International Nuclear Information System (INIS)

    Highlights: • Scaling investigation of a solar chimney for ventilation is carried out. • Three distinct flow regimes are identified depending on the Rayleigh number. • Scaling relations are proposed to describe the transient flow development and are verified by numerical data. -- Abstract: The flow behavior due to natural convection of air (with a Prandtl number less than 1) inside a solar chimney with an imposed heat flux on a vertical absorber wall is investigated by a scaling analysis and a corresponding numerical simulation. Three distinct flow regimes are identified, one with a distinct thermal boundary layer and the other two without a distinct thermal boundary layer, depending on the Rayleigh number. The two regimes without a distinct thermal boundary layer are further classified into low and medium Rayleigh number sub-regimes respectively. These sub-regimes are characterized by conduction dominance in which the thermal boundary layer grows to encompass the entire width of the channel before convection becomes important. Flow development in each of these flow regimes and sub-regimes is characterized through transient scaling, and scaling correlations are developed to describe the temperature, flow velocity and mass flow rate, which characterize the ventilation performance of the solar chimney. The scaling arguments are validated by the corresponding numerical data

  19. Continuous In Situ Measurements of Near Bottom Chemistry and Sediment-Water Fluxes with the Chimney Sampler Array (CSA)

    Science.gov (United States)

    Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.

    2011-12-01

    The Chimney Sampler Array (CSA) was designed to measure in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical fluxes at upper slope sites in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water fluxes. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to measure temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core measurements and measured temporal variability in oxygen and methane sediment-water fluxes at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic flux events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates

  20. Biogeochemistry of Hydrothermal Chimney Environments: Continuous-Flow Experiments at in situ Temperature and Pressure

    Science.gov (United States)

    Houghton, J.; Seyfried, W.; Reysenbach, A.; Banta, A.; von Damm, K.

    2002-12-01

    Recent interest in the existence of a subsurface microbial biosphere at hydrothermal vents has resulted in a plethora of new questions that might best be answered using interdisciplinary techniques that combine geochemistry, microbial ecology, and molecular biology. Ideally, such studies will quantitatively address issues concerning what organisms exist in the subsurface, what metabolisms are sustained in the hydrothermal environment, and what effects these active organisms might have on the nearby fluid and rock. We present a new experimental approach to studying these questions that enables monitoring of an active hydrothermal community of microbes in the presence of chimney material at in situ temperature and pressure. This apparatus is designed as a continuous-flow reactor from which fluid samples can be extracted during the course of the experiment to measure chemistry and biomass, and at the termination of an experiment solids can be extracted for analysis of mineralogical changes and microbial identification. Results of a series of experiments conducted using hydrothermal chimney material (solids and microbial community) collected from 21° N and 9° N East Pacific Rise are presented. At 70° C, a seawater-based fluid with additional NO3-, CO2(aq), and H2(aq) was reacted with chimney material from L vent, 9° N EPR. The fluid lost significant NO3-, PO43-, and gained SO42- even after accounting for the contribution from anhydrite dissolution. No significant sulfide or iron was observed in the fluid. Analysis of the DNA extracted from the solids at the termination of the experiment using partial 16S-rRNA sequence data revealed that the dominant bacteria were S-oxidizing tube worm endosymbionts, a S/NO3- reducing member of the Deferribacter genus, and a H2-oxidizing/NO3- reducing strain of Aquifex. Mineral analysis from before and after the experiment indicates the loss of pyrrhotite (FeS) and anhydrite (CaSO4), and the gain of an Fe-oxide phase tentatively

  1. A parametric study on the feasibility of solar chimney power plants in North Cyprus conditions

    International Nuclear Information System (INIS)

    Highlights: • A parametric for solar chimney power plants (SCPPs) feasibility approach is proposed. • We found the annual electricity production of a 30 MW SCPP to be 94.5 GW h. • We compare this production with the same capacity fossil fuel thermal power plant. • We assess the effect of varying some parameters on economic viability of the SCPP. • Capital expenditure plays a critical role in assessing SCPP economic feasibility. - Abstract: The present work investigates the feasibility of installing a solar chimney power plant (SCPP) under North Cyprus (NC) conditions. The method utilized for the simulations of electricity production was compared and verified by the experimental recordings of the prototype in Manzanares, Spain, before carrying out performance predictions for different plant sizes, collector diameters and chimney heights. The annual electricity production of a 30 MW hypothetical SCPP system is estimated to be 94.5 GW h, which can cater for annual electricity needs of over 22,128 residences without any CO2, NOx and SOx emissions. For an installation cost of €145 million, it was estimated that the savings-to-investment ratio (SIR) would be 1.14, indicating a marginal economic feasibility. It is important to find ways of reducing the installation cost in order to strengthen the economic viability of the system. Considering that, at present, fuel oil no. 6 is being used in NC to produce electricity; the SCPP would cause avoidance of 24,840 tonnes of CO2 delivered into the atmosphere annually, if it replaced an equivalently-sized conventional power unit. To identify the most feasible cost option for the installation of the SCPP, a parametric cost analysis is carried out by varying the parameters such as; capital investment costs, carbon dioxide emission trading system price, chimney height, collector diameter and SCPP plant capacity. In all cases, the effect of these parameters on the economic feasibility indicators, such as SIR, net present

  2. Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant

    International Nuclear Information System (INIS)

    Solar chimney power plants are a technology capable to generate electric energy through a wind turbine using the solar radiation as energy source; nevertheless, one of the objectives pursued since its invention is to achieve energy generation during day and night. Soil under the power plant plays an important role on the energy balance and heat transfer, due to its natural behavior as a heat storage system. The characteristics of the soil influence the ability of the solar chimney power plant to generate power continuously. Present work analyzes the thermodynamic behavior and the power output of a solar chimney power plant over a daily operation cycle taking into account the soil as a heat storage system, through a numerical modeling under non-steady conditions. The influence of the soil thermal inertia and the effects of soil compaction degree on the output power generation are studied. A sizeable increase of 10% in the output power is obtained when the soil compaction increases. -- Highlights: ► Solar chimney power plants are a technology capable to generate renewable energy from solar radiation. ► The ground under the solar chimney can act as a heat storage system. ► The soil thermal inertia plays a relevant role in a scenario where the plant operates continuously. ► A higher compaction of soil causes a relevant increase on total energy generation.

  3. Design and simulation of a geothermal–solar combined chimney power plant

    International Nuclear Information System (INIS)

    Highlights: • A geothermal–solar chimney power plant (GSCPP) is designed and analyzed. • Three different models, viz. full solar model, full geothermal model and geothermal–solar mode are compared. • Power generation under GSM is larger than the sum of FSM and FGM. • GSCPP can effectively solve the continuous operation problem of the SCPP. - Abstract: The solar chimney power plant (SCPP) is dominated by the solar radiation, and therefore its discontinuous operation is an unavoidable problem. In this paper, low temperature geothermal water is introduced into the SCPP for overcoming this problem. Based on a developed transient model, theoretical analyses are carried out to investigate the performance of the geothermal–solar chimney power plant (GSCPP) with main dimensions the same as the Manzanares prototype in Spain. Three operation models, viz. the full solar model, the full geothermal model and the geothermal–solar combined model are compared in typical summer and winter days and throughout the year. It is found that the GSCPP can attractively run in the GSM to deliver power continuously. Due to the ambient-dependant geothermal water outlet temperature, introducing the geothermal water makes greater contribution in winter days than in summer days, in the night than in the daytime. Power generation under GSM is larger than the sum of FSM and FGM. GSM is not the simple superposition of FSM and FGM, but makes better utilization of solar and geothermal energy. In addition, introducing high temperature and mass flow rate geothermal water can doubled and redoubled improve the GSCPP’s power capacity

  4. Improvement of the Vertical Dispersion of Pollutants Resulting From Chimneys by Thermosiphon Effect

    Directory of Open Access Journals (Sweden)

    A. O.M. Mahmoud

    2006-01-01

    Full Text Available The dispersion of pollutants, resulting from industrial chimneys, in the surrounding atmosphere made the interest in realizing emitting conditions appears. It also encourages the vertical dispersion of these pollutants. At a given wind velocity, the height of this dispersion is essentially a function of the thermal power and the flow rate at the chimney exit. To improve these qualities, we propose a system that could be integrated to the industrial chimney exit. An open-ended vertical cylinder of larger diameter essentially constitutes this system. In order to determine the characteristics of the resulting flow, we simulated the problem in the laboratory while studying the evolution of a free thermal plume generated by a disk heated uniformly by the Joule effect at a constant temperature. The thermal plume expands in a quiet environment of isotherm temperature. To study the thermosiphon effect, we surrounded the plume source by a vertical cylinder opened at the extremities. Thermal radiation emitted by the hot disk heats the cylinder wall. The pressure drop due to the acceleration of the flow at the cylinder inlet causes the appearance of thermosiphon effect around the thermal plume. The analysis of the average fields of velocity and temperature shows that the thermosiphon effect entails a good homogenization of the flow at the system exit. Furthermore, the comparison of the results obtained at the exit of the two studied systems shows a relative increase of the flow rate and the thermal power absorbed by the air of the order of 50% under the thermosiphon effect. This result is expressed by a gain in the plume rise of the order of 40%.

  5. Microbial Primary Productivity in Hydrothermal Vent Chimneys at Middle Valley, Juan de Fuca Ridge

    Science.gov (United States)

    Olins, H. C.; Rogers, D.; Frank, K. L.; Girguis, P. R.; Vidoudez, C.

    2012-12-01

    Chemosynthetic primary productivity supports hydrothermal vent ecosystems, but the extent of that productivity has not been well measured. To examine the role that environmental temperature plays in controlling carbon fixation rates, and to assess the degree to which microbial community composition, in situ geochemistry, and mineralogy influence carbon fixation, we conducted a series of shipboard incubations across a range of temperatures (4, 25, 50 and 90°C) and at environmentally relevant geochemical conditions using material recovered from three hydrothermal vent chimneys in the Middle Valley hydrothermal vent field (Juan de Fuca Ridge). Net rates of carbon fixation (CFX) were greatest at lower temperatures, and were similar among structures. Rates did not correlate with the mineralogy or the geochemical composition of the high temperature fluids at each chimney. No obvious patterns of association were observed between carbon fixation rates and microbial community composition. Abundance of selected functional genes related to different carbon fixation pathway exhibited striking differences among the three study sites, but did not correlate with rates. Natural carbon isotope ratios implicate the Calvin Benson Bassham Cycle as the dominant mechanism of primary production in these systems, despite the abundance of genes related to other pathways (and presumably some degree of activity). Together these data reveal that primary productivity by endolithic communities does not exhibit much variation among these chimneys, and further reveal that microbial activity cannot easily be related to mineralogical and geochemical assessments that are made at a coarser scale. Indeed, the relationships between carbon fixation rates and community composition/functional gene abundance were also likely obfuscated by differences in scale at which these measurements were made. Regardless, these data reveal the degree to which endolithic, anaerobic carbon fixation contributes to

  6. Vallitalea pronyensis sp nova, isolated from a marine alkaline hydrothermal chimney

    OpenAIRE

    Ben Aissa, F.; Postec, A.; Erauso, G.; Payri, Claude; Pelletier, Bernard; Hamdi, M.; Ollivier, Bernard; Fardeau, Marie-Laure

    2014-01-01

    A novel thermotolerant, anaerobic, Gram-stain-positive, spore-forming bacterium was isolated from a hydrothermal chimney in Prony Bay, New Caledonia. This strain, designated FatNl3(T), grew at 15-55 degrees C (optimum 30 degrees C) and at pH 5.8-8.9 (optimum 7.7). It was slightly halophilic, requiring at least 0.5% NaCl for growth (optimum 2.5-3.0 %), and was able to grow at up to 6% NaCl. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite were not used as terminal electron ...

  7. Early Results of Chimney Technique for Type B Aortic Dissections Extending to the Aortic Arch

    International Nuclear Information System (INIS)

    ObjectiveTo summarize our early experience gained from the chimney technique for type B aortic dissection (TBAD) extending to the aortic arch and to evaluate the aortic remodeling in the follow-up period.MethodsFrom September 2011 to July 2014, 27 consecutive TBAD patients without adequate proximal landing zones were retrograde analyzed. Chimney stent-grafts were deployed parallel to the main endografts to reserve flow to branch vessels while extending the landing zones. In the follow-up period, aortic remodeling was observed with computed tomography angiography.ResultsThe technical success rate was 100 %, and endografts were deployed in zone 0 (n = 3, 11.1 %), zone 1 (n = 18, 66.7 %), and zone 2 (n = 6, 22.2 %). Immediately, proximal endoleaks were detected in 5 patients (18.5 %). During a mean follow-up period of 17.6 months, computed tomography angiography showed all the aortic stent-grafts and chimney grafts to be patent. Favorable remodeling was observed at the level of maximum descending aorta and left subclavian artery with expansion of true lumen (from 18.4 ± 4.8 to 25 ± 0.86 mm, p < 0.001 and 27.1 ± 0.62 to 28.5 ± 0.37 mm, p < 0.001) and depressurization of false lumen (from 23.7 ± 2.7 to 8.7 ± 3.8 mm, p < 0.001, from 5.3 ± 1.2 to 2.1 ± 2.1 mm, p < 0.001). While at the level of maximum abdominal aorta, suboptimal remodeling of the total aorta (from 24.1 ± 0.4 to 23.6 ± 1.5 mm, p = 0.06) and true lumen (from 13.8 ± 0.6 to 14.5 ± 0.4 mm, p = 0.08) was observed.ConclusionBased on our limited experience, the chimney technique with thoracic endovascular repair is demonstrated to be promising for TBAD extending to the arch with favorable aortic remodeling

  8. Simulation of solar chimney power plant with an external heat source

    International Nuclear Information System (INIS)

    Solar chimney power plant is a sustainable source of power production. The key parameter to increase the system power output is to increase its size but the plant cannot operate during night hours. This study deals with simulation work to validate results of pilot plant at Manzanares and include the effects of waste heat from a gas turbine power plant in the system. The effects show continuous night operation, a 38.8 percent increase in power at 1000 W/m2 global solar irradiation at daytime and 1.14 percent increase in overall efficiency.

  9. Retrieval columns of SO2 in industrial chimneys using DOAS passive in traverse

    Science.gov (United States)

    Galicia Mejía, Rubén; de la Rosa Vázquez, José Manuel; Sosa Iglesias, Gustavo

    2011-10-01

    The optical Differential Optical Absorption Spectroscopy (DOAS) is a technique to measure pollutant emissions like SO2, from point sources and total fluxes in the atmosphere. Passive DOAS systems use sunlight like source. Measurements with such systems can be made in situ and in real time. The goal of this work is to report the implementation of hardware and software of a portable system to evaluate the pollutants emitted in the atmosphere by industrial chimneys. We show SO2 measurements obtained around PEMEX refinerys in Tula Hidalgo that enables the identification of their pollution degree with the knowledge of speed wind.

  10. Early Results of Chimney Technique for Type B Aortic Dissections Extending to the Aortic Arch

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen [Affiliated Hospital of Nantong University, Department of General Surgery (China); Tang, Hanfei; Qiao, Tong; Liu, Changjian; Zhou, Min, E-mail: 813477618@qq.com [The Affiliated Hospital of Nanjing University Medical School, Department of Vascular Surgery, Nanjing Drum Tower Hospital (China)

    2016-01-15

    ObjectiveTo summarize our early experience gained from the chimney technique for type B aortic dissection (TBAD) extending to the aortic arch and to evaluate the aortic remodeling in the follow-up period.MethodsFrom September 2011 to July 2014, 27 consecutive TBAD patients without adequate proximal landing zones were retrograde analyzed. Chimney stent-grafts were deployed parallel to the main endografts to reserve flow to branch vessels while extending the landing zones. In the follow-up period, aortic remodeling was observed with computed tomography angiography.ResultsThe technical success rate was 100 %, and endografts were deployed in zone 0 (n = 3, 11.1 %), zone 1 (n = 18, 66.7 %), and zone 2 (n = 6, 22.2 %). Immediately, proximal endoleaks were detected in 5 patients (18.5 %). During a mean follow-up period of 17.6 months, computed tomography angiography showed all the aortic stent-grafts and chimney grafts to be patent. Favorable remodeling was observed at the level of maximum descending aorta and left subclavian artery with expansion of true lumen (from 18.4 ± 4.8 to 25 ± 0.86 mm, p < 0.001 and 27.1 ± 0.62 to 28.5 ± 0.37 mm, p < 0.001) and depressurization of false lumen (from 23.7 ± 2.7 to 8.7 ± 3.8 mm, p < 0.001, from 5.3 ± 1.2 to 2.1 ± 2.1 mm, p < 0.001). While at the level of maximum abdominal aorta, suboptimal remodeling of the total aorta (from 24.1 ± 0.4 to 23.6 ± 1.5 mm, p = 0.06) and true lumen (from 13.8 ± 0.6 to 14.5 ± 0.4 mm, p = 0.08) was observed.ConclusionBased on our limited experience, the chimney technique with thoracic endovascular repair is demonstrated to be promising for TBAD extending to the arch with favorable aortic remodeling.

  11. Simulation of solar chimney power plant with an external heat source

    Science.gov (United States)

    Islamuddin, Azeemuddin; Al-Kayiem, Hussain H.; Gilani, Syed I.

    2013-06-01

    Solar chimney power plant is a sustainable source of power production. The key parameter to increase the system power output is to increase its size but the plant cannot operate during night hours. This study deals with simulation work to validate results of pilot plant at Manzanares and include the effects of waste heat from a gas turbine power plant in the system. The effects show continuous night operation, a 38.8 percent increase in power at 1000 W/m2 global solar irradiation at daytime and 1.14 percent increase in overall efficiency.

  12. Experimental investigations of the sodium/air heat exchanger with natural draught chimney for the EFR

    International Nuclear Information System (INIS)

    In a first series of experiments in the new large sodium experimental plant ILONA, the post-shutdown heat removal system for the European Fast Breeder Reactor EFR developed by Interatom and working by natural convection was tested. The air-side flow in the heat exchanger and chimney was optimized in extensive model experiments and the results were taken into account in the construction of the Na/air heat exchanger in the ILONA. A considerable increase in output was achieved, compared to the design, based on the flow model experiments for the ILONA heat exchanger. (orig.)

  13. A novel large filamentous deltaproteobacterium on hydrothermally inactive sulfide chimneys of the Southern Mariana Trough

    Science.gov (United States)

    Kato, Shingo; Yamagishi, Akihiko

    2016-04-01

    Unusual large filamentous bacteria (LFB) have been found on the deep seafloor environments. They play a significant role in geochemical cycling in the dark environments. However, our knowledge of the spatial distribution and phylogenetic diversity of the LFB on the deep seafloor are still limited due to the inaccessibility to these environments. Here, we report the discovery of a novel LFB on a hydrothermally inactive sulfide chimney in a deep-sea hydrothermal field of the Southern Mariana Trough. Light and electron microscopic observation showed that the width and total length of the LFB were >8 μm and >100 μm, respectively, of which morphology was similar to that of other known LFB such as "cable bacteria" of the Desulfobulbaceae. Analyses of a 16S rRNA gene clone library and fluorescence in situ hybridization revealed that this LFB belongs to the Desulfobulbaceae. The 16S rRNA gene of the LFB showed 94% similarity to those of the reported cable bacteria and cultured deltaproteobacterial species, suggesting that the LFB is a novel cable bacterium of the Desulfobulbaceae. The novel LFB potentially play a role in sulfur cycling on sulfide chimneys at the hydrothermally ceasing or even ceased deep-sea hydrothermal fields.

  14. Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier

    Directory of Open Access Journals (Sweden)

    H. Hashemi

    2008-11-01

    Full Text Available Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA. In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP and support vector classifier (SVC are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.

  15. The experimental design of solar heating thermoelectric generator with wind cooling chimney

    International Nuclear Information System (INIS)

    Highlights: • We model an experimental design of thermal electrical generator. • Electrical parameters were collected under the solar radiation. • All the calculated values were obtained from collected data. • Generated power and electrical efficiency were changed by thermal gradient. - Abstract: In this paper we present an experimental design of new solar based thermoelectric generator with wind chimney. Presented generator mainly consists of four parts: a heat pipe with solar collector tube for solar heating, a wind chimney for cooling, a thermoelectric (TE) module for electricity generation and measurement devices-sensors. Presented generator based on experimental design. Aim of this experimental design is to show an alternative way for cheap and efficiently renewable energy producing. The most important features of presented generator are uncomplicated structure, efficiently and cheapness. This experimental design can be improved and used for domestic and commercial application. For this reason, main parts of system can be enhanced and system can be improved. To evaluate of presented generator we collected some experimental data on designed system. Then maximum output power, electrical efficiency and Seebeck coefficient are calculated from obtained data. Results of the measurement are displayed in the form of graphs and tables. Our experiment was carried out on 16th and 21th August, in Samsun, on the north coast of Turkey with the exact location 41°14′N 36°26′E with sea level. Collection of the data was performed from 8:30 a.m. to 4 p.m

  16. Thermal Analyses of Combined Utilization Process of Seawater by Solar Chimney

    Institute of Scientific and Technical Information of China (English)

    WANG Yiping; FANG Zhenlei; ZHU Li

    2009-01-01

    It is promising to simultaneously develop multiple products through the combined utilization of sea-water by solar chimney technology. A small scale experimental system was set up. The collector temperature, the seawater temperature, and the temperature and humidity of the airflow under the collector were measured. Thermal network analysis of the system was carried out. The results show that the airflow is nearly saturated at the entrance of the chimney, and the mean dry-bulb and wet-bulb temperatures of the airflow have increased by 8.4℃ and 9.6℃ respectively. The radiation heat transfer between the collector and the sky is the biggest heat loss in the system, which is up to 29.1% on average of the solar energy. However, the water evaporation heat is about 23.6% on average of the solar energy. To reduce the heat loss and enhance the water evaporation, it is necessary to reduce the emissivity and thermal conductivity of the collector and increase the evaporation areas.

  17. The use of a rubble chimney for denitrification of irrigation return waters

    International Nuclear Information System (INIS)

    Biological denitrification has been proposed as a means of removing nitrates from waste waters to control eutrophication in receiving waters. A potential use for this method is the treatment of irrigation return waters containing high concentrations of nitrate-nitrogen, since direct discharge of such wastes may cause objectionable algal growth in the receiving waters. For example, the process may be used to treat agricultural waste waters in the San Joaquin Valley in California, where an estimated 580,000 acre-feet/year of return waters, containing 20 mg/l of nitrate-nitrogen, will require disposal by A.D. 2020. Two methods of biological denitrification are presently under study for possible use in the San Joaquin Valley. In one method nitrates are reduced to nitrogen gas by bacterial action in deep ponds; in the other method bacterial denitrification takes place in biological filters. In biological filters, bacteria are grown on columns of submerged stones. A possible alternative to the conventional construction of these filters is the creation of a rubble chimney by a contained nuclear explosion. This paper presents the results of a preliminary investigation of the feasibility of using a rubble chimney as a biological filter for denitrification. (author)

  18. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    OpenAIRE

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Margaret K. Tivey; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediment...

  19. Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney

    International Nuclear Information System (INIS)

    Highlights: • A low grade waste heat recovery system based on the concept of solar chimney is proposed. • The effects of three key factors on the system performance are examined. • Thermodynamics analysis is to find a better way to utilize low grade heat source efficiently. - Abstract: The utilization of low-temperature waste heat draws more and more attention due to serious energy crisis nowadays. This paper proposes a low-temperature waste heat recovery system based on the concept of solar chimney. In the system, low-temperature waste heat is used to heat air to produce an air updraft in the chimney tower. The air updraft propels a turbine fixed at the base of the chimney tower to convert waste heat into electricity. The mathematical model of the system is established based on first law and second law of thermodynamics. Hot water is selected as the representative of low-temperature waste heat sources for researching. The heat source temperature, ambient air temperature and area of heat transfer are examined to evaluate their effects on the system performance such as velocity of updraft, mass flow rate of air, power output, conversion efficiency, and exergy efficiency. The velocity of air demonstrates a better stability than the mass flow rate of air and the pressure difference when temperature of heat source, ambient air temperature or area of heat transfer changes

  20. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats

    DEFF Research Database (Denmark)

    Teske, Andreas; de Beer, Dirk; McKay, Luke J; Tivey, Margaret K; Biddle, Jennifer F; Hoer, Daniel; Lloyd, Karen G; Lever, Mark A; Røy, Hans; Albert, Daniel B; Mendlovitz, Howard P; MacGregor, Barbara J

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and...... selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these...... hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region....

  1. Antecedent and progress of the project on the treatment of chimney gases with electrons in Mexico

    International Nuclear Information System (INIS)

    After the realization of the chimney gases treatment seminar with electrons, organized jointly among the National Institute of Nuclear Research (ININ) and the International Atomic Energy Agency (IAEA), in August of 1990 and following one of the received recommendations, it was elaborated an economic technical feasibility study of this process in Mexico, using technical data of a thermoelectric power station of Federal Commission of Electricity, where is being consumed fuel oil. This study is good to know some technical parameters of a plant of this process, proposed to settle in Mexico, so as some economic estimates of installation and operation costs of this plant; also, it is traced about the construction of a demonstration plant of the process, with capacity of 20,000 m3N/h, using the same data of the thermoelectric power station considered previously, as the first step in the scaling of this process toward industrial level. (Author)

  2. Efficiency enhancement of wood stove integrated with catalytic combustor and modified chimney

    Directory of Open Access Journals (Sweden)

    G. Murali

    2014-12-01

    Full Text Available Domestic wood combustion produces smoke that is harmful to human health and increases fine particle level in the atmosphere. Some necessary changes in the design are essential in the domestic wood stove in order to improve the performance and scale down the emission. In this work, an improved wood stove integrated with the catalytic combustor and modified chimney that uses wood as fuel has been experimentally evaluated. Water boiling test, cooking test and emission test have been conducted to evaluate the performance of the stove. It was observed that emission has been considerably controlled because of the incorporation of catalytic combustor. The heat losses through the walls of stove decresed by providing ceramic insulation. The thermal efficiency value of an improved wood stove obtained was 41.18% and this is 31.52% higher than traditional stove. The improved wood stove results better performance than a traditional wood stove.

  3. A First Approach to Natural Thermoventilation of Residential Buildings through Ventilation Chimneys Supplied by Solar Ponds

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2015-07-01

    Full Text Available The exploitation of natural ventilation is a good solution to improve buildings from an energetic point of view and to fulfill the requirements demanded by the thermohygrometric comfort and the air quality in enclosed spaces. Some past researches demonstrated how some devices, useful to this purpose, follow the principles of solar chimneys and are able to move air masses while exploiting the Archimedes thrust. The natural ventilation must be supplied by a flow moving upward, generated by a heat source performing at temperatures slightly higher than the one present in the environment. To have a minimum energetic effect, the heat can be extracted from solar ponds; solar ponds are able to collect and store solar energy in the geographical regions characterized by sufficient values of solar radiation. Thus it is possible, in summer, to provoke a nocturnal natural ventilation useful for the air change in indoor spaces (in those climatic areas where, during the night, there is a temperature gradient.

  4. Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life

    Science.gov (United States)

    White, Lauren M.; Bhartia, Rohit; Stucky, Galen D.; Kanik, Isik; Russell, Michael J.

    2015-11-01

    One model for the emergence of life posits that ancient, low temperature, submarine alkaline hydrothermal vents, partly composed of iron-sulfides, were capable of catalyzing the synthesis of prebiotic organic molecules from CO2, H2 and CH4. Specifically, hydrothermal mackinawite (FeIIS) and greigite (FeIIFeIII2S4) have been highlighted in previous studies as analogs of the active centers of hydrogenase, ferredoxin, acetyl coenzyme-A synthase and carbon monoxide dehydrogenase featured in the biochemistry of certain autotrophic prokaryotes that occupy the base of the evolutionary tree. Despite the proposed importance of iron sulfide minerals and clusters in the synthesis of abiotic organic molecules, the mechanisms for the formation of these sulfides from solution and their preservation under the anoxic and low temperature (below 100 °C) conditions expected in off-axis submarine alkaline vent systems is not well understood (Bourdoiseau et al., 2011; Rickard and Luther, 2007). To rectify this, single hydrothermal chimneys were precipitated using a unique apparatus to simulate growth at hydrothermal vents of moderate temperature under supposed Hadean ocean-bottom conditions. Iron sulfide phases were observed through Raman spectroscopy at growth temperatures ranging from 40° to 80 °C. Fe(III)-containing mackinawite is confirmed to be present with mackinawite and greigite, supporting an FeIII-mackinawite intermediate mechanism for the transformation of mackinawite to greigite below 100 °C. Raman spectroscopy of the chimneys revealed a maximum yield of greigite at 75 °C. These results suggest abiotic production of catalytically active mackinawite and greigite are possible under early Earth hydrothermal conditions as well as on other wet, rocky worlds geochemically similar to the Earth.

  5. Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway

    Science.gov (United States)

    Paull, C.K.; Ussler, W., III; Holbrook, W.S.; Hill, T.M.; Keaten, R.; Mienert, J.; Haflidason, H.; Johnson, J.E.; Winters, W.J.; Lorenson, T.D.

    2008-01-01

    Seafloor pockmarks and subsurface chimney structures are common on the Norwegian continental margin north of the Storegga Slide scar. Such features are generally inferred to be associated with fluid expulsion, and imply overpressures in the subsurface. Six long gravity and piston cores taken from the interior of three pockmarks were compared with four other cores taken from the same area but outside the pockmarks, in order to elucidate the origins and stratigraphy of these features and their possible association with the Storegga Slide event. Sulfate gradients in cores from within pockmarks are less steep than those in cores from outside the pockmarks, which indicates that the flux of methane to the seafloor is presently smaller within the pockmarks than in the adjacent undisturbed sediments. This suggests that these subsurface chimneys are not fluid flow conduits lined with gas hydrate. Methane-derived authigenic carbonates and Bathymodiolus shells obtained from a pockmark at >6.3 m below the seafloor indicate that methane was previously available to support a chemosynthetic community within the pockmark. AMS 14C measurements of planktonic Foraminifera overlying and interlayered with the shell-bearing sediment indicate that methane was present on the seafloor within the pockmark prior to 14 ka 14C years B.P., i.e., well before the last major Storegga Slide event (7.2 ka 14C years B.P., or 8.2 ka calendar years B.P.). These observations provide evidence that overpressured fluids existed within the continental margin sediments off Norway during the last major advance of Pleistocene glaciation. ?? Springer-Verlag 2007.

  6. Metal sources of black smoker chimneys, Endeavour Segment, Juan de Fuca Ridge: Pb isotope constraints

    Energy Technology Data Exchange (ETDEWEB)

    Yao Huiqiang, E-mail: hqyao11@yahoo.com [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou Huaiyang, E-mail: zhouhy@tongji.edu.cn [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Peng Xiaotong [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Bao Shenxu [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wu Zijun; Li Jiangtao [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Sun Zhilei; Chen Zhiqiang; Li Jiwei [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China); National Key Lab of Marine Geology, Tongji University, Shanghai 200092 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chen Guangqian [Guangzhou Institute of Geochemistry Chinese Academy of Science, Guangzhou 510640 (China)

    2009-10-15

    Hydrothermal chimney sulfides, vent cap chimney samples, Fe-oxide and basalts from sediment-starving Juan de Fuca Ridge, in the Endeavour segment, exhibit a range of Pb isotope ratios ({sup 206}Pb/{sup 204}Pb = 18.658-18.769; {sup 207}Pb/{sup 204}Pb = 15.457-15.566; {sup 208}Pb/{sup 204}Pb = 37.810-38.276). The data array is not parallel to the northern hemisphere mantle reservoirs indicating a possible sediment component within the sulfides. By assuming that the potential end-member sediment component has a {sup 207}Pb/{sup 204}Pb (15.70) similar to Middle Valley sediment, it is suggested the potential end-member sediment component may have {sup 206}Pb/{sup 204}Pb = 18.90; {sup 208}Pb/{sup 204}Pb = 38.82. Basalt-derived Pb for the Endeavour segment hydrothermal system involves about 50/50 leaching of E-MORB and T2-MORB. Detailed observations show the Mothra field derives more Pb from T2-MORB than the Main Endeavour field does. According to the binary mixing model, the results show little Pb (<1.5%) or no Pb derivation from sedimentary sources. However, the high NH{sub 4}{sup +}, CH{sub 4} and Br/Cl ratios in hydrothermal fluids are consistent with a sediment component within the segment. Reconciling the Pb isotope data with the chemistry data of hydrothermal fluids, it is suggested that the sediment component may be located in a lower temperature recharge zone where Pb could not be mobilized from the sediment.

  7. Endovascular Aneurysm Repair Using a Reverse Chimney Technique in a Patient With Marfan Syndrome and Contained Ruptured Chronic Type B Dissection

    International Nuclear Information System (INIS)

    We report endovascular thoracic and abdominal aneurysm repair (EVAR) with reverse chimney technique in a patient with contained ruptured type B dissection. EVAR seems feasible as a bailout option in Marfan patients with acute life-threatening disease.

  8. Soil-Structure Interaction Analysis of Tall Reinforced Concrete Chimney with Piled Raft and Annular Raft under Along-Wind Load

    Directory of Open Access Journals (Sweden)

    B. R. Jayalekshmi

    2013-01-01

    Full Text Available A three-dimensional (3D soil-structure interaction (SSI analysis of 300 m high reinforced concrete chimneys having piled annular raft and annular raft foundations subjected to along-wind load is carried out in the present study. To understand the significance of SSI, four types of soils were considered based on their flexibility. The effect of stiffness of the raft was evaluated using three different ratios of external diameter to thickness of the annular raft. The along-wind load was computed according to IS:4998 (Part 1-1992. The integrated chimney-foundation-soil system was analysed by commercial finite element (FE software ANSYS, based on direct method of SSI assuming linear elastic behaviour. FE analyses were carried out for two cases of SSI (I chimney with annular raft foundation and (II chimney with piled raft foundation. The responses in chimney such as tip deflection, bending moments, and base moment and responses in raft such as bending moments and settlements were evaluated for both cases and compared to that obtained from the conventional method of analysis. It is found that the responses in chimney and raft depend on the flexibility of the underlying soil and thickness of the raft.

  9. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys.

    Science.gov (United States)

    Lin, T Jennifer; Breves, E A; Dyar, M D; Ver Eecke, H C; Jamieson, J W; Holden, J F

    2014-05-01

    Hyperthermophilic iron reducers are common in hydrothermal chimneys found along the Endeavour Segment in the northeastern Pacific Ocean based on culture-dependent estimates. However, information on the availability of Fe(III) (oxyhydr) oxides within these chimneys, the types of Fe(III) (oxyhydr) oxides utilized by the organisms, rates and environmental constraints of hyperthermophilic iron reduction, and mineral end products is needed to determine their biogeochemical significance and are addressed in this study. Thin-section petrography on the interior of a hydrothermal chimney from the Dante edifice at Endeavour showed a thin coat of Fe(III) (oxyhydr) oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite, and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The iron sulfide minerals were likely oxidized to Fe(III) (oxyhydr) oxide with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-dependent estimates of hyperthermophilic iron reducer abundances in this sample were 1740 and 10 cells per gram (dry weight) of material from the outer surface and the marcasite-sphalerite-rich interior, respectively. Two hyperthermophilic iron reducers, Hyperthermus sp. Ro04 and Pyrodictium sp. Su06, were isolated from other active hydrothermal chimneys on the Endeavour Segment. Strain Ro04 is a neutrophilic (pH opt 7-8) heterotroph, while strain Su06 is a mildly acidophilic (pH opt 5), hydrogenotrophic autotroph, both with optimal growth temperatures of 90-92 °C. Mössbauer spectroscopy of the iron oxides before and after growth demonstrated that both organisms form nanophase (hydrothermal systems that are mildly acidic where mineral weathering at increased temperatures occurs. PMID:24612368

  10. The Inventory Of High Objects Applying Laser Scanning, Focus On The Cataloguing A Reinforced Concrete Industrial Chimney

    Science.gov (United States)

    Gawałkiewicz, Rafał

    2015-12-01

    There are many surveying methods to measure the inclination of a chimney with the use of classical protractor instruments (Theo 010A/B, T2 Wild), electronic theodolites (TC2002 Wild-Leica), electronic total stations, including mirrorless ones, allowing to define indirectly the course of the construction's axis on the selected observation levels. The methods are the following: indentations, direct projection, double-edged method, polar method with the option of mirrorless measurement. At the moment a very practical and quick measurement technology, significantly eliminating the influence of human errors on the observation results, is laser scanning. The article presents the results of the scanning of 120-metres high reinforced concrete industrial chimney of the Cement Plant "Ożarów", with the application of modern scanning total station VX Spatial Station by Trimble, as an alternative to the methods applied so far. The advantage of scanning is the possibility to obtain a point cloud, which, apart from the information on the course of the chimney axis in the space, provides detail information on the real shape and deformations of the coating of the object's core.

  11. Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer

    International Nuclear Information System (INIS)

    Numerical simulations have been performed to analyze the characteristics of heat transfer and air flow in the solar chimney power plant system with an energy storage layer. Different mathematical models for the collector, the chimney and the energy storage layer have been established, and the effect of solar radiation on the heat storage characteristic of the energy storage layer has been analyzed. The numerical simulation results show that: (1) the heat storage ratio of the energy storage layer decreases firstly and then increases with the solar radiation increasing from 200 W/m2 to 800 W/m2; (2) the relative static pressure decreases while the velocity increases significantly inside the system with the increase of solar radiation; (3) the average temperature of the chimney outlet and the energy storage layer may increase significantly with the increase of solar radiation. In addition, the temperature gradient of the storage medium may increase, which results in an increase of energy loss from the bottom of the energy storage layer

  12. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence

    Directory of Open Access Journals (Sweden)

    Paradiz Bostjan

    2015-01-01

    Full Text Available Combustion experiments conducted in domestic stove burning hard coal demonstrated a predominant influence of the coal chlorine content on the PCDD/F emissions, together with a pronounced effect of the flue gas temperature. PCDD/F concentrations of over 100 ng TEQ/m3, three orders of magnitude higher than in a modern waste incinerator, were measured in the flue gases of a domestic stove when combusting high chlorine coal (0.31 %. The PCDD/F concentrations in the flue gases dropped below 0,5 ng TEQ/m3, when low chlorine coal (0.07 % was used. When low chlorine coal was impregnated with NaCl to obtain 0.38 % chlorine content, the emission of the PCDD/Fs increased by two orders of magnitude. Pronounced nonlinearity of the PCDD/F concentrations related to chlorine content in the coal was observed. The combustion of the high chlorine coal yielded PCDD/F concentrations in flue gases one order of magnitude lower in a fan cooled chimney when compared to an insulated one, thus indicating formation in the chimney. The influence of flue gas temperature on the PCDD/F emissions was less pronounced when burning low chlorine coal. The predominant pathway of the PCDD/F emissions is via flue gases, 99 % of the TEQ in the case of the high chlorine coal for insulated chimney.

  13. Experimental investigation into heating and airflow in trombe walls and solar chimneys

    International Nuclear Information System (INIS)

    Trombe Walls and solar chimneys are examples of passive solar air heating systems. However, the airflow and thermal efficiency characteristics of this type of system are not well understood, and partly for this reason, they are not commonly utilised. This paper reports on an experimental investigation into buoyancy-driven convection in a test rig designed to simulate the operation of a passive solar collector. The test rig comprised a vertical open-ended channel, approximately 1a square, heated from one side. The channel depth could be varied from 20mm to 110mm, and heating inputs varied from 200W to 1000W. Temperatures and airflow rates were measured and recorded, to characterise both steady-state and transient performance. The principal findings are: 1. Time constants (for heating)ranged typically between 30 and 70 minutes. 2. Flow regimes were mainly laminar (Reynolds number varing from ∼500 to ∼4000, depending on heat input and channel depth. 3. The thermal efficiency (as a solar collector and the heat transfer coefficient were functions of heat input, and were not depended on the channel depth. 4. The mass flow rate through the channel increased bath as the heat input increased and as the channel depth increased. The paper presents these findings and discusses their implications in more detail.(Author)

  14. Hydrothermal pyrite chimneys from the Ballynoe baryte deposit, Silvermines, County Tipperary, Ireland

    Science.gov (United States)

    Larter, R. C. L.; Boyce, A. J.; Russell, M. J.

    1981-08-01

    We report the discovery of pyrite tubes 0.1 to 20mm in diameter in the Ballynoe sedimentary baryte deposit. Well developed tubes comprise concentric layers of pyrite of contrasting crystal sizes 0.05 to 1 mm thick. An outer rim of crystalline baryte ⪕ 10mm thick commonly coats the tubes where these are not touching. The central canals contain myriad pyrite framboids. These tubes have characteristics in common with the chimney spires found on the East Pacific Rise at 21°N from which metal bearing solutions issue at temperatures of up to 380±30°C. Their presence carries the implication that the baryte deposit was not a distal facies of the Silvermines sedimentary pyritic zinc and lead ore, but was produced from local hydrothermal exhalations, though in a shallower part of the basin than the coeval sulphide deposits which had their own feeders. Some epigenetic mineralization may be awaiting discovery beneath the feeder sites at Ballynoe.

  15. U-Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field

    Science.gov (United States)

    Ludwig, Kristin A.; Shen, Chuan-Chou; Kelley, Deborah S.; Cheng, Hai; Edwards, R. Lawrence

    2011-04-01

    The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples containing only 2-21% ambient seawater (1.1-11 mmol/kg Mg), Th concentration is 0.11-0.13 pg/g and surrounding seawater concentrations average 0.133 ± 0.016 pg/g. The 230Th/ 232Th atomic ratios of the vent fluids range from 1 (±10) × 10 -6 to 11 (±5) × 10 -6, are less than those of seawater, and indicate that the vent fluids may contribute a minor amount of non-radiogenic 230Th to the LCHF carbonate chimney deposits. Chimney 238U concentrations range from 1 to 10 μg/g and the average chimney corrected initial δ 234U is 147.2 ± 0.8, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate 232Th concentrations range broadly from 0.0038 ± 0.0003 to 125 ± 16 ng/g and 230Th/ 232Th atomic ratios vary from near seawater values of 43 (±8) × 10 -6 up to 530 (±25) × 10 -3. Chimney ages, corrected for initial 230Th, range from 17 ± 6 yrs to 120 ± 13 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic

  16. Microbial carbon cycling in Lost City hydrothermal chimneys and other serpentinite-hosted ecosystems (Invited)

    Science.gov (United States)

    Brazelton, W. J.; Lang, S. Q.; Morrill, P. L.; Twing, K. I.; Crespo-Medina, M.; Morgan-Smith, D.; Früh-Green, G. L.; Schrenk, M. O.

