WorldWideScience

Sample records for chimeric protein vaccine

  1. Chimeric Pestivirus Experimental Vaccines.

    Science.gov (United States)

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics.

  2. Chimeric vaccine composed of viral peptide and mammalian heat-shock protein 60 peptide protects against West Nile virus challenge.

    Science.gov (United States)

    Gershoni-Yahalom, Orly; Landes, Shimon; Kleiman-Shoval, Smadar; Ben-Nathan, David; Kam, Michal; Lachmi, Bat-El; Khinich, Yevgeny; Simanov, Michael; Samina, Itzhak; Eitan, Anat; Cohen, Irun R; Rager-Zisman, Bracha; Porgador, Angel

    2010-08-01

    The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-gammain vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV.

  3. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  4. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    Science.gov (United States)

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines.

    Directory of Open Access Journals (Sweden)

    Ling Ye

    Full Text Available Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14 in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.

  6. Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy.

    Science.gov (United States)

    Espinosa, Diego A; Yadava, Anjali; Angov, Evelina; Maurizio, Paul L; Ockenhouse, Christian F; Zavala, Fidel

    2013-08-01

    The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.

  7. Solution structure of a Plasmodium falciparum AMA-1/MSP 1 chimeric protein vaccine candidate (PfCP-2.9 for malaria

    Directory of Open Access Journals (Sweden)

    Jin Changwen

    2010-03-01

    Full Text Available Abstract Background The Plasmodium falciparum chimeric protein PfCP-2.9 is a promising asexual-stage malaria vaccine evaluated in clinical trials. This chimeric protein consists of two cysteine-rich domains: domain III of the apical membrane antigen 1 (AMA-1 [III] and the C-terminal region of the merozoite surface protein 1 (MSP1-19. It has been reported that the fusion of these two antigens enhanced their immunogenicity and antibody-mediated inhibition of parasite growth in vitro. Methods The 15N-labeled and 13C/15N-labeled PfCP-2.9 was produced in Pichia pastoris for nuclear magnetic resonance (NMR structure analysis. The chemical shift assignments of PfCP-2.9 were compared with those previously reported for the individual domains (i.e., PfAMA-1(III or PfMSP 1-19. The two-dimensional spectra and transverse relaxation rates (R2 of the PfMSP1-19 alone were compared with that of the PfCP-2.9. Results Confident backbone assignments were obtained for 122 out of 241 residues of PfCP-2.9. The assigned residues in PfCP-2.9 were very similar to those previously reported for the individual domains. The conformation of the PfMSP1-19 in different constructs is essentially the same. Comparison of transverse relaxation rates (R2 strongly suggests no weak interaction between the domains. Conclusions These data indicate that the fusion of AMA-1(III and MSP1-19 as chimeric protein did not change their structures, supporting the use of the chimeric protein as a potential malaria vaccine.

  8. Safety and immunogenicity of a malaria vaccine, Plasmodium falciparum AMA-1/MSP-1 chimeric protein formulated in montanide ISA 720 in healthy adults.

    Directory of Open Access Journals (Sweden)

    Jinhong Hu

    Full Text Available BACKGROUND: The P. falciparum chimeric protein 2.9 (PfCP-2.9 consisting of the sequences of MSP1-19 and AMA-1 (III is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 microg respectively, and 1 placebo group of 12 participants receiving the adjuvant only. METHODS AND FINDINGS: The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1:10,000 of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA. CONCLUSION: This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity. TRIAL REGISTRATION: Chinese State Food and Drug Administration (SFDA 2002SL0046; Controlled

  9. An E2-Substituted Chimeric Pestivirus With DIVA Vaccine Properties

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Nielsen, Jens

    An advantage of the use of chimeric pestiviruses as modified live vaccines against classical swine fever (CSF) resides in their capacity to be manipulated to achieve the characteristics desired for safe and efficacious DIVA vaccines. We have recently generated a new chimeric virus, Riems26_E2gif...... vaccinated pigs were protected. This new chimeric pestivirus represents a C-strain based DIVA vaccine candidate that can be differentiated based on CSFV E2 specific antibodies....

  10. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  11. Virulence, immunogenicity and vaccine properties of a novel chimeric pestivirus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Reimann, Ilona

    2007-01-01

    A chimeric pestivirus of border disease virus Gifhorn and bovine viral diarrhea virus CP7 (Meyers et al., 1996) was constructed. Virulence, immunogenicity and vaccine properties of the chimeric virus were studied in a vaccination–challenge experiment in pigs. The chimeric virus proved...... to be avirulent and neither chimeric virus nor viral RNA was detected in serum after vaccination. The safety of the vaccine was tested by horizontal transmission to sentinel pigs, which remained uninfected. The vaccine efficacy was examined by challenge infection with classical swine fever virus (CSFV) Eystrup...

  12. Biological, immunological and functional properties of two novel multi-variant chimeric recombinant proteins of CSP antigens for vaccine development against Plasmodium vivax infection.

    Science.gov (United States)

    Shabani, Samaneh H; Zakeri, Sedigheh; Salmanian, Ali H; Amani, Jafar; Mehrizi, Akram A; Snounou, Georges; Nosten, François; Andolina, Chiara; Mourtazavi, Yousef; Djadid, Navid D

    2017-10-01

    The circumsporozoite protein (CSP) of the malaria parasite Plasmodium vivax is a major pre-erythrocyte vaccine candidate. The protein has a central repeat region that belongs to one of repeat families (VK210, VK247, and the P. vivax-like). In the present study, computer modelling was employed to select chimeric proteins, comprising the conserved regions and different arrangements of the repeat elements (VK210 and VK247), whose structure is similar to that of the native counterparts. DNA encoding the selected chimeras (named CS127 and CS712) were synthetically constructed based on E. coli codons, then cloned and expressed. Mouse monoclonal antibodies (mAbs; anti-Pv-210-CDC and -Pv-247-CDC), recognized the chimeric antigens in ELISA, indicating correct conformation and accessibility of the B-cell epitopes. ELISA using IgG from plasma samples collected from 221 Iranian patients with acute P. vivax showed that only 49.32% of the samples reacted to both CS127 and CS712 proteins. The dominant subclass for the two chimeras was IgG1 (48% of the positive responders, OD 492 =0.777±0.420 for CS127; 48.41% of the positive responders, OD 492 =0.862±0.423 for CS712, with no statistically significant difference P>0.05; Wilcoxon signed ranks test). Binding assays showed that both chimeric proteins bound to immobilized heparan sulphate and HepG2 hepatocyte cells in a concentration-dependent manner, saturable at 80μg/mL. Additionally, anti-CS127 and -CS712 antibodies raised in mice recognized the native protein on the surface of P. vivax sporozoite with high intensity, confirming the presence of common epitopes between the recombinant forms and the native proteins. In summary, despite structural differences at the molecular level, the expression levels of both chimeras were satisfactory, and their conformational structure retained biological function, thus supporting their potential for use in the development of vivax-based vaccine. Copyright © 2017 Elsevier Ltd. All rights

  13. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    Directory of Open Access Journals (Sweden)

    Tamborrini Marco

    2011-12-01

    Full Text Available Abstract Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal

  14. [Biological characteristics of a chimeric rabies virus expressing canine parvovirus VP2 protein].

    Science.gov (United States)

    Niu, Xue-Feng; Liu, Xiao-Hui; Sun, Zhao-Jin; Shi, He-He; Chen, Jing; Jiang, Bido; Sun, Jing-Chen; Guo, Xiao-Feng

    2009-09-01

    To obtain a bivalence vaccine against canine rabies virus and canine parvovirus, a chimeric rabies virus expressing canine parvovirus VP2 protein was generated by the technique of reverse genetics. It was shown that the chimeric virus designated as HEP-Flury (VP2) grew well on BHK-21 cells and the VP2 gene could still be stably expressed after ten passages on BHK-21 cells. Experiments on the mice immunized with the chimeric virus HEP-Flury (VP2) demonstrated that specific antibodies against rabies virus and canine parvovirus were induced in immunized mice after vaccination with the live chimeric virus.

  15. In silico prediction of monovalent and chimeric tetravalent vaccines for prevention and treatment of dengue fever.

    Science.gov (United States)

    Vijayakumar, Subramaniyan; Ramesh, Venkatachalam; Prabhu, Srinivasan; Manogar, Palani

    2017-11-01

    Reverse vaccinology method was used to predict the monovalent peptide vaccine candidate to produce antibodies for therapeutic purpose and to predict tetravalent vaccine candidate to act as a common vaccine to cover all the fever dengue virus serotypes. Envelope (E)-proteins of DENV-1-4 serotypes were used for vaccine prediction using NCBI, Uniprot/Swissprot, Swiss-prot viewer, VaxiJen V2.0, TMHMM, BCPREDS, Propred-1, Propred and MHC Pred,. E-proteins of DENV-1-4 serotypes were identified as antigen from which T cell epitopes, through B cell epitopes, were predicted to act as peptide vaccine candidates. Each selected T cell epitope of E-protein was confirmed to act as vaccine and to induce complementary antibody against particular serotype of dengue virus. Chimeric tetravalent vaccine was formed by the conjugation of four vaccines, each from four dengue serotypes to act as a common vaccine candidate for all the four dengue serotypes. It can be justifiably concluded that the monovalent 9-mer T cell epitope for each DENV serotypes can be used to produce specific antibody agaomst dengue virus and a chimeric common tetravalent vaccine candidate to yield a comparative vaccine to cover any of the four dengue virus serotype. This vaccine is expected to act as highly immunogenic against preventing dengue fever.

  16. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    International Nuclear Information System (INIS)

    Ye Ling; Sun Yuliang; Lin Jianguo; Bu Zhigao; Wu Qingyang; Jiang, Shibo; Steinhauer, David A.; Compans, Richard W.; Yang Chinglai

    2006-01-01

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV

  17. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif

    DEFF Research Database (Denmark)

    von Rosen, Tanya; Rangelova, Desislava Yordanova; Nielsen, Jens

    2014-01-01

    Live modified vaccines to protect against classical swine fever virus (CSFV), based on chimeric pestiviruses, have been developed to enable serological Differentiation of Infected from Vaccinated Animals (DIVA). In this context, the chimeric virus CP7_E2gif vaccine candidate is unique as it does...

  18. Live Zika virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone

    OpenAIRE

    Nougairede, Antoine; Klitting, Raphaelle; Aubry, Fabien; Gilles, Magali; Touret, Franck; De Lamballerie, Xavier

    2018-01-01

    Zika virus (ZIKV) recently dispersed throughout the tropics and sub-tropics causing epidemics associated with congenital disease and neurological complications. There is currently no commercial vaccine for ZIKV. Here we describe the initial development of a chimeric virus containing the prM/E proteins of a ZIKV epidemic strain incorporated into a yellow fever 17-D attenuated backbone. Using the versatile and rapid ISA (Infectious Subgenomic Amplicons) reverse genetics method, we compared diff...

  19. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone.

    Science.gov (United States)

    Li, Xiao-Feng; Dong, Hao-Long; Wang, Hong-Jiang; Huang, Xing-Yao; Qiu, Ye-Feng; Ji, Xue; Ye, Qing; Li, Chunfeng; Liu, Yang; Deng, Yong-Qiang; Jiang, Tao; Cheng, Gong; Zhang, Fu-Chun; Davidson, Andrew D; Song, Ya-Jun; Shi, Pei-Yong; Qin, Cheng-Feng

    2018-02-14

    The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.

  1. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    DEFF Research Database (Denmark)

    Tamborrini, Marco; Stoffel, Sabine A; Westerfeld, Nicole

    2011-01-01

    In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant ...... fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP....

  2. LAMP-1-chimeric DNA vaccines enhance the antibody response in Japanese flounder, Paralichthys olivaceus.

    Science.gov (United States)

    Rondón-Barragán, Iang; Nozaki, Reiko; Hirono, Ikuo; Kondo, Hidehiro

    2017-08-01

    DNA vaccination is one method to protect farmed fish from viral and bacterial diseases. Chimeric antigens encoded by DNA vaccines have been shown to increase the resistance to viral diseases. Here, we sequenced the gene encoding lysosome-associated membrane protein-1 from Japanese flounder, Paralichthys olivaceus, (JfLAMP-1) and assessed its use in a chimeric DNA vaccine fused with the major capsule protein (MCP) from red seabream iridovirus (RSIV). JfLAMP-1 cDNA has a length of 1248 bp encoding 415 aa, which contains transmembrane and cytoplasmic domains. JfLAMP-1 is constitutively expressed in several tissues and its expression in spleen was upregulated following injection of formalin-killed cells (FKC) of Edwardsiella tarda. Immunofluorescence analysis showed that JfLAMP-1 is distributed in the small and large granules in the cytoplasm and groups close to the nucleus. The DNA encoding the luminal domain of JfLAMP-1 was replaced with the gene for the RSIV MCP, and the construct was cloned in an expression vector (pCIneo). Fish vaccinated with pCLAMP-MCP had significantly higher antibody levels than fish vaccinated with pCIneo vector harboring the MCP gene (p day 30 post-vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector].

    Science.gov (United States)

    Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D

    2016-01-01

    Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.

  4. Structural characterization by NMR of a double phosphorylated chimeric peptide vaccine for treatment of Alzheimer's disease.

    Science.gov (United States)

    Ramírez-Gualito, Karla; Richter, Monique; Matzapetakis, Manolis; Singer, David; Berger, Stefan

    2013-04-26

    Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer's disease (AD) and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau₂₂₉₋₂₃₇[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B₂₄₁₋₂₅₅ originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  5. Display of neutralizing epitopes of Canine parvovirus and a T-cell epitope of the fusion protein of Canine distemper virus on chimeric tymovirus-like particles and its use as a vaccine candidate both against Canine parvo and Canine distemper.

    Science.gov (United States)

    Chandran, Dev; Shahana, Pallichera Vijayan; Rani, Gudavelli Sudha; Sugumar, Parthasarthy; Shankar, Chinchkar Ramchandra; Srinivasan, Villuppanoor Alwar

    2009-12-10

    Expression of Physalis mottle tymovirus coat protein in Escherichia coli was earlier shown to self-assemble into empty capsids that were nearly identical to the capsids formed in vivo. Amino acid substitutions were made at the N-terminus of wild-type Physalis mottle virus coat protein with neutralizing epitopes of Canine parvovirus containing the antigenic sites 1-2, 4 and 6-7 and T-cell epitope of the fusion protein of Canine distemper virus in various combinations to yield PhMV1, PhMV2, PhMV3, PhMV4 and PhMV5. These constructs were cloned and expressed in E. coli. The chimeric proteins self-assembled into chimeric tymovirus-like particles (TVLPs) as determined by electron microscopy. The TVLPs were purified by ultracentrifugation and injected into guinea pigs and dogs to determine their immunogenicity. Initial immunogenicity studies in guinea pigs indicated that PhMV3 gave a higher response in comparison to the other TVLPs for both CPV and CDV and hence all further experiments in dogs were done with PhMV3. HI was done against different isolates obtained from various parts of the country. Protective titres indicated the broad spectrum of the vaccine. In conclusion the study indicated that the above chimeric VLP based vaccine could be used in dogs to generate a protective immune response against diseases caused by both Canine parvo and Canine distemper virus.

  6. Enhanced protective efficacy of a chimeric form of the schistosomiasis vaccine antigen Sm-TSP-2.

    Directory of Open Access Journals (Sweden)

    Mark S Pearson

    Full Text Available The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1 and IgG(3 from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1, suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.

  7. Study of allosteric communications in chimeric two-domain proteins

    Czech Academy of Sciences Publication Activity Database

    Boušová, Kristýna

    2017-01-01

    Roč. 26, S1 (2017), s. 74 ISSN 0961-8368. [Annual Symposium of the Protein Society /31./. 24.07.2017-27.07.2017, Montreal] Institutional support: RVO:61388963 Keywords : protein domains * chimeric structures Subject RIV: CE - Biochemistry

  8. Protein chimerism: novel source of protein diversity in humans adds complexity to bottom-up proteomics.

    Science.gov (United States)

    Casado-Vela, Juan; Lacal, Juan Carlos; Elortza, Felix

    2013-01-01

    Three main molecular mechanisms are considered to contribute expanding the repertoire and diversity of proteins present in living organisms: first, at DNA level (gene polymorphisms and single nucleotide polymorphisms); second, at messenger RNA (pre-mRNA and mRNA) level including alternative splicing (also termed differential splicing or cis-splicing); finally, at the protein level mainly driven through PTM and specific proteolytic cleavages. Chimeric mRNAs constitute an alternative source of protein diversity, which can be generated either by chromosomal translocations or by trans-splicing events. The occurrence of chimeric mRNAs and proteins is a frequent event in cells from the immune system and cancer cells, mainly as a consequence of gene rearrangements. Recent reports support that chimeric proteins may also be expressed at low levels under normal physiological circumstances, thus, representing a novel source of protein diversity. Notably, recent publications demonstrate that chimeric protein products can be successfully identified through bottom-up proteomic analyses. Several questions remain unsolved, such as the physiological role and impact of such chimeric proteins or the potential occurrence of chimeric proteins in higher eukaryotic organisms different from humans. The occurrence of chimeric proteins certainly seems to be another unforeseen source of complexity for the proteome. It may be a process to take in mind not only when performing bottom-up proteomic analyses in cancer studies but also in general bottom-up proteomics experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chimeric microbial rhodopsins for optical activation of Gs-proteins

    Science.gov (United States)

    Yoshida, Kazuho; Yamashita, Takahiro; Sasaki, Kengo; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2017-01-01

    We previously showed that the chimeric proteins of microbial rhodopsins, such as light-driven proton pump bacteriorhodopsin (BR) and Gloeobacter rhodopsin (GR) that contain cytoplasmic loops of bovine rhodopsin, are able to activate Gt protein upon light absorption. These facts suggest similar protein structural changes in both the light-driven proton pump and animal rhodopsin. Here we report two trials to engineer chimeric rhodopsins, one for the inserted loop, and another for the microbial rhodopsin template. For the former, we successfully activated Gs protein by light through the incorporation of the cytoplasmic loop of β2-adrenergic receptor (β2AR). For the latter, we did not observe any G-protein activation for the light-driven sodium pump from Indibacter alkaliphilus (IndiR2) or a light-driven chloride pump halorhodopsin from Natronomonas pharaonis (NpHR), whereas the light-driven proton pump GR showed light-dependent G-protein activation. This fact suggests that a helix opening motion is common to G protein coupled receptor (GPCR) and GR, but not to IndiR2 and NpHR. Light-induced difference FTIR spectroscopy revealed similar structural changes between WT and the third loop chimera for each light-driven pump. A helical structural perturbation, which was largest for GR, was further enhanced in the chimera. We conclude that similar structural dynamics that occur on the cytoplasmic side of GPCR are needed to design chimeric microbial rhodopsins. PMID:29362703

  10. Chimeric L2-Based Virus-Like Particle (VLP Vaccines Targeting Cutaneous Human Papillomaviruses (HPV.

    Directory of Open Access Journals (Sweden)

    Bettina Huber

    Full Text Available Common cutaneous human papillomavirus (HPV types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas, but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa 17-36 on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross- protected against beta HPV5/20/24/38/96/16 (but not type 76, while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target

  11. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif.

    Science.gov (United States)

    von Rosen, Tanya; Rangelova, Desislava; Nielsen, Jens; Rasmussen, Thomas Bruun; Uttenthal, Åse

    2014-06-04

    Live modified vaccines to protect against classical swine fever virus (CSFV), based on chimeric pestiviruses, have been developed to enable serological Differentiation of Infected from Vaccinated Animals (DIVA). In this context, the chimeric virus CP7_E2gif vaccine candidate is unique as it does not include any CSFV components. In the present study, the DIVA vaccine properties of CP7_E2gif were evaluated in comparison to the conventional live attenuated Riemser C-strain vaccine. Sera and tonsil samples obtained from pigs immunised with these two vaccines were analysed. No viral RNA was found in serum after vaccination with CP7_E2gif, whereas some serum samples from C-strain vaccinated animals were positive. In both vaccinated groups, individual viral RNA-positive tonsil samples were detected in animals euthanised between 7 and 21 days post vaccination. Furthermore, serum samples from these animals, together with archival samples from pigs vaccinated with CP7_E2gif and subsequently CSFV challenged, were analysed for specific antibodies using ELISAs and for homologous neutralising antibodies. In animals vaccinated with CP7_E2gif, neutralising antibodies were detected from day 10. However, the sera remained negative for anti-CSFV E2-specific antibodies whereas pigs vaccinated with C-strain seroconverted against CSFV by 14 days after vaccination, as determined by a CSFV-E2 specific blocking ELISA. One week after subsequent CSFV challenge, a strong anti-CSFV E2 reaction was detected in CP7_E2gif vaccinated pigs and anti-E(rns) antibodies were detected from 10 days after infection. In conclusion, CP7_E2gif has the potential to be used as a DIVA vaccine in combination with detection of anti-CSFV E2-specific antibodies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs

    Science.gov (United States)

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South Africa...

  13. Chimeric DNA Vaccines against ErbB2{sup +} Carcinomas: From Mice to Humans

    Energy Technology Data Exchange (ETDEWEB)

    Quaglino, Elena; Riccardo, Federica; Macagno, Marco; Bandini, Silvio; Cojoca, Rodica; Ercole, Elisabetta [Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin (Italy); Amici, Augusto [Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy); Cavallo, Federica, E-mail: federica.cavallo@unito.it [2 Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy)

    2011-08-10

    DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2{sup +} carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.

  14. Incorporation of chimeric HIV-SIV-Env and modified HIV-Env proteins into HIV pseudovirions

    International Nuclear Information System (INIS)

    Devitt, Gerard; Emerson, Vanessa; Holtkotte, Denise; Pfeiffer, Tanya; Pisch, Thorsten; Bosch, Valerie

    2007-01-01

    Low level incorporation of the viral glycoprotein (Env) into human immunodeficiency virus (HIV) particles is a major drawback for vaccine strategies against HIV/AIDS in which HIV particles are used as immunogen. Within this study, we have examined two strategies aimed at achieving higher levels of Env incorporation into non-infectious pseudovirions (PVs). First, we have generated chimeric HIV/SIV Env proteins containing the truncated C-terminal tail region of simian immunodeficiency virus (SIV)mac239-Env767 stop , which mediates strongly increased incorporation of SIV-Env into SIV particles. In a second strategy, we have employed a truncated HIV-Env protein (Env-Tr752 N750K ) which we have previously demonstrated to be incorporated into HIV virions, generated in infected T-cells, to a higher level than that of Wt-HIV-Env. Although the chimeric HIV/SIV Env proteins were expressed at the cell surface and induced increased levels of cell-cell fusion in comparison to Wt-HIV-Env, they did not exhibit increased incorporation into either HIV-PVs or SIV-PVs. Only Env-Tr752 N750K exhibited significantly higher (threefold) levels of incorporation into HIV-PVs, an improvement, which, although not dramatic, is worthwhile for the large-scale preparation of non-infectious PVs for vaccine studies aimed at inducing Env humoral responses

  15. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Directory of Open Access Journals (Sweden)

    Adriana S Azevedo

    Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  16. Structural Characterization by NMR of a Double Phosphorylated Chimeric Peptide Vaccine for Treatment of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Stefan Berger

    2013-04-01

    Full Text Available Rational design of peptide vaccines becomes important for the treatment of some diseases such as Alzheimer’s disease (AD and related disorders. In this study, as part of a larger effort to explore correlations of structure and activity, we attempt to characterize the doubly phosphorylated chimeric peptide vaccine targeting a hyperphosphorylated epitope of the Tau protein. The 28-mer linear chimeric peptide consists of the double phosphorylated B cell epitope Tau229-237[pThr231/pSer235] and the immunomodulatory T cell epitope Ag85B241-255 originating from the well-known antigen Ag85B of the Mycobacterium tuberculosis, linked by a four amino acid sequence -GPSL-. NMR chemical shift analysis of our construct demonstrated that the synthesized peptide is essentially unfolded with a tendency to form a β-turn due to the linker. In conclusion, the -GPSL- unit presumably connects the two parts of the vaccine without transferring any structural information from one part to the other. Therefore, the double phosphorylated epitope of the Tau peptide is flexible and accessible.

  17. Molecularly engineered live-attenuated chimeric West Nile/dengue virus vaccines protect rhesus monkeys from West Nile virus

    International Nuclear Information System (INIS)

    Pletnev, Alexander G.; St Claire, Marisa; Elkins, Randy; Speicher, Jim; Murphy, Brian R.; Chanock, Robert M.

    2003-01-01

    Two molecularly engineered, live-attenuated West Nile virus (WN) vaccine candidates were highly attenuated and protective in rhesus monkeys. The vaccine candidates are chimeric viruses (designated WN/DEN4) bearing the membrane precursor and envelope protein genes of WN on a backbone of dengue 4 virus (DEN4) with or without a deletion of 30 nucleotides (Δ30) in the 3' noncoding region of DEN4. Viremia in WN/DEN4- infected monkeys was reduced 100-fold compared to that in WN- or DEN4-infected monkeys. WN/DEN4-3'Δ30 did not cause detectable viremia, indicating that it is even more attenuated for monkeys. These findings indicate that chimerization itself and the presence of the Δ30 mutation independently contribute to the attenuation phenotype for nonhuman primates. Despite their high level of attenuation in monkeys, the chimeras induced a moderate-to-high titer of neutralizing antibodies and prevented viremia in monkeys challenged with WN. The more attenuated vaccine candidate, WN/DEN4-3'Δ30, will be evaluated first in our initial clinical studies

  18. Chimeric OspA genes, proteins and methods of use thereof

    Science.gov (United States)

    Crowe, Brian A.; Livey, Ian; O'Rourke, Maria; Schwendinger, Michael; Dunn, John J.; Luft, Benjamin J.

    2018-02-20

    The invention relates to the development of chimeric OspA molecules for use in a new Lyme vaccine. More specifically, the chimeric OspA molecules comprise the proximal portion from one OspA serotype, together with the distal portion from another OspA serotype, while retaining antigenic properties of both of the parent polypeptides. The chimeric OspA molecules are delivered alone or in combination to provide protection against a variety of Borrelia genospecies. The invention also provides methods for administering the chimeric OspA molecules to a subject in the prevention and treatment of Lyme disease or borreliosis.

  19. Preclinical and Clinical Development of a YFV 17 D-Based Chimeric Vaccine against West Nile Virus

    Directory of Open Access Journals (Sweden)

    Gustavo H. Dayan

    2013-12-01

    Full Text Available Substantial success has been achieved in the development and implementation of West Nile (WN vaccines for horses; however, no human WN vaccines are approved. This review focuses on the construction, pre-clinical and clinical characterization of ChimeriVax-WN02 for humans, a live chimeric vaccine composed of a yellow fever (YF 17D virus in which the prM-E envelope protein genes are replaced with the corresponding genes of the WN NY99 virus. Pre-clinical studies demonstrated that ChimeriVax-WN02 was significantly less neurovirulent than YF 17D in mice and rhesus and cynomolgus monkeys. The vaccine elicited neutralizing antibody titers after inoculation in hamsters and monkeys and protected immunized animals from lethal challenge including intracerebral inoculation of high dose of WN NY99 virus. Safety, viremia and immunogenicity of ChimeriVax-WN02 were assessed in one phase I study and in two phase II clinical trials. No safety signals were detected in the three clinical trials with no remarkable differences in incidence of adverse events (AEs between vaccine and placebo recipients. Viremia was transient and the mean viremia levels were low. The vaccine elicited strong and durable neutralizing antibody and cytotoxic T cell responses. WN epidemiology impedes a classical licensure pathway; therefore, innovative licensure strategies should be explored.

  20. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein

    OpenAIRE

    Soleimani, Meysam; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    Background: Chimeric proteins consisting of a targeting moiety and a cytotoxic moiety are now under intense research focus for targeted therapy of cancer. Here, we report cloning, expression, and purification of such a targeted chimeric protein made up of p28 peptide as both targeting and anticancer moiety fused to NRC peptide as a cytotoxic moiety. However, since the antimicrobial activity of the NRC peptide would intervene expression of the chimeric protein in Escherichia coli, we evaluated...

  1. Thionin-D4E1 chimeric protein protects plants against bacterial infections

    Science.gov (United States)

    Stover, Eddie W; Gupta, Goutam; Hao, Guixia

    2017-08-08

    The generation of a chimeric protein containing a first domain encoding either a pro-thionon or thionin, a second domain encoding D4E1 or pro-D4E1, and a third domain encoding a peptide linker located between the first domain and second domain is described. Either the first domain or the second domain is located at the amino terminal of the chimeric protein and the other domain (second domain or first domain, respectively) is located at the carboxyl terminal. The chimeric protein has antibacterial activity. Genetically altered plants and their progeny expressing a polynucleotide encoding the chimeric protein resist diseases caused by bacteria.

  2. Efficacy of chimeric Pestivirus vaccine candidates against classical swine fever: protection and DIVA characteristics.

    Science.gov (United States)

    Eblé, P L; Geurts, Y; Quak, S; Moonen-Leusen, H W; Blome, S; Hofmann, M A; Koenen, F; Beer, M; Loeffen, W L A

    2013-03-23

    Currently no live DIVA (Differentiating Infected from Vaccinated Animals) vaccines against classical swine fever (CSF) are available. The aim of this study was to investigate whether chimeric pestivirus vaccine candidates (CP7_E2alf, Flc11 and Flc9) are able to protect pigs against clinical signs, and to reduce virus shedding and virus transmission, after a challenge with CSF virus (CSFV), 7 or 14 days after a single intramuscular vaccination. In these vaccine candidates, either the E2 or the E(rns) encoding genome region of a bovine viral diarrhoea virus strain were combined with a cDNA copy of CSFV or vice versa. Furthermore, currently available serological DIVA tests were evaluated. The vaccine candidates were compared to the C-strain. All vaccine candidates protected against clinical signs. No transmission to contact pigs was detected in the groups vaccinated with C-strain, CP7_E2alf and Flc11. Limited transmission occurred in the groups vaccinated with Flc9. All vaccine candidates would be suitable to stop on-going transmission of CSFV. For Flc11, no reliable differentiation was possible with the current E(rns)-based DIVA test. For CP7_E2alf, the distribution of the inhibition percentages was such that up to 5% false positive results may be obtained in a large vaccinated population. For Flc9 vaccinated pigs, the E2 ELISA performed very well, with an expected 0.04% false positive results in a large vaccinated population. Both CP7_E2alf and Flc9 are promising candidates to be used as live attenuated marker vaccines against CSF, with protection the best feature of CP7_E2alf, and the DIVA principle the best feature of Flc9. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections.

    Science.gov (United States)

    Yang, Zhenhua; Wu, Rui; Li, Robert W; Li, Ling; Xiong, Zhongliang; Zhao, Haizhong; Guo, Deyin; Pan, Zishu

    2012-04-01

    A trans-complemented chimeric CSF-JE virus replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The CSFV E2 gene was deleted, and a fragment containing the region encoding a truncated envelope protein (tE, amino acid 292-402, domain III) of JE virus (JEV) was inserted into the resultant plasmid, pA187delE2, to generate the recombinant cDNA clone pA187delE2/JEV-tE. Porcine kidney 15 (PK15) cells that constitutively express the CSFV E2p7 proteins were then transfected with in vitro-transcribed RNA from pA187delE2/JEV-tE. As a result, the chimeric CSF-JE virus replicon particle (VRP), rv187delE2/JEV-tE, was rescued. In a mouse model, immunization with the chimeric CSF-JE VRP induced strong production of JEV-specific antibody and conferred protection against a lethal JEV challenge. Pigs immunized with CSF-JE VRP displayed strong anti-CSFV and anti-JEV antibody responses and protection against CSFV and JEV challenge infections. Our evidence suggests that E2-complemented CSF-JE VRP not only has potential as a live-attenuated non-transmissible vaccine candidate against CSF and JE but also serves as a potential DIVA (Differentiating Infected from Vaccinated Animals) vaccine for CSF in pigs. Together, our data suggest that the non-transmissible chimeric VRP expressing foreign antigenic proteins may represent a promising strategy for bivalent DIVA vaccine design. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    Science.gov (United States)

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  5. Simulated digestion for testing the stability of edible vaccine based on Cucumber mosaic virus (CMV) chimeric particle display Hepatitis C virus (HCV) peptide.

    Science.gov (United States)

    Vitti, Antonella; Nuzzaci, Maria; Condelli, Valentina; Piazzolla, Pasquale

    2014-01-01

    Edible vaccines must survive digestive process and preserve the specific structure of the antigenic peptide to elicit effective immune response. The stability of a protein to digestive process can be predicted by subjecting it to the in vitro assay with simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Here, we describe the protocol of producing and using chimeric Cucumber mosaic virus (CMV) displaying Hepatitis C virus (HCV) derived peptide (R9) in double copy as an oral vaccine. Its stability after treatment with SGF and SIF and the preservation of the antigenic properties were verified by SDS-PAGE and immuno western blot techniques.

  6. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  7. Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models.

    Science.gov (United States)

    Tian, Jing-Hui; Glenn, Gregory; Flyer, David; Zhou, Bin; Liu, Ye; Sullivan, Eddie; Wu, Hua; Cummings, James F; Elllingsworth, Larry; Smith, Gale

    2017-07-24

    challenged with historical or epidemic strains of C. difficile. The use of chimeric fusion proteins is an attractive approach to producing multivalent antitoxin vaccines and therapeutic polyclonal antibodies for prevention and treatment of C. difficile infections (CDI). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease.

    Science.gov (United States)

    Wiegand, Marian Alexander; Gori-Savellini, Gianni; Gandolfo, Claudia; Papa, Guido; Kaufmann, Christine; Felder, Eva; Ginori, Alessandro; Disanto, Maria Giulia; Spina, Donatella; Cusi, Maria Grazia

    2017-05-15

    Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated. IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity

  9. Built-in adjuvanticity of genetically and protein-engineered chimeric molecules for targeting of influenza A peptide epitopes.

    Science.gov (United States)

    Kerekov, Nikola S; Ivanova, Iva I; Mihaylova, Nikolina M; Nikolova, Maria; Prechl, Jozsef; Tchorbanov, Andrey I

    2014-10-01

    Highly purified, subunit, or synthetic viral antigens are known to be weakly immunogenic and potentate only the antibody, rather than cell-mediated immune responses. An alternative approach for inducing protective immunity with small viral peptides would be the direct targeting of viral epitopes to the immunocompetent cells by DNA vaccines encoding antibody fragments specific to activating cell surface co-receptor molecules. Here, we are exploring as a new genetic vaccine, a DNA chimeric molecule encoding a T and B cell epitope-containing influenza A virus hemagglutinin peptide joined to sequences encoding a single-chain variable fragment antibody fragment specific for the costimulatory B cell complement receptors 1 and 2. This recombinant DNA molecule was inserted into eukaryotic expression vector and used as a naked DNA vaccine in WT and CR1/2 KO mice. The intramuscular administration of the DNA construct resulted in the in vivo expression of an immunogenic chimeric protein, which cross-links cell surface receptors on influenza-specific B cells. The DNA vaccination was followed by prime-boosting with the protein-engineered replica of the DNA construct, thus delivering an activation intracellular signal. Immunization with an expression vector containing the described construct and boosting with the protein chimera induced a strong anti-influenza cytotoxic response, modulation of cytokine profile, and a weak antibody response in Balb/c mice. The same immunization scheme did not result in generation of influenza-specific response in mice lacking the target receptor, underlining the molecular adjuvant effect of receptor targeting.

  10. Theoretical design of a new chimeric protein for the treatment of breast cancer

    Science.gov (United States)

    Soleimani, Meysam; Mahnam, Karim; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    p28 and NRC peptides are two anticancer peptides with various mechanisms have shown to be effective against breast cancer. Therefore, it seems that construction of a chimeric protein containing the two peptides might cause synergistic cytotoxic effects. However, since the two peptides bear opposite charges, production of a chimeric protein in which the two moieties do not intervene each other is difficult. In this study, our goal was to find a suitable peptide linker for the new chimeric protein in a manner that none of the peptides intervene the other’s function. We selected some linkers with different characteristics and lengths and created a small library of the chimeric proteins harboring these linkers. Homology modeling and molecular dynamic simulation revealed that (PA)5P and (EAAAK)3 linkers can separate the p28 and NRC peptides effectively. Thus, the chimeric protein linked with (PA)5P or (EAAAK)3 linkers might show synergistic and stronger anticancer effects than the separate peptide moieties because they could exert their cytotoxic effects freely which is not influenced by the other part. PMID:27499788

  11. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway.

    Directory of Open Access Journals (Sweden)

    Nan-Sun Kim

    Full Text Available A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1 in human dendritic cells (DCs. Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.

  12. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    Science.gov (United States)

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. A Schistosoma japonicum chimeric protein with a novel adjuvant induced a polarized Th1 immune response and protection against liver egg burdens

    Directory of Open Access Journals (Sweden)

    Xue Xiangyang

    2009-05-01

    Full Text Available Abstract Background Schitosomiasis japonica is still a significant public health problem in China. A protective vaccine for human or animal use represents an important strategy for long-term control of this disease. Due to the complex life cycle of schistosomes, different vaccine design approaches may be necessary, including polyvalent subunit vaccines. In this study, we constructed four chimeric proteins (designated SjGP-1~4 via fusion of Sj26GST and four individual paramyosin fragments. We tested these four proteins as vaccine candidates, and investigated the effect of deviating immune response on protection roles in mice. Methods The immunogencity and protection efficacy of chimeric proteins were evaluated in mice. Next, the chimeric protein SjGP-3 was selected and formulated in various adjuvants, including CFA, ISA 206, IMS 1312 and ISA 70M. The titers of antigen-specific IgG, IgE and IgG subclass were measured. The effect of adjuvant on cytokine production and percentages of CD3+CD8-IFN-γ+ cells and CD3+CD8-IL-4+ cells were analyzed at different time points. Worm burdens and liver egg counts in different adjuvant groups were counted to evaluate the protection efficacy against cercarial challenge. Results Immunization of mice with chimeric proteins provided various levels of protection. Among the four proteins, SjGP-3 induced the highest level of protection, and showed enhanced protective efficacy compared with its individual component Sj26GST. Because of this, SjGP-3 was further formulated in various adjuvants to investigate the effect of adjuvant on immune deviation. The results revealed that SjGP-3 formulated in veterinary adjuvant ISA 70M induced a lasting polarized Th1 immune response, whereas the other adjuvants, including CFA, ISA 206 and IMS 1312, generated a moderate mixed Th1/Th2 response after immunization but all except for IMS 1312 shifted to Th2 response after onset of eggs. More importantly, the SjGP-3/70M formulation induced

  14. Preparation and Characterization of a Novel Chimeric Protein VEGI-CTT in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jiping Cai

    2008-01-01

    Full Text Available Vascular endothelial cell growth inhibitor (VEGI is a recently identified antiangiogenic cytokine that belongs to the TNF superfamily, and could effectively inhibit endothelial cell proliferation and angiogenesis. Synthetic peptide CTT (CTTHWGFTLC has been found to suppress invasion and migration of both tumor and endothelial cells by potent and selective inhibition of MMP-2 and MMP-9. To prepare chimeric protein VEGI-CTT for more potent antitumor therapy, the recombinant expression vector pET-VEGI-CTT was constructed. This fusion protein was expressed in inclusion bodies in E. coli BL21 (DE3, and was refolded and purified by immobilized metal affinity chromatography using His-tag. Purified VEGI-CTT protein was characterized by proliferation assays of the endothelial cells and casein degradation assay in vitro. The results demonstrated that chimeric protein VEGI-CTT had a potent activity of antiangiogenesis through inhibiting the proliferation of endothelial cells, and could effectively reduce the activity of MMP-2 and MMP-9. The preliminarily in vivo study demonstrated that chimeric protein VEGI-CTT had more potent antitumor activity than VEGI and/or CTT peptide against CA46 human lymphoma xenografts in nude mice. Thus, these facts that are derived from the present study suggest that the chimeric protein VEGI-CTT may be used for tumor therapy in the future.

  15. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  16. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.; Li, Lixin; Piatek, Marek J.; Fang, Xiaoyun; Mansour, Hicham; Bangarusamy, Dhinoth K.; Zhu, Jian-Kang

    2011-01-01

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  17. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    Science.gov (United States)

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines.

  18. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    Science.gov (United States)

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  19. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria

    Directory of Open Access Journals (Sweden)

    José Manuel Lozano

    2017-11-01

    Full Text Available Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  20. Protein-like Nanoparticles Based on Orthogonal Self-Assembly of Chimeric Peptides.

