WorldWideScience

Sample records for chimeric plant virus

  1. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.;

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone o...

  2. Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1

    OpenAIRE

    Yusibov, Vidadi; Modelska, Anna; Steplewski, Klaudia; Agadjanyan, Michail; Weiner, David; Hooper, D. Craig; Koprowski, Hilary

    1997-01-01

    The coat protein (CP) of alfalfa mosaic virus was used as a carrier molecule to express antigenic peptides from rabies virus and HIV. The antigens were separately cloned into the reading frame of alfalfa mosaic virus CP and placed under the control of the subgenomic promoter of tobacco mosaic virus CP in the 30BRz vector. The in vitro transcripts of recombinant virus with sequences encoding the antigenic peptides were synthesized from DNA constructs and used to inoculate tobacco plants. The p...

  3. Development of an intra-molecularly shuffled efficient chimeric plant promoter from plant infecting Mirabilis mosaic virus promoter sequence.

    Science.gov (United States)

    Acharya, Sefali; Sengupta, Soumika; Patro, Sunita; Purohit, Sukumar; Samal, Sabindra K; Maiti, Indu B; Dey, Nrisingha

    2014-01-01

    We developed an efficient chimeric promoter, MUASMSCP, with enhanced activity and salicylic acid (SA)/abscisic acid (ABA) inducibility, incorporating the upstream activation sequence (UAS) of Mirabilis mosaic virus full-length transcript (MUAS, -297 to -38) to the 5' end of Mirabilis mosaic virus sub-genomic transcript (MSCP, -306 to -125) promoter-fragment containing the TATA element. We compared the transient activity of the MUASMSCP promoter in tobacco/Arabidopsis protoplasts and in whole plant (Petunia hybrida) with the same that obtained from CaMV35S and MUAS35SCP promoters individually. The MUASMSCP promoter showed 1.1 and 1.5 times stronger GUS-activities over that obtained from MUAS35SCP and CaMV35S promoters respectively, in tobacco (Xanthi Brad) protoplasts. In transgenic tobacco (Nicotiana tabacum, var. Samsun NN), the MUASMSCP promoter showed 1.1 and 2.2 times stronger activities than MUAS35SCP and CaMV35S(2) promoters respectively. We observed a fair correlation between MUASMSCP-, MUAS35SCP- and CaMV35S(2)-driven GUS activities with the corresponding uidA-mRNA level in transgenic plants. X-gluc staining of transgenic germinating seed-sections and whole seedlings also support above findings. Protein-extracts made from tobacco protoplasts expressing GFP and human-IL-24 genes driven individually by the MUASMSCP promoter showed enhanced expression of the reporters compared to that obtained from the CaMV35S promoter. Furthermore, MUASMSCP-driven protoplast-derived human IL-24 showed enhanced cell inhibitory activity in DU-145 prostate cancer cells compared to that obtained from the CaMV35S promoter. We propose chimeric MUASMSCP promoter developed in the study could be useful for strong constitutive expression of transgenes in both plant/animal cells and it may become an efficient substitute for CaMV35S/CaMV35S(2) promoter.

  4. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    Science.gov (United States)

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  5. Japanese encephalitis virus vaccine candidates generated by chimerization with dengue virus type 4.

    Science.gov (United States)

    Gromowski, Gregory D; Firestone, Cai-Yen; Hanson, Christopher T; Whitehead, Stephen S

    2014-05-23

    Japanese encephalitis virus (JEV) is a leading cause of viral encephalitis worldwide and vaccination is one of the most effective ways to prevent disease. A suitable live-attenuated JEV vaccine could be formulated with a live-attenuated tetravalent dengue vaccine for the control of these viruses in endemic areas. Toward this goal, we generated chimeric virus vaccine candidates by replacing the precursor membrane (prM) and envelope (E) protein structural genes of recombinant dengue virus type 4 (rDEN4) or attenuated vaccine candidate rDEN4Δ30 with those of wild-type JEV strain India/78. Mutations were engineered in E, NS3 and NS4B protein genes to improve replication in Vero cells. The chimeric viruses were attenuated in mice and some elicited modest but protective levels of immunity after a single dose. One particular chimeric virus, bearing E protein mutation Q264H, replicated to higher titer in tissue culture and was significantly more immunogenic in mice. The results are compared with live-attenuated JEV vaccine strain SA14-14-2. Published by Elsevier Ltd.

  6. Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants.

    Science.gov (United States)

    Betti, Camilla; Lico, Chiara; Maffi, Dario; D'Angeli, Simone; Altamura, Maria Maddalena; Benvenuto, Eugenio; Faoro, Franco; Baschieri, Selene

    2012-02-01

    Potato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant carrying an N-terminal deletion of the coat protein, which was used to construct chimeric virus particles displaying peptides selectively affecting phloem transfer or cell-to-cell movement. Nicotiana benthamiana plants inoculated with expression vectors encoding the wild-type, mutant and chimeric viral genomes were examined by microscopy techniques. These experiments showed that coat protein-peptide fusions promoting cell-to-cell transfer only were not competent for virion assembly, whereas long-distance movement was possible only for coat proteins compatible with virus particle formation. Moreover, the ability of the assembled PVX to enter and persist into developing xylem elements was revealed here for the first time.

  7. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct.

    Science.gov (United States)

    Lin, Ching-Yi; Ku, Hsin-Mei; Chiang, Yi-Hua; Ho, Hsiu-Yin; Yu, Tsong-Ann; Jan, Fuh-Jyh

    2012-10-01

    Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.

  8. Chikungunya, Influenza, Nipah, and Semliki Forest Chimeric Viruses with Vesicular Stomatitis Virus: Actions in the Brain.

    Science.gov (United States)

    van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N

    2017-03-15

    Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain.IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah

  9. Thionin-D4E1 chimeric protein protects plants against bacterial infections

    Energy Technology Data Exchange (ETDEWEB)

    Stover, Eddie W; Gupta, Goutam; Hao, Guixia

    2017-08-08

    The generation of a chimeric protein containing a first domain encoding either a pro-thionon or thionin, a second domain encoding D4E1 or pro-D4E1, and a third domain encoding a peptide linker located between the first domain and second domain is described. Either the first domain or the second domain is located at the amino terminal of the chimeric protein and the other domain (second domain or first domain, respectively) is located at the carboxyl terminal. The chimeric protein has antibacterial activity. Genetically altered plants and their progeny expressing a polynucleotide encoding the chimeric protein resist diseases caused by bacteria.

  10. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus.

    Science.gov (United States)

    Kim, Shin-Hee; Paldurai, Anandan; Samal, Siba K

    2017-03-01

    Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis

    Directory of Open Access Journals (Sweden)

    Xuping Xie

    2017-02-01

    Full Text Available Compared with other flaviviruses, Zika virus (ZIKV is uniquely associated with congenital diseases in pregnant women. One recent study reported that (i ZIKV has higher thermostability than dengue virus (DENV [a flavivirus closely related to ZIKV], which might contribute to the disease outcome; (ii the higher thermostability of ZIKV could arise from an extended loop structure in domain III of the viral envelope (E protein and an extra hydrogen-bond interaction between E molecules (V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, and S.-M. Lok, Nature 533:425–428, 2016, https://doi.org/10.1038/nature17994. Here we report the functional analysis of the structural information in the context of complete ZIKV and DENV-2 virions. Swapping the prM-E genes between ZIKV and DENV-2 switched the thermostability of the chimeric viruses, identifying the prM-E proteins as the major determinants for virion thermostability. Shortening the extended loop of the E protein by 1 amino acid was lethal for ZIKV assembly/release. Mutations (Q350I and T351V that abolished the extra hydrogen-bond interaction between the E proteins did not reduce ZIKV thermostability, indicating that the extra interaction does not increase the thermostability. Interestingly, mutant T351V was attenuated in A129 mice defective in type I interferon receptors, even though the virus retained the wild-type thermostability. Furthermore, we found that a chimeric ZIKV with the DENV-2 prM-E and a chimeric DENV-2 with the ZIKV prM-E were highly attenuated in A129 mice; these chimeric viruses were highly immunogenic and protective against DENV-2 and ZIKV challenge, respectively. These results indicate the potential of these chimeric viruses for vaccine development.

  12. Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis

    Science.gov (United States)

    Yang, Yujiao; Muruato, Antonio E.; Zou, Jing; Shan, Chao; Nunes, Bruno T. D.; Medeiros, Daniele B. A.; Vasconcelos, Pedro F. C.; Weaver, Scott C.; Rossi, Shannan L.

    2017-01-01

    ABSTRACT Compared with other flaviviruses, Zika virus (ZIKV) is uniquely associated with congenital diseases in pregnant women. One recent study reported that (i) ZIKV has higher thermostability than dengue virus (DENV [a flavivirus closely related to ZIKV]), which might contribute to the disease outcome; (ii) the higher thermostability of ZIKV could arise from an extended loop structure in domain III of the viral envelope (E) protein and an extra hydrogen-bond interaction between E molecules (V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, and S.-M. Lok, Nature 533:425–428, 2016, https://doi.org/10.1038/nature17994). Here we report the functional analysis of the structural information in the context of complete ZIKV and DENV-2 virions. Swapping the prM-E genes between ZIKV and DENV-2 switched the thermostability of the chimeric viruses, identifying the prM-E proteins as the major determinants for virion thermostability. Shortening the extended loop of the E protein by 1 amino acid was lethal for ZIKV assembly/release. Mutations (Q350I and T351V) that abolished the extra hydrogen-bond interaction between the E proteins did not reduce ZIKV thermostability, indicating that the extra interaction does not increase the thermostability. Interestingly, mutant T351V was attenuated in A129 mice defective in type I interferon receptors, even though the virus retained the wild-type thermostability. Furthermore, we found that a chimeric ZIKV with the DENV-2 prM-E and a chimeric DENV-2 with the ZIKV prM-E were highly attenuated in A129 mice; these chimeric viruses were highly immunogenic and protective against DENV-2 and ZIKV challenge, respectively. These results indicate the potential of these chimeric viruses for vaccine development. PMID:28174309

  13. Plant Resistance to Virus Diseases through Genetic Engineering: Can a Similar Approach Control Plant-parasitic Nematodes?

    OpenAIRE

    Reimann-Philipp, Ulrich; Beachy, Roger N.

    1993-01-01

    Genetically engineered resistance against plant virus diseases has been achieved by transforming plants with gene constructs that encode viral sequences. Several successful field trials of virus-resistant transgenic plants have been carried out. Specific features of virus infection make it possible to interfere with different steps of the infection and disease cycle by accumulating products of chimeric genes introduced into transgenic plants. In this paper we describe the most common methods ...

  14. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Masaaki [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Morikawa, Katsuma [Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Suda, Tatsuya [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Ohno, Naohito [Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsushita, Sho [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Allergy Center, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Akatsuka, Toshitaka [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Handa, Hiroshi, E-mail: handa.h.aa@m.titech.ac.jp [Solutions Research Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503 (Japan); Matsui, Masanori, E-mail: mmatsui@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  15. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Nakagawa

    Full Text Available BACKGROUND & AIMS: The interferon (IFN system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV and hepatitis B virus (HBV. METHODS: This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC. Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs in the livers and sera of these humanized chimeric mice. RESULTS: Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1, suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. CONCLUSIONS: These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  16. Virus-Specific Read-Through Codon Preference Affects Infectivity of Chimeric Cucumber Green Mottle Mosaic Viruses Displaying a Dengue Virus Epitope

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A Cucumber green mottle mosaic virus (CGMMV was used to present a truncated dengue virus type 2 envelope (E protein binding region from amino acids 379 to 423 (EB4. The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP open reading frame (ORF. Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.

  17. Virus-specific read-through codon preference affects infectivity of chimeric cucumber green mottle mosaic viruses displaying a dengue virus epitope.

    Science.gov (United States)

    Teoh, Pak-Guan; Ooi, Aik-Seng; AbuBakar, Sazaly; Othman, Rofina Yasmin

    2009-01-01

    A Cucumber green mottle mosaic virus (CGMMV) was used to present a truncated dengue virus type 2 envelope (E) protein binding region from amino acids 379 to 423 (EB4). The EB4 gene was inserted at the terminal end of the CGMMV coat protein (CP) open reading frame (ORF). Read-through sequences of TMV or CGMMV, CAA-UAG-CAA-UUA, or AAA-UAG-CAA-UUA were, respectively, inserted in between the CP and the EB4 genes. The chimeric clones, pRT, pRG, and pCG+FSRTRE, were transcribed into full-length capped recombinant CGMMV transcripts. Only constructs with the wild-type CGMMV read-through sequence yielded infectious viruses following infection of host plant, muskmelon (Cucumis melo) leaves. The ratio of modified to unmodified CP for the read-through expression clone developed was also found to be approximately 1:1, higher than what has been previously reported. It was also observed that infectivity was not affected by differences in pI between the chimera and its wild counterpart. Analysis of recombinant viruses after 21-days-postinculation (dpi) revealed that deletions occurred resulting in partial reversions of the viral population to near wild type and suggesting that this would be the limiting harvest period for obtaining true to type recombinants with this construct.

  18. Plant Virus Metagenomics: Advances in Virus Discovery.

    Science.gov (United States)

    Roossinck, Marilyn J; Martin, Darren P; Roumagnac, Philippe

    2015-06-01

    In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems-aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants.

  19. Chimeric Yellow Fever/Dengue Virus as a Candidate Dengue Vaccine: Quantitation of the Dengue Virus-Specific CD8 T-Cell Response

    OpenAIRE

    van der Most, Robbert G.; Murali-Krishna, Kaja; Ahmed, Rafi; Strauss, James H.

    2000-01-01

    We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against...

  20. A novel chimeric Hepatitis B virus S/preS1 antigen produced in mammalian and plant cells elicits stronger humoral and cellular immune response than the standard vaccine-constituent, S protein.

    Science.gov (United States)

    Dobrica, Mihaela-Olivia; Lazar, Catalin; Paruch, Lisa; Skomedal, Hanne; Steen, Hege; Haugslien, Sissel; Tucureanu, Catalin; Caras, Iuliana; Onu, Adrian; Ciulean, Sonya; Branzan, Alexandru; Clarke, Jihong Liu; Stavaru, Crina; Branza-Nichita, Norica

    2017-08-01

    Chronic Hepatitis B Virus (HBV) infection leads to severe liver pathogenesis associated with significant morbidity and mortality. As no curable medication is yet available, vaccination remains the most cost-effective approach to limit HBV spreading and control the infection. Although safe and efficient, the standard vaccine based on production of the small (S) envelope protein in yeast fails to elicit an effective immune response in about 10% of vaccinated individuals, which are at risk of infection. One strategy to address this issue is the development of more immunogenic antigens. Here we describe a novel HBV antigen obtained by combining relevant immunogenic determinants of S and large (L) envelope proteins. Our approach was based on the insertion of residues 21-47 of the preS1 domain of the L protein (nomenclature according to genotype D), involved in virus attachment to hepatocytes, within the external antigenic loop of S. The resulting S/preS1(21-47) chimera was successfully produced in HEK293T and Nicotiana benthamiana plants, as a more economical recombinant protein production platform. Comparative biochemical, functional and electron microscopy analysis indicated assembly of the novel antigen into subviral particles in mammalian and plant cells. Importantly, these particles preserve both S- and preS1-specific epitopes and elicit significantly stronger humoral and cellular immune responses than the S protein, in both expression systems used. Our data promote this antigen as a promising vaccine candidate to overcome poor responsiveness to the conventional, S protein-based, HBV vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Engineered plant virus resistance.