    2013-12-01

    Ultramafic rocks formed in the Earth's mantle and uplifted into the crust represent an immense but poorly described reservoir of carbon. The biological availability of this rock-hosted carbon reservoir is unknown, but the set of geochemical reactions known as serpentinization can mobilize carbon from the subsurface and trigger the growth of dense microbial communities. Serpentinite-hosted ecosystems such as the chimney biofilms of the Lost City hydrothermal field can support dense populations of bacteria and archaea fueled by the copious quantities of H2 and methane (CH4) released by serpentinization (1-5). The metabolic pathways involved, however, remain unknown, and conventional interpretations of genomic and experimental data are complicated by the unusual carbon speciation in these environments. Carbon dioxide is scarce due to the highly reducing, high pH conditions. Instead, the predominant forms of carbon are CH4 and formate (5). Despite its natural abundance, however, direct evidence for CH4-derived biomass is lacking (1,4,5), and the role of formate is potentially significant but largely unexplored (1,5). To gain a more generalized perspective of carbon cycling in serpentinite-hosted ecosystems, we have recently investigated fluids and rocks collected from serpentinizing ophiolites in California, Canada, and Italy. Our results point to potentially H2-utilizing, autotrophic Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia inhabiting anoxic, subsurface zones (1,6). The carbon sources utilized by the Clostridia are unknown, but preliminary metagenomic evidence is consistent with a fermentation-style metabolic strategy that may be conducive to an oxidant-limited, subsurface environment. Curiously, despite the abundance of H2 and CH4 in these continental springs, none of the geochemical, genomic, or experimental results obtained thus far contain any evidence for biological methanogenesis (1,6). This is in stark

  17. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    International Nuclear Information System (INIS)

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of

  18. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Khalid; PARK, Youn Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of

  19. Vallitalea pronyensis sp. nov., isolated from a marine alkaline hydrothermal chimney.

    Science.gov (United States)

    Ben Aissa, Fatma; Postec, Anne; Erauso, Gaël; Payri, Claude; Pelletier, Bernard; Hamdi, Moktar; Ollivier, Bernard; Fardeau, Marie-Laure

    2014-04-01

    A novel thermotolerant, anaerobic, Gram-stain-positive, spore-forming bacterium was isolated from a hydrothermal chimney in Prony Bay, New Caledonia. This strain, designated FatNI3(T), grew at 15-55 °C (optimum 30 °C) and at pH 5.8-8.9 (optimum 7.7). It was slightly halophilic, requiring at least 0.5 % NaCl for growth (optimum 2.5-3.0 %), and was able to grow at up to 6 % NaCl. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Growth of strain FatNI3(T) was inhibited in the presence of sulfite (2 mM) or nitrite (2 mM). Strain FatNI3(T) fermented cellobiose, glucose, mannose, maltose, sucrose, galactose, lactose, ribose, fructose, rhamnose, raffinose, xylose, yeast extract, peptone and biotrypticase. The main fermentation products from glucose metabolism were acetate, ethanol, H2 and CO2. The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, and unknown glycolipids and phospholipids. The G+C content of the genomic DNA was 36.6 mol%. On the basis of phylogenetic and physiological properties, strain FatNI3(T) ( = DSM 25904 = JCM 18391) belonging to the phylum Firmicutes, class Clostridia, order Clostridiales, is proposed as the type strain of a novel species of the genus Vallitalea, for which the name Vallitalea pronyensis sp. nov. is proposed. PMID:24408522

  20. Mathematical modelling and validation of the drying process in a Chimney-Dependent Solar Crop Dryer

    International Nuclear Information System (INIS)

    Highlights: ► The simulation code predicts temperatures to within 1.5% of recorded data. ► The ventilation is predicted to within 5% accuracy. ► Effects of heat inertia cause the actual drying path to deviate from the simulated path. ► The two paths converge in the end with a final moisture content prediction to within 10%. ► The simulation code can be used to compare and refine the dryer designs for optimum drying performance. - Abstract: A simulation procedure describing the drying process within a Chimney-Dependent Solar Crop Dryer (CDSCD) has been developed. The simulation follows the authors’ experimental work on the effect of varying drying chamber roof inclination on the ventilation and drying processes, and their work on the development of simulation code to help optimise ventilation in such dryers. The current paper presents the modelling and subsequent validation of the drying process inside the dryer, to come out with a design tool for the CDSCD. The work considers the height of the crop shelf above the drying-chamber base, crop resistance to airflow and the shading on the drying-chamber base and their effects on the drying process. The under-load condition temperatures and velocities are predicted to within a relative difference of 1.5% and 10%, respectively of the observed values. Even though the heat inertia of the physical model causes deviation between the predicted drying path and the observed drying path, the two paths tend to converge at the end of each drying cycle, with a general prediction to within 10% relative difference of the observed crop moisture content. The validation results show that the simulation code can serve as an effective tool for comparing and refining the designs of the CDSCD for optimum drying performance

  1. A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant

    International Nuclear Information System (INIS)

    Highlights: • We develop an economic model different from related models. • We evaluate the initial investment cost of a plant built in northwest China. • We analyze the cost and benefit of a plant built in northwest China. • By the sensitivity analysis, we examine the sensitivity of TNPV to many parameters. - Abstract: This paper develops a model different from existing models to analyze the cost and benefit of a reinforced concrete solar chimney power plant (RCSCPP) built in northwest China. Based on the model and some assumptions for values of parameters, this work calculates total net present value (TNPV) and the minimum electricity price in each phase by dividing the whole service period into four phases. The results show that the minimum electricity price in the first phase is higher than the current market price of electricity, but the minimum prices in the other phases are far less than the current market price. The analysis indicates that huge advantages of the RCSCPP over coal-fired power plants can be embodied in phases 2–4. In addition, the sensitivity analysis performed in this paper discovers TNPV is very sensitive to changes in the solar electricity price and inflation rate, but responds only slightly to changes in carbon credits price, income tax rate and interest rate of loans. Our analysis predicts that RCSCPPs have very good application prospect. To encourage the development of RCSCPPs, the government should provide subsidy by setting higher electricity price in the first phase, then lower electricity price in the other phases

  2. Numerical investigation on the enhancement capability of annular chimney towards natural convective heat transfer in the interior zone of scaled down FBR core catcher

    International Nuclear Information System (INIS)

    Full text of publication follows: A numerical study has been carried out to determine the influence of annular cylindrical chimney on buoyancy-induced flow in the dished end cavity of scaled down Fast Breeder Reactor. Results are presented for (i) cylindrical chimney configuration and (ii) annular chimney configuration occupying the center of the circular plate. Two dimensional laminar simulations are obtained by solving the fully elliptical governing equations of flow and energy. The fluid is Newtonian and incompressible and satisfies the Boussinesq approximation. Results for the upward facing isothermal circular plate with chimney configurations in confined enclosure are analyzed. The velocity fields and isotherms are studied extensively to assess the impact of both geometries on the flow structure, dynamics and overall heat transfer characteristics in the cavity, towards enhancement of natural convective heat transfer. The predicted results for the cylindrical chimney are compared with known experimental results. The results are of interest to post accident heat removal in fast breeder reactors (FBR). (authors)

  3. Development of a practical training program based on BNL`s input to new NFPA Lined Masonary Chimney Venting Tables

    Energy Technology Data Exchange (ETDEWEB)

    Potter, G. [Agway Energy Products, Tully, NJ (United States)

    1997-09-01

    This paper describes how we developed a practical training program for technicians and sales personnel from the BNL studies that evolved into the Lined Chimney Venting Tables. One of the topics discussed is our search for solutions to the reoccurring problems associated with flue gas condensation on newly installed oil fired appliances. The paper will also discuss our own experiences in applying the new venting tables and working through the questions that arise when we encounter installations beyond the scope of the present tables.

  4. Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia)

    OpenAIRE

    Bes, M. (Marta); Merrouch, M.; Joseph, Manon; Quéméneur, Marianne; Payri, Claude; Pelletier, Bernard; Ollivier, Bernard; Fardeau, Marie-Laure; Erausol, G.; A. Postec

    2015-01-01

    A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 x 3.0-5.0 mu m) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 degrees C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 gr l(-1) NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron accepto...

  5. Severe compression of a bailout self-expanding chimney stent for rescuing the miscoverage of left common carotid artery during TEVAR of a type B aortic dissection.

    Science.gov (United States)

    Wang, Lixin; Guo, Daqiao; Jiang, Junhao; Shi, Zhenyu; Fu, Weiguo; Wang, Yuqi

    2014-04-01

    A 54-year-old man who suffered from paraplegia due to type B aortic dissection was treated with a Valiant stent-graft. However, attempts to gain secure proximal sealing resulted in an inadvertent coverage of the left common carotid artery by the endograft. The blood flow in the left common carotid artery was restored by a transcarotid Smart Control stent in a chimney fashion. At 6- and 18-month follow-up, computed tomography scan showed that the chimney stent was severely compressed by the stent graft, although the patient remained neurologically asymptomatic. PMID:24309751

  6. Experimental Study and Optimization of Thermoelectricity-Driven Autonomous Sensors for the Chimney of a Biomass Power Plant

    Science.gov (United States)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Aranguren, P.

    2014-06-01

    In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.

  7. Solar chimney for the natural ventilation of buildings: simulation and mediation; Chimenea solar para la ventilacion natural de edificios: simulacion y mediacion

    Energy Technology Data Exchange (ETDEWEB)

    Lanceta, D.; Llorente, J.

    2008-07-01

    In this article, the first part of a research project about the modelling of a solar chimney is presented. In this first part, the average ventilation flows measured in an experimental installation have been compared to the results obtained by CFD (Computational Fluid Dynamics) simulations. In order to do so, a solar chimney with a cross-section of 0.78 m x 0.156 m, height 3,6 m, has been constructed. The chimney consists of a glass surface oriented towards the south. The internal (absorber) surface is made of a copper plate, which has been painted black in order to increase the solar absorption. The chimney is connected to a room measuring 5 m x 2.5 m x 2.5 m, from where it extracts air. The comparison of the results obtained by measurements with those obtained by CFD simulations show that computational tools are accurate enough to predict the behaviour of natural buoyancy in this kind of installations. (Author)

  8. Examining potential benefits of combining a chimney with a salinity gradient solar pond for production of power in salt affected areas

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, Aliakbar; Johnson, Peter; Singh, Randeep [Energy Conservation and Renewable Energy Group, School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, P.O. Box 71, Bundoora 3083, Vic. (Australia)

    2009-08-15

    The concept of combining a salinity gradient solar pond with a chimney to produce power in salt affected areas is examined. Firstly the causes of salinity in salt affected areas of northern Victoria, Australia are discussed. Existing salinity mitigation schemes are introduced and the integration of solar ponds with those schemes is discussed. Later it is shown how a solar pond can be combined with a chimney incorporating an air turbine for the production of power. Following the introduction of this concept the preliminary design is presented for a demonstration power plant incorporating a solar pond of area 6 hectares and depth 3 m with a 200 m tall chimney of 10 m diameter. The performance, including output power and efficiency of the proposed plant operating in northern Victoria is analysed and the results are discussed. The paper also discusses the overall advantages of using a solar pond with a chimney for production of power including the use of the large thermal mass of a solar pond as a practical and efficient method of storing collected solar energy. (author)

  9. Microbial and Mineral Descriptions of the Interior Habitable Zones of Active Hydrothermal Chimneys from the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Holden, J. F.; Lin, T.; Ver Eecke, H. C.; Breves, E.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Butterfield, D. A.; Bishop, J. L.; Lane, M. D.

    2013-12-01

    Actively venting hydrothermal chimneys and their associated hydrothermal fluids were collected from the Endeavour Segment, Juan de Fuca Ridge to determine the mineralogy, chemistry and microbial community composition of their interiors. To characterize the mineralogy, Mössbauer, FTIR, VNIR and thermal emission spectroscopies were used for the first time on this type of sample in addition to thin-section petrography, x-ray diffraction and elemental analyses. A chimney from the Bastille edifice was Fe-sulfide rich and composed primarily of chalcopyrite, marcasite-sphalerite, and pyrrhotite while chimneys from the Dante and Hot Harold edifices were Fe-sulfide poor and composed primarily of anhydrite. The bulk emissivity and reflectance spectroscopies corroborated well with the petrography and XRD analyses. The microbial community in the interior of Bastille was most closely related to mesophilic-to-thermophilic anaerobes of the deltaproteobacteria and hyperthermophilic archaea while those in the interiors of Dante and Hot Harold were most closely related to mesophilic-to-thermophilic aerobes of the beta-, gamma- and epsilonproteobacteria. The fluid temperatures (282-321°C) and chemistries of the three chimneys were very similar suggesting that differences in mineralogy and microbial community compositions were more dependent on fluid flow characteristics and paragenesis within the chimney. Thin-section petrography of the interior of another hydrothermal chimney collected from the Dante edifice (emitting 336°C fluid) shows a thin coat of Fe3+ oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The Fe-sulfide minerals were likely oxidized to ferrihydrite with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-based most-probable-number estimates of

  10. 燃煤电厂脱硫烟囱防腐技术创新和应用探讨%Discussion on technology innovation of coal -fired power plant desulfurization chimney corrosion and its application

    Institute of Scientific and Technical Information of China (English)

    张庆虎; 吴金土

    2015-01-01

    Through the analysis of the existing coal-fired power plant desulfurization chimney corrosion technolo-gy, summed up the basic reason desulfurization chimney corrosion failures, technological innovation ideas pro-posed chimney desulfurization corrosion.And briefly describes the use of self-vulcanized butyl rubber anti-corrosion lining for coal-fired power plant desulfurization chimney antiseptic feasibility and success stories.%通过对现行燃煤电厂脱硫烟囱防腐技术分析,总结了脱硫烟囱防腐失效的原因,提出了脱硫烟囱防腐的技术创新思路。简要介绍了采用自硫化丁基橡胶防腐衬里对燃煤电厂脱硫烟囱进行防腐的可行性和成功案例。

  11. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre

    Science.gov (United States)

    James, Rachael H.; Green, Darryl R. H.; Stock, Michael J.; Alker, Belinda J.; Banerjee, Neil R.; Cole, Catherine; German, Christopher R.; Huvenne, Veerle A. I.; Powell, Alexandra M.; Connelly, Douglas P.

    2014-08-01

    The East Scotia Ridge is an active back-arc spreading centre located to the west of the South Sandwich island arc in the Southern Ocean. Initial exploration of the ridge by deep-tow surveys provided the first evidence for hydrothermal activity in a back-arc setting outside of the western Pacific, and we returned in 2010 with a remotely operated vehicle to precisely locate and sample hydrothermal sites along ridge segments E2 and E9. Here we report the chemical and isotopic composition of high- and low-temperature vent fluids, and the mineralogy of associated high-temperature chimney material, for two sites at E2 (Dog’s Head and Sepia), and four sites at E9 (Black & White, Ivory Tower, Pagoda and Launch Pad). The chemistry of the fluids is highly variable between the ridge segments. Fluid temperatures were ∼350 °C at all vent sites except Black & White, which was significantly hotter (383 °C). End-member chloride concentrations in E2 fluids (532-536 mM) were close to background seawater (540 mM), whereas Cl in E9 fluids was much lower (98-220 mM) indicating that these fluids are affected by phase separation. Concentrations of the alkali elements (Na, Li, K and Cs) and the alkaline earth elements (Ca, Sr and Ba) co-vary with Cl, due to charge balance constraints. Similarly, concentrations of Mn and Zn are highest in the high Cl fluids but, by contrast, Fe/Cl ratios are higher in E9 fluids (3.8-8.1 × 10-3) than they are in E2 fluids (1.5-2.4 × 10-3) and fluids with lowest Cl have highest Cu. Although both ridge segments are magmatically inflated, there is no compelling evidence for input of magmatic gases to the vent fluids. Fluid δD values range from 0.2‰ to 1.5‰, pH values (3.02-3.42) are not especially low, and F concentrations (34.6-54.4 μM) are lower than bottom seawater (62.8 μM). The uppermost sections of conjugate chimney material from E2, and from Ivory Tower and Pagoda at E9, typically exhibit inner zones of massive chalcopyrite enclosed

  12. Use of Oriented Spray Nozzles to Set the Vapor-Air Flow in Rotary Motion in the Superspray Space of the Evaporative Chimney-Type Tower

    Science.gov (United States)

    Dobrego, K. V.; Davydenko, V. F.; Koznacheev, I. A.

    2016-01-01

    The present paper considers the problem of upgrading the thermal efficiency of chimney-type evaporative cooling towers due to the rotary motion of the vapor-air flow in the superspray space. To set the vapor-air flow in rotary motion, we propose to use the momentum of the sprayed water. It has been shown that the existing parameters of spray nozzles permit setting up to 30% of the water flow momentum in translatory motion, which is enough for changing considerably the aerodynamics of the vapor-air flow in the superspray space and improving the operation of the cooling tower. The optimal angle of axial inclination of the spray cone has been estimated. Recommendations are given and problems have been posed for engineering realization of the proposed technologies in a chimney-type cooling tower.

  13. Fermentative hydrogen production by a new alkaliphilic Clostridium sp (strain PROH2) isolated from a shallow submarine hydrothermal chimney in Prony Bay, New Caledonia

    OpenAIRE

    MEI, N.; Zergane, N.; Postec, A.; Erauso, G.; Oilier, A.; Payri, Claude; Pelletier, Bernard; Fardeau, Marie-Laure; Ollivier, Bernard; Quéméneur, Marianne

    2014-01-01

    The hydrogen-producing strain PROH2 pertaining to the genus Clostridium was successfully isolated from a shallow submarine hydrothermal chimney (Prony Bay, New Caledonia) driven by serpentinization processes. Cell biomass and hydrogen production performances during fermentation by strain PROH2 were studied in a series of batch experiments under various conditions of pH, temperature, NaCl and glucose concentrations. The highest hydrogen yield, 2.71 mol H-2/mol glucose, was observed at initial ...

  14. Bacterial Lifestyle in a Deep-sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Bacterium Deferribacter desulfuricans SSM1

    OpenAIRE

    Takaki, Yoshihiro; Shimamura, Shigeru; Nakagawa, Satoshi; Fukuhara, Yasuo; Horikawa, Hiroshi; Ankai, Akiho; Harada, Takeshi; Hosoyama, Akira; Oguchi, Akio; Fukui, Shigehiro; Fujita, Nobuyuki; Takami, Hideto; Takai, Ken

    2010-01-01

    The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2 234 389 bp and a megaplasmid of 308 544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Deltaproteobacteria. The reconstructed central metabolisms showed a heterotrophic lifestyle primarily d...

  15. Electricity production with low grade heat in thermal power plants by design improvement of a hybrid dry cooling tower and a solar chimney concept

    International Nuclear Information System (INIS)

    Highlights: • A system of a dry cooling tower and a solar chimney are recombined. • The hot flue gas is injected in the hybrid tower to maximize the power output. • Effects of the angle of the tower walls (convergent or divergent) are studied. • Effects of the collector roof slope and base ground slope are studied. • The thermal efficiency of a 250 MW power plant is increased more than 0.5%. - Abstract: In this study, an improved concept design is presented to increase the thermal efficiency of the Rankine cycle of a typical steam power plant by combining a solar chimney and a dry cooling tower. The sources of the wind energy generation, include: the rejected heat from condenser to the air entering dry cooling tower, solar radiation and the airlift pumping effect on the air flow created by the stack hot flue gas which is injected into the hybrid tower as a novel change. This research primarily focuses on the Shahid Rajaee 250 MW steam power plant to determine the velocity of generated flow at the turbine inlet; a numerical finite volume code was employed for a dry cooling tower having a base diameter and a chimney height of 250 and 200 m, respectively. Calculations have been iterated for different angles of chimney walls, slopes of collectors and the base ground to find their effects on the output power. A range of 360 kW to more than 4.4 MW power is captured by the wind turbine by changing the hybrid tower geometrical parameters. Obtained results reveal a maximum of 0.538% increase for the thermal efficiency of the fossil fuel power plant

  16. Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan

    Science.gov (United States)

    Yamanaka, Toshiro; Maeto, Kotaro; Akashi, Hironori; Ishibashi, Jun-Ichiro; Miyoshi, Youko; Okamura, Kei; Noguchi, Takuroh; Kuwahara, Yoshihiro; Toki, Tomohiro; Tsunogai, Urumu; Ura, Tamaki; Nakatani, Takeshi; Maki, Toshihiro; Kubokawa, Kaoru; Chiba, Hitoshi

    2013-05-01

    Active hydrothermal venting from shallow seafloor (200-m depth) with talc chimneys has been discovered at the Wakamiko Crater floor in the Aira Caldera, southern Kyushu, Japan. The major chemical composition of the fluids suggests that the fluids are supplied from a single reservoir. The fluid is characterized by a low chloride concentration, low δD value, and a high δ18O value, suggesting that the endmember hydrothermal fluid is a mixture of seawater and andesitic water and possibly contribution of meteoric water and/or phase separation. Such noticeable magmatic input may be supported by high helium isotopic ratio (6.77 RA) of fumarolic gas discharging from the crater. Silica and alkaline geothermometers indicate that the fluid-rock interaction in the reservoir occurs in the temperature range of 230 to 250 °C. The high alkalinity and high ammonium and dissolved organic matter concentrations in the fluid indicate interaction of the fluid with organic matter in sedimentary layers. At least three hydrothermal vents have been observed in the crater. Two of these have similar cone-shaped chimneys. The chimneys have a unique mineralogy and consist dominantly of talc (kerolite and hydrated talc) with lesser amounts of carbonate (dolomite and magnesite), anhydrite, amorphous silica, and stibnite. The precipitation temperature estimated from δ18O values of talc was almost consistent with the observed fluid temperature. Geochemical modeling calculations also support the formation of talc and carbonate upon mixing of the endmember hydrothermal fluid with seawater and suggest that the talc chimneys are currently growing from venting fluid.

  17. Personal child and mother carbon monoxide exposures and kitchen levels: Methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE)

    OpenAIRE

    Smith, Kirk R.; McCracken, John P; Thompson, Lisa; Edwards, Rufus; SHIELDS, KYRA N.; Canuz, Eduardo; Bruce, Nigel

    2009-01-01

    During the first randomized intervention trial (RESPIRE: Randomized Exposure Study of Pollution Indoors and Respiratory Effects) in air pollution epidemiology, we pioneered application of passive carbon monoxide (CO) diffusion tubes to measure long-term personal exposures to woodsmoke. Here we report on the protocols and validations of the method, trends in personal exposure for mothers and their young children, and the efficacy of the introduced improved chimney stove in reducing personal ex...

  18. Abundances of Hyperthermophilic Autotrophic Fe(III) Oxide Reducers and Heterotrophs in Hydrothermal Sulfide Chimneys of the Northeastern Pacific Ocean ▿ †

    OpenAIRE

    Ver Eecke, Helene C.; Kelley, Deborah S.; Holden, James F.

    2008-01-01

    The abundances of hyperthermophilic heterotrophs, methanogens, and autotrophic reducers of amorphous Fe(III) oxide in 18 samples of deep-sea hydrothermal vent sulfide chimneys of the Endeavour Segment were measured. The results indicate that conditions favor the growth of iron reducers toward the interiors of these deposits and that of heterotrophs toward the outer surfaces near high-temperature polychaete worms (Paralvinella sulfincola).

  19. Complete Genome Sequence of the Hyperthermophilic Archaeon Pyrococcus sp. Strain ST04, Isolated from a Deep-Sea Hydrothermal Sulfide Chimney on the Juan de Fuca Ridge

    OpenAIRE

    Jung, Jong-Hyun; Lee, Ju-Hoon; Holden, James F.; Seo, Dong-Ho; Shin, Hakdong; Kim, Hae-Yeong; Kim, Wooki; Ryu, Sangryeol; Park, Cheon-Seok

    2012-01-01

    Pyrococcus sp. strain ST04 is a hyperthermophilic, anaerobic, and heterotrophic archaeon isolated from a deep-sea hydrothermal sulfide chimney on the Endeavour Segment of the Juan de Fuca Ridge in the northeastern Pacific Ocean. To further understand the distinct characteristics of this archaeon at the genome level (polysaccharide utilization at high temperature and ATP generation by a Na+ gradient), the genome of strain ST04 was completely sequenced and analyzed. Here, we present the complet...

  20. Abundances of Hyperthermophilic Autotrophic Fe(III) Oxide Reducers and Heterotrophs in Hydrothermal Sulfide Chimneys of the Northeastern Pacific Ocean ▿ †

    Science.gov (United States)

    Ver Eecke, Helene C.; Kelley, Deborah S.; Holden, James F.

    2009-01-01

    The abundances of hyperthermophilic heterotrophs, methanogens, and autotrophic reducers of amorphous Fe(III) oxide in 18 samples of deep-sea hydrothermal vent sulfide chimneys of the Endeavour Segment were measured. The results indicate that conditions favor the growth of iron reducers toward the interiors of these deposits and that of heterotrophs toward the outer surfaces near high-temperature polychaete worms (Paralvinella sulfincola). PMID:18978076

  1. Framework for the Energetic Assessment of South and South-East Asia Fixed Chimney Bull’s Trench Kiln

    Directory of Open Access Journals (Sweden)

    Brun Niccolò Le

    2016-01-01

    Full Text Available One of the major sources of fuel consumption and greenhouse gas emission in South and South-East Asia is brick manufacturing. One of the most commonly implemented technologies for brick manufacturing in this region is the fixed chimney Bull’s trench kiln (FCBTK. This type of technology largely depends on manual labour and is very inefficient when compared to more modern technologies. Because the adoption of more advanced technologies is hindered by the socio-economical background, the much needed innovations in the brick sector are necessarily related to improving/modifying the FCBTK already operational. However, few scientific studies have been conducted on FCBTK probably due to the basic level of technological development. Such studies are however important to systematically and methodologically assess the challenges and solutions in FCBTK. In this study we develop a thermo-energetic model to evaluate the importance of the parameters pertained to FCBTK construction and operation. The prospective of this study is to build an initial thermo-energetic framework that will serve as a basis to investigate possible energetic improvements.

  2. Crystal Structure and Thermoelectric Properties of the Incommensurate Chimney-Ladder Compound VGeγ (γ ~1.82)

    Science.gov (United States)

    Hamada, Haruki; Kikuchi, Yuta; Hayashi, Kei; Miyazaki, Yuzuru

    2016-03-01

    A single-phase sample of a Nowotny chimney-ladder phase known as V17Ge31 has been prepared and its modulated crystal structure has been determined by means of a (3+1)-dimensional superspace approach. As in the case of higher manganese silicides (HMSs) MnSiγ, the compound consists of two tetragonal subsystems of [V] and [Ge] with an irrational c-axis ratio γ = c_{{V}}/c_{{Ge}} ˜ 1.82, and hence the structure formula is represented as VGe γ . As expected from the valence electron count estimated from the refined γ, the present germanide exhibits a metallic behavior with the electrical conductivity σ = 6.25 × 103 S/cm and the Seebeck coefficient S = 10.2 μV/K at 900 K. The resulting thermoelectric power factor of S^2σ = 6.56 × 10-5 W/mK2 and the dimensionless figure-of-merit, ZT, = 3.7 × 10-3 at 900 K demonstrate that the germanide is not a promising thermoelectric material. However, as the determined lattice thermal conductivity is comparable to that of HMSs, thermoelectric properties can be maximized through the partial substitution of V with group 6-8 elements to decrease hole carrier concentration.

  3. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    Science.gov (United States)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  4. Thoracic aortic stent-graft placement combined with left subclavian artery 'chimney operation': therapeutic analysis of 15 cases with insufficient proximal anchor area

    International Nuclear Information System (INIS)

    Objective: To discuss the strategies for the management of insufficient proximal anchoring area during the performance of transluminal stent-graft placement (TSGP), and to evaluate the feasibility of intentional coverage of the left subclavian artery (LSA) together with left subclavian artery stent-graft placement by using 'chimney operation' technique. Methods: A total of 15 patients with thoracic aortic diseases complicated by insufficient proximal anchoring area, who were encountered in authors' hospital during the period from Dec. 2009 to April 2011, were enrolled in this study. The clinical data were retrospectively analyzed. The thoracic aortic diseases included aortic dissection (n=6), aortic pseudoaneurysm (n=1), aortic aneurysm (n=4) and penetrating ulcer (n=4). Of the 15 patients, the distance between the lesion and LSA anchoring site 15 mm in 2. TSGP was carried out. The ostium of LSA was intentionally and completely covered by thoracic aortic stent-graft and left subclavian artery stent-graft placement was subsequently performed. The patients were kept under observation for symptoms of cerebral and upper limb ischemia. The postoperative complications such as endoleak and the patency of LSA were assessed with angiography. Results: Thoracic aortic stent-graft placement was successfully carried out in all 15 patients. In addition, one 'chimney' stent was properly implanted in LSA in each patient. After the procedure, no complications of nervous system or severe ischemia of upper extremity occurred. Follow-up examinations performed between 5 days to 3 months after the treatment revealed that the aortic stent-graft remained in stable condition and no type Ⅰ endoleak occurred, meanwhile the blood flow in 'chimney' stent was unobstructed. Conclusion: Intentional LSA coverage with 'chimney operation' can expand the applicability of TSGP with high tolerability. It is especially useful for patients with left vertebral artery blood supply dominance or with

  5. Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia).

    Science.gov (United States)

    Bes, Méline; Merrouch, Mériem; Joseph, Manon; Quéméneur, Marianne; Payri, Claude; Pelletier, Bernard; Ollivier, Bernard; Fardeau, Marie-Laure; Erauso, Gaël; Postec, Anne

    2015-08-01

    A novel anaerobic bacterial strain, ST07-YET, was isolated from a carbonate chimney of the Prony Hydrothermal Field (PHF) in New Caledonia. Cells were Gram-stain-positive, straight rods (0.7-0.8 × 3.0-5.0 μm) and motile by means of lateral flagella. Strain ST07-YET was mesophilic (optimum 35 °C), moderately alkaliphilic and halotolerant (optimum pH 8.7 and 5 g l- 1 NaCl). Elemental sulfur, sulfate, thiosulfate, sulfite, nitrate and nitrite were not used as terminal electron acceptors. Yeast extract, peptone, tryptone, Casamino acids, crotonate, pyruvate, galactose, maltose, sucrose, ribose, trehalose and glucose were used as carbon sources. Glucose fermentation led to acetate, H2 and CO2 formation. Arginine, serine, histidine, lysine, methionine and cysteine improved growth, but the Stickland reaction was negative for the combinations of amino acids tested. The major metabolic products from yeast extract fermentation were H2, CO2, acetate, butyrate, isobutyrate, isovalerate and propionate. The predominant cellular fatty acids were C16  :  0, C16  :  1cis9, C14  :  0 and C16  :  1cis7 (>5 % of total fatty acids). The G+C content of the genomic DNA was 32.9 mol%. Phylogenetic analysis revealed that strain ST07-YET was most closely related to Clostridium sticklandii DSM 519T and Acetoanaerobium noterae NOT-3T (96.7 % and 96.8 % 16S rRNA gene sequence similarity, respectively). On the basis of phylogenetic, chemotaxonomic and physiological properties, strain ST07-YET is proposed to represent a novel species of the genus Acetoanaerobium (order Clostridiales, phylum Firmicutes) with the name Acetoanaerobium pronyense sp. nov. The type strain is ST07-YET ( = DSM 27512T = JCM 19400T). PMID:25948619

  6. Geologic, geophysical, and in-situ stress investigations in the vicinity of the Dining Car chimney, Dining Car/Hybla Gold Drifts, Nevada Test Site

    International Nuclear Information System (INIS)

    The Hybla Gold event, detonated on Nov. 1, 1977, was conducted in the U12e.20 drifts of the E-tunnel complex beneath the surface of Rainier Mesa at the Nevada Test Site. Though the proximity of the Hybla Gold working point to the chimney of the Dining Car event was important to the experiment, the observable geologic effects from Dining Car on the Hybla Gold site were minor. Overburden above the working point is approximately 385 m (1263 ft). The pre-Tertiary surface, probably quartzite, lies approximately 254 m (833 ft) below the working point. This report comprises three chapters detailing the geologic, geophysical, and in situ stress data gathered in the period January through June 1977, in the course of mining and drilling in the Hybla Gold/Dining Car region. These investigations confirm several observations reported previously for the Rainier event, i.e., a zone of microfailure observable in thin-section and in physical properties exists adjacent to the chimney. In addition, however, a number of investigations add new information to our understanding of effects near the detonation point. Shear waves were found to be highly diagnostic in the microcracked zone near the chimney as well as zones of failure at greater range not discernible as well as zones of failure at greater range not discernible by other techniques. Extensive in situ stress measurements made by the hydrofracture and overcore techniques indicate changes in the orientation and magnitude of the pre-Dining Car stress field. The hydrofracture technique further suggests pronounced gradients in minimum stress magnitudes over short distances at some locations in the postshot stress regime

  7. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems

    Science.gov (United States)

    Steen, Ida H.; Dahle, Håkon; Stokke, Runar; Roalkvam, Irene; Daae, Frida-Lise; Rapp, Hans Tore; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2016-01-01

    In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field

  8. Characterization of Alkaliphilus hydrothermalis sp nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia

    OpenAIRE

    Ben Aissa, F.; Postec, A.; Erauso, G.; Payri, Claude; Pelletier, Bernard; Hamdi, M.; Fardeau, Marie-Laure; Ollivier, Bernard

    2015-01-01

    A novel anaerobic, alkaliphilic, Gram-positive staining bacterium was isolated from a hydrothermal chimney in the Prony Bay, New Caledonia. This strain designated FatMR1(T) grew at temperatures from 20 to 55 A degrees C (optimum 37 A degrees C) and at pH between 7.5 and 10.5 (optimum 8.8-9). NaCl is not required for growth (optimum 0.2-0.5 %), but is tolerated up to 3 %. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite are not used as terminal electron acceptors. Strain Fa...

  9. Additional income with open chimneys and stove. Nostalgia, romanticism and thermal comfort; Zusatzgeschaeft mit Oefen und Kaminen. Nostalgisch-romantische Gefuehle und behagliche Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, G. [Buderus Heiztechnik GmbH, Wetzlar (Germany)

    2004-01-01

    Stoves and open fireplaces are coming into fashion again with the trend towards nostalgia and design awareness. Further, wood-fuelled chimneys and stoves are viewed as romantic, and they also provide high thermal comfort. Heating systems experts can get additional income from this trend. (orig.) [German] Kamine und Oefen sind bei vielen Hausbesitzern und Bauherrn wieder in Mode. Dieser Trend ist zum einen Teil eines gestiegenen Nostalgie- und Designbewusstseins. Zum anderen gelten vor allem holzbefeuerte Kamine und Oefen als romantisch und ihre Waerme aufgrund des hohen Strahlungsanteils als behaglich. Fuer den aktiven Heizungsfachhandwerker laesst sich aus dieser Modestroemung ein lukratives Zusatzgeschaeft ableiten. (orig.)

  10. Hybrid Solar Chimney and Evaporative Cooling System Used in Xinjiang%新疆地区太阳能烟囱复合蒸发冷却通风降温系统

    Institute of Scientific and Technical Information of China (English)

    宣永梅; 马柱柱; 黄翔

    2013-01-01

    提出了太阳能烟囱复合蒸发冷却系统,对复合系统模型进行了理论分析及计算,得出通风量与烟囱高度、宽度及太阳辐射强度之间的关系。结果表明,太阳能烟囱的自然通风量随太阳能辐射强度及烟囱高度的增加而增加;在计算条件下,当宽度取1m 时通风量取得最大值。在此基础上分析得到太阳辐射照度400W/m2、烟囱高度3m、宽度1m 时,太阳能烟囱复合蒸发冷却系统应用于乌鲁木齐建筑时烟囱的理论通风量为0.21kg/s,该通风量基本满足乌鲁木齐夏季通风设计工况下,蒸发冷却降温时所需动力(0.23kg/s),且室内通风换气次数达到10次/h 以上,是一种节能环保的自然通风降温技术。%A hybrid system of solar chimney and evaporative cooling was proposed.The model of this hybrid system was studied by theoritical analysis and calculation.The relationships between air flow rate with chimney height,width and solar radiation were obtained.The calculation results indicated that the air flow rate of solar chimney increases with solar radiation and chimney height.Under design conditions,the air flow rate of solar chimney reaches its maximum value at solar chimney width of 1m. When applied to actual buildings in Urumqi,the obtained air mass flow rate (0.21kg/s)of solar chimney under optimum condi-tions (at chimney height of 3m,width of 1m,solar radiation of 400W/m2 )can approximately meet the ventilation requirements of evaporative cooling (0.23kg/s),and air changes more than 10 times per hour.The proposed hybrid system is an environmental friendly and energy efficient natural ventilation and free cooling technology.

  11. Enhanced bilateral somatostatin receptor expression in mediastinal lymph nodes (''chimney sign'') in occult metastatic medullary thyroid cancer: a typical site of tumour manifestation?

    International Nuclear Information System (INIS)

    In medullary thyroid cancer (MTC), post-surgically elevated plasma calcitonin and/or carcinoembryonic antigen levels frequently indicate persisting metastatic disease, although conventional diagnostic procedures fail to localize the responsible lesions (occult disease). Somatostatin analogues have been used successfully in disease localization, but recently concerns have been raised that increased thoracic uptake of indium-111 pentetreotide in patients with previous external beam irradiation may represent a false-positive finding, caused by post-irradiation pulmonary fibrosis. We recently examined seven patients with metastatic MTC by somatostatin receptor scintigraphy (six with occult and one with established disease). In four patients, all of whom had stable or slowly rising tumour marker levels over several years, a chimney-like bilateral mediastinal uptake of indium-111 pentetreotide was found. In two patients with persisting hypercalcitonaemia immediately after primary surgery, supraclavicular lymph node metastases were identified as the responsible lesions. None of these seven patients had prior external beam radiation therapy. In two cases, histological confirmation was obtained. In one patient, disease progression could be shown during follow-up. These data suggest that bilateral mediastinal lymph node involvement is a typical site of disease in slowly progressing occult metastatic MTC; the ''chimney sign'' may represent a typical finding with somatostatin analogues in such cases. Therefore, we believe that even in the case of prior external beam irradiation, mediastinal uptake of octreotide might represent metastatic MTC rather than radiation fibrosis. (orig.). With 2 figs., 1 tab

  12. In situ ore formation experiment: Amino acids and amino sugars trapped in artificial chimneys on deep-sea hydrothermal systems at Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean

    CERN Document Server

    Takano,; Marumo,; K.,; Ebashi,; T.,; Gupta,; P., L; Kawahata,; H.,; Kobayashi,; K.,; Yamagishi,; A.,; Kuwabara,; T,

    2013-01-01

    The present study reports on the bio-organic composition of a deep-sea venting hydrothermal system originating from arc volcanism; the origin of the particulates in hydrothermal fluids from the Suiyo Seamount in the southern Izu-Bonin (Ogasawara) Arc is discussed with regard to amino compounds. Chimney samples on deep-sea hydrothermal systems and core samples at Suiyo Seamount were determined for amino acids, and occasionally amino sugars. Two types of chimney samples were obtained from active hydrothermal systems by submersible vehicles: one was natural chimney (NC) on a hydrothermal natural vent; the other was artificial chimneys (AC), mainly formed by the growth and deposition of sulfide-rich particulate components in a Kuwabara-type in situ incubator (KI incubator). Total hydrolyzed amino acids (THAA) and hydrolyzed hexosamines (HA) in AC ranged from 10.7 nmol/g to 64.0 nmol/g and from 0 nmol/g to 8.1 nmol/g, respectively, while THAA in hydrothermally altered core samples ranged from 26.0 nmol/g to 107.4 ...

  13. 焦炉烟囱 NO x排放控制刍议%Comment on control of NOx emission from chimney of coke oven battery

    Institute of Scientific and Technical Information of China (English)

    蔡承祐

    2013-01-01

    The new national standard“ Emission standard of pollutants for coking chemical industry”regulates the requirement for control of NO x emission from chimney of coke oven battery .The techni-cal measures on design of heating system of coke oven battery and treatment of oven flue gas after it is discharged from the battery for control of NO x emission are expounded in this paper .The author also makes brief description of technology on denitrification of flue gas by using SCR process and sug -gests that in order to meet the requirement of the national standard for control of NO x emission from chimney of coke oven battery located in the “special region”, flue gas discharged from the coke oven battery should be further treated by using SCR denitrification technology with learning experience of Tokyo Gas gained from test of pilot plant and engineering .%新的国家标准《炼焦化学工业污染物排放标准》提出了焦炉烟囱的NOx 排放控制要求。本文从焦炉加热系统的设计和对焦炉烟道废气的后处理2个层面论述了焦炉烟囱NOx 排放控制的技术措施,简要介绍了SCR烟气脱硝技术,提出了借鉴日本东京煤气公司的中试与工程经验,采用SCR脱硝技术对焦炉烟道废气进行后处理,以达到国家标准对“特别地区”焦炉烟囱的NOx排放控制要求。

  14. Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia.

    Science.gov (United States)

    Ben Aissa, Fatma; Postec, Anne; Erauso, Gaël; Payri, Claude; Pelletier, Bernard; Hamdi, Moktar; Fardeau, Marie-Laure; Ollivier, Bernard

    2015-01-01

    A novel anaerobic, alkaliphilic, Gram-positive staining bacterium was isolated from a hydrothermal chimney in the Prony Bay, New Caledonia. This strain designated FatMR1(T) grew at temperatures from 20 to 55 °C (optimum 37 °C) and at pH between 7.5 and 10.5 (optimum 8.8-9). NaCl is not required for growth (optimum 0.2-0.5%), but is tolerated up to 3%. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite are not used as terminal electron acceptors. Strain FatMR1(T) fermented pyruvate, yeast extract, peptone and biotrypcase and used fructose as the only sugar. The main fermentation products from fructose and proteinaceous compounds (e.g. peptone and biotrypcase) were acetate, H2 and CO2. Crotonate was disproportionated to acetate and butyrate. The predominant cellular fatty acids were C14:0 and C16:0. The G + C content of the genomic DNA was 37.1 mol%. On the basis of phylogenetic, genetic, and physiological properties, strain FatMR1(T) (=DSM 25890(T), =JCM 18390(T)) belonging to the phylum Firmicutes, class Clostridia, order Clostridiales, is proposed as a novel species of the genus Alkaliphilus, A. hydrothermalis sp. nov. PMID:25319677

  15. Bacterial lifestyle in a deep-sea hydrothermal vent chimney revealed by the genome sequence of the thermophilic bacterium Deferribacter desulfuricans SSM1.

    Science.gov (United States)

    Takaki, Yoshihiro; Shimamura, Shigeru; Nakagawa, Satoshi; Fukuhara, Yasuo; Horikawa, Hiroshi; Ankai, Akiho; Harada, Takeshi; Hosoyama, Akira; Oguchi, Akio; Fukui, Shigehiro; Fujita, Nobuyuki; Takami, Hideto; Takai, Ken

    2010-06-01

    The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2,234,389 bp and a megaplasmid of 308,544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Deltaproteobacteria. The reconstructed central metabolisms showed a heterotrophic lifestyle primarily driven by C1 to C3 organics, e.g. formate, acetate, and pyruvate, and also suggested that the inability of autotrophy via a reductive tricarboxylic acid cycle may be due to the lack of ATP-dependent citrate lyase. In addition, the genome encodes numerous genes for chemoreceptors, chemotaxis-like systems, and signal transduction machineries. These signalling networks may be linked to this bacterium's versatile energy metabolisms and may provide ecophysiological advantages for D. desulfuricans SSM1 thriving in the physically and chemically fluctuating environments near hydrothermal vents. This is the first genome sequence from the phylum Deferribacteres. PMID:20189949

  16. Thoracic type Ia endoleak: direct percutaneous coil embolization of the aortic arch at the blood entry site after TEVAR and double-chimney stent-grafts

    Energy Technology Data Exchange (ETDEWEB)

    Bangard, Christopher; Franke, Mareike; Maintz, David; Chang, De-Hua [University Hospital, University of Cologne, Department of Radiology, Cologne (Germany); Pfister, Roman [University Hospital, University of Cologne, Department of Internal Medicine III, Cologne (Germany); Deppe, Antje-Christin [University Hospital, University of Cologne, Department of Cardiothoracic Surgery, Cologne (Germany); Matoussevitch, Vladimir [University Hospital, University of Cologne, Department of Vascular Surgery, Cologne (Germany)

    2014-06-15

    To introduce a novel percutaneous technique to stop blood entry at the lesser aortic arch curvature by coil embolisation in type Ia endoleak after TEVAR. A 61-year-old Marfan patient presented with type Ia endoleak of the aortic arch and a growing aortic arch pseudoaneurysm after TEVAR. Multiple preceding operations and interventions made an endovascular approach unsuccessful. Direct percutaneous puncture of the aneurysmal sac would have cured the sign, but not the cause of blood entry at the lesser curvature of the aortic arch. Direct CT-guided percutaneous puncture of the blood entry site in the aortic arch with fluoroscopically guided coil embolisation using detachable extra-long coils was successfully performed. Three weeks after the intervention, the patient developed fever because of superinfection of the pseudoaneurysm. The blood cultures and CT-guided mediastinal aspirate were sterile. After intravenous administration of antibiotics, the fever disappeared and the patient recovered. Six-month follow-up showed permanent closure of the endoleak and a shrinking aneurysmal sac. Direct percutaneous puncture of the aortic arch at the blood entry site of a thoracic type Ia endoleak after TEVAR and double-chimney stent-grafts with coil embolisation of the wedge-shaped space between the lesser aortic curvature and the stent-graft is possible. (orig.)