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Namitz, Kevin E; Cosgrove, Michael S; Lund, Reidar; Dong, He

    2016-10-01

    A novel two-component self-assembling chimeric peptide is designed where two orthogonal protein folding motifs are linked side by side with precisely defined position relative to one another. The self-assembly is driven by a combination of symmetry controlled molecular packing, intermolecular interactions, and geometric constraint to limit the assembly into compact dodecameric protein nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The efficacy of chimeric vaccines constructed with PEP-1 and Ii-Key linking to a hybrid epitope from heterologous viruses.

    Science.gov (United States)

    Liu, Xue-lan; Shan, Wen-jie; Xu, Shan-shan; Zhang, Jin-jing; Xu, Fa-zhi; Xia, Sheng-lin; Dai, Yin

    2015-09-01

    The heterologous epitope-peptide from different viruses may represent an attractive candidate vaccine. In order to evaluate the role of cell-permeable peptide (PEP-1) and Ii-Key moiety from the invariant chain (Ii) of MHC on the heterologous peptide chimeras, we linked the two vehicles to hybrid epitopes on the VP2 protein (aa197-209) of the infectious bursal disease virus and HN protein (aa345-353) of the Newcastle disease virus. The chimeric vaccines were prepared and injected into mice. The immune effects were measured by indirect ELISA. The results showed that the vehicle(s) could significantly boost immune effects against the heterologous epitope peptide. The Ii-Key-only carrier induced more effective immunological responses, compared with the PEP-1 and Ii-Key hybrid vehicle. The carrier-peptide hybrids all showed strong colocalization with major histocompatibility complex (MHC) class II molecules compared with the epitope-peptide (weakly-binding) after co-transfection into 293T cells. Together, our results lay the groundwork for designing new hybrid vaccines based on Ii-Key and/or PEP-1 peptides. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  2. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

    Science.gov (United States)

    Wang, Chong; Zheng, Xuexing; Gai, Weiwei; Wong, Gary; Wang, Hualei; Jin, Hongli; Feng, Na; Zhao, Yongkun; Zhang, Weijiao; Li, Nan; Zhao, Guoxing; Li, Junfu; Yan, Jinghua; Gao, Yuwei; Hu, Guixue; Yang, Songtao; Xia, Xianzhu

    2017-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  4. Construction and biological characterization of artificial recombinants between a wild type flavivirus (Kunjin) and a live chimeric flavivirus vaccine (ChimeriVax-JE).

    Science.gov (United States)

    Pugachev, Konstantin V; Schwaiger, Julia; Brown, Nathan; Zhang, Zhen-xi; Catalan, John; Mitchell, Frederick S; Ocran, Simeon W; Rumyantsev, Alexander A; Khromykh, Alexander A; Monath, Thomas P; Guirakhoo, Farshad

    2007-09-17

    Although the theoretical concern of genetic recombination has been raised related to the use of live attenuated flavivirus vaccines [Seligman, Gould, Lancet 2004;363:2073-5], it has little foundation [e.g., Monath TP, Kanesa-Thasan N, Guirakhoo F, Pugachev K, Almond J, Lang J, et al. Vaccine 2005;23:2956-8]. To investigate biological effects of recombination between a chimeric yellow fever (YF) 17D/Japanese encephalitis (JE) vaccine virus (ChimeriVax-JE) and a wild-type flavivirus Kunjin (KUN-cDNA), the prM-E envelope protein genes were swapped between the two viruses, resulting in new YF 17D/KUN(prM-E) and KUN/JE(prM-E) chimeras. The prM-E genes are easily exchangeable between flavivirues, and thus the exchange was expected to yield the most replication-competent chimeras, while other rationally designed recombinants would be more likely to be crippled or non-viable. The new chimeras proved highly attenuated in comparison with the KUN-cDNA parent, as judged by plaque size and growth kinetics in cell culture, low viremia in hamsters, and reduced neurovirulence/neuroinvasiveness in mice. These data provide strong experimental evidence that the potential of recombinants, should they ever emerge, to cause disease or spread (compete in nature with wild-type flaviviruses) would be indeed extremely low.

  5. Computational design of chimeric protein libraries for directed evolution.

    Science.gov (United States)

    Silberg, Jonathan J; Nguyen, Peter Q; Stevenson, Taylor

    2010-01-01

    The best approach for creating libraries of functional proteins with large numbers of nondisruptive amino acid substitutions is protein recombination, in which structurally related polypeptides are swapped among homologous proteins. Unfortunately, as more distantly related proteins are recombined, the fraction of variants having a disrupted structure increases. One way to enrich the fraction of folded and potentially interesting chimeras in these libraries is to use computational algorithms to anticipate which structural elements can be swapped without disturbing the integrity of a protein's structure. Herein, we describe how the algorithm Schema uses the sequences and structures of the parent proteins recombined to predict the structural disruption of chimeras, and we outline how dynamic programming can be used to find libraries with a range of amino acid substitution levels that are enriched in variants with low Schema disruption.

  6. Efficacy of chimeric DNA vaccines encoding Eimeria tenella 5401 and chicken IFN-γ or IL-2 against coccidiosis in chickens.

    Science.gov (United States)

    Song, Xiaokai; Huang, Xinmei; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-09-01

    Chimeric DNA vaccines encoding Eimeria tenella (E. tenella) surface antigen 5401 were constructed and their efficacies against E. tenella challenge were studied. The open reading frame (ORF) of 5401 was cloned into the prokaryotic expression vector pGEX-4T2 to express the recombinant protein and the expressed recombinant protein was identified by Western blot. The ORF of 5401 and chicken cytokine gene IFN-γ or IL-2 were cloned into the eukaryotic expression vector pVAX1 consecutively to construct DNA vaccines pVAX-5401-IFN-γ, pVAX-5401-IL-2 and pVAX-5401. The expression of aim genes in vivo was detected by reverse transcription-polymerase chain reaction and Western blot. Fourteen-day-old chickens were inoculated twice at an interval of 7 days with 100 µg of plasmids pVAX-5401, pVAX-5401-IFN-γ and pVAX-5401-IL-2 or 200 µg of recombinant 5401 protein by leg intramuscular injection, respectively. Seven days after the second inoculation, all chickens except the unchallenged control group were challenged orally with 5 × 10(4) sporulated oocysts of E. tenella. Seven days after challenge, all chickens were weighted and slaughtered to determine the effects of immunization. The results showed the recombinant protein was about 90 kDa and reacted with antiserum against soluble sporozoites. The animal experiment showed that all the DNA vaccines pVAX-5401, pVAX-5401-IFN-γ or pVAX-5401-IL-2 and the recombinant 5401 protein could obviously alleviate body weight loss and cecal lesions as compared with non-vaccinated challenged control and empty vector pVAX1control. Furthermore, pVAX-5401-IFN-γ or pVAX-5401-IL-2 induced anti-coccidial index (ACI) of 180.01 or 177.24 which were significantly higher than that of pVAX-5401. The results suggested that 5401 was an effective candidate antigen for vaccine. This finding also suggested that chicken IFN-γ or IL-2 could effectively improve the efficacies of DNA vaccines against avian coccidiosis. Copyright © 2015 Elsevier

  7. A tetravalent vaccine comprising hexon-chimeric adenoviruses elicits balanced protective immunity against human adenovirus types 3, 7, 14 and 55.

    Science.gov (United States)

    Tian, Xingui; Jiang, Zaixue; Fan, Ye; Qiu, Shuyan; Zhang, Ling; Li, Xiao; Zhou, Zhichao; Liu, Tiantian; Ma, Qiang; Lu, Xiaomei; Zhong, Baimao; Zhou, Rong

    2018-04-04

    Human adenovirus (Ad) species B contains several of the most important types associated with acute respiratory diseases, Ad3, -7, -14 and -55, which often lead to severe lower respiratory tract diseases and epidemic outbreaks. However, there is currently no Ad vaccine approved for general use. The major capsid protein, hexon, is the primary determinant recognized by neutralizing antibodies (NAbs). In this study, four recombinant Ads that have the same genome sequence as Ad3 with the exception of the hexon genes, rAd3EGFP, rAd3H7, rAd3H14 and rAd3H55, were combined as a tetravalent Ad candidate vaccine against Ad3, -7, -14 and -55. The replication efficiencies of chimeric rAd3H14, rAd3H7 and rAd3H55 were similar to that of rAd3EGFP. Recombinant rAd3EGFP, rAd3H7, rAd3H14 and rAd3H55 induced high titers of NAbs against Ad3, -7, -14 and -55, respectively, which were comparable to those induced by wild-type Ads. The mixture of the four recombinant Ads in equal proportions, rAdMix, or rAdMix inactivated by β-propiolactone, induced balanced NAb responses against Ad3, -7, -14 and -55 in mice without reciprocal immunological interference. In co-culture the four recombinant Ads replicated with a similar efficiency without reciprocal inhibition, and the progeny virions may be chimeric. Purified co-culture, rAdMix-C, also elicited balanced immune responses, suggesting a simple method for multivalent vaccine production. These results indicate the possible advantage of the four Ads as a live combined vaccine. Importantly, pre-immunization with rAdMix conferred protection against Ad3, -7, -14 or -55 challenge in mice in vivo. Thus, this research provides a novel tetravalent Ad vaccine candidate against Ad3, -7, -14 and -55. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Shape-specific nanostructured protein mimics from de novo designed chimeric peptides.

    Science.gov (United States)

    Jiang, Linhai; Yang, Su; Lund, Reidar; Dong, He

    2018-01-30

    Natural proteins self-assemble into highly-ordered nanoscaled architectures to perform specific functions. The intricate functions of proteins have provided great impetus for researchers to develop strategies for designing and engineering synthetic nanostructures as protein mimics. Compared to the success in engineering fibrous protein mimetics, the design of discrete globular protein-like nanostructures has been challenging mainly due to the lack of precise control over geometric packing and intermolecular interactions among synthetic building blocks. In this contribution, we report an effective strategy to construct shape-specific nanostructures based on the self-assembly of chimeric peptides consisting of a coiled coil dimer and a collagen triple helix folding motif. Under salt-free conditions, we showed spontaneous self-assembly of the chimeric peptides into monodisperse, trigonal bipyramidal-like nanoparticles with precise control over the stoichiometry of two folding motifs and the geometrical arrangements relative to one another. Three coiled coil dimers are interdigitated on the equatorial plane while the two collagen triple helices are located in the axial position, perpendicular to the coiled coil plane. A detailed molecular model was proposed and further validated by small angle X-ray scattering experiments and molecular dynamics (MD) simulation. The results from this study indicated that the molecular folding of each motif within the chimeric peptides and their geometric packing played important roles in the formation of discrete protein-like nanoparticles. The peptide design and self-assembly mechanism may open up new routes for the construction of highly organized, discrete self-assembling protein-like nanostructures with greater levels of control over assembly accuracy.

  9. The live attenuated chimeric vaccine rWN/DEN4Δ30 is well-tolerated and immunogenic in healthy flavivirus-naïve adult volunteers.

    Science.gov (United States)

    Durbin, Anna P; Wright, Peter F; Cox, Amber; Kagucia, Wangeci; Elwood, Daniel; Henderson, Susan; Wanionek, Kimberli; Speicher, Jim; Whitehead, Stephen S; Pletnev, Alexander G

    2013-11-19

    WNV has become the leading vector-borne cause of meningoencephalitis in the United States. Although the majority of WNV infections result in asymptomatic illness, approximately 20% of infections result in West Nile fever and 1% in West Nile neuroinvasive disease (WNND), which causes encephalitis, meningitis, or flaccid paralysis. The elderly are at particular risk for WNND, with more than half the cases occurring in persons older than sixty years of age. There is no licensed treatment for WNND, nor is there any licensed vaccine for humans for the prevention of WNV infection. The Laboratory of Infectious Diseases at the National Institutes of Health has developed a recombinant live attenuated WNV vaccine based on chimerization of the wild-type WNV NY99 genome with that of the live attenuated DENV-4 candidate vaccine rDEN4Δ30. The genes encoding the prM and envelope proteins of DENV-4 were replaced with those of WNV NY99 and the resultant virus was designated rWN/DEN4Δ30. The vaccine was evaluated in healthy flavivirus-naïve adult volunteers age 18-50 years in two separate studies, both of which are reported here. The first study evaluated 10³ or 10⁴ PFU of the vaccine given as a single dose; the second study evaluated 10⁵ PFU of the vaccine given as two doses 6 months apart. The vaccine was well-tolerated and immunogenic at all three doses, inducing seroconversion to WNV NY99 in 74% (10³ PFU), 75% (10⁴ PFU), and 55% (10⁵ PFU) of subjects after a single dose. A second 10⁵ PFU dose of rWN/DEN4Δ30 given 6 months after the first dose increased the seroconversion rate 89%. Based on the encouraging results from these studies, further evaluation of the candidate vaccine in adults older than 50 years of age is planned. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry

    NARCIS (Netherlands)

    Witte, Martin D.; Theile, Christopher S.; Wu, Tongfei; Guimaraes, Carla P.; Blom, Annet E. M.; Ploegh, Hidde L.

    Chimeric proteins, including bispecific antibodies, are biological tools with therapeutic applications. Genetic fusion and ligation methods allow the creation of N-to-C and C-to-N fused recombinant proteins, but not unnaturally linked N-to-N and C-to-C fusion proteins. This protocol describes a

  11. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    Science.gov (United States)

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  12. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection

    Science.gov (United States)

    Gonçalves de Assis, Natan Raimundo; Batistoni de Morais, Suellen; Figueiredo, Bárbara Castro Pimentel; Ricci, Natasha Delaqua; de Almeida, Leonardo Augusto; da Silva Pinheiro, Carina; Martins, Vicente de Paulo; Oliveira, Sergio Costa

    2015-01-01

    Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2) are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed. PMID:25942636

  13. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection.

    Directory of Open Access Journals (Sweden)

    Natan Raimundo Gonçalves de Assis

    Full Text Available Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2 are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed.

  14. A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types.

    Directory of Open Access Journals (Sweden)

    Bettina Huber

    Full Text Available Persistent infection with oncogenic human papillomaviruses (HPV types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC, a subset of cervical cancer (CxC. Although the incidence of cervical squamous cell carcinoma (SCC has dramatically decreased following introduction of Papanicolaou (PAP screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent HPV vaccines comprise virus-like particles (VLP of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7 includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18 targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1 of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1. Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent

  15. Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15.

    Science.gov (United States)

    Ochoa, Maria Carmen; Minute, Luna; López, Ascensión; Pérez-Ruiz, Elisabeth; Gomar, Celia; Vasquez, Marcos; Inoges, Susana; Etxeberria, Iñaki; Rodriguez, Inmaculada; Garasa, Saray; Mayer, Jan-Peter Andreas; Wirtz, Peter; Melero, Ignacio; Berraondo, Pedro

    2018-01-01

    Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8 + T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8 + T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo . The EGFR + human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2 -/- γc -/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1 -/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.

  16. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  17. Chimeric avian paramyxovirus-based vector immunization against highly pathogenic avian influenza followed by conventional Newcastle disease vaccination eliminates lack of protection from virulent ND virus

    Directory of Open Access Journals (Sweden)

    C. Steglich

    2014-01-01

    Full Text Available Recently, we described a chimeric, hemagglutinin of highly pathogenic avian influenza virus (HPAIV H5 expressing Newcastle disease virus (NDV-based vector vaccine (chNDVFHNPMV8H5 in which NDV envelope glycoproteins were replaced by those of avian paramyxovirus-8 (APMV-8. This chimeric vaccine induced solid protection against lethal HPAIV H5N1 even in chickens with maternal antibodies against NDV (MDA+. However, due to the absence of the major NDV immunogens it failed to induce protection against Newcastle disease (ND. Here, we report on protection of MDA+ chickens against HPAI H5N1 and ND, by vaccination with chNDVFHNPMV8H5 either on day 1 or day seven after hatch, and subsequent immunization with live attenuated NDV seven days later. Vaccination was well tolerated and three weeks after immunization, challenge infections with highly pathogenic NDV as well as HPAIV H5N1 were carried out. All animals remained healthy without exhibiting any clinical signs, whereas non-vaccinated animals showed morbidity and mortality. Therefore, vaccination with chNDVFHNPMV8H5 can be followed by NDV vaccination to protect chickens from HPAIV as well as NDV, indicating that the antibody response against chNDVFHNPMV8H5 does not interfere with live ND vaccination.

  18. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    Science.gov (United States)

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  19. Expression, purification and characterization of the recombinant chimeric IgE Fc-fragment opossum-human-opossum (OSO), an active immunotherapeutic vaccine component.

    Science.gov (United States)

    Xu, Bingze; Lundgren, Mats; Magnusson, Ann-Christine; Fuentes, Alexis

    2010-11-01

    The active vaccine component recombinant chimeric IgE Fc-fragment opossum-human-opossum (OSO) has been expressed in CHO-K1 cells. It contains two identical polypeptide chains with 338 amino acid residues in each chain connected by two disulfide bridges. The cell lines were adapted to suspension culture in a serum-free medium. An expression level of 60 mg/L was obtained after 8 days in a shaking flask at a temperature of 31.5 degrees C. The OSO protein has been purified to homogeneity by a combination of three chromatographic steps. Virus inactivation and reduction by solvent detergent treatment and nano-filtration were included in the process. The residual host cell protein content was less than 50 ng/mg OSO as analyzed by ELISA. Purity was analyzed by SDS-PAGE under reducing and non-reducing conditions and was estimated by densitometry to be above 99.0%. The dimer content was less than 0.1% as estimated by analytical size exclusion chromatography. The molecular mass, as estimated by SDS-PAGE, is 90 kDa. A value of around 74 kDa was calculated from its amino acid composition. This indicates that the protein is heavily glycosylated containing around 18% carbohydrate. Isoelectric focusing in polyacrylamide gel disclosed a ladder type band pattern with pI values in the pH-range 7.0-8.3, indicating a variation in the sialic acid content. The OSO protein is not stable at temperatures above 40 degrees C and at pH values below 4 indicating that virus inactivation by incubating the protein solution at higher temperature or at lower pH is not possible. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Crystal Structures of Yeast-Produced Enterovirus 71 and Enterovirus 71/Coxsackievirus A16 Chimeric Virus-Like Particles Provide the Structural Basis for Novel Vaccine Design against Hand-Foot-and-Mouth Disease.

    Science.gov (United States)

    Lyu, Ke; He, Ya-Ling; Li, Hao-Yang; Chen, Rong

    2015-06-01

    Human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the two major causative agents for hand-foot-and-mouth disease (HFMD). Previously, we demonstrated that a virus-like particle (VLP) for EV71 produced from Saccharomyces cerevisiae is a potential vaccine candidate against EV71 infection, and an EV71/CVA16 chimeric VLP can elicit protective immune responses against both virus infections. Here, we presented the crystal structures of both VLPs, showing that both the linear and conformational neutralization epitopes identified in EV71 are mostly preserved on both VLPs. The replacement of only 4 residues in the VP1 GH loop converted strongly negatively charged surface patches formed by portions of the SP70 epitope in EV71 VLP into a relatively neutral surface in the chimeric VLP, which likely accounted for the additional neutralization capability of the chimeric VLP against CVA16 infection. Such local variations in the amino acid sequences and the surface charge potential are also present in different types of polioviruses. In comparison to EV71 VLP, the chimeric VLP exhibits structural changes at the local site of amino acid replacement and the surface loops of all capsid proteins. This is consistent with the observation that the VP1 GH loop located near the pseudo-3-fold junction is involved in extensive interactions with other capsid regions. Furthermore, portions of VP0 and VP1 in EV71 VLP are at least transiently exposed, revealing the structural flexibility of the VLP. Together, our structural analysis provided insights into the structural basis of enterovirus neutralization and novel vaccine design against HFMD and other enterovirus-associated diseases. Our previous studies demonstrated that the enterovirus 71 (EV71) virus-like particle (VLP) produced from yeast is a vaccine candidate against EV71 infection and that a chimeric EV71/coxsackievirus A16 (CVA16) VLP with the replacement of 4 amino acids in the VP1 GH loop can confer protection against both

  1. Once for All: A Novel Robust System for Co-expression of Multiple Chimeric Fluorescent Fusion Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Guitao Zhong

    2017-06-01

    Full Text Available Chimeric fluorescent fusion proteins have been employed as a powerful tool to reveal the subcellular localizations and dynamics of proteins in living cells. Co-expression of a fluorescent fusion protein with well-known organelle markers in the same cell is especially useful in revealing its spatial and temporal functions of the protein in question. However, the conventional methods for co-expressing multiple fluorescent tagged proteins in plants have the drawbacks of low expression efficiency, variations in the expression level and time-consuming genetic crossing. Here, we have developed a novel robust system that allows for high-efficient co-expression of multiple chimeric fluorescent fusion proteins in plants in a time-saving fashion. This system takes advantage of employing a single expression vector which consists of multiple semi-independent expressing cassettes for the protein co-expression thereby overcoming the limitations of using multiple independent expressing plasmids. In addition, it is a highly manipulable DNA assembly system, in which modification and recombination of DNA molecules are easily achieved through an optimized one-step assembly reaction. By employing this effective system, we demonstrated that co-expression of two chimeric fluorescent fusion reporter proteins of vacuolar sorting receptor and secretory carrier membrane protein gave rise to their perspective subcellular localizations in plants via both transient expression and stable transformation. Thus, we believed that this technical advance represents a promising approach for multi-color-protein co-expression in plant cells.

  2. Utilisation of Chimeric Lyssaviruses to Assess Vaccine Protection against Highly Divergent Lyssaviruses

    Directory of Open Access Journals (Sweden)

    Jennifer S. Evans

    2018-03-01

    Full Text Available Lyssaviruses constitute a diverse range of viruses with the ability to cause fatal encephalitis known as rabies. Existing human rabies vaccines and post exposure prophylaxes (PEP are based on inactivated preparations of, and neutralising antibody preparations directed against, classical rabies viruses, respectively. Whilst these prophylaxes are highly efficient at neutralising and preventing a productive infection with rabies virus, their ability to neutralise other lyssaviruses is thought to be limited. The remaining 15 virus species within the lyssavirus genus have been divided into at least three phylogroups that generally predict vaccine protection. Existing rabies vaccines afford protection against phylogroup I viruses but offer little to no protection against phylogroup II and III viruses. As such, work involving sharps with phylogroup II and III must be considered of high risk as no PEP is thought to have any effect on the prevention of a productive infection with these lyssaviruses. Whilst rabies virus itself has been characterised in a number of different animal models, data on the remaining lyssaviruses are scarce. As the lyssavirus glycoprotein is considered to be the sole target of neutralising antibodies we generated a vaccine strain of rabies using reverse genetics expressing highly divergent glycoproteins of West Caucasian Bat lyssavirus and Ikoma lyssavirus. Using these recombinants, we propose that recombinant vaccine strain derived lyssaviruses containing heterologous glycoproteins may be a suitable surrogate for wildtype viruses when assessing vaccine protection for the lyssaviruses.

  3. Chimeric infectious DNA clones, chimeric porcine circoviruses and uses thereof

    OpenAIRE

    2011-01-01

    The present invention relates to infectious DNA clones, infectious chimeric DNA clones of porcine circovirus (PCV), vaccines and means of protecting pigs against viral infection or postweaning multisystemic wasting syndrome (PMWS) caused by PCV2. The new chimeric infectious DNA clone and its derived, avirulent chimeric virus are constructed from the nonpathogenic PCV1 in which the immunogenic ORF gene of the pathogenic PCV2 replaces a gene of the nonpathogenic PCV1, preferably in the same pos...

  4. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Yamamoto, Yoko

    2016-07-01

    TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. HUMAN PAPILLOMA VIRUS IMMUNOGEN CREATION ON THE BASE OF CHIMERIC RECOMBINANT PROTEIN L2E7

    Directory of Open Access Journals (Sweden)

    I. S. Malakhov

    2016-01-01

    Full Text Available The cervical cancer is one of the most common diseases in world. This malignancy is the seventh highest prevalence oncological disease worldwide and the second highest prevalence oncological disease of women in the world. Meanwhile women need to be infected by human papilloma virus (HPV is absolutely necessary for it further evolution, HPV DNA was found in 99.97% cases of disease. Except cervical cancer, HPV cause 85% of rectal cancer, 50% of the vulva, vagina and penis cancers, 20% of oropharyngeal cancer and 10% of larynx and esophagus cancers. In 2009, 14 000 women were diagnosed with cervical cancer in Russia. The growth in morbidity was 19% (in comparison with 1999. The most effective recognised measure for almost each infection prophylaxis is a vaccination. Two human papilloma virus vaccines are available in Russia nowadays — Gardasil and Cervarix, produced in Belgium and the Netherlands respectively. Cervarix is a bivalent vaccine based on virus-like particles (VLP of two types. Recombinant major capsid proteins L1 HPV 16 and HPV 18 express in baculovirus expression system and self-assembled into virus-like particles (about 70 percent of cervical cancers are caused by HPV 16 and HPV 18. VLP of each strain produced in different baculovirus vectors and then combined in single drug. Gardasil is like Cervarix with few exceptions. Producing organisms are fungi S. cerevisiae in this case, and this vaccine contains low-risk HPV 6 and HPV 11 VLP. Thus, Gardasil is quadrivalent HPV-6/11/16/18 vaccine. These vaccines are very effective in averting infection of disease and don’t have significant side-effects, however they have some disadvantages. Firstly, they have a high price because of necessity of their expression in eukaryotic cells. Secondly, they are strain-specific, so vaccines are completely effective only for virus’s strains which are represented in the vaccine. Thirdly, it`s the absence of therapeutic (treatment of established

  6. In-silico design, expression, and purification of novel chimeric Escherichia coli O157:H7 OmpA fused to LTB protein in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Aytak Novinrooz

    Full Text Available E. coli O157:H7, one of the major EHEC serotypes, is capable of developing bloody diarrhea, hemorrhagic colitis (HC, and fatal hemolytic uremic syndrome (HUS and is accompanied by high annual economic loss worldwide. Due to the increased risk of HC and HUS development following antibiotic therapy, the prevention of infections caused by this pathogen is considered to be one of the most effective ways of avoiding the consequences of this infection. The main aim of the present study was to design, express, and purify a novel chimeric protein to develope human vaccine candidate against E. coli O157:H7 containing loop 2-4 of E. coli O157:H7, outer membrane protein A (OmpA, and B subunit of E. coli heat labile enterotoxin (LTB which are connected by a flexible peptide linker. Several online databases and bioinformatics software were utilized to choose the peptide linker among 537 analyzed linkers, design the chimeric protein, and optimize the codon of the relative gene encoding this protein. Subsequently, the recombinant gene encoding OmpA-LTB was synthesized and cloned into pET-24a (+ expression vector and transferred to E. coli BL21(DE3 cells. The expression of OmpA-LTB chimeric protein was then carried out by induction of cultured E. coli Bl21 (DE3 cells with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG. The purification of OmpA-LTB was then performed by nickel affinity chromatography. Expression and purification were analyzed by sodium dodecyl sulphate poly acrylamide gel electrophoresis. Moreover, the identity of the expressed protein was analyzed by western blotting. SDS-PAGE and western immunoblotting confirmed the successful expression of a 27 KDa recombinant protein after 24 hours at 37°C post-IPTG induction. OmpA-LTB was then successfully purified, using nickel affinity chromatography under denaturing conditions. The yield of purification was 12 mg per liter of culture media. Ultimately, we constructed the successful design and efficient

  7. A chimeric peptide of intestinal trefoil factor containing cholesteryl ester transfer protein B cell epitope significantly inhibits atherosclerosis in rabbits after oral administration.

    Science.gov (United States)

    Qi, Gaofu; Li, Jingjing; Wang, Shengying; Xin, Shanshan; Du, Peng; Zhang, Qingye; Zhao, Xiuyun

    2011-04-01

    Vaccination against cholesteryl ester transfer protein (CETP) is proven to be effective for inhibiting atherosclerosis in animal models. In this study, the proteases-resistant intestinal trefoil factor (TFF3) was used as a molecular vehicle to construct chimeric TFF3 (cTFF3) containing CETP B cell epitope and tetanus toxin helper T cell epitope. It was found that cTFF3 still preserved a trefoil structure, and can resist proteases digestion in vitro. After oral immunization with cTFF3, the CETP-specific IgA and IgG could be found in intestine lavage fluid and serum, and the anti-CETP antibodies could inhibit partial CETP activity to increase high-density lipoprotein cholesterol, decrease low-density lipoprotein cholesterol, and inhibit atherosclerosis in animals. Therefore, TFF3 is a potential molecular vehicle for developing oral peptide vaccines. Our research highlights a novel strategy for developing oral peptide vaccines in the future. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    International Nuclear Information System (INIS)

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P.

    1991-01-01

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with [ 3 H]glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Galβ1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked α1-6 to the asparagine-linked N-acetylglucosamine

  9. Production and evaluation of a recombinant chimeric vaccine against clostridium botulinum neurotoxin types C and D.

    Directory of Open Access Journals (Sweden)

    Luciana A F Gil

    Full Text Available Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (HC are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB, a strong adjuvant of the humoral immune response, fused to the HC of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH3 developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH3 developed a protective immune response against both BoNT/C (5 IU/mL and BoNT/D (10 IU/mL, as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH3. Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle.

  10. Characterization of hepatitis C virus recombinants with chimeric E1/E2 envelope proteins and identification of single amino acids in the E2 stem region important for entry

    DEFF Research Database (Denmark)

    Carlsen, Thomas H R; Scheel, Troels K H; Ramirez, Santseharay

    2013-01-01

    The hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a....../release. Studies of E1/E2 heterodimerization showed no differences in intracellular E1/E2 interaction for chimeric constructs with or without E2 stem region mutations. Interestingly, the E2 stem region mutations allowed efficient entry, which was verified in 1a-E1/1b-E2 HCV pseudoparticle assays. A CD81 inhibition...

  11. A novel self-replicating chimeric lentivirus-like particle.

    Science.gov (United States)

    Jurgens, Christy K; Young, Kelly R; Madden, Victoria J; Johnson, Philip R; Johnston, Robert E

    2012-01-01

    Successful live attenuated vaccines mimic natural exposure to pathogens without causing disease and have been successful against several viruses. However, safety concerns prevent the development of attenuated human immunodeficiency virus (HIV) as a vaccine candidate. If a safe, replicating virus vaccine could be developed, it might have the potential to offer significant protection against HIV infection and disease. Described here is the development of a novel self-replicating chimeric virus vaccine candidate that is designed to provide natural exposure to a lentivirus-like particle and to incorporate the properties of a live attenuated virus vaccine without the inherent safety issues associated with attenuated lentiviruses. The genome from the alphavirus Venezuelan equine encephalitis virus (VEE) was modified to express SHIV89.6P genes encoding the structural proteins Gag and Env. Expression of Gag and Env from VEE RNA in primate cells led to the assembly of particles that morphologically and functionally resembled lentivirus virions and that incorporated alphavirus RNA. Infection of CD4⁺ cells with chimeric lentivirus-like particles was specific and productive, resulting in RNA replication, expression of Gag and Env, and generation of progeny chimeric particles. Further genome modifications designed to enhance encapsidation of the chimeric virus genome and to express an attenuated simian immunodeficiency virus (SIV) protease for particle maturation improved the ability of chimeric lentivirus-like particles to propagate in cell culture. This study provides proof of concept for the feasibility of creating chimeric virus genomes that express lentivirus structural proteins and assemble into infectious particles for presentation of lentivirus immunogens in their native and functional conformation.

  12. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus.

    Science.gov (United States)

    Zhu, Shaomei; Li, Tingting; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre; Li, Chengyao

    2016-09-15

    A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection

  13. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    Science.gov (United States)

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  14. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels.

    Science.gov (United States)

    Yu, Gui Mei; Zu, Shu Long; Zhou, Wei Wei; Wang, Xi Jun; Shuai, Lei; Wang, Xue Lian; Ge, Jin Ying; Bu, Zhi Gao

    2017-08-31

    Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.

  15. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    Science.gov (United States)

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  16. Accuracy of chimeric proteins in the serological diagnosis of chronic chagas disease - a Phase II study.

    Directory of Open Access Journals (Sweden)

    Fred Luciano Neves Santos

    2017-03-01

    Full Text Available The performance of current serologic tests for diagnosing chronic Chagas disease (CD is highly variable. The search for new diagnostic markers has been a constant challenge for improving accuracy and reducing the number of inconclusive results.Here, four chimeric proteins (IBMP-8.1 to -8.4 comprising immunodominant regions of different Trypanosoma cruzi antigens were tested by enzyme-linked immunosorbent assay. The proteins were used to detect specific anti-T. cruzi antibodies in the sera of 857 chagasic and 689 non-chagasic individuals to evaluate their accuracy for chronic CD diagnosis. The antigens were recombinantly expressed in Escherichia coli and purified by chromatographic methods. The sensitivity and specificity values ranged from 94.3% to 99.3% and 99.4% to 100%, respectively. The diagnostic odds ratio (DOR values were 6,462 for IBMP-8.1, 3,807 for IBMP-8.2, 32,095 for IBMP-8.3, and 283,714 for IBMP-8.4. These chimeric antigens presented DORs that were higher than the commercial test Pathozyme Chagas. The antigens IBMP-8.3 and -8.4 also showed DORs higher than the Gold ELISA Chagas test. Mixtures with equimolar concentrations were tested in order to improve the diagnosis accuracy of negative samples with high signal and positive samples with low signal. However, no gain in accuracy was observed relative to the individual antigens. A total of 1,079 additional sera were used to test cross-reactivity to unrelated diseases. The cross-reactivity rates ranged from 0.37% to 0.74% even for Leishmania spp., a pathogen showing relatively high genome sequence identity to T. cruzi. Imprecision analyses showed that IBMP chimeras are very stable and the results are highly reproducible.Our findings indicate that the IBMP-8.4 antigen can be safely used in serological tests for T. cruzi screening in blood banks and for chronic CD laboratory diagnosis.

  17. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry.

    Science.gov (United States)

    Witte, Martin D; Theile, Christopher S; Wu, Tongfei; Guimaraes, Carla P; Blom, Annet E M; Ploegh, Hidde L

    2013-09-01

    Chimeric proteins, including bispecific antibodies, are biological tools with therapeutic applications. Genetic fusion and ligation methods allow the creation of N-to-C and C-to-N fused recombinant proteins, but not unnaturally linked N-to-N and C-to-C fusion proteins. This protocol describes a simple procedure for the production of such chimeric proteins, starting from correctly folded proteins and readily available peptides. By equipping the N terminus or C terminus of the proteins of interest with a set of click handles using sortase A, followed by a strain-promoted click reaction, unnatural N-to-N and C-to-C linked (hetero) fusion proteins are established. Examples of proteins that have been conjugated via this method include interleukin-2, interferon-α, ubiquitin, antibodies and several single-domain antibodies. If the peptides, sortase A and the proteins of interest are in hand, the unnaturally N-to-N and C-to-C fused proteins can be obtained in 3-4 d.

  18. Thermostability of Multidomain Proteins: Elongation Factors EF-Tu from Escherichia coli and Bacillus stearothermophilus and Their Chimeric Forms

    Czech Academy of Sciences Publication Activity Database

    Šanderová, Hana; Hůlková, Marta; Maloň, Petr; Kepková, M.; Jonák, Jiří

    2004-01-01

    Roč. 13, č. 1 (2004), s. 89-99 ISSN 0961-8368 R&D Projects: GA AV ČR IPP1050128; GA ČR GA204/98/0863; GA ČR GA303/02/0689 Institutional research plan: CEZ:AV0Z4055905; CEZ:AV0Z5052915 Keywords : elongation factor EF-Tu, thermostability, chimeric protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.116, year: 2004

  19. Glutamine domain of the chimeric protein, CAD, that initiates pyrimidine biosynthesis in mammalian cells

    International Nuclear Information System (INIS)

    Kelly, R.E.; Kim, H.; Evans, D.R.

    1986-01-01

    Glutamine dependent carbamyl phosphate synthesis, the first step in mammalian de novo pyrimidine biosynthesis, is catalyzed by a 240 kDa chimeric protein, CAD, that also has the aspartate transcarbamylase and dihydroorotase activities. The complex was found to have a separate glutaminase activity of 0.04 μmol/min/mg, that increased five fold in the presence of bicarbonate and ATP. To determine whether the glutaminase activity, which provides ammonia for carbamyl phosphate synthesis, is associated with a separate structural domain (GLN), CAD was subjected to controlled proteolysis with elastase. The glutaminase, glutamine and ammonia dependent carbamyl phosphate synthetase activities, as well as the partial reactions; carbamyl phosphate dependent ATP synthesis and bicarbonate dependent ATPase, were correlated with the concentration of the various proteolytic fragments that accumulated in the digest. While the glutamine dependent carbamyl phosphate synthetase was rapidly inactivated, the glutaminase activity was found to be very resistant to proteolysis. The glutamine binding site of CAD was also specifically modified with 6-diazo-5-oxo-L-norleucine (DON). The modification was accompanied by a loss of both glutaminase and glutamine dependent carbamyl phosphate synthetase activities. Bicarbonate and ATP increased the rate of reaction of CAD with DON, while glutamine protected against inactivation. The stoichiometry of the reaction and the identity of the modified proteolytic fragments was determined using 14 C labelled DON

  20. Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus.

    Science.gov (United States)

    Lv, Lishan; Li, Xiaoming; Liu, Genmei; Li, Ran; Liu, Qiliang; Shen, Huifang; Wang, Wei; Xue, Chunyi; Cao, Yongchang

    2014-01-01

    Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection.

  1. Alga-Produced Cholera Toxin-Pfs25 Fusion Proteins as Oral Vaccines

    Science.gov (United States)

    Gregory, James A.; Topol, Aaron B.; Doerner, David Z.

    2013-01-01

    Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy. PMID:23603678

  2. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    Science.gov (United States)

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  3. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    International Nuclear Information System (INIS)

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-01-01

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  4. Reduction of porcine circovirus type 2 (PCV2 viremia by a reformulated inactivated chimeric PCV1-2 vaccine-induced humoral and cellular immunity after experimental PCV2 challenge

    Directory of Open Access Journals (Sweden)

    Seo Hwi

    2012-10-01

    Full Text Available Abstract Background The objective of the present study was to elucidate the humoral and cellular immune response mechanisms by which a reformulated inactivated chimeric PCV1-2 vaccine reduces the PCV2 viremia. Forty PCV2 seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (T01, vaccinated non-challenged (T02, non-vaccinated challenged (T03, and non-vaccinated non-challenged (T04 animals. The pigs in groups T01 and T02 were immunized with a reformulated inactivated chimeric PCV1-2 vaccine (Fostera™ PCV; Pfizer Animal Health administered as a 2.0 ml dose at 21 days of age. At 35 days of age (0 days post-challenge, the pigs in groups T01 and T03 were inoculated intranasally with 2 ml each of PCV2b. Results A reduction of PCV2 viremia coincided with the appearance of both PCV2-specific neutralizing antibodies (NA and interferon-γ-secreting cells (IFN-γ-SCs in the vaccinated animals. However, the presence of anti-PCV2 IgG antibodies did not correlate with the reduction of PCV2 viremia. Lymphocyte subset analysis indicated that the numbers of CD3+ and CD4+ cells increased in vaccinated animals but the numbers of CD4+ cells decreased transiently in non-vaccinated animals. The observation of a delayed type hypersensitivity response in only the vaccinated animals also supports a CD4+ cell-associated protective cellular immune response induced by the reformulated inactivated chimeric PCV1-2 vaccine. Conclusions The induction of PCV2-specific NA and IFN-γ-SCs, and CD4+ cells by the reformulated inactivated chimeric PCV1-2 vaccine is the important protective immune response leading to reduction of the PCV2 viremia and control of the PCV2 infection. To our knowledge this is the first demonstration of protective humoral and cellular immunity induced by the reformulated inactivated chimeric PCV1-2 vaccine and its effect on reduction of PCV2 viremia by vaccination.