    Science.gov (United States)

    Galvez, Leny C; Banerjee, Joydeep; Pinar, Hasan; Mitra, Amitava

    2014-11-01

    Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants.

  2. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein.

    OpenAIRE

    Yoshikawa, A.; Tanaka, T; Hoshi, Y.; Kato, N; K. Tachibana; Iizuka, H; Machida, A; Okamoto, H; Yamasaki, M.; Miyakawa, Y

    1993-01-01

    Either parts or multiple copies of the core gene of hepatitis C virus (HCV) were fused to the 3' terminus of the hepatitis B virus (HBV) core gene with 34 codons removed. As many as four copies of HCV core protein (720 amino acids) were fused to the carboxy terminus of truncated HBV core protein (149 amino acids) without preventing the assembly of HBV core particles. Chimeric core particles were sandwiched between monoclonal antibody to HBV core and that to HCV core, thereby indicating that a...

  3. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein.

    OpenAIRE

    Yoshikawa, A.; Tanaka, T; Hoshi, Y.; Kato, N.; Tachibana, K; Iizuka, H.; Machida, A; Okamoto, H; Yamasaki, M.; Miyakawa, Y

    1993-01-01

    Either parts or multiple copies of the core gene of hepatitis C virus (HCV) were fused to the 3' terminus of the hepatitis B virus (HBV) core gene with 34 codons removed. As many as four copies of HCV core protein (720 amino acids) were fused to the carboxy terminus of truncated HBV core protein (149 amino acids) without preventing the assembly of HBV core particles. Chimeric core particles were sandwiched between monoclonal antibody to HBV core and that to HCV core, thereby indicating that a...

  4. High-Level Systemic Expression of Conserved Influenza Epitope in Plants on the Surface of Rod-Shaped Chimeric Particles

    Directory of Open Access Journals (Sweden)

    Natalia V. Petukhova

    2014-04-01

    Full Text Available Recombinant viruses based on the cDNA copy of the tobacco mosaic virus (TMV genome carrying different versions of the conserved M2e epitope from influenza virus A cloned into the coat protein (CP gene were obtained and partially characterized by our group previously; cysteines in the human consensus M2e sequence were changed to serine residues. This work intends to show some biological properties of these viruses following plant infections. Agroinfiltration experiments on Nicotiana benthamiana confirmed the efficient systemic expression of M2e peptides, and two point amino acid substitutions in recombinant CPs significantly influenced the symptoms and development of viral infections. Joint expression of RNA interference suppressor protein p19 from tomato bushy stunt virus (TBSV did not affect the accumulation of CP-M2e-ser recombinant protein in non-inoculated leaves. RT-PCR analysis of RNA isolated from either infected leaves or purified TMV-M2e particles proved the genetic stability of TMV‑based viral vectors. Immunoelectron microscopy of crude plant extracts demonstrated that foreign epitopes are located on the surface of chimeric virions. The rod‑shaped geometry of plant-produced M2e epitopes is different from the icosahedral or helical filamentous arrangement of M2e antigens on the carrier virus-like particles (VLP described earlier. Thereby, we created a simple and efficient system that employs agrobacteria and plant viral vectors in order to produce a candidate broad-spectrum flu vaccine.

  5. High-throughput screening and rapid inhibitor triage using an infectious chimeric Hepatitis C virus.

    Science.gov (United States)

    Wichroski, Michael J; Fang, Jie; Eggers, Betsy J; Rose, Ronald E; Mazzucco, Charles E; Pokornowski, Kevin A; Baldick, Carl J; Anthony, Monique N; Dowling, Craig J; Barber, Lauren E; Leet, John E; Beno, Brett R; Gerritz, Samuel W; Agler, Michele L; Cockett, Mark I; Tenney, Daniel J

    2012-01-01

    The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.

  6. [Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].

    Science.gov (United States)

    Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong

    2016-01-01

    The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.

  7. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones

    Directory of Open Access Journals (Sweden)

    Sandra Arenhart

    Full Text Available Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3. The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.

  8. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones.

    Science.gov (United States)

    Arenhart, Sandra; Silva, José Valter Joaquim; Flores, Eduardo Furtado; Weiblen, Rudi; Gil, Laura Helena Vega Gonzales

    The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV) strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3). The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    Science.gov (United States)

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-01-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever.

  10. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes

    Energy Technology Data Exchange (ETDEWEB)

    Lagrimini, L.M.

    1990-12-31

    Peroxidases have been implicated in a variety of secondary metabolic reactions including lignification, cross-linking of cell wall polysaccharides, oxidation of indole-3-acetic acid, regulation of cell elongation, wound-healing, phenol oxidation, and pathogen defense. However, due to the many different isoenzymes and even more potential substrates, it has proven difficult to verify actual physiological roles for peroxidase. We are studying the molecular biology of the tobacco peroxidase genes, and have utilized genetic engineering techniques to produce transgenic plants which differ only in their expression of an individual peroxidase isoenzyme. Many of the in planta functions for any individual isoenzyme may be predicted through the morphological and physiological analysis of transformed plants.

  11. Altered phenotypes in plants transformed with chimeric tobacco peroxidase genes

    Energy Technology Data Exchange (ETDEWEB)

    Lagrimini, L.M.

    1990-01-01

    Peroxidases have been implicated in a variety of secondary metabolic reactions including lignification, cross-linking of cell wall polysaccharides, oxidation of indole-3-acetic acid, regulation of cell elongation, wound-healing, phenol oxidation, and pathogen defense. However, due to the many different isoenzymes and even more potential substrates, it has proven difficult to verify actual physiological roles for peroxidase. We are studying the molecular biology of the tobacco peroxidase genes, and have utilized genetic engineering techniques to produce transgenic plants which differ only in their expression of an individual peroxidase isoenzyme. Many of the in planta functions for any individual isoenzyme may be predicted through the morphological and physiological analysis of transformed plants.

  12. Construction of a Chimeric Secretory IgA and Its Neutralization Activity against Avian Influenza Virus H5N1

    Directory of Open Access Journals (Sweden)

    Cun Li

    2014-01-01

    Full Text Available Secretory immunoglobulin A (SIgA acts as the first line of defense against respiratory pathogens. In this assay, the variable regions of heavy chain (VH and Light chain (VL genes from a mouse monoclonal antibody against H5N1 were cloned and fused with human IgA constant regions. The full-length chimeric light and heavy chains were inserted into a eukaryotic expressing vector and then transfected into CHO/dhfr-cells. The chimeric monomeric IgA antibody expression was confirmed by using ELISA, SDS-PAGE, and Western blot. In order to obtain a dimeric secretory IgA, another two expressing plasmids, namely, pcDNA4/His A-IgJ and pcDNA4/His A-SC, were cotransfected into the CHO/dhfr-cells. The expression of dimeric SIgA was confirmed by using ELISA assay and native gel electrophoresis. In microneutralization assay on 96-well immunoplate, the chimeric SIgA showed neutralization activity against H5N1 virus on MDCK cells and the titer was determined to be 1 : 64. On preadministrating intranasally, the chimeric SIgA could prevent mice from lethal attack by using A/Vietnam/1194/04 H5N1 with a survival rate of 80%. So we concluded that the constructed recombinant chimeric SIgA has a neutralization capability targeting avian influenza virus H5N1 infection in vitro and in vivo.

  13. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Science.gov (United States)

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C; Hurtig, Heather R; Mabee, Leah M; Mingo, Mark; Li, Yanhua; Webby, Richard J; Huber, Victor C; Fang, Ying

    2015-01-01

    Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  14. Chimeric virus-like particles for the delivery of an inserted conserved influenza A-specific CTL epitope.

    Science.gov (United States)

    Cheong, Wan-Shoo; Reiseger, Jessica; Turner, Stephen John; Boyd, Richard; Netter, Hans-Jürgen

    2009-02-01

    The small hepatitis B virus surface antigens (HBsAg-S) have the ability to self-assemble with host-derived lipids into empty non-infectious virus-like particles (VLPs). HBsAg-S VLPs are the sole component of the licensed hepatitis B vaccine, and they are a useful delivery platform for foreign epitopes. To develop VLPs capable of transporting foreign cytotoxic T lymphocyte (CTL) epitopes, HBsAg-S specific CTL epitopes at various sites were substituted with a conserved CTL epitope derived from the influenza matrix protein. Depending on the insertion site, the introduction of the MHC class I A2.1-restricted influenza epitope was compatible with the secretion competence of HBsAg-S indicating that chimeric VLPs were assembled. Immunizations of transgenic HHDII mice with chimeric VLPs induced anti-influenza CTL responses proving that the inserted foreign epitope can be correctly processed and cross-presented. Chimeric VLPs in the absence of adjuvant were able to induce memory T cell responses, which could be recalled by influenza virus infections in the mouse model system. The ability of chimeric HBsAg-S VLPs to induce anti-foreign CTL responses and also with the proven ability to induce humoral immune responses constitute a highly versatile platform for the delivery of selected multiple epitopes to target disease associated infectious agents.

  15. Construction of a chimeric hepatitis C virus replicon based on a strain isolated from a chronic hepatitis C patient.

    Science.gov (United States)

    Cao, Huang; Zhu, Wandi; Han, Qingxia; Pei, Rongjuan; Chen, Xinwen

    2014-02-01

    Subgenomic replicons of hepatitis C virus (HCV) have been widely used for studying HCV replication. Here, we report a new subgenomic replicon based on a strain isolated from a chronically infected patient. The coding sequence of HCV was recovered from a Chinese chronic hepatitis C patient displaying high serum HCV copy numbers. A consensus sequence designated as CCH strain was constructed based on the sequences of five clones and this was classified by sequence alignment as belonging to genotype 2a. The subgenomic replicon of CCH was replication-deficient in cell culture, due to dysfunctions in NS3 and NS5B. Various JFH1/CCH chimeric replicons were constructed, and specific mutations were introduced. The introduction of mutations could partially restore the replication of chimeric replicons. A replication-competent chimeric construct was finally obtained by the introduction of NS3 from JFH1 into the backbone of the CCH strain.

  16. Construction and preliminary investigation of a novel dengue serotype 4 chimeric virus using Japanese encephalitis vaccine strain SA14-14-2 as the backbone.

    Science.gov (United States)

    Li, Zhushi; Yang, Huiqiang; Yang, Jian; Lin, Hua; Wang, Wei; Liu, Lina; Zhao, Yu; Liu, Li; Zeng, Xianwu; Yu, Yongxin; Li, Yuhua

    2014-10-13

    For the purpose of developing a novel dengue vaccine candidate, recombinant plasmids were constructed which contained the full length cDNA clone of Japanese encephalitis (JE) vaccine strain SA14-14-2 with its premembrane (PreM) and envelope (E) genes replaced by the counterparts of dengue virus type 4 (DENV4). By transfecting the in vitro transcription products of the recombinant plasmids into BHK-21 cells, a chimeric virus JEV/DENV4 was successfully recovered. The chimeric virus was identified by complete genome sequencing, Western blot and immunofluorescent staining. Growth characteristics revealed it was well adapted to primary hamster kidney (PHK) cells. Its genetic stability was investigated and only one unintentional mutation in 5'-untranslated region (5'-UTR) was found after 20 passages in PHK cells. Neurotropism, neurovirulence and immunogenicity of the chimeric virus were tested in mice. Besides, the influence of JE vaccine pre-immunization on the neutralizing antibody level induced by the chimeric virus was illuminated. To our knowledge, this is the first chimeric virus incorporating the JE vaccine stain SA14-14-2 and DENV4. It is probably a potential candidate to compose a tetravalent dengue chimeric vaccine.

  17. Lentiviral Gag assembly analyzed through the functional characterization of chimeric simian immunodeficiency viruses expressing different domains of the feline immunodeficiency virus capsid protein.

    Directory of Open Access Journals (Sweden)

    María J Esteva

    Full Text Available To gain insight into the functional relationship between the capsid (CA domains of the Gag polyproteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively, we constructed chimeric SIVs in which the CA-coding region was partially or totally replaced by the equivalent region of the FIV CA. The phenotypic characterization of the chimeras allowed us to group them into three categories: the chimeric viruses that, while being assembly-competent, exhibit a virion-associated unstable FIV CA; a second group represented only by the chimeric SIV carrying the N-terminal domain (NTD of the FIV CA which proved to be assembly-defective; and a third group constituted by the chimeric viruses that produce virions exhibiting a mature and stable FIV CA protein, and which incorporate the envelope glycoprotein and contain wild-type levels of viral genome RNA and reverse transcriptase. Further analysis of the latter group of chimeric SIVs demonstrated that they are non-infectious due to a post-entry impairment, such as uncoating of the viral core, reverse transcription or nuclear import of the preintegration complex. Furthermore, we show here that the carboxyl-terminus domain (CTD of the FIV CA has an intrinsic ability to dimerize in vitro and form high-molecular-weight oligomers, which, together with our finding that the FIV CA-CTD is sufficient to confer assembly competence to the resulting chimeric SIV Gag polyprotein, provides evidence that the CA-CTD exhibits more functional plasticity than the CA-NTD. Taken together, our results provide relevant information on the biological relationship between the CA proteins of primate and nonprimate lentiviruses.

  18. Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response.

    Science.gov (United States)

    van Der Most, R G; Murali-Krishna, K; Ahmed, R; Strauss, J H

    2000-09-01

    We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.

  19. Functionality of Chimeric E2 Glycoproteins of BVDV and CSFV in Virus Replication

    Directory of Open Access Journals (Sweden)

    H.G.P. van Gennip

    2008-01-01

    Full Text Available An intriguing difference between the E2 glycoprotein of CSFV and the other groups of pestiviruses (nonCSFV is a lack of two cysteine residues on positions cysteine 751 and 798. Other groups of pestivirus are not restricted to one species as swine, whereas CSFV is restricted to swine and wild boar. We constructed chimeric CSFV/BVDV E2 genes based on a 2D model of E2 proposed by van Rijn et al. (van Rijn et al. 1994, J Virol 68, 3934–42 and confirmed their expression by immunostaining of plasmid-transfected SK6 cells. No equivalents for the antigenic units B/C and A were found on E2 of BVDVII. This indicates major structural differences in E2. However, the immunodominant BVDVII domain A, containing epitopes with essential amino acids between position 760–764, showed to be dependent on the presence of the region defined by amino acids 684 to 796. As for the A domain of CSFV, the BVDVII A-like domain seemed to function as a separate unit. These combined domains in E2 proved to be the only combination which was functional in viral background of CSFV C-strain. The fitness of this virus (vfl c36BVDVII 684–796 seemed to be reduced compared to vfl c9 (with the complete antigenic region of BVDVII.