  17. Thoracic type Ia endoleak: direct percutaneous coil embolization of the aortic arch at the blood entry site after TEVAR and double-chimney stent-grafts

    International Nuclear Information System (INIS)

    To introduce a novel percutaneous technique to stop blood entry at the lesser aortic arch curvature by coil embolisation in type Ia endoleak after TEVAR. A 61-year-old Marfan patient presented with type Ia endoleak of the aortic arch and a growing aortic arch pseudoaneurysm after TEVAR. Multiple preceding operations and interventions made an endovascular approach unsuccessful. Direct percutaneous puncture of the aneurysmal sac would have cured the sign, but not the cause of blood entry at the lesser curvature of the aortic arch. Direct CT-guided percutaneous puncture of the blood entry site in the aortic arch with fluoroscopically guided coil embolisation using detachable extra-long coils was successfully performed. Three weeks after the intervention, the patient developed fever because of superinfection of the pseudoaneurysm. The blood cultures and CT-guided mediastinal aspirate were sterile. After intravenous administration of antibiotics, the fever disappeared and the patient recovered. Six-month follow-up showed permanent closure of the endoleak and a shrinking aneurysmal sac. Direct percutaneous puncture of the aortic arch at the blood entry site of a thoracic type Ia endoleak after TEVAR and double-chimney stent-grafts with coil embolisation of the wedge-shaped space between the lesser aortic curvature and the stent-graft is possible. (orig.)

  18. Psychology and photography: chimneys dreaming and chimneys warriors

    OpenAIRE

    Tilde Giani Gallino

    2013-01-01

    The article covers two aspects related to Psychology and Art. The first aspect concerns the similarities found between photography and various Schools of experimental psychology. For instance, the scientists of Psychology of ethological theory, and Non-verbal communication (NVC), observe with particular methodologies the non-verbal messages that animals and humans transmit to their peers through expressions, posture, gestures. The same is done by photographers (those who use the “camera” with...

  19. 基于火积耗散法的立式集热板太阳能热气流发电系统传热性能分析%Entransy dissipation based performance analysis for solar chimney power plant system with vertical collectors

    Institute of Scientific and Technical Information of China (English)

    周艳; 刘峰; 王莉; 巢军; 李庆领

    2015-01-01

    基于火积耗散及火积耗散热阻极值定律推导出立式集热板太阳能热气流发电系统的火积耗散率表达式,并对系统的传热性能进行分析.结果表明:立式集热板太阳能热气流发电系统的烟囱尺寸是影响系统传热性能的主要因素,但是烟囱的高度和宽度受高层建筑的高度及窗户间距的限制,因此烟囱厚度成为系统火积耗散热阻的主要影响因素;在烟囱高度和宽度不变的条件下,厚度取0.9598 m 时系统火积耗散热阻最小,系统性能最优.%On the basis of the principle of entransy dissipation and the principle of minimum thermal resist-ance in heat transfer theory,the expression of entransy dissipation rate of the solar chimney power plant system with vertical collectors was derived and the heat transfer performance of this system was analyzed. The results show that,the structure dimensions of the chimney are the main factors affecting the perform-ance of the solar chimney power plant system with vertical collectors.However,the height and width of the solar chimney are limited by the height and space between the windows of high buildings,thus the thick-ness of the solar chimney is the foremost factor to decrease the entransy dissipation of the solar power plant system.Under conditions with constant chimney height and width,the thermal resistance of entransy dissipation of the solar system reached the minimum when the solar chimney thickness was 0.959 8 m,indi-cating the performance of the system achieved the optimum.

  20. Entransy dissipation based performance analysis for solar chimney power plant system with vertical collectors%基于火积耗散法的立式集热板太阳能热气流发电系统传热性能分析

    Institute of Scientific and Technical Information of China (English)

    周艳; 刘峰; 王莉; 巢军; 李庆领

    2015-01-01

    On the basis of the principle of entransy dissipation and the principle of minimum thermal resist-ance in heat transfer theory,the expression of entransy dissipation rate of the solar chimney power plant system with vertical collectors was derived and the heat transfer performance of this system was analyzed. The results show that,the structure dimensions of the chimney are the main factors affecting the perform-ance of the solar chimney power plant system with vertical collectors.However,the height and width of the solar chimney are limited by the height and space between the windows of high buildings,thus the thick-ness of the solar chimney is the foremost factor to decrease the entransy dissipation of the solar power plant system.Under conditions with constant chimney height and width,the thermal resistance of entransy dissipation of the solar system reached the minimum when the solar chimney thickness was 0.959 8 m,indi-cating the performance of the system achieved the optimum.%基于火积耗散及火积耗散热阻极值定律推导出立式集热板太阳能热气流发电系统的火积耗散率表达式,并对系统的传热性能进行分析.结果表明:立式集热板太阳能热气流发电系统的烟囱尺寸是影响系统传热性能的主要因素,但是烟囱的高度和宽度受高层建筑的高度及窗户间距的限制,因此烟囱厚度成为系统火积耗散热阻的主要影响因素;在烟囱高度和宽度不变的条件下,厚度取0.9598 m 时系统火积耗散热阻最小,系统性能最优.

  1. 某加热炉烟囱深基坑支护难点及对策%Difficulties and Solutions in the Deep Foundation Excavation Retaining for a Heating Furnace Chimney

    Institute of Scientific and Technical Information of China (English)

    唐川

    2012-01-01

    A chimney foundation consists of two heating furnace chimney foundations. The depth of soil excavation reaches about 9.9 meters. The foundation is adjacent to a road with dynamic load of 600kN. And the foundation construction was during the rainy season of Shanghai, which causes extra danger to the excavation. This paper analyzes the key technology and construction difficulties of the engineering. The SMW method was used in combination with bracings, which successfully ensures the excavation safety and avoided any influence to the road traffic. This paper also analyzes the construction difficulties and compares different solutions.%某烟囱基础由2座加热炉烟囱基础组成,土方开挖深度达9.9m.基础紧邻道路,道路动荷载达600kN,同时基坑开挖正赶上上海的梅雨季节,基坑开挖过程中对安全十分不利.针对深基坑支护这一课题,分析了该工程的关键技术及难点,选择了SMW工法与斜撑结合的方案,实现既不影响深基坑安全,又不影响道路通行的目标.同时对加热烟囱深基坑施工的难点和对策进行了分析对比.

  2. “烟囱”技术在治疗累及主动脉弓分支动脉的Stanford B型主动脉夹层中的应用%Endovascular aortic repair plus chimney technique in the treatment of Stanford type B aortic dissection involving aortic arch

    Institute of Scientific and Technical Information of China (English)

    舒畅; 王暾; 黎明; 李鑫; 李全明; 方坤

    2012-01-01

    Objective To evaluate the efficacy of endovascular aortic repair plus chimney technique in the treatment of Stanford type B aortic dissection involving aortic arch.Methods From June 2009 to March 2012,32 patients of aortic arch dissection with primary entry tear next to the orifices of supra-aortic arteries were treated with chimney technique.Chimney technique was used to reconstruct left subclavian artery (n =2) and left common carotid artery (n =28).Double chimney technique was use to reconstruct innominate artery and left common carotid artery simultaneously in 2 patients.Results Four patients received emergency operation.All patients survived and were followed up for 14.3 ± 7.4 months.No type Ⅰ endoleak occurred.Among 4 patients with Type Ⅱ endoleak,3 received PDA occluding implantation in left subclavian artery and 1 patient in puerperium with Marian syndrome and pregnancy-induced hypertension syndrome recovered by conservative treatment.No severe neurological complications and left subclavian artery ischemia occurred.The locations of aortic and chimney stent-grafts were stable without any migration.All stent-grafts remained patent.Conclusion Endovascular aortic repair plus chimney technique is a safe and effective treatment for Stanford type B aortic dissection involving aortic arch.%目的 探讨“烟囱”技术在累及主动脉弓部分支动脉的Stanford B型夹层的治疗作用.方法 对2009年6月至2012年3月中南大学湘雅二医院血管外科采用“烟囱”技术治疗的第一破口邻近主动脉弓部分支动脉起始端的32例Stanford B型主动脉夹层患者进行回顾性研究.“烟囱”技术重建左锁骨下动脉2例,重建左颈总动脉28例,采用“双烟囱”技术同时重建无名动脉和左颈总动脉2例.结果 急诊手术4例.手术成功率100%,无Ⅰ型内漏发生.4例发生左锁骨下动脉Ⅱ型内漏,3例采用PDA封堵器封堵内漏,1例合并Marfan综合征和妊高症,予以保守治疗,11

  3. 太阳能烟囱与露点间接蒸发冷却复合空调节能系统分析%Analysis of an Energy Saving Air Conditioning System Integrated with Solar Chimney and Dew-point Evaporative Cooling

    Institute of Scientific and Technical Information of China (English)

    倪诚明

    2014-01-01

    太阳能烟囱是一种热压作用下的自然通风设备,它利用太阳辐射作为动力,为空气流动提供浮升力,将热能转化为动能。露点间接蒸发冷却技术利用空气的干球温度和不断降低的湿球温度之差进行换热,可以将空气温度冷却到低于环境湿球温度且接近露点温度。本文介绍了太阳能烟囱与露点间接蒸发冷却技术的研究现状,提出一套太阳能烟囱与露点间接蒸发冷却复合的空调节能系统。分析表明,该系统可合理的利用太阳能解决室内通风降温问题,投资和运行费用都很低,节能环保效果显著。%Solar chimney is a kind of natural ventilation application under the action of hot pressing, it using solar radiation as power, providing buoyancy lift for air flow, transfer the thermal energy into kinetic energy.The technol-ogy of dew-point evaporative cooling using the temperature difference of air between dry bulb temperature and low-ing wet bulb temperature to transfer heat.Its able to cool air to temperature below ambient wet bulb temperature and approaching dew-point temperature.This paper review the research status of solar chimney and dew-point evapora-tive cooling.The analysis results showed that the proposed system is a reasonable way to solve the indoor ventilation and cooling problems.its investment and operating cost is lower, and has a remarkable energy saving and environ-ment protection effect.

  4. Korsten : tellimata tellised = Chimney : an outside job / Andres Aule

    Index Scriptorium Estoniae

    Aule, Andres

    2012-01-01

    Aap Kaur Suvi kavandatud Tallinna linnainstallatsioonide festivali "LIFT11" installatsioonist "Korsten", mis pidi seisnema Tauno Kangro skulptuuri "Lõbus korstnapühkija" ümber ajutise telliskorstna ehitamises. Lift11 jättis selle installatsiooni ära, kuid ootamatult sai "Korsten" kodanikualgatusena 8. IX 2011 teoks

  5. Social Criticism in The Chimney Sweeper by William Blake

    Institute of Scientific and Technical Information of China (English)

    朱晓芸

    2008-01-01

    This paper mainly focuses on social criticism in William Blake's poems,both entitled"The Chimnet SWeeper"by analy-zing social background at that time and different Views in these two poems.It also tries to embody a fuller effect in thesc two separate poems.

  6. 77 FR 59275 - Establishment of the Chimney Rock National Monument

    Science.gov (United States)

    2012-09-27

    .... Because visitors travel from areas near and far, these lands support a growing travel and tourism sector... identified in this proclamation, including road closures and travel restrictions. For the purpose...

  7. Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys

    Science.gov (United States)

    Williams, E. R.; Sátori, G.

    2004-09-01

    The two major tropical continental zones of active convection-Africa and South America-are compared from the standpoint of lightning activity, rainfall, thermodynamics, hydrology and aerosol-influenced cloud microphysics. Comparisons of temperature, diurnal temperature range, insolation, Bowen ratio, response to semiannual forcing, inundation fraction, boundary layer relative humidity and associated cloud base height are all self consistent in showing a more continental surface for Africa than South America. These surface characteristics are shown to play a major role in the substantial contrast (annual ratio 2.8) in lightning flash rate density between the two major drainage basins in these two continents. The Congo is slightly hotter and slightly drier than the Amazon, with a contrast in wet bulb potential temperature and convective available potential energy that is difficult to resolve given limitations in the observations. Aerosol effects in cloud microphysics may be needed to account for quantitative shortfalls in explanations for lightning and rainfall on the basis of thermodynamics alone. Additional information about aerosols is needed to clarify their role. The clear African dominance in lightning and Schumann resonance intensity presents a paradox for the behavior of the `dc'global electrical circuit that is resolvable by dominance of electrified shower clouds in South America, as hypothesized by Wilson (Phil. Trans. A 221 (1920) 73).

  8. Detecting of the aging of reinforced concrete chimney by dynamic response

    Czech Academy of Sciences Publication Activity Database

    Urushadze, Shota; Pirner, Miroš; Fischer, Ondřej

    Sesimbra : Instituto Superior Técnico/Instituto de Engenharia Mecânica, 2013 - (Maia, N.; Neves, M.; Sampaio, R.) ISBN 978-989-96276-4-2. [International conference on structural engineering dynamics: ICEDyn 2013. Sesimbra (PT), 17.06.2013-19.06.2013] R&D Projects: GA ČR(CZ) GC13-34405J; GA MPO(CZ) FR-TI3/654 Institutional support: RVO:68378297 Keywords : damage identification * diagnostics of the structure * creep in concrete Subject RIV: JM - Building Engineering

  9. Physico-chemical gradients within the hydrothermal chimney Roane define sharp boundaries for microbial community ecology

    Science.gov (United States)

    Frank, K. L.; Kelley, D. S.; Girguis, P. R.

    2011-12-01

    The unique physico-chemical gradients characteristic of hydrothermal vents provide diverse niches for prokaryotic communities. To date, our knowledge of environmental constraints on microbial colonization and metabolic activity within active sulfide structures has been limited by the lack of co-registered in situ chemistry and appropriate, taxonomic and metabolic genetic markers. Here we characterize de novo endolithic microbial colonization using a sulfide microbial incubator within the hydrothermal vent Roane during a one-year deployment, with co-registered temperature, fluid chemistry and mineralogy. Taxanomic assessment of phylogenetic diversity via 16S rDNA extracted from the outer (40-70°C) and middle (150-240°C) chambers of the incubator revealed patterns of distribution comparable to previously published observations. However, quantitative and statistical analyses of 16S rDNA sequences from two chambers revealed very distinct communities, with less than 5% of the identified operational taxonomic units common to both chambers. Analyses of metagenomic data suggest an elevated potential for motility and select biosynthetic pathways in the outer chamber community. In contrast, the middle chamber community exhibits a greater potential for quorum sensing, biofilm formation and archaeal lipid biosynthesis. Striking differences in metabolic potential were also apparent. These data suggest that the distribution, abundance and physiological capacity of these communities is strongly governed by chemical and physical variability of the environment.

  10. Project Rio Blanco - Part II: Production test data and preliminary analysis of top chimney/cavity

    International Nuclear Information System (INIS)

    The re-entry drilling established communication with the top Rio Blanco detonation region at a depth of 1704 m, or about 76 m above the top detonation centre. A total of 2.8 x 106m3(97 x 106ft3) of dry gas at standard conditions has now been produced during two separate test periods. Radioactive and chemical analysis of this gas and the modelling of the stimulated reservoir shows the following main result: (1) No permeable connection exists between the top and the middle detonation regions, since none of the tracer incorporated in the centre explosive canister was detected in the gas produced. As a consequence, results for the top detonation region only are available at this time; (2) The initial cavity radius is deduced to be 20 m(66 ft), or well within expectations; (3) Integration of the 85Kr produced indicates a yield of 34+-3kt for the top explosive; (4) Of the approximately 1000 Ci of tritium produced in the top explosion region, about 5% is incorporated in the gas phase, (5) Pressure draw-down and build-up data are best reproduced by a two-layer reservoir model showing stimulated permeabilities about 10 and 30 times original formation permeabilities, and extending to a distance of about three cavity radii from the well bore; (6) The capacity of the reservoir intercepted by the top explosive is deduced to be about 0.2 mdarcy.m(0.73 mdarcy.ft), as contrasted with pre-shot estimates ranging from 1.3 to 2.3 mdarcy.m(4.1 - 7.6 mdarcy.ft). The reason for this discrepancy is not resolved at this time. Additional subsurface investigations of the other detonation regions as well as a re-evaluation of the initial reservoir properties are in progress. (author)

  11. Production test data and preliminary analysis of top chimney/cavity

    International Nuclear Information System (INIS)

    The reentry drilling established communication with the top Rio Blanco detonation region at a depth of 1704 m, or approximately 76 m above the top detonation center. A total of 2.8 x 106 m3 (98 x 106 ft3) of dry gas at standard conditions has now been produced during two separate test periods. Radioactive and chemical analysis of this gas and the modeling of the stimulated reservoir show the following main results: 1. No permeable connection exists between the top and the middle detonation regions, since no significant amount of the tracer incorporated in the center explosive canister was detected in the produced gas. As a consequence, results for the top detonation region only are available at this time. 2. The initial cavity radius is deduced to be 20 m (66 ft) or well within expectations. 3. Integration of the 85Kr produced indicates a yield of 34 +- 3 kt for the top explosive. 4. Of the approximately 1000 Ci of tritium produced in the top explosion region, approximately 5 percent is incorporated in the gas phase. 5. Pressure drawdown and buildup data are best reproduced by a two-layer reservoir model showing stimulated permeabilities approximately 10 and 30 times original formation permeabilities, and extending to a distance of approximately 3 cavity radii from the wellbore. 6. The capacity of the reservoir intercepted by the top explosive is deduced to be approximately 0.2 millidarcymeters (md-m) [0.73 millidarcy-feet (md-ft)], as contrasted with preshot estimates ranging from 1.3 md-m (4.1 md-ft) to 2.3 md-m (7.6 md-ft). Additional subsurface investigations of the other detonation regions, as well as a reevaluation of the initial reservoir properties, are in progress. (auth)

  12. Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion

    OpenAIRE

    Bayon, Germain; Dupre, Stephanie; Ponzevera, Emmanuel; Etoubleau, Joel; Cheron, Sandrine; Pierre, Catherine; Mascle, Jean; Boetius, Antje; De Lange, Gert J.

    2013-01-01

    Marine sediments at ocean margins vent substantial amounts of methane(1,2). Microbial oxidation of the methane released can trigger the precipitation of carbonate within sediments and support a broad diversity of seafloor ecosystems(3,4). The factors controlling microbial activity and carbonate precipitation associated with the seepage of submarine fluid over geological time remain poorly constrained. Here, we characterize the petrology and geochemistry of rocks sampled from metre-size build-...

  13. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre

    OpenAIRE

    James, Rachael H.; Green, Darryl R. H.; Stock, Michael J.; Alker, Belinda J.; Banerjee, Neil R.; Cole, Catherine; German, Christopher R.; Huvenne, Veerle A. I.; Powell, Alexandra M.; Connelly, Douglas P.

    2014-01-01

    The East Scotia Ridge is an active back-arc spreading centre located to the west of the South Sandwich island arc in the Southern Ocean. Initial exploration of the ridge by deep-tow surveys provided the first evidence for hydrothermal activity in a back-arc setting outside of the western Pacific, and we returned in 2010 with a remotely operated vehicle to precisely locate and sample hydrothermal sites along ridge segments E2 and E9. Here we report the chemical and isotopic composition of high...

  14. 33 CFR 165.T01-0176 - Regulated Navigation Area; Lake Champlain Bridge Construction, Crown Point, New York and Chimney...

    Science.gov (United States)

    2010-07-01

    .... (b) Regulations. In addition to 33 CFR 165.10, 165.11, and 165.13, the following restrictions or... these events, the COTP will give notice by all appropriate means to ensure the widest publicity...

  15. Chimney emissions from small-scale burning of pellets and fuelwood - examples referring to different combustion appliances

    International Nuclear Information System (INIS)

    Most wood boilers used for residential heating today are old-fashioned and emit large quantities of organic compounds. The installation of a pellet burner and a change to wood pellets as fuel normally decreases the emissions remarkably. In this study, the emissions from different equipment for burning of wood and pellets are compared. The organic fraction of smoke from traditional wood burning is to a great extent composed of methoxyphenols, with antioxidant effects. Methoxyphenols were also identified in smoke from pellet stoves. A fuel wood boiler or a furnace with an inserted pellet burner is heated to a higher combustion temperature, decreasing the total amount of organic compounds in the smoke. Above 800 deg C, methoxyphenols are thermally decomposed and carcinogenic polycyclic aromatic compounds (PACs) are formed. The combustion-formed aromatic hydrocarbon benzene is present in smoke from all kinds of burning, but the proportion relative to primary organic compounds increases with increasing combustion temperature. In smoke from an environmentally labelled wood boiler and from some pellet burning devices, the levels of PAC and benzene were found to be low. Evidently, the combustion was nearly complete. Although the change from wood to pellets significantly decreases the emissions, considerable differences exist between various combinations of pellet burners and boiler furnaces. (Author)

  16. Metagenome and Metatranscriptome Revealed a Highly Active Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin

    OpenAIRE

    Ying eHe; Xiaoyuan eFeng; Jing eFang; Yu eZhang; Xiang eXiao

    2015-01-01

    The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an int...

  17. Combining interventions: improved chimney stoves, kitchen sinks and solar disinfection of drinking water and kitchen clothes to improve home hygiene in rural Peru L’association d’interventions - améliorer les cuisinières à bois, mettre en place des éviers, désinfecter l’eau domestique et le linge de cuisine par le solaire – permet d’améliorer l’hygiène dans les foyers ruraux du Pérou Intervenciones combinadas: mejorar las cocinas a leña, instalar fregaderos y desinfectar el agua para beber y los paños de cocina con energía solar para mejorar la higiene en hogares rurales en Perú

    Directory of Open Access Journals (Sweden)

    Ana I. Gil

    2012-05-01

    Full Text Available Home based interventions are advocated in rural areas against a variety of diseases. The combination of different interventions might have synergistic effects in terms of health improvement and cost effectiveness. However, it is crucial to ensure cultural acceptance. The aim of the study was to develop an effective and culturally accepted home-based intervention package to reduce diarrhoea and lower respiratory illnesses in children. In two rural Peruvian communities we evaluated the performance and acceptance of cooking devices, household water treatments (HWT and home- hygiene interventions, with qualitative and quantitative methods. New ventilated stove designs reduced wood consumption by 16%. The majority of participants selected solar water disinfection as HWT in a blind tasting. In-depth interviews on hygiene improvement further revealed a high demand for kitchen sinks. After one year of installation the improved chimney stoves and kitchen sinks were all in use.  The intervention package was successfully adapted to local customs, kitchen-, home- and hygiene management. High user satisfaction was primarily driven by convenience gains due to the technical improvements and only secondarily by perceived health benefits.Les interventions à domicile sont recommandées dans les zones rurales pour éviter diverses maladies. L’association de différentes interventions entraîne une synergie en termes d’amélioration de la santé et de rapport coût-efficacité. Il est cependant crucial d’obtenir l’adhésion de la population. Le but de l’étude était d'élaborer un programme d’interventions à domicile, efficaces et acceptées par la population, visant à réduire la diarrhée et les affections des voies respiratoires basses chez l’enfant. Nous avons évalué, dans deux communautés rurales du Pérou, l’efficacité et l’acceptation d’appareils de cuisson, des traitements de l’eau domestique (HWT et d’interventions d

  18. Diagnóstico de la resistencia de las chimeneas de los ciclones del Regenerador D-402 // Diagnostic of Regenerator D-402 Cyclones Chimneys Resistance.

    Directory of Open Access Journals (Sweden)

    Juan Miguel Pichardo-Martínez

    2009-09-01

    Full Text Available El presente artículo describe el modo en que se han empleado las técnicas de modelación encorrespondencia con el método de los Elementos Finitos, para la determinación de los esfuerzosmáximos que surgen en la zona de unión entre las chimeneas de los ciclones secundarios y laCámara Plenum del Regenerador D-402, de la Refinería de Petróleo “Ñico López”. El conjunto semodeló utilizando el software ABAQUS, donde se aplicaron las cargas críticas que pueden aparecer,en condiciones reales de trabajo.Palabras claves: modelación por elementos finitos, diagnóstico resistencia ciclones, regenerador d-402._______________________________________________________________________________AbstractThe paper describe the way modeling techniques have been employed, according to FiniteElements Analysis, for determining maximum stresses appearing in secondary cyclones chimneysand Plenum Chamber union of D-402 Regenerator, located in “Ñico López” Petroleum Refinery.ABAQUS software was applied for modeling. Critical loads taking place on real conditions weresimulated.Key words: finite elements analysis, cyclones resistance diagnostics, regenerator d-402

  19. Combining interventions: improved chimney stoves, kitchen sinks and solar disinfection of drinking water and kitchen clothes to improve home hygiene in rural Peru

    OpenAIRE

    Hartinger, Stella M.; Claudio F Lanata; Ana I. Gil; Hattendorf, Jan; Verastegui, Hector; Mäusezahl, Daniel

    2012-01-01

    Home based interventions are advocated in rural areas against a variety of diseases. The combination of different interventions might have synergistic effects in terms of health improvement and cost effectiveness. However, it is crucial to ensure cultural acceptance. The aim of the study was to develop an effective and culturally accepted home-based intervention package to reduce diarrhoea and lower respiratory illnesses in children. In two rural Peruvian communities we evaluated the performa...

  20. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin

    OpenAIRE

    He, Ying; Feng, Xiaoyuan; Fang, Jing; Zhang, Yu; Xiao, Xiang

    2015-01-01

    The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an int...

  1. Microtexture and distribution of minerals in hydrothermal Barite-Silica chimney from the Franklin seamount, SW Pacific: Constraints on mode of formation.

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, D.; Kota, D.; Das, P.; SuryaPrakash, L.; Khedekar, V.D.; Paropkari, A.L.; Mudholkar, A.V.

    crystals of different habit types. Geologia Croatica 52, 59-65. Sasaki, N., and Watanuki, K., 1983. Variation in chemical composition of naturally occurring lead bearing barite (hokutolite) having crystallized since 1953 at Tamagawa hot spring...

  2. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  3. Burnable gas concentration control system

    International Nuclear Information System (INIS)

    In a combustion gas concentration control system, the height from the upper end of a catalyst to an exit of a chimney is determined to twice or more the height of the catalyst, and the flow area of the exit of the chimney is determined to 25% or more of the flow rate area at the entrance of the chimney. Alternatively, a cover is formed above the exit of the chimney, the height from the upper end of the catalyst to the exit of the chimney is determined to three times or more the height of the catalyst, and the ratio between the flow channel area at a gap portion between the cover and the exit of the chimney and the flow channel area of the entrance of the chimney is determined to 60% or more. The area of the cover is made greater than the flow channel area at the exit of the chimney, and the area of the floor below the chimney is made greater than the cross sectional area at the lower portion of the chimney. In addition, a burnable gas concentration reducing device is disposed near a living body shielding walls and near the inner wall of a pressure suppression chamber. Burnable gases can be processed efficiently upon occurrence of an accident. (N.H.)

  4. Intra-field variability in microbial community associated with phase-separation-controlled hydrothermal fluid chemistry in the Mariner field, the southern Lau Basin

    Science.gov (United States)

    Takai, K.; Ishibashi, J.; Lupton, J.; Ueno, Y.; Nunoura, T.; Hirayama, H.; Horikoshi, K.; Suzuki, R.; Hamasaki, H.; Suzuki, Y.

    2006-12-01

    A newly discovered hydrothermal field called the Mariner field at the northernmost central Valu Fa Ridge (VFR) in the Lau Basin was explored and characterized by geochemical and microbiological surveys. The hydrothermal fluid (max. 365 u^C) emitting from the most vigorous vent site (Snow chimney) was boiling just beneath the seafloor at a water depth of 1908 m and two end-members of hydrothermal fluid were identified. Mineral and fluid chemistry of typical brine-rich (Snow chimney and Monk chimney) and vapor-rich (Crab Restaurant chimney) hydrothermal fluids and the host chimney structures were analyzed. Microbial community structures in three chimney structures were also investigated by culture-dependent and - independent analyses. The 16S rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities at the chimney surface zones were different among three chimneys. The bacterial and archaeal rRNA gene communities of the Snow chimney surface were very similar with those in the dead chimneys, suggesting concurrence of metal sulfide deposition at the inside and weathering at the surface potentially due to its large structure and size. Cultivation analysis demonstrated the significant variation in culturability of various microbial components, particularly of thermophilic H2- and/or S-oxidizing chemolithoautotrophs such as the genera Aquifex and Persephonella, among the chimney sites. The culturability of these chemolithoautotrophs might be associated with the input of gaseous energy and carbon sources like H2S, H2 and CH4 from the hydrothermal fluids, and might be affected by phase-separation- controlled fluid chemistry. In addition, inter-fields comparison of microbial community structures determined by cultivation analysis revealed novel characteristics of the microbial communities in the Mariner field of the Lau Basin among the global deep-sea hydrothermal systems.

  5. Push-Pull Ventilation in a Painting Shop for Large Steel Constructions

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per

    This paper describes the analysis of a push-pull ventilation system for a painting shop that is used for painting steel chimneys and windmill towers.......This paper describes the analysis of a push-pull ventilation system for a painting shop that is used for painting steel chimneys and windmill towers....

  6. Solar updraft tower - structural optimisation under dynamic wind action

    NARCIS (Netherlands)

    Van Eck, S.; Coenders, J.L.; Doomen, R.

    2015-01-01

    A solar updraft tower is a type of power plant which uses solar irradiation to generate electricity. It consists of three elements: a solar air collector, wind turbines and a chimney. The proposed concepts for this chimney schematise it as a 1-km-tall reinforced concrete shell, which are vulnerable

  7. A Story of Tomorrow

    Institute of Scientific and Technical Information of China (English)

    DING ZHITAO

    2010-01-01

    @@ Chimneys were, for a short period of time, the symbols of industrialization and urbanization.They were soon reduced to symbols of pollution and backwardness. But today the site of a chimney at the World Expo's Urban Best Practices Area (UBPA) in Shanghai is still a place to marvel.

  8. SILICON AND OXYGEN ISOTOPIC COMPOSITION OF CHERTS FROM THE GACUN KUROKO-TYPE DEPOSIT, SICHUAN, AND COMPARISON WITH SILICA CHIMNEYS FROM THE MODERN SEAFLOOR%四川呷村黑矿型矿床硅质岩的硅、氧同位素组成及其与现代海底硅质烟囱比较研究

    Institute of Scientific and Technical Information of China (English)

    侯增谦; 吴世迎; T.Urabe

    1996-01-01

    本文首次报道了川西呷村黑矿型矿床硅质岩的硅、氧同位素组成,其δ18O为12.8‰-18.3‰,形成温度约99-120℃,δ30Si为0.0‰-1.5‰,与Mariana和Galapagos热液硅质烟囱的δ30Si值范围基本相当,揭示两者具相似的形成机制.硅质岩和硅质烟囱δ30Si最大值与相伴火山岩δ30Si值一致,反映硅质来自被热液淋滤交代的火山岩系.根据SiO2溶解度-温度关系提出,来自海底之下1-2km处的水-岩反应带、温度高于320℃的初始流体,通过绝热上升或传导冷凝,可在海底形成硫化物矿体,残余热液与海水大量混合及传导冷凝,可产生硅质岩和硅质烟囱.

  9. Ore-forming matter sources of hydrothermal black smoker chimneys in the Endeavour segment of the Juan de Fuca Ridge:sulfur isotope constraints%胡安·德富卡洋脊因代沃段热液黑烟囱体成矿物质来源:硫同位素的限制

    Institute of Scientific and Technical Information of China (English)

    姚会强; 周怀阳; 彭晓彤; 何高文

    2010-01-01

    选取胡安·德富卡洋脊(Juan de Fuca Ridge,JDFR)因代沃(Endeavour)段的17个热液黑烟囱体样品对其中的硫同位素进行分析测定,讨论了因代沃段热液活动区内黑烟囱体成矿的物质来源、将硫同位素数据与已发表的热液流体及硫化物数据耦合,并结合前人的成果得到如下认识:(1)因代沃段硫化物的硫同位素组成与其他无沉积物覆盖的洋脊硫化物硫同位素组成相似,然而其相比于南胡安·德富卡洋脊(South Juan de Fuca Ridge,SJFR)硫化物亏损重同位素;(2)结合前人研究成果,如果SJFR硫化物的硫全部来自基底玄武岩的淋洗与海水中的硫酸盐,那么因代沃段硫化物的硫可能有1%~3%来自沉积物的贡献,故提出因代沃段成矿系统中的硫来源主要来自基底玄武岩,同时伴随有少量海水硫酸盐来源及沉积物来源的硫加入;(3)将硫同位素数据与已发表的热液流体及硫化物数据进行耦合发现热液流体中的沉积物信号与硫化物中的硫可能来自不同的源,并提出沉积物端元可能位于下渗区.

  10. The hillsides would allow to produce electric power from renewable source

    International Nuclear Information System (INIS)

    A solar tower is a renewable energy plant, designed to channel the air warmed by the sun, in order to produce electric power by the use of turbines. It is composed of a giant greenhouse with a chimney in its center. The capacity of this system is proportional to the chimney high. That is the reason why french engineers proposed to use the hillsides to build chimneys of many kilometers high. The project and some technical informations are provided in this paper. (A.L.B.)

  11. The disk-halo interaction - Superbubbles and the structure of the interstellar medium

    International Nuclear Information System (INIS)

    A chimney model for the Galaxy is presented and its underlying physical principles are explained. The crucial point of the model is that the Galactic disk and halo are connected by chimneys which are a consequence of superbubbles bursting out of the disk forming these collimated structures through which the global mass and energy exchange flows from disk to halo. For canonical Galaxy parameters, the chimney phase is found to be associated with a mass flow rate of 0.3-3 solar masses/yr and a global power input of 10 to the 40th to 10 to the 42nd ergs/s. 72 refs

  12. The hillsides would allow to produce electric power from renewable source; Les flancs de montagne pourraient permettre de produire de l'electricite d'origine renouvelable

    Energy Technology Data Exchange (ETDEWEB)

    Laby, F

    2006-09-15

    A solar tower is a renewable energy plant, designed to channel the air warmed by the sun, in order to produce electric power by the use of turbines. It is composed of a giant greenhouse with a chimney in its center. The capacity of this system is proportional to the chimney high. That is the reason why french engineers proposed to use the hillsides to build chimneys of many kilometers high. The project and some technical informations are provided in this paper. (A.L.B.)

  13. Oil heat venting technology and NFPA standard 31 revision year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    The revision of National Fire Protection Association (NFPA) Standard 31 for the year 2000 offers an opportunity to update the Appendix which currently offers recommendations for basic metal relining of masonry chimneys up to and including 25 feet. The paper discusses the proposed update of the existing recommendations to include flexible (rough) metal liners. In addition, the discussion addresses the inclusion of additional information for unlined (non-conforming), lined (conforming to NFPA 211) masonary chimneys, insulated metal chimneys, chimney heights beyond what are now published, as well as power venting both forced and induced draft. Included in the paper is a discussion of the existing Oil Heat Vent Analysis Program (OHVAP Version 3.0) and issues that need resolution to make it a better vent system model.

  14. Safety for Older Consumers: Home Safety Checklist

    Science.gov (United States)

    ... away from curtains, furniture, blankets, and other combustibles. Ash trays, smoking materials, candles, hot plates, and other ... ll fuel-burning appliances, including furnaces, boilers, fireplaces, wood stoves, and water heaters, as well as chimneys, ...

  15. 1925 Clarkston Valley, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Location: east of Helena. Affected area: 803,000 square kilometers. Damage: $0.3 million. Chimneys fell in every direction from the shaking. In addition, brick and...

  16. 16 CFR 1406.3 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... of using solid fuel as well as its original fuel. (c) A chimney is a vertical or nearly vertical... W. Shelton, Wood Heat Safety, Garden Way Publishing, Charlotte, Vermont (1979), p. 160. (l) A...

  17. High-efficiency wind turbine

    Science.gov (United States)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  18. Determining the explosion effects on the Gasbuggy reservoir from computer simulation of the postshot gas production history

    International Nuclear Information System (INIS)

    Analysis of the gas production data from Gasbuggy to deduce reservoir properties outside the chimney is complicated by the large gas storage volume in the chimney because the gas flow from the surrounding reservoir into the chimney cannot be directly measured. This problem was overcome by developing a chimney volume factor F (M2CF/PSI) based upon analysis of rapid drawdowns during the production tests. The chimney volume factor was in turn used to construct the time history of the required influx of gas into the chimney from the surrounding reservoir. The most probable value of F to describe the chimney is found to be 0.150 M2CF/PSI. Postulated models of the reservoir properties outside the chimney are examined by calculating the pressure distribution and flow of gas through the reservoir with the experimentally observed chimney pressure history applied to the cavity wall. The calculated influx from the reservoir into the chimney is then compared to the required influx and the calculated pressure at a radius of 300 feet is compared to the observed pressures in a shut-in satellite well (GB-2RS) which intersects the gas-bearing formation 300 feet from the center of the chimney. A description of the mathematics in the computer program used to perform the calculations is given. Gas flow for a radial model wherein permeability and porosity are uniform through the gas producing sand outside the chimney was calculated for several values of permeability. These calculations indicated that for the first drawdown test (July 1968) the permeability-producing height product (kh) was in the region of 15 to 30 millidarcy-feet (md-ft) and that after several months of testing, the effective kh had dropped to less than 8 md-ft. Calculations wherein (1) the permeability decreases from the chimney out to the 'fracture' radius, and (2) an increased production height is used near the chimney, match the data better than the simple radial model. Reasonable fits to the data for the first

  19. Seabed morphology and gas venting features in the continental slope region of KrishnaeGodavari basin, Bay of Bengal: Implications in gas–hydrate exploration

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.; Ramana, M.V.; Mazumdar, A.; Desa, M.; Badesab, F.K.

    prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES...

  20. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin

    Science.gov (United States)

    Takai, Ken; Nunoura, Takuro; Ishibashi, Jun-Ichiro; Lupton, John; Suzuki, Ryohei; Hamasaki, Hiroshi; Ueno, Yuichiro; Kawagucci, Shinsuke; Gamo, Toshitaka; Suzuki, Yohey; Hirayama, Hisako; Horikoshi, Koki

    2008-06-01

    A newly discovered hydrothermal field called the Mariner field on the Valu Fa Ridge in the southern Lau Basin was explored and characterized with geochemical and microbiological analyses. The hydrothermal fluid discharging from the most vigorous vent (Snow Chimney, maximum discharge temperature 365°C) was boiling at the seafloor at a depth of 1908 m, and two distinct end-member hydrothermal fluids were identified. The fluid chemistry of the typical Cl-enriched and Cl-depleted hydrothermal fluids was analyzed, as was the mineralogy of the host chimney structures. The variability in the fluid chemistry was potentially controlled by the subseafloor phase-separation (vapor loss process) and the microbial community activities. Microbial community structures in three chimney structures were investigated using culture-dependent and -independent techniques. The small subunit (SSU) rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities on the chimney surfaces differed among three chimneys. Cultivation analysis demonstrated significant variation in the culturability of various microbial components among the chimneys, particularly of thermophilic H2-oxidizing (and S-oxidizing) chemolithoautotrophs such as the genera Aquifex and Persephonella. The physical and chemical environments of chimney surface habitats are still unresolved and do not directly extrapolate the environments of possible subseafloor habitats. However, the variability in microbial community found in the chimneys also provides an insight into the different biogeochemical interactions potentially affected by the phase separation of the hydrothermal fluids in the subseafloor hydrothermal habitats. In addition, comparison with other deep-sea hydrothermal systems revealed that the Mariner field microbial communities have unusual characteristics.

  1. Historie a současnost čištění komínů a kouřovodů

    OpenAIRE

    HÁLA, Pavel

    2015-01-01

    This work endeavours to map the development and actual level of chimney and flue cleaning in the Czech Republic including the appraisal of statutory instruments during the period from 1751 to 2015. The aim is to compare the techniques and methods of chimney cleaning used in the past as well as in the present and their effect on health and enviromental protection and safety. The work is divided into two parts. The theoretical one introduces historical changes of rules defining cleaning of chim...

  2. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    International Nuclear Information System (INIS)

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries

  3. Effectiveness of various ventilation systems in reducing exposure to biomass related particles: A real-life experiment

    Directory of Open Access Journals (Sweden)

    Marek Majdan

    2015-01-01

    Full Text Available Background: Exposure to indoor air pollution, in particular particulate matter from biomass-fueled fires, has been identified as a major public health problem. Here, we test the effectiveness of simple ventilation systems in reducing concentrations of particulate matter in a standard experimental kitchen, built of traditional materials in Kenya. Materials and Methods: Continuous sampling for total particles, particulate matter <10 μm and <2.5 μm were sampled in a purpose-built rural kitchen using four ventilation scenarios: no ventilation, open window, open window and chimney and chimney only. The levels of pollutants were recorded and the effectiveness of different ventilation scenarios in reducing the exposure was compared. Results: For each size of particle, any type of ventilation showed a decrease in concentrations (P < 0.001, compared to the unventilated scenario of 70% or more. The lowest concentrations were observed when only a chimney was used; opening a window did not significantly alter the effectiveness of the chimney. Additionally, the changes in pollutant levels over time showed the least variation and lowest mean values when a chimney only was used. Conclusions: Simple ventilation systems, especially installation of a chimney, proved to be effective in significantly decreasing the exposure to biomass fuel-related indoor particulate matter exposure. The application of such technology may help in tackling this important public health issue.

  4. Nuclear chemical mining of primary copper sulfides

    International Nuclear Information System (INIS)

    A contained nuclear explosion is proposed to produce a chimney of broken ore well below the water table. After the chimney is filled with water and reaches hydrostatic equilibrium, O, under pressure, is introduced near the bottom of the mass of broken rock. The increase in solubility of O at high hydrostatic pressure is sufficient to initiate the oxidation of the primary sulphides, chalcopyrite and pyrite. The oxidation and dissolution of these sulphides produces enough heat to increase the temperature of the ore and water in the chimney as much as 100 to 1500C. The rate of dissolution of chalcopyrite exposed to O-saturated solutions becomes so rapid under these conditions that the rate of Cu extraction becomes limited to the accessibility of chalcopyrite to the solutions. Means of solution control and distribution of O in the chimney have been examined in some detail. A calculational model utilizing experimentally determined solubility rates is utilized to estimate the temperature rise in the chimney and the rate of Cu recovery as a function of initial temperature, sulphide content of ore and size of ore particles. It is concluded that the high pressure and high temperature obtainable in a large ore mass broken by nuclear explosives promise the rapid and economic recovery of minerals not considered soluble by conventional in situ leaching methods. The method should be broadly applicable to the kinds of deep deposits that must be depended on for future production and with minimum disruption of the environment. (U.S.)