  5. RNA-guided Transcriptional Regulation in Plants via dCas9 Chimeric Proteins

    KAUST Repository

    Baazim, Hatoon

    2014-05-01

    Developing targeted genome regulation approaches holds much promise for accelerating trait discovery and development in agricultural biotechnology. Clustered Regularly Interspaced Palindromic Repeats (CRISPRs)/CRISPR associated (Cas) system provides bacteria and archaea with an adaptive molecular immunity mechanism against invading nucleic acids through phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing purposes across a variety of cell types and organisms. Recently, the catalytically inactive Cas9 (dCas9) protein combined with guide RNAs (gRNAs) were used as a DNA-targeting platform to modulate the expression patterns in bacterial, yeast and human cells. Here, we employed this DNA-targeting system for targeted transcriptional regulation in planta by developing chimeric dCas9-based activators and repressors. For example, we fused to the C-terminus of dCas9 with the activation domains of EDLL and TAL effectors, respectively, to generate transcriptional activators, and the SRDX repression domain to generate transcriptional repressor. Our data demonstrate that the dCas9:EDLL and dCas9:TAD activators, guided by gRNAs complementary to promoter elements, induce strong transcriptional activation on episomal targets in plant cells. Moreover, our data suggest that the dCas9:SRDX repressor and the dCas9:EDLL and dCas9:TAD activators are capable of markedly repressing or activating, respectively, the transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9:TFs DNA targeting system can be used in plants as a functional genomic tool and for biotechnological applications.

  6. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    International Nuclear Information System (INIS)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  7. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials.

    Science.gov (United States)

    Pichichero, Michael E

    2013-12-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products.

  8. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome

    International Nuclear Information System (INIS)

    Engel, Amber R.; Rumyantsev, Alexander A.; Maximova, Olga A.; Speicher, James M.; Heiss, Brian; Murphy, Brian R.; Pletnev, Alexander G.

    2010-01-01

    Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E 315 ) and NS5 (NS5 654,655 ) proteins, and into the 3' non-coding region (Δ30) of TBEV/DEN4. The variant that contained all three mutations (vΔ30/E 315 /NS5 654,655 ) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that vΔ30/E 315 /NS5 654,655 should be further evaluated as a TBEV vaccine.

  9. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    National Research Council Canada - National Science Library

    Rohrbough, James G

    2007-01-01

    Presented in this dissertation are proteomic analysis studies focused on identifying proteins to be used as vaccine candidates against Coccidioidomycosis, a potentially fatal human pulmonary disease...

  10. Concomitant or sequential administration of live attenuated Japanese encephalitis chimeric virus vaccine and yellow fever 17D vaccine: randomized double-blind phase II evaluation of safety and immunogenicity.

    Science.gov (United States)

    Nasveld, Peter E; Marjason, Joanne; Bennett, Sonya; Aaskov, John; Elliott, Suzanne; McCarthy, Karen; Kanesa-Thasan, Niranjan; Feroldi, Emmanuel; Reid, Mark

    2010-11-01

    A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever vaccine (YF-17D strain; Stamaril®, Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.

  11. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era

    Directory of Open Access Journals (Sweden)

    Koollawat Chupradit

    2017-09-01

    Full Text Available Human immunodeficiency virus (HIV is a causative agent of acquired immune deficiency syndrome (AIDS. Highly active antiretroviral therapy (HAART can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.

  12. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Maryam Yazdanian

    2015-01-01

    Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine immunization.

  13. The B7-1 cytoplasmic tail enhances intracellular transport and mammalian cell surface display of chimeric proteins in the absence of a linear ER export motif.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Lin

    Full Text Available Membrane-tethered proteins (mammalian surface display are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells.

  14. Safety issues from a Phase 3 clinical trial of a live-attenuated chimeric yellow fever tetravalent dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B

    2018-02-26

    A tetravalent live-attenuated 3-dose vaccine composed of chimeras of yellow fever 17D and the four dengue viruses (CYD, also called Dengvaxia) completed phase 3 clinical testing in over 35,000 children leading to a recommendation that vaccine be administered to >/ = 9 year-olds residing in highly dengue- endemic countries. When clinical trial results were assessed 2 years after the first dose, vaccine efficacy among seropositives was high, but among seronegatives efficacy was marginal. Breakthrough dengue hospitalizations of vaccinated children occurred continuously over a period of 4-5 years post 3rd dose in an age distribution suggesting these children had been vaccinated when seronegative. This surmise was validated recently when the manufacturer reported that dengue NS1 IgG antibodies were absent in sera from hospitalized vaccinated children, an observation consistent with their having received Dengvaxia when seronegative. Based upon published efficacy data and in compliance with initial published recommendations by the manufacturer and WHO the Philippine government undertook to vaccinate 800,000-plus 9 year-olds starting in April 2016. Eighteen months later, dengue hospitalizations and a deaths were reported among vaccinated children. The benefits of administering Dengvaxia predicted by the manufacturer, WHO and others derive from scoring dengue hospitalizations of vaccinated children as vaccine failures rather than as vaccine enhanced dengue disease. Recommended regimens for administration of Dengvaxia should have been structured to warn of and avoid serious adverse events.

  15. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    International Nuclear Information System (INIS)

    Taguchi, Kazuhiro; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-01-01

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses

  16. Enhanced cellular immune response against SIV Gag induced by immunization with DNA vaccines expressing assembly and release-defective SIV Gag proteins

    International Nuclear Information System (INIS)

    Bu Zhigao; Ye Ling; Compans, Richard W.; Yang Chinglai

    2003-01-01

    Codon-optimized genes were synthesized for the SIVmac239 Gag, a mutant Gag with mutations in the major homology region, and a chimeric Gag containing a protein destruction signal at the N-terminus of Gag. The mutant and chimeric Gag were expressed at levels comparable to that observed for the wild-type Gag protein but their stability and release into the medium were found to be significantly reduced. Immunization of mice with DNA vectors encoding the mutant or chimeric Gag induced fourfold higher levels of anti-SIV Gag CD4 T cell responses than the DNA vector encoding the wild-type SIV Gag. Moreover, anti-SIV Gag CD8 T cell responses induced by DNA vectors encoding the mutant or chimeric Gag were found to be 5- to 10-fold higher than those induced by the DNA construct for the wild-type Gag. These results indicate that mutations disrupting assembly and/or stability of the SIV Gag protein effectively enhance its immunogenicity when expressed from DNA vaccines

  17. A randomized study of the immunogenicity and safety of Japanese encephalitis chimeric virus vaccine (JE-CV) in comparison with SA14-14-2 vaccine in children in the Republic of Korea.

    Science.gov (United States)

    Kim, Dong Soo; Houillon, Guy; Jang, Gwang Cheon; Cha, Sung-Ho; Choi, Soo-Han; Lee, Jin; Kim, Hwang Min; Kim, Ji Hong; Kang, Jin Han; Kim, Jong-Hyun; Kim, Ki Hwan; Kim, Hee Soo; Bang, Joon; Naimi, Zulaikha; Bosch-Castells, Valérie; Boaz, Mark; Bouckenooghe, Alain

    2014-01-01

    A new live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) has been developed based on innovative technology to give protection against JE with an improved immunogenicity and safety profile. In this phase 3, observer-blind study, 274 children aged 12-24 months were randomized 1:1 to receive one dose of JE-CV (Group JE-CV) or the SA14-14-2 vaccine currently used to vaccinate against JE in the Republic of Korea (Group SA14-14-2). JE neutralizing antibody titers were assessed using PRNT50 before and 28 days after vaccination. The primary endpoint of non-inferiority of seroconversion rates on D28 was demonstrated in the Per Protocol analysis set as the difference between Group JE-CV and Group SA14-14-2 was 0.9 percentage points (95% confidence interval [CI]: -2.35; 4.68), which was above the required -10%. Seroconversion and seroprotection rates 28 days after administration of a single vaccine dose were 100% in Group JE-CV and 99.1% in Group SA14-14-2; all children except one (Group SA14-14-2) were seroprotected. Geometric mean titers (GMTs) increased in both groups from D0 to D28; GM of titer ratios were slightly higher in Group JE-CV (182 [95% CI: 131; 251]) than Group SA14-14-2 (116 [95% CI: 85.5, 157]). A single dose of JE-CV was well tolerated and no safety concerns were identified. In conclusion, a single dose of JE-CV or SA14-14-2 vaccine elicited a comparable immune response with a good safety profile. Results obtained in healthy Korean children aged 12-24 months vaccinated with JE-CV are consistent with those obtained in previous studies conducted with JE-CV in toddlers.

  18. Serum-protein changes in lambs given Dictyocaulus filaria vaccine

    International Nuclear Information System (INIS)

    Ali, S.A.K.; Jabir, M.H.; Suresh Singh, Kr.

    1979-01-01

    The serum-protein changes in lambs given a double dose of irradiated vaccine (40 and 50 kR) were compared with those of non-vaccinated lambs in all the groups. α- and β-globulins were similar but γ-globulins were higher for some weeks in animals given vaccination. Values of serum protein could not be correlated with the vaccine or with the immune status of the animals. In all the animals, the albumin/globulin ratio remained generally well below 1. (auth.)

  19. Lentiviral Gag assembly analyzed through the functional characterization of chimeric simian immunodeficiency viruses expressing different domains of the feline immunodeficiency virus capsid protein.

    Directory of Open Access Journals (Sweden)

    María J Esteva

    Full Text Available To gain insight into the functional relationship between the capsid (CA domains of the Gag polyproteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively, we constructed chimeric SIVs in which the CA-coding region was partially or totally replaced by the equivalent region of the FIV CA. The phenotypic characterization of the chimeras allowed us to group them into three categories: the chimeric viruses that, while being assembly-competent, exhibit a virion-associated unstable FIV CA; a second group represented only by the chimeric SIV carrying the N-terminal domain (NTD of the FIV CA which proved to be assembly-defective; and a third group constituted by the chimeric viruses that produce virions exhibiting a mature and stable FIV CA protein, and which incorporate the envelope glycoprotein and contain wild-type levels of viral genome RNA and reverse transcriptase. Further analysis of the latter group of chimeric SIVs demonstrated that they are non-infectious due to a post-entry impairment, such as uncoating of the viral core, reverse transcription or nuclear import of the preintegration complex. Furthermore, we show here that the carboxyl-terminus domain (CTD of the FIV CA has an intrinsic ability to dimerize in vitro and form high-molecular-weight oligomers, which, together with our finding that the FIV CA-CTD is sufficient to confer assembly competence to the resulting chimeric SIV Gag polyprotein, provides evidence that the CA-CTD exhibits more functional plasticity than the CA-NTD. Taken together, our results provide relevant information on the biological relationship between the CA proteins of primate and nonprimate lentiviruses.

  20. Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma

    Science.gov (United States)

    Zhang, Hao; Lin, Wan; Kannan, Kalpana; Luo, Liming; Li, Jing; Chao, Pei-Wen; Wang, Yan; Chen, Yu-Ping; Gu, Jiang; Yen, Laising

    2013-01-01

    It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response. PMID:24243830

  1. Nanoscale orientation and lateral organization of chimeric metal-binding green fluorescent protein on lipid membrane determined by epifluorescence and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Isarankura Na Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Epifluorescence microscopy as well as atomic force microscopy was successfully applied to explore the orientation and lateral organization of a group of chimeric green fluorescent proteins (GFPs) on lipid membrane. Incorporation of the chimeric GFP carrying Cd-binding region (His6CdBP4GFP) to the fluid phase of DPPC monolayer resulted in a strong fluorescence intensity at the air-water interface. Meanwhile, non-specific adsorption of the GFP having hexahistidine (His6GFP) led to the perturbation of the protein structure in which very low fluorescence was observed. Specific binding of both of the chimeric GFPs to immobilized zinc ions underneath the metal-chelating lipid membrane was revealed. This specific binding could be reversibly controlled by addition of metal ions or metal chelator. Binding of the chimeric GFPs to the metal-chelating lipid membrane was proven to be the end-on orientation while the side-on adsorption was contrarily noted in the absence of metal ions. Increase of lateral mobility owing to the fluidization effect on the chelating lipid membrane subsequently facilitated crystal formation. All these findings have opened up a potential approach for a specific orientation of immobilization of protein at the membrane interface. This could have accounted for a better opportunity of sensor development

  2. Improved humoral and cellular immune response against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatites B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A.; Nielsen, H.V.; Bryder, K.

    1998-01-01

    response and a uniform strong anti-HBs CTL response already 1 week p.i. in all mice. DNA vaccination with the chimeric MN V2/HBsAg plasmid elicited humoral responses against both viruses within 3-6 weeks which peaked at 6-12 weeks and remained stable for at least 25 weeks. In addition, specific CTL...... responses were induced in all mice against both MN V3 and HBsAg already within the first 3 weeks, lasting at least 11 weeks. Thus, HBsAg acts as a `genetic vaccine adjuvant' augmenting and accelerating the cellular and humoral immune response against the inserted MN V3 loop. Such chimeric HIV-HbsAg plasmid...

  3. Improved humoral and cellular immune responses against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatitis B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Bryder, K

    1998-01-01

    response and a uniform strong anti-HBs CTL response already 1 week p.i. in all mice. DNA vaccination with the chimeric MN V3/HBsAg plasmid elicited humoral responses against both viruses within 3-6 weeks which peaked at 6-12 weeks and remained stable for at least 25 weeks. In addition, specific CTL...... responses were induced in all mice against both MN V3 and HBsAg already within the first 3 weeks, lasting at least 11 weeks. Thus, HBsAg acts as a 'genetic vaccine adjuvant' augmenting and accelerating the cellular and humoral immune response against the inserted MN V3 loop. Such chimeric HIV-HBsAg plasmid...

  4. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    Science.gov (United States)

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  6. A live-attenuated chimeric PCV2 vaccine based on subtype 2b is transmitted to contact pigs but is not upregulated by concurrent infection with PPV and PRRSV and is efficacious in a triple challenge co-infection model

    Science.gov (United States)

    The objective of this study was to determine the safety and efficacy of a new live-attenuated chimeric PCV1/2b vaccine. Forty-six, 21-day-old, PCV2-naïve pigs were randomly assigned to one of six groups (Negative controls, positive controls, Vac-0, Vac-0-PCV2, Contact-PCV2, Vac-28-PCV2). All pigs we...

  7. [New vaccines against group B meningococcal diseases].

    Science.gov (United States)

    Hietalahti, Jukka; Meri, Seppo

    2015-01-01

    There has been no efficient general vaccine against serogroup B meningococcus (MenB), since its polysialic acid capsule is of low immunogenicity and could potentially induce autoimmunity. Reverse vaccinology has revealed new promising protein candidates for vaccine development. One of them is factor H-binding protein (fHbp), which has the potential to curb the alternative pathway of human complement. As fHbp can elicit antibodies that promote complement-mediated lysis, a vaccine partly based on it has been introduced against MenB infections. FHbp has been the milestone protein for structural vaccinology to create optimal chimeric antigens for vaccine use.

  8. Ectopic bone formation cannot occur by hydroxyapatite/{beta}-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lijia [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Duan Xin [Department of Orthopaedics, Chengdu Second People' s Hospital, Chengdu (China); Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Xiang Zhou [Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Shi Yujun; Lu Xiaofeng; Ye Feng [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Bu Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Firstly, chimeric mouse model could be established successfully by bone marrow transplantation after irradiation. Black-Right-Pointing-Pointer Secondly, bone induction can occur in wild-type mice 90 days after implantation, but not occur in chimeric mice. Black-Right-Pointing-Pointer Thirdly, destruction of immune function will block osteoinduction by calcium phosphate ceramics. - Abstract: Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/{beta}-tricalcium phosphate (HA/{beta}-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/{beta}-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede

  9. A Live-Attenuated Chimeric Porcine Circovirus Type 2 (PCV2) Vaccine Is Transmitted to Contact Pigs but Is Not Upregulated by Concurrent Infection with Porcine Parvovirus (PPV) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Is Efficacious in a PCV2b-PRRSV-PPV Challenge Model▿

    OpenAIRE

    Opriessnig, T.; Shen, H. G.; Pal, N.; Ramamoorthy, S.; Huang, Y. W.; Lager, K. M.; Beach, N. M.; Halbur, P. G.; Meng, X. J.

    2011-01-01

    The live chimeric porcine circovirus type 2 (PCV2) vaccine with the capsid gene of the emerging subtype 2b cloned in the genomic backbone of the nonpathogenic PCV1 is attenuated in vivo and induces protective immunity against PCV2. To further determine the safety and efficacy of this experimental vaccine, we tested for evidence of pig-to-pig transmission by commingling nonvaccinated and vaccinated pigs, determined potential upregulation by simultaneous vaccination and infection with porcine p...

  10. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard......, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite...

  11. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Directory of Open Access Journals (Sweden)

    Rahmberg Andrew R

    2011-05-01

    Full Text Available Abstract Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.

  12. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    Science.gov (United States)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66

  13. Branched-linear and agglomerate protein polymers as vaccine platforms.

    Science.gov (United States)

    Wang, Leyi; Xia, Ming; Huang, Pengwei; Fang, Hao; Cao, Dianjun; Meng, Xiang-Jin; McNeal, Monica; Jiang, Xi; Tan, Ming

    2014-09-01

    Many viral structural proteins and their truncated domains share a common feature of homotypic interaction forming dimers, trimers, and/or oligomers with various valences. We reported previously a simple strategy for construction of linear and network polymers through the dimerization feature of viral proteins for vaccine development. In this study, technologies were developed to produce more sophisticated polyvalent complexes through both the dimerization and oligomerization natures of viral antigens. As proof of concept, branched-linear and agglomerate polymers were made via fusions of the dimeric glutathione-s-transferase (GST) with either a tetrameric hepatitis E virus (HEV) protruding protein or a 24-meric norovirus (NoV) protruding protein. Furthermore, a monomeric antigen, either the M2e epitope of influenza A virus or the VP8* antigen of rotavirus, was inserted and displayed by the polymer platform. All resulting polymers were easily produced in Escherichia coli at high yields. Immunization of mice showed that the polymer vaccines induced significantly higher specific humoral and T cell responses than those induced by the dimeric antigens. Additional evidence in supporting use of polymer vaccines included the significantly higher neutralization activity and protective immunity of the polymer vaccines against the corresponding viruses than those of the dimer vaccines. Thus, our technology for production of polymers containing different viral antigens offers a strategy for vaccine development against infectious pathogens and their associated diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A Macrocyclic Agouti-Related Protein/[Nle4, DPhe7]α-Melanocyte Stimulating Hormone Chimeric Scaffold Produces Sub-nanomolar Melanocortin Receptor Ligands

    OpenAIRE

    Ericson, Mark D.; Freeman, Katie T.; Schnell, Sathya M.; Haskell-Luevano, Carrie

    2017-01-01

    The melanocortin system consists of five receptor subtypes, endogenous agonists, and naturally occurring antagonists. These receptors and ligands have been implicated in numerous biological pathways including processes linked to obesity and food intake. Herein, a truncation structure-activity relationship study of chimeric agouti-related protein (AGRP)/[Nle4, DPhe7]α-Melanocyte Stimulating Hormone (NDP-MSH) ligands is reported. The tetrapeptide His-DPhe-Arg-Trp or tripeptide DPhe-Arg-Trp repl...

  15. Current status of flavivirus vaccines.

    Science.gov (United States)

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  16. Hyper-recombinogenity of the chimeric protein RecAX53 (Esherichia coli/Pseudomonas aeruginosa is caused by its increased dynamics

    Directory of Open Access Journals (Sweden)

    Daria B Chervyakova

    2008-12-01

    Full Text Available RecAX53 is the most recombinogenic protein among the chimeric RecA proteins composed ofEsherichia coli RecA (RecAEc and Pseudomonas aeruginosa RecA (RecAPa protein fragments. We found out that RecAX53 protein is more rapid in ATP hydrolysis, dissociation from single-stranded DNA (ssDNA, SSB protein displacement from ssDNA and in association with doublestranded DNA (dsDNA, as compared with RecAEc and RecAPa proteins. These results indicate that the RecAX53 hyper-recombinogenity is caused by high dynamics of this protein - by its rapid association with and dissociation from ssDNA. The ability of RecAX53 to bind actively with dsDNA accounts for the SOS-independent mechanism of hyper-recombination used by this protein.

  17. The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments

    International Nuclear Information System (INIS)

    Zhang Fanglin; Wu Xingan; Luo Wen; Bai Wentao; Liu Yong; Yan Yan; Wang Haitao; Xu Zhikai

    2007-01-01

    Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinated by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice

  18. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates

    OpenAIRE

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L.; Long, Carole A.; Miller, Louis H.; Saul, Allan

    2007-01-01

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) for blood stage vaccines and surface protein 25 (Pfs25) for mosquito stage vaccines, each was chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66 kD) relatively good i...

  19. A live-attenuated and an inactivated chimeric porcine circovirus (PCV)1-2 vaccine are both effective at inducing a humoral immune response and reducing PCV2 viremia and intrauterine infection in female swine of breeding age.

    Science.gov (United States)

    Hemann, Michelle; Beach, Nathan M; Meng, Xiang-Jin; Wang, Chong; Halbur, Patrick G; Opriessnig, Tanja

    2014-01-01

    The objective of this pilot study was to determine the efficacy of inactivated (1 or 2 dose) and live-attenuated chimeric porcine circovirus (PCV)1-2 vaccines in sows using the PCV2-spiked semen model. Thirty-five sows were randomly divided into 6 groups: negative and positive controls, 1 dose inactivated PCV1-2 vaccine challenged (1-VAC-PCV2), 2 dose inactivated PCV1-2 vaccine challenged (2-VAC-PCV2), 1 dose live-attenuated PCV1-2 vaccine unchallenged (1-LIVE-VAC), and 1 dose live-attenuated PCV1-2 vaccine challenged (1-LIVE-VAC-PCV2). The inactivated PCV1-2 vaccine induced higher levels of PCV2-specific antibodies in dams. All vaccination strategies provided good protection against PCV2 viremia in dams, whereas the majority of the unvaccinated sows were viremic. Four of the 35 dams became pregnant: a negative control, a positive control, a 2-VAC-PCV2 sow, and a 1-LIVE-VAC-PCV2 sow. The PCV2 DNA was detected in 100%, 67%, and 29% of the fetuses obtained from the positive control, inactivated vaccinated, or live-attenuated vaccinated dams, respectively. The PCV2 antigen in hearts was only detectable in the positive control litter (23% of the fetuses). The PCV1-2 DNA was detected in 29% of the fetuses in the litter from the 1-LIVE-VAC-PCV2 dam. Under the conditions of this pilot study, both vaccines protected against PCV2 viremia in breeding age animals; however, vertical transmission was not prevented.

  20. Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Na Ayudhya, Chartchalerm Isarankura; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N- (5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn 2+ , was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device

  1. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    Science.gov (United States)

    2007-12-01

    that fascinating fungus known as Coccidioides. I also want to thank the UA Mass Spectrometry Facility and the UA Proteomics Consortium, especially...W. & N. N. Kav. 2006. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6: 5995-6007. 127. de Godoy, L. M., J. V...IDENTIFICATION OF PROTEIN VACCINE CANDIDATES USING COMPREHENSIVE PROTEOMIC ANALYSIS STRATEGIES by James G. Rohrbough

  2. Chimeric Lyssavirus Glycoproteins with Increased Immunological Potential

    Science.gov (United States)

    Jallet, Corinne; Jacob, Yves; Bahloul, Chokri; Drings, Astrid; Desmezieres, Emmanuel; Tordo, Noël; Perrin, Pierre

    1999-01-01

    The rabies virus glycoprotein molecule (G) can be divided into two parts separated by a flexible hinge: the NH2 half (site II part) containing antigenic site II up to the linear region (amino acids [aa] 253 to 275 encompassing epitope VI [aa 264]) and the COOH half (site III part) containing antigenic site III and the transmembrane and cytoplasmic domains. The structural and immunological roles of each part were investigated by cell transfection and mouse DNA-based immunization with homogeneous and chimeric G genes formed by fusion of the site II part of one genotype (GT) with the site III part of the same or another GT. Various site II-site III combinations between G genes of PV (Pasteur virus strain) rabies (GT1), Mokola (GT3), and EBL1 (European bat lyssavirus 1 [GT5]) viruses were tested. Plasmids pGPV-PV, pGMok-Mok, pGMok-PV, and pGEBL1-PV induced transient expression of correctly transported and folded antigens in neuroblastoma cells and virus-neutralizing antibodies against parental viruses in mice, whereas, pG-PVIII (site III part only) and pGPV-Mok did not. The site III part of PV (GT1) was a strong inducer of T helper cells and was very effective at presenting the site II part of various GTs. Both parts are required for correct folding and transport of chimeric G proteins which have a strong potential value for immunological studies and development of multivalent vaccines. Chimeric plasmid pGEBL1-PV broadens the spectrum of protection against European lyssavirus genotypes (GT1, GT5, and GT6). PMID:9847325

  3. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  4. A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2.

    Science.gov (United States)

    Hervé, Pierre-Louis; Raliou, Mariam; Bourdieu, Christiane; Dubuquoy, Catherine; Petit-Camurdan, Agnès; Bertho, Nicolas; Eléouët, Jean-François; Chevalier, Christophe; Riffault, Sabine

    2014-01-01

    In this study, subnucleocapsid nanorings formed by the recombinant nucleoprotein (N) of the respiratory syncytial virus were evaluated as a platform to anchor heterologous antigens. The ectodomain of the influenza virus A matrix protein 2 (M2e) is highly conserved and elicits protective antibodies when it is linked to an immunogenic carrier, making it a promising target to develop universal influenza vaccines. In this context, one or three M2e copies were genetically linked to the C terminus of N to produce N-M2e and N-3M2e chimeric recombinant nanorings. Mice were immunized intranasally with N-M2e or N-3M2e or with M2e or 3M2e control peptides. N-3M2e-vaccinated mice showed the strongest mucosal and systemic antibody responses. These mice presented a reduced viral load and minor weight loss, and all survived upon challenge with influenza virus A/PR8/34 (H1N1) (PR8). We compared the intranasal route to the subcutaneous route of N-3M2e immunization. Only the intranasal route induced a strong local IgA response and led to the protection of mice upon challenge. Finally, we demonstrated that the induction of anti-M2e antibodies by N-3M2e is not impaired by preexisting anti-N immunity. Overall, these results show that the N nanoring is a potent carrier for mucosal delivery of vaccinal antigens.

  5. Novel Insect-Specific Eilat Virus-Based Chimeric Vaccine Candidates Provide Durable, Mono- and Multivalent, Single-Dose Protection against Lethal Alphavirus Challenge.

    Science.gov (United States)

    Erasmus, Jesse H; Seymour, Robert L; Kaelber, Jason T; Kim, Dal Y; Leal, Grace; Sherman, Michael B; Frolov, Ilya; Chiu, Wah; Weaver, Scott C; Nasar, Farooq

    2018-02-15

    Most alphaviruses are mosquito borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. Recently, a host-restricted, mosquito-borne alphavirus, Eilat virus (EILV), was described with an inability to infect vertebrate cells based on defective attachment and/or entry, as well as a lack of genomic RNA replication. We investigated the utilization of EILV recombinant technology as a vaccine platform against eastern (EEEV) and Venezuelan equine encephalitis viruses (VEEV), two important pathogens of humans and domesticated animals. EILV chimeras containing structural proteins of EEEV or VEEV were engineered and successfully rescued in Aedes albopictus cells. Cryo-electron microscopy reconstructions at 8 and 11 Å of EILV/VEEV and EILV/EEEV, respectively, showed virion and glycoprotein spike structures similar to those of VEEV-TC83 and other alphaviruses. The chimeras were unable to replicate in vertebrate cell lines or in brains of newborn mice when injected intracranially. Histopathologic examinations of the brain tissues showed no evidence of pathological lesions and were indistinguishable from those of mock-infected animals. A single-dose immunization of either monovalent or multivalent EILV chimera(s) generated neutralizing antibody responses and protected animals against lethal challenge 70 days later. Lastly, a single dose of monovalent EILV chimeras generated protective responses as early as day 1 postvaccination and partial or complete protection by day 6. These data demonstrate the safety, immunogenicity, and efficacy of novel insect-specific EILV-based chimeras as potential EEEV and VEEV vaccines. IMPORTANCE Mostly in the last decade, insect-specific viruses have been discovered in several arbovirus families. However, most of these viruses are not well studied and largely have been ignored. We explored the use of the mosquito-specific alphavirus EILV as an alphavirus vaccine

  6. Analysis of the thermodynamics of binding of an SH3 domain to proline-rich peptides using a chimeric fusion protein.

    Science.gov (United States)

    Candel, Adela M; van Nuland, Nico A J; Martin-Sierra, Francisco M; Martinez, Jose C; Conejero-Lara, Francisco

    2008-03-14

    A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the alpha-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the "unbound" and "bound" states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2 approximately P7 approximately P10>P9 approximately P6>P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy

  7. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    International Nuclear Information System (INIS)

    Shustov, Alexandr V.; Frolov, Ilya

    2010-01-01

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.

  8. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guangwen; Qin, Mei [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Liu, Xianyong [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Suo, Jingxia; Tang, Xinming; Tao, Geru [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Han, Qian [Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 (United States); Suo, Xun [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Wu, Wenxue, E-mail: labboard@126.com [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China)

    2013-10-25

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.

  9. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    International Nuclear Information System (INIS)

    Yin, Guangwen; Qin, Mei; Liu, Xianyong; Suo, Jingxia; Tang, Xinming; Tao, Geru; Han, Qian; Suo, Xun; Wu, Wenxue

    2013-01-01

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens

  10. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    Science.gov (United States)

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  11. Development of antifertility vaccine using sperm specific proteins

    Directory of Open Access Journals (Sweden)

    A H Bandivdekar

    2014-01-01

    Full Text Available Sperm proteins are known to be associated with normal fertilization as auto- or iso-antibodies to these proteins may cause infertility. Therefore, sperm proteins have been considered to be the potential candidate for the development of antifertility vaccine. Some of the sperm proteins proved to be promising antigens for contraceptive vaccine includes lactate dehydrogenase (LDH-C4, protein hyaluronidase (PH-20, and Eppin. Immunization with LDH-C4 reduced fertility in female baboons but not in female cynomolgus macaques. Active immunization with PH-20 resulted in 100 per cent inhibition of fertility in male guinea pigs but it induced autoimmune orchitis. Immunization with Eppin elicited high antibody titres in 78 per cent of immunized monkeys and induced infertility but the immunopathological effect of immunization was not examined. Human sperm antigen (80kDa HSA is a sperm specific, highly immunogenic and conserved sperm protein. Active immunization with 80kDa HSA induced immunological infertility in male and female rats. Partial N-terminal amino acid sequence of 80kDa HSA (Peptide NT and its peptides (Peptides 1, 2, 3 and 4 obtained by enzymatic digestion did not show homology with any of the known proteins in gene bank. Peptides NT, 1, 2 and 4 were found to mimic immunobiological activity of native protein. Passive administration of antibodies to peptides NT, 1, 2 and 4 induced infertility in male and female rats and peptide 1 was found to be most effective in suppressing fertility. Active immunization with keyhole limpet haemocynin (KLH conjugated synthetic peptide 1 impaired fertility in all the male rabbits and six of the seven male marmosets. The fertility was restored following decline in antibody titre. All these findings on 80kDA HAS suggest that the synthetic Peptide-1 of 80kDa HSA is the promising candidate for development of male contraceptive vaccine.

  12. Immunisation against PCV2 structural protein by DNA vaccination of mice

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Barfoed, Annette Malene; Frimann, Tine

    2004-01-01

    the capsid protein of PCV2 was cloned in a DNA vaccination plasmid and expression of capsid protein was demonstrated in vitro. Mice were gene gun vaccinated three timesand all mice responded serologically by raising antibodies against PCV2. The results suggest, that DNA based vaccination might offer...

  13. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.

    Science.gov (United States)

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania ( L .) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4 + T H1 and CD8 + T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic- co -glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4 + and CD8 + T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8 + T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that

  14. IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology.

    Science.gov (United States)

    Van Vaerenbergh, Matthias; De Smet, Lina; Rafei-Shamsabadi, David; Blank, Simon; Spillner, Edzard; Ebo, Didier G; Devreese, Bart; Jakob, Thilo; de Graaf, Dirk C

    2015-02-01

    Api m 10 has recently been established as novel major allergen that is recognized by more than 60% of honeybee venom (HBV) allergic patients. Previous studies suggest Api m 10 protein heterogeneity which may have implications for diagnosis and immunotherapy of HBV allergy. In the present study, RT-PCR revealed the expression of at least nine additional Api m 10 transcript isoforms by the venom glands. Two distinct mechanisms are responsible for the generation of these isoforms: while the previously known variant 2 is produced by an alternative splicing event, novel identified isoforms are intragenic chimeric transcripts. To the best of our knowledge, this is the first report of the identification of chimeric transcripts generated by the honeybee. By a retrospective proteomic analysis we found evidence for the presence of several of these isoforms in the venom proteome. Additionally, we analyzed IgE reactivity to different isoforms by protein array technology using sera from HBV allergic patients, which revealed that IgE recognition of Api m 10 is both isoform- and patient-specific. While it was previously demonstrated that the majority of HBV allergic patients display IgE reactivity to variant 2, our study also shows that some patients lacking IgE antibodies for variant 2 display IgE reactivity to two of the novel identified Api m 10 variants, i.e. variants 3 and 4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral particles as a non-transmissible bivalent marker vaccine candidate against CSF and JE infections

    Science.gov (United States)

    A trans-complemented CSF- JE chimeric viral replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The E2 gene of CSFV Alfort/187 strain was deleted and the resultant plasmid pA187delE2 was inserted by a fragment containing the region coding for a truncate...

  16. Novel chimeric foot-and-mouth disease virus-like particles harboring serotype O VP1 protect guinea pigs against challenge.

    Science.gov (United States)

    Li, Haitao; Li, Zhiyong; Xie, Yinli; Qin, Xiaodong; Qi, Xingcai; Sun, Peng; Bai, Xingwen; Ma, Youji; Zhang, Zhidong

    2016-02-01

    Foot-and-mouth disease is a highly contagious, acute viral disease of cloven-hoofed animal species causing severe economic losses worldwide. Among the seven serotypes of foot-and-mouth disease virus (FMDV), serotype O is predominant, but its viral capsid is more acid sensitive than other serotypes, making it more difficult to produce empty serotype O VLPs in the low pH insect hemolymph. Therefore, a novel chimeric virus-like particle (VLP)-based candidate vaccine for serotype O FMDV was developed and characterized in the present study. The chimeric VLPs were composed of antigenic VP1 from serotype O and segments of viral capsid proteins from serotype Asia1. These VLPs elicited significantly higher FMDV-specific antibody levels in immunized mice than did the inactivated vaccine. Furthermore, the chimeric VLPs protected guinea pigs from FMDV challenge with an efficacy similar to that of the inactivated vaccine. These results suggest that chimeric VLPs have the potential for use in vaccines against serotype O FMDV infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  18. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection

    NARCIS (Netherlands)

    Wagemakers, A.; Mason, L. M. K.; Oei, A.; de Wever, B.; van der Poll, T.; Bins, A. D.; Hovius, J. W. R.

    2014-01-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method

  19. Shape of Key Malaria Protein Could Help Improve Vaccine Efficacy

    Science.gov (United States)

    ... Featured Diseases & Conditions Food Allergy HIV/AIDS Influenza Malaria Respiratory Syncytial Virus (RSV) Tuberculosis Zika Virus Find ... To Volunteer for Vaccine Research Studies Volunteer for Malaria Vaccine Research Volunteer Profiles Q&A: Vaccine Clinical ...

  20. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    Science.gov (United States)

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  1. A Novel Subnucleocapsid Nanoplatform for Mucosal Vaccination against Influenza Virus That Targets the Ectodomain of Matrix Protein 2

    Science.gov (United States)

    Hervé, Pierre-Louis; Raliou, Mariam; Bourdieu, Christiane; Dubuquoy, Catherine; Petit-Camurdan, Agnès; Bertho, Nicolas; Eléouët, Jean-François

    2014-01-01

    In this study, subnucleocapsid nanorings formed by the recombinant nucleoprotein (N) of the respiratory syncytial virus were evaluated as a platform to anchor heterologous antigens. The ectodomain of the influenza virus A matrix protein 2 (M2e) is highly conserved and elicits protective antibodies when it is linked to an immunogenic carrier, making it a promising target to develop universal influenza vaccines. In this context, one or three M2e copies were genetically linked to the C terminus of N to produce N-M2e and N-3M2e chimeric recombinant nanorings. Mice were immunized intranasally with N-M2e or N-3M2e or with M2e or 3M2e control peptides. N-3M2e-vaccinated mice showed the strongest mucosal and systemic antibody responses. These mice presented a reduced viral load and minor weight loss, and all survived upon challenge with influenza virus A/PR8/34 (H1N1) (PR8). We compared the intranasal route to the subcutaneous route of N-3M2e immunization. Only the intranasal route induced a strong local IgA response and led to the protection of mice upon challenge. Finally, we demonstrated that the induction of anti-M2e antibodies by N-3M2e is not impaired by preexisting anti-N immunity. Overall, these results show that the N nanoring is a potent carrier for mucosal delivery of vaccinal antigens. PMID:24155388

  2. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  3. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli

    Science.gov (United States)

    Makhoba, Xolani Henry; Burger, Adélle; Coertzen, Dina; Zininga, Tawanda; Birkholtz, Lyn-Marie; Shonhai, Addmore

    2016-01-01

    S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial

  4. A live-attenuated chimeric porcine circovirus type 2 (PCV2) vaccine is transmitted to contact pigs but is not upregulated by concurrent infection with porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus (PRRSV) and is efficacious in a PCV2b-PRRSV-PPV challenge model.

    Science.gov (United States)

    Opriessnig, T; Shen, H G; Pal, N; Ramamoorthy, S; Huang, Y W; Lager, K M; Beach, N M; Halbur, P G; Meng, X J

    2011-08-01

    The live chimeric porcine circovirus type 2 (PCV2) vaccine with the capsid gene of the emerging subtype 2b cloned in the genomic backbone of the nonpathogenic PCV1 is attenuated in vivo and induces protective immunity against PCV2. To further determine the safety and efficacy of this experimental vaccine, we tested for evidence of pig-to-pig transmission by commingling nonvaccinated and vaccinated pigs, determined potential upregulation by simultaneous vaccination and infection with porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus (PRRSV), and determined vaccine efficacy by challenging pigs 4 weeks after vaccination with PCV2b, PRRSV, and PPV. Forty-six 21-day-old, PCV2-naïve pigs were randomly assigned to one of six groups. Twenty-nine of 46 pigs were challenged with PCV2b, PRRSV, and PPV at day 28, 8/46 remained nonvaccinated and nonchallenged and served as negative controls, and 9/46 remained nonchallenged and served as vaccination controls. All animals were necropsied at day 49. PCV1-PCV2 viremia was detected in nonvaccinated contact pigs commingled with vaccinated pigs, indicating pig-to-pig transmission; however, PCV1-PCV2 DNA levels remained low in all vaccinated and contact pigs regardless of concurrent infection. Finally, vaccination 28 days before challenge resulted in significantly (P attenuated chimeric PCV2 vaccine, although transmissible to contact pigs, remains attenuated in pigs concurrently infected with PRRSV and PPV and induces protective immunity against PCV2b when it is administered 28 days before PCV2 exposure.

  5. A Live-Attenuated Chimeric Porcine Circovirus Type 2 (PCV2) Vaccine Is Transmitted to Contact Pigs but Is Not Upregulated by Concurrent Infection with Porcine Parvovirus (PPV) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Is Efficacious in a PCV2b-PRRSV-PPV Challenge Model▿

    Science.gov (United States)

    Opriessnig, T.; Shen, H. G.; Pal, N.; Ramamoorthy, S.; Huang, Y. W.; Lager, K. M.; Beach, N. M.; Halbur, P. G.; Meng, X. J.

    2011-01-01

    The live chimeric porcine circovirus type 2 (PCV2) vaccine with the capsid gene of the emerging subtype 2b cloned in the genomic backbone of the nonpathogenic PCV1 is attenuated in vivo and induces protective immunity against PCV2. To further determine the safety and efficacy of this experimental vaccine, we tested for evidence of pig-to-pig transmission by commingling nonvaccinated and vaccinated pigs, determined potential upregulation by simultaneous vaccination and infection with porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus (PRRSV), and determined vaccine efficacy by challenging pigs 4 weeks after vaccination with PCV2b, PRRSV, and PPV. Forty-six 21-day-old, PCV2-naïve pigs were randomly assigned to one of six groups. Twenty-nine of 46 pigs were challenged with PCV2b, PRRSV, and PPV at day 28, 8/46 remained nonvaccinated and nonchallenged and served as negative controls, and 9/46 remained nonchallenged and served as vaccination controls. All animals were necropsied at day 49. PCV1-PCV2 viremia was detected in nonvaccinated contact pigs commingled with vaccinated pigs, indicating pig-to-pig transmission; however, PCV1-PCV2 DNA levels remained low in all vaccinated and contact pigs regardless of concurrent infection. Finally, vaccination 28 days before challenge resulted in significantly (P attenuated chimeric PCV2 vaccine, although transmissible to contact pigs, remains attenuated in pigs concurrently infected with PRRSV and PPV and induces protective immunity against PCV2b when it is administered 28 days before PCV2 exposure. PMID:21653745

  6. Vaccines licensed and in clinical trials for the prevention of dengue.

    Science.gov (United States)

    Torresi, J; Ebert, G; Pellegrini, M

    2017-05-04

    Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.