  20. Validation of Plant Virus Detection

    NARCIS (Netherlands)

    Schadewijk, van A.R.; Meekes, E.T.M.; Verbeek, M.; Verhoeven, J.Th.J.

    2011-01-01

    Validation of test methods is required for laboratories seeking ISO 17025 accreditation. Recently developed manuals help choosing relevant performance characteristics to be studied for qualitative tests common in plant virus detection. For routine testing in certification schemes additional

  1. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV).

    Science.gov (United States)

    Huber, Bettina; Schellenbacher, Christina; Shafti-Keramat, Saeed; Jindra, Christoph; Christensen, Neil; Kirnbauer, Reinhard

    2017-01-01

    Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17-36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV

  2. HLA-associated alterations in replication capacity of chimeric NL4-3 viruses carrying gag-protease from elite controllers of human immunodeficiency virus type 1.

    Science.gov (United States)

    Miura, Toshiyuki; Brockman, Mark A; Brumme, Zabrina L; Brumme, Chanson J; Pereyra, Florencia; Trocha, Alicja; Block, Brian L; Schneidewind, Arne; Allen, Todd M; Heckerman, David; Walker, Bruce D

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1)-infected persons who maintain plasma viral loads of viruses (VRC) obtained from EC (n = 54) compared to those from chronic progressors (CP; n = 41) by constructing chimeric viruses using patient-derived gag-protease sequences amplified from plasma HIV RNA and inserted into an NL4-3 backbone. The chimeric viruses generated from EC displayed lower VRC than did viruses from CP (P viruses from B*57(+) EC (n = 18) demonstrated lower VRC than did viruses from B*57(+) CP (n = 8, P = 0.0245). Differences in VRC between EC and CP were also observed for viruses obtained from individuals expressing no described "protective" alleles (P = 0.0065). Intriguingly, two common HLA alleles, A*02 and B*07, were associated with higher VRC (P = 0.0140 and 0.0097, respectively), and there was no difference in VRC between EC and CP sharing these common HLA alleles. These findings indicate that cytotoxic T-lymphocyte (CTL) selection pressure on gag-protease alters VRC, and HIV-specific CTLs inducing escape mutations with fitness costs in this region may be important for strict viremia control in EC of HIV.

  3. Chimeric Rabies Virus-Like Particles Containing Membrane-Anchored GM-CSF Enhances the Immune Response against Rabies Virus

    Directory of Open Access Journals (Sweden)

    Hongtao Kang

    2015-03-01

    Full Text Available Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP, which containing glycoprotein (G and matrix protein (M of rabies virus (RABV Evelyn-Rokitnicki-Abelseth (ERA strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF, and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M. The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies.

  4. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    Energy Technology Data Exchange (ETDEWEB)

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P. (Upjohn Co., Kalamazoo, MI (United States))

    1991-03-19

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with ({sup 3}H)glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Gal{beta}1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked {alpha}1-6 to the asparagine-linked N-acetylglucosamine.

  5. Dominant resistance against plant viruses

    NARCIS (Netherlands)

    Ronde, de D.; Butterbach, P.B.E.; Kormelink, R.J.M.

    2014-01-01

    To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified agains

  6. Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacum L.

    Directory of Open Access Journals (Sweden)

    Dipak K. Sahoo

    2014-01-01

    Full Text Available To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco.

  7. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus.

    Science.gov (United States)

    Zhu, Shaomei; Li, Tingting; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre; Li, Chengyao

    2016-09-15

    A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection

  8. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  9. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  10. Dual Regulation of a Chimeric Plant Serine/Threonine Kinase by Calcium and Calcium/Calmodulin

    Science.gov (United States)

    Takezawa, D.; Ramachandiran, S.; Paranjape, V.; Poovaiah, B. W.

    1996-01-01

    A chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain was recently cloned from plants. The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substrates in a Ca(2+)/calmodulin-dependent manner. The calmodulin-binding region of CCAMK has similarity to the calmodulin-binding region of the alpha-subunit of multifunctional Ca(2+)/calmodulin-dependent protein kinase (CaMKII). CCaMK exhibits basal autophosphorylation at the threonine residue(s) (0.098 mol of P-32/mol) that is stimulated 3.4-fold by Ca(2+) (0.339 mol of P-32/mol), while calmodulin inhibits Ca(2+)-stimulated autophosphorylation to the basal level. A deletion mutant lacking the visinin-like domain did not show Ca(2+)-simulated autophosphorylation activity but retained Ca(2+)/calmodulin-dependent protein kinase activity at a reduced level. Ca(2+)-dependent mobility shift assays using E.coli-expressed protein from residues 358-520 revealed that Ca(2+) binds to the visinin-like domain. Studies with site-directed mutants of the visinin-like domain indicated that EF-hands II and III are crucial for Ca(2+)-induced conformational changes in the visinin-like domain. Autophosphorylation of CCaMK increases Ca(2+)/calmodulin-dependent protein kinase activity by about 5-fold, whereas it did not affect its C(2+)-independent activity. This report provides evidence for the existence of a protein kinase in plants that is modulated by Ca(2+) and Ca(2+)/calmodulin. The presence of a visinin-like Ca(2+)-binding domain in CCaMK adds an additional Ca(2+)-sensing mechanism not previously known to exist in the Ca(2+)/calmodulin-mediated signaling cascade in plants.

  11. Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2014-12-01

    Full Text Available Virus-like particles (VLPs of chimeric porcine circovirus type 2 (PCV2 were generated by replacing the nuclear localization signal (NLS; at 1–39 aa of PCV2 capsid protein (Cap with classical swine fever virus (CSFV T-cell epitope (1446–1460 aa, CSFV B-cell epitope (693–716 aa and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopes did not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine.

  12. Reverse genetics generation of chimeric infectious Junin/Lassa virus is dependent on interaction of homologous glycoprotein stable signal peptide and G2 cytoplasmic domains.

    Science.gov (United States)

    Albariño, César G; Bird, Brian H; Chakrabarti, Ayan K; Dodd, Kimberly A; White, David M; Bergeron, Eric; Shrivastava-Ranjan, Punya; Nichol, Stuart T

    2011-01-01

    The Arenaviridae are a diverse and globally distributed collection of viruses that are maintained primarily by rodent reservoirs. Junin virus (JUNV) and Lassa virus (LASV) can both cause significant outbreaks of severe and often fatal human disease throughout their respective areas of endemicity. In an effort to improve upon the existing live attenuated JUNV Candid1 vaccine, we generated a genetically homogenous stock of this virus from cDNA copies of the virus S and L segments by using a reverse genetics system. Further, these cDNAs were used in combination with LASV cDNAs to successfully generate two recombinant Candid1 JUNV/LASV chimeric viruses (via envelope glycoprotein [GPC] exchange). It was found that while the GPC extravirion domains were readily exchangeable, homologous stable signal peptide (SSP) and G2 transmembrane and cytoplasmic tail domains were essential for correct GPC maturation and production of infectious chimeric viruses. The switching of the JUNV and LASV G1/G2 ectodomains within the Candid1 vaccine background did not alter the attenuated phenotype of the vaccine strain in a lethal mouse model. These recombinant chimeric viruses shed light on the fundamental requirements of arenavirus GPC maturation and may serve as a strategy for the development of bivalent JUNV and LASV vaccine candidates.

  13. RNA-guided Transcriptional Regulation in Plants via dCas9 Chimeric Proteins

    KAUST Repository

    Baazim, Hatoon

    2014-05-01

    Developing targeted genome regulation approaches holds much promise for accelerating trait discovery and development in agricultural biotechnology. Clustered Regularly Interspaced Palindromic Repeats (CRISPRs)/CRISPR associated (Cas) system provides bacteria and archaea with an adaptive molecular immunity mechanism against invading nucleic acids through phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing purposes across a variety of cell types and organisms. Recently, the catalytically inactive Cas9 (dCas9) protein combined with guide RNAs (gRNAs) were used as a DNA-targeting platform to modulate the expression patterns in bacterial, yeast and human cells. Here, we employed this DNA-targeting system for targeted transcriptional regulation in planta by developing chimeric dCas9-based activators and repressors. For example, we fused to the C-terminus of dCas9 with the activation domains of EDLL and TAL effectors, respectively, to generate transcriptional activators, and the SRDX repression domain to generate transcriptional repressor. Our data demonstrate that the dCas9:EDLL and dCas9:TAD activators, guided by gRNAs complementary to promoter elements, induce strong transcriptional activation on episomal targets in plant cells. Moreover, our data suggest that the dCas9:SRDX repressor and the dCas9:EDLL and dCas9:TAD activators are capable of markedly repressing or activating, respectively, the transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9:TFs DNA targeting system can be used in plants as a functional genomic tool and for biotechnological applications.

  14. RNA recombination in animal and plant viruses.

    OpenAIRE

    1992-01-01

    An increasing number of animal and plant viruses have been shown to undergo RNA-RNA recombination, which is defined as the exchange of genetic information between nonsegmented RNAs. Only some of these viruses have been shown to undergo recombination in experimental infection of tissue culture, animals, and plants. However, a survey of viral RNA structure and sequences suggests that many RNA viruses were derived form homologous or nonhomologous recombination between viruses or between viruses ...

  15. Evaluation of a chimeric multi-epitope-based DNA vaccine against subgroup J avian leukosis virus in chickens.

    Science.gov (United States)

    Xu, Qingqing; Cui, Ning; Ma, Xingjiang; Wang, Fangkun; Li, Hongmei; Shen, Zhiqiang; Zhao, Xiaomin

    2016-07-19

    The prokaryotic expressed recombinant chimeric multi-epitope protein X (rCMEPX) had been evaluated with good immunogenicity and protective efficacy against subgroup J avian leukosis virus (ALV-J) in our previous study. In the present research, we cloned the chimeric multi-epitope gene X into the eukaryotic expression vector pVAX1 to evaluate its potency as a DNA vaccine. The purified recombinant gp85 protein and rCMEPX were used as positive controls and a DNA prime-protein boost strategy was also studied. Six experimental groups of 7-day-old chickens (20 per group) were immunized intramuscularly three times at 2weeks interval with PBS, gp85, rCMEPX, pVAX1, pVAX-X and pVAX-X+rCMEPX respectively. The antibody titers and cellular immune responses were assayed after immunization. The efficacy of immunoprotection against the challenge of ALV-J NX0101 strain was also examined. The results showed that the DNA vaccine could elicit both neutralizing antibodies and cellular responses. Immune-challenge experiments showed good protection efficacy against ALV-J infection. Particularly, the regimen involving one priming pVAX-X and twice recombinant rCMEPX boosting, induced the highest antibody titers in all immunized groups. Our results suggest that the constructed chimeric multi-epitope DNA has potential for a candidate vaccine against ALV-J when used in proper prime-boost combinations. The data presented here may provide an alternative strategy for vaccine design in chicken ALV-J prevention.

  16. Infectivity of chimeric human T-cell leukemia virus type I molecular clones assessed by naked DNA inoculation.

    Science.gov (United States)

    Zhao, T M; Robinson, M A; Bowers, F S; Kindt, T J

    1996-06-25

    Two human T-cell leukemia virus type I (HTLV-I) molecular clones, K30p and K34p were derived from HTLV-I-infected rabbit cell lines. K30p and K34p differ by 18 bp with changes in the long terminal repeats (LTRs) as well as in the gag, pol, and rex but not tax or env gene products. Cells transfected with clone K30p were infectious in vitro and injection of the K30p transfectants or naked K30p DNA into rabbits leads to chronic infection. In contrast, K34p did not mediate infection in vitro or in vivo, although the cell line from which it was derived is fully infectious and K34p transfectants produce intact virus particles. To localize differences involved in the ability of the clones to cause infection, six chimeric HTLV-I clones were constructed by shuffling corresponding fragments containing the substitutions in the LTRs, the gag/pol region and the rex region between K30p and K34p. Cells transfected with any of the six chimeras produced virus, but higher levels of virus were produced by cells transfected with those constructs containing the K30p rex region. Virus production was transient except in cells transfected with K30p or with a chimera consisting of the entire protein coding region of K30p flanked by K34p LTRs; only the transfectants showing persistent virus production mediated in vitro infection. In vivo infection in rabbits following intramuscular DNA injection was mediated by K30p as well as by a chimera of K30p containing the K34p rex gene. Comparisons revealed that virus production was greater and appeared earlier in rabbits injected with K30p. These data suggest that several defects in the K34p clone preclude infectivity and furthermore, provide systems to explore functions of HTLV-I genes.

  17. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa;

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... oligodendrocytes, and viral replication was noted primarily in human astrocytes and GPCs rather than oligodendrocytes, which instead expressed early viral T antigens and exhibited apoptotic death. Engraftment of human GPCs in normally myelinated and immunodeficient mice resulted in humanized white matter...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  18. Recessive resistance to plant viruses.

    Science.gov (United States)

    Truniger, V; Aranda, M A

    2009-01-01

    About half of the approximately 200 known virus resistance genes in plants are recessively inherited, suggesting that this form of resistance is more common for viruses than for other plant pathogens. The use of such genes is therefore a very important tool in breeding programs to control plant diseases caused by pathogenic viruses. Over the last few years, the detailed analysis of many host/virus combinations has substantially advanced basic research on recessive resistance mechanisms in crop species. This type of resistance is preferentially expressed in protoplasts and inoculated leaves, influencing virus multiplication at the single-cell level as well as cell-to-cell movement. Importantly, a growing number of recessive resistance genes have been cloned from crop species, and further analysis has shown them all to encode translation initiation factors of the 4E (eIF4E) and 4G (eIF4G) families. However, not all of the loss-of-susceptibility mutants identified in collections of mutagenized hosts correspond to mutations in eIF4E and eIF4G. This, together with other supporting data, suggests that more extensive characterization of the natural variability of resistance genes may identify new host factors conferring recessive resistance. In this chapter, we discuss the recent work carried out to characterize loss-of-susceptibility and recessive resistance genes in crop and model species. We review actual and probable recessive resistance mechanisms, and bring the chapter to a close by summarizing the current state-of-the-art and offering perspectives on potential future developments.