  5. Feasibility of utilising solar-induced ventilation in Malaysia

    International Nuclear Information System (INIS)

    The feasibility of applying solar-induced ventilation in a typical Malaysian house measuring 3 m high x wide x 5 m deep was considered based on experimental results obtained from a laboratory-scale model. A wall-type solar chimney was considered. The design of the solar chimney incorporated providing a glass panel alongside a vertical wall of a building. Openings at the top and bottom of the wall allowed fresh air to be introduced into the building. Simulations obtained from a simple theoretical model showed that the solar chimney was able to induce air flow rates of between 640 to 1040 m3 h-1 with a 0.3 m air gap. These ventilation rates are found to be in compliance with codes specified by ASHRAE and the Uniform Building By-laws. Full scale studies would need to be conducted in order to evaluate its effectiveness especially the flow pattern in the room

  6. Resistance factors, two phase multipliers and void fractions for best estimate flow calculations in Dodewaard fuel bundles

    International Nuclear Information System (INIS)

    Values are given for resistance factors, two phase multipliers and core and chimney void fractions in the fuel and chimney to be used in best estimate calculations of the flow in Dodewaard fuel bundles. The resistance factors are based on single phase experimental data for a mockup of the Dodewaard fuel bundle. The two phase multipliers are determined from two phase measurements of mockups of other fuel bundles for nuclear reactors. This is also true for the in bundle void fractions. The void fractions in the chimney have been validated by measured void fractions in large diameter pipes. The recommended changes to the existing input for calculations are somewhat larger than the uncertainties in the measurements. (author). 37 refs.; 48 figs.; 4 tabs

  7. Numerical modeling of boiling heat transfer in porous media

    International Nuclear Information System (INIS)

    Theoretical models were developed and validated to investigate boiling heat transfer in porous layers with and without the presence of chimneys. The critical heat flux and distributions of temperature, liquid saturation, liquid and vapor pressures, and liquid and vapor velocities were predicted numerically under typical PWR conditions. The results indicate that a porous layer produces a higher heat transfer coefficient in the nucleate boiling regime, as is well-known, and could potentially yield a much higher critical heat flux than a plain surface does. Moreover, a chimney-type porous layer can have a better thermal performance, i.e., heat transfer coefficient and critical heat flux than a homogeneous one, primarily due to the presence of chimneys providing pathways for vapor to escape from the porous layer with less resistance

  8. Subsidence caused by an underground nuclear explosion

    International Nuclear Information System (INIS)

    An underground nuclear detonation creates a cavity, which may be followed by the formation of a rubble chimney and possibly by a surface subsidence crater. A knowledge of the mechanisms of surface and subsurface subsidence is valuable not only because of the potential engineering uses of the chimneys and craters that may form, but also for the prevention of surface damage. Some of the parameters that are of interest in the subsidence phenomenon are the height and volume of the chimney, the porosity of the chimney, the crater size (depth and radius) and shape, and the time required after detonation for formation of the chimney or crater. The influence of the properties of the subsidence medium on the geometry of the subsidence crater must be considered. The conditions under which partial or complete subsidence is prevented must also be studied. The applicability of the relations that have been developed for the flow of bulk solids for relatively small masses and low pressures to the subsidence problem associated with nuclear explosions is examined. Rational modifications are made to describe the subsidence problem. Sensitivity of the subsidence parameters to material properties and the prevailing geometry is shown. Comparison with observed results at the Nevada Test Site is made and the variations encountered are found to be within reasonable limits. The chimney size and subsidence crater dimensions are found to be a function of the bulking characteristics of the medium, the strength parameters, the dimensions of the subsurface cavity, and the depth of the cavity. The great influence of the strength parameters on the collapse times is shown. For a given medium, the prevention of subsidence is dependent on the cavity size. (author)

  9. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.

    Science.gov (United States)

    Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B

    2015-07-01

    Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys. PMID:26154881

  10. Automating the Solar DRYER—AIRFLOW Control Utilizing Pressure Diffrence Concept

    Science.gov (United States)

    Luk, T. B.; Vakhguelt, A.

    2009-08-01

    The presence of a chimney in natural convective solar dryer has proven its benefit in accelerated transport of moist air from the drying compartment and thus shortening the drying time for intended crops. The experiment and simulation studies done by various parties have guaranteed increases in the airflow in relation to the physical height of chimney. A simple automated control system is proposed to assist the controls of airflow rate so that a near optimum mass flow rate could be achieved for the best possible dried product quality in the shortest possible drying period.

  11. EEA'S management policy for better environmental performance

    International Nuclear Information System (INIS)

    The supply and use of electric energy has both positive and impacts.pollution is the principal negative aspect with local effects, such as the particulates from power plant chimneys; regional effects such as acid rain; and global effects, of which the main one could be the effect of greenhouse gases such as carbon dioxide and methane on climate

  12. Use of satellite information for analysis of aerosol substance propagation

    Science.gov (United States)

    Lezhenin, A. A.; Raputa, V. F.; Yaroslavtseva, T. V.

    2015-11-01

    With satellite data on pollution of snow cover and data of meteorological observations, some fields of dust sedimentation from high chimneys of the Iskitim cement plant are studied. In the absence of snowfalls, a possibility to analyze of the areas of pollution, which are formed in time intervals from several days to several weeks in the vicinities of industrial enterprises, is shown.

  13. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T.

    Science.gov (United States)

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  14. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T

    OpenAIRE

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb).

  15. Microbial Diversity Associated with High Temperature Sulfide Deposits Along the East Pacific Rise Deep-Sea Hydrothermal Vents

    Science.gov (United States)

    Brooks, D.; Hoek, J.; Banta, A. B.; von Damm, K.; Reysenbach, A.

    2002-12-01

    In January 2002, hydrothermal chimneys were collected using DSV Alvin from active vents from 9° 17N to 9° 50N and 20° 49N to 20° 50N. Hydrothermal fluids were collected for end member chemistry prior to collecting the sulfide deposits. Chimney samples were sub-sectioned, separating surface and associated biofilm samples from inner chimney samples. Microbial diversity of sub-samples was assessed using culture-dependent and culturing-independent small subunit (16S) ribosomal RNA-based techniques. Initial bacterial diversity assessments using denaturing gradient gel electrophoresis (DGGE) support the global prevalence of epsilon Proteobacteria associated with deep-sea sulfide structures. These are closely related to the sulfur-reducing isolate Nautilia lithotrophica. The biofilm communities varied in complexity with one sample containing several 16S rRNA sequences (phylotypes, OTU's) of alpha, epsilon, and gamma Proteobacteria while others contained a single phylotype of epsilon Proteobacteria. One proteobacterial phylotype was present in all but one of the surface samples, and this sample contained unique alpha and epsilon proteobacterial sequences. The inner chimney samples lacked the most common epsilon proteobacterial 16S rRNA sequences. Enrichment culturing was restricted to selecting for thermophilic chemolithoautotrophic hydrogen-oxidizing Bacteria. The widespread distribution of Persephonella spp. was confirmed, and novel enrichments of a sheathed and as yet unidentified chemolithotroph were obtained.

  16. Thermal design of a lead-bismuth cooled fast reactor with in vessel direct-contact steam generation

    International Nuclear Information System (INIS)

    The choice of lead or lead alloys as the coolant of a fast reactor offers enhanced safety and reliability due to their benign physical and chemical characteristics. In an effort to make this class of coolants even more attractive for the nuclear systems of the next generation, an innovative fast reactor concept that eliminates the need for steam generators and main coolant pumps and thus offers potential capital and operating cost reduction was explored. The primary coolant is lead-bismuth eutectic, which flows through the core and removed the heat generated by fission in the fuel. Slightly subcooled water is injected into the hot primary coolant pool above the core. The direct contact heat transfer between the fluids causes water to rapidly vaporize leading to the formation of steam bubbles in the reactor chimney. Simple modeling of the multi-phase phenomena occurring in the chimney of a Pb-Bi/water direct contact heat transfer reactor was undertaken. Benchmarking against limited available data demonstrated that the model captures the essential nature of direct contact heat transfer. The model was then used to establish a design envelope for the reactor power, chimney height and steam superheat on the basis of the fuel, clad and vessel temperature limits. A 1260 MWth power is found possible for 10 meters chimney height and 25 Celsius degrees superheat

  17. Bio-technologies; Biotechnologies

    Energy Technology Data Exchange (ETDEWEB)

    Grawitz, X. [Systemes Bio-Industries, 92 - Boulogne Billancourt (France)

    1997-12-31

    The impact of the French 2910 decree concerning pollution emission (emission levels of boilers, turbines, engines and dryers) on the calculation of chimney stack height, gas ejection minimum speed and influence of obstacles, is reviewed. The energy efficiency improvement of 400 kW to 50 MW boilers and the implementation of a cogeneration plant are also described

  18. 76 FR 1501 - Preparation of Environmental Impact Statement for Transit Improvements in the US 90A/Southwest...

    Science.gov (United States)

    2011-01-10

    .... Meeting 5: February 22, 2011 from 6 p.m. to 8 p.m. Westbury High School, Atrium, 11911 Chimney Rock...-flow traffic on city streets for a portion of their route. As a result, bus travel times are...

  19. MOUSE SKIN TUMOR INITIATION-PROMOTION AND COMPLETE CARCINOGENESIS BIOASSAYS: MECHANISMS AND BIOLOGICAL ACTIVITIES OF EMISSION SAMPLES

    Science.gov (United States)

    Extracts of soots obtained from various sources were applied to the skin of mice in an effort to identify carcinogens in these mixtures and to link these materials to the etiology of human cancer. Samples of coal chimney soot, coke oven materials, industrial carbon black, oil sha...

  20. Passive solar systems (solar architecture research and development in Italy). Solare passivo: sottoprogetto energia solare, eolica ed idraulica

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This collection of papers on solar achitecture research and development deals with test facilities now available in Italy for performance testing/data acquisition relative to passive solar system components (i.e.Trombe walls) and provides an update on the developments by various consultants of marketable products (solar water heaters, solar chimneys, sunlight dousers, etc).

  1. Project Thunderbird: a nuclear trigger for coal gasification

    International Nuclear Information System (INIS)

    Use of nuclear explosions to facilitate utilization of coal, oil shale, and bituminous sand beds is reviewed, with particular attention to Project Thunderbird. A 100-mi2 region of Wyoming, underlain by more than 20,000 million tons of coal, is the site for this in situ coal-energy experimental program. The total coal interval lies at a depth of from 1000 to 2200 ft and contains a gross section of coal that may be the thickest in the Western Hemisphere. In Project Thunderbird, a nuclear explosion will open up multiple seams and overcome some problems experienced in previous underground gasification experiments. A collapse chimney of 25 to 30% void space could be formed, which would be burned under controlled conditions. A 50-kiloton nuclear device at 2200 ft in the base of the Fort Union coal-bearing unit will give the following chimney characteristics; a rubble chimney of broken rock with a radius of about 127 ft and a height of around 35 ft; and approximately 2,000,000 tons of broken rock of which 25% (or 500,000 tons) is coal (a Btu equivalency of 1.5 million barrels of oil). Ignition of the broken coal and controlled injection of oxygen into the chimney will produce low-Btu gas and associated products

  2. Thermal design of a lead-bismuth cooled fast reactor with in vessel direct-contact steam generation

    Energy Technology Data Exchange (ETDEWEB)

    Buongiomo, J. [Idaho National Engineering and Environmental Lab., Nuclear Engineering Dept., Idaho Falls, ID (United States); Todreas, N.E.; Kazimi, M.S. [Massachusetts Institute of Technology, Nuclear Engineering Dept., Cambridge, MA (United States)

    2001-07-01

    The choice of lead or lead alloys as the coolant of a fast reactor offers enhanced safety and reliability due to their benign physical and chemical characteristics. In an effort to make this class of coolants even more attractive for the nuclear systems of the next generation, an innovative fast reactor concept that eliminates the need for steam generators and main coolant pumps and thus offers potential capital and operating cost reduction was explored. The primary coolant is lead-bismuth eutectic, which flows through the core and removed the heat generated by fission in the fuel. Slightly subcooled water is injected into the hot primary coolant pool above the core. The direct contact heat transfer between the fluids causes water to rapidly vaporize leading to the formation of steam bubbles in the reactor chimney. Simple modeling of the multi-phase phenomena occurring in the chimney of a Pb-Bi/water direct contact heat transfer reactor was undertaken. Benchmarking against limited available data demonstrated that the model captures the essential nature of direct contact heat transfer. The model was then used to establish a design envelope for the reactor power, chimney height and steam superheat on the basis of the fuel, clad and vessel temperature limits. A 1260 MWth power is found possible for 10 meters chimney height and 25 Celsius degrees superheat.

  3. 国外暖通空调实用文献摘要选编

    Institute of Scientific and Technical Information of China (English)

    秦慧敏

    2009-01-01

    泰国利用屋顶太阳能烟囱效应的冷却吊顶实验和数据解析[a①],Utilization of cool ceiling with roof solar chimney in Thailand: The experimental and numerical analysis. Renew Energy(英国)34[1]623-633(2009);

  4. The Therapeutic Use of Animals with the Handicapped.

    Science.gov (United States)

    Ross, Samuel B., Jr.

    Green Chimneys, a residential center for emotionally disturbed and learning disabled children in New York, uses farm animals in the treatment program. Children learn horseback riding, animal husbandry, gardening, and farming on a working farm. The program seeks to involve the community and provide training to volunteers, interns, and learning…

  5. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Barrat, J.A.; Boulegue, J.; Tiercelin, J.J.; Lesourd, M.

    2000-01-01

    At Cape Banza (North Tanganyika Lake), fluids and aragonite chimneys have been collected many times since the discovery of this sublacustrine field in 1987. This sampling has been investigated here for the Sr isotopic compositions and the rare-earth element features of the carbonates and a few fluid samples. The {sup 87}Sr/{sup 86}Sr ratios of the chimneys indicate that they have precipitated from a mixture of lake water (more than 95%) and hydrothermal fluids. No zoning in the chimneys was detected with the Sr data. For the rare-earth elements, the situation is more complex. The external walls of the chimneys are rare-earth-element-poor (La {approx} 500 ppb, Yb {approx} 200 ppb, La/Yb = 2 to 3.4). Their shale normalized rare-earth element patterns suggest that they are in equilibrium with the inferred carbonate-depositing fluids. The rare-earth element concentrations of the internal walls of the chimneys are significantly light rare earth elements (LREE)-enriched with La contents sometimes up to 5 ppm. The authors suggest that they contain more vent-fluid rare-earth elements than the external wall samples, possibly adsorbed on the surface of growing crystals or simply hosted by impurities. It was not possible to constrain the nature of these phases, but the variations of the compositions of the internal wall materials of the active chimneys with time, as well as data obtained on an inactive chimney indicate that this rare-earth element excess is mobile. Partition coefficients were calculated between the external wall aragonite and carbonate-depositing fluid. The results are strikingly similar to the values obtained by Sholkovitz and Shen (1995) on coral aragonite, and suggest that there is no significant biologic effect on the incorporation of rare-earth elements into coral aragonite and that the various carbonate complexes involved Me(CO{sub 3}{sup +}) complexes are the main LREE carriers in seawater instead of Me(CO{sub 3}){sub 2}{sup {minus}} in Banza fluids

  6. On the use of nuclear explosives for stimulation of geothermal heat

    International Nuclear Information System (INIS)

    Many areas of the world exist where high temperature isotherms supported by heat flow from the core of the earth occur very close to the surface of the earth. Commercial exploitation of these sources of energy has only recently become practical and is limited to those areas where a natural system of fracture acts to collect heat from a large volume of rock and sufficient natural water is available to act as a heat transfer agent. Recent studies have indicated many more areas of geothermal heat are available than had been identified previously. The nuclear application envisages the creation of a chimney and associated fracture system with a nuclear explosion, introduction of water into the chimney-fracture system, and removal of superheated steam for the generation of electrical power. Three phenomena are considered: utilization of the heat content of the rock in the chimney and fracture zone; heat flow from the surrounding medium to the fracture zone or chimney by conductivity; and interconnection of a preexisting network of fracture by the highly permeable chimney and fracture zone. A 1-Mt example is examined showing that over 109 kWh are available in the chimney, and over 1010 kWh in the central portion of the fracture zone. Using the current commercial value of 2 mills/kWh for such steam, the above heat has a worth of over S30,000,000. In addition, heat flow into the fracture zone would represent over $1 million per year additional value. Interconnection of fractures drawing heat from far removed volumes would be very site-dependent and difficult to estimate, and have not been included. Use of an array would permit circulation between chimneys with the resultant utilization of the heat energy contained in the intervening volume. Ground shock associated with such an application would probably require development of a 30 to 50 year supply before the power plant is constructed. Radiological safety problems would be confined to operation of the power plant. (author)

  7. Gas quality analysis and evaluation program for project Gasbuggy

    International Nuclear Information System (INIS)

    Experimental results of the gas quality analysis program for Project Gasbuggy through August 1969 are presented graphically, addressing the questions raised by the preshot program goals. The chemical composition and the concentrations of tritium, krypton-85, carbon-14 and argon-37, 39 are presented as a function of time and gas production from the nuclear chimney. Chemically, the presence of CO2, CO and H2 served to dilute the formation gas and caused reactions which significantly altered the gas composition at early times. The radionuclide content of the chimney gas at reentry was some 800 pCi/cm3 of which about 80% was CH3T. Lesser quantities of tritium were observed as HT, C2H5T and C3H7T. The other major contaminant was Kr85 which was present at about one-fifth the level of CH3T. Small quantities of carbon-14 and argon-39 were also identified. The only other radionuclides identified in the gas were relatively short-lived rare gases. During the production testing, about two and one-half chimney volumes of gas at formation pressure were removed. This removal, accompanied by dilution, has reduced the radionuclide concentrations to about 7% of their levels at reentry. The production characteristics of the Gasbuggy environment prevented an adequate test of the effectiveness of chimney flushing. However, the rapid drawdown concept is supported by the available data as an effective means of reducing contaminant levels. The changes in composition during production or testing are seen to be consistent with a model involving a non-uniform gas influx rate and flow distribution over the chimney region. Mixing times are estimated to be on the order of a few days, so that increasing concentrations following a sudden gas influx can be explained. (author)

  8. Behavior of radionuclides in nuclear gas stimulation applications

    International Nuclear Information System (INIS)

    The Gasbuggy experiment has presented a unique opportunity to investigate the behavior of radionuclides over an extended period of time in a somewhat unusual environment. In addition to the obvious practical utility of this investigation for Plowshare applications, the information gained has value of a purely scientific nature. Both aspects of the Gas Quality program for Gasbuggy are discussed in this presentation. The study of Gasbuggy results is divided into two distinct periods, according to the field operations. During the initial six months following detonation, the chimney reentry well was shut-in, and the nuclear chimney served as a chemical and radiochemical reaction vessel. A detailed examination of the concentrations and specific activities of tritium and C14 is presented as a function of the changing chemical composition of the chimney gas and as a function of time. The effects of radiochemical exchange reactions, together with the tritium isotope effect, are demonstrated. Following this shut-in period, a series of production and flushing tests was conducted. During these experiments, the chimney gas composition was seen to change about as would be expected due to dilution of the chimney gas with formation gas. An examination of radionuclide concentrations and specific activities during the production tests demonstrated the relative unimportance of isotopic exchange and chemical reactions during this period, as compared to the early shut-in periods. Within the limitations of the Gasbuggy experience a generalized model of the behavior of tritium and C14 can be deduced. The discussion involves estimation of initial distribution of activities, the effects of chemical reactions and isotopic exchange on this distribution, and the importance of the environment in determining the level of radioactivity contamination to be expected. (author)

  9. Investigation of hydrogen recombination under natural convection conditions

    International Nuclear Information System (INIS)

    Passive Autocatalytic Recombiners (PAR) are installed inside the containment of nuclear power plants in order to prevent the build-up of flammable mixtures and to mitigate the effects of hydrogen deflagrations, which can occur in the event of a severe accident combined with the release of hydrogen. In order to simulate the operating behaviour of PARs, the computer program REKO-DIREKT is being developed at the Forschungszentrum Juelich in collaboration with the Institute for Reactor Safety and Reactor Technology at the RWTH Aachen. For the validation of the code, data from experimental facilities operated at Juelich are used. This work focusses on the analysis of the chimney effect through the PAR housing as well as the optimization of the chimney model of REKO-DIREKT. Therefore experimental investigations are carried out in the REKO-4 facility under natural convection conditions. This facility is equipped with numerous measuring devices, e.g. katharometers for in-situ measuring of the hydrogen concentration and the optical flow measurement technique Particle-Image-Velocimetry. In preliminary assessments the equipment is being qualified in order to determine the measurement accuracy. In the following experimental investigations, a small-scale PAR is used, that is built in a modular way allowing it to be equipped with different chimney geometries. The experimental results produce a database that shows the central correlation between the hydrogen concentration, the catalyst temperature and the inlet velocity. The results include the variation of the recombiner's chimney height and experiments at different operating pressures. After optimization of the chimney model, the simulation program is validated against experiments in the large-scale facility THAI in Eschborn, which have been performed subsequent to this thesis in the context of the OECD/NEA-THAI project. Finally, the influence of a downward-directed, near-wall flow on the operational behaviour of the small

  10. Hydrogeology of the Faultless site, Nye County, Nevada

    International Nuclear Information System (INIS)

    The Faultless event was the detonation of an intermediate-yield nuclear device on January 19, 1968, at a depth of 975 m below the surface of Hot Creek Valley, Nevada. This report presents details of the hydrogeology of the rubble chimney and radiochemical monitoring in re-entry hole UC-1-P-2SR. The surface location of re-entry hole UC-1-P-2SR is about 91 m north of the emplacement hole, UC-1. Re-entry hole UC-1-P-2SR was drilled to a total depth of about 1097 m. The hole penetrated Quaternary and Tertiary valley-fill sediments above the rubble chimney, as well as Quaternary and Tertiary valley-fill and Tertiary tuffaceous sediments within the chimney and rubble-filled cavity. Monitoring of the water level in re-entry hole UC-1-P-2SR indicated that, from 1970 to 1974, the water level was 695 m below land surface. During filling of the rubble chimney from 1974 to 1983, the water level rose slowly to a depth of 335.1 m. The 1983 level was about 167 m below the pre-event level that was about 168 m below land surface. Water with temperatures ranging from 37 to 610C occurred at the bottom of the re-entry hole at depths ranging from 728 to 801 m. A temperature of 1000C at a depth of 820 m was projected from temperature logs. The hydraulic connection between the re-entry hole and the rubble chimney is considered poor to fair. Chemical analyses of water samples indicate that the water predominantly was a sodium bicarbonate type. Chemical and radiochemical analyses indicated that, although the constituents generally increased with increasing depth, three distinct water-quality zones have lasted for more than 16 years, even during the rising water level. The hot, radioactive water from the Faultless event apparently rose into the lower zone concomitant with the rising water level, as the rubble chimney was being filled. This general rise was interrupted by the apparently major dilution from colder water descending from the upper zone during 1975 and 1977

  11. Focused fluid flow in the Baiyun Sag, northern South China Sea: implications for the source of gas in hydrate reservoirs

    Institute of Scientific and Technical Information of China (English)

    CHEN Duanxin; WU Shiguo; DONG Dongdong; MI Lijun; FU Shaoying; SHI Hesheng

    2013-01-01

    The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood.Based on high-resolution 2D/3D seismic data,three environments of focused fluid flow:gas chinmeys,mud diapirs and active faults have been identified.Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts.The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage.For most gas chimneys,the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene,which are observed below Pliocene strata and few active faults develop above the top of the Miocene.The formation pressures of the Baiyun Sag currently are considered to be normal,based on these terms:1) Borehole pressure tests with pressure coefficients of 1.043-1.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates,rather than fractured hydrates,are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores.However,periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes of thermogenic gas.A geological model governing fluid flow has been proposed to interpret the release of overpressure,the migration of fluids and the formation of gas hydrates,in an integrated manner.This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma.Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns.Some of the biogenic gas and small volumes of thermogenic gas eventually contribute to the formation of the gas

  12. Remote measurements of the dimensions for reactor structure in HANARO

    International Nuclear Information System (INIS)

    The HANARO, an open-tank-in-pool type research reactor of 30 MWt power in Korea, has been operating for 10 years since its initial criticality in February 1995. The reactor power has been gradually increased to the full power reached in June 2004. This paper describes a few mechanical technologies for the remote measurements of the dimensions of the reactor main components for the installation of new facilities and for the in-service inspections. After a few years operation, a new bracket called 'in-chimney bracket' was required in the Hanaro chimney to support the irradiation facilities in the core against the seismic and flow-induced vibrations. The inner dimensions of the chimney walls and four opening holes on the wall were required to be measured for the design and installation of the in-chimney bracket because there were not enough as-built dimensions. Therefore we remotely measured the as-installed dimensions of the chimney with a technology of relative measurement method and special tools using a remote caliper mechanism. We verified the validity of the measured data by the successful installation and service of the in-chimney bracket. The other technology was required to measure very accurate dimensions of a vertical hole of Φ160 mm in the reflector vessel for the installation of a cold neutron source with a minimum light water film in the warped tube due to welding deformation. A dial gauge moving on two linear motion guides assembled on a strong axis was used to measure the diameter, eccentricity and straightness. The measured dimensions were verified to be accurate enough to apply in the design of the vacuum tube which will be installed in the hole. The inner shell of the reflector vessel surrounding the core is the most critical part from the viewpoint of neutron irradiation. The periodic measurement of the dimensional change in the vertical straightness of the inner shell is considered as one of the in-service inspections to confirm the analysis

  13. Técnicas actuales para el proyecto y la construcción de las grandes chimeneas industriales

    Directory of Open Access Journals (Sweden)

    del Solar Bermejo, José

    1985-03-01

    Full Text Available This work intends to make known the deep change met within the design of great-height industrial chimneys. The main characteristics of this kind of work are described, as well as the project with the informatic means used in structural, thermodynamic and smoke dispersion calculations for the optimal design of an industrial chimney.Este trabajo trata de dar a conocer el profundo cambio experimentado en el diseño de las chimeneas industriales de gran altura. Se describen las características principales de este tipo de obras, y el proyecto con los medios informáticos empleados en los cálculos estructurales, termodinámicos y de dispersión de humos, para el dimensionamiento óptimo de una chimenea industrial.

  14. Thermal-hydraulic instability of the natural circulation BWR. 6. Occurrence condition and mechanism of the instability at the higher system pressure

    International Nuclear Information System (INIS)

    Experiments have been conducted to investigate thermal-hydraulic instabilities at the higher system pressure ranging from 1.0 to 7.2 MPa in a boiling natural circulation loop with a chimney. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR flow dynamics. Stability maps in reference to the system pressure, the channel inlet subcooling, and heat flux are presented. This instability mechanism is classified into the density wave oscillations that oscillation period is one to two times the time required for a bubble generated in the channel to travel through the chimney, and different from the flashing induced instability at the lower system pressure. The difference from other phenomena such as flow pattern transient oscillations and natural circulation oscillations are discussed by investigating the transient flow pattern and the response of momentum energy to driving force of the circulation. (author)

  15. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    Directory of Open Access Journals (Sweden)

    Christoph Wrede

    2013-01-01

    Full Text Available The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  16. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  17. A Retrievable Mineral Microcosm for Examining Microbial Colonization and Mineral Precipitation at Seafloor Hydrothermal Vents

    Science.gov (United States)

    Dunn, E. E.; Holloway, J. R.; Cary, S.; Voglesonger, K. M.; Ashbridge, D. A.; O'Day, P. A.

    2002-12-01

    Although seafloor hydrothermal vent environments are known to support thriving ecosystems, the microscale physical and chemical environment suitable for microbial colonization and the identity of pioneering organisms is unknown. Because of the fragility of young chimneys and their ephemeral nature, novel methods for sample retrieval and analysis are required. The mineral microcosm consists of four titanium mesh chambers containing crushed minerals mounted on a titanium base that allows for fluid flow through the chambers. The chambers can be filled with different minerals or mineral mixtures (or no minerals) to supply different substrates for microbial colonization and different local microenvironments as minerals react with the surrounding fluids. The device sets on top of an active hydrothermal vent for a period of days to weeks to allow colonization and mineral reaction. The mineral microcosm was deployed during the Atlantis/Alvin Extreme 2001 Cruise (Oct.- Nov.,2001) to 9° 50'N on the East Pacific Rise a total of three times, for ~ 24, ~ 96, and ~ 48 hours each. It was deployed in two different environments, twice in lower temperature (350°C).Seed minerals included sulfides, sulfates, magnetite, apatite, and quartz, both individually and in mixtures. In the first 24-hour deployment, dissolution of anhydrite but not sulfide minerals within the chambers indicated high temperatures in chamber interiors and rapid reaction rates. Temperatures measured on chamber exteriors before retrieval ranged from 4° -98°C. The 96-hour deployment on a hot vent (fluid ~370°C before deployment) resulted in extensive mineral precipitation and chimney growth inside the mineral chambers, on the outer surfaces of the chambers, and on the platform as a whole, creating micro-chimneys several centimeters tall. The young chimneys were mainly composed of pyrite with lesser amounts of chalcopyrite and sphalerite and with thin veneers of anhydrite on exterior surfaces in contact with

  18. CFD simulation of a solar tower

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yukselenturk, Yalcyn; Yilmaz, Mustafa [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the depletion of fossil fuels and the rising concerns about their impacts on the environment, the use of alternative energy sources has become necessary. Among the alternatives, solar energy, with its unlimited resources and its low impact on the environment, is the most promising. The aim of this paper is to present a numerical model of a regular solar tower. A CFD analysis of the solar tower was performed with a commercial CFD code and velocity fields, temperature measurements and flow characteristics were determined and compared to experimental results available in the literature. It was found that the numerical model is capable of assessing the buoyant air flow in chimneys. In addition results showed that increasing the solar chimney height, solar collector area, or solar irradiance increases power generation capacity while ambient temperature does not significantly affect this capacity. This study provided a numerical model which is proficient in modeling solar towers.

  19. Preliminary Phenomena Identification and Ranking Tables (PIRT) for SBWR start-up stability

    International Nuclear Information System (INIS)

    Phenomena Identification and Ranking Tables (PIRT) have been developed for start-up transient for SBWP. The information used for PIRT came from RAMONA-4B and TRACG analyses of the transient and from related small scale tests. The transient was divided into four distinct phases, namely, Subcooled Core Heat-up, Subcooled Chimney, Saturated Chimney and Power Ascension. The assessment criterion selected was Minimum Critical Power Ratio. The SBWR system was divided into ten components. A total of 33 distinct phenomena among the components were identified. The Phase I has 28 ranked phenomena with 17 low, 6 medium and 5 high ranking. The Phase II has 39 ranked phenomena with 18 low, 13 median and 8 high ranking. The Phase III has 47 ranked phenomena with 22 low, 10 medium and 15 high ranking. The Phase IV has 46 ranked phenomena with 16 low, 12 medium and 18 high ranking. 12 refs., 22 figs., 21 tabs

  20. Selective loss of metals from low-mass galaxies

    International Nuclear Information System (INIS)

    The fate of metals produced by type II supernovae occurring at time intervals of order 1 Myr in a low-mass gas-rich disk galaxy have been studied via a numerical model. Two-dimensional hydrodynamic simulations were made for a typical stellar OB association located near the center of a model disk galaxy with a mass of 1.4 x 10 to the 9th solar mass. Consistent with earlier studies, multiple SN led first to the production of a supershell and later to a galactic chimney which channels SN debris out from the disk. Chimney development is aided by the low metallicity (Z = 0.1 solar Z) of the model, which depresses cooling rates. 25 refs

  1. Chemical mining of primary copper ores by use of nuclear technology

    International Nuclear Information System (INIS)

    Chemical mining of primary copper ores, with nuclear explosives to break the ore and in-situ hydrostatic pressure to accelerate dissolution of primary ore minerals, may be feasible. A contained nuclear explosion well below the water table would be used to provide a mass of broken ore in a flooded 'chimney'. The hydrostatic pressure in the chimney should increase the solubility of oxygen in a water-sulfuric acid system enough to allow primary copper minerals such as chalcopyrite and bornite to be dissolved in an acceptably short time. Circulation and collection would be accomplished through drill holes. This method should be especially applicable to the deep portions of porphyry copper deposits that are not economical to mine by present techniques. (author)

  2. Solar ventilation and tempering

    Science.gov (United States)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  3. Airborne thermography of temperature patterns in sugar beet piles

    Science.gov (United States)

    Moore, D. G.; Bichsel, S.

    1975-01-01

    An investigation was conducted to evaluate the use of thermography for locating spoilage areas (chimneys) within storage piles and to subsequently use the information for the scheduling of their processing. Thermal-infrared quantitative scanner data were acquired initially on January 16, 1975, over the storage piles at Moorhead, Minnesota, both during the day and predawn. Photographic data were acquired during the day mission to evaluate the effect of uneven snow cover on the thermal emittance, and the predawn thermography was used to locate potential chimneys. The piles were examined the day prior for indications of spoilage areas, and the ground crew indicated that no spoilage areas were located using their existing methods. Nine spoilage areas were interpreted from the thermography. The piles were rechecked by ground methods three days following the flights. Six of the nine areas delineated by thermography were actual spoilage areas.

  4. On the Outstanding Historic Listed Buildings Partial Repair Method and Process-- Practical Experiences of the Reconstruction Project of Shanghai Luwan District Sinan Mansions Preservation Transformation Project%浅议优秀历史保护建筑修复部分方法及工艺--上海卢湾区思南公馆保留保护改造项目的改建工程实践心得

    Institute of Scientific and Technical Information of China (English)

    李戟

    2014-01-01

    本文主要对外立面卵石墙面恢复、保护建筑平瓦斜屋面翻新、烟囱的砌筑及原烟囱混凝土顶帽的利用与恢复等进行了分析和探讨,希望能够在行业起到抛砖引玉的作用。%This paper analyzes and discusses the recover of facade pebble metope, restoration of protection building flat inclined roofing tile, masonry of chimney, and utilization and recovery of original concrete chimney hat, hopes to be able to play the role of throwing out a minnow to catch a whale in the industry.

  5. AIR AS A FACTOR AFFECTING FOOD HYGIENE

    OpenAIRE

    Klaudia Jomová; Melánia Feszterová

    2012-01-01

    The air is the most endangered component of the environment. The air pollution has not only got various economical and ecological consequences but also has various negative effects on human health, animals, plants and food hygiene. Elevated anthropogenic SO2 emissions can also have negative influences upon the environmental conditions, human health, and ecosystems. The most emissions come from industrial chimneys, heavy traffic emissions and population density. It is inevitable to monitor the...

  6. Gas migration pathways, controlling mechanisms and changes in sediment acoustic properties observed in a controlled sub-seabed CO2 release experiment

    OpenAIRE

    Cevatoglu, Melis; Bull, Jonathan M.; Vardy, Mark E.; Gernon, Thomas M.; Wright, Ian C.; Long, David

    2015-01-01

    Highlights • Repeated 2D seismic reflection surveys map migration of CO2 in marine sediments. • CO2 is imaged as bright spots, acoustic blanking, and by reflector terminations. • Seismic chimneys are interpreted as inter-connected micro-scale fractures. • CO2 migration is controlled by stratigraphy and total subsurface gas volume/injection rate. • CO2 changes sediment acoustic properties, including reflectivity and attenuation. Abstract Carbon capture an...

  7. Combustion Quality Estimation in Power Station Boilers using Median Threshold Clustering Algorithms

    OpenAIRE

    K.Sujatha; Dr.N.Pappa,; A. Kalaivani

    2010-01-01

    The estimation of combustion quality in power station boilers is of great importance in the present scenario as it plays an important role in controlling the air pollution. The harmful gases like NOx and CO from the chimney causes air pollution. The amount of NOx and CO concentration in flue gas can be maintained within admissible limits by analyzing the flame colour. The colour of the flame is affected by combustion quality. When complete combustion takes place the amount these gases at the ...

  8. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period

    OpenAIRE

    POSTEC, Anne; Quéméneur, Marianne; Bes, Méline; Mei, Nan; Benaïssa, Fatma; Payri, Claude; Pelletier, Bernard; Monnin, Christophe; Guentas-Dombrowsky, Linda; Ollivier, Bernard; Gérard, Emmanuelle; Pisapia, Céline; Gérard, Martine; Ménez, Bénédicte; Erauso, Gaël

    2015-01-01

    International audience Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarcha...

  9. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period.

    OpenAIRE

    Anne ePostec; Marianne eQuéméneur; Méline eBes; Nan eMei; Fatma eBenaïssa; Claude ePayri; Christophe eMonnin; Bernard ePelletier; Linda eGuentas; Bernard eOllivier; Emmanuelle eGérard; Céline ePisapia; Martine eGérard; Bénédicte eMénez; Gaël eErauso

    2015-01-01

    Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarchaea were the main archaeal ...

  10. Installation complete / Aet Ader, Kadri Klementi

    Index Scriptorium Estoniae

    Ader, Aet

    2015-01-01

    Linnainstallatsioonidest avalikus ruumis. "Gas Pipe" Venezia Arhitektuuribiennaalil (Maarja Kask, Ralf Lõoke, Neeme Külm, Ingrid Ruudi, 2008). "Artificial Queue" (Andra Aaloe, Aet Ader, Flo Kasearu, Grete Soosalu, 2010). "To the Sea" (autorid Tomomi Hayashi, Mihkel Sagar, 2011). "Chimney" (tundmatu autor, 2011). "Straw Theatre" (Salto Arhitektid, 2011). "A Path in the Forest" (Tetsuo Kondo, Mitsuru Maekita, Mutsuro Sasaki, Yoshiyuki Hiraiwa, 2011). "O" (Aet Ader, Andra Aaloe, Kaarel Künnap, Grete Soosalu, Flo Kasearu, 2011)

  11. Start-up behaviour of a passive auto-catalytic recombiner under counter flow conditions: Results of a first orienting experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Berno, E-mail: simon@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology (LRST), 52072 Aachen (Germany); Reinecke, Ernst-Arndt, E-mail: e.reinecke@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Kubelt, Christian, E-mail: kubelt@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology (LRST), 52072 Aachen (Germany); Allelein, Hans-Josef, E-mail: allelein@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology (LRST), 52072 Aachen (Germany); Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany)

    2014-10-15

    Highlights: • We studied the start-up behaviour of a PAR located in a downward-directed flow. • We performed several identical experiments with and without counter flow. • A temporary interference of the establishing chimney flow is observed. • An earlier local start-up of the catalytic reaction occurs under downward flow. • The overall performance of the PAR is not significantly affected. - Abstract: A downward directed wall-near flow represents a typical thermal hydraulic condition inside the LWR containment during a severe accident. In order to efficiently remove hydrogen released into the containment, passive auto-catalytic recombiners (PARs) located close to the containment wall have to establish an internal upward directed chimney flow against this counter flow. In cooperation between RWTH Aachen and the Research Center Jülich, the effect of a downward directed flow on the PAR start-up has been investigated in the REKO-4 test facility at Jülich. The test series includes experiments with identical boundary conditions performed under counter flow conditions as well as in quiescent atmosphere as reference case. Under counter flow conditions, an earlier local start-up of the catalytic reaction on the upper edge of the catalyst sheets was observed. However, the establishment of full PAR operation required more time compared to the reference case. This delay is attributed to a partial inflow of the counter flow into the PAR outlet which interferes with the establishing of a chimney flow promoted by the exothermal catalytic reaction. Once a developed chimney flow inside the PAR is established, no negative effect on the PAR performance could be observed. As expected, the counter flow mixes immediately with the PAR outlet flow dissolving the characteristic plume of hot gases at the PAR outlet.

  12. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil

    OpenAIRE

    Mohamed Abuarab; Ehab Mostafa; Mohamed Ibrahim

    2013-01-01

    Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration...

  13. Mouse skin tumor initiation-promotion and complete carcinogenesis bioassays: mechanisms and biological activities of emission samples.

    OpenAIRE

    Nesnow, S; Triplett, L L; Slaga, T J

    1983-01-01

    Extracts of soots obtained from various sources were applied to the skin of mice in an effort to identify carcinogens in these mixtures and to link these materials to the etiology of human cancer. Samples of coal chimney soot, coke oven materials, industrial carbon black, oil shale soot, and gasoline vehicle exhaust materials have been examined by this method. The studies reported here have been constructed to compare the carcinogenic and tumorigenic potency of extracts from various particula...

  14. Patología, diagnóstico y recuperación de chimeneas industriales de fábrica de ladrillo cerámico

    OpenAIRE

    Díaz Gómez, C.; Gumá Esteve, R

    1999-01-01

    The work presented in these pages originated from a study commissioned by Barcelona Provincial Council's Architectural Heritage Service, in which data was gathered on a broad sample of brickwork industrial chimneys in order to analyse the factors that have contributed or continue to contribute to their physical deterioration and the progressive jeopardising of their safety. The aspects considered include cracking patterns and damage found, and also data deduced from the analytical evaluation ...

  15. Effects of woodsmoke exposure on airway inflammation in rural Guatemalan women.

    Directory of Open Access Journals (Sweden)

    Michael J Guarnieri

    Full Text Available More than two-fifths of the world's population uses solid fuels, mostly biomass, for cooking. The resulting biomass smoke exposure is a major cause of chronic obstructive pulmonary disease (COPD among women in developing countries.To assess whether lower woodsmoke exposure from use of a stove with a chimney, compared to open fires, is associated with lower markers of airway inflammation in young women.We carried out a cross-sectional analysis on a sub-cohort of participants enrolled in a randomized controlled trial in rural Guatemala, RESPIRE.We recruited 45 indigenous women at the end of the 18-month trial; 19 women who had been using the chimney stove for 18-24 months and 26 women still using open fires.We obtained spirometry and induced sputum for cell counts, gene expression of IL-8, TNF-α, MMP-9 and 12, and protein concentrations of IL-8, myeloperoxidase and fibronectin. Exhaled carbon monoxide (CO and 48-hr personal CO tubes were measured to assess smoke exposure.MMP-9 gene expression was significantly lower in women using chimney stoves. Higher exhaled CO concentrations were significantly associated with higher gene expression of IL-8, TNF-α, and MMP-9. Higher 48-hr personal CO concentrations were associated with higher gene expression of IL-8, TNF- α, MMP-9 and MMP-12; reaching statistical significance for MMP-9 and MMP-12.Compared to using an open wood fire for cooking, use of a chimney stove was associated with lower gene expression of MMP-9, a potential mediator of airway remodeling. Among all participants, indoor biomass smoke exposure was associated with higher gene expression of multiple mediators of airway inflammation and remodeling; these mechanisms may explain some of the observed association between prolonged biomass smoke exposure and COPD.

  16. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    ridge system, sulfide minerals crystallize from the hot water directly onto the volcanic rocks surrounding the hydrothermal vent leading to the formation of hollow, chimney like sulfide structure through which the hot water continues to flow... systems, which are in turn an integral component of global mid-ocean ridge system. Hydrothermal systems are composed of convection cells in the crust and upper mantle through which seawater freely circulates reacting with magmatic material, which...

  17. Big Cost to Families

    Institute of Scientific and Technical Information of China (English)

    MATT; YOUNG

    2006-01-01

    If tobacco multinationals had their way, China might more closely resemble a chimney. So what are the costs of a potentially smokier future in China? Aside from health costs, there could be economically (and educationally) severe ones, according to a new study published in Social Science & Medicine by a Yale professor. Dr. Hong Wang analyzed how the cost of smoking impacts China's critical economic strengths: human capital investment (defined by education and healthcare), risk-taking capacity (defined by...

  18. Thin sample alloy solidification in electromagnetic driven convection

    OpenAIRE

    Kao, A.; Shevchenko, N.; Roshchupinka, O.; Eckert, S.; Pericleous, Koulis

    2015-01-01

    During the directional solidification of Ga-In25%wt., density variations in the liquid cause plumes of solute to be ejected from the interface through natural convection. This can lead to the formation of chimneys during solidification and ultimately freckles. The application of external magnetic fields can be used to suppress these plumes. Two magnetic systems are considered. The first is a rotating magnetic wheel, which provides conditions analogous to forced convection at the solidificatio...

  19. 36 CFR 294.29 - List of designated Idaho Roadless Areas.

    Science.gov (United States)

    2010-07-01

    ... X X Sawtooth Smoky Mountains 914 X X X Sawtooth Sublett 005 X Sawtooth Third Fork Rock Creek 009 X X... Needles 911 X X X X X Boise Peace Rock 026 X X X Boise Poison Creek 042 X Boise Poker Meadows 032 X X... Big Creek Fringe 009 X X Payette Caton Lake 912 X X Payette Chimney Rock 006 X X Payette...

  20. Microcontroller-Based Fault Tolerant Data Acquisition System For Air Quality Monitoring And Control Of Environmental Pollution

    OpenAIRE

    Tochukwu Chiagunye; Eze Aru Okereke; Ilo Somtoochukwu

    2015-01-01

    ABSTRACT The design applied Passive fault tolerance to a microcontroller based data acquisition system to achieve the stated considerations where redundant sensors and microcontrollers with associated circuitry were designed and implemented to enable measurement of pollutant concentration information from chimney vents in two industry. Microsoft visual basic was used to develop a data mining tool which implemented an underlying artificial neural network model for forecasting pollutant concent...