  7. Transmission-blocking activity of antibodies to Plasmodium falciparum GLURP.10C chimeric protein formulated in different adjuvants

    DEFF Research Database (Denmark)

    Roeffen, Will; Theisen, Michael; van de Vegte-Bolmer, Marga

    2015-01-01

    BACKGROUND: Plasmodium falciparum is transmitted from person to person by Anopheles mosquitoes after completing its sexual reproductive cycle within the infected mosquito. An efficacious vaccine holds the potential to interrupt development of the parasite in the mosquito leading to control and po...

  8. A chimeric protein composed of NuMA fused to the DNA binding domain of LANA is sufficient for the ori-P-dependent DNA replication

    International Nuclear Information System (INIS)

    Ohsaki, Eriko; Ueda, Keiji

    2017-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components of the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication. - Highlights: •KSHV replication in latency depends on LANA localization to the nuclear matrix. •LANA DBD was fused with NuMA, a nuclear matrix protein, at the N- and C-terminus. •NuMA-DBD was in the nuclear matrix and supported the ori-P dependent replication. •LANA in the nuclear matrix should be important for the KSHV replication in latency.

  9. A chimeric protein composed of NuMA fused to the DNA binding domain of LANA is sufficient for the ori-P-dependent DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Ohsaki, Eriko; Ueda, Keiji, E-mail: kueda@virus.med.osaka-u.ac.jp

    2017-01-15

    The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components of the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication. - Highlights: •KSHV replication in latency depends on LANA localization to the nuclear matrix. •LANA DBD was fused with NuMA, a nuclear matrix protein, at the N- and C-terminus. •NuMA-DBD was in the nuclear matrix and supported the ori-P dependent replication. •LANA in the nuclear matrix should be important for the KSHV replication in latency.

  10. Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles

    International Nuclear Information System (INIS)

    Guo Lizheng; Lu Xiaoyan; Kang, S.-M.; Chen Changyi; Compans, Richard W.; Yao Qizhi

    2003-01-01

    To enhance mucosal immune responses using simian/human immunodeficiency virus-like particles (SHIV VLPs), we have produced novel phenotypically mixed chimeric influenza HA/SHIV VLPs and used them to immunize C57BL/6J mice intranasally. Antibody and cytotoxic T-cell (CTL) responses as well as cytokine production in both systemic and mucosal sites were compared after immunization with SHIV VLPs or chimeric HA/SHIV VLPs. By using enzyme-linked immunosorbent assay (ELISA), the levels of serum IgG and mucosal IgA to the HIV envelope protein (Env) were found to be highest in the group immunized with chimeric HA/SHIV VLPs. Furthermore, the highest titer of serum neutralizing antibody against HIV Env was found with the group immunized with chimeric HA/SHIV VLPs. Analysis of the IgG1/IgG2a ratio indicated that a T H 1-oriented immune response resulted from these VLP immunizations. HA/SHIV VLP-immunized mice also showed significantly higher CTL responses than those observed in SHIV VLP-immunized mice. Moreover, a MHC class I restricted T-cell activation ELISPOT assay showed a mixed type of T H 1/T H 2 cytokines in the HA/SHIV VLP-immunized mice, indicating that the chimeric VLPs can enhance both humoral and cellular immune responses to the HIV Env protein at multiple mucosal and systemic sites. The results indicate that incorporation of influenza HA into heterotypic VLPs may be highly effective for targeting vaccines to mucosal surfaces

  11. Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine.

    Science.gov (United States)

    Aldarouish, Mohanad; Wang, Huzhan; Zhou, Meng; Hu, Hong-Ming; Wang, Li-Xin

    2015-04-16

    Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub

  12. Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Hoang, Truc; Agger, Else Marie; Cassidy, Joseph P; Christensen, Jan P; Andersen, Peter

    2015-05-01

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including tuberculosis (TB), but it is not clear how PEM influences vaccine-promoted immunity to TB. We demonstrate that PEM during low-level steady-state TB infection in a mouse model results in rapid relapse of Mycobacterium tuberculosis, as well as increased pathology, in both Mycobacterium bovis BCG-vaccinated and unvaccinated animals. PEM did not change the overall numbers of CD4 T cells in BCG-vaccinated animals but resulted in an almost complete loss of antigen-specific cytokine production. Furthermore, there was a change in cytokine expression characterized by a gradual loss of multifunctional antigen-specific CD4 T cells and an increased proportion of effector cells expressing gamma interferon and tumor necrosis factor alpha (IFN-γ(+) TNF-α(+) and IFN-γ(+) cells). PEM during M. tuberculosis infection completely blocked the protection afforded by the H56-CAF01 subunit vaccine, and this was associated with a very substantial loss of the interleukin-2-positive memory CD4 T cells promoted by this vaccine. Similarly, PEM during the vaccination phase markedly reduced the H56-CAF01 vaccine response, influencing all cytokine-producing CD4 T cell subsets, with the exception of CD4 T cells positive for TNF-α only. Importantly, this impairment was reversible and resupplementation of protein during infection rescued both the vaccine-promoted T cell response and the protective effect of the vaccine against M. tuberculosis infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    Science.gov (United States)

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  14. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  15. Rational and efficient preparation of a chimeric protein containing a tandem dimer of thrombopoietin mimetic peptide fused to human growth hormone in Escherichia coli.

    Science.gov (United States)

    Wang, Song; Shen, Mingqiang; Xu, Yang; Chen, Fang; Chen, Mo; Chen, Shilei; Wang, Aiping; Zhang, Zhou; Ran, Xinze; Cheng, Tianmin; Su, Yongping; Wang, Junping

    2013-04-01

    The 14-mer thrombopoietin mimetic peptide (TMP), especially in the form of dimer, displayed potent megakaryocytopoiesis activity in vitro. However, it is difficult to prepare such short peptide with high bioactivity through gene-engineering approaches. In this study, a chimeric protein containing a tandem dimer of TMP (dTMP) fused to human growth hormone (hGH), a kind of hematopoietic growth factor that activates the same signal pathways as thrombopoietin, was produced in Escherichia coli by soluble expression. By rational utilization of the XmnI and EcoRV restriction sites, a PCR fragment encoding dTMP-GH was inserted into the plasmid vector pMAL-p2X at the position right after Xa factor cleavage site, in frame with maltose-binding protein (MBP) gene. Under optimized conditions, a high-level expression of soluble MBP-dTMP-GH fusion protein was obtained. By application of amylose resin chromatography, Xa factor digestion, hydrophobic chromatography followed by gel filtration, the dTMP-GH fusion protein was separated. Finally, a relatively high yield of dTMP-GH fusion protein with high purity (>98%) and without redundant amino acid was achieved, as identified by high-performance liquid chromatography, mass spectrometry, and amino acid sequencing. The functional assays showed that dTMP-GH could promote the proliferation of megakaryoblast cells and maturation of murine megakaryocytes derived from bone marrow, in a dose-dependent manner. Moreover, an enhanced effect of dTMP-GH on megakaryocytopoiesis was found as compared with equimolar concentration of dTMP and rhGH. This work provides a new avenue to generate thrombopoietic agents based on TMP.

  16. Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic protein

    DEFF Research Database (Denmark)

    Jørgensen, Nicolai Grønne Dahlager; Ahmad, Shamaila Munir; Abildgaard, N.

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic vacc...... vaccination. Vaccination against Bcl-2 was well tolerated and was able to induce immune responses in patients with relapsed MM. © Stem Cell Investigation. All rights reserved.......The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic...... vaccination with peptides from the proteins Bcl-2, Bcl-XL and Mcl-1 in patients with relapsed MM. Vaccines were given concomitant with bortezomib. Out of 7 enrolled patients, 4 received the full course of 8 vaccinations. The remaining 3 patients received fewer vaccinations due to progression, clinical...

  17. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Litai Zhang

    Full Text Available Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4 emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.

  18. A Macrocyclic Agouti-Related Protein/[Nle4,DPhe7]α-Melanocyte Stimulating Hormone Chimeric Scaffold Produces Subnanomolar Melanocortin Receptor Ligands.

    Science.gov (United States)

    Ericson, Mark D; Freeman, Katie T; Schnell, Sathya M; Haskell-Luevano, Carrie

    2017-01-26

    The melanocortin system consists of five receptor subtypes, endogenous agonists, and naturally occurring antagonists. These receptors and ligands have been implicated in numerous biological pathways including processes linked to obesity and food intake. Herein, a truncation structure-activity relationship study of chimeric agouti-related protein (AGRP)/[Nle4,DPhe7]α-melanocyte stimulating hormone (NDP-MSH) ligands is reported. The tetrapeptide His-DPhe-Arg-Trp or tripeptide DPhe-Arg-Trp replaced the Arg-Phe-Phe sequence in the AGRP active loop derivative c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was the native Asn of AGRP or a diaminopropionic (Dap) acid residue previously shown to increase antagonist potency at the mMC4R. The Phe, Ala, and Dap/Asn residues were successively removed to generate a 14-member library that was assayed for agonist activity at the mouse MC1R, MC3R, MC4R, and MC5R. Two compounds possessed nanomolar agonist potency at the mMC4R, c[Pro-His-DPhe-Arg-Trp-Asn-Ala-Phe-DPro] and c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro], and may be further developed to generate novel melanocortin probes and ligands for understanding and treating obesity.

  19. Neutralizing VEGF bioactivity with a soluble chimeric VEGF receptor protein flt (1-3) IGG inhibits testosterone stimulated prostate growth in castrated mice

    International Nuclear Information System (INIS)

    Hammarsten, P.; Lissbrant, E.; Lissbrant, I.-F.; Haeggstroem-Rudolfsson, S.; Bergh, A.; Ferrara, N.

    2003-01-01

    Recent studies show that testosterone stimulated growth of the glandular tissue in the ventral prostate in adult castrated rats is preceded by increased epithelial VEGF synthesis, endothelial cell proliferation, vascular growth, and increased blood flow. These observations suggest that testosterone stimulated prostate growth could be angiogenesis dependent, and that VEGF could play a central role in this. To test this hypothesis adult male mice were castrated and after one week treated with testosterone and vehicle, or with testosterone and a soluble chimeric VEGF-receptor flt(1-3)IgG protein. Treatment with testosterone markedly increased endothelial cell proliferation, vascular volume and organ weight in the ventral prostate lobe in the vehicle groups, but these responses were inhibited but not fully prevented by anti-VEGF treatment. The testosterone stimulated increase in epithelial cell proliferation was unaffected by flt(1-3)IgG, but endothelial and epithelial cell apoptosis were increased in the anti-VEGF compared to the vehicle treated group. This study, together with our previous observations, suggest that testosterone stimulates vascular growth in the ventral prostate lobe indirectly by increasing epithelial VEGF synthesis and that this is a necessary component in testosterone stimulated prostate growth

  20. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus

    International Nuclear Information System (INIS)

    Reimann, Ilona; Depner, Klaus; Trapp, Sascha; Beer, Martin

    2004-01-01

    A chimeric Pestivirus was constructed using an infectious cDNA clone of bovine viral diarrhea virus (BVDV) [J. Virol. 70 (1996) 8606]. After deletion of the envelope protein E2-encoding region, the respective sequence of classical swine fever virus (CSFV) strain Alfort 187 was inserted in-frame resulting in plasmid pA/CP7 E 2alf. After transfection of in vitro-transcribed CP7 E 2alf RNA, autonomous replication of chimeric RNA in bovine and porcine cell cultures was observed. Efficient growth of chimeric CP7 E 2alf virus, however, could only be demonstrated on porcine cells, and in contrast to the parental BVDV strain CP7, CP7 E 2alf only inefficiently infected and propagated in bovine cells. The virulence, immunogenicity, and 'marker vaccine' properties of the generated chimeric CP7 E 2alf virus were determined in an animal experiment using 27 pigs. After intramuscular inoculation of 1 x 10 7 TCID 50 , CP7 E 2alf proved to be completely avirulent, and neither viremia nor virus transmission to contact animals was observed; however, CSFV-specific neutralizing antibodies were detected from day 11 after inoculation. In addition, sera from all animals reacted positive in an E2-specific CSFV-antibody ELISA, but were negative for CSFV-E RNS -specific antibodies as determined with a CSFV marker ELISA. After challenge infection with highly virulent CSFV strain Eystrup, pigs immunized with CP7 E 2alf were fully protected against clinical signs of CSFV infection, viremia, and shedding of challenge virus, and almost all animals scored positive in a CSFV marker ELISA. From our results, we conclude that chimeric CP7 E 2alf may not only serve as a tool for a better understanding of Pestivirus attachment, entry, and assembly, but also represents an innocuous and efficacious modified live CSFV 'marker vaccine'

  1. Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Hoang, Truc; Agger, Else Marie; Cassidy, Joseph P

    2015-01-01

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including tuberculosis (TB), but it is not clear how PEM influences vaccine-promoted immunity to TB. We demonstrate that PEM during low-level steady-state TB infection in a mouse model results in rapid relapse...

  2. A 52 Kilodalton Protein Vaccine Candidate for Francisella tularensis

    Science.gov (United States)

    2004-12-01

    du vaccin vivant F. tularensis (LVS). Soixante pourcent (60%) des souris vaccindes ont survdcu la dose ltale multiple alors que toutes les souris non...le lysat des cellules de cultures vivantes du vaccin vivant F. tularensis. Plusieurs composants de Francisella tularensis ont dt6 identifids par cet...antiserum. Le s6rum de souris provenant de souris vaccin6es avec F. tularensis non- vivant n’a pas identifid ces composants. A partir de ces prot6ines

  3. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L.) Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.).

    Science.gov (United States)

    Das, Alok; Datta, Subhojit; Thakur, Shallu; Shukla, Alok; Ansari, Jamal; Sujayanand, G K; Chaturvedi, Sushil K; Kumar, P A; Singh, N P

    2017-01-01

    Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer ( Helicoverpa armigera H.) wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt ( cryI ) genes. We designed a plant codon optimized chimeric Bt gene ( cry1Aabc ) using three domains from three different cry1A genes (domains I, II, and III from cry1Aa , cry1Ab , and cry1Ac , respectively) and expressed it under the control of a constitutive promoter in chickpea ( cv . DCP92-3) to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic) shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L) with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering) were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay) led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  4. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L. Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.

    Directory of Open Access Journals (Sweden)

    Alok Das

    2017-08-01

    Full Text Available Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer (Helicoverpa armigera H. wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt (cryI genes. We designed a plant codon optimized chimeric Bt gene (cry1Aabc using three domains from three different cry1A genes (domains I, II, and III from cry1Aa, cry1Ab, and cry1Ac, respectively and expressed it under the control of a constitutive promoter in chickpea (cv. DCP92-3 to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  5. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2017-07-24

    Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The yellow fever 17D vaccine virus as a vector for the expression of foreign proteins: development of new live flavivirus vaccines

    Directory of Open Access Journals (Sweden)

    Myrna C Bonaldo

    2000-01-01

    Full Text Available The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF, dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

  7. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    Science.gov (United States)

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome

  8. Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice.

    Science.gov (United States)

    Zhao, Hui; Li, Hao-Yang; Han, Jian-Feng; Deng, Yong-Qiang; Zhu, Shun-Ya; Li, Xiao-Feng; Yang, Hui-Qin; Li, Yue-Xiang; Zhang, Yu; Qin, E-De; Chen, Rong; Qin, Cheng-Feng

    2015-01-19

    Hand-foot-and-mouth disease (HFMD) has been recognized as an important global public health issue, which is predominantly caused by enterovirus 71 (EV-A71) and coxsackievirus A16 (CVA16). There is no available vaccine against HFMD. An ideal HFMD vaccine should be bivalent against both EV-A71 and CVA16. Here, a novel strategy to produce bivalent HFMD vaccine based on chimeric EV-A71 virus-like particles (ChiEV-A71 VLPs) was proposed and illustrated. The neutralizing epitope SP70 within the capsid protein VP1 of EV-A71 was replaced with that of CVA16 in ChiEV-A71 VLPs. Structural modeling revealed that the replaced CVA16-SP70 epitope is well exposed on the surface of ChiEV-A71 VLPs. These VLPs produced in Saccharomyces cerevisiae exhibited similarity in both protein composition and morphology as naive EV-A71 VLPs. Immunization with ChiEV-A71 VLPs in mice elicited robust Th1/Th2 dependent immune responses against EV-A71 and CVA16. Furthermore, passive immunization with anti-ChiEV-A71 VLPs sera conferred full protection against lethal challenge of both EV-A71 and CVA16 infection in neonatal mice. These results suggested that this chimeric vaccine, ChiEV-A71 might have the potential to be further developed as a bivalent HFMD vaccine in the near future. Such chimeric enterovirus VLPs provide an alternative platform for bivalent HFMD vaccine development.

  9. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling...... regarding total protein tyrosine phosphorylation, TCR down-regulation, mobilization of intracellular free calcium, or induction of the activation markers CD69 and CD25....

  10. A Chimeric Protein PTEN-L-p53 Enters U251 Cells to Repress Proliferation and Invasion.

    Science.gov (United States)

    Xiao, Man; An, Yang; Wang, Fengling; Yao, Chao; Zhang, Chu; Xin, Junfang; Duan, Yongjian; Zhao, Xiaofang; Fang, Na; Ji, Shaoping

    2018-05-23

    PTEN, a well-known tumor suppressor, dephosphorylates PIP3 and inhibits AKT activity. A translational variant of PTEN has been identified and termed PTEN-Long (PTEN-L). The additional 173 amino acids (PTEN-L leader) at the N-terminal constitute a potential signal peptide. Differing from canonical PTEN, PTEN-L is secreted into the extracellular fluid and re-enters recipient cells, playing the similar roles as PTEN in vivo and in vitro. This character confers the PTEN-L a therapeutic ability via directly protein delivering instead of traditional DNA and RNA vector options. In the present study, we employed PTEN-L leader to assemble a fusion protein, PTEN-L-p53, inosculated with the transcriptional regulator TP53, which is another powerful tumor suppressor. We overexpressed PTEN-L-p53 in HEK293T cells and detected it in both the cytoplasm and nucleus. Subsequently, we found that PTEN-L-p53 was secreted outside of the cells and detected in the culture media by immunoblotting. Furthermore, we demonstrated that PTEN-L-p53 freely entered the cells and suppressed the viability of U251cells (p53 R273H , a cell line with p53 R273H-mutation). PTEN-L-p53 is composed of endogenous protein/peptide bearing low immunogenicity, and only the junction region between PTEN-L leader and p53 can act as a new immune epitope. Accordingly, this fusion protein can potentially be used as a therapeutic option for TP53-abnormality cancers. Copyright © 2018. Published by Elsevier Inc.

  11. Identification of putative agouti-related protein(87-132)-melanocortin-4 receptor interactions by homology molecular modeling and validation using chimeric peptide ligands.

    Science.gov (United States)

    Wilczynski, Andrzej; Wang, Xiang S; Joseph, Christine G; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Sorensen, Nicholas B; Shaw, Amanda M; Millard, William J; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-04-22

    Agouti-related protein (AGRP) is one of only two naturally known antagonists of G-protein-coupled receptors (GPCRs) identified to date. Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these melanocortin receptors. Insight into putative interactions between the antagonist AGRP amino acids with the melanocortin-4 receptor (MC4R) may be important for the design of unique ligands for the treatment of obesity related diseases and is currently lacking in the literature. A three-dimensional homology molecular model of the mouse MC4 receptor complex with the hAGRP(87-132) ligand docked into the receptor has been developed to identify putative antagonist ligand-receptor interactions. Key putative AGRP-MC4R interactions include the Arg111 of hAGRP(87-132) interacting in a negatively charged pocket located in a cavity formed by transmembrane spanning (TM) helices 1, 2, 3, and 7, capped by the acidic first extracellular loop (EL1) and specifically with the conserved melanocortin receptor residues mMC4R Glu92 (TM2), mMC4R Asp114 (TM3), and mMC4R Asp118 (TM3). Additionally, Phe112 and Phe113 of hAGRP(87-132) putatively interact with an aromatic hydrophobic pocket formed by the mMC4 receptor residues Phe176 (TM4), Phe193 (TM5), Phe253 (TM6), and Phe254 (TM6). To validate the AGRP-mMC4R model complex presented herein from a ligand perspective, we generated nine chimeric peptide ligands based on a modified antagonist template of the hAGRP(109-118) (Tyr-c[Asp-Arg-Phe-Phe-Asn-Ala-Phe-Dpr]-Tyr-NH(2)). In these chimeric ligands, the antagonist AGRP Arg-Phe-Phe residues were replaced by the melanocortin agonist His/D-Phe-Arg-Trp amino acids. These peptides resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs). The most notable results include the identification of a novel subnanomolar melanocortin peptide

  12. Enhancing production and cytotoxic activity of polymeric soluble FasL-based chimeric proteins by concomitant expression of soluble FasL.

    Directory of Open Access Journals (Sweden)

    Aurore Morello

    Full Text Available Membrane FasL is the natural trigger of Fas-mediated apoptosis. A soluble homotrimeric counterpart (sFasL also exists which is very weakly active, and needs oligomerization beyond its trimeric state to induce apoptosis. We recently generated a soluble FasL chimera by fusing the immunoglobulin-like domain of the leukemia inhibitory factor receptor gp190 to the extracellular region of human FasL, which enabled spontaneous dodecameric homotypic polymerization of FasL. This polymeric soluble human FasL (pFasL displayed anti-tumoral activity in vitro and in vivo without systemic cytotoxicity in mouse. In the present work, we focused on the improvement of pFasL, with two complementary objectives. First, we developed more complex pFasL-based chimeras that contained a cell-targeting module. Secondly, we attempted to improve the production and/or the specific activity of pFasL and of the cell-targeting chimeras. We designed two chimeras by fusing to pFasL the extracellular portions of the HLA-A2 molecule or of a human gamma-delta TCR, and analyzed the consequences of co-expressing these molecules or pFasL together with sFasL on their heterotopic cell production. This strategy significantly enhanced the production of pFasL and of the two chimeras, as well as the cytotoxic activity of the two chimeras but not of pFasL. These results provide the proof of concept for an optimization of FasL-based chimeric proteins for a therapeutic use.

  13. Study of the peptide length and amino acid specific substitution in the antigenic activity of the chimeric synthetic peptides, containing the p19 core and gp46 envelope proteins of the HTLV-I virus.

    Science.gov (United States)

    Marin, Milenen Hernández; Rodríguez-Tanty, Chryslaine; Higginson-Clarke, David; Bocalandro, Yadaris Márquez; Peña, Lilliam Pozo

    2005-10-28

    Four chimeric synthetic peptides (Q5, Q6, Q7(multiply sign in circle), and Q8(multiply sign in circle)), incorporating immunodominant epitopes of the core p19 (105-124 a.a.) and envelope gp46 proteins (175-205 a.a.), of HTLV-I were obtained. Also, two gp46 monomeric peptides M4 and M5(multiply sign in circle) (Ser at position 192) were synthesized. The analysis of the influence of the peptide lengths and the proline to serine substitution on the chimeric and monomeric peptides' antigenicity, with regard to the chimeric peptides Q1, Q2, Q3(multiply sign in circle), and Q4(multiply sign in circle), reported previously, for HTLV-I was carried out. The peptides' antigenicity was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of HTLV-I/II. The peptides' antigenicity was affected appreciably by the change of the peptide length and amino acid substitutions into the immunodominant sequence of gp46 peptide.

  14. Redirecting Therapeutic T Cells against Myelin-Specific T Lymphocytes Using a Humanized Myelin Basic Protein-HLA-DR2-{zeta} Chimeric Receptor

    DEFF Research Database (Denmark)

    Moisini, Ioana; Nguyen, Phuong; Fugger, Lars

    2008-01-01

    Therapies that Ag-specifically target pathologic T lymphocytes responsible for multiple sclerosis (MS) and other autoimmune diseases would be expected to have improved therapeutic indices compared with Ag-nonspecific therapies. We have developed a cellular immunotherapy that uses chimeric receptors...... mouse model system. Finally, the chimeric receptor-modified CTL ameliorated or blocked experimental allergic encephalomyelitis (EAE) disease mediated by MBP(84-102)/DR2-specific T lymphocytes. These results provide support for the further development of redirected therapeutic T cells able to counteract...... pathologic, self-specific T lymphocytes, and specifically validate humanized MBP-DR2-zeta chimeric receptors as a potential therapeutic in MS. Udgivelsesdato: 2008-Mar-1...

  15. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    Science.gov (United States)

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  16. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  17. Transfer of C-terminal residues of human apolipoprotein A-I to insect apolipophorin III creates a two-domain chimeric protein with enhanced lipid binding activity.

    Science.gov (United States)

    Horn, James V C; Ellena, Rachel A; Tran, Jesse J; Beck, Wendy H J; Narayanaswami, Vasanthy; Weers, Paul M M

    2017-08-01

    Apolipophorin III (apoLp-III) is an insect apolipoprotein (18kDa) that comprises a single five-helix bundle domain. In contrast, human apolipoprotein A-I (apoA-I) is a 28kDa two-domain protein: an α-helical N-terminal domain (residues 1-189) and a less structured C-terminal domain (residues 190-243). To better understand the apolipoprotein domain organization, a novel chimeric protein was engineered by attaching residues 179 to 243 of apoA-I to the C-terminal end of apoLp-III. The apoLp-III/apoA-I chimera was successfully expressed and purified in E. coli. Western blot analysis and mass spectrometry confirmed the presence of the C-terminal domain of apoA-I within the chimera. While parent apoLp-III did not self-associate, the chimera formed oligomers similar to apoA-I. The chimera displayed a lower α-helical content, but the stability remained similar compared to apoLp-III, consistent with the addition of a less structured domain. The chimera was able to solubilize phospholipid vesicles at a significantly higher rate compared to apoLp-III, approaching that of apoA-I. The chimera was more effective in protecting phospholipase C-treated low density lipoprotein from aggregation compared to apoLp-III. In addition, binding interaction of the chimera with phosphatidylglycerol vesicles and lipopolysaccharides was considerably improved compared to apoLp-III. Thus, addition of the C-terminal domain of apoA-I to apoLp-III created a two-domain protein, with self-association, lipid and lipopolysaccharide binding properties similar to apoA-I. The apoA-I like behavior of the chimera indicate that these properties are independent from residues residing in the N-terminal domain of apoA-I, and that they can be transferred from apoA-I to apoLp-III. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Thermal Stabilization of Vaccines Against Agents of Bioterrorism

    Science.gov (United States)

    2005-09-01

    intramuscular administration of an adenovirusbased vaccine encoding humanized protective antigen. Hum Gene Ther 14(17): 1673-1682. 7. Abrami L, Lindsay M...1-106) against valley fever was synthesized and purified by scientists at the Southern Arizona Veterans Administrations Medical Center. The reverse...storage stability, more like the original constructs. 60 The chimeric valley fever protein was encapsulated into nanoparticles in an effort to improve

  19. Expression of chimeric HCV peptide in transgenic tobacco plants ...

    African Journals Online (AJOL)

    Expression of chimeric HCV peptide in transgenic tobacco plants infected with recombinant alfalfa mosaic virus for development of a plant-derived vaccine against HCV. AK El Attar, AM Shamloul, AA Shalaby, BY Riad, A Saad, HM Mazyad, JM Keith ...

  20. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    International Nuclear Information System (INIS)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-01

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A ⁎ 02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A ⁎ 02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties

  1. Immunological evaluation in nonhuman primates of formulations based on the chimeric protein P64k-domain III of dengue 2 and two components of Neisseria meningitidis.

    Science.gov (United States)

    Valdés, Iris; Hermida, Lisset; Martín, Jorge; Menéndez, Tamara; Gil, Lázaro; Lazo, Laura; Castro, Jorge; Niebla, Olivia; López, Carlos; Bernardo, Lídice; Sánchez, Jorge; Romero, Yaremis; Martínez, Rafael; Guzmán, María G; Guillén, Gerardo

    2009-02-11

    The main problem in the development of successful vaccines against dengue based on recombinant proteins is the necessity to use potent adjuvants to reach a proper functional immune response. Our group reported the expression, characterization and immunological evaluation of the recombinant protein PD5, which contains the domain III of the Envelope protein from dengue 2 virus fused to the carrier protein P64k. This construct completely protected monkeys against viral challenge when the Freund's adjuvant was employed. Therefore, to define suitable formulations for human use, the present work relies on the evaluation of PD5, produced with a high purity and under GMP conditions, when formulated either with outer membrane vesicles (OMV) or the serogroup A capsular polysaccharide (CPS-A) from Neisseria meningitidis, both adsorbed on aluminium hydroxide. The antibody response to the formulation containing the CPS-A was clearly superior to that of the formulation with OMV. The experiment of in vivo protection supported this evidence, since only the group immunized with PD5 and CPS-A was partially protected upon viral challenge. This is the first study in which the polysaccharide A of N. meningitidis is successfully employed as adjuvant for viral antigens.

  2. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    Science.gov (United States)

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    Science.gov (United States)

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  4. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells.

    Science.gov (United States)

    Nallet, Sophie; Amacker, Mario; Westerfeld, Nicole; Baldi, Lucia; König, Iwo; Hacker, David L; Zaborosch, Christiane; Zurbriggen, Rinaldo; Wurm, Florian M

    2009-10-30

    Although respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors. It was then purified and formulated in immunostimulating reconstituted influenza virosomes (IRIVs). The candidate vaccine induced anti-RSV-F neutralizing antibodies in mice, and challenge studies in cotton rats are ongoing. If successful in preclinical and clinical trials, this will be the first recombinant subunit vaccine produced by large-scale TGE in mammalian cells.

  5. Meningococcal factor H binding proteins in epidemic strains from Africa: implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Rolando Pajon

    2011-09-01

    Full Text Available Factor H binding protein (fHbp is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH, which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains.We investigated genes encoding fHbp in 106 serogroup A, W-135 and X case isolates from 17 African countries. We determined complement-mediated bactericidal activity of antisera from mice immunized with recombinant fHbp vaccines, or a prototype native outer membrane vesicle (NOMV vaccine from a serogroup B mutant strain with over-expressed fHbp. Eighty-six of the isolates (81% had one of four prevalent fHbp sequence variants, ID 4/5 (serogroup A isolates, 9 (W-135, or 74 (X in variant group 1, or ID 22/23 (W-135 in variant group 2. More than one-third of serogroup A isolates and two-thirds of W-135 isolates tested had low fHbp expression while all X isolates tested had intermediate or high expression. Antisera to the recombinant fHbp vaccines were generally bactericidal only against isolates with fHbp sequence variants that closely matched the respective vaccine ID. Low fHbp expression also contributed to resistance to anti-fHbp bactericidal activity. In contrast to the recombinant vaccines, the NOMV fHbp ID 1 vaccine elicited broad anti-fHbp bactericidal activity, and the antibodies had greater ability to inhibit binding of fH to fHbp than antibodies elicited by the control recombinant fHbp ID 1 vaccine.NOMV vaccines from mutants with increased fHbp expression elicit an antibody repertoire with greater bactericidal activity than recombinant fHbp vaccines. NOMV vaccines are promising for prevention of meningococcal disease in Africa and could be used to supplement coverage conferred by a serogroup A polysaccharide-protein conjugate vaccine recently introduced in some sub

  6. Protective value of immune responses developed in goats vaccinated with insoluble proteins from Sarcoptes Scabiei

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2005-06-01

    Full Text Available Vaccines developed from certain membrane proteins lining the lumen of arthropod’s gut have been demonstrated effective in the control of some arthropod ectoparasites. A similar approach could also be applied to Sarcoptes scabiei since this parasite also ingests its host immunoglobulins. To evaluate immune protection of the membrane proteins, insoluble mite proteins were fractionated by successive treatment in the solutions of 1.14 M NaCl, 2% SB 3-14 Zwitterion detergent, 6 M urea, 6 M guanidine-HCl and 5% SDS. Five groups of goats (6 or 7 goats per group were immunised respectively with the protein fractions. Vaccination was performed 6 times, each with a dosage of 250 μg proteins, and 3 week intervals between vaccination. Group 6 (7 goats received PBS and adjuvant only, and served as an unvaccinated control. One week after the last vaccination, all goats were challenged with 2000 live mites on the auricles. The development of lesions were examined at 1 day, 2 days, and then every week from week 1 to 8. All animals were bled and weighed every week, and at the end of the experiment, skin scrapings were collected to determine the mite burden. Antibody responses induced by vaccination and challenge were examined by ELISA and Western blotting. This experiment showed that vaccination with the insoluble-protein fractions resulted in the development of high level of specific antibodies but the responses did not have any protective value. The severity of lesions and mite burden in the vaccinated animals were not different from those in the unvaccinated control.

  7. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  8. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Pinzan

    Full Text Available Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6 or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6 to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  9. The fimbrial protein FlfA from Gallibacterium anatis is a virulence factor and vaccine candidate

    DEFF Research Database (Denmark)

    Bager, Ragnhild Jørgensen; Nesta, Barbara; Pors, Susanne Elisabeth

    2013-01-01

    in the natural chicken host. Furthermore, protection against G. anatis 12656-12 could be induced by immunizing chickens with recombinant FlfA. Finally, in vitro expression of FlfA homologs was observed in a genetically diverse set of G. anatis strains, suggesting the potential of FlfA as a serotype-independent...... vaccine candidate This is the first study describing a fimbrial subunit protein of G. anatis with a clear potential as a vaccine antigen....

  10. A LEA protein for improving abiotic stress tolerance and vaccine production in transgenic plants

    OpenAIRE

    Ling, Huai-Yian

    2017-01-01

    The use of transgenic plants to produce novel products has great biotechnological potential as relatively inexpensive inputs (e.g. light, water, and nutrients) are required in return for potentially valuable outputs (e.g. bioactive metabolites, diagnostic proteins and vaccines). Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines (PMV) of importance for both animals and humans. Avian influenza (AI) infection is endemic among birds, and al...

  11. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Science.gov (United States)

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  12. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Science.gov (United States)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  13. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    Science.gov (United States)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  14. Development of an Indirect ELISA Based on a Recombinant Chimeric Protein for the Detection of Antibodies against Bovine Babesiosis.

    Science.gov (United States)

    Jaramillo Ortiz, José Manuel; Montenegro, Valeria Noely; de la Fournière, Sofía Ana María; Sarmiento, Néstor Fabián; Farber, Marisa Diana; Wilkowsky, Silvina Elizabeth

    2018-01-23

    The current method for Babesia spp. serodiagnosis based on a crude merozoite antigen is a complex and time-consuming procedure. An indirect enzyme-linked immunosorbent assay (iELISA) based on a recombinant multi-antigen of Babesia bovis (rMABbO) was developed for detection of antibodies in bovines suspected of infection with this parasite. The multi-antigen comprises gene fragments of three previously characterized B. bovis antigens: MSA-2c, RAP-1 and the Heat Shock protein 20 that are well-conserved among geographically distant strains. The cutoff value for the new rMABbo-iELISA was determined using 75 known-positive and 300 known-negative bovine sera previously tested for antibodies to B. bovis by the gold-standard ELISA which uses a merozoite lysate. A cutoff value of ≥35% was determined in these samples by receiver operator characteristic (ROC) curve analysis, showing a sensitivity of 95.9% and a specificity of 94.3%. The rMABbo-iELISA was further tested in a blind trial using an additional set of 263 field bovine sera from enzootic and tick-free regions of Argentina. Results showed a good agreement with the gold standard test with a Cohen's kappa value of 0.76. Finally, the prevalence of bovine babesiosis in different tick enzootic regions of Argentina was analyzed where seropositivity values among 68-80% were obtained. A certain level of cross reaction was observed when samples from B. bigemina infected cattle were analyzed with the new test, which can be attributed to shared epitopes between 2 of the 3 antigens. This new rMABbo-iELISA could be considered a simpler alternative to detect anti Babesia spp. antibodies and appears to be well suited to perform epidemiological surveys at the herd level in regions where ticks are present.

  15. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins

    Czech Academy of Sciences Publication Activity Database

    Palani, K.; Pfeiferová, L.; Boušová, Kristýna; Bednárová, L.; Obšilová, Veronika; Vondrášek, J.

    2016-01-01

    Roč. 84, č. 10 (2016), s. 1358-1374 ISSN 0887-3585 Institutional support: RVO:67985823 Keywords : protein design * fusion proteins * PDZ3 * SH3 * Trp-cage * two domain proteins * molecular dynamics simulation * circular dichroism Subject RIV: BO - Biophysics Impact factor: 2.289, year: 2016

  16. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins

    Czech Academy of Sciences Publication Activity Database

    Palani, Kirubakaran; Pfeiferová, Lucie; Boušová, Kristýna; Bednárová, Lucie; Obšilová, V.; Vondrášek, Jiří

    2016-01-01

    Roč. 84, č. 10 (2016), s. 1358-1374 ISSN 0887-3585 Institutional support: RVO:61388963 Keywords : protein design * fusion proteins * PDZ3 * SH3 * Trp-cage * two domain proteins Subject RIV: CE - Biochemistry Impact factor: 2.289, year: 2016

  17. Immune responses of B. malayi thioredoxin (TRX) and venom allergen homologue (VAH) chimeric multiple antigen for lymphatic filariasis.

    Science.gov (United States)

    Anugraha, Gandhirajan; Jeyaprita, Parasurama Jawaharlal; Madhumathi, Jayaprakasam; Sheeba, Tamilvanan; Kaliraj, Perumal

    2013-12-01

    Although multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.

  18. Protein energy malnutrition alters mucosal IgA responses and reduces mucosal vaccine efficacy in mice.

    Science.gov (United States)

    Rho, Semi; Kim, Heejoo; Shim, Seung Hyun; Lee, Seung Young; Kim, Min Jung; Yang, Bo-Gie; Jang, Myoung Ho; Han, Byung Woo; Song, Man Ki; Czerkinsky, Cecil; Kim, Jae-Ouk

    2017-10-01

    Oral vaccine responsiveness is often lower in children from less developed countries. Childhood malnutrition may be associated with poor immune response to oral vaccines. The present study was designed to investigate whether protein energy malnutrition (PEM) impairs B cell immunity and ultimately reduces oral vaccine efficacy in a mouse model. Purified isocaloric diets containing low protein (1/10 the protein of the control diet) were used to determine the effect of PEM. PEM increased both nonspecific total IgA and oral antigen-specific IgA in serum without alteration of gut permeability. However, PEM decreased oral antigen-specific IgA in feces, which is consistent with decreased expression of polymeric Immunoglobulin receptor (pIgR) in the small intestine. Of note, polymeric IgA was predominant in serum under PEM. In addition, PEM altered B cell development status in the bone marrow and increased the frequency of IgA-secreting B cells, as well as IgA secretion by long-lived plasma cells in the small intestinal lamina propria. Moreover, PEM reduced the protective efficacy of the mucosally administered cholera vaccine and recombinant attenuated Salmonella enterica serovar Typhimurium vaccine in a mouse model. Our results suggest that PEM can impair mucosal immunity where IgA plays an important role in host protection and may partly explain the reduced efficacy of oral vaccines in malnourished subjects. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  19. Tat protein vaccination of cynomolgus macaques influences SHIV-89.6P cy243 epitope variability.

    Science.gov (United States)

    Ridolfi, Barbara; Genovese, Domenico; Argentini, Claudio; Maggiorella, Maria Teresa; Sernicola, Leonardo; Buttò, Stefano; Titti, Fausto; Borsetti, Alessandra; Ensoli, Barbara

    2008-02-01

    In a previous study we showed that vaccination with the native Tat protein controlled virus replication in five out of seven monkeys against challenge with the simian human immunodeficiency virus (SHIV)-89.6P cy243 and that this protection correlated with T helper (Th)-1 response and cytotoxic T lymphocyte (CTL) activity. To address the evolution of the SHIV-89.6P cy243 both in control and vaccinated infected monkeys, the sequence of the human immunodeficiency virus (HIV)-1 Tat protein and the C2-V3 Env region of the proviral-DNA-derived clones were analyzed in both control and vaccinated but unprotected animals. We also performed analysis of the T cell epitope using a predictive epitope model taking into consideration the phylogeny of the variants. Our results suggest that even though the viral evolution observed in both groups of monkeys was directed toward variations in the major histocompatibility complex (MHC)-I epitopes, in the control animals it was associated with mutational escape of such epitopes. On the contrary, it is possible that viral evolution in the vaccinated monkeys was linked to mutations that arose to keep high the viral fitness. In the vaccinated animals the reduction of epitope variability, obtained prompting the immune system by vaccination and inducing a specific immunological response against virus, was able to reduce the emergence of escape mutants. Thus the intervention of host's selective forces in driving CTL escape mutants and in modulating viral fitness appeared to be different in the two groups of monkeys. We concluded that in the vaccinated unprotected animals, vaccination with the Tat protein induced a broad antiviral response, as demonstrated by the reduced ability to develop escape mutants, which is known to help in the control of viral replication.