  19. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    Science.gov (United States)

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  20. Preclinical and Clinical Development of a YFV 17 D-Based Chimeric Vaccine against West Nile Virus

    Directory of Open Access Journals (Sweden)

    Gustavo H. Dayan

    2013-12-01

    Full Text Available Substantial success has been achieved in the development and implementation of West Nile (WN vaccines for horses; however, no human WN vaccines are approved. This review focuses on the construction, pre-clinical and clinical characterization of ChimeriVax-WN02 for humans, a live chimeric vaccine composed of a yellow fever (YF 17D virus in which the prM-E envelope protein genes are replaced with the corresponding genes of the WN NY99 virus. Pre-clinical studies demonstrated that ChimeriVax-WN02 was significantly less neurovirulent than YF 17D in mice and rhesus and cynomolgus monkeys. The vaccine elicited neutralizing antibody titers after inoculation in hamsters and monkeys and protected immunized animals from lethal challenge including intracerebral inoculation of high dose of WN NY99 virus. Safety, viremia and immunogenicity of ChimeriVax-WN02 were assessed in one phase I study and in two phase II clinical trials. No safety signals were detected in the three clinical trials with no remarkable differences in incidence of adverse events (AEs between vaccine and placebo recipients. Viremia was transient and the mean viremia levels were low. The vaccine elicited strong and durable neutralizing antibody and cytotoxic T cell responses. WN epidemiology impedes a classical licensure pathway; therefore, innovative licensure strategies should be explored.

  1. Virulence, immunogenicity and vaccine properties of a novel chimeric pestivirus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Reimann, Ilona

    2007-01-01

    A chimeric pestivirus of border disease virus Gifhorn and bovine viral diarrhea virus CP7 (Meyers et al., 1996) was constructed. Virulence, immunogenicity and vaccine properties of the chimeric virus were studied in a vaccination–challenge experiment in pigs. The chimeric virus proved to be aviru......A chimeric pestivirus of border disease virus Gifhorn and bovine viral diarrhea virus CP7 (Meyers et al., 1996) was constructed. Virulence, immunogenicity and vaccine properties of the chimeric virus were studied in a vaccination–challenge experiment in pigs. The chimeric virus proved...... to be avirulent and neither chimeric virus nor viral RNA was detected in serum after vaccination. The safety of the vaccine was tested by horizontal transmission to sentinel pigs, which remained uninfected. The vaccine efficacy was examined by challenge infection with classical swine fever virus (CSFV) Eystrup......' and horizontal transmission of challenge virus to sentinel pigs was not observed. A supplementary figure is available in JGV Online...

  2. Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain

    DEFF Research Database (Denmark)

    Vanwolleghem, Thomas; Bukh, Jens; Meuleman, Philip

    2008-01-01

    The role of the humoral immune response in the natural course of hepatitis C virus (HCV) infection is widely debated. Most chronically infected patients have immunoglobulin G (IgG) antibodies capable of neutralizing HCV pseudoparticles (HCVpp) in vitro. It is, however, not clear whether these Ig...... were loaded with chronic phase polyclonal IgG and challenged 3 days later with a 100% infectious dose of the acute phase H77C virus, both originating from patient H. Passive immunization induced sterilizing immunity in five of eight challenged animals. In the three nonprotected animals, the HCV...... chimeric mice, the inoculum was pre-incubated in vitro at an IgG concentration normally observed in humans. Conclusion: Polyclonal IgG from a patient with a long-standing HCV infection not only displays neutralizing activity in vitro using the HCVpp system, but also conveys sterilizing immunity toward...

  3. PreC and C Regions of Woodchuck Hepatitis Virus Facilitate Persistent Expression of Surface Antigen of Chimeric WHV-HBV Virus in the Hydrodynamic Injection BALB/c Mouse Model

    Science.gov (United States)

    Wu, Weimin; Liu, Yan; Lin, Yong; Pan, Danzhen; Yang, Dongliang; Lu, Mengji; Xu, Yang

    2017-01-01

    In the hydrodynamic injection (HI) BALB/c mouse model with the overlength viral genome, we have found that woodchuck hepatitis virus (WHV) could persist for a prolonged period of time (up to 45 weeks), while hepatitis B virus (HBV) was mostly cleared at week four. In this study, we constructed a series of chimeric genomes based on HBV and WHV, in which the individual sequences of a 1.3-fold overlength HBV genome in pBS-HBV1.3 were replaced by their counterparts from WHV. After HI with the WHV-HBV chimeric constructs in BALB/c mice, serum viral antigen, viral DNA (vDNA), and intrahepatic viral antigen expression were analyzed to evaluate the persistence of the chimeric genomes. Interestingly, we found that HI with three chimeric WHV-HBV genomes resulted in persistent antigenemia in mice. All of the persistent chimeric genomes contained the preC region and the part of the C region encoding the N-terminal 1–145 amino acids of the WHV genome. These results indicated that the preC region and the N-terminal part of the C region of the WHV genome may play a role in the persistent antigenemia. The chimeric WHV-HBV genomes were able to stably express viral antigens in the liver and could be further used to express hepadnaviral antigens to study their pathogenic potential. PMID:28230775

  4. Chimeric virus-like particles containing influenza HA antigen and GPI-CCL28 induce long-lasting mucosal immunity against H3N2 viruses

    Science.gov (United States)

    Mohan, Teena; Berman, Zachary; Luo, Yuan; Wang, Chao; Wang, Shelly; Compans, Richard W.; Wang, Bao-Zhong

    2017-01-01

    Influenza virus is a significant cause of morbidity and mortality, with worldwide seasonal epidemics. The duration and quality of humoral immunity and generation of immunological memory to vaccines is critical for protective immunity. In the current study, we examined the long-lasting protective efficacy of chimeric VLPs (cVLPs) containing influenza HA and GPI-anchored CCL28 as antigen and mucosal adjuvant, respectively, when immunized intranasally in mice. We report that the cVLPs induced significantly higher and sustainable levels of virus-specific antibody responses, especially IgA levels and hemagglutination inhibition (HAI) titers, more than 8-month post-vaccination compared to influenza VLPs without CCL28 or influenza VLPs physically mixed with sCCL28 (soluble) in mice. After challenging the vaccinated animals at month 8 with H3N2 viruses, the cVLP group also demonstrated strong recall responses. On day 4 post-challenge, we measured increased antibody levels, ASCs and HAI titers with reduced viral load and inflammatory responses in the cVLP group. The animals vaccinated with the cVLP showed 20% cross-protection against drifted (Philippines) and 60% protection against homologous (Aichi) H3N2 viruses. Thus, the results suggest that the GPI-anchored CCL28 induces significantly higher mucosal antibody responses, involved in providing long-term cross-protection against H3N2 influenza virus when compared to other vaccination groups. PMID:28067290

  5. Novel chimeric foot-and-mouth disease virus-like particles harboring serotype O VP1 protect guinea pigs against challenge.

    Science.gov (United States)

    Li, Haitao; Li, Zhiyong; Xie, Yinli; Qin, Xiaodong; Qi, Xingcai; Sun, Peng; Bai, Xingwen; Ma, Youji; Zhang, Zhidong

    2016-02-01

    Foot-and-mouth disease is a highly contagious, acute viral disease of cloven-hoofed animal species causing severe economic losses worldwide. Among the seven serotypes of foot-and-mouth disease virus (FMDV), serotype O is predominant, but its viral capsid is more acid sensitive than other serotypes, making it more difficult to produce empty serotype O VLPs in the low pH insect hemolymph. Therefore, a novel chimeric virus-like particle (VLP)-based candidate vaccine for serotype O FMDV was developed and characterized in the present study. The chimeric VLPs were composed of antigenic VP1 from serotype O and segments of viral capsid proteins from serotype Asia1. These VLPs elicited significantly higher FMDV-specific antibody levels in immunized mice than did the inactivated vaccine. Furthermore, the chimeric VLPs protected guinea pigs from FMDV challenge with an efficacy similar to that of the inactivated vaccine. These results suggest that chimeric VLPs have the potential for use in vaccines against serotype O FMDV infection.

  6. Hepatitis C virus infection suppresses the interferon response in the liver of the human hepatocyte chimeric mouse.

    Directory of Open Access Journals (Sweden)

    Masataka Tsuge

    Full Text Available BACKGROUND AND AIMS: Recent studies indicate that hepatitis C virus (HCV can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. METHODS: Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-α was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. RESULTS: HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (P = 5.90E-16∼3.66E-03. IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (P = 6.0E-12. Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (P = 5.22×10(-10∼1.95×10(-2. CONCLUSIONS: These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy.

  7. A cooperative interaction between nontranslated RNA sequences and NS5A protein promotes in vivo fitness of a chimeric hepatitis C/GB virus B.

    Directory of Open Access Journals (Sweden)

    Lucile Warter

    Full Text Available GB virus B (GBV-B is closely related to hepatitis C virus (HCV, infects small non-human primates, and is thus a valuable surrogate for studying HCV. Despite significant differences, the 5' nontranslated RNAs (NTRs of these viruses fold into four similar structured domains (I-IV, with domains II-III-IV comprising the viral internal ribosomal entry site (IRES. We previously reported the in vivo rescue of a chimeric GBV-B (vGB/III(HC containing HCV sequence in domain III, an essential segment of the IRES. We show here that three mutations identified within the vGB/III(HC genome (within the 3'NTR, upstream of the poly(U tract, and NS5A coding sequence are necessary and sufficient for production of this chimeric virus following intrahepatic inoculation of synthetic RNA in tamarins, and thus apparently compensate for the presence of HCV sequence in domain III. To assess the mechanism(s underlying these compensatory mutations, and to determine whether 5'NTR subdomains participating in genome replication do so in a virus-specific fashion, we constructed and evaluated a series of chimeric subgenomic GBV-B replicons in which various 5'NTR subdomains were substituted with their HCV homologs. Domains I and II of the GBV-B 5'NTR could not be replaced with HCV sequence, indicating that they contain essential, virus-specific RNA replication elements. In contrast, domain III could be swapped with minimal loss of genome replication capacity in cell culture. The 3'NTR and NS5A mutations required for rescue of the related chimeric virus in vivo had no effect on replication of the subgenomic GBneoD/III(HC RNA in vitro. The data suggest that in vivo fitness of the domain III chimeric virus is dependent on a cooperative interaction between the 5'NTR, 3'NTR and NS5A at a step in the viral life cycle subsequent to genome replication, most likely during particle assembly. Such a mechanism may be common to all hepaciviruses.

  8. A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses.

    Science.gov (United States)

    Deng, Xufang; Agnihothram, Sudhakar; Mielech, Anna M; Nichols, Daniel B; Wilson, Michael W; StJohn, Sarah E; Larsen, Scott D; Mesecar, Andrew D; Lenschow, Deborah J; Baric, Ralph S; Baker, Susan C

    2014-10-01

    To combat emerging coronaviruses, developing safe and efficient platforms to evaluate viral protease activities and the efficacy of protease inhibitors is a high priority. Here, we exploit a biosafety level 2 (BSL-2) chimeric Sindbis virus system to evaluate protease activities and the efficacy of inhibitors directed against the papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV), a biosafety level 3 (BSL-3) pathogen. We engineered Sindbis virus to coexpress PLpro and a substrate, murine interferon-stimulated gene 15 (ISG15), and found that PLpro mediates removal of ISG15 (deISGylation) from cellular proteins. Mutation of the catalytic cysteine residue of PLpro or addition of a PLpro inhibitor blocked deISGylation in virus-infected cells. Thus, deISGylation is a marker of PLpro activity. Infection of alpha/beta interferon receptor knockout (IFNAR(-/-)) mice with these chimeric viruses revealed that PLpro deISGylation activity removed ISG15-mediated protection during viral infection. Importantly, administration of a PLpro inhibitor protected these mice from lethal infection, demonstrating the efficacy of a coronavirus protease inhibitor in a mouse model. However, this PLpro inhibitor was not sufficient to protect the mice from lethal infection with SARS-CoV MA15, suggesting that further optimization of the delivery and stability of PLpro inhibitors is needed. We extended the chimeric-virus platform to evaluate the papain-like protease/deISGylating activity of Middle East respiratory syndrome coronavirus (MERS-CoV) to provide a small-animal model to evaluate PLpro inhibitors of this recently emerged pathogen. This platform has the potential to be universally adaptable to other viral and cellular enzymes that have deISGylating activities. Importance: Evaluating viral protease inhibitors in a small-animal model is a critical step in the path toward antiviral drug development. We modified a biosafety level 2 chimeric virus system to

  9. The Use of Chimeric Virus-like Particles Harbouring a Segment of Hantavirus Gc Glycoprotein to Generate a Broadly-Reactive Hantavirus-Specific Monoclonal Antibody

    Directory of Open Access Journals (Sweden)

    Aurelija Zvirbliene

    2014-02-01

    Full Text Available Monoclonal antibodies (MAbs against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80–89 or site #4 (aa 280–289. The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8 of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications.

  10. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A re- combinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the down- stream of the promoter (ATI-P7.5×20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous re- combination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by ge- nome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowl- pox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation. Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were as- sayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4+ T, CD8+ T) were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cyto- kines (IFN-γ and IL-2) of spleen lymphocytes stimulated by H-2d-restricted CTL peptide were observed in immunized mice. We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.

  11. Construction and characterization of a recombinant fowlpox virus containing HIV-1 multi-epitope-p24 chimeric gene in mice

    Institute of Scientific and Technical Information of China (English)

    ZHANG LiShu; JIN NingYi; SONG YingJin; WANG Hong; MA HeWen; LI ZiJian; JIANG WenZheng

    2007-01-01

    The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A recombinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the down-stream of the promoter (ATI-P7.5×20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous recombination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by genome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowlpox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation.Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were assayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4+ T, CD8+ T)were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cytokines (IFN-Y and IL-2) of spleen lymphocytes stimulated by H-2d-restricted CTL peptide were observed in immunized mice.We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.

  12. Pathogenesis of Lassa fever virus infection: I. Susceptibility of mice to recombinant Lassa Gp/LCMV chimeric virus.

    Science.gov (United States)

    Lee, Andrew M; Cruite, Justin; Welch, Megan J; Sullivan, Brian; Oldstone, Michael B A

    2013-08-01

    Lassa virus (LASV) is a BSL-4 restricted agent. To allow study of infection by LASV under BSL-2 conditions, we generated a recombinant virus in which the LASV glycoprotein (Gp) was placed on the backbone of lymphocytic choriomeningitis virus (LCMV) Cl13 nucleoprotein, Z and polymerase genes (rLCMV Cl13/LASV Gp). The recombinant virus displayed high tropism for dendritic cells following in vitro or in vivo infection. Inoculation of immunocompetent adults resulted in an acute infection, generation of virus-specific CD8(+) T cells and clearance of the infection. Inoculation of newborn mice with rLCMV Cl13/LASV Gp resulted in a life-long persistent infection. Interestingly, adoptive transfer of rLCMV Cl13/LASV Gp immune memory cells into such persistently infected mice failed to purge virus but, in contrast, cleared virus from mice persistently infected with wt LCMV Cl13.