  1. Reproductive biology, sexual dimorphism, and population structure of the deep sea hydrothermal vent scale-worm, Branchiplynoee seepensis (Polychaeta : Polynoidae)

    OpenAIRE

    Jollivet, D.; Empis, A; Baker, Mc; Hourdez, S; Comtet, Thierry; Jouin-toulmond, C; Desbruyeres, Daniel; Tyler, PA

    2000-01-01

    The polychaete family Polynoidae (scale-worms) is well-represented at deep sea hydrothermal vents. Most species are free-living in a wide range of habitats: from high-temperature hydrothermal `chimney' walls to diffuse venting areas. Conversely, species of the genus Branchipolynoe live inside the mantle cavity of vent and seep mytilids. Specimens, morphologically close to Branchipolynoe seepensis, have been reported from all the known vent areas on the Mid-Atlantic Ridge (MAR), with varying i...

  2. Revestimientos internos cerámicos para chimeneas industriales

    OpenAIRE

    Serradilla Echarri, Jesús

    1985-01-01

    The present article shows the different factors intervening on the study and later setting into service of the internal ceramic liner for industrial chimneys. Firstly they are studied the diverse existing options and later decision as to the solution to be adopted. Also they are specified the physicochemical peculiar characteristics of the material as well as the criterion to folio w with regards to the adecuate dispositive for the material's quality control.En el presente artícul...

  3. New combustion, environment regulations: the answers for natural gas; Nouvelles reglementations, combustion, environnement: les reponses pour le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Le Peltier-Marc, A. [Gaz de France (GDF), 75 - Paris (France)

    1997-12-31

    This paper reports on the point of view from Gaz de France (GdF) company concerning the potential consequences of the use of natural gas in combustion systems with respect to the new regulations about combustion and environment. Details concerning the measures relative to the limitation of pollutants in small combustion installations (2 - 20 MW) are given (chimney height, SO{sub x}, NO{sub x} and dusts content in exhaust gases). (J.S.)

  4. Simulation of transverse vibrations of narrow buildings caused by wind forces, using autonomous differential equations

    International Nuclear Information System (INIS)

    Different possibilities of producing model calculations for the mechanism of turbulent excitation of cylindrical profiles (e.g. chimneys) are examined. A phenomenological air force model was developed. The effect of the flow field on the circular profile was replaced by the effect of an active non-linear single mass system coupled to the structure. Qualitative and quantitative agreement is obtained between the calculated results and the measurements. The model is explained for the dynamic analysis of a vibration damper. (DG)

  5. Start-up behaviour of a passive auto-catalytic recombiner under counter flow conditions: Results of a first orienting experimental study

    International Nuclear Information System (INIS)

    Highlights: • We studied the start-up behaviour of a PAR located in a downward-directed flow. • We performed several identical experiments with and without counter flow. • A temporary interference of the establishing chimney flow is observed. • An earlier local start-up of the catalytic reaction occurs under downward flow. • The overall performance of the PAR is not significantly affected. - Abstract: A downward directed wall-near flow represents a typical thermal hydraulic condition inside the LWR containment during a severe accident. In order to efficiently remove hydrogen released into the containment, passive auto-catalytic recombiners (PARs) located close to the containment wall have to establish an internal upward directed chimney flow against this counter flow. In cooperation between RWTH Aachen and the Research Center Jülich, the effect of a downward directed flow on the PAR start-up has been investigated in the REKO-4 test facility at Jülich. The test series includes experiments with identical boundary conditions performed under counter flow conditions as well as in quiescent atmosphere as reference case. Under counter flow conditions, an earlier local start-up of the catalytic reaction on the upper edge of the catalyst sheets was observed. However, the establishment of full PAR operation required more time compared to the reference case. This delay is attributed to a partial inflow of the counter flow into the PAR outlet which interferes with the establishing of a chimney flow promoted by the exothermal catalytic reaction. Once a developed chimney flow inside the PAR is established, no negative effect on the PAR performance could be observed. As expected, the counter flow mixes immediately with the PAR outlet flow dissolving the characteristic plume of hot gases at the PAR outlet

  6. Waste heat conducting system for side burner regenerative coke oven batteries with divided heating system. [German Patent

    Energy Technology Data Exchange (ETDEWEB)

    Thiersch, F.; Strobel, M.; Schmitz, T.

    1980-08-21

    In the well known waste heat removal system for side burner regenerative coking over batteries with divided heating system both flues could be used simultaneously and equally. The flues in the longitudinal direction of the battery open into a common chimney foot connection at one end of the battery. They are individually connected via opposite groups of transverse flues to opposite groups of waste heat elbows of waste heat valves on the machine and on the coke side.

  7. Reducing childhood illness - fostering growth : an integrated home-based intervention package (IHIP) to improve indoor-air pollution, drinking water quality and child nutrition

    OpenAIRE

    Hartinger Peña, Stella M.

    2014-01-01

    Child mortality attributable to pneumonia, diarrhoea and malnutrition accounts globally for the majority of 8.8 million annual deaths. More than half of these deaths are preventable. Available and effective interventions include safe water supply, household water treatment, improved chimney stoves and personal- and home-hygiene and -health messages. In Peru, the current health services reform is focused on shifting responsibilities to peripheral levels; thus, empowering community organisation...

  8. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  9. Cave of the Astronomers at Xochicalco

    Science.gov (United States)

    Lebeuf, Arnold

    The chimney built in the roof of the artificial large cave at Xochicalco, known as "Cave of the astronomers", has been interpreted as a solar zenithal observation tube. Nevertheless, different elements and especially the latitude of the site itself led the author to present a lunar hypothesis. Precise measurements of the impact of light inside the cave show the degree of precision that can be obtained in this camera obscura.

  10. Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems

    OpenAIRE

    POSTEC, Anne; Urios, Laurent; Lesongeur, Francoise; Ollivier, Bernard; Querellou, Joel; Godfroy, Anne

    2005-01-01

    The microflora developing during a continuous enrichment culture from a hydrothermal chimney sample was investigated by molecular methods. The culture was performed in a gas-lift bioreactor under anaerobic conditions, at 90 degrees C and pH 6.5, on a complex medium containing sulfur as the terminal electron acceptor. Archaeal and bacterial diversity was studied. Microorganisms affiliated with the genera Pyrococcus, Marinitoga, and Bacillus were detected through DGGE analysis of 16S rDNA. Addi...

  11. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: The geochemical perspectives

    Science.gov (United States)

    Paropkari, Anil L.; Ray, Durbar; Balaram, V.; Surya Prakash, L.; Mirza, Imran H.; Satyanarayana, M.; Gnaneshwar Rao, T.; Kaisary, Sujata

    2010-04-01

    An inactive hydrothermal field was discovered near Kings Triple Junction (KTJ) in northern Lau back-arc basin during 19th cruise of R/V Akademik Mstislav Keldysh in 1990. The field consisted of a large elongated basal platform 'the pedestal' with several 'small' chimneys on its periphery and one 'main mound' superposed over it. The surrounding region is carpeted with lava pillows having ferromanganese 'precipitate' as infillings. The adjoining second field consisted of small chimney like growths termed as 'Christmas Tree' Field. The basal pedestal, the peripheral chimneys and small 'Christmas Tree' like growths (samples collected by MIR submersibles), though parts of the same hydrothermal field, differ significantly in their mineralogy and elemental composition indicating different history of formation. The pedestal slab consisting of chalcopyrite and pyrite as major minerals and rich in Cu is likely to have formed at higher temperatures than sphalerite dominated peripheral chimney. Extremely low concentration of high field strength elements (e.g. Zr, Hf, Nb and Ta) and enrichment of light REE in these sulfides indicate prominent influence of aqueous arc-magma, rich in subduction components. The oxide growths in the 'Christmas Tree' Field have two distinct layers, Fe rich orange-red basal part which seems to have formed at very low temperature as precipitates from diffused hydrothermal flows from the seafloor whereas Mn rich black surface coating is formed from hydrothermal fluids emanated from the seafloor during another episode of hydrothermal activity. Perhaps this is for the first time such unique hydrothermal oxide growths are being reported in association with hydrothermal system. Here, we discuss the possible processes responsible for the formation of these different hydrothermal deposits based on their mineralogy and geochemistry.

  12. Meaningful Field Trip in Education of Renewable Energy Technologies

    OpenAIRE

    Hasan Said Tortop

    2013-01-01

    Renewable energy sources, in terms of countries‟ obtaining their energy needs from clean and without harming the environment is becoming increasingly important. This situation also requires improving the quality of science education will be given in this field. In this activity, in a field trip to the center for the renewable energy resources technologies, the application of learning cycle model appropriate for constructivist approach is shown. In the example of solar chimney activity accordi...

  13. Project Rio Blanco: additional production testing and reservoir analysis

    International Nuclear Information System (INIS)

    Additional subsurface investigations of the Rio Blanco detonation region and adjacent reservoir have been underway since the last technical meeting at IAEA. The lowermost explosion cavity has been reentered and a production test from it was performed. A dry gas volume of 7.6 x 105 m3 (27 Mmscf) was withdrawn. Chemical and radiochemical analyses of this gas show that (1) the yield of the bottom explosive was 31 +- 2 kt; (2) the cavity/chimney volume was 2.4 x 104 m3 (8.4 x 105 ft3); (3) about 7 percent of the tritium produced is associated with the gas; and (4) a slight (approximately 0.1 percent) gas contribution from the middle explosion region was noted. The reservoir/chimney model implies an unstimulated reservoir flow capacity of 0.15 mdarcy-m (0.50 md-ft) connected to the bottom chimney region. A cavity radius of 21 +- 3 m (70 +- 10 ft) was deduced. Unstimulated reservoir production parameters were investigated in a well offset 190 m (625 ft) from the emplacement hole. Insufficient productivity was obtained in the Mesaverde formation (in which the bottom explosive was detonated) to evaluate reservoir properties. The productive sandstones in the Fort Union formation adjoining the top detonation region were individually evaluated. Their aggregate flow capacity was determined to be 0.14 +- 0.2 mdarcy-m (0.45 +- 0.08 md-ft). A numerical simulation model which incorporates these data is described. The lack of a high-permeability connection between the three explosion regions remains unexplained. The two chimney reentry wells have been cemented to the surface and abandoned. The offset well has been plugged in a way which preserves the option for additional subsurface investigation in the future. Project facilities have been removed and the site restored to conditions which minimize environmental impact

  14. The role of stellar feedback in the formation of galaxies

    OpenAIRE

    Ceverino, Daniel; Klypin, Anatoly

    2007-01-01

    We develop a new realistic prescription for modeling the stellar feedback, which minimizes any ad hoc assumptions about sub-grid physics. We start with developing high resolution models of the ISM and formulate the conditions required for its realistic functionality: formation of multi-phase medium with hot chimneys, super-bubbles, cold molecular phase, and very slow consumption of gas. Another important ingredient is the runaway stars. They greatly facilitate the feedback. Once these effects...

  15. William Blake and His Great Poetry

    Institute of Scientific and Technical Information of China (English)

    邢琳琳

    2009-01-01

    William Blake is the first greatest romantic poet in the 18th century. His poems have a number of features. The Most important poems reflect the social ills, unique conception of childhood and plain direct language, lyric rhyme with immense compression of meaning. And the great poems London and The Chimney Sweeper are the best examples of these features. This paper will present detailed analysis of these three well-known poems by William Blake.

  16. KINERJA PENGELOLAAN LIMBAH HOTEL PESERTA PROPER DAN NON PROPER DI KABUPATEN BADUNG, PROVINSI BALI

    OpenAIRE

    Putri Nilakandi Perdanawati Pitoyo; I Wayan Arthana; I MADE SUDARMA

    2016-01-01

    Bali tourism development can lead to positive and negative impacts that threatening environmental sustainability. This research evaluates the hotel performance of the waste management that includes management of waste water, emission, hazardous, and solid waste by hotel that participate at PROPER and non PROPER. Research using qualitative descriptive method. Not all of non PROPER doing test on waste water quality, chimney emissions quality, an inventory of hazardous waste and solid waste sort...

  17. Capital Moves

    Institute of Scientific and Technical Information of China (English)

    XIAOCHEN

    2005-01-01

    On November 15, 2004, Wang Jirong, vice director of the State Environmental Protection Administration (SEPA), led a team of officials to the top floor of the CCTV tower in western Beijing. They were there to look at the city's boiler chimneys and identify those belching black-smoke. Under the blue sky, the visibility was extremely good, at around 30 kilometers. But when Wang's eyes shifted to the west, he coul not help noticing a massive smoke cap,

  18. Étude numérique et expérimentale du refroidissement des convertisseurs auxiliaires de puissance dans les trains par convection naturelle, film liquide et caloduc

    OpenAIRE

    Zouitene, Saâd

    2014-01-01

    This thesis is about a study and optimization of the cooling electric power converters (CVS) used in trains. These components are heavy, noisy, and are not energetically efficient. We analyze other types of economic and efficient cooling. We used Comsol Multiphysics to study numerically CVS cooling by natural convection using the chimney effect and liquid film by exploiting the phase change to evacuate heat. The numerical results are validated with the results from literature and those obtain...

  19. Asbestos Exposure among Construction Workers During Demolition of Old Houses in Tehran, Iran

    OpenAIRE

    Hossein KAKOOEI; NORMOHAMMADI, Mohhammad

    2013-01-01

    Air quality in demolition practices has seldom been evaluated in Iran. Accordingly, we evaluated asbestos exposure among Tehran construction workers during the demolition of old houses. To identify possible sources of asbestos exposure, including thermal insulations, chimney pipes and cement sheets, were all sampled. This study also were taken the personal air samples to evaluate any asbestos exposure during the demolition. The asbestos fibers found in the samples were analyzed by phase-contr...

  20. Utilização de zeólita preparada a partir de cinza residuária de carvão como adsorvedor de metais em água

    OpenAIRE

    Fungaro Denise Alves; Silva Magali Guilherme da

    2002-01-01

    Coal ashes produced in coal-fired power plant could be converted into zeolites and can be used as low-cost adsorbents for the treatment of effluents contaminated with high levels of toxic metals. The capacity of synthetic zeolites for the removal of cadmium, zinc and copper ions from aqueous solutions has been investigated under different operating conditions. Zeolite from bottom chimney showed higher removal efficiency for metals ions than zeolite from feed hopper and mixing mill. The result...

  1. First sighting of active fluid venting in the Gulf of Cadiz

    OpenAIRE

    Van Rooij, D.; Depreiter, D.; Bouimetarhan, I.; De Boever, E.; De Rycker, K.; Foubert, A.; Huvenne, V; Reveillaud, J.; Staelens, P.; Vercruysse, J.; Versteeg, W.; Henriet, J.-P.

    2005-01-01

    The Mercator mud volcano, located in the Gulf of Cadiz off the coasts of Spain, Portugal, and Morocco (Figure 1), may provide an accessible field laboratory for studying local active venting and its possible internal and external controls. The recent discovery of the first active deep ocean ‘brown smoker’ chimney in this area can possibly be linked with the disintegration of a gas hydrate layer between the seafloor and a subsurface level that is dependent on pressure and temperature. For more...

  2. Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field.

    Science.gov (United States)

    Lang, S Q; Früh-Green, G L; Bernasconi, S M; Butterfield, D A

    2013-03-01

    The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City. PMID:23346942

  3. Delayed signatures of underground nuclear explosions

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-01-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288

  4. Delayed signatures of underground nuclear explosions

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  5. Design and Experimental Study for Development of Pb-Bi Cooled Direct Contact Boiling Water Small Fast Reactor (PBWFR)

    International Nuclear Information System (INIS)

    A design concept of Pb-Bi cooled direct contact boiling water small fast reactor (PBWFR) has been formulated with some design parameters identified. In the PBWFR, water is injected into hot Pb-Bi above the core, and direct contact boiling takes place in the chimney. The boiling two-phase flow in the chimney serves as a steam lift pump and a steam generator. A two-region core is designed. A decrease in reactivity was estimated to be 1.5 % dk/kk' for 15 years. A fuel assembly has 271 fuel rods with 12.0 mm in diameter and 15.9 mm in pitch in a hexagonal wrapper tube. The chimney, cyclone separators and chevron dryers, direct heat exchangers (DHX), reactor vessel air cooling systems (RVACS) and guard vessel are designed. For the technical development of the PBWFR, experimental and analytical studies are performed for Pb-Bi direct contact boiling two-phase flow, steel corrosion in Pb-Bi flow, oxygen control and oxygen sensor, and removal of polonium contamination. (authors)

  6. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    Science.gov (United States)

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. PMID:26708757

  7. Magnet News

    CERN Multimedia

    Foussat, A; Ruber, R

    Central Solenoid Test The Central Solenoid (CS) and its associated Proximity Cryogenic System have been designed by KEK in collaboration with CERN. Following construction and extensive tests at the Toshiba manufacturing site in Yokohama, Japan, the equipment has been shipped to CERN. The CS is now being prepared for the integration in a common cryostat with the LAr calorimeter, after which a full on-surface test has to be completed before final installation 100m underground in the ATLAS cavern. For this purpose a provisional set-up for the re- commissioning of the final Proximity Cryogenics, the connecting Chimney and the Central Solenoid has been established. During the month of May the Proximity Cryogenics and Chimney with superconducting bus lines have been tested (figure1). The equipment was cooled down to 4.5K and a current of 9000 amperes was applied to the chimney. This is almost 20% above the nominal operational current of 7400 amperes. A number of tests and simulations have been successfully perf...

  8. Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan, Hunan Province, China.

    Science.gov (United States)

    Wei, Chaoyang; Wang, Cheng; Yang, Linsheng

    2009-01-01

    The spatial variation of heavy metals in the soils in Shuikoushan mining-smelting area, Hunan Province, China, was investigated using multivariate and geo-statistic analysis. A total of 106 composite soil samples were collected in an area of about 100 km2. Concentrations of total As, Cd, Pb, Zn, Cu and Cr were measured using inductively coupled plasma mass spectrometry (ICP-MS). Arsenic and Pb were found to have a common source, indicating the same sources and spreading processes, such as aerosols and airborne particulates from smelting chimneys. Airborne sources from smelting chimneys contributed greatly to Cd in the area, which demonstrated the same dispersion pattern as As and Pb. However, two hot spots of Cd around smelters were possibly enlarged by wastewaters, demonstrating another important source of Cd in Shuikouhsan. Geo-statistic interpolated mapping demonstrated that hot-spots of Zn were only found proximal to the large smelters, suggesting that Zn primarily came from the chimneys of larger smelters. The major Cu hot-spots appeared closely to the tailing dam, indicating that weathering and leaching of tailings were the major sources of Cu contamination in Shuikoushan. Our findings indicated that airborne volatile particles and aerosols contributed the most to As, Cd, Pb, Zn and Cu contamination, while Cd and Cu may also derive from the discharge of wastewater from smelters and the leaching of tailings, respectively. PMID:19999971

  9. Measurement of Physical Clearance for SOR/CAR Movement in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeong-Garp; Shin, Jin-Won; Lee, Jung-Hee; Jung, Hoan-Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    The HANARO, an open-tank-in-pool type research reactor of a 30MWth power in Korea, has operated for 10 years since its initial criticality in February of 1995. The reactor structure is composed of a stainless steel plenum and grid plate, a zircaloy reflector vessel, an aluminum chimney, and zircaloy flow tubes as fuel channels. The shutoff rod(SOR) is actuated by a directly linked hydraulic cylinder on the chimney, which is pressurized by a hydraulic pump. The rod is released to drop by gravity for reactor trip. The control absorber(CAR) is actuated by electric stepping motor-powered ball-screw drives at the pool top. The rod's lower carriage is linked to a middle carriage at the chimney top (i.e., in place of the SOR's cylinder), which is linked in turn to the drive through a long, angled tie-rod. For emergencies, an electro-magnet coupling can release the rod and carriages from the ball nut and they drop into the core.

  10. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m2 and averages of daily solar irradiation are larger than 5.0 kW h/m2/day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  11. Measurement of Physical Clearance for SOR/CAR Movement in HANARO

    International Nuclear Information System (INIS)

    The HANARO, an open-tank-in-pool type research reactor of a 30MWth power in Korea, has operated for 10 years since its initial criticality in February of 1995. The reactor structure is composed of a stainless steel plenum and grid plate, a zircaloy reflector vessel, an aluminum chimney, and zircaloy flow tubes as fuel channels. The shutoff rod(SOR) is actuated by a directly linked hydraulic cylinder on the chimney, which is pressurized by a hydraulic pump. The rod is released to drop by gravity for reactor trip. The control absorber(CAR) is actuated by electric stepping motor-powered ball-screw drives at the pool top. The rod's lower carriage is linked to a middle carriage at the chimney top (i.e., in place of the SOR's cylinder), which is linked in turn to the drive through a long, angled tie-rod. For emergencies, an electro-magnet coupling can release the rod and carriages from the ball nut and they drop into the core

  12. Design of a solar updraft tower power plant for pakistan and its simulation in transys

    International Nuclear Information System (INIS)

    Solar updraft tower is a distinct and novel combination of three old concepts that are green house effect, chimney effect and wind turbine. It can be employed, with almost negligible maintenance cost, in electricity generation. Given the different climatic and economical conditions for different places, every region demands a specific design. As solar chimney power plant is a relatively new technology, much effort has not been done in evaluating the performances of the various plants. In this context, a solar updraft tower has been designed for the conditions of Pakistan (Lahore) and is simulated in TRNSYS to analyze the plant performance through different seasons and time of the year. The study reveals important results about the factors involved in determining the final output power produced. It is observed that the solar irradiance plays a more significant role in power generation than ambient temperature. The more the capacity of a plant to produce power, the more economical it would be. TRNSYS based program is presumed to be a handy mode of examining solar chimney power plants. (author)

  13. Utilization of the noble gases in studies of underground nuclear detonations

    International Nuclear Information System (INIS)

    The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases, except argon, have been used as tracers, as have xenon-127 and krypton-85. Argon-37 and krypton-85 have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases, and the degree to which the sampled gas truly represents the underground gas mixture, can be studied with the aid of the fission-product gases. Radon-222 and helium are released to the cavity from the surrounding rock, and are, therefore, useful in studies of the interaction of the detonation with the surrounding medium

  14. Modification of the Core Cooling System of TRIGA 2000 Reactor

    Science.gov (United States)

    Umar, Efrizon; Fiantini, Rosalina

    2010-06-01

    To accomplish safety requirements, a set of actions has to be performed following the recommendations of the IAEA safety series 35 applied to research reactor. Such actions are considered in modernization of the old system, improving the core cooling system and safety evaluations. Due to the complexity of the process and the difficulty in putting the apparatus in the reactor core, analytical and experimental study on the determination of flow and temperature distribution in the whole coolant channel are difficult to be done. In the present work, a numerical study of flow and temperature distribution in the coolant channel of TRIGA 2000 has been carried out using CFD package. For this study, simulations were carried out on 3-D tested model. The model consists of the reactor tank, thermal and thermalizing column, reflector, rotary specimen rack, chimney, fuel element, primary pipe, diffuser, beam tube and a part of the core are constructed by 1.50 million unstructured tetrahedral cell elements. The results show that for the initial condition (116 fuel elements in the core) and for the inlet temperature of 24°C and the primary velocity of 5.6 m/s, there no boiling phenomena occur in the coolant channel. Due to this result, it is now possible to improve the core cooling system of TRIGA 2000 reactor. Meanwhile, forced flow from the diffuser system only affected the flow pattern in the outside of chimney and put on a small effect to the fluid flow's velocity in the inside of chimney.

  15. Savings on natural gas consumption by doubling thermal efficiencies of balanced-flue space heaters

    Energy Technology Data Exchange (ETDEWEB)

    Juanico, Luis E. [Conicet, and Centro Atomico Bariloche e Instituto Balseiro, Av. Bustillo 9500, 8400 Bariloche, Rio Negro (Argentina); Gonzalez, Alejandro D. [Grupo de Estudios Ambientales, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (Inibioma-Conicet), 8400 Bariloche, Rio Negro (Argentina)

    2008-07-01

    Natural gas is a relatively clean fossil fuel for space heating. However, when it is not used efficiently high consumption can become an environmental problem. In Argentina, individual balanced-flue space heaters are the most extensively used in temperate and cold regions. This furnace is a simple device with a burner set into a metal chamber, separated from the indoor ambient by an enclosing cabinet, and both inlet and outgas chimneys are connected to the outdoor ambient. In previous studies, we measured the performance of these commercial devices, and found very low thermal efficiency (in the range of 39-63% depending on the chimney configuration). The extensive use of these devices is possible due to the availability of unlimited amount of subsidised natural gas to households and businesses. In the present work, we developed a prototype with simple and low cost modifications made on commercial models, and measured the improvements on the thermal efficiency. Findings showed better infrared radiation, enhanced indoor air convection, and passive chimney flow regulation leading to thermal efficiency in the range of 75-85%. These values represent an improvement of 100% when compared to marketed models, and hence, the specific cost of the heater per unit of useful heating power delivered was actually reduced. Considering the large market presence of these furnaces in both residential and business sectors in Argentina, the potential benefits related to gas consumption and environmental emissions are very significant. (author)

  16. Combining interventions: improved chimney stoves, kitchen sinks and solar disinfection of drinking water and kitchen clothes to improve home hygiene in rural Peru L’association d’interventions - améliorer les cuisinières à bois, mettre en place des éviers, désinfecter l’eau domestique et le linge de cuisine par le solaire – permet d’améliorer l’hygiène dans les foyers ruraux du Pérou Intervenciones combinadas: mejorar las cocinas a leña, instalar fregaderos y desinfectar el agua para beber y los paños de cocina con energía solar para mejorar la higiene en hogares rurales en Perú

    OpenAIRE

    Ana I. Gil; Claudio F Lanata; Hartinger, Stella M.; Jan Hattendorf; Hector Verastegui; Daniel Mäusezahl

    2012-01-01

    Home based interventions are advocated in rural areas against a variety of diseases. The combination of different interventions might have synergistic effects in terms of health improvement and cost effectiveness. However, it is crucial to ensure cultural acceptance. The aim of the study was to develop an effective and culturally accepted home-based intervention package to reduce diarrhoea and lower respiratory illnesses in children. In two rural Peruvian communities we evaluated the performa...

  17. 4D Time-Lapse Seismic Analysis of Active Gas Seepage Systems on the Vestnesa Ridge, Offshore W-Svalbard

    Science.gov (United States)

    Bunz, S.; Hurter, S.; Plaza-Faverola, A. A.; Mienert, J.

    2014-12-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter with significant morphological features consisting of small ridges, diapiric structures and small pits. Detailed hydro-acoustic surveying shows that gas mostly emanates from the small-scale pits, where also hydrates have been recovered by sediment sampling. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection (BSR). Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. In most cases, the high-amplitude anomalies line up along specific vertical pathways that connect nicely with the small-scale pits at the surface where gas bubbles seep from the seafloor. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. The time-lapse seismic analysis indicates several areas, where gas migration may have led to changes in acoustic properties of the subsurface. These areas are located along chimney structures and the BSR. This work provides a basis for better

  18. Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA

    Science.gov (United States)

    Peter, J.M.; Shanks, Wayne C., III

    1992-01-01

    Sulfur, carbon, and oxygen isotope values were measured in sulfide, sulfate, and carbonate from hydrothermal chimney, spire, and mound samples in the southern trough of Guaymas Basin, Gulf of California, USA. ??34S values of sulfides range from -3.7 to 4.5%. and indicate that sulfur originated from several sources: 1. (1) dissolution of 0??? sulfide contained within basaltic rocks, 2. (2) thermal reduction of seawater sulfate during sediment alteration reactions in feeder zones to give sulfide with positive ??34S, and 3. (3) entrainment or leaching of isotopically light (negative-??34S) bacteriogenic sulfide from sediments underlying the deposits. ??34S of barite and anhydrite indicate sulfur derivation mainly from unfractionated seawater sulfate, although some samples show evidence of sulfate reduction and sulfide oxidation reactions during mixing within chimneys. Oxygen isotope temperatures calculated for chimney calcites are in reasonable agreement with measured vent fluid temperatures and fluid inclusion trapping temperatures. Hydrothermal fluids that formed calcite-rich chimneys in the southern trough of Guaymas Basin were enriched in 18O with respect to seawater by about 2.4??? due to isotopic exchange with sedimentary and/or basaltic rocks. Carbon isotope values of calcite range from -9.6 to -14.0??? ??34CpDB, indicating that carbon was derived in approximately equal quantities from the dissolution of marine carbonate minerals and the oxidation of organic matter during migration of hydrothermal fluid through the underlying sediment column. Statistically significant positive, linear correlations of ??34S, ??34C, and ??18O of sulfides and calcites with geographic location within the southern trough of Guaymas Basin are best explained by variations in water/rock ( w r) ratios or sediment reactivity within subsurface alteration zones. Low w r ratios and the leaching of detrital carbonates and bacteriogenic sulfides at the southern vent sites result in relatively

  19. Prefabricación y elevación de placas de hormigón armado en grandes chimeneas industriales

    Directory of Open Access Journals (Sweden)

    del Solar Bermejo, José

    1985-03-01

    Full Text Available The chimneys designed and constructed during the last years, in Spain, must be considered according to the model of chimneys with a ventilated and accesible air space between the brick lining and the concrete shaft. The lining is independent of the shaft and normally is built in sections. Each brick lining section rest on reinforced concrete slabs supported by the shaft corbels. Traditionally these concrete slabs have been concreted in situ and carried out by an auxiliary work platform suspended on the top of the chimney. In the system developed by Karman and Agroman, the concrete slabs are prefabricated, one upon the other, on the floor of the chimney and afterwards lifted to the required level and placed on the shaft corbels. In this article, we try to describe our experiences in this field, as well as the results of such chimneys construction by this system.Las chimeneas proyectadas y construidas en los últimos años en España, se consideran de acuerdo al modelo de chimeneas con una cámara ventilada y accesible entre el conducto cerámico y el fuste de hormigón. El conducto se construye normalmente por tramos. Cada tramo apoya en placas de hormigón armado soportadas por ménsulas del fuste. Tradicionalmente estas placas de hormigón han sido construidas in situ con auxilio de una plataforma auxiliar suspendida de la coronación de la chimenea. En el método desarrollado por Karman y Agromán, las placas son prefabricadas, una sobre otra, en el suelo de la chimenea y después son elevadas hasta su nivel definitivo apoyándolas en las ménsulas del fuste. En este artículo se trata de describir nuestras experiencias en este campo, asi como los resultados obtenidos con este método de construcción.

  20. SDEM modelling of deformation associated with a listric fault system and associated fluid flow

    Science.gov (United States)

    Rasmussen, Marie L.; Clausen, Ole R.; Egholm, David L.; Andresen, Katrine J.

    2016-04-01

    Numerical modelling of geological structures using FEM, DEM and SDEM methods as well as analogue modelling are widely used in order to achieve a better understanding of the kinematics and dynamics during deformation. The methods are furthermore the ultimate source for mapping (observing) the true geometry of geological structures as well as subsurface fluid flow phenomena in 3D seismic data developed for hydrocarbon exploration. Here we use 3D seismic data and SDEM modelling to suggest a dynamic-kinematic evolution of the deformation in the hangingwall of a listric fault overlying an active salt roller. We use the results to obtain a better understanding of the fluid flow in a complex deformed hangingwall. The case study is focused at the D-1 fault trend in the western part of the Norwegian Danish Basin, at the northern slope of the Ringkøbing-Fyn High. The D-1 main fault detaches along the northern flank of a Zechstein salt roller which was active during the Cenozoic. The seismic analysis shows a system of secondary normal antithetic and synthetic faults dipping approximately 50-60dg within the hangingwall. Shallow gas is trapped in the hangingwall and the secondary faults often confine the accumulations i.e. indicating that the secondary faults are sealing. The modelling confirms that the geometry of the secondary faults is highly controlled by the rheology of different layers in the hangingwall but also on the intensity of the salt movement. The modelling also suggests the presence of vertical deformation zones; structures which are not directly observed on the seismic data. The vertical deformation zones are related to the differential vertical movement of the strata due to salt migration. A neural network trained chimney probability cube shows high probabilities for the presence of minor vertical gas chimneys below the gas accumulations suggesting that vertical fluid migration in the hangingwall occurred in areas with significant vertical salt movements. The

  1. A spatiotemporal land-use regression model of winter fine particulate levels in residential neighbourhoods.

    Science.gov (United States)

    Smargiassi, Audrey; Brand, Allan; Fournier, Michel; Tessier, François; Goudreau, Sophie; Rousseau, Jacques; Benjamin, Mario

    2012-07-01

    Residential wood burning can be a significant wintertime source of ambient fine particles in urban and suburban areas. We developed a statistical model to predict minute (min) levels of particles with median diameter of Positioning System device. Route-specific and global land-use regression (LUR) models were developed using the following spatial and temporal covariates to predict 1-min-averaged PM1 levels: chimney density from property assessment data at sampling locations, PM2.5 "regional background" levels of particles with median diameter of <2.5 μm (PM2.5) and temperature and wind speed at hour of sampling, elevation at sampling locations and day of the week. In the various routes travelled, between 49% and 94% of the variability in PM1 levels was explained by the selected covariates. The effect of chimney density was not negligible in "cottage areas." The R(2) for the global model including all routes was 0.40. This LUR is the first to predict PM1 levels in both space and time with consideration of the effects of wood burning emissions. We show that the influence of chimney density, a proxy for wood burning emissions, varies by regions and that a global model cannot be used to predict PM in regions that were not measured. Future work should consider using both survey data on wood burning intensity and information from numerical air quality forecast models, in LUR models, to improve the generalisation of the prediction of fine particulate levels. PMID:22549722

  2. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment

    International Nuclear Information System (INIS)

    As one of the Generation IV reactors, Molten Salt Reactor (MSR) has its superiorities in satisfying the requirements on safety. In order to improve its inherent safety, a concept of passive residual heat removal system (PRHRS) for the 10 MW Molten Salt Reactor Experiment (MSRE) was put forward, which mainly consisted of a fuel drain tank, a feed water tank and a natural draft air-cooled condenser (NDACC). Besides, several valves and pipes are also included in the PRHRS. A NDACC for the PRHRS was preliminarily designed in this paper, which contained a finned tube bundle and a chimney. The tube bundle was installed at the bottom of the chimney for increasing the velocity of the air across the bundle. The heat transfer characteristics of the NDACC were investigated by developing a model of the PRHRS using C++ code. The effects of the environmental temperature, finned tube number and chimney height on heat removal capacity of the NDACC were analyzed. The results show that it has sufficient heat removal capacity to meet the requirements of the residual heat removal for MSRE. The effects of these three factors are obvious. With the decay heat reducing, the heat dissipation power declines after a short-time rise in the beginning. The operation of the NDACC is completely automatic without the need of any external power, resulting in a high safety and reliability of the reactor, especially once the accident of power lost occurs to the power plant. - Highlights: • A model to study the heat transfer characteristics of the NDACC was developed. • The NDACC had sufficient heat removal capacity to remove the decay heat of MSRE. • NDACC heat dissipation power depends on outside temperature and condenser geometry. • As time grown, the effects of outside temperature and condenser geometry diminish. • The NDACC could automatically adjust its heat removal capacity

  3. Identification and numerical modelling of hydrocarbon leakage in the Lower Congo Basin: Implications on the genesis of km-wide seafloor mounded structures

    Science.gov (United States)

    Anka, Zahie; Ondrak, Robert; Kowitz, Astrid; Schødt, Niels

    2013-09-01

    We present a combined approach of interpretation of 2D seismic-reflection data and numerical modelling of hydrocarbon generation and migration across the southern slope of the Lower Congo Basin, in order to investigate the factors controlling timing and distribution of hydrocarbon leakage in this area. We identified three main families of past and present-day leakage features: (1) Mid-Upper Miocene seismic chimneys concentrated basinwards and ending up on buried pockmarks, (2) Plio-Pleistocene chimneys, rather clustered to the east of the study area and ending up in seafloor pockmarks, and (3) fewer scattered chimneys identified within the Miocene sequences ending up in shallow enhanced reflectors ("Flat spots"). Stratigraphic and structural elements seem to control the distribution of these features. At least two major events of leakage occurred during the Middle-Late Miocene and intermittently during the Pliocene-Present. External factors as sediment supply are associated to the Miocene leakage event, whilst internal structural elements probably triggered the Pliocene to present-day leakage. A major seabed morphological feature, represented by a margin-paralleled belt of more than 1-km-wide mounds, was identified above growth faults to the east of the study area. Data-constrained 2D HC generation and migration modelling suggests a genetic link between these structures and vertical migration/leakage of thermogenic methane sourced from either currently mature Oligo-Miocene source rocks or secondary cracking and further expulsion from over-mature Upper-Cretaceous source rocks. Hence, the mounds are likely to represent a lineation of methane-derived carbonate build-ups. Despite the natural limitations of a 2D migration model, when combined and calibrated with observations from seismic data, it can be used as a valid tool to assess petroleum migration routes in sedimentary basins. To the best of our knowledge, this is the first integrated approach combining both

  4. Subsurface radionuclide investigation of a nuclear test

    Science.gov (United States)

    Mathews, M.; Hahn, K.; Thompson, J.; Gadeken, L.; Madigan, W.

    1994-08-01

    This paper reports on an environmental investigation into the vertical distribution of radionuclides from a nuclear test. Dalhart is the name of an underground nuclear test that was executed at the Nevada Test Site at a depth of 2100 ft on October 13, 1988. The test occurred below the static water level of 1667 ft and created multiple radioactive isotopes or fission products. These radioactive isotopes penetrated the surrounding formations and chimney region above the test and were retained there. A 19° 9- {7}/{8}-inch diameter slant hole was drilled to sample the geologic material in the chimney region above the Dalhart test for the purpose of assessing the distribution of radioactivity in and around the shot site. A 30-ft core recovered from a vertical depth of 1628 ft in the collapsed zone or chimney region and above the original static water level was found to be free of radionuclides. Drilling was completed to a vertical depth of 2156 ft with the present static water level at a vertical depth of 1644 ft. Gamma-ray spectroscopy log measurements, made within the drill pipe while drilling fluid was pumped through this pipe, indicate that radioactive material produced by the test was present from the vertical depth interval of 1746-2156 ft. Side-wall samples acquired from the vertical depth interval of 1721-2089 ft and analyzed in the field contained radionuclides such as 137Cs, 125Sb, 106Ru, plus the natural radioactive background of potassium, uranium, and thorium. These samples were sent to Los Alamos to determine the complete radionuclide content at each depth. These analyses were used with the gamma-ray spectroscopy logging data to determine the subsurface vertical radionuclide distribution at the Dalhart site.

  5. Subsurface radionuclide investigation of a nuclear test

    International Nuclear Information System (INIS)

    This paper reports on an environmental investigation into the vertical distribution of radionuclides from a nuclear test. Dalhart is the name of an underground nuclear test that was executed at the Nevada Test Site at a depth of 2100 ft on October 13, 1988. The test occurred below the static water level of 1667 ft and created multiple radioactive isotopes or fission products. These radioactive isotopes penetrated the surrounding formations and chimney region above the test and were retained there. A 19o 9-7/8-inch diameter slant hole was drilled to sample the geologic material in the chimney region above the Dalhart test for the purpose of assessing the distribution of radioactivity in and around the shot site. A 30-ft core recovered from a vertical depth of 1628 ft in the collapsed zone or chimney region and above the original static water level was found to be free of radionuclides. Drilling was completed to a vertical depth of 2156 ft with the present static water level at a vertical depth of 1644 ft. Gamma-ray spectroscopy log measurements, made within the drill pipe while drilling fluid was pumped through this pipe, indicate that radioactive material produced by the test was present from the vertical depth interval of 1746-2156 ft. Side-wall samples acquired from the vertical depth interval of 1721-2089 ft and analyzed in the field contained radionuclides such as 137Cs, 125Sb, 106Ru, plus the natural radioactive background of potassium, uranium, and thorium. These samples were sent to Los Alamos to determine the complete radionuclide content at each depth. These analyses were used with the gamma-ray spectroscopy logging data to determine the subsurface vertical radionuclide distribution at the Dalhart site

  6. The Failure Effect of Primary Coolant Pump to Thermo-Hydraulic Characteristic of TRIGA 2000 Reactor

    International Nuclear Information System (INIS)

    Has been done analysis of transient, when TRIGA 2000 reactor loss of primary coolant flow because primary pump loss of electric power, so fail in function.The calculation using RELAP5/MOD32 computer code with reactor core is modeled in the form of different seven channels as representation of different seven areas in core with 116 fuels. This reactor model also considers position of tip of primary pipe of input tank which is below of core, form of lower part core geometry influencing direction and coolant flow rate into core, and existence of diffuser system. The result of calculation in condition of steady state is obtained initiation condition of steady state is reached after 2500 seconds from reactor starts operation on 2000 kW power. On steady state, the channel-3 cladding temperature (hottest) is 149.63℃, the coolant temperature outlet from the channel-3 (hottest) is 105.66℃ , reactor inlet temperature is 32.2℃, and reactor outlet temperature is 46.79℃. The primary coolant entering reactor with flow rate 59.64 kg/s, distributed to core 31.44 kg/s and to by-pass of core or by-pass of chimney 28.20 kg/s. The result of calculation transient is obtained, before scram occur the channel-3 cladding temperature (hottest) is 161.03℃ and the coolant temperature outlet from the channel-3 (hottest) is 117.66℃. In the reactor core is a natural circulation as well (from reactor core, to chimney, to by-pass of chimney, to by-pass of core and back to platform) which is cooling reactor core. Scram occur on 250 seconds after failure of the primary pump. Based on result of this study is known that, when transient condition is happened because primary pump failure, reactor is predicted to stays in safety margin. (author)

  7. Whole-body monitor, hand-feet monitor, gaseous effluent, area monitor

    International Nuclear Information System (INIS)

    The following gaseous (iodine, noble gases and aerosols) effluents monitoring equipment developed by INVAP may be installed in any nuclear facility with a ventilation system that expels air through a chimney. Should the facility fail to have such a ventilation system - hence the extraction chimney - INVAP can offer an alternative system: a portable gaseous-effluent measuring equipment which can be installed, for example, in the hall of the reactor. Basically, the system consists of forcing, by means of an aspiration pump, a known and fixed air flow fraction from the chimney (or the hall) and to retain the aerosols continuously in a glass microfiber filter. Aerosols are thus measured according to a specially-designed geometry which confronts the filter with the plastic scintillator. The gas thus obtained is free from aerosols. It then passes through a carbon-activated filter which retains iodine. This filter has a coaxial geometry, lodging inside an INa (Tl) gamma radiation-sensitive scintillator. Both scintillators are optically coupled to their respective photomultipliers. Their pulses are processed with a load preamplifier and a discriminating amplifier in order to store them in counters to be periodically read by the intelligent controller. Actual monitoring will be carried out by means of independent measuring channels for iodine and aerosols, with each channel featuring remote reading and alarms (for instance, at the Control Room). Data thus acquired will be processed by an intelligent controller (INVAP Mod. SAPP-09) which will perform the following functions: - Calculation and unit conversion in order to inform in a TRC total and incremental activity released by the installation during a pre-set period established by the operator. - Calculation, including statistical errors, to determine whether incremental alarm values and pre-set totals are adequate or whether they have been exceeded, providing the results. - Process-control operations (counting failure

  8. Characteristics and interpretation of fracture-filled gas hydrate: an example from the Ulleung Basin, East Sea of Korea

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, a total of thirteen sites were selected and drilled in the East Sea of Korea in 2010. A suite of logging-while-drilling (LWD) logs was acquired at each site. LWD logs from the UBGH2-3A well indicate significant gas hydrate in clay-bearing sediments including several zones with massive gas hydrate with a bulk density less than 1.0 g/m3 for depths between 5 and 103 m below the sea floor. The UBGH2-3A well was drilled on a seismically identified chimney structure with a mound feature at the sea floor. Average gas hydrate saturations estimated from the isotropic analysis of ring resistivity and P-wave velocity logs are 80 ± 13% and 47 ± 16%, respectively, whereas they are 46 ± 17% and 45 ± 16%, respectively from the anisotropic analysis. Modeling indicates that the upper part of chimney (between 5 and 45 m below sea floor [mbsf]) is characterized by gas hydrate filling near horizontal fractures (7° dip) and the lower part of chimney (between 45 and 103 mbsf) is characterized by gas hydrate filling high angle fractures on the basis of ring resistivity and P-wave velocity. The anisotropic analysis using P40H resistivity (phase shift resistivity at 32 mHz with 40 inch spacing) and the P-wave velocity yields a gas hydrate saturation of 46 ± 15% and 46 ± 15% respectively, similar to those estimated using ring resistivity and P-wave velocity, but with quite different fracture dip angles. Differences in vertical resolution, depth of investigation, and a finite fracture dimension relative to the tool separation appear to contribute to this discrepancy. Forward modeling of anisotropic resistivity and velocity are essential to identify gas hydrate in fractures and to estimate accurate gas hydrate amounts.