  20. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    Directory of Open Access Journals (Sweden)

    Anna P. Durbin

    2011-09-01

    Full Text Available Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  1. Next-generation dengue vaccines: novel strategies currently under development.

    Science.gov (United States)

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  2. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    Science.gov (United States)

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  3. Comparison of Immunoprotection of Leptospira Recombinant Proteins with conventional vaccine in experimental animals.

    Science.gov (United States)

    Parthiban, M; Kumar, S Senthil; Balachandran, C; Kumanan, K; Aarthi, K S; Nireesha, G

    2015-12-01

    Leptospirosis is a bacterial disease caused by bacteria of the genus Leptospira affecting humans and animals. Untreated leptospirosis may result in severe kidney damage, meningitis, liver failure, respiratory distress, and even death. Virulent leptospirosis can rapidly enter kidney fibroblasts and induce a programmed cell death. Thus, it is a challenge for immunologists to develop an effective and safe leptospirosis vaccine. Here, we compared the commercial canine leptospira vaccine and recombinant proteins (OmpL1 and LipL41) with and without adjuvant in terms of immune response and challenge studies in hamsters and immune response studies alone in experimental dogs. The outer membrane proteins viz., lipL41 and OmpL1 of leptospira interrogans serovars icterohaemorrhagiae were amplified. The primers were designed in such a way that amplified products of OmpL1 and lipL41 were ligated and cloned simultaneously into a single vector. The cloned products were expressed in E. coli BL21 cells. The immunoprotection studies were conducted for both recombinant proteins and commercial vaccine. The challenge experiment studies revealed that combination of both rLip41 and rOmpL1 and commercial vaccine gave 83% and 87% protection, respectively. Histopathological investigation revealed mild sub lethal changes were noticed in liver and kidney in commercially vaccinated group alone. The immune responses against recombinant leptospiral proteins were also demonstrated in dogs.

  4. 78 FR 70955 - Prospective Grant of Exclusive Patent License: GMCSF-BclxL-Derived Chimeric Therapeutics for Use...

    Science.gov (United States)

    2013-11-27

    ... Exclusive Patent License: GMCSF-BclxL- Derived Chimeric Therapeutics for Use in Treatment of Cancer...-BclxL-derived chimeric therapeutics and immunotherapeutics, alone or in combination, for restoring...: [email protected] . SUPPLEMENTARY INFORMATION: The subject invention is to a chimeric protein...

  5. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines.

    Science.gov (United States)

    Wedlock, D Neil; Aldwell, Frank E; Vordermeier, H Martin; Hewinson, R Glyn; Buddle, Bryce M

    2011-12-15

    Mycobacterium bovis bacille Calmette-Guérin (BCG) delivered to calves by the oral route in a formulated lipid matrix has been previously shown to induce protection against bovine tuberculosis. A study was conducted in cattle to determine if a combination of a low dose of oral BCG and a protein vaccine could induce protective immunity to tuberculosis while not sensitising animals to tuberculin. Groups of calves (10 per group) were vaccinated by administering 2 × 10(7)colony forming units (CFU) of BCG orally or a combination of 2 × 10(7)CFU oral BCG and a protein vaccine comprised of M. bovis culture filtrate proteins (CFP) formulated with the adjuvants Chitin and Gel 01 and delivered by the intranasal route, or CFP formulated with Emulsigen and the TLR2 agonist Pam(3)CSK(4) and administered by the subcutaneous (s.c.) route. Two further groups were vaccinated with the CFP/Chitin/Gel 01 or CFP/Emulsigen/Pam(3)CSK(4) vaccines alone. Positive control groups were given 10(8)CFU oral BCG or 10(6)CFU s.c. BCG while a negative control group was non-vaccinated. All animals were challenged with M. bovis 15 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Groups of cattle vaccinated with s.c. BCG, 10(8)CFU or 2 × 10(7)CFU oral BCG showed significant reductions in seven, three and four pathological or microbiological disease parameters, respectively, compared to the results for the non-vaccinated group. There was no evidence of protection in calves vaccinated with the combination of oral BCG and CFP/Emulsigen/Pam(3)CSK(4) or oral BCG and CFP/Chitin/Gel 01 or vaccinated with the protein vaccines alone. Positive responses in the comparative cervical skin test at 12 weeks after vaccination were only observed in animals vaccinated with s.c. BCG, 10(8)CFU oral BCG or a combination of 2 × 10(7)CFU oral BCG and CFP/Chitin/Gel 01. In conclusion, co-administration of a protein vaccine, administered by either systemic or mucosal routes with oral

  6. [VACCINES].

    Science.gov (United States)

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  7. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    Science.gov (United States)

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  8. A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV: An Immunoinformatics Approach

    Directory of Open Access Journals (Sweden)

    Mokhtar Nosrati

    2017-02-01

    Full Text Available Background: Hepatitis C virus (HCV causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric peptide as a novel epitope based vaccine for cross-protection against the virus. For this, one B and T-cell epitope from both E1 and E2 which was predicted by EPMLR and Propred-1 server and had the highest score and antigenicity in VaxiJen 2.0 and PAP servers were selected for construction of chimeric protein as a multi-epitope vaccine. Results: The results of this study showed that the chimeric peptide had high antigenicity score and stability.Results also showed that most epitopes of E1 were located in two spectra consist of (45-65,88-107 and 148-182 while the results about B-cell epitopes of E2 showed that this protein had much less epitope than E1. The most epitope predicted for E2 were located in (12-24 and 35-54 spectra Conclusion:  In conclusion, epitope based vaccine which was designed by immunoinformatics methods could be considered as a novel and effective vaccine for cross-protection against HCV infection.

  9. Immunization with a novel chimeric peptide representing B and T cell epitopes from HER2 extracellular domain (HER2 ECD) for breast cancer.

    Science.gov (United States)

    Mahdavi, Manijeh; Keyhanfar, Mehrnaz; Jafarian, Abbas; Mohabatkar, Hassan; Rabbani, Mohammad

    2014-12-01

    Because of direct stimulating immune system against disease, vaccination or active immunotherapy is preferable compared to passive immunotherapy. For this purpose, a newly designed chimeric peptide containing epitopes for both B and T cells from HER2 ECD subdomain III was proposed. To evaluate the effects of the active immunization, a discontinuous B cell epitope peptide was selected based on average antigenicity by bioinformatics analysis. The selected peptide was collinearly synthesized as a chimera with a T helper epitope from the protein sequence of measles virus fusion (208-302) using the GPSL linker. Three mice were immunized with the chimeric peptide. Reactive antibodies with HER2 protein in ELISA and immunofluorescence assays with no cross-reactivity were generated. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay indicated that the anti-peptide sera had inhibitory effects on proliferation of SK-BR-3 cells. Hence, the newly designed, discontinuous chimeric peptide representing B and T cell epitopes from subdomain III of HER2-ECD can form the basis for future vaccines design, where these data can be applied for monoclonal antibody production targeting the distinct epitope of HER2 receptor compared to the two broadly used anti-HER2 monoclonal antibodies, Herceptin and pertuzumab.

  10. Global epidemiology of serogroup B meningococcal disease and opportunities for prevention with novel recombinant protein vaccines.

    Science.gov (United States)

    Villena, Rodolfo; Safadi, Marco Aurelio P; Valenzuela, María Teresa; Torres, Juan P; Finn, Adam; O'Ryan, Miguel

    2018-04-18

    Meningococcal disease (MD) is a major cause of meningitis and sepsis worldwide, with a high case fatality rate and frequent sequelae. Neisseria meningitidis serogroups A, B, C, W, X and Y are responsible for most of these life-threatening infections, and its unpredictable epidemiology can cause outbreaks in communities, with significant health, social and economic impact. Currently, serogroup B is the main cause of MD in Europe and North America and one of the most prevalent serogroups in Latin America. Mass vaccination strategies using polysaccharide vaccines have been deployed since the 1970s and the use of conjugate vaccines has controlled endemic and epidemic disease caused by serogroups A, C, W and Y and more recently serogroup B using geographically-specific outer membrane vesicle based vaccines. Two novel protein-based vaccines are a significant addition to our armamentarium against N. meningitidis as they provide broad coverage against highly diverse strains in serogroup B and other groups. Early safety, effectiveness and impact data of these vaccines are encouraging. These novel serogroup B vaccines should be actively considered for individuals at increased risk of disease and to control serogroup B outbreaks occurring in institutions or specific regions, as they are likely to save lives and prevent severe sequelae. Incorporation into national programs will require thorough country-specific analysis.

  11. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Shu Ki Tsoi

    2015-01-01

    Full Text Available Group A streptococcus (GAS is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.

  12. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Science.gov (United States)

    Smeesters, Pierre R.; Frost, Hannah R. C.; Steer, Andrew C.

    2015-01-01

    Group A streptococcus (GAS) is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates. PMID:26101780

  13. A Chimeric protein of CFA/I, CS6 subunits and LTB/STa toxoid protects immunized mice against enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Zeinalzadeh, Narges; Salmanian, Ali Hatef; Goujani, Goli; Amani, Jafar; Ahangari, Ghasem; Akhavian, Asal; Jafari, Mahyat

    2017-07-01

    Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti-CF and anti-enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti-CF and antitoxin immunogenicity was then assessed. To achieve high-level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti-CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  14. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    The extremely high fatality rates of many filovirus (FILV) strains the recurrent but rarely identified origin of human epidemics, the only partly identified viral reservoirs and the continuing non-human primate epizootics in Africa make a broadly-protective filovirus vaccine highly desirable. Cytotoxic T-cells (CTL) have been shown to be protective in mice, guinea pigs and non-human primates. In murine models the cytotoxic T-cell epitopes that are protective against Ebola virus have been mapped and in non-human primates CTL-mediated protection between viral strains (John Dye: specify) has been demonstrated using two filoviral proteins, nucleoprotein (NP) and glycoprotein (GP). These immunological results suggest that the CTL avenue of immunity deserves consideration for a vaccine. The poorly-understood viral reservoirs means that it is difficult to predict what strains are likely to cause epidemics. Thus, there is a premium on developing a pan-filoviral vaccine. The genetic diversity of FILV is large, roughly the same scale as human immunodeficiency virus (HIV). This presents a serious challenge for the vaccine designer because a traditional vaccine aspiring to pan-filoviral coverage is likely to require the inclusion of many antigenic reagents. A recent method for optimizing cytotoxic T-cell lymphocyte epitope coverage with mosaic antigens was successful in improving potential CTL epitope coverage against HIV and may be useful in the context of very different viruses, such as the filoviruses discussed here. Mosaic proteins are recombinants composed of fragments of wild-type proteins joined at locations resulting in exclusively natural k-mers, 9 {le} k {le} 15, and having approximately the same length as the wild-type proteins. The use of mosaic antigens is motivated by three conjectures: (1) optimizing a mosaic protein to maximize coverage of k-mers found in a set of reference proteins will give better odds of including broadly-protective CTL epitopes in a vaccine

  15. Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles

    Directory of Open Access Journals (Sweden)

    Dhanasooraj D

    2013-02-01

    Full Text Available Dhananjayan Dhanasooraj, R Ajay Kumar, Sathish MundayoorMycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Kerala, IndiaAbstract: Nano-sized hepatitis B virus core virus-like particles (HBc-VLP are suitable for uptake by antigen-presenting cells. Mycobacterium tuberculosis antigen culture filtrate protein 10 (CFP-10 is an important vaccine candidate against tuberculosis. The purified antigen shows low immune response without adjuvant and tends to have low protective efficacy. The present study is based on the assumption that expression of these proteins on HBc nanoparticles would provide higher protection when compared to the native antigen alone. The cfp-10 gene was expressed as a fusion on the major immunodominant region of HBc-VLP, and the immune response in Balb/c mice was studied and compared to pure proteins, a mixture of antigens, and fusion protein-VLP, all without using any adjuvant. The humoral, cytokine, and splenocyte cell proliferation responses suggested that the HBc-VLP bearing CFP-10 generated an antigen-specific immune response in a Th1-dependent manner. By virtue of its self-adjuvant nature and ability to form nano-sized particles, HBc-VLPs are an excellent vaccine delivery system for use with subunit protein antigens identified in the course of recent vaccine research.Keywords: Mycobacterium tuberculosis, VLP, hepatitis B virus core particle, CFP-10, self-adjuvant, vaccine delivery

  16. Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design.

    Science.gov (United States)

    Flanagan, Katie L; Wilson, Kirsty L; Plebanski, Magdalena

    2016-01-01

    The pre-erythrocytic stage of infection by malaria parasites represents a key target for vaccines that aim to eradicate malaria. Two important broad immune evasion strategies that can interfere with vaccine efficacy include the induction of dendritic cell (DC) dysfunction and regulatory T cells (Tregs) by blood-stage malaria parasites, leading to inefficient priming of T cells targeting liver-stage infections. The parasite also uses 'surgical strike' strategies, whereby polymorphism in pre-erythrocytic antigens can interfere with host immunity. Specifically, we review how even single amino acid changes in T cell epitopes can lead to loss of binding to major histocompatibility complex (MHC), lack of cross-reactivity, or antagonism and immune interference, where simultaneous or sequential stimulation with related variants of the same T cell epitope can cause T cell anergy or the conversion of effector to immunosuppressive T cell phenotypes.

  17. A cooperative interaction between nontranslated RNA sequences and NS5A protein promotes in vivo fitness of a chimeric hepatitis C/GB virus B.

    Directory of Open Access Journals (Sweden)

    Lucile Warter

    Full Text Available GB virus B (GBV-B is closely related to hepatitis C virus (HCV, infects small non-human primates, and is thus a valuable surrogate for studying HCV. Despite significant differences, the 5' nontranslated RNAs (NTRs of these viruses fold into four similar structured domains (I-IV, with domains II-III-IV comprising the viral internal ribosomal entry site (IRES. We previously reported the in vivo rescue of a chimeric GBV-B (vGB/III(HC containing HCV sequence in domain III, an essential segment of the IRES. We show here that three mutations identified within the vGB/III(HC genome (within the 3'NTR, upstream of the poly(U tract, and NS5A coding sequence are necessary and sufficient for production of this chimeric virus following intrahepatic inoculation of synthetic RNA in tamarins, and thus apparently compensate for the presence of HCV sequence in domain III. To assess the mechanism(s underlying these compensatory mutations, and to determine whether 5'NTR subdomains participating in genome replication do so in a virus-specific fashion, we constructed and evaluated a series of chimeric subgenomic GBV-B replicons in which various 5'NTR subdomains were substituted with their HCV homologs. Domains I and II of the GBV-B 5'NTR could not be replaced with HCV sequence, indicating that they contain essential, virus-specific RNA replication elements. In contrast, domain III could be swapped with minimal loss of genome replication capacity in cell culture. The 3'NTR and NS5A mutations required for rescue of the related chimeric virus in vivo had no effect on replication of the subgenomic GBneoD/III(HC RNA in vitro. The data suggest that in vivo fitness of the domain III chimeric virus is dependent on a cooperative interaction between the 5'NTR, 3'NTR and NS5A at a step in the viral life cycle subsequent to genome replication, most likely during particle assembly. Such a mechanism may be common to all hepaciviruses.

  18. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems

    DEFF Research Database (Denmark)

    Hamborg, Mette; Rose, Fabrice; Jorgensen, Lene

    2014-01-01

    is generally known about how antigens and adjuvants interact at the molecular level. The aim of this study was to elucidate the mechanisms of interactions between the equally sized, but oppositely charged model protein antigens α-lactalbumin and lysozyme, and i) the clinically tested cationic liposomal...... antigens are presented to antigen-presenting cells, and may play an important role for the efficacy of the vaccine-induced immune response. These studies thus exemplify the importance of characterizing the molecular interactions between the vaccine antigen and adjuvant along with immunogenicity......The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little...

  19. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.

    Science.gov (United States)

    Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J

    2014-06-01

    The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.

  20. Designing and modeling of complex DNA vaccine based on tropomyosin protein of Boophilus genus tick.

    Science.gov (United States)

    Ranjbar, Mohamamd Mahdi; Gupta, Shishir K; Ghorban, Khodayar; Nabian, Sedigheh; Sazmand, Alireza; Taheri, Mohammad; Esfandyari, Sahar; Taheri, Maryam

    2015-01-01

    Boophilus tick is a bloodsucking ectoparasite that transfers some pathogens, reducing production and thus leading to economical losses in the cattle industry. Tropomyosin (TPM) protein is a salivary protein, has actin regulator activity, and plays an important role in immune reactions against parasites. In the current study, besides developing a safe, effective, and broad spectrum protective measure against Boophilus genus tick based on TPM protein, we attempted to minimize possible problems occurring in the design of polytopic vaccines. Briefly, the steps that were followed in the present study were as follows: retrieving sequences and finding the mutational/conservative regions, selecting consensus and high immunogenic epitopes of B and CD4(+) T cells by different approaches, three-dimensional structure (3D structure) prediction and representation of epitopes and highly variable/conserve regions, designing vaccinal construct by fusion of B and T cell epitopes by special patterns and improving immunogenicity, evaluation of the constructs' primary structure and posttranslational modification, calculation of hydrophobic regions, reverse translation, codon optimization, open reading frame checking, insertion of start/end codon, Kozak sequence, and finally constructing the DNA vaccine. Variation plot showed some shared epitopes among the ticks' and mites' species that some might be effective only in some species. Finally, by following the steps mentioned above, two constructs for B and T cells were achieved. Checking constructs revealed their reliability and efficacy for in vitro production and utilization. Successful in silico modeling is an essential step of designing vigorous vaccines. We developed a novel protective and therapeutic vaccine against Boophilus genus (based on TPM protein). At the next step, constructed DNA vaccine would be produced in vitro and administrated to cattle, and its potency to induction of immune response and protection against Boophilus

  1. Preclinical assessment of viral vectored and protein vaccines targeting the Duffy-binding protein region II of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Simone C de Cassan

    2015-07-01

    Full Text Available Malaria vaccine development has largely focused on Plasmodium falciparum; however a reawakening to the importance of P. vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII with the human Duffy antigen receptor for chemokines (DARC, makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically-compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5, chimpanzee adenovirus serotype 63 (ChAd63 and modified vaccinia virus Ankara (MVA vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime, or in ‘mixed-modality’ adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant protein PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants. Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII and have recently entered clinical trials which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.

  2. Recombinant proteins as vaccines for protection against disease induced by infection with mink astrovirus

    DEFF Research Database (Denmark)

    2012-01-01

    and polypeptides of the capsid protein of a novel mink astrovirus strain denoted DK7627. Such polynucleotides and polypeptides may be used for the production of vaccines against mink astrovirus which may induce pre-weaning diarrhoea in minks. The invention furthermore relates to vectors, host cells, compositions...

  3. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    Science.gov (United States)

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4 + T and CD8 + T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  4. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    Science.gov (United States)

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  5. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Damte, Dereje; Suh, Joo-Won; Lee, Seung-Jin; Yohannes, Sileshi Belew; Hossain, Md Akil; Park, Seung-Chun

    2013-07-01

    In the present study, a computational comparative and subtractive genomic/proteomic analysis aimed at the identification of putative therapeutic target and vaccine candidate proteins from Kyoto Encyclopedia of Genes and Genomes (KEGG) annotated metabolic pathways of Mycoplasma hyopneumoniae was performed for drug design and vaccine production pipelines against M.hyopneumoniae. The employed comparative genomic and metabolic pathway analysis with a predefined computational systemic workflow extracted a total of 41 annotated metabolic pathways from KEGG among which five were unique to M. hyopneumoniae. A total of 234 proteins were identified to be involved in these metabolic pathways. Although 125 non homologous and predicted essential proteins were found from the total that could serve as potential drug targets and vaccine candidates, additional prioritizing parameters characterize 21 proteins as vaccine candidate while druggability of each of the identified proteins evaluated by the DrugBank database prioritized 42 proteins suitable for drug targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2014-12-01

    Full Text Available Virus-like particles (VLPs of chimeric porcine circovirus type 2 (PCV2 were generated by replacing the nuclear localization signal (NLS; at 1–39 aa of PCV2 capsid protein (Cap with classical swine fever virus (CSFV T-cell epitope (1446–1460 aa, CSFV B-cell epitope (693–716 aa and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopes did not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine.

  7. A clinical trial examining the effect of increased total CRM(197) carrier protein dose on the antibody response to Haemophilus influenzae type b CRM(197) conjugate vaccine.

    Science.gov (United States)

    Usonis, Vytautas; Bakasenas, Vytautas; Lockhart, Stephen; Baker, Sherryl; Gruber, William; Laudat, France

    2008-08-18

    CRM(197) is a carrier protein in certain conjugate vaccines. When multiple conjugate vaccines with the same carrier protein are administered simultaneously, reduced response to vaccines and/or antigens related to the carrier protein may occur. This study examined responses of infants who, in addition to diphtheria toxoid/tetanus toxoid/acellular pertussis vaccine (DTaP) received either diphtheria CRM(197)-based Haemophilus influenzae type b conjugate vaccine (HbOC) or HbOC and a diphtheria CRM(197)-based combination 9-valent pneumococcal conjugate vaccine/meningococcal group C conjugate vaccine. Administration of conjugate vaccines with CRM(197) carrier protein load >50 microg did not reduce response to CRM(197) conjugate vaccines or immunogenicity to immunologically cross-reactive diphtheria toxoid.

  8. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    International Nuclear Information System (INIS)

    Zheng Min; Jin Ningyi; Liu Qi; Huo Xiaowei; Li Yang; Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze

    2009-01-01

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  9. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT).

    Science.gov (United States)

    McDowell, Mary Ann

    2015-08-01

    More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  11. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    Science.gov (United States)

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (Pmaxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Radioiodination of the protein complex of the VA-MENGOC-BC vaccine

    International Nuclear Information System (INIS)

    Caso, R.; Lastre, M.; Alvarez, L.

    1996-01-01

    In this work was made the labelling of the protein complex of the vaccine VA-MEMGOC-BC with I-125 in order to study its immunological responses. These proteins were in both forms: dissolved and conjugated with polisacarids of the C-group. There were used three methods of iodination: chloramine-T iodogen and lactoperoxidase. Was found out that dissolved proteins can be iodinated using these methods with 0,1 mCi of I-125, and the obtained specific activities were similar

  13. Use of recombinant capsid proteins in the development of a vaccine against foot-and-mouth disease virus (FMDV)

    DEFF Research Database (Denmark)

    Belsham, Graham; Bøtner, Anette

    2015-01-01

    -scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self...

  14. Effect of a mouse mammary tumor virus-derived protein vaccine on primary tumor development in mice

    NARCIS (Netherlands)

    Creemers, P.; Ouwehand, J.; Bentveizen, P.

    1978-01-01

    The vaccines used in this study were derived from purified murine mammary tumor virus (MuMTV) preparations. Approximately 60% of the protein fractions consisted of the major viral membrane glycoprotein gp52. Inoculation sc of 10 pg MuMTV-S-derived vaccine significantly delayed the appearance of

  15. Worldwide genetic variability of the Duffy binding protein: insights into Plasmodium vivax vaccine development.

    Directory of Open Access Journals (Sweden)

    Taís Nóbrega de Sousa

    Full Text Available The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBP(II, known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBP(II sequences will allow us to determine the minimum number of haplotypes (MNH to be included in a DBP-based vaccine of broad coverage. For that, all DBP(II sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBP(II genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBP(II sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48-84%. In addition, to identify related subgroups of DBP(II sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBP(II sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBP(II variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations.

  16. Worldwide genetic variability of the Duffy binding protein: insights into Plasmodium vivax vaccine development.

    Science.gov (United States)

    Nóbrega de Sousa, Taís; Carvalho, Luzia Helena; Alves de Brito, Cristiana Ferreira

    2011-01-01

    The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP) makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBP(II)), known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBP(II) sequences will allow us to determine the minimum number of haplotypes (MNH) to be included in a DBP-based vaccine of broad coverage. For that, all DBP(II) sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBP(II) genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total) would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBP(II) sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48-84%). In addition, to identify related subgroups of DBP(II) sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBP(II) sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBP(II) variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations.

  17. Application of recombinant hemagglutinin proteins as alternative antigen standards for pandemic influenza vaccines.

    Science.gov (United States)

    Choi, Yejin; Kwon, Seong Yi; Oh, Ho Jung; Shim, Sunbo; Chang, Seokkee; Chung, Hye Joo; Kim, Do Keun; Park, Younsang; Lee, Younghee

    2017-09-01

    The single radial immunodiffusion (SRID) assay, used to quantify hemagglutinin (HA) in influenza vaccines, requires reference reagents; however, because centralized production of reference reagents may slow the emergency deployment of vaccines, alternatives are needed. We investigated the production of HA proteins using recombinant DNA technology, rather than a traditional egg-based production process. The HA proteins were then used in an SRID assay as a reference antigen. We found that HA can be quantified in both egg-based and cell-based influenza vaccines when recombinant HAs (rHAs) are used as the reference antigen. Furthermore, we confirmed that rHAs obtained from strains with pandemic potential, such as H5N1, H7N3, H7N9, and H9N2 strains, can be utilized in the SRID assay. The rHA production process takes just one month, in contrast to the traditional process that takes three to four months. The use of rHAs may reduce the time required to produce reference reagents and facilitate timely introduction of vaccines during emergencies.

  18. Structure-activity relationships of the unique and potent agouti-related protein (AGRP)-melanocortin chimeric Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2 peptide template.

    Science.gov (United States)

    Wilczynski, Andrzej; Wilson, Krista R; Scott, Joseph W; Edison, Arthur S; Haskell-Luevano, Carrie

    2005-04-21

    The melanocortin receptor system consists of endogenous agonists, antagonists, G-protein coupled receptors, and auxiliary proteins that are involved in the regulation of complex physiological functions such as energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. Herein, we report the structure-activity relationship (SAR) of a new chimeric hAGRP-melanocortin agonist peptide template Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) that was characterized using amino acids previously reported in other melanocortin agonist templates. Twenty peptides were examined in this study, and six peptides were selected for (1)H NMR and computer-assisted molecular modeling structural analysis. The most notable results include the identification that modification of the chimeric template at the His position with Pro and Phe resulted in ligands that were nM mouse melanocortin-3 receptor (mMC3R) antagonists and nM mouse melanocortin-4 receptor (mMC4R) agonists. The peptides Tyr-c[beta-Asp-His-DPhe-Ala-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) and Tyr-c[beta-Asp-His-DNal(1')-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) resulted in 730- and 560-fold, respectively, mMC4R versus mMC3R selective agonists that also possessed nM agonist potency at the mMC1R and mMC5R. Structural studies identified a reverse turn occurring in the His-DPhe-Arg-Trp domain, with subtle differences observed that may account for the differences in melanocortin receptor pharmacology. Specifically, a gamma-turn secondary structure involving the DPhe(4) in the central position of the Tyr-c[beta-Asp-Phe-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) peptide may differentiate the mixed mMC3R antagonist and mMC4R agonist pharmacology.

  19. Comparison of the Protective Efficacy of DNA and Baculovirus-Derived Protein Vaccines for EBOLA Virus in Guinea Pigs

    National Research Council Canada - National Science Library

    Mellquist-Riemenschneider, Jenny L; Garrison, Aura R; Geisbert, Joan B; Saikh, Kamal U; Heidebrink, Kelli D

    2003-01-01

    .... Previously, a priming dose of a DNA vaccine expressing the glycoprotein (GP) gene of MARV followed by boosting with recombinant baculovirus-derived GP protein was found to confer protective immunity to guinea pigs (Hevey et al., 2001...

  20. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  1. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  2. [Study on immunogenicity of group A and group C meningococcal conjugate vaccine with coupling group B meningococcal outer membrane protein].

    Science.gov (United States)

    Ma, Fu-Bao; Tao, Hong; Wang, Hong-Jun

    2009-10-01

    To evaluate the Immunogenicity of Group A and Group C Meningococcal conjugate Vaccine with coupling Group B Meningococcal Outer Membrane Protein (Men B-OMP). 458 healthy children aged 3-5 months, 6-23 months, 2-6 years and 7-24 years were given the Groups A and C conjugate Vaccine with MenB-OMP or other vaccine as control group to measure the pre-and post-vaccination Men A and C and B by Serum Bactericidal Assay (SBA) in the double-blind randomized controlled trial. 97.65%-100% were 4 times or greater increase in SBA titer for the healthy children given the Groups A and C conjugate Vaccine with MenB-OMP, The geometric mean titer of SBA were 1:194-1:420, which significantly higber than controls. The Group A and C conjugate Vaccine with MenB-OMP was safe and well immunogenic.

  3. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies

    OpenAIRE

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Milne, Kathryn H.; Rawlinson, Thomas A.; Llewellyn, David; Shakri, A. Rushdi; Jin, Jing; Labb?, Genevi?ve M.; Edwards, Nick J.; Poulton, Ian D.; Roberts, Rachel; Farid, Ryan; J?rgensen, Thomas; Alanine, Daniel G.W.

    2017-01-01

    BACKGROUND: Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite's Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vac...

  4. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  5. Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone

    International Nuclear Information System (INIS)

    Balasuriya, Udeni B.R.; Dobbe, Jessika C.; Heidner, Hans W.; Smalley, Victoria L.; Navarrette, Andrea; Snijder, Eric J.; MacLachlan, N. James

    2004-01-01

    We have used an infectious cDNA clone of equine arteritis virus (EAV) and reverse genetics technology to further characterize the neutralization determinants in the GP5 envelope glycoprotein of the virus. We generated a panel of 20 recombinant viruses, including 10 chimeric viruses that each contained the ORF5 (which encodes GP5) of different laboratory, field, and vaccine strains of EAV, a chimeric virus containing the N-terminal ectodomain of GP5 of a European strain of porcine reproductive and respiratory syndrome virus, and 9 mutant viruses with site-specific substitutions in their GP5 proteins. The neutralization phenotype of each recombinant chimeric/mutant strain of EAV was determined with EAV-specific monoclonal antibodies and EAV strain-specific polyclonal equine antisera and compared to that of their parental viruses from which the substituted ORF5 was derived. The data unequivocally confirm that the GP5 ectodomain contains critical determinants of EAV neutralization. Furthermore, individual neutralization sites are conformationally interactive, and the interaction of GP5 with the unglycosylated membrane protein M is likely critical to expression of individual epitopes in neutralizing conformation. Substitution of individual amino acids within the GP5 ectodomain usually resulted in differences in neutralization phenotype of the recombinant viruses, analogous to differences in the neutralization phenotype of field strains of EAV and variants generated during persistent infection of EAV carrier stallions

  6. Rapid Engineering of Foot-and-Mouth Disease Vaccine and Challenge Viruses.

    Science.gov (United States)

    Lee, Seo-Yong; Lee, Yeo-Joo; Kim, Rae-Hyung; Park, Jeong-Nam; Park, Min-Eun; Ko, Mi-Kyeong; Choi, Joo-Hyung; Chu, Jia-Qi; Lee, Kwang-Nyeong; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Seo, Min-Goo; Park, Jung-Won; Kim, Byounghan; Lee, Myoung-Heon; Lee, Jong-Soo; Park, Jong-Hyeon

    2017-08-15

    There are seven antigenically distinct serotypes of foot-and-mouth disease virus (FMDV), each of which has intratypic variants. In the present study, we have developed methods to efficiently generate promising vaccines against seven serotypes or subtypes. The capsid-encoding gene (P1) of the vaccine strain O1/Manisa/Turkey/69 was replaced with the amplified or synthetic genes from the O, A, Asia1, C, SAT1, SAT2, and SAT3 serotypes. Viruses of the seven serotype were rescued successfully. Each chimeric FMDV with a replacement of P1 showed serotype-specific antigenicity and varied in terms of pathogenesis in pigs and mice. Vaccination of pigs with an experimental trivalent vaccine containing the inactivated recombinants based on the main serotypes O, A, and Asia1 effectively protected them from virus challenge. This technology could be a potential strategy for a customized vaccine with challenge tools to protect against epizootic disease caused by specific serotypes or subtypes of FMDV. IMPORTANCE Foot-and-mouth disease (FMD) virus (FMDV) causes significant economic losses. For vaccine preparation, the selection of vaccine strains was complicated by high antigenic variation. In the present study, we suggested an effective strategy to rapidly prepare and evaluate mass-produced customized vaccines against epidemic strains. The P1 gene encoding the structural proteins of the well-known vaccine virus was replaced by the synthetic or amplified genes of viruses of seven representative serotypes. These chimeric viruses generally replicated readily in cell culture and had a particle size similar to that of the original vaccine strain. Their antigenicity mirrored that of the original serotype from which their P1 gene was derived. Animal infection experiments revealed that the recombinants varied in terms of pathogenicity. This strategy will be a useful tool for rapidly generating customized FMD vaccines or challenge viruses for all serotypes, especially for FMD-free countries

  7. Plant-expressed Fc-fusion protein tetravalent dengue vaccine with inherent adjuvant properties.

    Science.gov (United States)

    Kim, Mi Young; Copland, Alastair; Nayak, Kaustuv; Chandele, Anmol; Ahmed, Muhammad S; Zhang, Qibo; Diogo, Gil R; Paul, Matthew J; Hofmann, Sven; Yang, Moon-Sik; Jang, Yong-Suk; Ma, Julian K-C; Reljic, Rajko

    2017-12-09

    Dengue is a major global disease requiring improved treatment and prevention strategies. The recently licensed Sanofi Pasteur Dengvaxia vaccine does not protect children under the age of nine, and additional vaccine strategies are thus needed to halt this expanding global epidemic. Here, we employed a molecular engineering approach and plant expression to produce a humanized and highly immunogenic poly-immunoglobulin G scaffold (PIGS) fused to the consensus dengue envelope protein III domain (cEDIII). The immunogenicity of this IgG Fc receptor-targeted vaccine candidate was demonstrated in transgenic mice expressing human FcγRI/CD64, by induction of neutralizing antibodies and evidence of cell-mediated immunity. Furthermore, these molecules were able to prime immune cells from human adenoid/tonsillar tissue ex vivo as evidenced by antigen-specific CD4 + and CD8 + T-cell proliferation, IFN-γ and antibody production. The purified polymeric fraction of dengue PIGS (D-PIGS) induced stronger immune activation than the monomeric form, suggesting a more efficient interaction with the low-affinity Fcγ receptors on antigen-presenting cells. These results show that the plant-expressed D-PIGS have the potential for translation towards a safe and easily scalable single antigen-based tetravalent dengue vaccine. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite.

    Science.gov (United States)

    Mistarz, Ulrik H; Singh, Susheel K; Nguyen, Tam T T N; Roeffen, Will; Yang, Fen; Lissau, Casper; Madsen, Søren M; Vrang, Astrid; Tiendrebeogo, Régis W; Kana, Ikhlaq H; Sauerwein, Robert W; Theisen, Michael; Rand, Kasper D

    2017-09-01

    Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.

  9. Vaccine potential of recombinant saposin-like protein 2 against Fasciolosis gigantica in mice.

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Riengrojpitak, Suda; Chaichanasak, Pannigan; Meemon, Krai; Chaithirayanon, Kulathida; Chantree, Pathanin; Sansri, Veerawat; Itagaki, Tadashi; Sobhon, Prasert

    2013-11-12

    Saposin-like protein 2 (SAP-2) is a protein that adult of Fasciola spp. use to lyse plasma membrane of red blood cells, so that their contents can be digested by proteases for the parasites' nutrients. Thus SAP-2 is a plausible target for vaccination against these parasites. Recombinant Fasciola gigantica saposin-like protein 2 (rFgSAP-2) was expressed in Escherichia coli BL21 (DE3). A vaccination was performed in ICR mice (n=10) by subcutaneous injection with 50μg of rFgSAP-2 combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 30 F. gigantica metacercariae by oral route. The percentages of protection of rFgSAP-2 vaccine against F. gigantica were estimated to be 76.4-78.5% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The antibodies in immune sera of vaccinated mice were shown by immuno-blotting to react with native FgSAP-2 in the extract of 2- and 4-week-old juvenile parasites. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, it was found that both Th1 and Th2 humoral immune response were significantly increased in rFgSAP-2 immunized group compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rFgSAP-2-immunized group showed no significant difference from those of the non-immunized and infected group, indicating that early juvenile parasites induced liver parenchyma damage, even though the numbers of worm recoveries were significantly different. This study indicates that rFgSAP-2 has a high potential as a vaccine candidate against F. gigantica in mice, and this potential will be tested in larger economic animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Obtaining classical swine fever virus E2 recombinant protein and DNA-vaccine on the basis of one subunit

    International Nuclear Information System (INIS)

    Deryabin, O.; Deryabina, O.; Verbitskiy, P.; Kordyum, V.

    2005-01-01

    Three forms of E2 recombinant protein were expressed in E. coli. Swine sera obtained against different forms of the recombinant protein were cross-studied with indirect ELISA. Using individual proteins as an antigen, only 15% of sera against other forms of protein reacted positively, while 100% of heterologous sera showed positive reaction with fused protein. Challenge experiments showed the existence of protective action only from the individual protein. Specificity and activity of sera obtained from the animals after control challenge was confirmed in a blocking variant of ELISA. Genetic construction used a eukaryotic vector that contained the E2 protein gene. Immunization of mice with the resulting DNA induced synthesis of specific antibodies, the titre of which increased considerably after additional single immunization with the E2 recombinant protein, expressed in E. coli. This demonstrated the effectiveness of animal priming by DNA vaccine, and the possibility of using the E2 recombinant protein in E. coli for booster vaccination. (author)

  11. Assessment of a recombinant F1-V fusion protein vaccine intended to protect Canada lynx (Lynx canadensis) from plague

    Science.gov (United States)

    Wolfe, Lisa L.; Shenk, Tanya M.; Powell, Bradford; Rocke, Tonie E.

    2011-01-01

    As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log10 reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29–59%) unvaccinated lynx captured or recaptured in Colorado during 2000–08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.

  12. Impact of protein D-containing pneumococcal conjugate vaccines on non-typeable Haemophilus influenzae acute otitis media and carriage.

    Science.gov (United States)

    Clarke, Christopher; Bakaletz, Lauren O; Ruiz-Guiñazú, Javier; Borys, Dorota; Mrkvan, Tomas

    2017-07-01

    Protein D-containing vaccines may decrease acute otitis media (AOM) burden and nasopharyngeal carriage of non-typeable Haemophilus influenzae (NTHi). Protein D-containing pneumococcal conjugate vaccine PHiD-CV (Synflorix, GSK Vaccines) elicits robust immune responses against protein D. However, the phase III Clinical Otitis Media and PneumoniA Study (COMPAS), assessing PHiD-CV efficacy against various pneumococcal diseases, was not powered to demonstrate efficacy against NTHi; only trends of protective efficacy against NTHi AOM in children were shown. Areas covered: This review aims to consider all evidence available to date from pre-clinical and clinical phase III studies together with further evidence emerging from post-marketing studies since PHiD-CV has been introduced into routine clinical practice worldwide, to better describe the clinical utility of protein D in preventing AOM due to NTHi and its impact on NTHi nasopharyngeal carriage. Expert commentary: Protein D is an effective carrier protein in conjugate vaccines and evidence gathered from pre-clinical, clinical and observational studies suggest that it also elicits immune response that can help to reduce the burden of AOM due to NTHi. There remains a need to develop improved vaccines for prevention of NTHi disease, which could be achieved by combining protein D with other antigens.

  13. Vector prime/protein boost vaccine that overcomes defects acquired during aging and cancer

    DEFF Research Database (Denmark)

    Tang, Y.; Akbulut, H.; Maynard, J.