  13. Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model.

    Science.gov (United States)

    Monroy-García, Alberto; Gómez-Lim, Miguel Angel; Weiss-Steider, Benny; Hernández-Montes, Jorge; Huerta-Yepez, Sara; Rangel-Santiago, Jesús F; Santiago-Osorio, Edelmiro; Mora García, María de Lourdes

    2014-02-01

    HPV L1-based virus-like particles vaccines (VLPs) efficiently induce temporary prophylactic activity through the induction of neutralizing antibodies; however, VLPs that can provide prophylactic as well as therapeutic properties for longer periods of time are needed. For this purpose, we generated a novel HPV 16 L1-based chimeric virus-like particle (cVLP) produced in plants that contains a string of T-cell epitopes from HPV 16 E6 and E7 fused to its C-terminus. In the present study, we analyzed the persistence of specific IgG antibodies with neutralizing activity induced by immunization with these cVLPs, as well as their therapeutic potential in a tumor model of C57BL/6 mice. We observed that these cVLPs induced persistent IgG antibodies for over 12 months, with reactivity and neutralizing activity for VLPs composed of only the HPV-16 L1 protein. Efficient protection for long periods of time and inhibition of tumor growth induced by TC-1 tumor cells expressing HPV-16 E6/E7 oncoproteins, as well as significant tumor reduction (57 %), were observed in mice immunized with these cVLPs. Finally, we discuss the possibility that chimeric particles of the type described in this work may be the basis for developing HPV prophylactic and therapeutic vaccines with high efficacy.

  14. Chimeric viruses between Rocio and West Nile: the role for Rocio prM-E proteins in virulence and inhibition of interferon-α/β signaling.

    Science.gov (United States)

    Amarilla, Alberto A; Setoh, Yin X; Periasamy, Parthiban; Peng, Nias Y; Pali, Gabor; Figueiredo, Luiz T; Khromykh, Alexander A; Aquino, Victor H

    2017-03-20

    Mosquito-transmitted flavivirus Rocio (ROCV) was responsible for an outbreak of encephalitis in the Ribeira Valley, located in the south coast of Sao Paulo State, Brazil, in 1975-1976. ROCV also causes fatal encephalitis in adult mice. Seroprevalence studies in humans, horses and water buffaloes in different regions of Brazil have suggested that ROCV is still circulating in the country, indicating the risk of re-emergence of this virus. West Nile virus (WNV) is also a mosquito-transmitted encephalitic flavivirus, however, WNV strains circulating in Australia have not been associated with outbreaks of disease in humans and exhibit low virulence in adult mice. To identify viral determinants of ROCV virulence, we have generated reciprocal chimeric viruses between ROCV and the Australian strain of WNV by swapping structural prM and E genes. Chimeric WNV containing ROCV prM-E genes replicated more efficiently than WNV or chimeric ROCV containing WNV prM-E genes in mammalian cells, was as virulent as ROCV in adult mice, and inhibited type I IFN signaling as efficiently as ROCV. The results show that ROCV prM and E proteins are major virulence determinants and identify unexpected function of these proteins in inhibition of type I interferon response.

  15. Chloroplast in Plant-Virus Interaction

    Science.gov (United States)

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  16. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    Science.gov (United States)

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines.

  17. Chimeric mouse model for the infection of hepatitis B and C viruses.

    Science.gov (United States)

    Tesfaye, Abeba; Stift, Judith; Maric, Dragan; Cui, Qingwen; Dienes, Hans-Peter; Feinstone, Stephen M

    2013-01-01

    While the chimpanzee remains the only animal that closely models human hepatitis C virus (HCV) infection, transgenic and immunodeficient mice in which human liver can be engrafted serve as a partial solution to the need for a small animal model for HCV infection. The established system that was based on mice carrying a transgene for urokinase-type plasminogen activator (uPA) gene under the control of the human albumin promoter has proved to be useful for studies of virus infectivity and for testing antiviral drug agents. However, the current Alb-uPA transgenic model with a humanized liver has practical limitations due to the inability to maintain non-engrafted mice as dizygotes for the transgene, poor engraftment of hemizygotes, high neonatal and experimental death rates of dizygous mice and a very short time window for hepatocyte engraftment. To improve the model, we crossed transgenic mice carrying the uPA gene driven by the major urinary protein promoter onto a SCID/Beige background (MUP-uPA SCID/Bg). These transgenic mice are healthy relative to Alb-uPA mice and provide a long window from about age 4 to 12 months for engraftment with human hepatocytes and infection with hepatitis C or hepatitis B (HBV) viruses. We have demonstrated engraftment of human hepatocytes by immunohistochemistry staining for human albumin (30-80% engraftment) and observed a correlation between the number of human hepatocytes inoculated and the level of the concentration of human albumin in the serum. We have shown that these mice support the replication of both HBV and all six major HCV genotypes. Using HBV and HCV inocula that had been previously tittered in chimpanzees, we showed that the mice had approximately the same sensitivity for infection as chimpanzees. These mice should be useful for isolating non-cell culture adapted viruses as well as testing of antiviral drugs, antibody neutralization studies and examination of phenotypic changes in viral mutants.

  18. Production of single-round infectious chimeric flaviviruses with DNA-based Japanese encephalitis virus replicon.

    Science.gov (United States)

    Suzuki, Ryosuke; Ishikawa, Tomohiro; Konishi, Eiji; Matsuda, Mami; Watashi, Koichi; Aizaki, Hideki; Takasaki, Tomohiko; Wakita, Takaji

    2014-01-01

    A method for rapid production of single-round infectious particles (SRIPs) of flavivirus would be useful for viral mutagenesis studies. Here, we established a DNA-based production system for SRIPs of flavivirus. We constructed a Japanese encephalitis virus (JEV) subgenomic replicon plasmid, which lacked the C-prM-E (capsid-pre-membrane-envelope) coding region, under the control of the cytomegalovirus promoter. When the JEV replicon plasmid was transiently co-transfected with a JEV C-prM-E expression plasmid into 293T cells, SRIPs were produced, indicating successful trans-complementation with JEV structural proteins. Equivalent production levels were observed when C and prM-E proteins were provided separately. Furthermore, dengue types 1-4, West Nile, yellow fever or tick-borne encephalitis virus prM-E proteins could be utilized for production of chimaeric flavivirus SRIPs, although the production was less efficient for dengue and yellow fever viruses. These results indicated that our plasmid-based system is suitable for investigating the life cycles of flaviviruses, diagnostic applications and development of safer vaccine candidates.

  19. Evaluation of chimeric DNA vaccines consisting of premembrane and envelope genes of Japanese encephalitis and dengue viruses as a strategy for reducing induction of dengue virus infection-enhancing antibody response.

    Science.gov (United States)

    Sjatha, Fithriyah; Kuwahara, Miwa; Sudiro, T Mirawati; Kameoka, Masanori; Konishi, Eiji

    2014-02-01

    Neutralizing antibodies induced by dengue virus (DENV) infection show viral infection-enhancing activities at sub-neutralizing doses. On the other hand, preimmunity against Japanese encephalitis virus (JEV), a congener of DENV, does not increase the severity of DENV infection. Several studies have demonstrated that neutralizing epitopes in the genus Flavivirus are mainly located in domain III (DIII) of the envelope (E) protein. In this study, chimeric premembrane and envelope (prM-E) gene-based expression plasmids of JEV and DENV1 with DIII substitution of each virus were constructed for use as DNA vaccines and their immunogenicity evaluated. Sera from C3H/He and ICR mice immunized with a chimeric gene containing DENV1 DIII on a JEV prM-E gene backbone showed high neutralizing antibody titers with less DENV infection-enhancing activity. Our results confirm the applicability of this approach as a new dengue vaccine development strategy.

  20. Engineering resistance to plant viruses: Present status and future prospects

    Science.gov (United States)

    Plant viruses cause severe crop losses across the globe. Resistant cultivars together with pesticide application are commonly used to avoid the losses caused by plant viruses. However, very limited success has been achieved at diminishing the impact of plant viruses. Use of virus resistant plant is ...

  1. HUMAN PAPILLOMA VIRUS IMMUNOGEN CREATION ON THE BASE OF CHIMERIC RECOMBINANT PROTEIN L2E7

    Directory of Open Access Journals (Sweden)

    I. S. Malakhov

    2016-01-01

    Full Text Available The cervical cancer is one of the most common diseases in world. This malignancy is the seventh highest prevalence oncological disease worldwide and the second highest prevalence oncological disease of women in the world. Meanwhile women need to be infected by human papilloma virus (HPV is absolutely necessary for it further evolution, HPV DNA was found in 99.97% cases of disease. Except cervical cancer, HPV cause 85% of rectal cancer, 50% of the vulva, vagina and penis cancers, 20% of oropharyngeal cancer and 10% of larynx and esophagus cancers. In 2009, 14 000 women were diagnosed with cervical cancer in Russia. The growth in morbidity was 19% (in comparison with 1999. The most effective recognised measure for almost each infection prophylaxis is a vaccination. Two human papilloma virus vaccines are available in Russia nowadays — Gardasil and Cervarix, produced in Belgium and the Netherlands respectively. Cervarix is a bivalent vaccine based on virus-like particles (VLP of two types. Recombinant major capsid proteins L1 HPV 16 and HPV 18 express in baculovirus expression system and self-assembled into virus-like particles (about 70 percent of cervical cancers are caused by HPV 16 and HPV 18. VLP of each strain produced in different baculovirus vectors and then combined in single drug. Gardasil is like Cervarix with few exceptions. Producing organisms are fungi S. cerevisiae in this case, and this vaccine contains low-risk HPV 6 and HPV 11 VLP. Thus, Gardasil is quadrivalent HPV-6/11/16/18 vaccine. These vaccines are very effective in averting infection of disease and don’t have significant side-effects, however they have some disadvantages. Firstly, they have a high price because of necessity of their expression in eukaryotic cells. Secondly, they are strain-specific, so vaccines are completely effective only for virus’s strains which are represented in the vaccine. Thirdly, it`s the absence of therapeutic (treatment of established

  2. Challenge pools of hepatitis C virus genotypes 1-6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models

    DEFF Research Database (Denmark)

    Bukh, Jens; Meuleman, Philip; Tellier, Raymond

    2010-01-01

    Chimpanzees represent the only animal model for studies of the natural history of hepatitis C virus (HCV). To generate virus stocks of important HCV variants, we infected chimpanzees with HCV strains of genotypes 1-6 and determined the infectivity titer of acute-phase plasma pools in additional a...... resource for studies of HCV molecular virology and for studies of pathogenesis, protective immunity, and vaccine efficacy in vivo....... animals. The courses of first- and second-passage infections were similar, with early appearance of viremia, HCV RNA titers of >10(4.7) IU/mL, and development of acute hepatitis; the chronicity rate was 56%. The challenge pools had titers of 10(3)-10(5) chimpanzee infectious doses/mL. Human liver......-chimeric mice developed high-titer infections after inoculation with the challenge viruses of genotypes 1-6. Inoculation studies with different doses of the genotype 1b pool suggested that a relatively high virus dose is required to consistently infect chimeric mice. The challenge pools represent a unique...

  3. LC-MS/MS methods for absolute quantification and identification of proteins associated with chimeric plant oil bodies.

    Science.gov (United States)

    Capuano, Floriana; Bond, Nicholas J; Gatto, Laurent; Beaudoin, Frédéric; Napier, Johnathan A; Benvenuto, Eugenio; Lilley, Kathryn S; Baschieri, Selene

    2011-12-15

    Oil bodies (OBs) are plant cell organelles that consist of a lipid core surrounded by a phospholipid monolayer embedded with specialized proteins such as oleosins. Recombinant proteins expressed in plants can be targeted to OBs as fusions with oleosin. This expression strategy is attractive because OBs are easily enriched and purified from other cellular components, based on their unique physicochemical properties. For recombinant OBs to be a potential therapeutic agent in biomedical applications, it is necessary to comprehensively analyze and quantify both endogenous and heterologously expressed OB proteins. In this study, a mass spectrometry (MS)-based method was developed to accurately quantify an OB-targeted heterologously expressed fusion protein that has potential as a therapeutic agent. The effect of the chimeric oleosin expression upon the OB proteome in transgenic plants was also investigated, and the identification of new potential OB residents was pursued through a variety of liquid chromatography (LC)-MS/MS approaches. The results showed that the accumulation of the fusion protein on OBs was low. Moreover, no significant differences in the accumulation of OB proteins were revealed between transgenic and wild-type seeds. The identification of five new putative components of OB proteome was also reported.

  4. Plant Virus Expression Vector Development: New Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen Hefferon

    2014-01-01

    Full Text Available Plant made biologics have elicited much attention over recent years for their potential in assisting those in developing countries who have poor access to modern medicine. Additional applications such as the stockpiling of vaccines against pandemic infectious diseases or potential biological warfare agents are also under investigation. Plant virus expression vectors represent a technology that enables high levels of pharmaceutical proteins to be produced in a very short period of time. Recent advances in research and development have brought about the generation of superior virus expression systems which can be readily delivered to the host plant in a manner that is both efficient and cost effective. This review presents recent innovations in plant virus expression systems and their uses for producing biologics from plants.

  5. Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma.

    Science.gov (United States)

    Asavarut, Paladd; O'Neill, Kevin; Syed, Nelofer; Hajitou, Amin

    2014-01-01

    The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.

  6. Characterization of a chimeric foot-and-mouth disease virus bearing bovine rhinitis B virus leader proteinase

    Science.gov (United States)

    Our recent study has shown that bovine rhinovirus type 2 (BRV2), a new member of the Aphthovirus genus, shares many motifs and sequence similarities with foot-and-mouth disease virus (FMDV). Despite low sequence conservation (36percent amino acid identity) and N- and C-terminus folding differences,...

  7. Plants, viruses and the environment: Ecology and mutualism.

    Science.gov (United States)

    Roossinck, Marilyn J

    2015-05-01

    Since the discovery of Tobacco mosaic virus nearly 120 years ago, most studies on viruses have focused on their roles as pathogens. Virus ecology takes a different look at viruses, from the standpoint of how they affect their hosts׳ interactions with the environment. Using the framework of symbiotic relationships helps put the true nature of viruses into perspective. Plants clearly have a long history of relationships with viruses that have shaped their evolution. In wild plants viruses are common but usually asymptomatic. In experimental studies plant viruses are sometimes mutualists rather than pathogens. Virus ecology is closely tied to the ecology of their vectors, and the behavior of insects, critical for transmission of many plant viruses, is impacted by virus-plant interactions. Virulence is probable not beneficial for most host-virus interactions, hence commensal and mutualistic relationships are almost certainly common, in spite of the paucity of literature on beneficial viruses.