  9. Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates?

    International Nuclear Information System (INIS)

    The discovery of deep-sea hydrothermal vents on the late 1970's has led to many hypotheses concerning chemical evolution in the prebiotic ocean and the early evolution of energy metabolism in ancient Earth. Such studies stand on the quest for the bioenergetic evolution to utilize reducing chemicals such as H2 for CO2 reduction and carbon assimilation. In addition to the direct reaction of H2 and CO2, the electrical current passing across a bisulfide-bearing chimney structure has pointed to the possible electrocatalytic CO2 reduction at the cold ocean-vent interface (R. Nakamura, et al. Angew. Chem. Int. Ed. 2010, 49, 7692 − 7694). To confirm the validity of this hypothesis, here, we examined the energetics of electrocatalytic CO2 reduction by iron sulfide (FeS) deposits at slightly acidic pH. Although FeS deposits inefficiently reduced CO2, the efficiency of the reaction was substantially improved by the substitution of Fe with Ni to form FeNi2S4 (violarite), of which surface was further modified with amine compounds. The potential-dependent activity of CO2 reduction demonstrated that CO2 reduction by H2 in hydrothermal fluids was involved in a strong endergonic electron transfer reaction, suggesting that a naturally occurring proton-motive force (PMF) as high as 200 mV would be established across the hydrothermal vent chimney wall. However, in the chimney structures, H2 generation competes with CO2 reduction for electrical current, resulting in rapid consumption of the PMF. Therefore, to maintain the PMF and the electrosynthesis of organic compounds in hydrothermal vent mineral deposits, we propose a homeostatic pH regulation mechanism of FeS deposits, in which elemental hydrogen stored in the hydrothermal mineral deposits is used to balance the consumption of the electrochemical gradient by H2 generation

  10. Traction stress analysis and modeling reveal that amoeboid migration in confined spaces is accompanied by expansive forces and requires the structural integrity of the membrane-cortex interactions.

    Science.gov (United States)

    Yip, Ai Kia; Chiam, Keng-Hwee; Matsudaira, Paul

    2015-10-01

    Leukocytes and tumor cells migrate via rapid shape changes in an amoeboid-like manner, distinct from mesenchymal cells such as fibroblasts. However, the mechanisms of how rapid shape changes are caused and how they lead to migration in the amoeboid mode are still unclear. In this study, we confined differentiated human promyelocytic leukemia cells between opposing surfaces of two pieces of polyacrylamide gels and characterized the mechanics of fibronectin-dependent mesenchymal versus fibronectin-independent amoeboid migration. On fibronectin-coated gels, the cells form lamellipodia and migrate mesenchymally. Whereas in the absence of cell-substrate adhesions through fibronectin, the same cells migrate by producing blebs and "chimneying" between the gel sheets. To identify the orientation and to quantify the magnitude of the traction forces, we found by traction force microscopy that expanding blebs push into the gels and generate anchoring stresses whose magnitude increases with decreasing gap size while the resulting migration speed is highest at an intermediate gap size. To understand why there exists such an optimal gap size for migration, we developed a computational model and showed that the chimneying speed depends on both the magnitude of intracellular pressure as well as the distribution of blebs around the cell periphery. The model also predicts that the optimal gap size increases with weakening cell membrane to actin cortex adhesion strength. We verified this prediction experimentally, by weakening the membrane-cortex adhesion strength using the ezrin inhibitor, baicalein. Thus, the chimneying mode of amoeboid migration requires a balance between intracellular pressure and membrane-cortex adhesion strength. PMID:26050549

  11. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    Science.gov (United States)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  12. Moytirra: Discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores

    Science.gov (United States)

    Wheeler, A. J.; Murton, B.; Copley, J.; Lim, A.; Carlsson, J.; Collins, P.; Dorschel, B.; Green, D.; Judge, M.; Nye, V.; Benzie, J.; Antoniacomi, A.; Coughlan, M.; Morris, K.

    2013-10-01

    Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra vent field at 45oN. This is the only high temperature hydrothermal vent known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra vent field is, unusually for tectonically controlled hydrothermal vents systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra vent field consists of an alignment of four sites of venting, three actively emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously venting. The vent fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the vent chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the vent field. The discovery of the Moytirra vent field therefore expands the known latitudinal distributions of several vent-endemic genera in the north Atlantic, and reveals faunal affinities with vents south of the Azores rather than north of Iceland.

  13. Summary of results of underground engineering experience

    International Nuclear Information System (INIS)

    Results pertinent to the use of nuclear explosives in underground engineering applications have been accumulating for the past 10 years from the Plowshare and Weapons tests of the AEC. Thus, predictive and measurement techniques of shock effects and chimney formation were developed in the course of analyzing explosions in granite, salt, and dolomite. The ability to predict effects related specifically to safety has resulted from many measurements on detonations at the Nevada Test Site, where also many of the techniques for handling, emplacing, and firing the explosive have been developed. This gestation period culminated in the execution of Project Gasbuggy, jointly sponsored by industry and government, and the first nuclear explosion in a gasbearing formation. The Gasbuggy explosive had a nominal yield of 25 kt and was detonated 4240 ft below the surface in the San Juan Basin in northwestern New Mexico on December 10, 1967. The shot point was 40 ft below the lower boundary of a 285-ft-thick gas-bearing sandstone formation of very low permeability. No radioactive venting occurred, and no damage to surrounding gas wells or structures resulted. Post-shot geophysical exploration and gas production tests have revealed that the nuclear explosion created a subsurface chimney approximately 160 ft in diameter and 335 ft high. Fractures appear to extend to about 400 ft symmetrically from the detonation point, with shifts or offsets along geological weaknesses extending out to perhaps 750 ft. Presently, radioactive constituents in the gas consist of tritium and krypton-85, with concentrations of approximately 10 μCi/ft3 and 1.5 μCi/ft3 respectively. These concentrations are decreasing a gas withdrawn from the chimney is replaced by formation gas. Tests to evaluate the increase in productivity and ultimate recovery are currently in progress. (author)

  14. Preliminary analysis of the KAERI RCCS Experiment Using GAMMA+

    International Nuclear Information System (INIS)

    This paper describes the analysis of the KAERI RCCS experiment. GAMMA+ code was used for analysis of the RCCS 1/4-scale natural cooling experimental facility designed and built at KAERI to verify the performance of the natural circulation phenomenon. The results obtained from the GAMMA+ analysis showing the temperature profiles and flow rates at steady state were compared with the results from the preliminary experiments conducted in this facility. GAMMA+ analysis for the KAERI RCCS experimental setup was carried out to understand its natural circulation behavior. The air flow rate at the chimney exit achieved by experiments was from to be almost same as that of GAMMA+

  15. Õhtutähele : [luuletused] / William Blake ; tlk. Märt Väljataga

    Index Scriptorium Estoniae

    Blake, William

    2004-01-01

    Sisu: Õhtutähele ; Korstnapühkija ; Taevatõusmispüha : "See oli taevatõusmispäev, reas sajad lastepaarid..." ; Saviklomp ja kivike ; Taevatõusmispüha : "Kas on see mõni püha pilt..." ; Korstnapühkija ; Haige roos ; Armastuse aed ; London. Saatesõna lk. 12. Orig.: To the Evening Star ; The chimney sweeper ; Holy thursday (1789) ; The clod and pebble ; Holy thursday (1794) ; Holy thursday (1794) ; The sick rose ; The garden of love ; London

  16. Geodesy work in the construction of cooling towers of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    The specifications are described of the cooling tower foundations, the bottom part of the flue chimney and of the cooling tower casing. In view of the cooling tower configuration, the ground control points inside the tower were selected in the pit bottom and the layout and check were performed of the inner tower wall. The methodology of measuring the basic layout network, and of laying out up to the fiftieth (ca. 80 m) and from the 70th (106 m) strip is described. The measurement results are computer-processed. The accuracy is assessed of the cooling tower construction in the Temelin nuclear power plant. (E.J.). 1 fig., 5 refs

  17. An Interpretation of the Origin of Distribution Anomalies of △C

    Institute of Scientific and Technical Information of China (English)

    帅燕华; 周立发

    2001-01-01

    Zonal distribution of seepage hydrocarbon-induced altered carbonates over oil/gas reservoirs is a common phenomenon observed in the field. The authors considered that the con tinuous production of CO2 within the "alteration chimney" gives rise to a significant difference in physical and chemical properties between its interior and the surrounding country rocks.And it is this difference that has promoted the erosion and precipitation of carbonates, t hus leading to the zonal distribution of seepage hydrocarbon-induced altered carbonates over oil/gas reservoirs. This may be a reasonable interpretation of the phenomenon described above.

  18. An Interpretation of the Origin of Distribution Anomalier of △C

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Zonal distribution of seepage hydrocarbon-induced altereb carbonates over oil/gas reservoirs is a common phenomenon observed in the field.The authors considered that the continuous production of CO2 within the “alteration chimney ”gives rise to a significant difference in physical and chemical properties between its interior and the surrounding country rocks.And it is this difference that has promoted the erosion and precipitation of carbonates,thus leading to the zonal distribution of seepage hydrocarbon-induced altered carbonates over oil/gas reservoirs.This may be a reasonable interpretation of the phenomenon described above.

  19. Building energy modeling for green architecture and intelligent dashboard applications

    Science.gov (United States)

    DeBlois, Justin

    Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the

  20. Retrieve of atmospheric SO2 and O3 columns in the UV region using mobile DOAS

    International Nuclear Information System (INIS)

    We present the use of a passive DOAS system to retrieve SO2 and O3 columns emitted by industrial chimneys. It works with software built in LabVIEW and running with a PC linked to mini spectrometer and GPS. The system uses the sun light as light source, a telescope a fiber optic, a mini-spectrometer and a GPS. The spectrometer and the GPS are linked to a PC where the system is controlled and where all data are processed to retrieve the SO2 and O3 slant columns. (Author)

  1. MSM Poems: More Smoke

    Directory of Open Access Journals (Sweden)

    Ajai R. Singh

    2006-03-01

    Full Text Available In the hot sultry fiasco of damp enthusiasms and silver rays in gloomy archives, narcosis and the feeling of melting ice on frozen palms. Arborescent shadows of sorrow in reminiscent silhouettes the rain soaked evening of pouring emotions and grassy long walks on dripping pavementsSeeking out each other.Remember, my dear the sweet faint lavender in the cleft of your breasts hidden from the present and posterity and the knowledge of transience. Looking at the grey skies I think of clear blue water and simmering passions although I've heard you've created a smoke screen from tall chimneys.

  2. Blowing-machine representation of various meteorological situations for the study of rejection into the atmosphere

    International Nuclear Information System (INIS)

    A stratified blowing-machine has been built making it possible to introduce into the tests a vertical temperature gradient. The similitude conditions have been examined. The development tests have made it possible to observe and to film the shape of the smoke pall emitted by a chimney in different cases. Stationary waves have been obtained in steady state conditions and the cross-section of the pall has also been studied. It appears that certain diffusion studies justify the use of a stratified blowing-machine. (author)

  3. Sustainable wood use, decarbonisation of energetic metabolism and forest development

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Air pollution from wood stoves with PAH, primary particles and chlorinated dioxins (reported according to national estimates of  Danish NERI) is presented as an insoluble problem because of dioxin de-novo-synthesis in chimneys, as it is known from municipal waste incinerators. A trade-off of this...... local pollution against alleged positive impacts of wood (as all biomass) combustion on global climate change because of 'zero carbon dioxide emissions' is rejected, although this resetting to zero is part of the Danish Law on CO2-quota of 2004. These emissions are, on the contrary, aggravated pr. unit...

  4. Nuclear power and its role in improving worldwide environment

    International Nuclear Information System (INIS)

    The first Un conference on the environment was held in stockholm in 1972. Concerns were voiced out warning against problems of acid rain leading to dying forests; decaying cities due to high emissions of So2 and No x; increased smog linked to emissions from stacks and chimneys; and most serious of all the global threat of greenhouse effect which is linked mainly to emissions of Co2; So2, No x and Co2 emissions come mainly from burning of fossil fuel. An additional source of Co2 comes from deforestation, however it only composes nearly 20% of the present global emissions

  5. Thermal stability of ESR signals in hydrothermal barites

    International Nuclear Information System (INIS)

    Thermal stability of the ESR signals from barites in chimneys deposited from hydrothermal vents is investigated using isothermal and isochronal annealing experiments. A combination of first and second order kinetics is required to explain the results. The Arrhenius plots of the decay rate constants give the activation energies of 1.0-1.3 eV. From the estimated decay rate constants at the sea bottom (3 oC), the decay rate of the signal was calculated to be less than 2% for the period of 20 ka, suggesting the applicability of the ESR method for dating barites up to about twenty thousand years.

  6. Effects of Enhanced Image Quality in Infrastructure Monitoring through Micro Aerial Vehicle Stabilization

    OpenAIRE

    Kuo, Chung-Hsin; Kanlanjan, Sébastien; Pagès, Louis; Menzel, Hanadi; Power, Sascha; Kuo, Chen-Ming; Boller, Christian; GRONDEL, Sébastien

    2014-01-01

    Traditional monitoring of large infrastructure such as towers of churches or for cooling, chimneys or any other type of tall buildings can require extreme effort and hence become very risky and costly since it mainly requires people to be moved around. An interesting alternative in that regard is the use of rotary wing micro aerial vehicles (MAV) equipped with sensors such as digital cameras to capture series of images and stitch them on to a 3D model. However the images recorded always have ...

  7. Surveying techniques in vibration measurement

    Directory of Open Access Journals (Sweden)

    Kuras Przemyslaw

    2015-01-01

    Full Text Available In order to determine the actual dynamic characteristics of engineering structures, it is necessary to perform direct measurements. The paper focuses on the problem of using various devices to measure vibration, with particular emphasis on surveying instruments. The main tool used in this study is the radar interferometer, which has been compared to: robotic total station, GNSS receivers and sensors (accelerometer and encoder. The results of four dynamic experiments are presented. They were performed on: industrial chimney, drilling tower, railway bridge and pedestrian footbridge. The obtained results have been discussed in terms of the requirements imposed by the standard ISO 4866:2010.

  8. Water activation in a fusion environment

    International Nuclear Information System (INIS)

    Water is activated in a fusion environment by the 16O(n,p)16N reaction. In this work nuclear responses in the magnets, induced by gamma rays from the activated cooling water, for the current design of the International Thermonuclear Experimental Reactor (ITER), are calculated with a detailed Monte Carlo model of the chimney region through which the cooling pipes leave the machine. It is found that, despite a significant dose, the nuclear responses induced by these gamma-rays do not pose an obvious threat to the operation of the magnets. 8 refs., 3 figs., 1 tab

  9. Simulation of the gamma dose rate in a loss of pool water accident of the second Egyptian research reactor ET-RR-2

    International Nuclear Information System (INIS)

    The second Egyptian research reactor ET-RR-2, is a pool type reactor. A sudden loss of pool water would leave the core region uncovered. The reactor core is surrounded by chimney chambers with water isolated from the pool water. This accident would lead to significant external doses. A model is developed and used to calculate the dose rates for key access-areas and traffic plans from indirect line of sight of the core which have a maximum dose rate. The model developed uses the discrete ordinate method as implemented in the code DOT3.5. (orig.)

  10. The seismic property of reef flat in the Changxing-Feixianguan Formation, Northwest Sichuan Province, China

    Institute of Scientific and Technical Information of China (English)

    LIU Shu; TANG Jianming; GUO Xusheng; ZHAO Shuang

    2007-01-01

    The development of a carbonate reservoir is dominated by its primary sedimentary environment. Gener-ally, a good reservoir must be the oolite of a bank or bioclas-tics of an organic reef in a marginal mesa, which must deposit on the slope of the mesa. Therefore, the analyses of sequence stratigraphy are the key for predicting the presence of carbonate reservoirs. A typical sequence pattern can be seen in the Puguang gas field. As an independent lithologicalbody, the mechanical property of a reef flat is very different from the surrounding rock, causing stress to concentrate.Stress centralization will, in turn, cause a lot of fractures and faults to develop, and ultimately, result in a gas chimney,which is a seismic smear zone beneath or above the reef flat.Known gas fields, such as the Puguang gas field, also possess gas chimneys. Sequence stratigraphy patterns in the marginal mesa and gas chimney near the reservoir are very obvious in all known fields in southeast and east Sichuan Province.By analyzing the seismic features of all known gas fields, a model to predict carbonate reservoirs has been set up. Using this prediction model, we have found that there is a typical reef flat of the marginal mesa in the Malubei structure of Tongnanba structural belts whose sequence stratigraphy pat-tern is very much like that of the Puguang gas field; and in the Cangxi-Jiulongshan structure, there is another reef flat which is symmetrical to the Malubei reef The Cangxi reef flat pos-sesses the largest platform edge shallow facies domestically found, and has a typical prograding sequence. Its gas chimney is very obvious too. Because the Cangxi reef flat is in the very vicinity of the hydrocarbon kitchen and the depression is much bigger than that of the Puguang gas fields, we predict that there may be a gigascopic gas field in Cangxi County.There may also be a large gas field in the Malubei structure.

  11. Solar thermal utilization--an overview

    International Nuclear Information System (INIS)

    Solar energy is an ideal renewable energy source and its thermal utilization is one of its most important applications. We review the status of solar thermal utilization, including: (1) developed technologies which are already widely used all over the world, such as solar assisted water heaters, solar cookers, solar heated buildings and so on; (2) advanced technologies which are still in the development or laboratory stage and could have more innovative applications, including thermal power generation, refrigeration, hydrogen production, desalination, and chimneys; (3) major problems which need to be resolved for advanced utilizaiton of solar thermal energy. (authors)

  12. Mitigation of the effects of sulphur pollution

    Energy Technology Data Exchange (ETDEWEB)

    Chang, B.; Wilson, R.

    1976-07-05

    As an introduction to the discussion of mitigation of the effects of SO/sub 2/, its health effect on man and the use of sulfates as indicators of the health hazard are first considered. The use of tall chimney stacks and intermittent control and other schemes to reduce the SO/sub 2/ release to the atmosphere are discussed. The problems of administration and forecasting are analyzed and legal problems associated with SO/sub 2/ control are reviewed. In an appendix an analysis of federal jurisdiction over interstate pollution and possible avenues of litigation open to the states is presented. (JSR)

  13. The radiological situation at the atolls of Mururoa and Fangataufa. Technical report. V. 3. Inventory of radionuclides underground at the atolls

    International Nuclear Information System (INIS)

    The objective of Working Group 3 was to independently estimate the underground inventories of radionuclides, at the French nuclear test site on the atolls of Mururoa and Fangataufa, and to estimate the distribution of radionuclides between four major components - lava, rubble, gas and water - that determines the mobility of radionuclides in the geosphere. The group also provided a summary of the critical damage dimensions, such as the cavity radius, fissure zone radius and the height of the chimney. As a lot of dimensional data were provided by the French Liaison Office the focus of this report has been to compare these data with experience gained from other test sites in the world

  14. New regulations, combustion, environment: responses for natural gas; Nouvelles reglementations, combustion, environnement: les reponses pour le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Le Peltier-Marc, A. [Gaz de France (GDF), 75 - Paris (France). Direction Commerciale

    1997-12-31

    The impacts of the new French regulations concerning low- to medium-power combustion equipment with regards to their energy sources, energy efficiency and pollution control, on natural gas fired boilers, are discussed: lower pollutant emission limits are set for SO{sub 2}, NO{sub x} and ashes. The decree gives new regulations concerning plant location, combustion control systems, plant monitoring and maintenance, and air pollution control measures such as chimney stack height and emission limits. The French national gas utility promotes environmental high performance boilers

  15. Study of heat removal by natural convection from the internal core catcher in PFBR using water model experiments

    International Nuclear Information System (INIS)

    Full text of publication follows: In the event of a core meltdown accident in a Fast Breeder Reactor, the molten core material settling on the bottom of the main vessel can endanger the structural integrity of the main vessel. In the design of Prototype Fast Breeder Reactor in India, the construction of which is about to commence, a core catcher is provided as the internal core retention device to collect and retain the core debris in a coolable configuration. Heat transfer by natural convection above and below the core catcher plate, in the zone beneath the core support structure is evaluated from water mockup experiments in the 1:4 geometrically scaled setup. These studies were undertaken towards comparison of experimentally measured temperatures at different locations with the numerical results. The core catcher assembly consists of a core catcher plate, a heat shield plate and a chimney. Decay heat from the core debris is simulated by electrical heating of the heat shield plate. An opening is provided in the cover plate to reproduce the situation in the actual accident where the core debris would have breached a part of the core support structure. Experiments were carried out with different heat flux levels prevailing upon the heat shield plate. Temperature monitoring was done at more than 100 locations, distributed both on the solid components and in water. The temperature data was analysed to get the temperature profile at different steady state conditions. Flow visualisation was also carried out using water soluble dye to establish the direction of the convective currents. The captured images show that water flows through the slots provided in the top portion of the chimney in the upward direction as evidenced from the diffusion of dye injected inside the chimney. Both the temperature data and flow visualisation confirm mixing of water through the opening in the core support structure which indicates that natural convection is set up in that zone

  16. Simulation of the Gamma Dose Rate in Loss of Pool Water Accident of the Second Egyptian Research Reactor ETRR-2

    International Nuclear Information System (INIS)

    The Second Egyptian Research Reactor ETRR-2, is a pool type reactor, a sudden loss of pool water resulting of leaving the core region un-covered. The reactor core is surrounded by chimney chambers whose water is isolated from pool water. This accident would lead to significant external dose. A model is developed and is used to calculate the dose rates for key access and traffic plans from indirect line of sight of the core have a maximum dose rate. The model developed uses the discrete ordinate method as implemented in the code DOT 3.5

  17. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC253 III. Helical magnetic fields in the nuclear outflow

    OpenAIRE

    Heesen, Volker; Beck, Rainer; Krause, Marita; Dettmar, Ralf-Jürgen

    2011-01-01

    Magnetic fields are a good tracer for gas compression by shock waves, which can be caused by interaction of star-formation driven outflows from individual star formation sites as described in the chimney model. We study the magnetic field structure in the central part of the nuclear starburst galaxy NGC 253 with spatial resolutions between 40 and 150 pc to detect any filamentary emission associated with the nuclear outflow. New VLA observations at 3 cm with 7.5" resolution were combined with ...

  18. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... background material. It derives the theoretical background of wind loaded structures and gives practical applications for a large variety of structures, such as low rise static structures, buildings, chimneys and cable-supported bridges. The European Prestandard on Wind Actions, ENV 1991-2-4, is used...

  19. La azotea fantástica (la cubierta del Palau Güell)

    OpenAIRE

    González, Antoni; Carbó, Pablo

    1990-01-01

    The covering of the PaIau Güell, twenty ventilation or smoke chimneys-of brick or decorated with tiles, glass, marble or porcelain- and four shell-like lunettes, escort the beautiful needle containing the lantern which illuminates the central salon of the building. It is not a case however, in its general conception, of a unique covering, but rather of a traditional roof whose normal components Gaudí has reinterpreted with plastic imagination. The restoration project of the roof, direct...

  20. The Archaeology of Smuggling and the Falmouth King's Pipe

    Science.gov (United States)

    Willis, Sam

    2009-06-01

    This article demonstrates the potential of an historical archaeology of smuggling and the value of an interdisciplinary approach to the study of smuggling and its prevention. By exploring the previously unstudied history of the King’s Pipe in Falmouth, a large chimney used for the destruction of tobacco, a rare survivor of many that once existed in England’s port cities, it demonstrates that archaeology could transform our understanding of smuggling and its prevention, and more broadly the history of crime and punishment in eighteenth century England.

  1. Effects of occupation on risks of avoidable cancers in the Nordic countries

    DEFF Research Database (Denmark)

    Kjaerheim, K; Martinsen, J I; Lynge, E;

    2010-01-01

    ratios (SIRs) were computed. Variation in risk across occupations was generally larger in men than in women. In men, the most consistent cluster with high risk of numerous cancer types included waiters, cooks and stewards, beverage workers, seamen, and chimney sweeps. Two clusters of occupations with...... generally low cancer risks were seen in both men and women. The first one comprised farmers, gardeners, and forestry workers, the second one included groups with high education, specifically those in health and pedagogical work. Although cancer risk varies by occupation, only a smaller part of the variation...

  2. Energy. Annual meeting of the German Academy of Scientists Leopoldina 2003. Lectures; Energie. Jahresversammlung der Deutschen Akademie der Naturforscher Leopoldina 2003. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Hausen, Harald zur (ed.)

    2004-07-01

    Taking into account complexity, globality and sustainability of the energy sector the contributions of this volume provide a scientific point of view on energy generation and -utilization according to the latest findings. As well wind power and biomass are considered in detail as nuclear energy and nuclear fusion. The trends for energy utilization are critically analyzed. Further on technical questions (solar cells, fuel cells, solar chimneys, energy efficient facility management) and economical problems(e.g. deregulation in the power market) are comprehensively presented. (GL)

  3. Energy. Annual meeting of the German Academy of Scientists Leopoldina 2003. Lectures

    International Nuclear Information System (INIS)

    Taking into account complexity, globality and sustainability of the energy sector the contributions of this volume provide a scientific point of view on energy generation and -utilization according to the latest findings. As well wind power and biomass are considered in detail as nuclear energy and nuclear fusion. The trends for energy utilization are critically analyzed. Further on technical questions (solar cells, fuel cells, solar chimneys, energy efficient facility management) and economical problems(e.g. deregulation in the power market) are comprehensively presented. (GL)

  4. Analysis of a natural exhaust fan in a building of houses through thermal simulations and CFD; Analisis de un sistema de ventilacion natural en un edificio de viviendas a traves de simulaciones termicas y CFD

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, B.; Cejudo, J.; Carrillo, A.

    2008-07-01

    Computational fluid dynamics (CFD) application to building energy simulation (STE) allows better modelling of indoor air performance and therefore it can be used to optimize the design of natural ventilation systems. In this paper, a natural ventilation system based on thermal chimney applied to a residential building is analyzed. Energy Plus simulations are applied to an apartment and results are coupled to CFD simulations to determine ventilation rates and study convection in the space. CFD simulations are also applied to evaluate indoor air distribution and study how ventilation rate is affected by the pressure drop at ventilation grilles. (Author)

  5. A review of the history, epidemiology and treatment of squamous cell carcinoma of the scrotum

    Directory of Open Access Journals (Sweden)

    Jerome Azike

    2009-07-01

    Full Text Available Squamous cell carcinoma of the scrotum is a tumor that is of interest for clinical and historical reasons. It was the first cancer linked to occupational exposure when, in 1775, Perivall Pott described it in chimney sweeps in England. Other occupations that had a preponderance of the disease included people who worked with the distillates of coal and men exposed to mineral oil. Currently, the disease is very rare and most cases are thought to result from poor hygiene and chronic irritation. Surgery with a negative resection margin offers the best hope of cure as adjunctive therapy has not proved useful. Prognosis correlates with the extent of nodal involvement.

  6. Artificial wind, tall is beautiful: examination of profitability gain prospects of a renewable energy already almost profitable; Vent artificiel, tall is beautiful: examen des perspectives de gains de rentabilite d'une energie renouvelable deja presque rentable

    Energy Technology Data Exchange (ETDEWEB)

    Bonnelle, D.

    2003-07-01

    A 1000 m height concrete tower covered with 5 km{sup 2} of solar panels will be built in the Australian desert (New South Wales). The air heated by the solar panels will be canalized towards a 130 m diameter chimney in order to create a permanent air flow of 35 to 50 km/h. This artificial wind will move 32 turbines for a maximum total power generation of 200 MW. This book makes both a physical and economical analysis of this project. (J.S.)

  7. Drying apparatus

    International Nuclear Information System (INIS)

    Particulate material, eg. fuel pellets for a nuclear reactor, is moved along a spiral path during drying by vibration of the path structure. Preferred apparatus comprises a hollow cone with a conical flight defining a path of travel having an inlet for the material and an outlet. The cone is heated by a radiant heater within the cone which itself is vibrated or oscillated about column. A cone provides an air space in which air can circulate and leave by convection through chimney. The flight may have a pile providing a fibrous surface for engaging the material. (author)

  8. Serpentinization and Life

    Science.gov (United States)

    Kelley; 2003/2005 Science Teams, D. S.

    2005-12-01

    The serendipitous discovery of the Lost City Hydrothermal Field at 30N on the Mid-Atlantic Ridge significantly changed our views about where and how life is sustained on our planet. Investigation of this site shows that it is like no other yet discovered, hosting carbonate chimneys that tower up to 60 m above the seafloor. The field rests on 1-2 my old crust, at a water depth of 800 m and is underlain by variably deformed and altered peridotite with lesser gabbro. An intense interdisciplinary field program in 2003 and a follow-on investigation in 2005 show that geological, biological, and chemical processes are strongly intertwined at this site. Serpentinization reactions in the subsurface produce pH 9-11, 40- 91° C fluids enriched in methane, hydrogen, and other hydrocarbons. Mixing of the high pH fluids with seawater forms nearly monomineralic towers of calcite, aragonite, and brucite. In contrast to the rich diversity of microorganisms typically found in black smoker environments, the warm, porous interiors of the chimneys are dominated by a single phylotype of organisms related to Methanosarcinales, which may be capable of both methane oxidation and production. Other microbes, including an organism related to an anaerobic methane-oxidizing phylotytpe (ANME-1) are present in moderate temperature environments such as the flanges (40° C to 70° C), where there is sustained mixing of pure vent fluids and seawater. They are also present in cool carbonate vein environments (chimneys where they form white to light grey filamentous strands several centimeters in length. Based on 16S rDNA clone libraries there is a relatively high diversity of organisms in these zones that include Eubacteria as well as Archaea. In contrast to the dense macrofaunal assemblages that typify most known high-temperature vent environments, the biomass at Lost City is much smaller. The animals that live within the pores and small cavities on the outsides of the chimneys are typically solar

  9. Economic policy and renewable energy

    International Nuclear Information System (INIS)

    The paper summarizes the economical conclusions of the 6th Symposium on Solar Thermal Concentrating Technologies which take place at Mojacar (Almeria). Parabolic throughs, Central Receiver Systems, dish stirling and Solar chimneys will commercial utilization by the year 2000. Levalized Energy Cost (Solar) is still higher than conventional (coal). Only the utilization of environmental parameters like ''CO2 avoided'' may contribute to market penetration. Concerning siting, it becomes clear that only those countries below 40 degree latitude, (Madrid, Nepal, Ankara) are acceptable. A desregulation of the electrical market is necessary for solar penetration, mainly in developing countries

  10. A study of useful inflatables

    Science.gov (United States)

    Barton, Sean A.

    It is demonstrated that inflatable structures can provide large amounts of stiffness compared to traditional structures of the same mass. A variety of inflatable structures are investigated theoretically. A pressurized lobed cylindrical wall is shown to be sufficiently lightweight and stiff that it can form a lighter-than-air vacuum chamber. Some prototype inflatables are built. Mechanical and optical tests are performed. Some applications in aerospace and solar energy which require large linear dimension, small mass, or large stiffness are discussed including electromagnetic space launch, airship buoyancy control, solar chimney power plants, and large inflatable mirrors.

  11. Unrestrained Expansion - A Source of Entropy

    Science.gov (United States)

    Michaud, L. M.

    2005-12-01

    The paper examines the role of unrestrained expansion in atmospheric entropy production. Lack of mechanical equilibrium is shown to be a far larger producer of internally generated entropy than other internally generated entropy production processes. Isentropic expanders are used to explain atmospheric entropy production. Unrestrained expansion can account for the discrepancy between the energy that would be produced if the heat were carried by Carnot engines and the energy actually produced. Having an expander in more important to mechanical energy production than reducing friction losses. The method of analysis is also applicable to: the solar chimney and to the atmospheric vortex engine.

  12. The negative effects of the environment on historical monuments in Konya (Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Cinar, K.; Kocu, N.; Koc, I. [Selcuk University, Konya (Turkey). Dept. of Architecture

    1999-05-01

    NOx, CO{sub 2} and SO{sub 2} are released from the chimneys of houses and factories, the exhaust of cars and trains in cities. In rainy and foggy weather, these gases turn into acidic form and destroy the historical monuments. According to the measurements and experiments carried out in Konya and its vicinity, the presence of acidic rain was determined. Consequently, it was established that the damaging effects of acidic rain can be seen on the stone and concrete buildings, especially the historical monuments built of stone.

  13. Mushroom-Shaped Structures as Tracers of Buoyant Flow in the Galactic Disk

    CERN Document Server

    D'Avillez, M A; Avillez, Miguel A. de; Low, Mordecai-Mark Mac

    2001-01-01

    Recent HI emission observations of the Southern Galactic hemisphere have revealed a mushroom-like structure extending from z=-70 to -450 pc, composed of a stem and a cap. Similar structures occur in three-dimensional simulations of a dynamic galactic disk driven by isolated and clustered supernovae. Using these simulations, we show that hot gas in the Galactic disk that is not evacuated through chimneys expands into the cooler gas of the thick disk, forming mushroom-shaped structures. This new class of objects traces buoyant flow of hot gas into the thick disk.

  14. Methodology of adjustment point in the post treatment of gaseous effluents

    International Nuclear Information System (INIS)

    The methodology to determine the adjustment points of the monitoring system of gaseous discharges is based on the stipulations of the 10CFR20, which are expressed in terms of limit concentrations for the outstanding radionuclides, and of dose limits for the individuals members of the public. Besides the points of liberation properly said, like they are the chimneys of the reactor buildings and of turbine, the points of adjustment of the monitoring instrumentation that watches in real time the discharge of the Treatment system of output gases, to the HVAC of the waste building; they also undergo to the same methodology, with the approaches previously described. (Author)

  15. Influence of the meteorological and geographical factors in the diffusion and transportation of pollutants in the air

    Directory of Open Access Journals (Sweden)

    Julio Díaz Jiménez

    2006-12-01

    Full Text Available In this paper we analysed how the stability and instability atmospheric situations influence the diffusion of air pollutants, as level of big areas and as level of restricted focus (e.g. a chimney. Moreover, the surface is considered, through the sea and valley breeze, because they can influence the wind direction and so, the transportation of pollutants when main winds do not exit. At last, the influence of orographic obstacles are considered in the generation of lee’s vortices.

  16. Power electronics solution to dust emissions from thermal power plants

    OpenAIRE

    Vukosavić Slobodan; Popov Nikola; Despotović Željko

    2010-01-01

    Thermal power stations emit significant amounts of fly ash and ultra fine particles into the atmosphere. Electrostatic precipitators (ESP) or electro filters remove flying ashes and fine particles from the flue gas before passing the gas into the chimney. Maximum allowable value of dust is 50 mg/m3 and it requires that the efficiency of the ESPs better than 99 %, which calls for an increase of active surface of the electrodes, hence increasing the filter volume and the weight of steel used fo...

  17. The infuence of the Level of Detail (LOD) on the assessment of the photovoltaic (PV) potential in urban environments

    OpenAIRE

    Stoeckli, Jérémie; Bonjour, Stéphane

    2016-01-01

    In the 3D-modelling universe, the Level of Detail has a crucial role, as it is the case to assess the PV potential in urban environments using this kind of models. According to the CityGML standards, there are five levels of detail, going from the footprint (LOD0) to a precise model with inside and outside details (LOD4) as stairs and chimneys. For the subject we are studying, meaning the assessment of the PV potential, the inside details are totally superfluous. That is why we are going to c...

  18. Numerical Analysis of Lead-Bismuth-Water Direct Contact Boiling Heat Transfer

    Science.gov (United States)

    Yamada, Yumi; Takahashi, Minoru

    Direct contact boiling heat transfer of sub-cooled water with lead-bismuth eutectic (Pb-Bi) was investigated for the evaluation of the performance of steam generation in direct contact of feed water with primary Pb-Bi coolant in upper plenum above the core in Pb-Bi-cooled direct contact boiling water fast reactor. An analytical two-fluid model was developed to estimate the heat transfer numerically. Numerical results were compared with experimental ones for verification of the model. The overall volumetric heat transfer coefficient was calculated from heat exchange rate in the chimney. It was confirmed that the calculated results agreed well with the experimental result.

  19. Computer-simulation study on fire behaviour in the ventilated cavity of ventilated façade systems

    OpenAIRE

    Giraldo María P.; Lacasta Ana; Avellaneda Jaume; Burgos Camila

    2013-01-01

    Fire spread through the façades is widely recognized as one of the fastest pathways of fire spreading in the buildings. Fire may spread through the façade in different ways depending on the type of façade system and on the elements and materials from which it is constructed. Ventilated façades are multilayer systems whose main feature is the creation of an air chamber of circulating air between the original building wall and the external cladding. The “chimney effect” in the air c...

  20. Miniature thermoelectric power plant

    OpenAIRE

    Moreira, António H. J.; Freitas, Ricardo; Esteves, João Sena

    2006-01-01

    This paper describes a miniature thermoelectric power plant made with the boiler and the water pump from an old starch iron. It also uses a computer cooling fan, which serves as electric power generator. The boiler vaporizes the water it receives from the water pump. Then, the steam is injected over the turbine of the fan making it twirl. The voltage generated by the fan is enough to lighten a couple of LEDs. A wooden case with a chimney encloses all the referred devices.

  1. Miniature thermoelectric power plant

    OpenAIRE

    Moreira, António, 1957-; Freitas, Ricardo; Sepúlveda, João; Esteves, João Sena

    2010-01-01

    This paper describes a miniature thermoelectric power plant made with the boiler and the water pump from an old starch iron. It also uses a computer cooling fan, which serves as electric power generator. The boiler vaporizes the water it receives from the water pump. Then, the steam is injected on the turbine of the fan, making it twirl. The voltage generated by the fan is enough to lighten a couple of LEDs. A wooden case with a chimney encloses all the referred devices.

  2. Microcontroller-Based Fault Tolerant Data Acquisition System For Air Quality Monitoring And Control Of Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Tochukwu Chiagunye

    2015-08-01

    Full Text Available ABSTRACT The design applied Passive fault tolerance to a microcontroller based data acquisition system to achieve the stated considerations where redundant sensors and microcontrollers with associated circuitry were designed and implemented to enable measurement of pollutant concentration information from chimney vents in two industry. Microsoft visual basic was used to develop a data mining tool which implemented an underlying artificial neural network model for forecasting pollutant concentrations for future time periods. The feed forward back propagation method was used to train the ANN model with a training data set while a decision tree algorithm was used to select an optimal output result for the model from its two output neurons.

  3. Thermal stability of ESR signals in hydrothermal barites

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Fumihiro [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan); Toyoda, Shin, E-mail: toyoda@dap.ous.ac.jp [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan); Banerjee, Debabrata [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan); Planetary Sciences Division, Physical Research Laboratory, Ahmedabad 380009 (India); Ishibashi, Jun-Ichiro [Department of Earth and Planetary Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2011-09-15

    Thermal stability of the ESR signals from barites in chimneys deposited from hydrothermal vents is investigated using isothermal and isochronal annealing experiments. A combination of first and second order kinetics is required to explain the results. The Arrhenius plots of the decay rate constants give the activation energies of 1.0-1.3 eV. From the estimated decay rate constants at the sea bottom (3 {sup o}C), the decay rate of the signal was calculated to be less than 2% for the period of 20 ka, suggesting the applicability of the ESR method for dating barites up to about twenty thousand years.

  4. Power station stack gas emissions

    International Nuclear Information System (INIS)

    There are increasing awareness and pressure to reduce emissions of acid rain and photochemical smog. There is a need to produce new control system and equipment to capture those emissions. The most visible form of pollutions are the chimney smoke, dust and particles of fly ash from mineral matter in the fuel. Acid gases are hard on structures and objects containing limestone. Coal fired power generation is likely to be able to sustain its competitive advantage as a clean source of electricity in comparison with nuclear power and natural gas

  5. Cooling of heat-producing high-level radioactive waste. Chapter 5

    International Nuclear Information System (INIS)

    The effectiveness of cooling of heat-producing high-level radioactive waste in a dry, ventilated storage building, in which the investigated with computer simulations of the temperature for normal operation conditions and for fault situations. The calculations have been performed in two steps. In the first step the complete storage building including inlet channels and chimney has been modelled. In the second step very detailed calculations have been performed with regard to the separate containment cylinders and fission-material elements. The validity of the simulation codes has been carefully tested. (H.W.). 9 refs.; 11 figs.; 2 tabs

  6. Integral models for buoyant plume calculations

    International Nuclear Information System (INIS)

    Integral models have been proven to be successful and inexpensive tools for the solution of a variety of jet-type environmental flow problems. In the Sonderforschungsbereich 80, a family of integral models has been developed for several applications as, e.g., the mixing of waste water and cooling water plumes discharged into lakes and coastal waters for the dispersion of pollutants and heat emitted by chimneys, cooling towers and urban heat islands into the atmosphere. The common features of these integral models are discussed. Finally, the quality of model results is demonstrated by comparing predictions with experimental data. (orig.)

  7. Utilização de zeólita preparada a partir de cinza residuária de carvão como adsorvedor de metais em água

    Directory of Open Access Journals (Sweden)

    Fungaro Denise Alves

    2002-01-01

    Full Text Available Coal ashes produced in coal-fired power plant could be converted into zeolites and can be used as low-cost adsorbents for the treatment of effluents contaminated with high levels of toxic metals. The capacity of synthetic zeolites for the removal of cadmium, zinc and copper ions from aqueous solutions has been investigated under different operating conditions. Zeolite from bottom chimney showed higher removal efficiency for metals ions than zeolite from feed hopper and mixing mill. The results indicated that the treated bottom ash could be applied in environmental technology as an immobilizer of pollutants.

  8. Silo which can be set up or erected out of doors for accommodating a transport or storage container or fuel element can containing at least one radioactive fuel element

    International Nuclear Information System (INIS)

    The silo has a device removing the heat given up to the inside. This contains heat exchanger pipes or ducts passing through, which are sealed to the inside and are taken out on both sides, made of heat conducting material, e.g. aluminium or copper. The ducts run vertically parallel to the longitudinal direction of the container, where the inlets and outlets are higher, so that a chimney effect is obtained. The ducts can run inside in the area of the container jacket, where it is even better if they are in the container jacket. The pipes or ducts are best cast into the concrete of the container jacket. (orig./HP)

  9. Active control of multi-modal propagation of tonal noise in

    DEFF Research Database (Denmark)

    Laugesen, Søren

    1996-01-01

    The active control of tonal noise propagating in ducts at frequencies where many modes are able to propagate is considered. The final objective of the work reported is to cancel the prominent 450-500 Hz blade passing frequency of the rotary suction fans found in chimney stacks of power stations...... laboratory. The study of the full control system, which comprises thirty secondary sources and thirty-two error sensors, has revealed a number of new results, in particular with respect to the positioning of the sources and sensors along the length of the duct. Eventually, a reduction of the radiated power...