    2006-01-01

    We showed that the Ad-sig-TAA/ecdCD40L vaccine induces a tumor suppressive immune response to the hMUC-1 and rH2N tumor-associated self Ags (TAA) and to the Annexin A1 tumor vascular Ag, even in mice in which anergy exists to these Ags. When the TAA/ecdCD40L protein is given s.c. as a boost...... following the Ad-sig-TAA/ecdCD40L vector, the levels of the TAA-specific CD8 T cells and Abs increase dramatically over that seen with vector alone, in young (2-mo-old) as well as old (18-mo-old) mice. The Abs induced against hMUC-1 react with human breast cancer. This vaccine also induces a 4-fold...... decrement of negative regulatory CD4CD25FOXP3-T cells in the tumor tissue of 18-mo-old mice. These results suggest that the Ad-sig-TAA/ecdCD40L vector prime-TAA/ecdCD40L protein boost vaccine platform may be valuable in reducing postsurgery recurrence in a variety of epithelial neoplasms....

  14. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  15. Characterization and vaccine potential of Fasciola gigantica saposin-like protein 1 (SAP-1).

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Waseewiwat, Pinkamon; Thanasinpaiboon, Thanaporn; Cheukamud, Werachon; Chaichanasak, Pannigan; Sobhon, Prasert

    2017-01-15

    The recombinant Fasciola gigantica Saposin-like protien-1 (rFgSAP-1) was cloned by polymerase chain reaction (PCR) from NEJ cDNA, expressed in Escherichia coli BL21 (DE3) and used for production of a polyclonal antibody in rabbits (anti-rFgSAP-1). By immunoblotting and immunohistochemistry, rabbit IgG anti-rFgSAP-1 reacted with rFgSAP-1 at a molecular weight 12kDa, but not with rFgSAP-2. The rFgSAP-1 reacted with antisera from mouse infected with F. gigantica metacercariae collected at 2, 4, and 6 weeks after infection. The FgSAP-1 protein was expressed at a high level in the caecal epithelium of metacercariae and NEJs. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rFgSAP-1 combined with Alum adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae per mouse by the oral route. The percents protection of rFgSAP-1 vaccine were estimated to be 73.2% and 74.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The levels of IgG1 and IgG2a specific to rFgSAP-1 in the immune sera, which are indicative of Th2 and Th1 immune responses, were inversely and significantly correlated with the numbers of worm recoveries. The rFgSAP-1-vaccinated mice showed significantly reduced levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and liver damage. These indicated that rFgSAP-1 has strong potential as a vaccine candidate against F. gigantica, whose efficacy will be studied further in large economic animals including cattle, sheep, and goat. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Masaaki [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Morikawa, Katsuma [Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Suda, Tatsuya [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Ohno, Naohito [Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsushita, Sho [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Allergy Center, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Akatsuka, Toshitaka [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Handa, Hiroshi, E-mail: handa.h.aa@m.titech.ac.jp [Solutions Research Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503 (Japan); Matsui, Masanori, E-mail: mmatsui@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  17. Tailoring DNA vaccines: designing strategies against HER2 positive cancers

    Directory of Open Access Journals (Sweden)

    Cristina eMarchini

    2013-05-01

    Full Text Available The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing phase I clinical trial (EudraCT 2011-001104-34.

  18. Chimeric ZHHH neuroglobin acts as a cell membrane-penetrating inducer of neurite outgrowth.

    Science.gov (United States)

    Takahashi, Nozomu; Onozuka, Wataru; Watanabe, Seiji; Wakasugi, Keisuke

    2017-09-01

    Neuroglobin (Ngb) is a heme protein expressed in the vertebrate brain. We previously engineered a chimeric Ngb protein, in which module M1 of human Ngb is replaced by that of zebrafish Ngb, and showed that the chimeric ZHHH Ngb has a cell membrane-penetrating activity similar to that of zebrafish Ngb and also rescues cells from death caused by hypoxia/reoxygenation as does human Ngb. Recently, it was reported that overexpression of mammalian Ngb in neuronal cells induces neurite outgrowth. In this study, we performed neurite outgrowth assays of chimeric Ngb using rat pheochromocytoma PC12 cells. Addition of chimeric Ngb, but not human or zebrafish Ngb, exogenously to the cell medium induces neurite outgrowth. On the other hand, the K7A/K9Q chimeric Ngb double mutant, which cannot translocate into cells, did not induce neurite outgrowth, suggesting that the cell membrane-penetrating activity of the chimeric Ngb is crucial for its neurite outgrowth-promoting activity. We also prepared several site-directed chimeric Ngb mutants and demonstrated that residues crucial for neurite outgrowth-inducing activity of the chimeric Ngb are not exactly the same as those for its neuroprotective activity.

  19. Chimera: construction of chimeric sequences for phylogenetic analysis

    NARCIS (Netherlands)

    Leunissen, J.A.M.

    2003-01-01

    Chimera allows the construction of chimeric protein or nucleic acid sequence files by concatenating sequences from two or more sequence files in PHYLIP formats. It allows the user to interactively select genes and species from the input files. The concatenated result is stored to one single output

  20. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  1. Detection of antibodies against porcine parvovirus nonstructural protein NS1 may distinguish between vaccinated and infected pigs

    DEFF Research Database (Denmark)

    Madsen, Eva Smedegaard; Madsen, Knud Gert; Nielsen, Jens

    1997-01-01

    The humoral antibody response against the nonstructural protein NS1 and the structural protein VP2 of porcine parvovirus (PPV) was evaluated by immuno-peroxidase test (IPT) and enzyme linked immune sorbent assay (ELISA) using recombinant PPV antigens. The coding sequence for NS1 and VP2...... was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) genome resulting in two recombinant baculoviruses AcNPV-NS1 and AcNPV-VP2, respectively. Sf9 cells (Spodoptora frugidiperda) inoculated with AcNPV-NS1 producing recombinant nonstructural protein (rNS1) and AcNPV-VP2...... producing recombinant virion protein (rVP2) were used in IPT and ELISA to analyse serum antibodies. Pigs vaccinated with an inactivated whole virus vaccine and experimentally infected pigs were studied. Significant titers against rVP2 were obtained in both vaccinated and infected pigs. Specific antibodies...

  2. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome

    Science.gov (United States)

    Jiang, Shibo; Bottazzi, Maria Elena; Du, Lanying; Lustigman, Sara; Tseng, Chien-Te Kent; Curti, Elena; Jones, Kathryn; Zhan, Bin; Hotez, Peter J

    2013-01-01

    A subunit vaccine, RBD-S, is under development to prevent severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV), which is classified by the US NIH as a category C pathogen. This vaccine is comprised of a recombinant receptor-binding domain (RBD) of the SARS-CoV spike (S) protein and formulated on alum, together with a synthetic glucopyranosyl lipid A. The vaccine would induce neutralizing antibodies without causing Th2-type immunopathology. Vaccine development is being led by the nonprofit product development partnership; Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development in collaboration with two academic partners (the New York Blood Center and University of Texas Medical Branch); an industrial partner (Immune Design Corporation); and Walter Reed Army Institute of Research. A roadmap for the product development of the RBD-S SARS vaccine is outlined with a goal to manufacture the vaccine for clinical testing within the next 5 years. PMID:23252385

  3. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies

    Science.gov (United States)

    Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H.

    2017-01-01

    Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy. PMID:28448627

  4. Enhanced stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide.

    Science.gov (United States)

    Schumacher, Jens; Bacic, Tijana; Staritzbichler, René; Daneschdar, Matin; Klamp, Thorsten; Arnold, Philipp; Jägle, Sabrina; Türeci, Özlem; Markl, Jürgen; Sahin, Ugur

    2018-04-13

    Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element

  5. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumonia and correlates with phagocytosis by neutrophils during early pathogenesis.

    Science.gov (United States)

    Xu, Qingfu; Surendran, Naveen; Verhoeven, David; Klapa, Jessica; Ochs, Martina; Pichichero, Michael E

    2015-02-18

    Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation

  6. PROTECTIVE ACTIVITY STUDY OF A CANDIDATE VACCINE AGAINST ROTAVIRUS INFECTION BASED ON RECOMBINANT PROTEIN FliCVP6VP8

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2016-01-01

    Full Text Available Rotavirus infection is among leading causes of severe diarrhea which often leads to severe dehydration, especially, in children under 5 years old. In Russia, the incidence of rotavirus infection is constantly increased, due to higher rates of actual rotavirus infection cases and improved diagnostics of the disease. Immunity to rotavirus is unstable, thus causing repeated infections intra vitam. Anti-infectious resistance in reconvalescents is explained by induction of specific IgM, IgG, and, notably, IgA antibodies. Due to absence of market drugs with direct action against rotavirus, a rational vaccination is considered the most effective way to control the disease. Currently available vaccines for prevention of rotavirus infection are based on live attenuated rotavirus strains, human and/or animal origin, which replicate in human gut. Their implementation may result into different complications. Meanwhile, usage of vaccines based on recombinant proteins is aimed to avoid risks associated with introduction of a complete virus into humans. In this paper, we studied protective activity of candidate vaccines against rotavirus.In this work we studied protective activity of a candidate vaccine against rotavirus infection based on recombinant FliCVP6VP8 protein which includes VP6 and VP8, as well as components of Salmonella typhimurium flagellin (FliC as an adjuvant. Different components are joined by flexible bridges. Efficiency of the candidate vaccine was studied in animal model using Balb/c mice. We have shown high level of protection which occurs when the candidate vaccine is administered twice intramuscularly. Complete protection of animals against mouse rotavirus EDC after intramuscular immunization with a candidate vaccine was associated with arising rotavirus-specific IgA and IgG antibodies in serum and intestine of immunized animals. The efficacy of candidate vaccine based on recombinant protein FliCVP6VP8 against rotavirus infection was

  7. Protection of C57BL/10 mice by vaccination with association of purified proteins from Leishmania (Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    MORA Ana Mariela

    1999-01-01

    Full Text Available In the past few years, induction of protective immunity to cutaneous leishmaniasis has been attempted by many researchers using a variety of antigenic preparations, such as living promastigotes or promastigote extracts, partially purified, or defined proteins. In this study, eleven proteins from Leishmania (Leishmania amazonensis (LLa with estimated molecular mass ranging from 97 to 13.5kDa were isolated by polyacrylamide gel electrophoresis and electro-elution. The proteins were associated as vaccine in different preparations with gp63 and BCG (Bacilli Calmette-Guérin. The antigenicity of these vaccines was measured by their ability to induce the production of IFN-g by lymphocyte from subjects vaccinated with Leishvacinâ . The immunogenicity was evaluated in vaccinated mice. C57BL/10 mice were vaccinated with three doses of each vaccine consisting of 30 mg of each protein at 15 days interval. One hundred mg of live BCG was only used in the first dose. Seven days after the last dose, they received a first challenge infection with 105 infective promastigotes and four months later, a second challenge was done. Two months after the second challenge, 42.86% of protection was obtained in the group of mice vaccinated with association of proteins of gp63+46+22kDa, gp63+13.5+25+42kDa, gp63+46+42kDa, gp63+66kDa, and gp63+97kDa; 57.14% of protection was demonstrated with gp63+46+97+13.5kDa, gp63+46+97kDa, gp63+46+33kDa, and 71.43% protection for gp63 plus all proteins. The vaccine of gp63+46+40kDa that did not protect the mice, despite the good specific stimulation of lymphocytes (LSI = 7.60 and 10.77UI/ml of IFN-g production. When crude extract of L. (L. amazonensis was used with BCG a 57.14% of protection was found after the first challenge and 28.57% after the second, the same result was observed for gp63. The data obtained with the vaccines can suggest that the future vaccine probably have to contain, except the 40kDa, a cocktail of proteins that

  8. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection

    OpenAIRE

    Yang, Hui-Jie; Zhang, Jin-Yong; Wei, Chao; Yang, Liu-Yang; Zuo, Qian-Fei; Zhuang, Yuan; Feng, You-Jun; Srinivas, Swaminath; Zeng, Hao; Zou, Quan-Ming

    2016-01-01

    Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detail...

  10. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  11. Live virus vaccines based on a yellow fever vaccine backbone: standardized template with key considerations for a risk/benefit assessment.

    Science.gov (United States)

    Monath, Thomas P; Seligman, Stephen J; Robertson, James S; Guy, Bruno; Hayes, Edward B; Condit, Richard C; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called "chimeric virus vaccines"). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus, Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were exchanged for the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  12. Virus-like particles vaccine containing Clonorchis sinensis tegumental protein induces partial protection against Clonorchis sinensis infection.

    Science.gov (United States)

    Lee, Dong-Hun; Kim, Ah-Ra; Lee, Su-Hwa; Quan, Fu-Shi

    2017-12-29

    Human clonorchiasis, caused by the infection of Clonorchis sinensis, is one of the major health problems in Southeast Asia. However, vaccine efficacy against C. sinensis infection remains largely unknown. In this study, for the first time, we generated virus-like particles (VLPs) vaccine containing the C. sinensis tegumental protein 22.3 kDa (CsTP 22.3) and the influenza matrix protein (M1) as a core protein, and investigated the vaccine efficacy in Sprague-Dawley rats. Intranasal immunization of VLPs vaccine induced C. sinensis-specific IgG, IgG2a and IgG2c in the sera and IgA responses in the feces and intestines. Notably, upon challenge infection with C. sinensis metacercariae, significantly lower adult worm loads (70.2%) were measured in the liver of rats immunized with VLPs, compared to those of naïve rats. Furthermore, VLPs immunization induced antibody secreting cells (ASC) responses and CD4+/CD8+ T cell responses in the spleen. Our results indicated that VLPs vaccine containing C. sinensis CsTP 22.3 kDa provided partial protection against C. sisnensis infection. Thus, VLPs could be a potential vaccine candidate against C. sinensis.

  13. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice.

    Science.gov (United States)

    Maier, Elizabeth A; Weage, Kristina J; Guedes, Marjorie M; Denson, Lee A; McNeal, Monica M; Bernstein, David I; Moore, Sean R

    2013-12-17

    Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams' diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (Pvaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (PVaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (Pvaccination (Pvaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (Pvaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The recombinant globular head domain of the measles virus hemagglutinin protein as a subunit vaccine against measles.

    Science.gov (United States)

    Lobanova, Liubov M; Eng, Nelson F; Satkunarajah, Malathy; Mutwiri, George K; Rini, James M; Zakhartchouk, Alexander N

    2012-04-26

    Despite the availability of live attenuated measles virus (MV) vaccines, a large number of measles-associated deaths occur among infants in developing countries. The development of a measles subunit vaccine may circumvent the limitations associated with the current live attenuated vaccines and eventually contribute to global measles eradication. Therefore, the goal of this study was to test the feasibility of producing the recombinant globular head domain of the MV hemagglutinin (H) protein by stably transfected human cells and to examine the ability of this recombinant protein to elicit MV-specific immune responses. The recombinant protein was purified from the culture supernatant of stably transfected HEK293T cells secreting a tagged version of the protein. Two subcutaneous immunizations with the purified recombinant protein alone resulted in the production of MV-specific serum IgG and neutralizing antibodies in mice. Formulation of the protein with adjuvants (polyphosphazene or alum) further enhanced the humoral immune response and in addition resulted in the induction of cell-mediated immunity as measured by the production of MV H-specific interferon gamma (IFN-γ) and interleukin 5 (IL-5) by in vitro re-stimulated splenocytes. Furthermore, the inclusion of polyphosphazene into the vaccine formulation induced a mixed Th1/Th2-type immune response. In addition, the purified recombinant protein retained its immunogenicity even after storage at 37°C for 2 weeks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  16. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    Science.gov (United States)

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine.

    Directory of Open Access Journals (Sweden)

    Jacques C Mbongue

    Full Text Available Dendritic cells (DC interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS. Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1. Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention

  18. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite

    NARCIS (Netherlands)

    Mistarz, U.H.; Singh, S.K; Nguyen, T.; Roeffen, W.; Lissau, C.; Madsen, S.M.; Vrang, A.; Tiendrebeogo, R.W.; Kana, I.H.; Sauerwein, R.W.; Theisen, M.; Rand, K.D.

    2017-01-01

    PURPOSE: Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a

  19. Chimeric enzymes with improved cellulase activities

    Science.gov (United States)

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  20. Liver transplantation : chimerism, complications and matrix metalloproteinases

    NARCIS (Netherlands)

    Hove, Willem Rogier ten

    2011-01-01

    Chimerism after orthotopic liver transplantation (OLT) is the main focus of the studies described in this thesis. The first study showed that chimerism of different cell lineages within the liver graft does occur after OLT. Subsequently, in allogeneic blood stem cell recipients, chimerism was

  1. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.

    Science.gov (United States)

    Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas

    2009-07-20

    Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.

  2. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  3. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model.

    Science.gov (United States)

    Ermler, Megan E; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-06-15

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection. IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed. Copyright © 2017 American Society for Microbiology.

  4. Vaccination with Recombinant Non-transmembrane Domain of Protein Mannosyltransferase 4 Improves Survival during Murine Disseminated Candidiasis.

    Science.gov (United States)

    Wang, Li; Yan, Lan; Li, Xing Xing; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2015-01-01

    Candida albicans is the most common cause of invasive fungal infections in humans. The C. albicans cell wall proteins play an important role in crucial host-fungus interactions and might be ideal vaccine targets to induce protective immune response in host. Meanwhile, protein that is specific to C. albicans is also an ideal target of vaccine. In this study, 11 proteins involving cell wall biosynthesis, yeast-to-hypha formation, or specific to C. albicans were chosen and were successfully cloned, purified and verified. The immune protection of vaccination with each recombinant protein respectively in preventing systemic candidiasis in BALB/c mice was assessed. The injection of rPmt4p vaccination significantly increased survival rate, decreased fungal burdens in the heart, liver, brain, and kidneys, and increased serum levels of both immunoglobulin G (IgG) and IgM against rPmt4p in the immunized mice. Histopathological assessment demonstrated that rPmt4p vaccination protected the tissue structure, and decreased the infiltration of inflammatory cells. Passive transfer of the rPmt4p immunized serum increased survival rate against murine systemic candidiasis and significantly reduced organ fungal burden. The immune serum enhanced mouse neutrophil killing activity by directly neutralizing rPmt4p effects in vitro. Levels of interleukin (IL)-4, IL-10, IL-12p70, IL-17A and tumor necrosis factor (TNF)-α in serum were higher in the immunized mice compared to those in the adjuvant control group. In conclusion, our results suggested that rPmt4p vaccination may be considered as a potential vaccine candidate against systemic candidiasis.

  5. Live Virus Vaccines Based on a Yellow Fever Vaccine Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment*

    Science.gov (United States)

    Monath, Thomas P.; Seligman, Stephen J.; Robertson, James S.; Guy, Bruno; Hayes, Edward B.; Condit, Richard C.; Excler, Jean Louis; Mac, Lisa Marie; Carbery, Baevin; Chen, Robert T

    2015-01-01

    The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viruses inserted into the backbone of another virus (so-called “chimeric virus vaccines”). Many viral vector vaccines are in advanced clinical trials. The first such vaccine to be approved for marketing (to date in Australia, Thailand, Malaysia, and the Philippines) is a vaccine against the flavivirus Japanese encephalitis (JE), which employs a licensed vaccine (yellow fever 17D) as a vector. In this vaccine, two envelope proteins (prM-E) of YF 17D virus were replaced by the corresponding genes of JE virus, with additional attenuating mutations incorporated into the JE gene inserts. Similar vaccines have been constructed by inserting prM-E genes of dengue and West Nile into YF 17D virus and are in late stage clinical studies. The dengue vaccine is, however, more complex in that it requires a mixture of four live vectors each expressing one of the four dengue serotypes. This vaccine has been evaluated in multiple clinical trials. No significant safety concerns have been found. The Phase 3 trials met their endpoints in terms of overall reduction of confirmed dengue fever, and, most importantly a significant reduction in severe dengue and hospitalization due to dengue. However, based on results that have been published so far, efficacy in preventing serotype 2 infection is less than that for the other three serotypes. In the development of these chimeric vaccines, an important series of comparative studies of safety and efficacy were made using the parental YF 17D vaccine virus as a benchmark. In this paper, we use a standardized template describing the key characteristics of the novel flavivirus vaccine vectors, in comparison to the parental YF 17D vaccine. The template facilitates scientific discourse among key stakeholders by increasing the transparency and comparability of

  6. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection.

    Science.gov (United States)

    Tabynov, Kaissar; Sansyzbay, Abylai; Kydyrbayev, Zhailaubay; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Assanzhanova, Nurika; Sultankulova, Kulaisan; Sandybayev, Nurlan; Khairullin, Berik; Kuznetsova, Irina; Ferko, Boris; Egorov, Andrej

    2014-04-10

    We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by

  7. Limited variation in vaccine candidate Plasmodium falciparum Merozoite Surface Protein-6 over multiple transmission seasons

    Directory of Open Access Journals (Sweden)

    Branch OraLee H

    2010-05-01

    Full Text Available Abstract Background Plasmodium falciparum Merozoite Surface Protein-6 (PfMSP6 is a component of the complex proteinacious coat that surrounds P. falciparum merozoites. This location, and the presence of anti-PfMSP6 antibodies in P. falciparum-exposed individuals, makes PfMSP6 a potential blood stage vaccine target. However, genetic diversity has proven to be a major hurdle for vaccines targeting other blood stage P. falciparum antigens, and few endemic field studies assessing PfMSP6 gene diversity have been conducted. This study follows PfMSP6 diversity in the Peruvian Amazon from 2003 to 2006 and is the first longitudinal assessment of PfMSP6 sequence dynamics. Methods Parasite DNA was extracted from 506 distinct P. falciparum infections spanning the transmission seasons from 2003 to 2006 as part of the Malaria Immunology and Genetics in the Amazon (MIGIA cohort study near Iquitos, Peru. PfMSP6 was amplified from each sample using a nested PCR protocol, genotyped for allele class by agarose gel electrophoresis, and sequenced to detect diversity. Allele frequencies were analysed using JMP v.8.0.1.0 and correlated with clinical and epidemiological data collected as part of the MIGIA project. Results Both PfMSP6 allele classes, K1-like and 3D7-like, were detected at the study site, confirming that both are globally distributed. Allele frequencies varied significantly between transmission seasons, with 3D7-class alleles dominating and K1-class alleles nearly disappearing in 2005 and 2006. There was a significant association between allele class and village location (p-value = 0.0008, but no statistically significant association between allele class and age, sex, or symptom status. No intra-allele class sequence diversity was detected. Conclusions Both PfMSP6 allele classes are globally distributed, and this study shows that allele frequencies can fluctuate significantly between communities separated by only a few kilometres, and over time in the

  8. Exploiting the Campylobacter jejuni protein glycosylation system for glycoengineering vaccines and diagnostic tools directed against brucellosis

    Directory of Open Access Journals (Sweden)

    Iwashkiw Jeremy A

    2012-01-01

    Full Text Available Abstract Background Immune responses directed towards surface polysaccharides conjugated to proteins are effective in preventing colonization and infection of bacterial pathogens. Presently, the production of these conjugate vaccines requires intricate synthetic chemistry for obtaining, activating, and attaching the polysaccharides to protein carriers. Glycoproteins generated by engineering bacterial glycosylation machineries have been proposed to be a viable alternative to traditional conjugation methods. Results In this work we expressed the C. jejuni oligosaccharyltansferase (OTase PglB, responsible for N-linked protein glycosylation together with a suitable acceptor protein (AcrA in Yersinia enterocolitica O9 cells. MS analysis of the acceptor protein demonstrated the transfer of a polymer of N-formylperosamine to AcrA in vivo. Because Y. enterocolitica O9 and Brucella abortus share an identical O polysaccharide structure, we explored the application of the resulting glycoprotein in vaccinology and diagnostics of brucellosis, one of the most common zoonotic diseases with over half a million new cases annually. Injection of the glycoprotein into mice generated an IgG response that recognized the O antigen of Brucella, although this response was not protective against a challenge with a virulent B. abortus strain. The recombinant glycoprotein coated onto magnetic beads was efficient in differentiating between naïve and infected bovine sera. Conclusion Bacterial engineered glycoproteins show promising applications for the development on an array of diagnostics and immunoprotective opportunities in the future.

  9. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction.

    Science.gov (United States)

    Cecchinato, Mattia; Catelli, Elena; Lupini, Caterina; Ricchizzi, Enrico; Clubbe, Jayne; Battilani, Mara; Naylor, Clive J

    2010-11-20

    Avian metapneumoviruses detected in Northern Italy between 1987 and 2007 were sequenced in their fusion (F) and attachment (G) genes together with the same genes from isolates collected throughout western European prior to 1994. Fusion protein genes sequences were highly conserved while G protein sequences showed much greater heterogeneity. Phylogenetic studies based on both genes clearly showed that later Italian viruses were significantly different to all earlier virus detections, including early detections from Italy. Furthermore a serine residue in the G proteins and lysine residue in the fusion protein were exclusive to Italian viruses, indicating that later viruses probably arose within the country and the notion that these later viruses evolved from earlier Italian progenitors cannot be discounted. Biocomputing analysis applied to F and G proteins of later Italian viruses predicted that only G contained altered T cell epitopes. It appears likely that Italian field viruses evolved in response to selection pressure from vaccine induced immunity. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. DNA vaccine encoding nucleocapsid and surface proteins of wild type canine distemper virus protects its natural host against distemper.

    Science.gov (United States)

    Cherpillod, P; Tipold, A; Griot-Wenk, M; Cardozo, C; Schmid, I; Fatzer, R; Schobesberger, M; Zurbriggen, R; Bruckner, L; Roch, F; Vandevelde, M; Wittek, R; Zurbriggen, A

    2000-07-01

    Canine distemper virus (CDV), a member of the genus Morbillivirus induces a highly infectious, frequently lethal disease in dogs and other carnivores. Current vaccines against canine distemper consisting of attenuated viruses have been in use for many years and have greatly reduced the incidence of distemper in the dog population. However, certain strains may not guarantee adequate protection and others can induce post vaccinal encephalitis. We tested a DNA vaccine for its ability to protect dogs, the natural host of CDV, against distemper. We constructed plasmids containing the nucleocapsid, the fusion, and the attachment protein genes of a virulent canine distemper virus strain. Mice inoculated with these plasmids developed humoral and cellular immune responses against CDV antigens. Dogs immunized with the expression plasmids developed virus-neutralizing antibodies. Significantly, vaccinated dogs were protected against challenge with virulent CDV, whereas unvaccinated animals succumbed to distemper.

  11. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.

    Science.gov (United States)

    Yoshikawa, Tomoaki; Okada, Naoki; Oda, Atsushi; Matsuo, Kazuhiko; Matsuo, Keisuke; Mukai, Yohei; Yoshioka, Yasuo; Akagi, Takami; Akashi, Mitsuru; Nakagawa, Shinsaku

    2008-02-08

    Nanoscopic therapeutic systems that incorporate biomacromolecules, such as protein and peptides, are emerging as the next generation of nanomedicine aimed at improving the therapeutic efficacy of biomacromolecular drugs. In this study, we report that poly(gamma-glutamic acid)-based nanoparticles (gamma-PGA NPs) are excellent protein delivery carriers for tumor vaccines that delivered antigenic proteins to antigen-presenting cells and elicited potent immune responses. Importantly, gamma-PGA NPs efficiently delivered entrapped antigenic proteins through cytosolic translocation from the endosomes, which is a key process of gamma-PGA NP-mediated anti-tumor immune responses. Our findings suggest that the gamma-PGA NP system is suitable for the intracellular delivery of protein-based drugs as well as tumor vaccines.

  12. Intranasal delivery of a protein subunit vaccine using a Tobacco Mosaic Virus platform protects against pneumonic plague.

    Science.gov (United States)

    Arnaboldi, Paul M; Sambir, Mariya; D'Arco, Christina; Peters, Lauren A; Seegers, Jos F M L; Mayer, Lloyd; McCormick, Alison A; Dattwyler, Raymond J

    2016-11-11

    Yersinia pestis, one of history's deadliest pathogens, has killed millions over the course of human history. It has attributes that make it an ideal choice to produce mass casualties and is a prime candidate for use as a biological weapon. When aerosolized, Y. pestis causes pneumonic plague, a pneumonia that is 100% lethal if not promptly treated with effective antibiotics. Currently, there is no FDA approved plague vaccine. The current lead vaccine candidate, a parenterally administered protein subunit vaccine comprised of the Y. pestis virulence factors, F1 and LcrV, demonstrated variable levels of protection in primate pneumonic plague models. As the most likely mode of exposure in biological attack with Y. pestis is by aerosol, this raises a question of whether this parenteral vaccine will adequately protect humans against pneumonic plague. In the present study we evaluated two distinct mucosal delivery platforms for the intranasal (IN) administration of LcrV and F1 vaccine proteins, a live bacterial vector, Lactobacillus plantarum, and a Tobacco Mosaic Virus (TMV) based delivery platform. IN administration of L. plantarum expressing LcrV, or TMV-conjugated to LcrV and F1 (TMV-LcrV+TMV-F1) resulted in the similar induction of high titers of IgG antibodies and evidence of proinflammatory cytokine secretion. However, only the TMV-conjugate delivery platform protected against subsequent lethal challenge with Y. pestis. TMV-LcrV+TMV-F1 co-vaccinated mice had no discernable morbidity and no mortality, while mice vaccinated with L. plantarum expressing LcrV or rLcrV+rF1 without TMV succumbed to infection or were only partially protected. Thus, TMV is a suitable mucosal delivery platform for an F1-LcrV subunit vaccine that induces complete protection against pneumonic infection with a lethal dose of Y. pestis in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes

    NARCIS (Netherlands)

    van der Geld, Ymke M.; Hellmark, Thomas; Selga, Daina; Heeringa, Peter; Huitema, Minke G.; Limburg, Pieter C.; Kallenberg, Cees G. M.

    2007-01-01

    Aim: In this study, we employed chimeric human/ mouse Proteinase 3 ( PR3) proteins as tools to induce an autoantibody response to PR3 in rats and mice. Method: Rats and mice were immunised with recombinant human PR3 ( HPR3), recombinant murine PR3 ( mPR3), single chimeric human/ mouse PR3 ( HHm,

  14. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Science.gov (United States)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  15. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly

  16. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? There Is Only One True Winner.

    Science.gov (United States)

    Halstead, Scott B

    2017-07-17

    The scientific community now possesses information obtained directly from human beings that makes it possible to understand why breakthrough-enhanced dengue virus (DENV) infections occurred in children receiving Sanofi Pasteur's Dengvaxia tetravalent live attenuated vaccine and to predict the possibility of breakthrough-enhanced DENV infections following immunization with two other tetravalent live attenuated vaccines now in phase III testing. Based upon recent research, Dengvaxia, lacking DENV nonstructural protein antigens, did not protect seronegatives because it failed to raise a competent T-cell response and/or antibodies to NS1. It is also possible that chimeric structure does not present the correct virion conformation permitting the development of protective neutralizing antibodies. A premonitory signal shared by the Sanofi Pasteur and the Takeda vaccines was the failure of fully immunized subhuman primates to prevent low-level viremia and/or anamnestic antibody responses to live DENV challenge. The vaccine developed by the National Institute of Allergy and Infectious Diseases (National Institutes of Health [NIH]) has met virtually all of the goals needed to demonstrate preclinical efficacy and safety for humans. Each monovalent vaccine was comprehensively studied for reactogenicity and immunogenicity in human volunteers. Protective immunity in subjects receiving tetravalent candidate vaccines was evidenced by the fact that when vaccinated subjects were given further doses of vaccine or different strains of DENV the result was "solid immunity," a nonviremic and nonanamnestic immune response. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    Science.gov (United States)

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  18. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø

    1997-01-01

    . Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...... with respect to host background in three different Escherichia coli strains, i.e. an isogenic set of K-12 strains, differing in the presence of an indigenous fim gene cluster, as well as a wild-type isolate. Immunization of rabbits with purified chimeric fimbriae resulted in serum which specifically recognized...

  19. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4.

    Science.gov (United States)

    González, Silvia A; Falcón, Juan I; Affranchino, José L

    2014-03-01

    Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.

  20. Heat shock protein HSP60 and the perspective for future using as vaccine antigens

    Directory of Open Access Journals (Sweden)

    Joanna Bajzert

    2015-10-01

    Full Text Available Heat Shock Proteins (HSPs are widely spread in nature, highly conserved proteins, found in all prokaryotic and eukaryotic cells. HSPs have been classified in 10 families, one of them is the HSP60 family. HSP60 function in the cytoplasm as ATP-dependent molecular chaperones by assisting the folding of newly synthesised polypeptides and the assembly of multiprotein complexes. There is a large amount of evidence which demonstrate that HSP60 is expressed on the cell surface. Especially in bacteria the expression on the surface occurs constitutively and increases remarkably during host infection. HSP60 also play an important role in biofilm formation. In the extracellular environment, HSP60 alone or with self or microbial proteins can acts not only as a link between immune cells, but also as a coordinator of the immune system activity. This protein could influence the immune system in a different way because they act as an antigen, a carrier of other functional molecules or as a ligand for receptor. They are able to stimulate both cells of the acquired (naïve, effector, regulatory T lymphocyte, B lymphocyte and the innate (macrophages, monocytes, dendritic cells immune system. HSPs have been reported to be potent activators of the immune system and they are one of the immunodominant bacterial antigens they could be a good candidate for a subunit vaccine or as an adjuvant.

  1. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Science.gov (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  2. Chimeric bispecific OC/TR monoclonal antibody mediates lysis of tumor cells expressing the folate-binding protein (MOv18) and displays decreased immunogenicity in patients

    NARCIS (Netherlands)

    Luiten, R. M.; Warnaar, S. O.; Sanborn, D.; Lamers, C. H.; Bolhuis, R. L.; Litvinov, S. V.; Zurawski, V. R.; Coney, L. R.

    1997-01-01

    The bispecific OC/TR monoclonal antibody (mAb) cross-links the CD3 molecule on T cells with the human folate-binding protein (FBP), which is highly expressed on nonmucinous ovarian carcinomas. Clinical trials of patients with ovarian carcinoma with the OC/TR mAb have shown some complete and partial

  3. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    OpenAIRE

    Anna P. Durbin; Stephen S. Whitehead

    2011-01-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Past...

  4. Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing

    Science.gov (United States)

    Kannan, Kalpana; Wang, Liguo; Wang, Jianghua; Ittmann, Michael M.; Li, Wei; Yen, Laising

    2011-01-01

    Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5′ and 3′ splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer. PMID:21571633

  5. Evaluation of C-reactive protein as an inflammatory biomarker in rabbits for vaccine nonclinical safety studies

    NARCIS (Netherlands)

    Destexhe, E.; Prinsen, M.K.; Schöll, I. van; Kuper, C.F.; Garçon, N.; Veenstra, S.; Segal, L.

    2013-01-01

    Introduction: Inflammatory reactions are one of the potential safety concerns that are evaluated in the framework of vaccine safety testing. In nonclinical studies, the assessment of the inflammation relies notably on the measurement of biomarkers. C-reactive protein (CRP) is an acute-phase plasma

  6. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    Edible vaccines are sub-unit vaccines where the selected genes are introduced into the plants and the transgenic plant is then induced to manufacture the encoded protein. Edible vaccines are mucosal-targeted vaccines where stimulation of both systematic and mucosal immune network takes place. Foods under study ...

  7. Reactogenicity, safety and immunogenicity of a protein-based pneumococcal vaccine in Gambian children aged 2-4 years: A phase II randomized study.

    Science.gov (United States)

    Odutola, A; Ota, M O; Ogundare, E O; Antonio, M; Owiafe, P; Worwui, A; Greenwood, B; Alderson, M; Traskine, M; Verlant, V; Dobbelaere, K; Borys, D

    2016-01-01

    Pneumococcal conjugate vaccines (PCVs) have been successful in preventing invasive pneumococcal disease but effectiveness has been challenged by replacement of vaccine serotypes with non-vaccine serotypes. Vaccines targeting common pneumococcal protein(s) found in most/all pneumococci may overcome this limitation. This phase II study assessed safety and immunogenicity of a new protein-based pneumococcal vaccine containing polysaccharide conjugates of 10 pneumococcal serotypes combined with pneumolysin toxoid(dPly) and pneumococcal histidine triad protein D(PhtD) (PHiD-CV/dPly/PhtD-30) in African children. 120 Gambian children (2-4 years, not previously vaccinated against Streptococcus pneumoniae) randomized (1:1) received a single dose of PHiD-CV/dPly/PhtD-30 or PCV13. Adverse events occurring over 4 d post-vaccination were reported, and blood samples obtained pre- and 1-month post-vaccination. Serious adverse events were reported for 6 months post-vaccination. Solicited local and systemic adverse events were reported at similar frequency in each group. One child (PHiD-CV/dPly/PhtD-30 group) reported a grade 3 local reaction to vaccination. Haematological and biochemical parameters seemed similar pre- and 1-month post-vaccination in each group. High pre-vaccination Ply and PhtD antibody concentrations were observed in each group, but only increased in PHiD-CV/dPly/PhtD-30 vaccinees one month post-vaccination. One month post-vaccination, for each vaccine serotype ≥96.2% of PHiD-CV/dPly/PhtD-30 vaccinees had serotype-specific polysaccharide antibody concentrations ≥0.20µg/mL except serotypes 6B (80.8%) and 23F (65.4%), and ≥94.1% had OPA titres of ≥8 except serotypes 1 (51.9%), 5 (38.5%) and 6B (78.0%), within ranges seen in PCV13-vaccinated children. A single dose of PHiD-CV/dPly/PhtD-30 vaccine, administered to Gambian children aged 2-4 y not previously vaccinated with a pneumococcal vaccine, was well-tolerated and immunogenic.

  8. Evaluation of the Potency, Neutralizing Antibody Response, and Stability of a Recombinant Fusion Protein Vaccine for Streptococcus pyogenes.

    Science.gov (United States)

    Burlet, E; HogenEsch, H; Dunham, A; Morefield, G

    2017-05-01

    Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.

  9. Chimeric Feline Coronaviruses That Encode Type II Spike Protein on Type I Genetic Background Display Accelerated Viral Growth and Altered Receptor Usage▿

    Science.gov (United States)

    Tekes, Gergely; Hofmann-Lehmann, Regina; Bank-Wolf, Barbara; Maier, Reinhard; Thiel, Heinz-Jürgen; Thiel, Volker

    2010-01-01

    Persistent infection of domestic cats with feline coronaviruses (FCoVs) can lead to a highly lethal, immunopathological disease termed feline infectious peritonitis (FIP). Interestingly, there are two serotypes, type I and type II FCoVs, that can cause both persistent infection and FIP, even though their main determinant of host cell tropism, the spike (S) protein, is of different phylogeny and displays limited sequence identity. In cell culture, however, there are apparent differences. Type II FCoVs can be propagated to high titers by employing feline aminopeptidase N (fAPN) as a cellular receptor, whereas the propagation of type I FCoVs is usually difficult, and the involvement of fAPN as a receptor is controversial. In this study we have analyzed the phenotypes of recombinant FCoVs that are based on the genetic background of type I FCoV strain Black but encode the type II FCoV strain 79-1146 S protein. Our data demonstrate that recombinant FCoVs expressing a type II FCoV S protein acquire the ability to efficiently use fAPN for host cell entry and corroborate the notion that type I FCoVs use another main host cell receptor. We also observed that recombinant FCoVs display a large-plaque phenotype and, unexpectedly, accelerated growth kinetics indistinguishable from that of type II FCoV strain 79-1146. Thus, the main phenotypic differences for type I and type II FCoVs in cell culture, namely, the growth kinetics and the efficient usage of fAPN as a cellular receptor, can be attributed solely to the FCoV S protein. PMID:19906918

  10. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region.

    Science.gov (United States)

    Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti

    2017-02-10

    The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSP rep ), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSP ΔHP ). Our results show that the CSP rep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSP ΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  12. Interchangeability of meningococcal group C conjugate vaccines with different carrier proteins in the United Kingdom infant immunisation schedule.