  8. Infection of Plants by Tobacco Mosaic Virus.

    Science.gov (United States)

    McDaniel, Larry; Maratos, Marina; Farabaugh, Joan

    1998-01-01

    Provides three exercises that introduce high school and college students to a common strain of the tobacco mosaic virus and the study of some basic biological processes. Activities involve inoculation of plants and observing and recording symptom development in infected plants. (DDR)

  9. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Directory of Open Access Journals (Sweden)

    Adriana S Azevedo

    Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  10. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Science.gov (United States)

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  11. In vitro and in vivo characterization of chimeric duck Tembusu virus based on Japanese encephalitis live vaccine strain SA14-14-2.

    Science.gov (United States)

    Wang, Hong-Jiang; Liu, Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Qin, E-De; Qin, Cheng-Feng

    2016-07-01

    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.

  12. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase

    Science.gov (United States)

    Sathyanarayanan, P. V.; Poovaiah, B. W.

    2002-01-01

    Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.

  13. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    Science.gov (United States)

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides.

  14. Engineering Molecular Immunity Against Plant Viruses

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2017-04-26

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections.

  15. Ribosome Inactivating Proteins from Plants Inhibiting Viruses

    Institute of Scientific and Technical Information of China (English)

    Inderdeep Kaur; R C Gupta; Munish Puri

    2011-01-01

    Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity,which depurinate large ribosomal RNA and arrest protein synthesis.RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins,isolated from plants,are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV),hepatitis B virus (HBV) and herpes simplex virus (HSV).Most of the research work related to RIPs has been focused on antiviral activity against HIV; however,the exact mechanism of antiviral activity is still not clear.The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome,leading to inhibition of viral protein translation and host cell death.Enzymatic activity of RIPs is not hmited to depurination of the large rRNA,in addition they can depurinate viral DNA as well as RNA.Recently,Phase Ⅰ/Ⅱ clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease.The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

  16. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    Science.gov (United States)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  17. Microarrays for rapid identification of plant viruses.

    Science.gov (United States)

    Boonham, Neil; Tomlinson, Jenny; Mumford, Rick

    2007-01-01

    Many factors affect the development and application of diagnostic techniques. Plant viruses are an inherently diverse group that, unlike cellular pathogens, possess no nucleotide sequence type (e.g., ribosomal RNA sequences) in common. Detection of plant viruses is becoming more challenging as globalization of trade, particularly in ornamentals, and the potential effects of climate change enhance the movement of viruses and their vectors, transforming the diagnostic landscape. Techniques for assessing seed, other propagation materials and field samples for the presence of specific viruses include biological indexing, electron microscopy, antibody-based detection, including enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and microarray detection. Of these, microarray detection provides the greatest capability for parallel yet specific testing, and can be used to detect individual, or combinations of viruses and, using current approaches, to do so with a sensitivity comparable to ELISA. Methods based on PCR provide the greatest sensitivity among the listed techniques but are limited in parallel detection capability even in "multiplexed" applications. Various aspects of microarray technology, including probe development, array fabrication, assay target preparation, hybridization, washing, scanning, and interpretation are presented and discussed, for both current and developing technology.

  18. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.

    Science.gov (United States)

    Grasso, Simone; Lico, Chiara; Imperatori, Francesca; Santi, Luca

    2013-06-01

    Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.

  19. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible.

    Science.gov (United States)

    Chen, Qiang

    2015-05-01

    The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV.

  20. Structure-based design and experimental engineering of a plant virus nanoparticle for the presentation of immunogenic epitopes and as a drug carrier.

    Science.gov (United States)

    Arcangeli, Caterina; Circelli, Patrizia; Donini, Marcello; Aljabali, Alaa A A; Benvenuto, Eugenio; Lomonossoff, George P; Marusic, Carla

    2014-04-01

    Biomaterials research for the discovery of new generation nanoparticles is one of the most active areas of nanotechnology. In the search of nature-made nanometer-sized objects, plant virus particles appear as symmetrically defined entities that can be formed by protein self-assembly. In particular, in the field of plant virology, there is plenty of literature available describing the exploitation of plant viral cages to produce safe vaccine vehicles and nanoparticles for drug delivery. In this context, we have investigated on the use of the artichoke mottled crinkle virus (AMCV) capsid both as a carrier of immunogenic epitopes and for the delivery of anticancer molecules. A dual approach that combines both in silico tools and experimental virology was applied for the rational design of immunologically active chimeric virus-like particles (VLPs) carrying immunogenic peptides. The atomic structures of wild type (wt) and chimeric VLPs were obtained by homology modeling. The effects of insertion of the HIV-1 2F5 neutralizing epitope on the structural stability of chimeric VLPs were predicted and assessed by detailed inspection of the nanoparticle intersubunit interactions at atomic level. Wt and chimeric VLPs, exposing on their surface the 2F5 epitope, were successfully produced in plants. In addition, we demonstrated that AMCV capsids could also function as drug delivery vehicles able to load the chemotherapeutic drug doxorubicin. To our knowledge, this is the first systematic predictive and empirical research addressing the question of how this icosahedral virus can be used for the production of both VLPs and viral nanoparticles for biomedical applications.

  1. Vaccine Development for Biothreat Alpha Viruses

    Science.gov (United States)

    2011-09-25

    virus (IV) BeAr35645 Cassabou virus (V) Rio Negro virus (VI) EEEV EEEV NA Lineage I FL93-939 EEEV SA Lineage II-IV BeAr436087 WEEV WEEV CBA87 WEEV ON41...Bioterr Biodef ISSN:2157-2526 JBTBD an open access journal 17. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus Taxonomy:Eighth...vaccinated with chimeric SIN/VEE viruses. J Virol 80: 2784-2796. 33. Atasheva S, Wang E, Adams AP, Plante KS, Ni S, et al. (2009) Chimeric alphavirus

  2. Plant RNA binding proteins for control of RNA virus infection

    OpenAIRE

    Huh, Sung Un; Paek, Kyung-Hee

    2013-01-01

    Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific b...

  3. Epitope mapping of the NS4 and NS5 gene products of hepatitis C virus and the use of a chimeric NS4-NS5 synthetic peptide for serodiagnosis.

    Science.gov (United States)

    Rosa, C; Osborne, S; Garetto, F; Griva, S; Rivella, A; Calabresi, G; Guaschino, R; Bonelli, F

    1995-10-01

    Specific domains of the NS4 and NS5 gene products of hepatitis C virus have been identified using hydrophilicity profiles for the prediction of potential immunogenic regions, and epitope scanning techniques. Peptides synthesised on the basis of such data show excellent reactivity in the ELISA format. Introduction of a glycine-glycine spacer between two peptides (NS4-12 and NS5-44) to give a single chimeric peptides does not appear to impair immunoreactivity. An ELISA based on the chimeric peptide and a Core-NS3 recombinant protein correctly diagnoses a cohort of haemodialysed patients, three commercial HCV panels and the sera of a negative control population.

  4. Human papillomavirus 16 L1-E7 chimeric virus like particles show prophylactic and therapeutic efficacy in murine model of cervical cancer.

    Science.gov (United States)

    Sharma, Chandresh; Dey, Bindu; Wahiduzzaman, Mohammed; Singh, Neeta

    2012-08-03

    Cervical cancer is found to be associated with human papillomavirus (HPV) infection, with HPV16 being the most prevalent. An effective vaccine against HPV can thus, be instrumental in controlling cervical cancer. An ideal HPV vaccine should aim to generate both humoral immune response to prevent new infection as well as cell-mediated immunity to eliminate established infection. In this study, we have generated a potential preventive and therapeutic candidate vaccine against HPV16. We expressed and purified recombinant HPV16 L1(ΔN26)-E7(ΔC38) protein in E. coli which was assembled into chimeric virus like particles (CVLPs) in vitro. These CVLPs were able to induce neutralizing antibodies and trigger cell-mediated immune response, in murine model of cervical cancer, exhibiting antitumor efficacy. Hence, this study has aimed to provide a vaccine candidate possessing both, prophylactic and therapeutic efficacy against HPV16 associated cervical cancer.

  5. Persistent replication of a hepatitis C virus genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B in a New World monkey.

    Science.gov (United States)

    Suzuki, Saori; Mori, Ken-Ichi; Higashino, Atsunori; Iwasaki, Yuki; Yasutomi, Yasuhiro; Maki, Noboru; Akari, Hirofumi

    2016-01-01

    The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV-B), which is closely related to HCV, was generated. The chimera between HCV and GBV-B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (virus. Our results will help establish a novel non-human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.

  6. Variants of ELISA in plant virus diagnosis.

    Science.gov (United States)

    Koenig, R; Paul, H L

    1982-10-01

    Variations of enzyme-linked immunosorbent assay (ELISA) were compared with respect to their ability to detect and to differentiate serologically related plant viruses. The broadest range of serologically related viruses was detected by an indirect ELISA on unprecoated plates. Coating the plates with F(ab')2 fragments led to narrowing of the specificity in heterologous reactions of tymo-, tombus- and tobamoviruses in indirect ELISA. With Andean potato latent virus (APLV) heterologous reactions were weaker on plates precoated with F(ab')2 fragments than on those precoated with intact antibodies. Even on plates precoated with F(ab')2 fragments the indirect ELISA detected a broader range of serologically related viruses than the direct double antibody sandwich method. Heterologous reactions in indirect ELISA procedures on plates precoated with either intact antibodies or F(ab')2 fragments were always weaker than homologous reactions independent of the concentration of coating reactants and detecting antibodies. Attempts to differentiate closely related strains of APLV or radish mosaic virus by direct ELISA using F(ab')2 fragments either for coating the plates or after labelling with alkaline phosphatase for detecting the trapped antigens failed. Under suitable conditions, the additional working step usually necessary for indirect ELISA could be avoided by using a short procedure which at low concentrations of detecting antibodies was more sensitive than the conventional procedure.

  7. Clinical significance of chimerism.

    Science.gov (United States)

    Abuelo, Dianne

    2009-05-15

    Twins have been previously classified as either monozygotic or dizygotic. In recent years, fascinating, non-traditional mechanisms of twinning have been uncovered. We define chimerism versus mosaicism, touch on chimerism in the animal world, and explain timing of chimerism in humans. In addition, we discuss when to suspect chimerism in patients, and how to proceed with diagnostic evaluation and confirmation.

  8. Ecosystem simplification, biodiversity loss and plant virus emergence.

    Science.gov (United States)

    Roossinck, Marilyn J; García-Arenal, Fernando

    2015-02-01

    Plant viruses can emerge into crops from wild plant hosts, or conversely from domestic (crop) plants into wild hosts. Changes in ecosystems, including loss of biodiversity and increases in managed croplands, can impact the emergence of plant virus disease. Although data are limited, in general the loss of biodiversity is thought to contribute to disease emergence. More in-depth studies have been done for human viruses, but studies with plant viruses suggest similar patterns, and indicate that simplification of ecosystems through increased human management may increase the emergence of viral diseases in crops.

  9. Genetic elements of plant viruses as tools for genetic engineering.

    OpenAIRE

    Mushegian, A R; Shepherd, R J

    1995-01-01

    Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent a...

  10. Plant virus infections control stomatal development

    Science.gov (United States)

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-01-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum. PMID:27687773

  11. Plant virus infections control stomatal development

    Science.gov (United States)

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-09-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum.

  12. Vaccine-induced protection from infection of mice by chimeric human immunodeficiency virus type 1, EcoHIV/NL4-3.

    Science.gov (United States)

    Saini, Manisha; Hadas, Eran; Volsky, David J; Potash, Mary Jane

    2007-12-17

    EcoHIV/NL4-3 is a chimeric human immunodeficiency virus type 1 (HIV-1) that can productively infect mice. This study tests the utility of EcoHIV/NL4-3 infection to reveal protective immune responses to an HIV-1 vaccine. Immunocompetent mice were first immunized with VRC 4306 which encodes subtype B consensus sequences of gag, pol, and nef and then were infected by EcoHIV/NL4-3. Anti-Gag antibodies were sampled during immunization and infection. The extent of EcoHIV/NL4-3 infection in spleen cells and peritoneal macrophages was determined by quantitative real-time PCR (QPCR). Although antibody titres were not significantly different in control and vaccinated groups, VRC 4306 immunization induced protective responses that significantly reduced virus burden in both lymphocyte and macrophage compartments. These results indicate that EcoHIV/NL4-3 infection can be controlled by HIV-1 vaccine-induced responses, introducing a small animal model to test vaccine efficacy against HIV-1 infection.

  13. Phomopsis longicolla RNA virus 1 - Novel virus at the edge of myco- and plant viruses.

    Science.gov (United States)

    Hrabáková, Lenka; Koloniuk, Igor; Petrzik, Karel

    2017-06-01

    The complete nucleotide sequence of a new RNA mycovirus in the KY isolate of Phomopsis longicolla Hobbs 1985 and its protoplasts subcultures p5, p9, and ME711 was discovered. The virus, provisionally named Phomopsis longicolla RNA virus 1 (PlRV1), was localized in mitochondria and was determined to have a genome 2822 nucleotides long. A single open reading frame could be translated in silico by both standard and mitochondrial genetic codes into a product featuring conservative domains for an RNA-dependent RNA polymerase (RdRp). The RdRp of PlRV1 has no counterpart among mycoviruses, but it is about 30% identical with the RdRp of plant ourmiaviruses. Recently, new mycoviruses related to plant ourmiaviruses and forming one clade with PlRV1 have been discovered. This separate clade could represent the crucial link between plant and fungal viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Facilitative and antagonistic interactions between plant viruses in mixed infections.

    Science.gov (United States)

    Syller, Jerzy

    2012-02-01

    Mixed infections of plant viruses are common in nature, and a number of important virus diseases of plants are the outcomes of interactions between causative agents. Multiple infections lead to a variety of intrahost virus-virus interactions, many of which may result in the generation of variants showing novel genetic features, and thus change the genetic structure of the viral population. Hence, virus-virus interactions in plants may be of crucial significance for the understanding of viral pathogenesis and evolution, and consequently for the development of efficient and stable control strategies. The interactions between plant viruses in mixed infections are generally categorized as synergistic or antagonistic. Moreover, mixtures of synergistic and antagonistic interactions, creating usually unpredictable biological and epidemiological consequences, are likely to occur in plants. The mechanisms of some of these are still unknown. This review aims to bring together the current knowledge on the most commonly occurring facilitative and antagonistic interactions between related or unrelated viruses infecting the same host plant. The best characterized implications of these interactions for virus-vector-host relationships are included. The terms 'synergism' and 'helper dependence' for facilitative virus-virus interactions, and 'cross-protection' and 'mutual exclusion' for antagonistic interactions, are applied in this article.