  10. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  11. A power generator associated with a heat accumulator and with a device using fossil fuel

    International Nuclear Information System (INIS)

    The invention provides improvements in motive power installations with a heat accumulator. The exhaust gases of a gas turbine give up their heat to a coolant fluid prior to being evacuated through a chimney. The heat thus transferred is stored in a liquid medium in a tank and is used by a steam cycle expansion engine according to requirements. The turbine combustion chamber is fed with fuel at least partly from said tank, which permits to renew the contents thereof. This can be applied to thermal power stations supplying a network with variable requirements

  12. Use of poultry litter for power generation - monitoring of 'EYE' power station

    International Nuclear Information System (INIS)

    This report summarises the results of the emissions monitoring programme undertaken by FEC Consultants at EYE power station. It has shown that poultry litter can generally be burnt in a clean and efficient manner with due regard to the environment. The emissions monitored with the exception of particulates generally conform with the requirements of IPR 1/7 (92); particulates exceed the 100 mg/Nm3 but are within the 200 mg/Nm3 allowed for the first 12 months of operation. The particulate burden from the large scale combustion of poultry litter has exceeded expectations. The environmental monitoring programme undertaken by ADAS Huntingdom, at 'EYE' power station over a period of 16 months, has shown there was no evidence of the deposition of harmful substances from the chimney onto the surrounding plants and soil. To alleviate the fears of the NFU over possible contamination to the food chain from chimney deposition, MAFF, Food Safety (Contaminants) Unit, undertook to collect milk samples over a period of 16 months. These milk samples were subject to analysis for dioxin and furan contamination. The analysis has shown that the dioxin and furan contents were at the bottom of the normal background levels for the UK and there was no evidence of any increase over the sampling period. (author)

  13. Reactivity Worth of the Flooding of the ETRR-2 Second Shutdown System Chambers

    International Nuclear Information System (INIS)

    The ETRR-2 research reactor has a second shutdown system consisting of four chambers surrounding the core chimney.These chambers are to be filled with Gadolinium solution in case of failure of the first shutdown system within a certain time period. The reactor core chimney together with second shutdown system four chambers lie inside the reactor main water pool.The possibility of the chambers to be flooded with water is considered to be one of the safety issues to be addressed. As the reactor core is very heterogeneous, the reactivity effects of each individual chamber are different. Also, the reactivity worth of these chambers depends on the core configuration.The present study aims to evaluate the reactivity worth of each individual chamber, the total worth of all the chambers and the maximum worth of any flooded chamber in case of the other chambers being filled with nitrogen. Certain conclusions are drawn regarding the safety of the ET-RR-2 reactor in case of the chambers being filled with water and the second shutdown system being on demand

  14. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia over a 6-year period.

    Directory of Open Access Journals (Sweden)

    Anne ePostec

    2015-08-01

    Full Text Available Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota and Thaumarchaea were the main archaeal members. The Methanosarcinales, also observed by epifluorescent microscopy and FISH, consisted of two phyotypes that were previously solely detected in two other serpentinitzing ecosystems (The Cedars and Lost City Hydrothermal Field. Surprisingly, members of the hyperthermophilic order Thermococcales were also found which may indicate the presence of a hot subsurface biosphere. The bacterial community mainly consisted of Firmicutes, Chloroflexi, Alpha-, Gamma-, Beta- and Delta-proteobacteria and of the candidate division NPL-UPA2. Members of these taxa were consistently found each year and may therefore represent a stable core of the indigenous bacterial community of the PHF chimneys. Firmicutes isolates representing new bacterial taxa were obtained by cultivation under anaerobic conditions. Our study revealed diverse microbial communities in PHF ST09 related to methane and sulfur compounds that share common populations with other terrestrial or submarine serpentinizing ecosystems.

  15. Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period.

    Science.gov (United States)

    Postec, Anne; Quéméneur, Marianne; Bes, Méline; Mei, Nan; Benaïssa, Fatma; Payri, Claude; Pelletier, Bernard; Monnin, Christophe; Guentas-Dombrowsky, Linda; Ollivier, Bernard; Gérard, Emmanuelle; Pisapia, Céline; Gérard, Martine; Ménez, Bénédicte; Erauso, Gaël

    2015-01-01

    Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarchaea were the main archaeal members. The Methanosarcinales, also observed by epifluorescent microscopy and FISH, consisted of two phylotypes that were previously solely detected in two other serpentinitzing ecosystems (The Cedars and Lost City Hydrothermal Field). Surprisingly, members of the hyperthermophilic order Thermococcales were also found which may indicate the presence of a hot subsurface biosphere. The bacterial community mainly consisted of Firmicutes, Chloroflexi, Alpha-, Gamma-, Beta-, and Delta-proteobacteria and of the candidate division NPL-UPA2. Members of these taxa were consistently found each year and may therefore represent a stable core of the indigenous bacterial community of the PHF chimneys. Firmicutes isolates representing new bacterial taxa were obtained by cultivation under anaerobic conditions. Our study revealed diverse microbial communities in PHF ST09 related to methane and sulfur compounds that share common populations with other terrestrial or submarine serpentinizing ecosystems. PMID:26379636

  16. Low cost passive cooling system for social housing in dry hot climate

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. [Grupo ABIO, ETSI de Caminos, Catedra de Ingenieria Sanitaria, Ciudad Universitaria, 28040 Madrid (Spain); Gaona, J.A. [Consulter Engineer, Avenida Rosa Chacel 31, 28919 Leganes, Madrid (Spain); Luxan, J.M.; Gomez, Gloria [Architect Designers of the Building, ETSArquitectura, Ciudad Universitaria, 28040 Madrid (Spain)

    2009-09-15

    The low energy approach should be the key concept in any long-term strategy aiming to build sustainability. For Madrid climate, action should be taken to reduce energy demand for heating and cooling in residential buildings. The performance of a passive cooling system was developed as a part of design work for the project of a low cost residential building. The passive cooling systems incorporate a solar chimney and precool the air by using the sanitary area of the building. The natural ventilation is enhanced with the help of the solar chimney and fresh air is cooled down by circulation within the sanitary area. The application of this system to the living rooms of a low cost residential building was evaluated and implemented. This cooling system incorporated to a residential building is the third prototype developed since 1991 by the designers. A model was developed to allow to predict the temperature of the air in the living room. The performance of the passive cooling system was evaluated based on the energy balance for a typical summer day. To reduce the energy demand in winter, a new design and window orientation has been developed and evaluated using DOE-2 simulation tool. The building has been constructed and monitored during 2006-2007. (author)

  17. Radiological assessment report for the Lansdowne property, 105-107 East Stratford Avenue, Lansdowne, Pennsylvania, October-December 1984

    International Nuclear Information System (INIS)

    Areas with elevated levels of radioactivity were found throughout both residences, as well as on the surrounding property. Contamination was also found in the garage behind the 105 East structure. The 105 East residence had substantially more contamination than the 107 East residence, as was expected. The chimneys, particularly the rear chimney, from the 105 East residence had extensive contamination, indicating that contaminated materials may have been burned at the site. The high background radiation emanating from this residence made it difficult to establish the relatively lower levels of contamination in the 107 East residence. The property surrounding the 105 East residence was found to have substantial contamination scattered throughout, with the highest level occurring in the backyard. The soil surface contamination seemed to drop markedly (but not entirely) at the property lines. The property surrounding 107 East was found to be less contaminated, although the background radiation emanating from the adjoining area made it difficult to establish the degree of surface or near-surface contamination from surface surveys. Subsurface investigation of the soil surrounding the structure indicated that radium contamination was widespread and extended to a depth of eight feet at some locations. There was evidence that some of this contamination extended onto adjoining properties and may have been transported off the site via subsurface migration. Additionally, analysis of samples from access points in the residence sewer system effluent established that the system was contaminated. 3 refs., 26 figs., 13 tabs

  18. The origin of collapse features appearing in a migrating parabolic dune along the southern coast of Lake Michigan

    Science.gov (United States)

    Argyilan, Erin P.; Avis, Peter G.; Krekeler, Mark P. S.; Morris, Charles C.

    2015-12-01

    Dune decomposition chimneys are collapse features formed when migrating dunes encroach on a forest and buried trees subsequently decay, leaving a temporarily stable open hole. The recent appearance of holes on the stoss slope of Mount Baldy at the Indiana Dunes National Lakeshore provided an opportunity for study of such features. Mount Baldy is a large parabolic dune that is rapidly migrating onshore over a late Holocene landscape with stabilized relict parabolic dunes that supported oak (Quercus spp.) trees visible on the 1939 aerial photo. Individual holes were mapped to locations on the dune surface that would directly overlie the arm of a buried relict parabolic dune. Analyses of buried trees and surrounding sediment indicated that saprotrophic wood decay fungi continue to actively decompose trees after burial and biomineralization of a calcium-carbonate-rich cement occurs at the contact between organic material and sands. Scanning electron microscopy of the cement showed neoformed authigenic minerals and organic structures consistent in morphology with fungal hyphae. We propose that, within the dune, portions of the decayed trees progressively collapse and infill, and open holes are temporarily stabilized by the calcium-carbonate-rich cement. Further, holes can exist undetected at the surface, covered by a thin veneer of sand. Migrating dune systems are observed in many coastal and inland areas. Ongoing work must address the relative contributions of individual environmental factors on the formation of dune decomposition chimneys, including the biomineralization of cement, sand mineralogy, rate of dune movement, tree species, climate, and the composition of fungal communities.

  19. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    Science.gov (United States)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  20. Emergency automatic commutation of the ventilation system of the RP-10 nuclear reactor

    International Nuclear Information System (INIS)

    The present paper summarizes the achievements in the design and implementation of a system for monitoring and automatic control of radioactive effluents from the chimney of the RP-10 reactor, using as hardware an Arduino UNO platform containing an ATMEGA 328 programmable micro controller to which has been added LCD screen to display the values, a keyboard and an EEPROM memory data, where the limit of the level of radiation is fixed. The radiation level in the air of the reactor hall, going up the chimney is counted by a radiation monitor called MAB1000, and data are supplied to the new system. When the radiation level is above the national and international standards, the new design makes work a relay, so that the ventilation system is automatically switched to operate in emergency condition, preventing the release of radioactive contaminants into the environment. After installing the new design, it was verified that removed by the radiation monitor MAB1000, value is identical to that shown in the new system. Additionally, the operation of the relay was tested successfully with radioactive sources to switch the ventilation system to the emergency condition. (authors).

  1. Radiological assessment report for the Lansdowne property, 105-107 East Stratford Avenue, Lansdowne, Pennsylvania, October-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.

    1985-09-01

    Areas with elevated levels of radioactivity were found throughout both residences, as well as on the surrounding property. Contamination was also found in the garage behind the 105 East structure. The 105 East residence had substantially more contamination than the 107 East residence, as was expected. The chimneys, particularly the rear chimney, from the 105 East residence had extensive contamination, indicating that contaminated materials may have been burned at the site. The high background radiation emanating from this residence made it difficult to establish the relatively lower levels of contamination in the 107 East residence. The property surrounding the 105 East residence was found to have substantial contamination scattered throughout, with the highest level occurring in the backyard. The soil surface contamination seemed to drop markedly (but not entirely) at the property lines. The property surrounding 107 East was found to be less contaminated, although the background radiation emanating from the adjoining area made it difficult to establish the degree of surface or near-surface contamination from surface surveys. Subsurface investigation of the soil surrounding the structure indicated that radium contamination was widespread and extended to a depth of eight feet at some locations. There was evidence that some of this contamination extended onto adjoining properties and may have been transported off the site via subsurface migration. Additionally, analysis of samples from access points in the residence sewer system effluent established that the system was contaminated. 3 refs., 26 figs., 13 tabs.

  2. QFLOOD-GT: a program for predicting PWR reflood

    International Nuclear Information System (INIS)

    A description is given of the present version of the QFLOOD-GT program for predicting the reflood stage of a large-break PWR loss-of-coolant accident. QFLOOD-GT has been developed from an earlier forced-reflood program which, using a conduction-controlled model for rewetting speed, gave good agreement with the FLECHT SEASET experiments. This earlier program has been incorporated into QFLOOD-GT as a subroutine called QFLOOD; in addition a downcomer model has been included in order to allow calculation of gravity reflood, and a computational scheme has been devised to simulate the chimney effect (the unequal distribution of inlet flow between hot and cool regions of the core). No quantitative comparisons between QFLOOD-GT predictions and integral-test data have yet been carried out, so the modelling decisions implemented in the program are at this stage unvalidated. Preliminary testing of the program has produced results which are for the most part qualitatively satisfactory. Calculations for indicative PWR conditions suggest that the chimney effect has a significant beneficial effect during PWR reflood, a conclusion in accordance with the findings of the Japanese 2D/3D experiments. (author)

  3. Validation of TRACE code for type-I density wave oscillations in SIRIUS-N facility, which simulates ESBWR

    International Nuclear Information System (INIS)

    As a part of the international CAMP Program of the US Nuclear Regulatory Commission (USNRC), the best-estimate code TRACE is validated with the stability database of SIRIUS-N facility at high pressure. The TRACE code analyzed is version 5 patch level 2. The SIRIUS-N facility simulates thermal-hydraulics of the economic simplified BWR (ESBWR). The oscillation period correlates well with bubble transit time through the chimney region regardless of the system pressure, inlet subcooling and heat flux. Numerical results exhibits type-I density wave oscillation characteristics, since throttling at the core inlet shifts stability boundary toward the higher inlet subcooling, and throttling at the chimney exit enlarges unstable region and oscillation amplitude. Stability maps in reference to the inlet subcooling and heat flux obtained from the TRACE code agrees with those of the experimental data at 1 MPa. As the pressure increases from 2 MPa to 7.2 MPa, numerical results become much stable than the experimental results. This is because that TRACE underestimates two-phase frictional loss at such high pressure, since the natural circulation flow rate of numerical results is higher by up to 17 % than that of experimental results. (author)

  4. Analysis of Irradiation Holes of In-Core Region

    International Nuclear Information System (INIS)

    Test fuels and materials are irradiated in the in-core region in side of the chimney. The inner chimney is composed of In-Core and Out-Core regions. The In-Core region has 23 hexagonal vertical irradiation holes named from R01 to R20, CT, IR1 and IR2 and 8 cylindrical irradiation holes named from CAR1 to CAR4 and SOR1 to SOR4. The Out-Core region is composed of 8 cylindrical irradiation holes named from OR1 to OR8 which are installed near the inner shell of the reflector tank. HANARO is the multi-purpose research reactor which utilizes in-core irradiation holes, which is being used in various field. Over the past 7 years we have used CT 8 times, IR once, IR2 and OR3 twice, OR4 three times and OR5 ten times. These irradiation holes are used to perform an evaluation of the neutron irradiation properties and the tests were all completed and done successfully. HANARO has been used successfully, and it still will be used continuously in various fields such as nuclear in-pile tests, the production of radioisotopes, neutron transmutation doping, neutron activation analysis, neutron beam research, radiography, environmental science

  5. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    Energy Technology Data Exchange (ETDEWEB)

    Trianti, Nuri, E-mail: nuri.trianti@gmail.com; Nurjanah,; Su’ud, Zaki; Arif, Idam; Permana, Sidik [Nuclear Physics and Biophysics Research Division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10, Bandung (Indonesia)

    2015-09-30

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  6. Three-electrode direct current argon plasma: studies in discrete sample introduction, mathematical correction of drifted plasma data, and organic solvent introduction effects in the plasma

    International Nuclear Information System (INIS)

    This thesis investigates three areas of research with the three-electrode direct-current argon plasma(DCP). The first area examines discrete sample introduction into the DCP. Discrete sampling, well known for its sample conservation advantage, has been used with flame atomic absorption and inductively coupled plasma emission spectroscopies but no work has been published on using this sampling mode with the DCP. Discrete sample introduction is compared here to the standard continuous sampling mode. An unique sample drop generator is described and characterized. Results are given for a variety of system effects and used to explain the effect of sample drop size on emission intensity. The second area of research involves the use of mathematical correction techniques for removing the effect of plasma emission drift from analytical data. The introduction of hydrophobic samples into the DCP is the last area examined in this thesis. Organic matrices are routinely run on the DCP but they can be prone to little understood matrix interferences effects. A modified sample introduction chimney was designed that largely eliminated the carbon buildup encountered with the standard chimney permitting extensive studies using organic solvent with the plasma. It was found that the analytical emission zone of the plasma appears to be spatially tied to the plasma core

  7. Characteristics of microbial communities in crustal fluids in a deep-sea hydrothermal field of the Suiyo Seamount

    Directory of Open Access Journals (Sweden)

    Shingo eKato

    2013-04-01

    Full Text Available To directly access the sub-seafloor microbial communities, seafloor drilling has been done in a deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. In the present study, crustal fluids were collected from the boreholes, and the bacterial and archaeal communities in the fluids were investigated by culture-independent molecular analysis based on 16S rRNA gene sequences. Bottom seawater, sands, rocks, sulfide mound and chimneys were also collected around the boreholes and analyzed for comparisons. Comprehensive analysis revealed the characteristics of the microbial community composition in the crustal fluids. Phylotypes closely related to cultured species, e.g., Alteromonas, Halomonas, Marinobacter, were relatively abundant in some crustal-fluid samples, whereas the phylotypes related to Pelagibacter and the SUP05-group were relatively abundant in the seawater samples. Phylotypes related to other uncultured environmental clones in Alphaproteobacteria and Gammaproteobacteria were relatively abundant in the sand, rock, sulfide mound and chimney samples. Furthermore, comparative analysis with previous studies of the Suiyo Seamount crustal fluids indicates the change in the microbial community composition for three years. Our results provide novel insights into the characteristics of the microbial communities in crustal fluids beneath a deep-sea hydrothermal field.

  8. Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures.

    Science.gov (United States)

    Houghton, J L; Seyfried, W E; Banta, A B; Reysenbach, A-L

    2007-03-01

    A continuous culture bioreactor was developed to enrich for nitrate and sulfate reducing thermophiles under in situ deep-sea pressures. The ultimate objective of this experimental design was to be able to study microbial activities at chemical and physical conditions relevant to seafloor hydrothermal vents. Sulfide, sulfate and oxide minerals from sampled seafloor vent-chimney structures [East Pacific Rise (9 degrees 46'N)] served as source mineral and microbial inoculum for enrichment culturing using nitrate and sulfate-enriched media at 70 and 90 degrees C and 250 bars. Changes in microbial diversity during the continuous reaction flow were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rRNA gene fragments. Time series changes in fluid chemistry were also monitored throughout the experiment to assess the feedback between mineral-fluid reaction and metabolic processes. Data indicate a shift from the dominance of epsilon Proteobacteria in the initial inoculum to the several Aquificales-like phylotypes in nitrate-reducing enrichment media and Thermodesulfobacteriales in the sulfate-reducing enrichment media. Methanogens were detected in the original sulfide sample and grew in selected sulfate-enriched experiments. Microbial interactions with anhydrite and pyrrhotite in the chimney material resulted in measurable changes in fluid chemistry despite a fluid residence time only 75 min in the reactor. Changes in temperature rather than source material resulted in greater differences in microbial enrichments and mediated geochemical reactions. PMID:17221162

  9. Catalytic converters in the fireplace

    International Nuclear Information System (INIS)

    In addition to selecting the appropriate means of heating and using dry fuel, the amount of harmful emissions contained by flue gases produced by fireplaces can be reduced by technical means. One such option is to use an oxidising catalytic converter. Tests at TTS Institute's Heating Studies Experimental Station have focused on two such converters (dense and coarse) mounted in light-weight iron heating stoves. The ability of the dense catalytic converter to oxidise carbon monoxide gases proved to be good. The concentration of carbon monoxide in the flue gases was reduced by as much as 90 %. Measurements conducted by VTT (Technical Research Centre of Finland) showed that the conversion of other gases, e.g. of methane, was good. The exhaust resistance caused by the dense converter was so great as to necessitate the mounting of a fluegas evacuation fan in the chimney for the purpose of creating sufficient draught. When relying on natural draught, the dense converter requires a chimney of at least 7 metres and a by-pass connection while the fire is being lit. In addition, the converter will have to be constructed to be less dense and this will mean that it's capability to oxidise non-combusted gases will be reduced. The coarse converter did not impair the draught but it's oxidising property was insufficient. With the tests over, the converter was not observed to have become blocked up by impurities

  10. Energetics of the Beamed Zombie Turbulence Maser Action Mechanism for Remote Detection of Submerged Oceanic Turbulence

    Science.gov (United States)

    Gibson, C. H.; Bondur, V. G.; Keeler, R. N.; Leung, P. T.

    2011-11-01

    Sea surface brightness spectral anomalies from a Honolulu municipal outfall have been detected from space satellites in 200 km2 areas extending 20 km from the wastewater diffuser (Bondur 2005, Keeler et al. 2005, Gibson et al. 2005). Dropsonde and towed body microstructure measurements show outfall enhanced viscous and temperature dissipation rates above the turbulence trapping layer. Fossil turbulence waves and secondary (zombie, zebra) turbulence waves break as they propagate near-vertically and then break again near the surface to produce wind ripple smoothing in narrow frequency band (zebra) patterns from soliton-like sources of secondary turbulence energy acting on fossils advected from the outfall. The 30-250 m solitons reflect a nonlinear cascade from tidal and current kinetic energy to boundary layer turbulence events, to fossil turbulence waves, to internal soliton and tidal waves. Secondary (zombie) turbulence acts on outfall fossil patches to amplify, channel in chimneys, and vertically beam ambient internal wave energy just as energized metastable molecules around stars amplify and beam quantum frequencies in astrophysical masers. Kilowatts of buoyancy power from the treatment plant produces fossil turbulence patches trapped below the thermocline. Beamed zombie turbulence maser action (BZTMA) in mixing chimneys amplifies these kilowatts into the megawatts of surface turbulence dissipation required to affect brightness on wide sea surface areas by maser action vertical beaming of fossil-wave-power extracted from gigawatts dissipated by intermittent bottom turbulence events on topography from the tides and currents.

  11. Design study of lead bismuth cooled fast reactors and capability of natural circulation

    International Nuclear Information System (INIS)

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation at inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters

  12. SImulated Dodewaard ASsembly: Developments in loop-design

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, R. van de

    1992-03-01

    A computer program was written to calculate void-fraction, flow rate, system circulation time and pressure drops for SIDAS under natural circulation conditions. In this program the thermohydraulic behaviour of the loop is simulated. Taking into account for the large uncertainty in two-phase frictional pressure drops, the chimney length is calculated, together with the length of the tubes which connect the downcomer at assembly height with the assembly inlet in a roundabout way. Tube diameter is chosen such that the frictional pressure losses are negligible. Using the results, it was decided to construct the chimney `telescopically` (consisting of a fixed part and a movable part) in order to influence the driving force. Calculations of the enthalpy of the condensed vapour flow for various system conditions have shown that it is impractical to use this flow to lower the temperature of the total downcomer flow at the necessary subcooling temperature. It is therefore decided to use the condensor flow only for lowering the total downcomer flow enthalpy at saturation enthalpy and to establish the necessary subcooling separately by cooling of the flow in the connecting tubes. (orig.).

  13. SImulated Dodewaard ASsembly: Developments in loop-design

    International Nuclear Information System (INIS)

    A computer program was written to calculate void-fraction, flow rate, system circulation time and pressure drops for SIDAS under natural circulation conditions. In this program the thermohydraulic behaviour of the loop is simulated. Taking into account for the large uncertainty in two-phase frictional pressure drops, the chimney length is calculated, together with the length of the tubes which connect the downcomer at assembly height with the assembly inlet in a roundabout way. Tube diameter is chosen such that the frictional pressure losses are negligible. Using the results, it was decided to construct the chimney 'telescopically' (consisting of a fixed part and a movable part) in order to influence the driving force. Calculations of the enthalpy of the condensed vapour flow for various system conditions have shown that it is impractical to use this flow to lower the temperature of the total downcomer flow at the necessary subcooling temperature. It is therefore decided to use the condensor flow only for lowering the total downcomer flow enthalpy at saturation enthalpy and to establish the necessary subcooling separately by cooling of the flow in the connecting tubes. (orig.)

  14. Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications

    International Nuclear Information System (INIS)

    Highlights: • A radial heat sink was designed for high-power LED lighting applications. • Fin-height profiles reflecting the chimney-flow characteristics of a radial heat sink were proposed. • Multi-disciplinary optimization was carried out to simultaneously minimize the thermal resistance and mass. • The cooling performance of the optimized design showed improvement without additional mass increment. - Abstract: Light-emitting diode (LED) lighting offers greater energy efficiency than conventional lighting. However, if the heat from the LEDs is not properly dissipated, the lifespan and luminous efficiency are diminished. In the present study, a heat sink of LED lighting was optimized with respect to its fin-height profile to obtain reliable cooling performance for high-power LED lighting applications. Natural convection and radiation heat transfer were taken into consideration and an experiment was conducted to validate the numerical model. Fin-height profiles reflecting a three-dimensional chimney-flow pattern were proposed. The outermost fin height, the difference between fin heights, and the number of fin arrays were adopted as design variables via sensitivity analysis, and the heat sink configuration was optimized in three dimensions. Optimization was conducted to simultaneously minimize the thermal resistance and mass. The result was compared with the Pareto fronts of a plate-fin heat sink examined in a previous study. The cooling performance of the optimized design showed an improvement of more than 45% while preserving a mass similar to that of the plate-fin heat sink

  15. U and Th Concentration and Isotopic Composition of Hydrothermal Fluids at the Lost City Hydrothermal Field

    Science.gov (United States)

    Ludwig, K. A.; Shen, C.; Cheng, H.; Edwards, R.; Kelley, D. S.; Butterfield, D. A.

    2006-12-01

    Uranium and Th concentration and isotopic composition of hydrothermal fluids at the Lost City Hydrothermal Field (LCHF) were determined using multi-collector inductively coupled plasma mass spectrometry (MC-ICP- MS). The LCHF is an off-axis, serpentinite-hosted hydrothermal system located at 30°N near the Mid- Atlantic Ridge. Carbonate chimneys reaching 60 m in height vent alkaline (pH~10), calcium-rich fluids at 40- 91°C and the towers are home to dense microbial communities. Vent fluid and seawater U and Th concentration and isotopic composition data provide critical information for constraining U-Th chimney ages. The increased sensitivity (1-2%) of MC-ICP-MS combined with an Aridus nebulization system allows the precise measurement of small quantities of sample (~150 ml) with low concentrations (Thorium concentrations of fluids are close to deep seawater values. U and Th isotopic compositions are reported at the permil level. These data may provide new insights into the role of serpentinite-hosted hydrothermal systems in the budgets of U and Th in the ocean. Techniques presented in this study may be applied to other hydrothermal and seep environments.

  16. The thermal performances of a solar wall

    International Nuclear Information System (INIS)

    In this paper, the computational fluid dynamics technique (CFD) was used for air flow simulation in the solar chimney. The flow is assumed laminar, unsteady and incompressible. The air flow model consisted of a system of governing equations continuity, momentum, energy are solved for 2D Cartesian system uses the SIMPLE algorithm and the Power–Law differencing scheme. The influence of the variation depth of the solar chimney on the thermal efficiency of the system was studies. The principle of functioning of the system is visualized. The temperatures obtained on the level of the zone of occupation are adaptable to the interval of thermal comfort. The results of simulation are congruent with those of the literature. -- Highlights: ► The present work consists of the modilisation of the natural convection flow in a room heated by the technique of a ventilated Trombe wall. ► The use of solar energy consists in profiting from the direct contribution of the solar radiation. ► With vented thermal storage walls, the vents can provide an important control mechanism both in heating and cooling the building. ► The results obtained for the area of Bechar seem interesting, which makes it possible to do much energy saving.

  17. The use of segregated heat sink structures to achieve enhanced passive cooling for outdoor wireless devices

    Science.gov (United States)

    O'Flaherty, K.; Punch, J.

    2014-07-01

    Environmental standards which govern outdoor wireless equipment can stipulate stringent conditions: high solar loads (up to 1 kW/m2), ambient temperatures as high as 55°C and negligible wind speeds (0 m/s). These challenges result in restrictions on power dissipation within a given envelope, due to the limited heat transfer rates achievable with passive cooling. This paper addresses an outdoor wireless device which features two segregated heat sink structures arranged vertically within a shielded chimney structure: a primary sink to cool temperature-sensitive components; and a secondary sink for high power devices. Enhanced convective cooling of the primary sink is achieved due to the increased mass flow within the chimney generated by the secondary sink. An unshielded heat sink was examined numerically, theoretically and experimentally, to verify the applicability of the methods employed. Nusselt numbers were compared for three cases: an unshielded heat sink; a sink located at the inlet of a shield; and a primary heat sink in a segregated structure. The heat sink, when placed at the inlet of a shield three times the length of the sink, augmented the Nusselt number by an average of 64% compared to the unshielded case. The Nusselt number of the primary was found to increase proportionally with the temperature of the secondary sink, and the optimum vertical spacing between the primary and secondary sinks was found to be close to zero, provided that conductive transfer between the sinks was suppressed.

  18. Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments.

    Science.gov (United States)

    Yoshida-Takashima, Yukari; Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken

    2012-03-01

    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  19. Meaningful Field Trip in Education of Renewable Energy Technologies

    Directory of Open Access Journals (Sweden)

    Hasan Said Tortop

    2013-06-01

    Full Text Available Renewable energy sources, in terms of countries‟ obtaining their energy needs from clean and without harming the environment is becoming increasingly important. This situation also requires improving the quality of science education will be given in this field. In this activity, in a field trip to the center for the renewable energy resources technologies, the application of learning cycle model appropriate for constructivist approach is shown. In the example of solar chimney activity according to 5E model, in elaboration step, students, by using their imagination and creativity, put out recommendations and new designs for the efficiency of the application of solar chimney. It is quite important for educators to follow what kind of acquisitions that students will gain and what kind of changes will occur in their perceptions and attitudes towards renewable energy technologies thanks to this activity. Related documents are in attachments. This activity has been very helpful in the education of young scientists on the field of renewable energy sources technologies.

  20. Analysis of Irradiation Holes of In-Core Region

    Energy Technology Data Exchange (ETDEWEB)

    In, Won-ho; Lee, Yong-sub; Kim, Tae-hwan; Lim, Kyoung-hwan; Ahn, Hyung-jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Test fuels and materials are irradiated in the in-core region in side of the chimney. The inner chimney is composed of In-Core and Out-Core regions. The In-Core region has 23 hexagonal vertical irradiation holes named from R01 to R20, CT, IR1 and IR2 and 8 cylindrical irradiation holes named from CAR1 to CAR4 and SOR1 to SOR4. The Out-Core region is composed of 8 cylindrical irradiation holes named from OR1 to OR8 which are installed near the inner shell of the reflector tank. HANARO is the multi-purpose research reactor which utilizes in-core irradiation holes, which is being used in various field. Over the past 7 years we have used CT 8 times, IR once, IR2 and OR3 twice, OR4 three times and OR5 ten times. These irradiation holes are used to perform an evaluation of the neutron irradiation properties and the tests were all completed and done successfully. HANARO has been used successfully, and it still will be used continuously in various fields such as nuclear in-pile tests, the production of radioisotopes, neutron transmutation doping, neutron activation analysis, neutron beam research, radiography, environmental science.

  1. Thermal-hydraulics stability of natural circulation BWR under startup. Flashing effects

    International Nuclear Information System (INIS)

    To help achieve the necessary natural circulation flow, a fairly long chimney is installed in a boiling natural circulation reactor like the ESBWR. In such systems, thermal-hydraulic stability during low pressure start-up should be examined while considering the flashing induced by the pressure drop in the channel and the chimney due to gravity head. In this work, a BWR stability analysis code in the frequency domain, named FISTAB (Flashing-Induced STability Analysis for BWR), was developed to address the issue of flashing-induced instability. A thermal-hydraulics non-homogeneous equilibrium model (NHEM) based on a drift flux formulation along with a lumped fuel dynamics model is incorporated in the work. The vapor generation rate is derived from the mixture energy conservation equation while considering the effect of flashing. The functionality of the FISTAB code was confirmed by comparison to experimental results from SIRIUS-N facility at CRIEPI, Japan. Both stationary and perturbation results agree well with the experimental results. (author)

  2. Analysis and optimization of the heat transfer coefficient of a finned heat exchanger submitted to natural convection; Analise e otimizacao do coeficiente de transferencia de calor de um trocador aletado submetido a conveccao natural

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Alan Carlos Bueno da

    1997-07-01

    A heat transfer (condenser) of a domestic freezer was tested in a vertical channel in order to study the influence of the chimney effect in the optimization of the heat transfer coefficient. The variation of the opening of the channel, position and the heating power of the heat exchanger in the heat transfer coefficient was considered. The influence of the surface emissivity on the heat transfer by thermal radiation was studied with the heat exchanger testes without paint and with black paint. The air velocity entering the channel was measured with a hot wire anemometer. In order to evaluate the chimney effect, the heat exchanger was testes in a open ambient. This situation simulates its operational conditions when installed on the freezer system. The variables collected in the experimental procedures was gathered in the form of dimensionless parameters as Nusselt, Rayleigh, Grashof and Prandtl numbers, and dimensional parameters of the convection. The results showed that the highest heat transfer value occurred when both a specific position and a specific channel opening were used. The experiments pointed out that the radiation contribution must be considered in heat transfer calculations. The conclusions showed that different channel openings can improve the heat transfer coefficient in this heat transfer exchanger. (author)

  3. Reduction of Heat Emission to Surroundings From Improved Wood Burning Stove

    Directory of Open Access Journals (Sweden)

    Zakariya Kaneesamkandi

    2014-12-01

    Full Text Available Apart from emissions and inefficiency, heat generation from wood stoves to the surroundings is another undesirable effect causing health repercussions especially in the small dwellings of tropical regions. The present research addresses this problem. Steady state temperature measurements on the surface of the improved wood burning stove is used to determine this loss in which chimney draft control plays an important role. Experimental results were in good agreement with that of the model simulated using the commercial computational fluid dynamics code. A modified model in which changes were introduced to reduce the radiation and convection losses from the stove to the surrounding regions was simulated. Firstly, the radiation losses from the fire was reduced by reducing the size of fuel supply port. Secondly, a waste heat recovery system was introduced which resulted in lower stove body temperature. This was done by optimizing the use of the draft produced by the chimney.Results of the modified model of the stove showed a reduction of this loss by 12.08%. Stoves currently used under the national project for rural energy development was used for this purpose. Apart from improving the stove efficiency, this development will have a positive impact on the acceptability of the improved wood stove in rural households and also help to further reduce fuel consumption.

  4. A review of standards related to biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, J.; Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    Air quality is evaluated by the concentration of particulate matter (PM) per unit of air volume. PM10 refers to all particles smaller than 10 micrometers in diameter. The European Commission has established acceptable levels of PM10, but the rules are less precise for evaluating the amount of PM that can be emitted from a furnace's chimney. The province of Quebec allows up to 340 mg/m{sup 3} of PM for large furnaces and 600 mg/m{sup 3} for smaller furnaces. Although wood products can be burned in the province, the burning of all other biomass such as straw, stover and grass is forbidden. The City of Vancouver has stricter emissions standards for PM, notably 50 mg/m{sup 3} for large furnaces and 35 mg/m{sup 3} for smaller furnaces. The reason for this difference is that most furnaces in Quebec are used in rural areas whereas the densely populated City of Vancouver must control emissions at the source. It was concluded that although a universal standard on combustion emissions is not feasible because of different socio-economic conditions and population density, furnaces should emit levels of PM which decrease as the surrounding area population concentration increases. Stringent regulations may be met through advances in technology such as chimney height, bag filters, multicyclones, and precipitators.

  5. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    International Nuclear Information System (INIS)

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m

  6. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    Science.gov (United States)

    Trianti, Nuri; Nurjanah, Su'ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-01

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid's temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  7. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents

    Science.gov (United States)

    Taylor, Vivien F.; Jackson, Brian P.; Siegfried, Matthew R.; Navratilova, Jana; Francesconi, Kevin A.; Kirshtein, Julie; Voytek, Mary

    2012-01-01

    Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge hydrothermal vents. The shrimp species, Rimicaris exoculata, the vent chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (δ13C and δ15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the vent chimneys covered with microbial mat, which is a presumed food source for many vent organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of vent origin, suggests that organic arsenicals can occur in a foodweb without algae or other photosynthetic life.

  8. The use of segregated heat sink structures to achieve enhanced passive cooling for outdoor wireless devices

    International Nuclear Information System (INIS)

    Environmental standards which govern outdoor wireless equipment can stipulate stringent conditions: high solar loads (up to 1 kW/m2), ambient temperatures as high as 55°C and negligible wind speeds (0 m/s). These challenges result in restrictions on power dissipation within a given envelope, due to the limited heat transfer rates achievable with passive cooling. This paper addresses an outdoor wireless device which features two segregated heat sink structures arranged vertically within a shielded chimney structure: a primary sink to cool temperature-sensitive components; and a secondary sink for high power devices. Enhanced convective cooling of the primary sink is achieved due to the increased mass flow within the chimney generated by the secondary sink. An unshielded heat sink was examined numerically, theoretically and experimentally, to verify the applicability of the methods employed. Nusselt numbers were compared for three cases: an unshielded heat sink; a sink located at the inlet of a shield; and a primary heat sink in a segregated structure. The heat sink, when placed at the inlet of a shield three times the length of the sink, augmented the Nusselt number by an average of 64% compared to the unshielded case. The Nusselt number of the primary was found to increase proportionally with the temperature of the secondary sink, and the optimum vertical spacing between the primary and secondary sinks was found to be close to zero, provided that conductive transfer between the sinks was suppressed.

  9. Technical considerations for Plowshare applications to oil shale

    International Nuclear Information System (INIS)

    Nuclear explosions have been proposed for use in the recovery of oil from deep oil shale deposits. Before commercial feasibility can be established, a variety of technical problems must be examined. Some of these are related to nuclear explosion effects, others to the recovery of oil from the broken rock. Among the primary areas of interest are fracturing, chimney collapse, rubble size distribution, radioactivity, and retorting methods and variables. To test the concept, nuclear explosion experiments will be needed. One such experiment. Project Bronco, has been designed in detail, and is used here to illustrate a possible direction of development. The design is based on the following objectives: to evaluate the overall feasibility of nuclear breaking, followed by in situ retorting; to investigate the gross physical effects of a nuclear explosion in oil shale, and to assess the role of radioactivities in the production of oil by in situ retorting. The experimental plan provides for the accomplishment of these objectives by appropriate preshot studies, a postshot examination of explosion effects, and experimental retorting of the nuclear chimney. (author)

  10. Measure of γ-doses and gaseous dispersion factors in the environment of a nuclear facility in a typical middle-European site

    International Nuclear Information System (INIS)

    In the trajectories of the main wind directions at seven points in the environment of the nuclear facility in Wurenlingen the γ-radiation level is continuously measured since many years with very sensitive G.-M.-detectors. Since the beginning of the year 1976 the results are also registrated graphically on appropriate recorders, thus allowing to determine simultaneously the local dose-rates and their variations. It will also become possible to calculate the dispersion factors of the plume emitted by the heavy water reactor of the Institute which releases daily more than 1000 Ci Ar-41 into the atmosphere through a chimney of 70m height. Most of the detectors are situated at 1,5 to 6 km from the source so that it is only possible to consider the dispersion factors during adiabatic lapse rate and more turbulent conditions when the point of maximum ground concentration is situated not too far from the source. This will also be valid for weather situations with fumigation, when the lower limit of a local temperature inversion is situated above the effective height of the chimney, situations which occur quite often in this region. The results of these measurements will be compared with the theoretical figures and it is also planned to test with them the AIREM computer program and its validity in this region where relatively broad valleys alternate with hills of mean altitude (200 - 500m) as they are typical for most sites of nuclear plants in Switzerland and central Europe

  11. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge.

    Science.gov (United States)

    Zhou, Huaiyang; Li, Jiangtao; Peng, Xiaotong; Meng, Jun; Wang, Fengping; Ai, Yuncan

    2009-06-01

    Submarine hydrothermal vents are among the least-understood habitats on Earth but have been the intense focus of research in the past 30 years. An active hydrothermal sulfide chimney collected from the Dudley site in the Main Endeavour vent Field (MEF) of Juan de Fuca Ridge was investigated using mineralogical and molecular approaches. Mineral analysis indicated that the chimney was composed mainly of Fe-, Zn-and Cu-rich sulfides. According to phylogenetic analysis, within the Crenarchaeota, clones of the order Desulfurococcales predominated, comprising nearly 50% of archaeal clones. Euryarchaeota were composed mainly of clones belonging to Thermococcales and deep-sea hydrothermal vent Euryarchaeota (DHVE), each of which accounted for about 20% of all clones. Thermophilic or hyperthermophilic physiologies were common to the predominant archaeal groups. More than half of bacterial clones belonged to epsilon-Proteobacteria, which confirmed their prevalence in hydrothermal vent environments. Clones of Proteobacteria (gamma-, delta-, beta-), Cytophaga-Flavobacterium-Bacteroides (CFB) and Deinococcus-Thermus occurred as well. It was remarkable that methanogens and methanotrophs were not detected in our 16S rRNA gene library. Our results indicated that sulfur-related metabolism, which included sulfur-reducing activity carried out by thermophilic archaea and sulfur-oxidizing by mesophilic bacteria, was common and crucial to the vent ecosystem in Dudley hydrothermal site. PMID:19557339

  12. Modeling Approach/Strategy for Corrective Action Unit 97, Yucca Flat and Climax Mine , Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Janet Willie

    2003-08-01

    The objectives of the UGTA corrective action strategy are to predict the location of the contaminant boundary for each CAU, develop and implement a corrective action, and close each CAU. The process for achieving this strategy includes modeling to define the maximum extent of contaminant transport within a specified time frame. Modeling is a method of forecasting how the hydrogeologic system, including the underground test cavities, will behave over time with the goal of assessing the migration of radionuclides away from the cavities and chimneys. Use of flow and transport models to achieve the objectives of the corrective action strategy is specified in the FFACO. In the Yucca Flat/Climax Mine system, radionuclide migration will be governed by releases from the cavities and chimneys, and transport in alluvial aquifers, fractured and partially fractured volcanic rock aquifers and aquitards, the carbonate aquifers, and in intrusive units. Additional complexity is associated with multiple faults in Yucca Flat and the need to consider reactive transport mechanisms that both reduce and enhance the mobility of radionuclides. A summary of the data and information that form the technical basis for the model is provided in this document.

  13. Applicability of best-estimate analysis TRACE in terms of natural circulation BWR stability

    International Nuclear Information System (INIS)

    As a part of the international CAMP-Program of the US Nuclear Regulatory Commission (USNRC), the best-estimate code TRACE is validated with the stability database of SIRIUS-N Facility at high pressure. The TRACE code analyzed is version 5 patch level 2. The SIRIUS-N facility simulates thermal-hydraulics of the economic simplified BWR (ESBWR). The oscillation period correlates well with bubble transit time through the chimney region regardless of the system pressure, inlet subcooling and heat flux. Numerical results exhibits type-I density wave oscillation characteristics, since core inlet restriction shifts stability boundary toward the higher inlet subcooling, and chimney exit restriction enlarges instability region and oscillation amplitude. Stability maps in reference to the subcooling and heat flux obtained from the TRACE code agrees with those of the experimental data at 1 MPa. As the pressure increases from 2 MPa to 7.2 MPa, numerical results become much stable than the experimental results. This is because that two-phase frictional loss is underestimate, since the natural circulation flow rate of numerical results is higher by approximately 20% than that of experimental results. (author)

  14. Towards Determining the Upper Temperature Limits to Life on Earth: An In-situ Sulfide-Microbial Incubator

    Science.gov (United States)

    Kelley, D.; Baross, J.; Delaney, J.; Girguis, P.; Schrenk, M.

    2004-12-01

    Determining the maximum conditions under which life thrives, survives, and expires is critical to understanding how and where life might have evolved on our planet and for investigation of life in extraterrestrial environments. Submarine black smoker systems are optimal sites to study such questions because thermal gradients are extreme and accessible within the chimney walls under high-pressure conditions. Intact cells containing DNA and ribosomes have been observed even within the most extreme environments of sulfide structure walls bounded by 300\\deg C fluids. Membrane lipids from archaea have been detected in sulfide flanges and chimneys where temperatures are believed to be 200-300\\deg C. However, a balanced inquiry into the limits of life must focus on characterization of the actual conditions in a given system that favor reactions necessary to initiate and/or sustain life. At present, in-situ instrumentation of sulfide deposits is the only effective way to gain direct access to these natural high-temperature environments for documentation and experimentation. With this goal in mind, three prototype microbial incubators were developed with funding from the NSF, University of Washington, and the W.M. Keck Foundation. The incubators were deployed in 2003 in the walls of active black smoker chimneys in the Mothra Hydrothermal Field, Endeavour Segment of the Juan de Fuca Ridge. All instruments were successfully recovered in 2004, and one was redeployed for a short time-series experiment. Each 53-cm-long titanium assembly houses 27 temperature sensors that record temperatures from 0 to 500\\deg C within three discrete incubation chambers. Data are logged in a separate housing and inductively coupled links provide access to the data loggers without removal of the instruments. During the initial deployment, data were collected from 189 to 245 days, with up to ˜478° K temperature measurements completed for an individual instrument. Temperatures within the chimney

  15. Fluid flow rate, temperature and heat flux at Mohns Ridge vent fields: evidence from isosampler measurements for phase separated hydrothermal circulation along the arctic ridge system

    Science.gov (United States)

    Schultz, A.; Pedersen, R. B.; Thorseth, I. H.; Taylor, P.; Flynn, M.