    Science.gov (United States)

    Ladhani, Shamez N; Andrews, Nick J; Waight, Pauline; Hallis, Bassam; Matheson, Mary; England, Anna; Findlow, Helen; Bai, Xilian; Borrow, Ray; Burbidge, Polly; Pearce, Emma; Goldblatt, David; Miller, Elizabeth

    2015-01-29

    An open, non-randomised study was undertaken in England during 2011-12 to evaluate vaccine antibody responses in infants after completion of the routine primary infant immunisation schedule, which included two doses of meningococcal group C (MenC) conjugate (MCC) vaccine at 3 and 4 months. Any of the three licensed MCC vaccines could be used for either dose, depending on local availability. Healthy term infants registered at participating general practices (GPs) in Hertfordshire and Gloucestershire, UK, were recruited prospectively to provide a single blood sample four weeks after primary immunisation, which was administered by the GP surgery. Vaccination history was obtained at blood sampling. MenC serum bactericidal antibody (SBA) and IgG antibodies against Haemophilus influenzae b (Hib), pertussis toxin (PT), diphtheria toxoid (DT), tetanus toxoid (TT) and thirteen pneumococcal serotypes were analysed according to MCC vaccines received. MenC SBA responses differed significantly (Pvaccine schedule as follows: MenC SBA geometric mean titres (GMTs) were significantly lower in infants receiving a diphtheria cross-reacting material-conjugated MCC (MCC-CRM) vaccine followed by TT-conjugated MCC (MCC-TT) vaccine (82.0; 95% CI, 39-173; n=14) compared to those receiving two MCC-CRM (418; 95% CI, 325-537; n=82), two MCC-TT (277; 95% CI, 223-344; n=79) or MCC-TT followed by MCC-CRM (553; 95% CI, 322-949; n=18). The same group also had the lowest Hib geometric mean concentrations (0.60 μg/mL, 0.27-1.34) compared to 1.85 μg/mL (1.23-2.78), 2.86 μg/mL (2.02-4.05) and 4.26 μg/mL (1.94-9.36), respectively. Our results indicate that MCC vaccines with different carrier proteins are not interchangeable. When several MCC vaccines are available, children requiring more than one dose should receive MCC vaccines with the same carrier protein or, alternatively, receive MCC-TT first wherever possible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  14. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  15. Identification of potential new protein vaccine candidates through pan-surfomic analysis of pneumococcal clinical isolates from adults.

    Directory of Open Access Journals (Sweden)

    Alfonso Olaya-Abril

    Full Text Available Purified polysaccharide and conjugate vaccines are widely used for preventing infections in adults and in children against the Gram-positive bacterium Streptococcus pneumoniae, a pathogen responsible for high morbidity and mortality rates, especially in developing countries. However, these polysaccharide-based vaccines have some important limitations, such as being serotype-dependent, being subjected to losing efficacy because of serotype replacement and high manufacturing complexity and cost. It is expected that protein-based vaccines will overcome these issues by conferring a broad coverage independent of serotype and lowering production costs. In this study, we have applied the "shaving" proteomic approach, consisting of the LC/MS/MS analysis of peptides generated by protease treatment of live cells, to a collection of 16 pneumococcal clinical isolates from adults, representing the most prevalent strains circulating in Spain during the last years. The set of unique proteins identified in all the isolates, called "pan-surfome", consisted of 254 proteins, which included most of the protective protein antigens reported so far. In search of new candidates with vaccine potential, we identified 32 that were present in at least 50% of the clinical isolates analyzed. We selected four of them (Spr0012, Spr0328, Spr0561 and SP670_2141, whose protection capacity has not yet been tested, for assaying immunogenicity in human sera. All of them induced the production of IgM antibodies in infected patients, thus indicating that they could enter the pipeline for vaccine studies. The pan-surfomic approach shows its utility in the discovery of new proteins that can elicit protection against infectious microorganisms.

  16. Plasmodium falciparum CS protein - prime malaria vaccine candidate: definition of the human CTL domain and analysis of its variation

    Directory of Open Access Journals (Sweden)

    Denise L. Doolan

    1992-01-01

    Full Text Available Studies in mice have shown that immunity to malaria sporozoites is mediated primarily by citotoxic T lymphocytes (CTL specific for epitopes within the circumsporozoite (CS protein. Humans, had never been shown to generate CTL against any malaria or other parasite protein. The design of a sub-unit vaccine for humans ralies on the epitopes recognized by CTL being identified and polymorphisms therein being defined. We have developed a novel technique using an entire series of overlapping synthetic peptides to define the epitopes of the Plasmodium falciparum CS protein recognized by human CTL and have analyzed the sequence variation of the protein with respect to the identified CTL epitopic domain. We have demonstrated that some humans can indeed generate CTL. against the P. falciparum CS protein. Furthermore, the extent of variation observed for the CTL recognition domain is finite and the combination of peptides necessary for inclusion in a polyvalent vaccine may be small. If ways can be found to increase immune responsiveness, then a vaccine designed to stimulate CS protein-specific CTL activity may prevent malaria.

  17. Quantitative Proteomics Reveals Distinct Differences in the Protein Content of Outer Membrane Vesicle Vaccines

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Mommen, G.P.M.; Pennings, J.L.A.; Eppink, M.H.M.; Wijffels, R.H.; Pol, van der L.A.; Jong, de A.P.J.M.

    2013-01-01

    At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in

  18. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-05-31

    Vibrio anguillarum is a severe bacterial pathogen that can infect a wide range of fish species. Identification of immunogenic proteins and development of vaccine are essential for disease prevention. In this study, immunogenic proteins were screened and identified from V. anguillarum, and then protective efficacy of the immunogenic proteins was evaluated. Immunogenic proteins in V. anguillarum whole cell were detected by Western blotting (WB) using immunized flounder (Paralichthys olivaceus) serum, and then identified by Mass spectrometry (MS). The recombinant proteins of four identified immunogenic proteins were produced and immunized to fish, and then percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBL), total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were measured, respectively. The results showed that five immunogenic proteins, VAA, Groel, OmpU, PteF and SpK, were identified; their recombinant proteins, rOmpU, rGroel, rSpK and rVAA, could induce the proliferation of sIg+ cells in PBL and production of total antibodies, antibodies against V. anguillarum and antibodies against the recombinant proteins; their protection against V. anguillarum showed 64.86%, 72.97%, 21.62% and 78.38% RPS, respectively. The results revealed that the immunoproteomic technique using fish anti-V. anguillarum serum provided an efficient way to screen the immunogenic protein for vaccine antigen. Moreover, the rVAA, rGroel and rOmpU had potential to be vaccine candidates against V. anguillarum infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cancer immunology, bioinformatics and chemokine evidence link vaccines contaminated with animal proteins to autoimmune disease: a detailed look at Crohn's disease and Vitiligo

    OpenAIRE

    Arumugham, Vinu

    2017-01-01

    Cancer research has demonstrated that immunization with homologous xenogeneic proteins (such as vaccines contaminated with animal proteins that resemble human proteins) results in autoimmunity. Bioinformatics analysis demonstrates that animal proteins have occasional amino acids differences compared to equivalent human proteins. So mutated human protein epitopes can be identical to animal protein derived epitopes. Low affinity self reactive T cells suited for detection of mutated human epitop...

  20. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    Science.gov (United States)

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    Science.gov (United States)

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  2. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development.

    Science.gov (United States)

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5-60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.

  3. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants

    OpenAIRE

    Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri...

  4. The biological characteristics of anti-CD71 mouse/human chimeric antibody

    International Nuclear Information System (INIS)

    Wang Shuo; Jiang Lin; Lei Ping; Zhu Huifen; Shen Guanxin; Cui Wuren; Wang Yanggong

    2002-01-01

    Objective: To study the biological characteristics of an anti-CD71 mouse/human chimeric antibody (D2C). Methods: Analysis of the chimeric Ab production in culture supernatant was made by the standard concentration curve method with ELISA. The antibody was purified by DEAE-Sephredax-A50 ion-exchange chromatography and was confirmed by SDS-PAGE. The competition inhibition studies for binding to the same epitope on CD71 were performed between the chimeric Ab(D2C) in the culture supernatant was about 0.5-5 μg/ml in 5-day cultures when seeded at 1 x 10 5 cells/5ml compared with 12.5-25 μg/ml in the supernatant from their parental monoclonal Ab(7579). The purified chimeric Ab(D2C) from mouse ascetics was 1-2 mg/ml. The SDS-PAGE analysis of purified chimeric Ab(D2C) with discontinuous system confirmed two protein bands of 55 kDa and 25 kDa. It was clear that both chimeric Ab(D2C) and murine monoclonal Ab (7579) compete effectively to join the same epitope of CD71 each other. The chimeric antibody's affinity constant (Ka), quantitated by Scatchard analysis, is about 9.34-9.62 x 10 9 L/mol. Conclusion: The chimeric Ab(D2C) produced from the transfectomas is stable. The binding capacity of the chimeric Ab(D2C) to the antigen (CD71) was retained

  5. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    Science.gov (United States)

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  6. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    Science.gov (United States)

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  7. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design.

    Science.gov (United States)

    Ghosh, Moumita; Solanki, Ashish K; Roy, Koushik; Dhoke, Reema R; Ashish; Roy, Syamal

    2013-09-23

    We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection.

    Directory of Open Access Journals (Sweden)

    Hui-Jie Yang

    Full Text Available Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC, which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine.

  9. Tandem truncated rotavirus VP8* subunit protein with T cell epitope as non-replicating parenteral vaccine is highly immunogenic.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Hoshino, Yasutaka; Yuan, Lijuan

    2015-01-01

    The two currently available live oral rotavirus vaccines, Rotarix(®) and RotaTeq(®), are highly efficacious in the developed countries. However, the efficacy of such vaccines in resource deprived countries in Africa and Southeast Asia is low. We reported previously that a bacterially-expressed rotavirus P2-P[8] ΔVP8* subunit vaccine candidate administered intramuscularly elicited high-titers of neutralizing antibodies in guinea pigs and mice and significantly shortened the duration of diarrhea in neonatal gnotobiotic pigs upon oral challenge with virulent human rotavirus Wa strain. To further improve its vaccine potential and provide wider coverage against rotavirus strains of global and regional epidemiologic importance, we constructed 2 tandem recombinant VP8* proteins, P2-P[8] ΔVP8*-P[8] ΔVP8* and P2-P[8] ΔVP8*-P[6] ΔVP8* based on Escherichia coli expression system. The two resulting recombinant tandem proteins were highly soluble and P2-P[8] ΔVP8*-P[8] ΔVP8* was generated with high yield. Moreover, guinea pigs immunized intramuscularly by 3 doses of the P2-P[8] ΔVP8*-P[8] ΔVP8* or P2-P[8] ΔVP8*-P[6] ΔVP8* vaccine with aluminum phosphate adjuvant developed high titers of homotypic and heterotypic neutralizing antibodies against human rotaviruses bearing G1-G4, G8, G9 and G12 with P[8], P[4] or P[6] combination. The results suggest that these 2 subunit vaccines in monovalent or bivalent formulation can provide antigenic coverage to almost all the rotavirus G (VP7) types and major P (VP4) types of global as well as regional epidemiologic importance.

  10. Identification of a defined linear epitope in the OspA protein of the Lyme disease spirochetes that elicits bactericidal antibody responses: Implications for vaccine development.

    Science.gov (United States)

    Izac, Jerilyn R; Oliver, Lee D; Earnhart, Christopher G; Marconi, Richard T

    2017-05-31

    The lipoprotein OspA is produced by the Lyme disease spirochetes primarily in unfed ticks. OspA production is down-regulated by the blood meal and it is not produced in mammals except for possible transient production during late stage infection in patients with Lyme arthritis. Vaccination with OspA elicits antibody (Ab) that can target spirochetes in the tick midgut during feeding and inhibit transmission to mammals. OspA was the primary component of the human LYMErix™ vaccine. LYMErix™ was available from 1998 to 2002 but then pulled from the market due to declining sales as a result of unsubstantiated concerns about vaccination induced adverse events and poor efficacy. It was postulated that a segment of OspA that shares sequence similarity with a region in human LFA-1 and may trigger putative autoimmune events. While evidence supporting such a link has not been demonstrated, most efforts to move forward with OspA as a vaccine component have sought to eliminate this region of concern. Here we identify an OspA linear epitope localized within OspA amino acid residues 221-240 (OspA 221-240 ) that lacks the OspA region suggested to elicit autoimmunity. A peptide consisting of residues 221-240 was immunogenic in mice. Ab raised against OspA 221-240 peptide surface labeled B. burgdorferi in IFAs and displayed potent Ab mediated-complement dependent bactericidal activity. BLAST analyses identified several variants of OspA 221-240 and a closely related sequence in OspB. It is our hypothesis that integration of the OspA 221-240 epitope into a multivalent-OspC based chimeric epitope based vaccine antigen (chimeritope) could result in a subunit vaccine that protects against Lyme disease through synergistic mechanisms. Copyright © 2017. Published by Elsevier Ltd.

  11. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  12. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections.

    Science.gov (United States)

    Lin, Rui-Qing; Lillehoj, Hyun S; Lee, Seung Kyoo; Oh, Sungtaek; Panebra, Alfredo; Lillehoj, Erik P

    2017-08-30

    Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens against different species of Eimeria using a single vaccine will have a major beneficial impact on commercial poultry production. In this paper, we describe the molecular cloning, purification, and vaccination efficacy of a novel Eimeria vaccine candidate, elongation factor-1α (EF-1α). One day-old broiler chickens were given two subcutaneous immunizations one week apart with E. coli-expressed E. tenella recombinant (r)EF-1α protein and evaluated for protection against challenge infection with E. tenella or E. maxima. rEF-1α-vaccinated chickens exhibited increased body weight gains, decreased fecal oocyst output, and greater serum anti-EF-1α antibody levels following challenge infection with either E. tenella or E. maxima compared with unimmunized controls. Vaccination with EF-1α may represent a new approach to inducing cross-protective immunity against avian coccidiosis in the field. Published by Elsevier B.V.

  13. A Lactococcus lactis BFE920 feed vaccine expressing a fusion protein composed of the OmpA and FlgD antigens from Edwardsiella tarda was significantly better at protecting olive flounder (Paralichthys olivaceus) from edwardsiellosis than single antigen vaccines.

    Science.gov (United States)

    Beck, Bo Ram; Lee, Soon Ho; Kim, Daniel; Park, Ji Hye; Lee, Hyun Kyung; Kwon, San-Sung; Lee, Kwan Hee; Lee, Jae Il; Song, Seong Kyu

    2017-09-01

    Edwardsiellosis is a major fish disease that causes a significant economic damage in the aquaculture industry. Here, we assessed vaccine efficacy after feeding oral vaccines to olive flounder (Paralichthys olivaceus), either L. lactis BFE920 expressing Edwardsiella tarda outer membrane protein A (OmpA), flagellar hook protein D (FlgD), or a fusion antigen of the two. Feed vaccination was done twice with a one-week interval. Fish were fed regular feed adsorbed with the vaccines. Feed vaccination was given over the course of one week to maximize the interaction between the feed vaccines and the fish intestine. Flounder fed the vaccine containing the fusion antigen had significantly elevated levels T cell genes (CD4-1, CD4-2, and CD8α), type 1 helper T cell (Th1) subset indicator genes (T-bet and IFN-γ), and antigen-specific antibodies compared to the groups fed the single antigen-expressing vaccines. Furthermore, the superiority of the fusion vaccine was also observed in survival rates when fish were challenged with E. tarda: OmpA-FlgD-expressing vaccine (82.5% survival); FlgD-vaccine (55.0%); OmpA-vaccine (50%); WT L. lactis BFE920 (37.5%); Ctrl (10%). In addition, vaccine-fed fish exhibited increased weight gain (∼20%) and a decreased feed conversion ratio (∼20%) during the four week vaccination period. Flounder fed the FlgD-expressing vaccine, either the single or the fusion form, had significantly increased expression of TLR5M, IL-1β, and IL-12p40, suggesting that the FlgD may be a ligand of olive flounder TLR5M receptor or closely related to the TLR5M pathway. In conclusion, the present study demonstrated that olive flounder fed L. lactis BFE920 expressing a fusion antigen composed of E. tarda OmpA and FlgD showed a strong protective effect against edwardsiellosis indicating this may be developed as an E. tarda feed vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Protection of pigs against challenge with virulent Streptococcus suis serotype 2 strains by a muramidase-released protein and extracellular factor vaccine

    NARCIS (Netherlands)

    Wisselink, H.J.; Vecht, U.; Stockhofe Zurwieden, N.; Smith, H.E.

    2001-01-01

    The efficacy of a muramidase-released protein (MRP) and extracellular factor (EF) vaccine in preventing infection and disease in pigs challenged either with a homologous or a heterologous Streptococcus suis serotype 2 strain (MRP EF ) was compared with the efficacy of a vaccine containing

  15. Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine reproductive and respiratory syndrome do not change the cellular tropism of equine arteritis virus

    Science.gov (United States)

    Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they share many biological properties but differ significantly in cellular tropism. Using an infectious cDNA clone of EAV, we engineered a panel of six chimeric viruses b...

  16. Perforator chimerism for the reconstruction of complex defects: A new chimeric free flap classification system.

    Science.gov (United States)

    Kim, Jeong Tae; Kim, Youn Hwan; Ghanem, Ali M

    2015-11-01

    Complex defects present structural and functional challenges to reconstructive surgeons. When compared to multiple free flaps or staged reconstruction, the use of chimeric flaps to reconstruct such defects have many advantages such as reduced number of operative procedures and donor site morbidity as well as preservation of recipient vessels. With increased popularity of perforator flaps, chimeric flaps' harvest and design has benefited from 'perforator concept' towards more versatile and better reconstruction solutions. This article discusses perforator based chimeric flaps and presents a practice based classification system that incorporates the perforator flap concept into "Perforator Chimerism". The authors analyzed a variety of chimeric patterns used in 31 consecutive cases to present illustrative case series and their new classification system. Accordingly, chimeric flaps are classified into four types. Type I: Classical Chimerism, Type II: Anastomotic Chimerism, Type III: Perforator Chimerism and Type IV Mixed Chimerism. Types I on specific source vessel anatomy whilst Type II requires microvascular anastomosis to create the chimeric reconstructive solution. Type III chimeric flaps utilizes the perforator concept to raise two components of tissues without microvascular anastomosis between them. Type IV chimeric flaps are mixed type flaps comprising any combination of Types I to III. Incorporation of the perforator concept in planning and designing chimeric flaps has allowed safe, effective and aesthetically superior reconstruction of complex defects. The new classification system aids reconstructive surgeons and trainees to understand chimeric flaps design, facilitating effective incorporation of this important reconstructive technique into the armamentarium of the reconstruction toolbox. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Scior, Thomas; Guevara-García, José Antonio; Melendez, F J; Abdallah, Hassan H; Do, Quoc-Tuan; Bernard, Philippe

    2010-09-24

    Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101, was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where phosphate hydrolysis of the insulin receptor takes place. TSAG001, [V(V)O(2)(OH)(picolinamide)], was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy; IR: ν/cm(-1) 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C-N), 970/842 (O=V=O), 727 δ̣ (pyridine ring); (13)C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180 ppm; and (1)H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH(2) shifted to 8.8 ppm. In aqueous solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The lethal dose (LD(50)) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg. This value is one of the highest among vanadium compounds and classifies it as a mild toxicity agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as an innovative insulin-mimetic principle with promising properties and, therefore, could become a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research. In view of the present work, the inhibitory concentration (IC(50)) and extended solution stability will be tested.

  18. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease.

    Science.gov (United States)

    Seid, Christopher A; Jones, Kathryn M; Pollet, Jeroen; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J

    2017-03-04

    A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.

  19. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    International Nuclear Information System (INIS)

    Tuasikal, B.J.; Wibawan, I.W.T.; Pasaribu, F.H; Estuningsih, S.

    2012-01-01

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic characteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD 50 ) is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 - 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 - 0.05X (where Y = bands distance; X = MW standard protein); r 2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis. (author)

  20. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  1. Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis.

    Science.gov (United States)

    Gomez, F J; Allendoerfer, R; Deepe, G S

    1995-07-01

    HIS-62 is a glycoprotein that has been isolated from the cell wall and cell membrane fraction of the pathogenic fungus Histoplasma capsulatum. It is a target of the cellular immune response to this fungus, and it protects mice against a lethal intravenous inoculum of H. capsulatum yeast cells. In this study, we cloned the gene encoding this antigen to reveal its biological nature and studied the immunological activity of recombinant antigen. The amino acid sequences of the NH2 terminus and internal peptides were obtained by Edman degradation. Degenerate oligonucleotides were used to isolate a gene fragment of HIS-62 by PCR. One 680-bp segment that corresponded to the known peptide sequence was amplified from H. capsulatum DNA. This DNA was used to screen a genomic library, and the full-length gene was isolated and sequenced. The deduced amino acid sequence of the gene demonstrated approximately 70 and approximately 50% identity to heat shock protein 60 (hsp 60) from Saccharomyces cerevisiae and hsp 60 from Escherichia coli, respectively. A cDNA was synthesized by reverse transcription PCR and was expressed in E. coli. Recombinant protein reacted with a monospecific polyclonal rabbit antiserum raised against native HIS-62, with monoclonal HIS-62-reactive T cells, and with splenocytes from mice immunized with viable yeast cells. Moreover, vaccination with the recombinant protein conferred protection in mice against a lethal intranasal inoculation with yeast cells. Thus, HIS-62 is a member of the hsp 60 family, and the recombinant hsp 60 is protective against pulmonary histoplasmosis in mice.

  2. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  3. A randomised trial to evaluate the immunogenicity, reactogenicity, and safety of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) co-administered with routine childhood vaccines in Singapore and Malaysia.

    Science.gov (United States)

    Lim, Fong Seng; Koh, Mia Tuang; Tan, Kah Kee; Chan, Poh Chong; Chong, Chia Yin; Shung Yehudi, Yeo Wee; Teoh, Yee Leong; Shafi, Fakrudeen; Hezareh, Marjan; Swinnen, Kristien; Borys, Dorota

    2014-10-02

    The immunogenicity, reactogenicity, and safety of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) co-administered with routine childhood vaccines were evaluated among infants from Singapore and Malaysia, where PHiD-CV has been licensed. In the primary vaccination phase, 298 infants from Singapore and 168 infants from Malaysia were randomised to receive the Phase III Clinical (Clin) or the Commercial (Com) lot of PHiD-CV at 2, 3, and 5 months of age. In the booster vaccination phase, 238 toddlers from Singapore received one dose of the PHiD-CV Commercial lot at 18-21 months of age. Immune responses to pneumococcal polysaccharides were measured using 22F-inhibition enzyme-linked immunosorbent assay (ELISA) and functional opsonophagocytic activity (OPA) assay and to protein D, using ELISA. Immune responses induced by primary vaccination with the PHiD-CV Commercial lot were non-inferior to the Phase III Clinical lot in terms of adjusted antibody geometric mean concentration (GMC) ratios for each vaccine pneumococcal serotype and protein D. For each vaccine pneumococcal serotype, ≥93.6% and ≥88.5% of infants from Malaysia and Singapore had post-primary vaccination antibody concentrations ≥0.2 μg/mL and OPA titres ≥8, in the Clin and Com groups, respectively. For each vaccine pneumococcal serotype, ≥60.8% and ≥98.2% of toddlers from Singapore had pre- and post-booster antibody concentrations ≥0.2 μg/mL, in the Clin and Com groups, respectively. All children, except one, had measurable anti-protein D antibodies and the primary and booster doses of the co-administered vaccines were immunogenic. The incidence of each grade 3 solicited symptom was ≤11.1% in both study phases. No serious adverse events considered causally related to vaccination were reported throughout the study. PHiD-CV given as three-dose primary vaccination to infants in Singapore and Malaysia and booster vaccination to toddlers in

  4. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus microplus.

    Directory of Open Access Journals (Sweden)

    Bárbara Guimarães Csordas

    Full Text Available The bovine tick Rhipicephalus (Boophilus microplus is found in several tropical and subtropical regions of the world. This parasite transmits pathogens that cause disease, such as babesiosis (Babesia bovis and B. bigemina and anaplasmosis (Anaplasma marginale. Tick infestations cause enormous livestock losses, and controlling tick infestations and the transmission of tick-borne diseases remains a challenge for the livestock industry. Because the currently available commercial vaccines offer only partial protection against R. (B. microplus, there is a need for more efficient vaccines. Several recombinant antigens have been evaluated using different immunization strategies, and they show great promise. This work describes the construction and immunological characterization of a multi-antigen chimera composed of two R. (B. microplus antigens (RmLTI and BmCG and one Escherichia coli antigen (B subunit, LTB. The immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in E. coli. For all of the experiments, two groups (treated and control of four Angus heifers (3-6 months old were used. The inoculation was performed via intramuscular injection with 200 μg of purified recombinant chimeric protein and adjuvated. The chimeric protein was recognized by specific antibodies against each subunit and by sera from cattle inoculated with the chimera. Immunization of RmLTI-BmCG-LTB cattle reduced the number of adult female ticks by 6.29% and vaccination of cattle with the chimeric antigen provided 55.6% efficacy against R. (B. microplus infestation. The results of this study indicate that the novel chimeric protein is a potential candidate for the future development of a more effective vaccine against R. (B. microplus.

  5. Tracking by flow cytometry antigen-specific follicular helper T cells in wild-type animals after protein vaccination.

    Science.gov (United States)

    Chakarov, Svetoslav; Fazilleau, Nicolas

    2015-01-01

    Flow cytometry is a valuable technology used in immunology to characterize and enumerate the different cell subpopulations specific for a nonself-antigen in the context of an ongoing immune response. Among them, follicular helper T cells are the cognate regulators of B cells in secondary lymphoid tissues. Thus, tracking them is of high interest especially in the context of protein vaccination. For this purpose, transgenic antigen-receptor mouse models have been largely used. It is now clear that transgenic models are not always the best means to study the dynamics of the immune response since they can modify the response. In this chapter, we describe how to track endogenous antigen-specific follicular helper T cells by flow cytometry after protein vaccination in nonmodified wild-type animals, which ultimately provides a comprehensive way to enumerate, characterize, and isolate these particular cells in vivo.

  6. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence.

    Science.gov (United States)

    Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea

    2011-07-01

    In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.

  7. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

  8. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants.

    Science.gov (United States)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A*02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A*02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. © 2013 Elsevier Inc. All rights reserved.

  9. Immunoprotective efficacy of Acinetobacter baumannii outer membrane protein, FilF, predicted in silico as a potential vaccine candidate

    Directory of Open Access Journals (Sweden)

    Ravinder eSingh

    2016-02-01

    Full Text Available Acinetobacter baumannii is emerging as a serious nosocomial pathogen with multidrug resistance that has made it difficult to cure and development of efficacious treatment against this pathogen is direly needed. This has led to investigate vaccine approach to prevent and treat A. baumannii infections. In this work, an outer membrane putative pilus assembly protein, FilF, was predicted as vaccine candidate by in silico analysis of A. baumannii proteome and was found to be conserved among the A. baumannii strains. It was cloned and expressed in E. coli BL21(DE3 and purified by Ni-NTA chromatography. Immunization with FilF generated high antibody titer (>64000 and provided 50% protection against a standardized lethal dose (10*8 CFU of A. baumannii in murine pneumonia model. FilF immunization reduced the bacterial load in lungs by 2 and 4 log cycles, 12 and 24 h post infection as compared to adjuvant control; reduced the levels of pro-inflammatory cytokines TNF-α, IL-6, IL-33, IFN-γ and IL-1β significantly and histology of lung tissue supported the data by showing considerably reduced damage and infiltration of neutrophils in lungs. These results demonstrate the in vivo validation of immunoprotective efficacy of a protein predicted as a vaccine candidate by in silico proteomic analysis and open the possibilities for exploration of a large array of uncharacterized proteins.

  10. Vaccines against a Major Cause of Abortion in Cattle, Neospora caninum Infection

    Directory of Open Access Journals (Sweden)

    Andrew Hemphill

    2011-09-01

    also polyvalent combinations of different antigens have been used, providing increased protection. Vaccines have been combined with immunostimulating carriers and, more recently, chimeric vaccines, incorporating immuno-relevant domains of several antigens into a single protein, have been developed.

  11. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  12. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...... that ligand-mediated regulation of receptor-PTPases may have mechanistic similarities with receptor tyrosine kinases....

  13. Surface protein mutations in chronic hepatitis B patients who received hepatitis B vaccine therapy

    Directory of Open Access Journals (Sweden)

    Maryam Daram

    2014-09-01

    Conclusion: In chronic carriers who already had HBsAg variants selected by the host-immune response, any immune stimulation by the vaccine had no effect on the chronic state of these patients or selected any remarkable escape mutants. Newer strategies should be considered based on third generation or the use of DNA vaccines or new adjuvants.

  14. Identifying long-term memory B-cells in vaccinated children despite waning antibody levels specific for Bordetella pertussis proteins.

    Science.gov (United States)

    Hendrikx, Lotte H; Oztürk, Kemal; de Rond, Lia G H; Veenhoven, Reinier H; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie

    2011-02-04

    Whooping cough is a respiratory disease caused by Bordetella pertussis. Since the 1950s in developed countries pertussis vaccinations are included in the national immunization program. However, antibody levels rapidly wane after both whole cell and acellular pertussis vaccination. Therefore protection against pertussis may depend largely on long-term B- and T-cell immunities. We investigated long-term pertussis-specific memory B-cell responses in children who were primed at infant age with the Dutch wP-vaccine (ISRCTN65428640). Purified B-cells were characterized by FACS-analysis and after polyclonal stimulation memory B-cells were detected by ELISPOT-assays specific for pertussis toxin, filamentous haemagglutinin, pertactin and tetanus. In addition, plasma IgG levels directed to the same antigens were measured by a fluorescent bead-based multiplex immunoassay. Two and 3 years after wP priming as well as 2 and 5 years after the aP booster at the age of 4, low plasma IgG levels to the pertussis proteins were found. At the same time, however pertussis protein-specific memory B-cells could be detected and their number increased with age. The number of tetanus-specific memory B-cells was similar in all age groups, whereas IgG-tetanus levels were high 2 years after tetanus booster compared to pre- and 5 years post-booster levels. This study shows the presence of long-term pertussis protein-specific memory B-cells in children despite waning antibody levels after vaccination, which suggests that memory B-cells in addition to antibodies may contribute to protection against pertussis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  16. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  17. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    Science.gov (United States)

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  18. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.

    Science.gov (United States)

    Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.

  19. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    Science.gov (United States)

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV.

  20. A chimeric measles virus with canine distemper envelope protects ferrets from lethal distemper challenge.

    Science.gov (United States)

    Rouxel, Ronan Nicolas; Svitek, Nicholas; von Messling, Veronika

    2009-08-06

    CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.

  1. Longitudinal multiparameter single-cell analysis of macaques immunized with pneumococcal protein-conjugated or unconjugated polysaccharide vaccines reveals distinct antigen specific memory B cell repertoires.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    Full Text Available The efficacy of protein-conjugated pneumococcal polysaccharide vaccines has been well characterized for children. The level of protection conferred by unconjugated polysaccharide vaccines remains less clear, particularly for elderly individuals who have had prior antigenic experience through immunization with unconjugated polysaccharide vaccines or natural exposure to Streptococcus pneumoniae.We compared the magnitude, diversity and genetic biases of antigen-specific memory B cells in two groups of adult cynomolgus macaques that were immunized with a 7-valent conjugated vaccine and boosted after five years with either a 13-valent pneumococcal polysaccharide conjugate vaccine (13vPnC or a 23-valent unconjugated pneumococcal polysaccharide vaccine (23vPS using microengraving (a single-cell analysis method and single-cell RT-PCR.Seven days after boosting, the mean frequency of antigen-specific memory B cells was significantly increased in macaques vaccinated with 13vPnC compared to those receiving 23vPS. The 13vPnC-vaccinated macaques also exhibited a more even distribution of antibody specificities to four polysaccharides in the vaccine (PS4, 6B, 14, 23F that were examined. However, single-cell analysis of the antibody variable region sequences from antigen-specific B cells elicited by unconjugated and conjugated vaccines indicated that both the germline gene segments forming the heavy chains and the average lengths of the Complementary Determining Region 3 (CDR3 were similar.Our results confirm that distinctive differences can manifest between antigen-specific memory B cell repertoires in nonhuman primates immunized with conjugated and unconjugated pneumococcal polysaccharide vaccines. The study also supports the notion that the conjugated vaccines have a favorable profile in terms of both the frequency and breadth of the anamnestic response among antigen-specific memory B cells.

  2. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae: effects of insert position and host background

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, B; Pallesen, L; Jensen, LB

    1997-01-01

    . Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...... with respect to host background in three different Escherichia coli strains, i.e. an isogenic set of K-12 strains, differing in the presence of an indigenous fim gene cluster, as well as a wild-type isolate. Immunization of rabbits with purified chimeric fimbriae resulted in serum which specifically recognized...

  3. A New Approach for Designing a Potentially Vaccine Candidate against Urinary Tract Infection by Using Protein Display on Lactobacillus

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2015-10-01

    Full Text Available Background: The prevalence of Urinary Tract Infection (UTI is really high in the world. Escherichia coli is a major agent of UTI. One of the strategies for decreasing UTI infections is vaccine development. As the attachment is a really important stage in colonization and infection, at- tachment inhibition has an applied strategy.  FimH protein is a major factor during bacterial colonization in urinary tract and could be used as a vaccine. Thus, it was considered in this research as a candidate anti- gen.Methods: The sequences of fimH and acmA genes were used for de- signing a synthetic gene. It was cloned to pET23a expression vector and transformed  to E. coli (DE3 Origami.  To confirm the expression  of recombinant  protein,  SDS-PAGE  and western  blotting  methods  were used.  Subsequently,  recombinant  protein  was  purified.  On  the  other hand, Lactobacillus reuteri was cultured and mixed with FimH / AcmA recombinant  protein. The rate of protein localization  on lactobacillus surface was assessed using ELISA method.Results: It was showed that the recombinant protein was expressed inE. coli (DE3 Origami and purified by affinity chromatography. More- over, this protein could be localized on lactobacillus surface by 5 days. Conclusion:  In current study,  a fusion recombinant  protein was pre- pared and displayed on L. reuteri surface. This strain could be used for animal  experiment  as  a  competitor  against  Uropathogenic   E.  coli (UPEC. Using manipulated probiotics strains instead of antibiotic ther- apy could decrease the antibiotic consumption  and reduce multi-drug resistant strains.

  4. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate

    DEFF Research Database (Denmark)

    Esen, Meral; Kremsner, Peter G; Schleucher, Regina

    2009-01-01

    Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily....... Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi...... is a safe and immunogenic malaria vaccine candidate suitable for further clinical development....

  5. Immunogenicity of a 2-dose priming and booster vaccination with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine

    DEFF Research Database (Denmark)

    Silfverdal, Sven Arne; Høgh, Birthe; Bergsaker, Marianne Riise

    2009-01-01

    BACKGROUND: The immunogenicity of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D-conjugate vaccine (PHiD-CV) was determined following a simplified 2-dose priming and the more commonly employed 3-dose priming both followed by a booster dose. METHODS: A total of 351 healthy....... RESULTS: Depending on the serotype, the percentages of subjects reaching the ELISA antibody threshold of 0.2 microg/mL were 92.8% to 98.0% following 2 primary doses and 96.1% to 100% following 3 primary doses except for serotype 6B (55.7% and 63.1%, respectively) and serotype 23F (69.3% and 77...

  6. Efficient in vitro import of a cytosolic heat shock protein into pea chloroplasts

    OpenAIRE

    Lubben, Thomas H.; Keegstra, Kenneth

    1986-01-01

    In order to further our understanding of the targeting of nuclear-encoded proteins into intracellular organelles, we have investigated the import of chimeric precursor proteins into pea chloroplasts. Two different chimeric precursor proteins were produced by in vitro expression of chimeric genes. One chimeric precursor contained the transit peptide of the small subunit of soybean ribulose 1,5-bisphosphate carboxylase and the mature peptide of the same protein from pea. The second contained th...

  7. Immunogenicity evaluation of MS2 phage-mediated chimeric nanoparticle displaying an immunodominant B cell epitope of foot-and-mouth disease virus

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2018-05-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals that has caused tremendous economic losses worldwide. In this study, we designed a chimeric nanoparticles (CNPs vaccine that displays the predominant epitope of the serotype O foot-and-mouth disease virus (FMDV VP1 131-160 on the surface of MS2 phage. The recombinant protein was expressed in Escherichia Coli and can self-assemble into CNPs with diameter at 25–30 nm in vitro. A tandem repeat peptide epitopes (TRE was prepared as control. Mice were immunized with CNPs, TRE and commercialized synthetic peptide vaccines (PepVac, respectively. The ELISA results showed that CNPs stimulated a little higher specific antibody levels to PepVac, but was significantly higher than the TRE groups. Moreover, the results from specific IFN-γ responses and lymphocyte proliferation test indicated that CNP immunized mice exhibited significantly enhanced cellular immune response compared to TRE. These results suggested that the CNPs constructed in current study could be a potential alternative vaccine in future FMDV control.

  8. Genomic analysis of an attenuated Chlamydia abortus live vaccine strain reveals defects in central metabolism and surface proteins.

    Science.gov (United States)

    Burall, L S; Rodolakis, A; Rekiki, A; Myers, G S A; Bavoil, P M

    2009-09-01

    Comparative genomic analysis of a wild-type strain of the ovine pathogen Chlamydia abortus and its nitrosoguanidine-induced, temperature-sensitive, virulence-attenuated live vaccine derivative identified 22 single nucleotide polymorphisms unique to the mutant, including nine nonsynonymous mutations, one leading to a truncation of pmpG, which encodes a polymorphic membrane protein, and two intergenic mutations potentially affecting promoter sequences. Other nonsynonymous mutations mapped to a pmpG pseudogene and to predicted coding sequences encoding a putative lipoprotein, a sigma-54-dependent response regulator, a PhoH-like protein, a putative export protein, two tRNA synthetases, and a putative serine hydroxymethyltransferase. One of the intergenic mutations putatively affects transcription of two divergent genes encoding pyruvate kinase and a putative SOS response nuclease, respectively. These observations suggest that the temperature-sensitive phenotype and associated virulence attenuation of the vaccine strain result from disrupted metabolic activity due to altered pyruvate kinase expression and/or alteration in the function of one or more membrane proteins, most notably PmpG and a putative lipoprotein.

  9. Vaccinomics Approach for Designing Potential Peptide Vaccine by Targeting Shigella spp. Serine Protease Autotransporter Subfamily Protein SigA

    Directory of Open Access Journals (Sweden)

    Arafat Rahman Oany

    2017-01-01

    Full Text Available Shigellosis, a bacillary dysentery, is closely associated with diarrhoea in human and causes infection of 165 million people worldwide per year. Casein-degrading serine protease autotransporter of enterobacteriaceae (SPATE subfamily protein SigA, an outer membrane protein, exerts both cytopathic and enterotoxic effects especially cytopathic to human epithelial cell type-2 (HEp-2 and is shown to be highly immunogenic. In the present study, we have tried to impose the vaccinomics approach for designing a common peptide vaccine candidate against the immunogenic SigA of Shigella spp. At first, 44 SigA proteins from different variants of S. flexneri, S. dysenteriae, S. boydii, and S. sonnei were assessed to find the most antigenic protein. We retrieved 12 peptides based on the highest score for human leukocyte antigen (HLA supertypes analysed by NetCTL. Initially, these peptides were assessed for the affinity with MHC class I and class II alleles, and four potential core epitopes VTARAGLGY, FHTVTVNTL, HTTWTLTGY, and IELAGTLTL were selected. From these, FHTVTVNTL and IELAGTLTL peptides were shown to have 100% conservancy. Finally, IELAGTLTL was shown to have the highest population coverage (83.86% among the whole world population. In vivo study of the proposed epitope might contribute to the development of functional and unique widespread vaccine, which might be an operative alleyway to thwart dysentery from the world.

  10. Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates.

    Science.gov (United States)

    Naylor, Clive J; Ling, Roger; Edworthy, Nicole; Savage, Carol E; Easton, Andrew J

    2007-06-01

    A prototype avian metapneumovirus (AMPV) vaccine (P20) was previously shown to give variable outcomes in experimental trials. Following plaque purification, three of 12 viruses obtained from P20 failed to induce protection against virulent challenge, whilst the remainder retained their protective capacity. The genome sequences of two protective viruses were identical to the P20 consensus, whereas two non-protective viruses differed only in the SH gene transcription termination signal. Northern blotting showed that the alterations in the SH gene-end region of the non-protective viruses led to enhanced levels of dicistronic mRNA produced by transcriptional readthrough. A synthetic minigenome was used to demonstrate that the altered SH gene-end region reduced the level of protein expression from a downstream gene. The genomes of the remaining eight plaque-purified viruses were sequenced in the region where the P20 consensus sequence differed from the virulent progenitor. The seven protective clones were identical, whereas the non-protective virus retained the virulent progenitor sequence at two positions and contained extensive alterations in its attachment (G) protein sequence associated with a reduced or altered expression pattern of G protein on Western blots. The data indicate that the efficacy of a putative protective vaccine strain is affected by mutations altering the balance of G protein expression.