  15. A phylogenetic survey of recombination frequency in plant RNA viruses.

    Science.gov (United States)

    Chare, E R; Holmes, E C

    2006-05-01

    The severe economic consequences of emerging plant viruses highlights the importance of studies of plant virus evolution. One question of particular relevance is the extent to which the genomes of plant viruses are shaped by recombination. To this end we conducted a phylogenetic survey of recombination frequency in a wide range of positive-sense RNA plant viruses, utilizing 975 capsid gene sequences and 157 complete genome sequences. In total, 12 of the 36 RNA virus species analyzed showed evidence for recombination, comprising 17% of the capsid gene sequence alignments and 44% of the genome sequence alignments. Given the conservative nature of our analysis, we propose that recombination is a relatively common process in some plant RNA viruses, most notably the potyviruses.

  16. Potential and limitations of plant virus epidemiology: lessons from the Potato virus Y pathosystem

    OpenAIRE

    Döring, Thomas F

    2011-01-01

    Abstract Plant virus epidemiology provides powerful tools to investigate key factors that contribute to virus epidemics in agricultural crops. When successful, epidemiological approaches help to guide decisions regarding plant protection strategies. A recent example is epidemiological research on Potato virus Y (PVY) in Finnish seed potato production; this study led to the dentification of the main PVY vector species and helped to determine the timing of virus transmission. However, pathosyst...

  17. Tomato marchitez virus, a new plant picorna-like virus from tomato related to tomato torrado virus

    NARCIS (Netherlands)

    Verbeek, M.; Dullemans, A.M.; Heuvel, van den J.F.J.M.; Maris, P.C.; Vlugt, van der R.A.A.

    2008-01-01

    A new virus was isolated from a tomato plant from the state of Sinaloa in Mexico. This plant showed symptoms locally known as `marchitez disease¿: severe leaf necrosis, beginning at the base of the leaflets, and necrotic rings on the fruits. A virus was isolated from the infected plant consisting of

  18. Plant viruses in European Agriculture: Current problems and future aspects

    NARCIS (Netherlands)

    Vlugt, van der R.A.A.

    2006-01-01

    Plant viruses are an important group of plant pathogens in agriculture worldwide. In Europe, they cause considerable economic damage in different crops including vegetables, grains, and ornamentals. As an example: in the Netherlands the annual costs associated with Tulip mosaic virus in flower bulbs

  19. Virulence, immunogenicity and vaccine properties of a novel chimeric pestivirus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Reimann, Ilona

    2007-01-01

    A chimeric pestivirus of border disease virus Gifhorn and bovine viral diarrhea virus CP7 (Meyers et al., 1996) was constructed. Virulence, immunogenicity and vaccine properties of the chimeric virus were studied in a vaccination–challenge experiment in pigs. The chimeric virus proved...... to be avirulent and neither chimeric virus nor viral RNA was detected in serum after vaccination. The safety of the vaccine was tested by horizontal transmission to sentinel pigs, which remained uninfected. The vaccine efficacy was examined by challenge infection with classical swine fever virus (CSFV) Eystrup....... In ‘challenge controls’, the viral load of CSFV coincided with the development of pronounced clinical symptoms. In contrast, the vaccinated pigs showed transient and weak clinical signs. Analysis of the viral load in these pigs showed 1000-fold lower viral RNA levels compared to ‘challenge controls...

  20. Characterization of hepatitis C virus recombinants with chimeric E1/E2 envelope proteins and identification of single amino acids in the E2 stem region important for entry

    DEFF Research Database (Denmark)

    Carlsen, Thomas H R; Scheel, Troels K H; Ramirez, Santseharay

    2013-01-01

    The hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a...... in particle density. In addition, the 1b-E2 exchange led to a decrease in secreted core protein of 25 to 50%, which was further reduced by the E2 stem region mutations. These findings indicated that compensatory mutations permitted robust infectious virus production, without increasing assembly...

  1. Plant immunity against viruses: antiviral immune receptors in focus.

    Science.gov (United States)

    Calil, Iara P; Fontes, Elizabeth P B

    2017-03-01

    Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing

  2. Preference by a virus vector for infected plants is reversed after virus acquisition.

    Science.gov (United States)

    Rajabaskar, Dheivasigamani; Bosque-Pérez, Nilsa A; Eigenbrode, Sanford D

    2014-06-24

    Pathogens and their vectors can interact either directly or indirectly via their shared hosts, with implications for the persistence and spread of the pathogen in host populations. For example, some plant viruses induce changes in host plants that cause the aphids that carry these viruses to settle preferentially on infected plants. Furthermore, relative preference by the vector for infected plants can change to a preference for noninfected plants after virus acquisition by the vector, as has recently been demonstrated in the wheat-Rhopalosiphum padi-Barley yellow dwarf virus pathosystem. Here we document a similar dynamic in the potato-Myzus persicae (Sulzer)-Potato leaf roll virus (PLRV) pathosystem. Specifically, in a dual choice bioassay, nonviruliferous apterous M. persicae settled preferentially on or near potato plants infected with PLRV relative to noninfected (sham-inoculated) control plants, whereas viruliferous M. persicae (carrying PLRV) preferentially settled on or near sham-inoculated potato plants relative to infected plants. The change in preference after virus acquisition also occurred in response to trapped headspace volatiles, and to synthetic mimics of headspace volatile blends from PLRV-infected and sham-inoculated potato plants. The change in preference we document should promote virus spread by increasing rates of virus acquisition and transmission by the vector.

  3. Generation of a recombinant chimeric Newcastle disease virus vaccine that allows serological differentiation between vaccinated and infected animals

    NARCIS (Netherlands)

    Peeters, B.P.; Leeuw, de O.S.; Verstegen, I.; Koch, G.; Gielkens, A.L.

    2001-01-01

    Using a recently developed reverse genetics system, we have generated a recombinant Newcastle disease virus (NDV) vaccine in which the gene encoding the hemagglutinin-neuraminidase (HN) has been replaced by a hybrid HN gene consisting of the cytoplasmic domain, transmembrane region, and stalk region

  4. Hepatitis E virus genotype three infection of human liver chimeric mice as a model for chronic HEV infection

    NARCIS (Netherlands)

    M.D.B. van de Garde (Martijn); S.D. Pas (Suzan); G. van der Net (Guido); R.A. de Man (Robert); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); A. Boonstra (Andre); T. Vanwolleghem (Thomas)

    2016-01-01

    textabstractGenotype (gt) 3 hepatitis E virus (HEV) infections are emerging in Western countries. Immunosuppressed patients are at risk of chronic HEV infection and progressive liver damage, but no adequate model system currently mimics this disease course. Here we explore the possibilities of in vi

  5. Editing plants for virus resistance using CRISPR-Cas.

    Science.gov (United States)

    Green, J C; Hu, J S

    This minireview summarizes recent advancements using the clustered regularly interspaced palindromic repeats-associated nuclease systems (CRISPR-Cas) derived from prokaryotes to breed plants resistant to DNA and RNA viruses. The CRISPR-Cas system represents a powerful tool able to edit and insert novel traits into plants precisely at chosen loci offering enormous advantages to classical breeding. Approaches to engineering plant virus resistance in both transgenic and non-transgenic plants are discussed. Iterations of the CRISPR-Cas system, FnCas9 and C2c2 capable of editing RNA in eukaryotic cells offer a particular advantage for providing resistance to RNA viruses which represent the great majority of known plant viruses. Scientists have obtained conflicting results using gene silencing technology to produce transgenic plants resistant to geminiviruses. CRISPR-Cas systems engineered in plants to target geminiviruses have consistently reduced virus accumulation providing increased resistance to virus infection. CRISPR-Cas may provide novel and reliable approaches to control geminiviruses and other ssDNA viruses such as Banana bunchy top virus (BBTV).

  6. Ozone response of tomato plants infected with cucumber mosaic virus and/or tobacco mosaic virus

    Energy Technology Data Exchange (ETDEWEB)

    Ormrod, D.P.; Kemp, W.G.

    1979-10-01

    The sensitivity of three tomato cultivars to several concentrations of ozone was evaluated after prior sequential inoculations with tobacco mosaic virus (TMV) and/or cucumber mosaic virus (CMV). Ozone injury in inoculated and uninoculated tomatoes varied from slight to severe depending on the virus, cultivar, ozone concentration and virus incubation period. The frequency of increased ozone injury was about twice as great as that of suppressed injury on infected plants. Ozone injury occurred more frequently in TMV-inoculated plants than in those inoculated with CMV. There were more increases than decreases in ozone injury after 7 or 14 days of virus infection, but mainly decreases in injury after 21 days infection. Growth was significantly reduced in plants exposed to ozone after a 21-day virus incubation period, particularly when they were inoculated with both viruses.

  7. Development of a New Zealand database of plant virus and virus-like organisms

    NARCIS (Netherlands)

    Fletcher, J.D.; Lister, R.A.; Clover, G.R.G.; Horner, M.B.; Thomas, J.E.; Vlugt, van der R.A.A.; MacDiarmid, R.M.

    2009-01-01

    The recent 8th Australasian plant virology workshop in Rotorua, New Zealand, discussed the development of a New Zealand database of plant virus and virus-like organisms. Key points of discussion included: (i) the purpose of such a database; (ii) who would benefit from the information in a database;

  8. Antigenicity and immunogenicity of novel chimeric hepatitis B surface antigen particles with exposed hepatitis C virus epitopes.

    Science.gov (United States)

    Netter, H J; Macnaughton, T B; Woo, W P; Tindle, R; Gowans, E J

    2001-03-01

    The small envelope protein of hepatitis B virus (HBsAg-S) can self-assemble into highly organized virus like particles (VLPs) and induce an effective immune response. In this study, a restriction enzyme site was engineered into the cDNA of HBsAg-S at a position corresponding to the exposed site within the hydrophilic a determinant region (amino acid [aa] 127-128) to create a novel HBsAg vaccine vector allowing surface orientation of the inserted sequence. We inserted sequences of various lengths from hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) E2 protein containing immunodominant epitopes and demonstrated secretion of the recombinant HBsAg VLPs from transfected mammalian cells. A number of different recombinant proteins were synthesized, and HBsAg VLPs containing inserts up to 36 aa were secreted with an efficiency similar to that of wild-type HBsAg. The HVR1 region exposed on the particles retained an antigenic structure similar to that recognized immunologically during natural infection. VLPs containing epitopes from either HCV-1a or -1b strains were produced that induced strain-specific antibody responses in immunized mice. Injection of a combination of these VLPs induced antibodies against both HVR1 epitopes that resulted in higher titers than were achieved by vaccination with the individual VLPs, suggesting a synergistic effect. This may lead to the development of recombinant particles which are able to induce a broad anti-HCV immune response against the HCV quasispecies or other quasispecies-like infectious agents.

  9. Antigenicity and Immunogenicity of Novel Chimeric Hepatitis B Surface Antigen Particles with Exposed Hepatitis C Virus Epitopes†

    Science.gov (United States)

    Netter, Hans J.; Macnaughton, Thomas B.; Woo, Wai-Ping; Tindle, Robert; Gowans, Eric J.

    2001-01-01

    The small envelope protein of hepatitis B virus (HBsAg-S) can self-assemble into highly organized virus like particles (VLPs) and induce an effective immune response. In this study, a restriction enzyme site was engineered into the cDNA of HBsAg-S at a position corresponding to the exposed site within the hydrophilic a determinant region (amino acid [aa] 127–128) to create a novel HBsAg vaccine vector allowing surface orientation of the inserted sequence. We inserted sequences of various lengths from hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) E2 protein containing immunodominant epitopes and demonstrated secretion of the recombinant HBsAg VLPs from transfected mammalian cells. A number of different recombinant proteins were synthesized, and HBsAg VLPs containing inserts up to 36 aa were secreted with an efficiency similar to that of wild-type HBsAg. The HVR1 region exposed on the particles retained an antigenic structure similar to that recognized immunologically during natural infection. VLPs containing epitopes from either HCV-1a or -1b strains were produced that induced strain-specific antibody responses in immunized mice. Injection of a combination of these VLPs induced antibodies against both HVR1 epitopes that resulted in higher titers than were achieved by vaccination with the individual VLPs, suggesting a synergistic effect. This may lead to the development of recombinant particles which are able to induce a broad anti-HCV immune response against the HCV quasispecies or other quasispecies-like infectious agents. PMID:11160717

  10. Review. Elimination of viruses in plants: twenty years of progress

    Directory of Open Access Journals (Sweden)

    A. Panattoni

    2013-02-01

    Full Text Available To shed light on trends about elimination of viruses from plants, a bibliographic research was conducted to identify thermotherapy, chemotherapy and tissue culture trials published from 1991 through 2010. Among woody plants, grapevine, apple and peach are the most frequent targets of sanitation protocols because their health status is strictly regulated. Even if thermotherapy represents the preferred method for the host, grapevine viruses can also be eliminated with chemotherapy and tissue culture; apple viruses respond to chemotherapy as well. Although a similar trend was reported among herbaceous plants, chemotherapy was the most frequently used technique in potato. With regard to virus, thermotherapy was successfully applied against viruses belonging to 13 families and an unassigned genus. Instead, chemotherapy and tissue culture techniques eradicated viruses belonging to fewer families (nine. An interpretation of thermotherapy effects considers the new metabolic “pathways” triggered by the natural antiviral response emitted by the infected plant, with particular reference to virus-induced gene silencing. With regard to chemotherapy, several groups of antiviral drugs belong to inosine monophosphate dehydrogenase inhibitors, S-adenosylhomocysteine hydrolase inhibitors, neuraminidase inhibitors. Tissue culture, usually adopted to regenerate plantlets in biotechnological breeding programs, represents the less used tool for eliminate viruses from plants.

  11. Memory immune response and safety of a booster dose of Japanese encephalitis chimeric virus vaccine (JE-CV) in JE-CV-primed children.

    Science.gov (United States)

    Feroldi, Emmanuel; Capeding, Maria Rosario; Boaz, Mark; Gailhardou, Sophia; Meric, Claude; Bouckenooghe, Alain

    2013-04-01

    Japanese encephalitis chimeric virus vaccine (JE-CV) is a licensed vaccine indicated in a single dose administration for primary immunization. This controlled phase III comparative trial enrolled children aged 36-42 mo in the Philippines. 345 children who had received one dose of JE-CV in a study two years earlier, received a JE-CV booster dose. 105 JE-vaccine-naïve children in general good health were randomized to receive JE-CV (JE-vaccine naïve group; 46 children) or varicella vaccine (safety control group; 59 children). JE neutralizing antibody titers were assessed using PRNT50. Immunological memory was observed in children who had received the primary dose of JE-CV before. Seven days after the JE-CV booster dose administration, 96.2% and 66.8% of children were seroprotected and had seroconverted, respectively, and the geometric mean titer (GMT) was 231 1/dil. Twenty-eight days after the JE-CV booster dose seroprotection and seroconversion were achieved in 100% and 95.3% of children, respectively, and the GMT was 2,242 1/dil. In contrast, only 15.4% of JE-CV-vaccine naïve children who had not received any prior JE vaccine were seroprotected seven days after they received JE-CV. One year after receiving the JE-CV booster dose, 99.4% of children remained seroprotected. We conclude that JE-CV is effective and safe, both as a single dose and when administrated as a booster dose. A booster dose increases the peak GMT above the peak level reached after primary immunization and the antibody persistence is maintained at least one year after the JE-CV booster dose administration. Five year follow up is ongoing.