    2005-12-01

    An expedition to the Mohns Ridge in the Norwegian-Greenland sea was carried out in July-August 2005 as part of BIODEEP, lead by University of Bergen (UoB). UoB had previously detected water column methane along this very slow spreading ridge. Previous ROV observations along the ridge (71 deg 18'N, 5 deg 47'W, 605 mbsl) near Jan Mayen had uncovered a broad area of ferric hydroxide-rich bacterial/mineral assemblages, comprising large populations of gallionella bacteria. This area was revisted in 2005. Characteristic of sections of this area ("Gallionella Garden") are chimney-like structures standing ~15 cm tall, often topped by a sea lily (heliometra glacialis). The interior of the structures comprised quasi-concentric bands with vertically-oriented channels. The Oregon State University/Cardiff University Isosampler sensor determined that some of these assemblages support fluid flow through their interior. The outflow from the chimney structures was typically +0.5 deg C, against background temperatures of -0.3 deg C. Flow anomalies were also identified atop extensive bacterial mats. Gallionella Gardens is several km in extent with active, albeit extremely low temperature hydrothermal flow. A field of active high temperature smoker chimney structures was located near Gallionella Garden at 540 mbsl. This field extends ~500 m along a scarp wall, with hydrothermal mounds extending along faults running perpendicular to the scarp, each of which has multiple smoker vents and areas of diffuse flow. There was evidence for phase separation, with a negatively buoyant fluid phase exiting some vent orifices and descending along the vent wall; and evidence for gas phase condensing after leaving some vent orifices. Gas bubble emissions were not uncommon. Isosampler sensors were available that were configured for lower temperature measurements at Gallionella Garden. While capable of detecting variations in effluent at the 4 millidegree level, the temperature ceiling for the sensor

  16. [Assessment of occupational exposure to aromatic polycyclic hydrocarbons determining urinary levels of 1-pyrenol].

    Science.gov (United States)

    Pavanello, S; Genova, A; Foà, V; Clonfero, E

    2000-01-01

    In conformity with Italian law 626/94, occupational exposure to Polycyclic Aromatic Hydrocarbons (PAH) in several types of work environments was assessed by analysing urinary levels of 1-pyrenol. A total of 231 non-smokers exposed to PAH (82 workers, employed in two different thermoelectric power plants using combustible oil (30 subjects from plant A and 52 from plant B), 18 subjects working for a company recovering exhausted oils, 12 working on rubber production, 10 on road surface asphalting operations, 22 working in the anodizing section of an aluminium plant, 27 chimney-sweeps, and 60 coke-oven workers (30 topside workers, and 30 doing other jobs)) were enrolled. There were also 53 non-smoker control subjects, not occupationally exposed to PAH. Current smokers were excluded, since smoking is an important confounding factor when occupational exposure to low PAH concentrations are monitored. Confounding factors, i.e., diet and passive smoking, were checked by means of a questionnaire which, in addition to personal data and habits, also requested specific details about the type of diet followed and possible exposure to passive smoking during the 24-hour period preceding urine collection. In controls, exposure to PAH in the diet significantly increased 1-pyrenol levels in urine: in subjects introducing > or = 1 microgram of pyrene with the diet, the mean urinary level of 1-pyrenol was significantly higher than that introduced with coke-oven workers, both those working at the top side of the oven and those doing other jobs (t = 2.19, p = 0.02; t = 2.56, p = 0.01; t = 5.25, p = 0.001; t = 3.34, p = 0.001; t = 7.82, p = 0.001, respectively; F = 9.7, p oils, workers recovering exhausted oils, or rubber production workers. Diet and passive smoking did not influence urinary 1-pyrenol levels in the entire sample population. This biomarker also allowed an assessment of exposure levels among certainly exposed subjects. The percentage of subjects with urinary 1-pyrenol

  17. Zonation of North Alex Mud Volcano Highlighted by 3-D Active and Passive Seismic Data

    Science.gov (United States)

    Bialas, J.; Lefeldt, M. R.; Klaeschen, D.; Papenberg, C. A.; Brueckmann, W.

    2010-12-01

    The West Nile Delta forms part of the source of the large turbiditic Nile Deep Sea Fan. Since the late Miocene sediments have formed an up to 10 km thick pile, which includes about 1 - 3 km of Messinian evaporates. The sediment load of the overburden implies strong overpressures and salt-related tectonic deformation. Both are favourable for fluid migration towards the seafloor guided by the fractured margin. The western deltaic system, Rosetta branch, has formed an 80 km wide continental shelf. Here at 700 m water depth the mud volcano North Alex (NA) developed his circular bathymetric feature, which proved to be an active gas and mud-expelling structure. A 3-D high-resolution multichannel seismic survey (IFM-GEOMAR P-Cable system) was completed across the mud volcano. 3-D time migration provided a 3-D data cube with a 6.25 m grid. Vertical seismic sections did reveal a large set of faults located within the main mud volcano as well as surrounding the structure. Internal faults are mainly related to episodic mud expulsion processes and continuous gas and fluid production. Deep cutting external faults surround the structure in a half circle shape. Horizontal amplitude maps (time slices) of indicate recent activity of these faults even up to the seafloor. High gas saturation of the sediments is indicated by inverted reflection events. In the centre the gas front cuts into the seafloor reflection while it dips down with increasing radius. Only with the small grid resolution inward dipping reflections become visible, which form an upward opened concave reflector plane underlying the top gas front. The interpretation assumes an oval lens shaped body (conduit) saturated with gas at the top of the mud volcano. It provides the upper termination of the mud chimney. This separation is further supported by passive seismic observations. Distant earthquakes can stimulate long-period harmonic oscillations in mud volcanoes. Such oscillations are detectable with three

  18. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand

    Science.gov (United States)

    de Ronde, Cornel E. J.; Massoth, Gary J.; Butterfield, David A.; Christenson, Bruce W.; Ishibashi, Junichiro; Ditchburn, Robert G.; Hannington, Mark D.; Brathwaite, Robert L.; Lupton, John E.; Kamenetsky, Vadim S.; Graham, Ian J.; Zellmer, Georg F.; Dziak, Robert P.; Embley, Robert W.; Dekov, Vesselin M.; Munnik, Frank; Lahr, Janine; Evans, Leigh J.; Takai, Ken

    2011-07-01

    Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ˜600 m in a SW-NE direction with chimneys occurring over a ˜145-m depth interval, between ˜1,690 and 1,545 m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2-3 m in height, with some reaching 6-7 m. Their ages (at time of sampling) fall broadly into three groups: water/rock interactions. Iron oxide crusts 3 years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206 mM/kg at the Cone site); high CO2/3He; negative δD and δ18OH2O for vent fluids; negative δ34S for sulfides (to -4.6‰), sulfur (to -10.2‰), and δ15N2 (to -3.5‰); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu + Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of "magmatic" mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (˜2.5 km long), narrow (˜300-m diameter) "pipes," consistent with evidence of vent fluids forming at relatively shallow depths. The NW

  19. Long-term stability of evaporite minerals: geochronological evidence

    International Nuclear Information System (INIS)

    Our recommended Rb-Sr isochron date for potash-ore formation, and the minimum date of sedimentation for the Salado and Castile Formations of southeastern New Mexico is 214 +- 15 MYBP (millions of years before the present). This data indicates that these evaporite rocks have remained closed systems since pre-200 MYBP. Our recommended date for major polyhalite formation is 208 +- 10 MYBP. This date includes a polyhalite inclusion from a rubble chimney and from highly distorted beds near the chimney from the Mississippi Chemical Corporation Mine which in turn indicate a lack of large amounts of water accompanying the formation of the rubble chimney. Polyhalite-sylvite (+- halite) mixtures yield post-200 MYBP dates due to loss of 40Ar; this is consistent with the work of many other investigators. Polyhalite from the contact zone of a 32 +- 1MYBP amprophyre dike intrusive into the evaporites approximately 70 kilometers southeast of the WIPP site yields a K-Ar date of 21.4 +- 0.8 MYBP; this confirms the application of K-Ar dating of polyhalites to trace post-formational events in the evaporative sequence. The forty one data with very low (i.e. less than 0.1) 87Rb/86Sr ratios yield initial (87Sr/86SR)0 = 0.7086 +- 0.0014. This value is within the limits of that for Permian sea water. Rb-Sr dating of detrital clay minerals indicate an apparent age of 390 +- 77 MYBP which is interpreted to indicate incomplete clay mineral-brine interaction during sedimentation and diagenesis. Earlier suggestions for more-or-less continuous and significant alkali-alkaline earth migration post-200 MYBP is refuted by our work. Instead we propose that the evaporites have remained closed to Rb and Sr snce pre-200 MYBP as indicated by the Rb-Sr work and supported by the K-Ar polyhalite dates. This in turn is favorably interpreted as to the suitability of the WIPP site evaporites for retention of radioactive wastes

  20. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marta

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct

  1. Gasbuggy Site Assessment and Risk Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-03-01

    The Gasbuggy site is in northern New Mexico in the San Juan Basin, Rio Arriba County (Figure 1-1). The Gasbuggy experiment was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation, a tight, gas-bearing sandstone formation. The 29-kiloton-yield nuclear device was placed in a 17.5-inch wellbore at 4,240 feet (ft) below ground surface (bgs), approximately 40 ft below the Pictured Cliffs/Lewis shale contact, in an attempt to force the cavity/chimney formed by the detonation up into the Pictured Cliffs Sandstone. The test was conducted below the southwest quarter of Section 36, Township 29 North, Range 4 West, New Mexico Principal Meridian. The device was detonated on December 10, 1967, creating a 335-ft-high chimney above the detonation point and a cavity 160 ft in diameter. The gas produced from GB-ER (the emplacement and reentry well) during the post-detonation production tests was radioactive and diluted, primarily by carbon dioxide. After 2 years, the energy content of the gas had recovered to 80 percent of the value of gas in conventionally developed wells in the area. There is currently no technology capable of remediating deep underground nuclear detonation cavities and chimneys. Consequently, the U.S. Department of Energy (DOE) must continue to manage the Gasbuggy site to ensure that no inadvertent intrusion into the residual contamination occurs. DOE has complete control over the 1/4 section (160 acres) containing the shot cavity, and no drilling is permitted on that property. However, oil and gas leases are on the surrounding land. Therefore, the most likely route of intrusion and potential exposure would be through contaminated natural gas or contaminated water migrating into a producing natural gas well outside the immediate vicinity of ground zero. The purpose of this report is to describe the current site conditions and evaluate the potential health risks posed by the most plausible

  2. The PAFS Design for Unlimited Operation

    International Nuclear Information System (INIS)

    thermal requirement. The advanced PAFS has the chimney to make proper natural air circulation. This study not only presents the concept design of the advanced PAFS, but also estimates its geometry and capacity. The amount of heat removal increases with chimney height and tube length. However, Total tube length also increases. Large chimney height and small tube length make minimum total tube length

  3. Damage and Shaking Intensity in the M5.7 Canyondam Earthquake

    Science.gov (United States)

    Boatwright, J.; Chapman, K.; Gold, M. B.; Hardebeck, J. L.

    2013-12-01

    An M5.7 earthquake occurred southeast of Lake Almanor, CA, at 8:47 PM on May 23, 2013. Double-difference relocations of the main shock and aftershocks indicate that the earthquake nucleated at 11 km depth and ruptured up dip on a fault striking 292° and dipping 70° to the northeast. The earthquake cracked foundations, broke chimneys, and ruptured plumbing around Lake Almanor. We canvassed communities around the lake and to the south and east for earthquake damage, adding reports from our interviews to the geocoded 'Did You Feel It?' reports and to a set of damage reports collected by the Plumas County Office of Emergency Services. Three communities suffered significant damage. In Lake Almanor West, 14 km and 290° from the hypocenter, one wood-frame house was shifted on its foundation, the cripple wall of another house was racked, and water and gas pipes in five houses were ruptured. This damage indicates the shaking approached MMI 8. In Lake Almanor Country Club, 10 km and 310° from the hypocenter, more than 40 chimneys were cracked, broken, or collapsed, a coupling for the municipal water tank was ruptured, and a 200-foot long fissure opened on a slope facing the lake. This damage indicates shaking between MMI 7 and MMI 8, consistent with the accelerograph recording of PGA = 38% g and PGV = 30 cm/s at the Fire Station in Lake Almanor Country Club. This CSMIP station and a PG&E station on the crest of the Butt Valley Dam obtained the only recordings within 50 km of the epicenter. In Hamilton Branch, 10 km and 345° from the hypocenter, a foundation of a wood-frame house was damaged, and 14 chimneys and a water pipe were broken, indicative of MMI 7 shaking. All three communities are underlain by Tertiary and Quaternary basalts. The communities of Chester, Westwood, and Greenville were less damaged, suffering cracked drywall, broken windows, and objects thrown from shelves. The intensities in the three most strongly damaged communities increase as the azimuth

  4. The PAFS Design for Unlimited Operation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Yeong; Jeong, Yoon Hoon [KAIST, Daejeon (Korea, Republic of)

    2014-10-15

    thermal requirement. The advanced PAFS has the chimney to make proper natural air circulation. This study not only presents the concept design of the advanced PAFS, but also estimates its geometry and capacity. The amount of heat removal increases with chimney height and tube length. However, Total tube length also increases. Large chimney height and small tube length make minimum total tube length.

  5. Evidence for Hydrothermal Vents as "Biogeobatteries" (Invited)

    Science.gov (United States)

    Nielsen, M. E.; Girguis, P. R.

    2010-12-01

    Hydrothermal vents are unique systems that play an important role in oceanic biogeochemical cycles. As chemically reduced hydrothermal fluid mixes with cold oxic seawater, minerals precipitate out of solution resulting in chimney structures composed largely of metal sulfides and anhydrite. Pyrite, which is a natural semi-conductor, is the primary sulfide mineral, but other minerals within chimneys are also conductive (e.g. chalcopyrite, wurtzite, and some iron oxides). Sulfide chimneys are also known to host an extensive endolithic microbial community. Accordingly, submarine hydrothermal systems appear to be examples of biogeobatteries, wherein conductive mineral assemblages span naturally occuring redox gradients and enable anaerobic microbes to access oxygen as an oxidant via extracellular electron transfer (or EET). To test this hypothesis, we ran a series of electrochemical laboratory experiments in which pyrite was used as an anode (in a vessel flushed with hydrothermal-like fluid). When placed in continuity with a carbon fiber cathode, pyrite was found to accept and conduct electrons from both abiotic and biological processes (microbial EET). Specifically, electrical current increased 4-fold (5 nA/m2 to 20 nA/m2) in response to inoculation with a slurry prepared from a hydrothermal vent sample. Inspection of the pyrite anode with SEM revealed ubiquitous coverage by microbes. DNA was extracted from the anodes and the inoculum, and was subjected to pyrosequencing to examine prokaryotic diversity. These data suggest that key microbial phylotypes were enriched upon the pyrite, implicating them in EET. In addition, we deployed an in situ experiment based on microbial fuel cell architecture with a graphite anode inserted into a vent wall coupled to a carbon fiber cathode outside the vent. We observed current production over the course of one year, implying microbial EET in situ. Via pyrosequencing, we observed that the microbial community on the anode was

  6. RadscanTM 700 : the role of remote gamma-ray imaging in optimising decommissioning and decontamination strategy

    International Nuclear Information System (INIS)

    BNFL Instruments' RadScanTM 700 was developed as a tool to survey gamma radiation remotely in a wide variety of environments. The instrument plays a major role in the development and implementation of an integrated decommissioning and decontamination strategy for contaminated nuclear facilities. Its directional and spectroscopic information provides the user with ready indication of the nature quantity and location of radioactive material present in any given plant. Two applications are described in this paper both of which demonstrate an area of application for the RadScanTM 700. The first application considers the use of the instrument in a decommissioning programme that has been running for over ten years. RadScanTM was deployed within the Pile Chimney of one of the original plutonium production reactors which operated on the Windscale site in the early 1950s. Contour plots were produced that indicated the contamination levels therein. This information indicated the major sources of dose uptake within the chimney. Following corrective action working times within the chimney were able to be doubled and further decommissioning strategy established. The second application summaries events at a facility in the South of England where RadScanTM 700 was used to monitor contamination within a cell previously used for post-irradiation examination of spent nuclear fuel. The instrument was deployed in the cell remotely from where a full survey of contamination levels was made. This identified hot spots within the cell which enabled the decontamination team to develop their plans for further clean-up work. Recent developments to RadScanTM 700 are discussed which significantly enhance the instrument's performance, versatility and quality of generated data. These developments include an improved detection limit the overlaying of the radiometric image on to the video image and the real-time estimating of dose rate from the Field of View (FOV). RadScanTM 700 is now extensively

  7. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China

    Institute of Scientific and Technical Information of China (English)

    CHEN Chentung A; WANG Bingjye; HUANG Jungfu; LOU Jiannyuh; KUO Fuwen; TU Yuehyuan; TSAI Hsienshiow

    2005-01-01

    Kueishan Tao (24°51'N, 121 °55′E) is located at a tectonic junction of the fault system extension of Taiwan and the southern rifting end of the Okinawa Trough. A cluster of over 30 vents, at a water depth of about 10~20 m off the eastern tip of the tao emits hydrothermal fluids and volcanic gases such as H2S. A sulfur chimney or mound, formed by condensation of the sulfur contained in the hydrothermal fluid, can usually be seen around the vents. The tallest chimney reaches 6 m. Vents discharging a yellowish fluid have temperatures between 92 and 116 ℃ and flow rates as high as 158 t/h; vents discharging a whitish fluid have lower temperatures of between 48 and 62 ℃ and lower flow rates of about 7.0 t/h. These world-record, breaking low pH (as low as 1.52) fluids are totally different from those found in the black and white-chimneys of the mid-ocean ridges. Magnesium and SiO2 data indicate that these hydrothermal fluids probably originate from a depth of 915~1 350 m below the surface.While the ratios of major ions relative to the sodium of these hydrothermal fluids are quite similar to open ocean water, the ratios of SO4 and chloride to sodium seem to be higher for some of the vents. It is suggested that the volcanic gases contribute SO4 and ohlorine to the fluids, hence increasing their ratios relative to sodium. Some hydrothermal fluids, however, are found to be depleted of the major elements which can have been caused by phase separation. The concentrations of iron and manganese in the fluids are much lower than those found in the mid-ocean ridges, while the aluminium content is higher. Four species of benthos (Xenograpsus testudinatus, a snail, a sea anemone, and a Sipuncala), 1 species of algae (Corallinaceae), and 1 species of fish (Siganus fusescens) were recorded near the hydrothermal vents. A mitoehondria DNA sequence comparison of Xenograpsus testudinatus with 6 other decapod species shows the greatest number of nitrogen base differences in the

  8. Modeling the Growth of Hyperthermophiles in Deep-sea Hydrothermal Diffuse Fluids and Sulfide Deposits

    Science.gov (United States)

    Ver Eecke, H. C.; Oslowski, D. M.; Butterfield, D. A.; Olson, E. J.; Lilley, M. D.; Holden, J. F.

    2009-12-01

    In 2008 and 2009, 534 hydrothermal fluid samples and 5 actively-venting black smoker chimneys were collected using Alvin for correlative microbiological and chemical analyses as part of the Endeavour Segment and Axial Volcano Geochemistry and Ecology Research (EAGER) program. Hyperthermophilic, autotrophic Fe(III) oxide reducers, methanogens, and sulfur-reducing heterotrophs were enriched for at 85 and 95°C using most-probable-number estimates from 28 diffuse fluid and 8 chimney samples. Heterotrophs were the most abundant of the three groups in both diffuse fluids and black-smoker chimneys. Iron reducers were more abundant than methanogens, and more abundant in sulfide-hosted vents than in basalt-hosted vents. Fluid chemistry suggests that there is net biogenic methanogenesis at the Marker 113/62 diffuse vent at Axial Volcano but nowhere else sampled. The growth of hyperthermophilic methanogens and heterotrophs was modeled in the lab using pure cultures. Methanocaldococcus jannaschii grew at 82°C in a 2-liter reactor with continuous gas flow at H2 concentrations between 20 and 225 µM with a H2 km of 100 µM. Correlating H2 end-member mixing curves from vent fluids and seawater with our laboratory modeling study suggests that H2 concentrations are limiting for Methanocaldococcus growth at most Mothra, Main Field, and High Rise vent sites at Endeavour but sufficient to support growth at some Axial Volcano vents. Therefore, hyperthermophilic methanogens may depend on H2 syntrophy at low H2 sites. Twenty-one pure hyperthermophilic heterotroph strains each grew on α-1,4 and β-1,4 linked sugars and polypeptides with concomitant H2 production. The H2 production rate (cell-1 doubling-1) for Pyrococcus furiosus at 95°C without sulfur was 29 fmol, 36 fmol, and 53 fmol for growth on α-1,4 sugars, β-1,4 sugars, and peptides, respectively. The CH4 production rate for M. jannaschii was 390 fmol cell-1 doubling-1; therefore, we estimate that it would take approximately

  9. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  10. Athletics hall, Odenwald school, Heppenheim, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, M. [Trans Solar GmbH, Stuttgart (Germany)

    1999-07-01

    This building, completed in 1995, is a good example of how to use a glazed foyer, not only as a climatic buffer zone, but also for preheating the inlet air by solar gains. The completely glazed west-oriented foyer is used as a huge air collector to preheat ventilation air during the heating period. The glass superstructure across the hall stores a movable curtain, serves as a skylight and enhances the natural ventilation of the hall due to the chimney effect. The stiffening ribs of the floor are also used as an air duct to the hall and as an installation duct. Photovoltaic-powered fans are used to move solar preheated air into the hall. (author)

  11. Analysis of factors important for the occurrence of Campylobacter in Danish broiler flocks

    DEFF Research Database (Denmark)

    Sommer, Helle Mølgaard; Heuer, Ole Eske; Sørensen, Anna Irene Vedel;

    2013-01-01

    multivariate analysis including all 43 variables. A multivariate analysis was conducted using a generalized linear model, and the correlations between the houses from the same farms were accounted for by adding a variance structure to the model. The procedures for analyses included backward elimination......, forward selection and expanding of the number of observations used in the variance analysis along with the reduction of the number of parameters in the model. The unit of analysis was ‘broiler house’, meaning that all results from a broiler house were aggregated into one prevalence figure (number of...... results concerning chimneys may be explained by the easier access that flies have to the broiler houses, which seems in agreement with recent Danish studies on the significance of fly-screens to reduce Campylobacter in broiler flocks. The results of this study may be used in identification of effective...

  12. Research on Climate Change and Its Impacts Needs Freedom of Research

    Directory of Open Access Journals (Sweden)

    Nicole Mölders

    2013-12-01

    Full Text Available Climate change captured my interest as a teenager when, at the dining table, my dad talked about potential anthropogenic climate changes. He brought up subjects such as “climate could change if the Siberian Rivers were to be deviated to the South for irrigation of the (semi arid areas of the former Soviet Union”. Other subjects were afforestation in the Sahel to enhance precipitation recycling, deforestation in the Tropics that could have worldwide impacts on climate, the local climate impacts of the Merowe High Dam in its vicinity and downstream, Atlantropa, a new ice age, and the increase in days with sunshine after the introduction of the high-chimney policy in the Rhein-Ruhr area, just to mention a few.

  13. Civil engineering in power plant technology

    International Nuclear Information System (INIS)

    Guaranteeing our power supplies requires increasingly large, bold or novel construction works (for example, 200 m chimney with installation of stays over a wide area for a wind power plant in Spain; up to 400 m structure height on floating drill rigs). The layman admires the impressiveness with which these demand great ability and responsibility on the part of the civil engineer. The inland power station builder has to concentrate on few spectacular methods of construction or dimensions. The success of the total undertaking is however no less attributable to structural prerequisites. Civil engineering problems have to be displaced by means of static and dynamic problems in order to meet licensing requirements (planning of construction supervision, fire prevention, structure of supply and disposal). (orig.)

  14. Body-Centered Orthorhombic C_{16}: A Novel Topological Node-Line Semimetal.

    Science.gov (United States)

    Wang, Jian-Tao; Weng, Hongming; Nie, Simin; Fang, Zhong; Kawazoe, Yoshiyuki; Chen, Changfeng

    2016-05-13

    We identify by ab initio calculations a novel topological semimetal carbon phase in all-sp^{2} bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C_{16}. Total-energy calculations show that bco-C_{16} is comparable to solid fcc-C_{60} in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-sp^{2} carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen. Electronic band structure calculations reveal that bco-C_{16} is a topological node-line semimetal with a single nodal ring. These findings establish a novel carbon phase with intriguing structural and electronic properties of fundamental significance and practical interest. PMID:27232027

  15. Body-Centered Orthorhombic C16 : A Novel Topological Node-Line Semimetal

    Science.gov (United States)

    Wang, Jian-Tao; Weng, Hongming; Nie, Simin; Fang, Zhong; Kawazoe, Yoshiyuki; Chen, Changfeng

    2016-05-01

    We identify by ab initio calculations a novel topological semimetal carbon phase in all-s p2 bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C16. Total-energy calculations show that bco-C16 is comparable to solid fcc-C60 in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-s p2 carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen. Electronic band structure calculations reveal that bco-C16 is a topological node-line semimetal with a single nodal ring. These findings establish a novel carbon phase with intriguing structural and electronic properties of fundamental significance and practical interest.

  16. Ductus arteriosus aneurysm presenting as hoarseness: successful repair with an endovascular approach.

    Science.gov (United States)

    De Freitas, Simon; Connolly, Caoilfhionn; Neary, Colm; Sultan, Sherif

    2016-01-01

    An aneurysm of the ductus arteriosus is a rare finding, particularly in the adult population. These saccular aneurysms arise at the site of an incompletely obliterated ductus arteriosus along the lesser curvature of the aortic arch. Left untreated, it is associated with a high risk of potentially life-threatening complications including rupture, infection and thromboembolism. As a result, surgical correction is recommended. Previously, options were limited to open repair but as endovascular experience grows, novel techniques afford safer and less invasive alternatives. In contrast, neonatal ductus arteriosus aneurysms may regress spontaneously and expectant treatment can be justified. We present the case of a 74-year-old woman who presented with hoarseness secondary to a ductus arteriosus aneurysm; a diagnosis consistent with Ortner's syndrome. The patient underwent an uncomplicated endovascular repair using the chimney-graft technique. PMID:27141045

  17. Development of centrifuge modeling for evaluating the mechanisms of collapse above underground openings

    International Nuclear Information System (INIS)

    Improved prediction of surface collapse above an underground cavity is important in many LLNL programs, including Nuclear Test. To improve the predictive capability, LLNL must better understand the mechanisms involved in the process of collapse. The research aims to develop the centrifuge technique for modeling mechanisms of underground collapse in soil. The authors will also evaluate the adequacy of existing constitutive or flow models of soils for modeling underground collapse. During FY 86, using the centrifuge at University of California, Davis, the authors developed the basic centrifugal modeling technique, conducted experiments, and modeled the process on a computer. In FY 87, they continued to develop the experimental method and analyze results. Results to date have shown that the model dimensions are not necessarily the critical dimensions (i.e., those determining the adequacy of the model). Rather, the critical dimension is the diameter of the chimney above the opening that develops during collapse

  18. Seismic vulnerability assessment of chemical plants through probabilistic neural networks

    International Nuclear Information System (INIS)

    A chemical industrial plant represents a sensitive presence in a region and, in case of severe damage due to earthquake actions, its impact on social life and environment can be devastating. From the structural point of view, chemical plants count a number of recurrent elements, which are classifiable in a discrete set of typological families (towers, chimneys, cylindrical or spherical or prismatic tanks, pipes etc.). The final aim of this work is to outline a general procedure to be followed in order to assign a seismic vulnerability estimate to each element of the various typological families. In this paper, F.E. simulations allowed to create a training set, which has been used to train a probabilistic neural system. A sample application has concerned the seismic vulnerability of simple spherical tanks

  19. Elements of an algorithm for optimizing a parameter-structural neural network

    Directory of Open Access Journals (Sweden)

    Mrówczyńska Maria

    2016-06-01

    Full Text Available The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH, which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  20. A study of the distribution of rare-metals in kuroko-type ore

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience]|[Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    We have performed PIXE analysis of kuroko-type ore from the JADE hydrothermal site of the Okinawa Trough, Japan using the proton microprobe (PIXEPROBE). We analysed five kinds of ores dredged from the sea floor: (I) barite ore with small sulfide dissemination; (2) sphalerite-pyrite chimney; (3) pyrite ore; (4) sulfide veinlets in strongly altered rock; and (5) pyrite megacrystals in strongly altered rock. The analyses revealed that the trace element distribution is regulated by the occurrence mode of the ore, and within each ore, by the crystal structure. The distribution suggests that the hydrothermal system for kuroko ore formation is quite heterogeneous and its chemistry is controlled by local factors such as difference in temperature, and that in-situ PIXE analyses are essential for effective beneficiation strategy for the rare-metals from kuroko-type ore. (authors). 10 refs., 1 tab.

  1. Theoretical study of natural ventilation flux in a single span greenhouse

    Directory of Open Access Journals (Sweden)

    Deltour J.

    1998-01-01

    Full Text Available The ventilation flux was calculated for single span greenhouses with single longitudinal roof opening and with bothlongitudinal roof and vertical side wall openings. Thermal buoyancy and wind pressure contributions were separatelyanalysed and then combined for lee-side as well as for windward side ventilation.For the single roof window, the temperatureeffect, proportional to the square root of the temperature difference, becomes negligible when compared to the wind effect,proportional to the wind speed, as soon as this is higher than 1.5 m.s-1.When a vertical side wall opening was added to theroof window, the temperature effect was enhanced by the so called chimney effect, linked with the vertical distance betweenthe two openings, in such a way that it becomes negligible only for an external wind speed higher than 4 m.s-1.

  2. Evaluation of Efficiency in Steam Generator of C3 Power Plant at Cap Des Biches in Dakar

    Directory of Open Access Journals (Sweden)

    A. Kane

    2012-07-01

    Full Text Available The aim of the present study is to determine the efficiency of the power plant boiler steam C3 Cape deer and to evaluate the impact of it. We chose to calculate the return by the empirical formula of Martin which is based on two important parameters which are the temperature at the exit of the chimney and the ambient temperature. The calculation of these efficiencies allowed us to make comparative studies with data from the manufacturer and we have detected anomalies. On this basis we made a number of recommendations for improvement of the groups in normal, the application will lead to an optimization of the real exploitation of groups and a performance improvement. We gave various reasons for poor performance of steam generators and recommendations that can be used both in production efficiency on compliance with operating instructions. Solutions have been proposed after diagnosis with particular emphasis on compliance with operating instructions and maintenance schedule.

  3. Elements of an algorithm for optimizing a parameter-structural neural network

    Science.gov (United States)

    Mrówczyńska, Maria

    2016-06-01

    The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  4. Validation of the CHYMES mixing model

    International Nuclear Information System (INIS)

    This paper contains a discussion of the work being performed in the UK to validate the CHYMES coarse mixing model. Attention is focussed on the MIXA experiments performed at Winfrith Technology Centre in which 3 kg of molten fuel simulant were released into water. The validation of CHYMES against one of these experiments (MIXA06) is discussed in detail. It is concluded that CHYMES can reproduce some features of the experiment (such as the existence of steam chimney around the mixture and the steam production rate within a factor of two) but it does not predict the observed mixture development (the radial spreading and the deceleration of the first melt arriving at the surface) well. Additional model development and experimental analysis underway to resolve these differences is discussed

  5. Heating with wood. A guide to clean and proper heating; Heizen mit Holz. Ein Ratgeber zum richtigen und sauberen Heizen

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Anja [Umweltbundesamt, Dessau (Germany); Kemper, Bernd-Michael [Landesanstalt fuer Umwelt, Messungen und Naturschutz Baden-Wuerttemberg (LUBW), Karlsruhe (Germany)

    2013-01-15

    When correctly used, wood is an eco-friendly fuel. By using well-processed wood from local sources in a properly handled modern fireplace, you can enjoy the cosy warmth from your wood-burning stove or boiler without causing significant environmental damage. The environment and your neighbours will be grateful for this. This brochure is intended to give you tips on how to properly operate a wood-based heating system - in technical terms referred to as a small combustion installation. Especially the burning of poor quality wood in old and insufficiently maintained stoves and unfavourable combustion conditions will result in the emission of unnecessarily high levels of greenhouse gases having adverse effects on the climate, and pollutants detrimental to your health. Particularly in urban agglomerations and valleys, the air quality is affected by wood heating systems due to low chimneys. Often, neighbours will feel annoyed.

  6. Pengembangan Tungku Gasifikasi Arang Biomassa Tipe Natural Draft Gasification Berdasarkan Analisis Computational Fluid Dynamics (CFD

    Directory of Open Access Journals (Sweden)

    Erlanda Augupta Pane

    2014-10-01

    Full Text Available A biomass stove based on natural draft gasification (NDG has been developed in a previous study (Nelwa, et al. 2013 by using simulation based on heat transfer and equilibrium modeling. In this study, a CFD simulation was performed in order to analyze the effect of chimney height, and inlet hole diameter of the stove to the performance of the stove. The results of simulation showed that power produced by stove was between 1863.9 J/s until 2585.7 J/s, and its gasification efficiency was 67.11%. The results of simulation also showed that charcoal gasification produces combustible gases (CO, CH4, and H2 at the bottom and the center of stove, and then they were oxidized by secondary air at the top of stove. This oxidation reaction produces sufficient heat energy which can be used for cooking process.

  7. Wood-burning stoves in low-carbon dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Afshari, Alireza;

    2013-01-01

    overlooked source for heating. A wood-burning stove is considered low-carbon technology since its fuel is based on local residual biomass. A field study investigating how modern wood-burning stoves operated in modern single-family houses showed that intermittent heat supply occasionally conflicted with the...... primary heating system and that chimney exhaust occasionally conflicted with the ventilation system causing overheating and particles in the indoor environment. Nonetheless, most of the wood-burning stoves contributed considerably to the total heating. On this background, it was concluded that better...... combustion technology and automatics, controlling the interplay between stove and house, can make wood-burning stoves suitable for low-carbon dwellings and meet the remaining heat demand during the coldest period. It was further concluded that new guidelines need to be elaborated about how to install and...

  8. Analysis of data from the Pericles and reflex experiments using the Codes Trac-PF1/MOD1 and QFLOOD

    International Nuclear Information System (INIS)

    The computer programs TRAC-FP1/MOD1 and QFLOOD have been used to analyse data obtained from two reflood rigs: PERICLES, a 7 - 51 bundle arranged to investigate the chimney effect, and REFLEX, a single heated tube. TRAC produced poor predictions for PERICLES, the calculated temperature history curves at the 2.03 m elevation differing markedly from experiment. TRAC predictions for the REFLEX base case agreed quite well with experiment, but for a second REFLEX test, at higher inlet water flowrate, TRAC greatly overpredicted the quench front speed. QFLOOD also performed badly against PERICLES, quench time being overpredicted by more than 50%. A number of sensitivity studies were carried out in order to establish the source of the error in the modelling. Several possible explanations were investigated, but definite conclusions could not be drawn. QFLOOD predictions for REFLEX were generally satisfactory

  9. Extrathyroidal Implantation of Thyroid Hyperplastic/neoplastic Cells after Endoscopic Thyroid Surgery

    Institute of Scientific and Technical Information of China (English)

    Cao Xi; Xie-qun Xu; Tao Hong; Bing-lu Li; Wei Liu

    2014-01-01

    Objective To report a case of the implantation of thyroid hyperplastic or neoplastic tissue after endoscopic thyroidectomy and discuss this complication in aspects of prevalence, pathogenesis, protection, and therapies. Methods A systematic search of literature from the PubMed database was conducted for identifying eligible studies on implantation of thyroid hyperplastic or neoplastic cells after endoscopic thyroid surgery. Results Overall, 5 reported cases on patients suffering from endoscopic thyroid surgery with implantation of thyroid hyperplastic or neoplastic cells were included in the systematic review. Conclusions Unskilled surgeons, rough intraoperative surgical treatment, scarification or rupture of tumor, contamination of instruments, chimney effect, aerosolization of tumor cells may be associated with the implantation after endoscopic thyroidectomy. To minimize the risk of such complication, we should be more meticulous and strict the endoscopic surgery indications.

  10. [Helen of Troy and medicine, a picture of the "Salle des Actes"].

    Science.gov (United States)

    Lafont, Olivier

    2012-05-01

    The picture of the 17th century, placed upon the great chimney in the "Salle des Actes", is attributed to the painter Simon Vouet or to his co-workers. It depicts a scene extracted from Odyssey by Homer. During their way-back to Greece, after the fall and the fire of Troia, Helen and Menelaus received in Egypt the famous nepenthes from the hands of Polydamna. An inventory of the possessions of the College of Pharmacy mentioned also helenium and moly. Nepenthes was really cited by Homer as a medicine used by Helen, but helenium was only related to Helen by euphony and moly referred to a totally different part of Odyssey and was not linked at all to Helen. This study points out the importance of mythology so far as origins of Pharmacy are concerned. PMID:23045808

  11. Summary of USSR reports on mechanical and radioactivity effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Two reports have been issued by the USSR which examine the mechanical effects and radioactive contamination of the environment from underground nuclear explosions. In reviewing the mechanical effects, the institute of Terrestrial Physics of the USSR Academy of Sciences emphasizes the advantages of nuclear explosives, namely the tremendous power and small dimensions, in the industrial and construction fields. The authors note that the mechanical effects are based not only upon the explosive yield but also upon the thermodynamic properties of the cavity gases during expansion. These properties may vary widely depending upon the rock material. A list of the basic parameters affecting the mechanical effects of contained nuclear explosions includes: cavity volume, dimensions of the chimney, degree of rock fracturing, intensity of the compression wave as a function of distance from shot point, and seismic effects. The second paper describes the phenomenology of radioactive contamination of the environment for both contained and excavation explosions

  12. Sellafield Decommissioning Programme - Update and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Lutwyche, P. R.; Challinor, S. F.

    2003-02-24

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

  13. Development of micro pulse lidar system for atmospheric monitoring

    International Nuclear Information System (INIS)

    A compact small micro pulse lidar system is developed for atmospheric monitoring. The developed system can be operated during 24 hrs for four seasons. The maximum detection distance is 5 km at day time and 10 km at night. Specially, the problem of eye safety is solved by using diode pumped low pulse-energy Nd:YAG laser. Two rotational axis, vertical and horizontal, is chosen for 3D mapping of the atmospheric aerosol. The spatial resolution can be optionally changed from 5 m to 300 m, but time resolution which changes from several sec to several minutes depends on the detection distance and background signal. To analyze the obtained lidar signal, processing software is developed and applied to the lidar signal obtained near the chimney. Vertical lidar signal is also obtained and from this data we can find the thickness and change of cloud. (author)

  14. Simulation of the gamma dose rate in loss of water accident of the second Egyptian research reactor ET-RR-2

    International Nuclear Information System (INIS)

    The second Egyptian Research Reactor ET-RR-2, is a pool type reactor. A sudden loss of pool water resulting of leaving the core region uncovered. The reactor core is surrounding by a chimney whose water is isolated from the pool water. This accident would lead to significant external dose. A model is developed and is used to calculate the dose maps for key access and traffic areas through the ET-RR-2 reactor. It was found that areas near the reactor platform in direct line of sight of the core have a maximum dose rate. The model developed uses the discrete ordinate method as implemented in the code DOT 3.5. (author)

  15. Structure and Evolution of Hot Gas in 30 Dor

    CERN Document Server

    Wang, Q D

    1999-01-01

    We have investigated the structure and evolution of hot gas in the 30 Dor nebula, based on recent X-ray observations. Our deep ROSAT HRI image shows that diffuse X-ray emission arises in blister-shaped regions outlined by loops of HII gas. X-ray spectroscopic data from ASCA confirm the thermal nature of the emission and indicate that hot gas temperature decreases from the core to the halo of the nebula. The structure of the nebula can be understood as outflows of hot and HII gases from the parent giant molecular cloud of the central OB association. The dynamic mixing between the two gas phases is likely responsible for the mass loading to the hot gas, as required to explain the observed thermal structure and X-ray luminosity of the nebula. Such processes should also be important in the formation of similar giant HII regions and in their subsequent evolution into supergiant bubbles or galactic chimneys.

  16. Risk factors for Campylobacter colonization in Danish broiler flocks, 2010 to 2011

    DEFF Research Database (Denmark)

    Sandberg, M; Sørensen, L L; Steenberg, B;

    2015-01-01

    negative; and litter delivered into the house close to the time of arrival of new chickens vs. storing litter on the farm. Furthermore, the data showed that a vertically based ventilation system (where most of the air is taken into the house through chimneys) constituted a higher risk than a horizontally......The objectives of the two studies presented were to estimate the prevalence of Campylobacter-positive farms and flocks and to acquire updated knowledge about risk factors for the introduction of Campylobacter in Danish broiler flocks. In the first study, from September 2010 to September 2011, there...... were 25 Danish broiler farms visited, and a questionnaire was filled in by a veterinarian/consultant. In the second study, a similar questionnaire was distributed electronically to all Danish broiler farmers (n = 164) that were on record with an email address in the Quality Assurance System in the...

  17. Nuclear Energy and the Environment. Addendum to the Agency's Report to the Economic and Social Council of the United Nations for 1969-70

    International Nuclear Information System (INIS)

    Civilization depends largely on man's ability to change and control his natural environment - and thus on the energy at his disposal. Until the industrial revolution man depended mainly on his own hands and his domestic animals, but in the last two centuries the tempo of man-made environmental change has constantly quickened. For almost every new benefit of technology, some price has had to be paid in terms of environmental side effects. In the first century of the industrial revolution, smoke and grime poured from the chimneys of the new foundries, factories and gas works. Industrial progress has helped to clear the air of some of these pollutants, but has also brought new ones in their stead.

  18. Metal-nanotube composites as radiation resistant materials

    Science.gov (United States)

    González, Rafael I.; Valencia, Felipe; Mella, José; van Duin, Adri C. T.; So, Kang Pyo; Li, Ju; Kiwi, Miguel; Bringa, Eduardo M.

    2016-07-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  19. Solar building study. Summary report. Macdonald Road, Stornoway, Isle of Lewis

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Few of the buildings studied in the course of the Energy Performance Assessments project have such a strong foundation in solar energy theory as does the house at MacDonald Road, Stornoway. This evaluation has shown the theory to be essentially correct and that there is potential for passive solar design in high latitudes of the UK. That the building investigated has failed to realise these benefits must in a large part be attributed to the insensitivity of its heating system to solar gains. The house design is otherwise believed to be capable of utilising passive solar gains well, and the sunspace was shown to be a valuable buffer against heat loss. Appraising the measured fuel consumption is complicated by the chimney losses associated with the traditional Hebridean open fire, the occupants` practice of keeping the fire lit all through the year to heat domestic hot water, and the low average house temperatures achieved. (author)

  20. Social-Economic Criteria about the Application of Shell Foundations

    Directory of Open Access Journals (Sweden)

    Yoermes González Haramboure

    2013-02-01

    Full Text Available TaThis paper provide arguments about the relevance of research and application of shell foundations,from a literature review that sets the theoretical and practical development attained by Cuban civilengineering in this field. It identifies several Cuban buildings with great social and economic importance,where the use of shell foundations helped to reduce the construction cost, and construction difficultiesattributed to its execution were refuted. Are mentioned the main theoretical contributions and studiesthat established equations and calculation methods applied to shells for «tower» structures foundations.By comparison in terms of volumes of materials, costs, volumes of fuel consumed and CO2 emittedinto the atmosphere in cement production, this article concludes on economic and environmentaladvantages of implementing shell foundations with respect to traditional flat base foundations in elevatedtanks type «Güira» and chimneys for sugar industries.