  11. Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Science.gov (United States)

    Bartelt, Luther A.; Bolick, David T.; Kolling, Glynis L.; Zaenker, Edna I.; Lara, Ana M.; Noronha, Francisco Jose; Cowardin, Carrie A.; Moore, John H.; Turner, Jerrold R.; Warren, Cirle A.; Buck, Gregory A.; Guerrant, Richard L.

    2016-01-01

    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. PMID:27467505

  12. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Carolina R Oliveira

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. METHODS AND FINDINGS: Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF and simulated intestinal fluid (SIF. Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. CONCLUSIONS: Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.

  13. Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency.

    Science.gov (United States)

    Garrod, Tamsin; Grubor-Bauk, Branka; Yu, Stanley; Gargett, Tessa; Gowans, Eric J

    2014-01-01

    In humans, DNA vaccines have failed to demonstrate the equivalent levels of immunogenicity that were shown in smaller animals. Previous studies have encoded adjuvants, predominantly cytokines, within these vaccines in an attempt to increase antigen-specific immune responses. However, these strategies have lacked breadth of innate immune activation and have led to disappointing results in clinical trials. Damage associated molecular patterns (DAMPs) have been identified as pattern recognition receptor (PRR) agonists. DAMPs can bind to a wide range of PRRs on dendritic cells (DCs) and thus our studies have aimed to utilize this characteristic to act as an adjuvant in a DNA vaccine approach. Specifically, HSP70 has been identified as a DAMP, but has been limited by its lack of accessibility to PRRs in and on DCs. Here, we discuss the promising results achieved with the inclusion of membrane-bound or secreted HSP70 into a DNA vaccine encoding HIV gag as the model immunogen.

  14. The Complexity of a Dengue Vaccine : A Review of the Human Antibody Response

    NARCIS (Netherlands)

    Flipse, Jacky; Smit, Jolanda M.

    Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV

  15. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    Science.gov (United States)

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  16. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  17. Meningococcal factor H-binding protein vaccines with decreased binding to human complement factor H have enhanced immunogenicity in human factor H transgenic mice.

    Science.gov (United States)

    Rossi, Raffaella; Granoff, Dan M; Beernink, Peter T

    2013-11-04

    Factor H-binding protein (fHbp) is a component of a meningococcal vaccine recently licensed in Europe for prevention of serogroup B disease, and a second vaccine in clinical development. The protein specifically binds human factor H (fH), which down-regulates complement activation and enhances resistance to bactericidal activity. There are conflicting data from studies in human fH transgenic mice on whether binding of human fH to fHbp vaccines decreases immunogenicity, and whether mutant fHbp vaccines with decreased fH binding have enhanced immunogenicity. fHbp can be classified into two sub-families based on sequence divergence and immunologic cross-reactivity. Previous studies of mutant fHbp vaccines with low fH binding were from sub-family B, which account for approximately 60% of serogroup B case isolates. In the present study, we evaluated the immunogenicity of two mutant sub-family A fHbp vaccines containing single substitutions, T221A or D211A, which resulted in 15- or 30-fold lower affinity for human fH, respectively, than the corresponding control wild-type fHbp vaccine. In transgenic mice with high serum concentrations of human fH, both mutant vaccines elicited significantly higher IgG titers and higher serum bactericidal antibody responses than the control fHbp vaccine that bound human fH. Thus, mutations introduced into a sub-family A fHbp antigen to decrease fH binding can increase protective antibody responses in human fH transgenic mice. Collectively the data suggest that mutant fHbp antigens with decreased fH binding will result in superior vaccines in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species

    Directory of Open Access Journals (Sweden)

    Charles A. Specht

    2017-11-01

    Full Text Available Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1 were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4 were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1 afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific.

  19. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model.

    Science.gov (United States)

    Jin, Dong; Yu, Xin; Chen, Bing; Li, Zhitao; Ding, Jia; Zhao, Xiuyun; Qi, Gaofu

    2017-06-01

    Development of EGF and VEGF vaccines with high antigenicity for combined immunotherapy of EGF-EGFR signaling-dependent epithelial tumors such as breast cancer. EGF genes from mouse, human and chicken were randomly assembled to chimeric genes by DNA shuffling, then a chimeric EGF was selected out by PCR, SDS-PAGE and immunization for combined immunotherapy of breast cancer with a previously constructed chimeric VEGF vaccine from shuffling. Combined vaccination with chimeric EGF and VEGF from shuffling could induce high titer of antibodies against EGF and VEGF to inhibit tumor growth and angiogenesis, and improve the survival rate of mice with breast cancer. Combined vaccination with EGF and VEGF from shuffling showed better immunotherapy on EGF-EGFR signaling-dependent epithelial tumors such as breast cancer than the single-agent EGF vaccination.

  20. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases.

    Science.gov (United States)

    Daniell, Henry; Chan, Hui-Ting; Pasoreck, Elise K

    2016-11-23

    Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.

  1. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects against RSV-induced replication and lung pathology.

    Science.gov (United States)

    Blanco, Jorge C G; Boukhvalova, Marina S; Pletneva, Lioubov M; Shirey, Kari Ann; Vogel, Stefanie N

    2014-03-14

    We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system.

    Science.gov (United States)

    Kraus, Benjamin; Fischer, Katrin; Sliva, Katja; Schnierle, Barbara S

    2014-03-26

    Human endogenous retroviruses (HERVs) are remnants of ancestral infections and chromosomally integrated in all cells of an individual, are transmitted only vertically and are defective in viral replication. However enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed inter-alia in HIV-infected individuals and tumor patients. Therefore HERV-K might serve as a tumor-specific antigen or even as a constant target for the development of an HIV vaccine. To verify our hypothesis, we tested the immunogenicity of HERV-K Gag by using a recombinant vaccinia virus (MVA-HKcon) expressing the HERV-K Gag protein and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) and the HERV-K Gag protein (RLZ-HKGag cells). Subcutaneous application of RLZ-HKGag cells into syngenic BALB/c mice resulted in the formation of local tumors in MVA vaccinated mice. MVA-HKcon vaccination reduced the tumor growth. Furthermore, intravenous injection of RLZ-HKGag cells led to the formation of pulmonary metastases. Vaccination of tumor-bearing mice with MVA-HKcon drastically reduced the number of pulmonary RLZ-HKGag tumor nodules compared to vaccination with wild-type MVA. The data demonstrate that HERV-K Gag is a useful target for vaccine development and might offer new treatment opportunities for cancer patients.

  3. Vaccination with Clostridium perfringens recombinant proteins in combination with Montanide™ ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens

    Science.gov (United States)

    This study was performed to compare four Clostridium perfringens recombinant proteins as vaccine candidates using the Montanide™ ISA 71 VG adjuvant in an experimental model of necrotic enteritis. Broiler chickens were immunized with clostridial recombinant proteins with ISA 71 VG, and intestinal le...

  4. CD4+ T-cell Responses Among Adults and Young Children In Response to Streptococcus pneumoniae and Haemophilus influenzae Vaccine Candidate Protein Antigens

    OpenAIRE

    Sharma, Sharad K.; Roumanes, David; Almudevar, Anthony; Mosmann, Tim R.; Pichichero, Michael E.

    2013-01-01

    We characterized cytokine profiles of CD4+ T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and Protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 - and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4+ T cells producing...

  5. Construction, purification, and characterization of a chimeric TH1 antagonist

    Directory of Open Access Journals (Sweden)

    Javier-González Luís

    2006-05-01

    Full Text Available Abstract Background TH1 immune response antagonism is a desirable approach to mitigate some autoimmune and inflammatory reactions during the course of several diseases where IL-2 and IFN-γ are two central players. Therefore, the neutralization of both cytokines could provide beneficial effects in patients suffering from autoimmune or inflammatory illnesses. Results A chimeric antagonist that can antagonize the action of TH1 immunity mediators, IFN-γ and IL-2, was designed, engineered, expressed in E. coli, purified and evaluated for its in vitro biological activities. The TH1 antagonist molecule consists of the extracellular region for the human IFNγ receptor chain 1 fused by a four-aminoacid linker peptide to human 60 N-terminal aminoacid residues of IL-2. The corresponding gene fragments were isolated by RT-PCR and cloned in the pTPV-1 vector. E. coli (W3110 strain was transformed with this vector. The chimeric protein was expressed at high level as inclusion bodies. The protein was partially purified by pelleting and washing. It was then solubilized with strong denaturant and finally refolded by gel filtration. In vitro biological activity of chimera was demonstrated by inhibition of IFN-γ-dependent HLA-DR expression in Colo 205 cells, inhibition of IFN-γ antiproliferative effect on HEp-2 cells, and by a bidirectional effect in assays for IL-2 T-cell dependent proliferation: agonism in the absence versus inhibition in the presence of IL-2. Conclusion TH1 antagonist is a chimeric protein that inhibits the in vitro biological activities of human IFN-γ, and is a partial agonist/antagonist of human IL-2. With these attributes, the chimera has the potential to offer a new opportunity for the treatment of autoimmune and inflammatory diseases.

  6. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection.

    Science.gov (United States)

    French, Martyn A; Abudulai, Laila N; Fernandez, Sonia

    2013-08-09

    The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  7. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection

    Directory of Open Access Journals (Sweden)

    Sonia Fernandez

    2013-08-01

    Full Text Available The development of vaccines to treat and prevent human immunodeficiency virus (HIV infection has been hampered by an incomplete understanding of “protective” immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8+ T-cell responses restricted by “protective” HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK cell responses and plasmacytoid dendritic cell (pDC responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  8. Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide.

    Science.gov (United States)

    Ikeda, Koki; Koga, Tomoaki; Sasaki, Fumiyuki; Ueno, Ayumi; Saeki, Kazuko; Okuno, Toshiaki; Yokomizo, Takehiko

    2017-05-13

    DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8). The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin. We fused a 5' terminal cDNA fragments for the Fab region of 2H8 mAb with 3' terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flowcytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb. Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Use of recombinant capsid proteins in the development of a vaccine against the foot-and-mouth disease virus

    Directory of Open Access Journals (Sweden)

    Belsham GJ

    2015-02-01

    Full Text Available Graham J Belsham, Anette Bøtner National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark Abstract: Foot-and-mouth disease remains one of the world's most economically important diseases of livestock. It is caused by foot-and-mouth disease virus, a member of the picornavirus family. The virus replicates very rapidly and can be efficiently transmitted between hosts by a variety of routes. The disease has been effectively controlled in some parts of the world but remains endemic in many others, thus there is a constant risk of introduction of the disease into areas that are normally free of foot-and-mouth disease with potentially huge economic consequences. To reduce the need for large-scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self-assemble to generate “empty capsid” particles which share many features with the intact virus but lack the ribonucleic acid genome and are therefore non-infectious. Such particles can be “designed” to improve their stability or modify their antigenicity and can be produced without “high containment” facilities. The development and use of such improved vaccines should assist in the global efforts to control this important disease. Keywords: picornavirus, diagnostic assays, virus structure, infection, immune responses

  10. 细粒棘球绦虫AgB8/1-AgB8/2重组嵌合抗原表达系统的构建%Establishment of Echinococcus granulosus AgB8/1-AgB8/2 chimeric recombinant protein expression system

    Institute of Scientific and Technical Information of China (English)

    古力帕丽·麦曼提依明; 马海梅; 吾拉木·马木提; 陈洁; 陈璐; 丁剑冰; 马秀敏; 温浩

    2011-01-01

    目的 构建pET32a-AgB8/1-AgB8/2原核表达载体,并对其重组蛋白进行原核细胞表达.方法 从细粒棘球绦虫原头蚴中提取总RNA,反转录生成cDNA,以此cDNA为模板,用基因特异性引物分别扩增EgAgB8/1和EgAgB8/2基因编码其分泌型多肽的片段,经测序后,以此两条基因片段为依据,人工合成EgAgB8/1-EgAgB8/2嵌合抗原编码核酸序列,将其克隆至pUCm-T载体,测序鉴定其正确性.通过对pUCm-T/AgB8/1-AgB8/2重组质粒进行双酶切,将获得的AgB8/1-AgB8/2嵌合抗原编码核酸序列用定向克隆技术克隆至原核表达质粒pET32a上,测序鉴定插入片段正确后,转化至E.coli BL21(DE3)Lys S,IPTG初步诱导表达pET32a-AgB8/1-AgB8/2重组嵌合蛋白.用SDS-PAGE电泳分析鉴定重组蛋白的表达水平.结果 测序表明,AgB8/1-AgB8/2嵌合抗原编码核酸序列正方向插入至pET32a质粒.SDS-PAGE电泳分析显示,IPTG诱导后重组嵌合蛋白得到成功表达,在相对分子量约38 kD处有表达条带.结论 成功构建了pET32a-AgB8/1-AgB8/2原核表达质粒,并初步诱导表达出AgB8/1-AgB8/2嵌合重组蛋白,为进一步研究其免疫学特性奠定了基础.%In order to construct the pET32a-AgB8/1-AgB8/2 chimeric antigen prokaryotic expression recombinant plasmid and the expression of its recombinant protein, the total RNA was extracted from protoscoleces of Echinococcus granulosus,and reverse transcribed into cDNA, the cDNA encoding mature form of EgAgB8/land EgAgB8/2 antigen were amplified by PCR using gene specific primers.Based on the both gene fragments, a nucleotide sequence encoding EgAgB8/1-EgAgB8/2 chimeric antigen were artificially synthesized after sequence confirmation.The synthesized nucleotide sequence encoding EgAgB8/1-EgAgB8/2 chimeric antigen were conformed by sequencing after cloning into pUCm-T vector, then the target sequence was directionally ligated into pET32a plasmid after double digestion with restriction enzymes for prokaryotic

  11. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Jong Seok [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); National Institute of Biological Resources, Incheon (Korea, Republic of); Kim, Yu-Jin [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Lee, Yu-Na; Kim, Min-Chul [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Animal and Plant Quarantine Agency, Gyeonggi-do, Gimcheon, Gyeongsangbukdo (Korea, Republic of); Cho, Minkyoung [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States); Kang, Sang-Moo, E-mail: skang24@gsu.edu [Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences and Department of Biology, Georgia State University, Atlanta, GA (United States)

    2016-07-15

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  12. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    International Nuclear Information System (INIS)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-01-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.

  13. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    Directory of Open Access Journals (Sweden)

    Tania Rivera-Hernandez

    2016-06-01

    Full Text Available Group A Streptococcus (GAS is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i streptolysin O (SLO, interleukin 8 (IL-8 protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP], group A streptococcal C5a peptidase (SCPA, arginine deiminase (ADI, and trigger factor (TF; (ii the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model.

  14. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    Directory of Open Access Journals (Sweden)

    Supatsak Subharat

    Full Text Available Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2 formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation. A control group of sheep (n = 6 was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.

  15. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults

    NARCIS (Netherlands)

    van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie

    2017-01-01

    INTRODUCTION: Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the

  16. Immunogenicity and safety of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) co-administered with DTPa vaccine in Japanese children: A randomized, controlled study.

    Science.gov (United States)

    Iwata, Satoshi; Kawamura, Naohisa; Kuroki, Haruo; Tokoeda, Yasunobu; Miyazu, Mitsunobu; Iwai, Asayuki; Oishi, Tomohiro; Sato, Tomohide; Suyama, Akari; François, Nancy; Shafi, Fakrudeen; Ruiz-Guiñazú, Javier; Borys, Dorota

    2015-01-01

    This phase III, randomized, open-label, multicenter study (NCT01027845) conducted in Japan assessed the immunogenicity, safety, and reactogenicity of 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV, given intramuscularly) co-administered with diphtheria-tetanus-acellular pertussis vaccine (DTPa, given subcutaneously). Infants (N=360 ) were randomized (2:1) to receive either PHiD-CV and DTPa (PHiD-CV group) or DTPa alone (control group) as 3-dose primary vaccination (3-4-5 months of age) and booster vaccination (17-19 months of age). Immune responses were measured before and one month after primary/booster vaccination and adverse events (AEs) were recorded. Post-primary immune responses were non-inferior to those in pivotal/efficacy European or Latin American pneumococcal protein D-conjugate vaccine studies. For each PHiD-CV serotype, at least 92.6% of infants post-primary vaccination and at least 97.7% of children post-booster had pneumococcal antibody concentrations ≥0.2 μg/ml, and at least 95.4% post-primary and at least 98.1% post-booster had opsonophagocytic activity (OPA) titers ≥8 . Geometric mean antibody concentrations and OPA titers (except OPA titer for 6B) were higher post-booster than post-priming for each serotype. All PHiD-CV-vaccinated children had anti-protein D antibody concentrations ≥100 EL.U/ml one month post-primary/booster vaccination and all were seroprotected/seropositive against each DTPa antigen. Redness and irritability were the most common solicited AEs in both groups. Incidences of unsolicited AEs were comparable between groups. Serious AEs were reported for 47 children (28 in PHiD-CV group); none were assessed as vaccine-related. In conclusion, PHiD-CV induced robust immune responses and was well tolerated when co-administered with DTPa in a 3-dose priming plus booster regimen to Japanese children.

  17. Examination on the protein profiles of salivary glands of P. berghei infected anopheles Sp. post gamma irradiation using SDS-PAGE technique for developing malaria vaccine

    International Nuclear Information System (INIS)

    Tetriana, D.; Syaifudin, M.

    2014-01-01

    Sporozoite is a step of malaria parasitic live cycle that is most invasive and appropriate vaccine candidate. Result of experiments showed that malaria vaccine created by attenuating Plasmodium sp sporozoites with gamma rays was proven more effective. Study on the effects of irradiation to the profiles of protein in vaccine development is also important. The aim of this research was to examine the protein profile of salivary glands in sporozoite infected Anopheles sp post gamma irradiation using Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) technique. Examination covered the infection of Anopheles sp with Plasmodium sp, maintenance of infected mosquitoes for 14-16 days to obtain sporozoites, in vivo - in vitro irradiation of mosquitoes, preparation of salivary glands, electrophoresis on 10% SDS-PAGE, and Commassie blue staining. Results showed a different protein profile of infected and non infected salivary glands of Anopheles sp. There was additional protein band numbers at higher dose of irradiation (200 Gy) from sporozoite protein of P. berghei (MW 62 kDa). However, no difference of the profiles of circumsporozoite protein (CSP) observed among gamma irradiation doses of 150, 175 and 200 Gy. These results provide basic information that would lead to further study on the role of sporozoite proteins in malaria vaccine development. (author)

  18. Chimeric rhinoviruses displaying MPER epitopes elicit anti-HIV neutralizing responses.

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    Full Text Available The development of an effective AIDS vaccine has been a formidable task, but remains a critical necessity. The well conserved membrane-proximal external region (MPER of the HIV-1 gp41 glycoprotein is one of the crucial targets for AIDS vaccine development, as it has the necessary attribute of being able to elicit antibodies capable of neutralizing diverse isolates of HIV.Guided by X-ray crystallography, molecular modeling, combinatorial chemistry, and powerful selection techniques, we designed and produced six combinatorial libraries of chimeric human rhinoviruses (HRV displaying the MPER epitopes corresponding to mAbs 2F5, 4E10, and/or Z13e1, connected to an immunogenic surface loop of HRV via linkers of varying lengths and sequences. Not all libraries led to viable chimeric viruses with the desired sequences, but the combinatorial approach allowed us to examine large numbers of MPER-displaying chimeras. Among the chimeras were five that elicited antibodies capable of significantly neutralizing HIV-1 pseudoviruses from at least three subtypes, in one case leading to neutralization of 10 pseudoviruses from all six subtypes tested.Optimization of these chimeras or closely related chimeras could conceivably lead to useful components of an effective AIDS vaccine. While the MPER of HIV may not be immunodominant in natural infection by HIV-1, its presence in a vaccine cocktail could provide critical breadth of protection.

  19. Epitope design of L1 protein for vaccine production against Human Papilloma Virus types 16 and 18.

    Science.gov (United States)

    Baidya, Sunanda; Das, Rasel; Kabir, Md Golam; Arifuzzaman, Md

    2017-01-01

    Cervical cancer accounts for about two-thirds of all cancer cases linked etiologically to Human Papilloma Virus (HPV). 15 oncogenic HPV types can cause cervical cancer, of which HPV16 and HPV18 combinedly account for about 70% of it. So, effective epitope design for the clinically relevant HPV types 16 and 18 would be of major medical benefit. Here, a comprehensive analysis is carried out to predict the epitopes against HPV types 16 and 18 through "reverse vaccinology" approach. We attempted to identify the evolutionarily conserved regions of major capsid protein (L1) as well as minor capsid protein (L2) of HPV and designed epitopes within these regions. In this study, we analyzed about 49 and 27 sequences of HPV L2 and L1 proteins respectively. Since we found that the intertype variability of L2 is higher than for L1 proteins, our analysis was emphasized on epitopes of L1 of HPV types 16 and 18. We had selected HLA-A*0201, DRB1*1501, DQB1*0602, DRB1*0401 and DQB1*0301 alleles for the prediction of T cell epitopes of L1 of HPV 16 and 18. Finally, we reported that predicted epitope sequences EEYDLQFIFQLCKITLTA, and RHGEEYDLQFIFQLCKITLTA of L1 protein of HPV 16, and LPDPNKF, PETQRLVWAC, PVPGQYDA, YNPETQRLVWAC, DTGYGAMD, PVPGQYDATK, KQDIPKVSAYQYRVFRV, RDNVSVDYKQTQLCI and YSRHVEEYDLQFIF of L1 protein of HPV 18 could be therapeutic tools for vaccine design against HPV.

  20. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    Directory of Open Access Journals (Sweden)

    Bryan E Hart

    2016-12-01

    Full Text Available Buruli ulcer (BU vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  1. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme.

    Science.gov (United States)

    Peptidoglycan hydrolases are an effective new source of antimicrobials. A chimeric fusion protein of the Ply187 endopeptidase domain and LysK SH3b cell wall binding domain is a potent agent against Staphylococcus aureus in three functional assays....

  2. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone...

  3. Live porcine reproductive and respiratory syndrome virus vaccines: Current status and future direction.

    Science.gov (United States)

    Renukaradhya, Gourapura J; Meng, Xiang-Jin; Calvert, Jay G; Roof, Michael; Lager, Kelly M

    2015-08-07

    Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) was reported in the late 1980s. PRRS still is a huge economic concern to the global pig industry with a current annual loss estimated at one billion US dollars in North America alone. It has been 20 years since the first modified live-attenuated PRRSV vaccine (PRRSV-MLV) became commercially available. PRRSV-MLVs provide homologous protection and help in reducing shedding of heterologous viruses, but they do not completely protect pigs against heterologous field strains. There have been many advances in understanding the biology and ecology of PRRSV; however, the complexities of virus-host interaction and PRRSV vaccinology are not yet completely understood leaving a significant gap for improving breadth of immunity against diverse PRRS isolates. This review provides insights on immunization efforts using infectious PRRSV-based vaccines since the 1990s, beginning with live PRRSV immunization, development and commercialization of PRRSV-MLV, and strategies to overcome the deficiencies of PRRSV-MLV through use of replicating viral vectors expressing multiple PRRSV membrane proteins. Finally, powerful reverse genetics systems (infectious cDNA clones) generated from more than 20 PRRSV isolates of both genotypes 1 and 2 viruses have provided a great resource for exploring many innovative strategies to improve the safety and cross-protective efficacy of live PRRSV vaccines. Examples include vaccines with diminished ability to down-regulate the immune system, positive and negative marker vaccines, multivalent vaccines incorporating antigens from other porcine pathogens, vaccines that carry their own cytokine adjuvants, and chimeric vaccine viruses with the potential for broad cross-protection against heterologous strains. To combat this devastating pig disease in the future, evaluation and commercialization of such improved live PRRSV vaccines is a shared goal among PRRSV researchers, pork

  4. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  5. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits

    Directory of Open Access Journals (Sweden)

    Sayaka Tsuji

    2017-07-01

    Full Text Available Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species.

  6. Posttransplant chimeric antigen receptor therapy.

    Science.gov (United States)

    Smith, Melody; Zakrzewski, Johannes; James, Scott; Sadelain, Michel

    2018-03-08

    Therapeutic T-cell engineering is emerging as a powerful approach to treat refractory hematological malignancies. Its most successful embodiment to date is based on the use of second-generation chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule found in most B-cell leukemias and lymphomas. Remarkable complete remissions have been obtained with autologous T cells expressing CD19 CARs in patients with relapsed, chemo-refractory B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. Allogeneic CAR T cells may also be harnessed to treat relapse after allogeneic hematopoietic stem cell transplantation. However, the use of donor T cells poses unique challenges owing to potential alloreactivity. We review different approaches to mitigate the risk of causing or aggravating graft-versus-host disease (GVHD), including CAR therapies based on donor leukocyte infusion, virus-specific T cells, T-cell receptor-deficient T cells, lymphoid progenitor cells, and regulatory T cells. Advances in CAR design, T-cell selection and gene editing are poised to enable the safe use of allogeneic CAR T cells without incurring GVHD. © 2018 by The American Society of Hematology.

  7. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    International Nuclear Information System (INIS)

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-01-01

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NΔ52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  8. Induction of Multifunctional Broadly Reactive T Cell Responses by a Plasmodium vivax Circumsporozoite Protein Recombinant Chimera.

    Science.gov (United States)

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa; Calvo-Calle, J Mauricio; Moreno, Alberto

    2015-09-01

    Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular immune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported approach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PvRMC-CSP, a recombinant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immunogenicity of PvRMC-CSP in groups of six inbred strains of mice. PvRMC-CSP was able to induce robust antibody responses in all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a similar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional CD4(+) and CD8(+) PvRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immunization with PvRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PvRMC-CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These features make PvRMC-CSP a promising vaccine candidate for further development. Copyright © 2015, American Society for Microbiology. All

  9. Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches.

    Directory of Open Access Journals (Sweden)

    Abbas Khan

    Full Text Available High-risk human papillomaviruses (hrHPVs are the most prevalent viruses in human diseases including cervical cancers. Expression of E6 protein has already been reported in cervical cancer cases, excluding normal tissues. Continuous expression of E6 protein is making it ideal to develop therapeutic vaccines against hrHPVs infection and cervical cancer. Therefore, we carried out a meta-analysis of multiple hrHPVs to predict the most potential prophylactic peptide vaccines. In this study, immunoinformatics approach was employed to predict antigenic epitopes of hrHPVs E6 proteins restricted to 12 Human HLAs to aid the development of peptide vaccines against hrHPVs. Conformational B-cell and CTL epitopes were predicted for hrHPVs E6 proteins using ElliPro and NetCTL. The potential of the predicted peptides were tested and validated by using systems biology approach considering experimental concentration. We also investigated the binding interactions of the antigenic CTL epitopes by using docking. The stability of the resulting peptide-MHC I complexes was further studied by molecular dynamics simulations. The simulation results highlighted the regions from 46-62 and 65-76 that could be the first choice for the development of prophylactic peptide vaccines against hrHPVs. To overcome the worldwide distribution, the predicted epitopes restricted to different HLAs could cover most of the vaccination and would help to explore the possibility of these epitopes for adaptive immunotherapy against HPVs infections.

  10. Vaccine development against the Taenia solium parasite: the role of recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Gauci, Charles; Jayashi, César; Lightowlers, Marshall W

    2013-01-01

    Taenia solium is a zoonotic parasite that causes cysticercosis. The parasite is a major cause of human disease in impoverished communities where it is transmitted to humans from pigs which act as intermediate hosts. Vaccination of pigs to prevent transmission of T. solium to humans is an approach that has been investigated to control the disease. A recombinant vaccine antigen, TSOL18, has been remarkably successful at reducing infection of pigs with T. solium in several experimental challenge trials. The vaccine has been shown to eliminate transmission of naturally acquired T. solium in a field trial conducted in Africa. We recently reported that the vaccine was also effective in a field trial conducted in Peru. The TSOL18 recombinant antigen for each of these trials has been produced by expression in Escherichia coli. Here we discuss research that has been undertaken on the TSOL18 antigen and related antigens with a focus on improved methods of preparation of recombinant TSOL18 and optimized expression in Escherichia coli.

  11. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    Science.gov (United States)

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  12. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain; Hébert, Charles

    2017-01-15

    ABSTRACT: For the development of a human West Nile (WN) infectious DNA (iDNA) vaccine, we created highly attenuated chimeric virus W1806 with the serological identity of highly virulent WN-NY99. Earlier, we attempted to utilize mutations found in the E protein of the SA14-14-2 vaccine to bring safety of W1806 to the level acceptable for human use (). Here, we analyzed effects of the SA14-14-2 changes on growth properties and neurovirulence of W1806. A set including the E138K, K279M, K439R and G447D changes was identified as the perspective subset for satisfying the target safety profile without compromising immunogenicity of the vaccine candidate. The genetic stability of the attenuated phenotype was found to be unsatisfactory being dependent on a subset of attenuating changes incorporated in W1806. Elucidation of underlying mechanisms influencing selection of pathways for restoration of the envelope protein functionality will facilitate resolution of the emerged genetic stability issue. - Highlights: •Effect of mutations in E on properties of WN1806 is determined. •A subset of attenuating mutations suitable for a human vaccine is defined. •Mechanism of attenuation is proposed and illustrated. •Underlying mechanisms of neurovirulence reversion are suggested.

  14. Immune responses of a chimaeric protein vaccine containing Mycoplasma hyopneumoniae antigens and LTB against experimental M. hyopneumoniae infection in pigs.

    Science.gov (United States)

    Marchioro, Silvana B; Sácristan, Rubén Del Pozo; Michiels, Annelies; Haesebrouck, Freddy; Conceição, Fabricio R; Dellagostin, Odir A; Maes, Dominiek

    2014-08-06

    A recombinant chimaeric protein containing three Mycoplasma hyopneumoniae antigens (C-terminal portion of P97, heat shock protein P42, and NrdF) fused to an adjuvant, the B subunit of heat-labile enterotoxin of Escherichia coli (LTB), was used to immunize pigs against enzootic pneumonia. The systemic and local immune responses, as well as the efficacy of the chimaeric protein in inducing protection against experimental M. hyopneumoniae infection were evaluated. In total, 60 male piglets, purchased from a M. hyopneumoniae-free herd, at 4 weeks of age were randomly allocated to six different experimental groups of 10 animals each: recombinant chimaeric protein by intramuscular (IM) (1) or intranasal (IN) (2) administration, commercial bacterin by IM administration (3), and the adjuvant LTB by IM (4, control group A) or IN (5, control group B) administration. All groups were immunized at 24 and 38 days of age and challenged at 52 days of age. The sixth group that was not challenged was used as the negative control (IN [n=5] or IM [n=5] administration of the LTB adjuvant). Compared with the non-challenged group, administration of the chimaeric protein induced significant (Phyopneumoniae infection in pigs. This lack of effectiveness points towards the need for further studies to improve the efficacy of this subunit-based vaccine approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge.

    Directory of Open Access Journals (Sweden)

    Marina De Filette

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime--boost regime with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical. In parallel a heterologous boost with purified recombinant WNV envelope (E protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8(+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.

  16. Protective efficacy of six immunogenic recombinant proteins of Vibrio anguillarum and evaluation them as vaccine candidate for flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-06-01

    Vibrio anguillarum is a severe bacterium that causes terminal haemorrhagic septicaemia in freshwater and marine fish. Virulence-associated proteins play an important role in bacterial pathogenicity and could be applied for immunoprophylaxis. In this study, six antigenic proteins from V. anguillarum were selected and the immune protective efficacy of their recombinant proteins was investigated. VirA, CheR, FlaC, OmpK, OmpR and Hsp33 were recombinantly produced and the reactions of recombinant proteins to flounder-anti-V. anguillarum antibodies (fV-ab) were detected, respectively. Then the recombinant proteins were injected to fish, after immunization, the percentages of surface membrane immunoglobulin-positive (sIg+) cell in lymphocytes, total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were analyzed, respectively. The results showed that all the recombinant proteins could react to fV-ab, proliferate sIg + cells in lymphocytes and induce production of total antibodies, specific antibodies against V. anguillarum or the recombinant proteins; the RPS of rVirA, rCheR, rFlaC, rOmpK, rOmpR and rHsp33 against V. anguillarum was 70.27%, 27.03%, 16.22%, 62.16%, 45.95% and 81.08%, respectively. The results revealed that rHsp33, rVirA and rOmpK have good protections against V. anguillarum and could be vaccine candidates against V. anguillarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of myiasis vaccine: In vitro detection of immunoprotective responses of peritrophic membrane protein, first instar larva Ll supernatant and pellet antigen of fly Chrysomyia bezziana in sheep

    Directory of Open Access Journals (Sweden)

    Sukarsih

    1999-10-01

    Full Text Available Myiasis control by means of individual treatment of animals which are mainly rised extensively is time consumed and expensive. The alternative way to control this disease by vaccination is considered effective and economically accepted. However the expected vaccine is now still being developed under a collaborative project between CSIRO, Inter-University Centre on Biotechnology-ITB and Research Institute for Veterinary Science and funded by ACIAR. There are several antigens have been identified as vaccine candidates and an in vitro bioassay technique has been developed for assessing the immunoresponses of vaccine in sheep. Three antigens were used for vaccines in this study, these included protein peritrophic membrane (PM, soluble extract (SE and pellet extract (PE of 1st instar larvae of Chrysomya bezziana. Twenty four experimental sheep were divided into 4 groups of 6 animals, 3 groups of animals were injected with PM, SE and PE vaccines with the dose rate of 0.5 g PM/head, 0.8 g PE/head and 4.2 ml LE/head respectively, and the other one group was injected with 4 ml PBS/head as a control group. Vaccination with the same dose was repeated 4 weeks after the 1st vaccination as a booster, and 2 weeks after the booster the sheep were challenged with live larvae, 3 days after challenge animals were killed. Sera were collected at the day of vaccination, 4 weeks after vaccination, 2 weeks after booster, and 3 days after challenge. An in vitro bioassay technique was conducted by culturing 1st instar larvae on five media containing sera collected from each experimental animal. The effects of sera on cultivated larvae were assessed by means of larval weight and larval mortality rate. The results indicated that the growth rate and survival of cultivated larvae in media containing anti-PM sera were significantly lower (P<0.01 compared to the larvae cultivated on media with sera on the day of vaccination. The larval weight depression by anti- PM sera

  18. Chimeric FimH adhesin of type 1 fimbriae: a bacterial surface display system for heterologous sequences

    DEFF Research Database (Denmark)

    Pallesen, L; Poulsen, LK; Christiansen, Gunna

    1995-01-01

    of heterologous DNA segments encoding two reporter sequences. In the selected positions such insertions did not significantly alter the function of the FimH protein with regard to surface location and adhesive ability. The system seemed to be quite flexible, since chimeric versions of the FimH adhesin containing...... as many as 56 foreign amino acids were transported to the bacterial surface as components of the fimbrial organelles. Furthermore, the foreign protein segments were recognized by insert-specific antibodies when expressed within chimeric proteins on the surface of the bacteria. The results from...

  19. Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine.

    Science.gov (United States)

    Khan, Shahneaz Ali; Polkinghorne, Adam; Waugh, Courtney; Hanger, Jon; Loader, Jo; Beagley, Kenneth; Timms, Peter

    2016-02-03

    The development of a vaccine is a key strategy to combat the widespread and debilitating effects of chlamydial infection in koalas. One such vaccine in development uses recombinant chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse model, suggest that both cell-mediated and antibody responses will be required for adequate protection. Recently, the important protective role of antibodies has been highlighted. In our current study, we conducted a detailed analysis of the antibody-mediated immune response in koalas that are either (a) naturally-infected, and/or (b) had received an rMOMP vaccine. Firstly, we observed that naturally-infected koalas had very low levels of Chlamydia pecorum-specific neutralising antibodies. A strong correlation between low IgG total titers/neutralising antibody levels, and higher C. pecorum infection load was also observed in these naturally-infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the humoral immune response by inducing strong levels of C. pecorum-specific neutralising antibodies. A detailed characterisation of the MOMP epitope response was also performed in naturally-infected and vaccinated koalas using a PepScan epitope approach. This analysis identified unique sets of MOMP epitope antibodies between naturally-infected non-protected and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a unique set of specific epitope-directed antibodies that we demonstrated were responsible for the in vitro neutralisation activity. Together, these results show the importance of antibodies in chlamydial infection and immunity following vaccination in the koala. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The use of an in vitro microneutralization assay to evaluate the potential of recombinant VP5 protein as an antigen for vaccinating against Grass carp reovirus

    Directory of Open Access Journals (Sweden)

    Xu Dan

    2011-03-01

    Full Text Available Abstract Background Grass carp reovirus (GCRV is the causative pathogen of grass carp hemorrhagic disease, one of the major diseases damaging grass carp Ctenopharyngon idellus breeding industry in China. Prevention and control of the disease is impeded largely due to the lack of research in economic subunit vaccine development. This study aimed to evaluate the potential of viral outer shell protein VP5 as subunit vaccine. Methods The vp5 gene was isolated from the viral genome through RT-PCR and genetically engineered to express the recombinant VP5 protein in E coli. The viral origin of the recombinant protein was confirmed by Western blot analysis with a monoclonal antibody against viral VP5 protein. Polyclonal antibody against the recombinant VP5 protein was prepared from mice. A microneutralization assay was developed to test its neutralizing ability against GCRV infection in cell culture. Results The GST-VP5 fusion protein (rVP5 was produced from E. Coli with expected molecular weight of 90 kDa. The protein was purified and employed to prepare anti-VP5 polyclonal antibody from mice. The anti-VP5 antibody was found to neutralize GCRV through in vitro microneutralization assay and viral progeny quantification analysis. Conclusions The present study showed that the viral VP5 protein was involved in viral infection and bacterially-expressed VP5 could be suitable for developing subunit vaccine for the control of GCRV infection.

  1. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    2017-06-14

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  2. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  3. Development of an indirect ELISA with epitope on nonstructural protein of Muscovy duck parvovirus for differentiating between infected and vaccinated Muscovy ducks.

    Science.gov (United States)

    Yan, B; Ma, J-Z; Yu, T-F; Shao, S-L; Li, M; Fan, X-D

    2014-12-01

    The aim of this study was to develop an indirect enzyme-linked immunosorbent assay (i-ELISA) based on epitope AA503-509 (RANEPKE), which is on nonstructural protein of Muscovy duck parvovirus (MDPV). Sera (100) from negative and vaccinated Muscovy ducks were compared with infected sera (240) to establish the cut-off value of this i-ELISA. There was a significant difference between the positive and negative populations (P ducks from Muscovy ducks vaccinated with inactivated virus. In this study, we developed an i-ELISA based on epitope AA503-509 (RANEPKE), which is on nonstructural protein of MDPV. This i-ELISA could be used as a diagnostic tool for differentiating infected Muscovy ducks from Muscovy ducks vaccinated with inactivated virus. © 2014 The Society for Applied Microbiology.

  4. A Novel Chimeric Endolysin with Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Haddad Kashani, Hamed; Fahimi, Hossein; Dasteh Goli, Yasaman; Moniri, Rezvan

    2017-01-01

    Cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) and amidase are known as catalytic domains of the bacteriophage-derived endolysin LysK and were previously reported to show lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). In the current study, the in silico design and analysis of chimeric CHAP-amidase model was applied to enhance the stability and solubility of protein, which was achieved through improving the properties of primary, secondary and tertiary structures. The coding gene sequence of the chimeric CHAP-amidase was synthesized and subcloned into the pET-22(+) expression vector, and the recombinant protein was expressed in E. coli BL21 (DE3) strain. Subsequent affinity-based purification yielded ~12 mg soluble protein per liter of E. coli culture. Statistical analysis indicated that concentrations of ≥1 μg/mL of the purified protein have significant antibacterial activity against S. aureus MRSA 252 cells. The engineered chimeric CHAP-amidase exhibited 3.2 log reduction of MRSA 252 cell counts at the concentration of 10 μg/mL. A synergistic interaction between CHAP-amidase and vancomycin was detected by using checkerboard assay and calculating the fractional inhibitory concentration (FIC) index. This synergistic effect was shown by 8-fold reduction in the minimum inhibitory concentration of vancomycin. The chimeric CHAP-amidase displayed strong antibacterial activity against S. aureus, S. epidermidis , and enterococcus . However, it did not indicate any significant antibacterial activity against E. coli and Lactococcus lactis . Taken together, these findings suggest that our chimeric CHAP-amidase might represent potential to be used for the development of efficient antibacterial therapies targeting MRSA and certain Gram-positive bacteria.

  5. A vaccine formulation combining rhoptry