  12. Long-term Immunogenicity of a Single Dose of Japanese Encephalitis Chimeric Virus Vaccine in Toddlers and Booster Response 5 Years After Primary Immunization.

    Science.gov (United States)

    Kosalaraksa, Pope; Watanaveeradej, Veerachai; Pancharoen, Chitsanu; Capeding, Maria Rosario; Feroldi, Emmanuel; Bouckenooghe, Alain

    2017-04-01

    Japanese encephalitis (JE) is an important mosquito-borne viral disease that is endemic in Asia, Western Pacific countries and Northern Australia. Although there is no antiviral treatment, vaccination is effective in preventing this disease. We followed a cohort of 596 children for 5 years after primary vaccination at 12-18 months of age with JE chimeric virus vaccine (JE-CV; IMOJEV) in a multicenter, phase III trial in Thailand and the Philippines to assess antibody persistence and safety. At the end of the 5 years, a subgroup of 85 participants, at 1 site in Thailand, was followed after administration of a JE-CV booster vaccination. JE antibody titers were measured annually after primary vaccination and 28 days after booster vaccination using a 50% plaque reduction neutralization test. Seroprotection was defined as a JE-CV neutralizing antibody titer ≥10 (1/dil). Kaplan-Meier survival analysis was used to estimate the proportion of participants maintaining protective JE-CV neutralizing antibody titers. At 1, 2, 3, 4 and 5 years after vaccination with JE-CV, 88.5%, 82.9%, 78.2%, 74.0% and 68.6% of the participants followed remained seroprotected. Geometric mean titers in the subgroup assessed after receipt of a booster dose increased from 61.2 (95% confidence interval: 43.8-85.7) pre-booster to 4951 (95% confidence interval: 3928-6241) 28 days post-booster, with all participants seroprotected. There were no safety concerns identified. Protective immune responses persisted for at least 5 years after a JE-CV primary immunization in the majority of participants. JE-CV booster induced a robust immune response even after a 5-year interval.

  13. Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver.

    Science.gov (United States)

    Kikuchi, Ryota; McCown, Matthew; Olson, Pamela; Tateno, Chise; Morikawa, Yoshio; Katoh, Yumiko; Bourdet, David L; Monshouwer, Mario; Fretland, Adrian J

    2010-11-01

    The expression of drug transporters and metabolizing enzymes is a primary determinant of drug disposition. Chimeric mice with humanized liver, including PXB mice, are an available model that is permissive to the in vivo infection of hepatitis C virus (HCV), thus being a promising tool for investigational studies in development of new antiviral molecules. To investigate the potential of HCV infection to alter the pharmacokinetics of small molecule antiviral therapeutic agents in PXB mice, we have comprehensively determined the mRNA expression profiles of human ATP-binding cassette (ABC) transporters, solute carrier (SLC) transporters, and cytochrome P450 (P450) enzymes in the livers of these mice under noninfected and HCV-infected conditions. Infection of PXB mice with HCV resulted in an increase in the mRNA expression levels of a series of interferon-stimulated genes in the liver. For the majority of genes involved in drug disposition, minor differences in the mRNA expression of ABC and SLC transporters as well as P450s between the noninfected and HCV-infected groups were observed. The exceptions were statistically significantly higher expression of multidrug resistance-associated protein 4 and organic anion-transporting polypeptide 2B1 and lower expression of organic cation transporter 1 and CYP2D6 in HCV-infected mice. Furthermore, the enzymatic activities of the major human P450s were, in general, comparable in the two experimental groups. These data suggest that the pharmacokinetic properties of small molecule antiviral therapies in HCV-infected PXB mice are likely to be similar to those in noninfected PXB mice. However, caution is needed in the translation of this relationship to HCV-infected patients as the PXB mouse model does not accurately reflect the pathology of patients with chronic HCV infection.

  14. Multiple functions of capsid proteins in (+) stranded RNA viruses during plant-virus interactions.

    Science.gov (United States)

    Weber, Philipp H; Bujarski, Jozef J

    2015-01-22

    In addition to providing a protective shell for genomic RNA(s), the coat (capsid) proteins (CPs) of plus-stranded RNA viruses play a variety of other functions that condition the plant-virus relationship. In this review we outline the extensive research progress that has been made within the last decade on those CP characteristics that relate to virus infectivity, pathogenicity, symptom expression, interactions with host factors, virus movement, vector transmission, host range, as well as those used to study virus evolution. By discussing the examples among a variety of plant RNA viruses we show that in addition to general features and pathways, the involvement of CPs may assume very distinct tasks that depend on the particular virus life style. Research perspectives and potential applications are discussed at the end.

  15. Plant-derived vaccine protects target animals against a viral disease

    NARCIS (Netherlands)

    Dalsgaard, K.; Uttenthal, A.; Jones, T.D.; Xu, F.; Merrywater, A.; Hamilton, W.D.O.; Langeveld, J.P.M.; Boshuizen, R.S.; Kamstrup, S.; Lomonos, G.P.

    1997-01-01

    The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucleoti

  16. Plant-derived vaccine protects target animals against a viral disease

    NARCIS (Netherlands)

    Dalsgaard, K.; Uttenthal, A.; Jones, T.D.; Xu, F.; Merrywater, A.; Hamilton, W.D.O.; Langeveld, J.P.M.; Boshuizen, R.S.; Kamstrup, S.; Lomonos, G.P.

    1997-01-01

    The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucleoti

  17. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants

    Directory of Open Access Journals (Sweden)

    Marie-Ève Lebel

    2015-08-01

    Full Text Available Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.

  18. Negative-strand RNA viruses: The plant-infecting counterparts

    NARCIS (Netherlands)

    Kormelink, R.J.M.; Garcia, M.L.; Goodin, M.; Sasaya, T.; Haenni, A.L.

    2011-01-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organizat

  19. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    Science.gov (United States)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  20. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    Science.gov (United States)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  1. Transgenic strategies to confer resistance against viruses in rice plants

    Directory of Open Access Journals (Sweden)

    Takahide eSasaya

    2014-01-01

    Full Text Available Rice (Oryza sativa L. is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. In an effort to improve control, many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA-interference (RNAi, also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral Achilles’ heel gene to target for RNAi attack when engineering plants.

  2. Mutational analysis of the hepatitis C virus E1 glycoprotein in retroviral pseudoparticles and cell-culture-derived H77/JFH1 chimeric infectious virus particles

    DEFF Research Database (Denmark)

    Russell, R S; Kawaguchi, K; Meunier, J-C

    2009-01-01

    . Retrovirus-based HCV-pseudotyped viruses (HCVpp; genotype 1a) containing Ala or Pro substitutions at conserved amino acid positions within this putative fusion peptide were generated. Mutation of conserved residues significantly reduced efficiency of HCVpp entry into Huh-7 cells. The majority of amino acid...

  3. Virus Elimination from Ornamental Plants Using in vitro Culture Techniques

    Directory of Open Access Journals (Sweden)

    Snežana Milošević

    2012-01-01

    Full Text Available Viruses are responsible for numerous epidemics in different crops in all parts of the world.As a consequence of their presence great economic losses are being incurred. In addition tothe development of sensitive techniques for detection, identification and characterization ofviruses, substantial attention has also been paid to biotechnological methods for their eliminationfrom plants. In this review article, the following biotechnological in vitro culture techniquesfor virus elimination from ornamental plants are presented: meristem culture, thermotherapy,chemotherapy, cryotherapy or a combination of these methods. The plant species,as well as the type of virus determine the choice of a most suitable method. The state ofthe art in investigation of virus elimination from Impatiens sp. in Serbia is summarized.

  4. Natural Spread of Plant Viruses by Birds

    NARCIS (Netherlands)

    Peters, D.; Engels, C.; Sarra, S.

    2012-01-01

    Observations made in Mali strongly suggest that Rice yellow mottle virus (RYMV) is spread by weaverbirds (Quelea quelea) below and around baobab trees (Adansonia digitata) in which they nest. Rice leaves in bird nests appeared to be infected. In Spain, an infection of Southern bean mosaic virus (SBM

  5. Viruses that enhance the aethetics of some ornamental plants: beauty or beast?

    Science.gov (United States)

    Although most viruses that infect plants cause diseases that are detrimental to the plant, there are some instances in which infections by mild viral strains of a virus have been used to protect the plant against severe strains of the same virus. There are other viruses that can cause desirable effe...

  6. Neurocognitive outcome of children exposed to perinatal mother-to-child Chikungunya virus infection: the CHIMERE cohort study on Reunion Island.

    Directory of Open Access Journals (Sweden)

    Patrick Gérardin

    2014-07-01

    Full Text Available Little is known about the neurocognitive outcome in children exposed to perinatal mother-to-child Chikungunya virus (p-CHIKV infection.The CHIMERE ambispective cohort study compared the neurocognitive function of 33 p-CHIKV-infected children (all but one enrolled retrospectively at around two years of age with 135 uninfected peers (all enrolled prospectively. Psychomotor development was assessed using the revised Brunet-Lezine scale, examiners blinded to infectious status. Development quotients (DQ with subscores covering movement/posture, coordination, language, sociability skills were calculated. Predictors of global neurodevelopmental delay (GND, DQ ≤ 85, were investigated using multivariate Poisson regression modeling. Neuroradiologic follow-up using magnetic resonance imaging (MRI scans was proposed for most of the children with severe forms.The mean DQ score was 86.3 (95%CI: 81.0-91.5 in infected children compared to 100.2 (95%CI: 98.0-102.5 in uninfected peers (P<0.001. Fifty-one percent (n = 17 of infected children had a GND compared to 15% (n = 21 of uninfected children (P<0.001. Specific neurocognitive delays in p-CHIKV-infected children were as follows: coordination and language (57%, sociability (36%, movement/posture (27%. After adjustment for maternal social situation, small for gestational age, and head circumference, p-CHIKV infection was found associated with GND (incidence rate ratio: 2.79, 95%CI: 1.45-5.34. Further adjustments on gestational age or breastfeeding did not change the independent effect of CHIKV infection on neurocognitive outcome. The mean DQ of p-CHIKV-infected children was lower in severe encephalopathic children than in non-severe children (77.6 versus 91.2, P<0.001. Of the 12 cases of CHIKV neonatal encephalopathy, five developed a microcephaly (head circumference <-2 standard deviations and four matched the definition of cerebral palsy. MRI scans showed severe restrictions of white matter areas

  7. A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types.

    Directory of Open Access Journals (Sweden)

    Bettina Huber

    Full Text Available Persistent infection with oncogenic human papillomaviruses (HPV types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC, a subset of cervical cancer (CxC. Although the incidence of cervical squamous cell carcinoma (SCC has dramatically decreased following introduction of Papanicolaou (PAP screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent HPV vaccines comprise virus-like particles (VLP of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7 includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18 targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1 of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1. Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent

  8. Production of Virus-free Carnation Plants through Heat Therapy

    Directory of Open Access Journals (Sweden)

    Manisha Mangal

    2004-01-01

    Full Text Available The effect of exposure of carnation plants infected with carnation, latent virus (CLV to two temperature regimes (35 + 2 "C and 40 +2 "C for different periods (1 to 4 weeks revealed thatthe exposure to different temperatures for different periods has a negative correlation with the survival of plants. Whereas only 33.33 per cent plants survived after 4 weeks at 35 + 2 "C, the plants when exposed to 40+ 2 "C for the same period could not tolerate the heat shock. However, only those plants which were exposed to 35 + 2 "C for 4 weeks and those exposed to 40 + 2 "C for 3 weeks were free from CLV. However, because of better survival rate, the higher temperature regime of 40 + 2 "C is recommended for production of virus-tested carnation plants.

  9. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses.

    Science.gov (United States)

    Jones, R A C

    2016-01-01

    Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity.

  10. Insect vector-mediated transmission of plant viruses.

    Science.gov (United States)

    Whitfield, Anna E; Falk, Bryce W; Rotenberg, Dorith

    2015-05-01

    The majority of plant-infecting viruses are transmitted to their host plants by vectors. The interactions between viruses and vector vary in duration and specificity but some common themes in vector transmission have emerged: 1) plant viruses encode structural proteins on the surface of the virion that are essential for transmission, and in some cases additional non-structural helper proteins that act to bridge the virion to the vector binding site; 2) viruses bind to specific sites in or on vectors and are retained there until they are transmitted to their plant hosts; and 3) viral determinants of vector transmission are promising candidates for translational research aimed at disrupting transmission or decreasing vector populations. In this review, we focus on well-characterized insect vector-transmitted viruses in the following genera: Caulimovirus, Crinivirus, Luteovirus, Geminiviridae, Reovirus, Tospovirus, and Tenuivirus. New discoveries regarding these genera have increased our understanding of the basic mechanisms of virus transmission by arthropods, which in turn have enabled the development of innovative strategies for breaking the transmission cycle.

  11. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV

    Science.gov (United States)

    Liu, Ye V.; Massare, Michael J.; Barnard, Dale L.; Kort, Thomas; Nathan, Margret; Wang, Lei; Smith, Gale

    2011-01-01

    SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents. PMID:21762752

  12. Plant chimeric Ca2+/Calmodulin-dependent protein kinase. Role of the neural visinin-like domain in regulating autophosphorylation and calmodulin affinity

    Science.gov (United States)

    Sathyanarayanan, P. V.; Cremo, C. R.; Poovaiah, B. W.

    2000-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.

  13. Structures of plant viruses from vibrational circular dichroism.

    Science.gov (United States)

    Shanmugam, Ganesh; Polavarapu, Prasad L; Kendall, Amy; Stubbs, Gerald

    2005-08-01

    Vibrational circular dichroism (VCD) spectra in the amide I and II regions have been measured for viruses for the first time. VCD spectra were recorded for films prepared from aqueous buffer solutions and also for solutions using D(2)O buffers at pH 8. Investigations of four filamentous plant viruses, Tobacco mosaic virus (TMV), Papaya mosaic virus, Narcissus mosaic virus (NMV) and Potato virus X (PVX), as well as a deletion mutant of PVX, are described in this paper. The film VCD spectra of the viruses clearly revealed helical structures in the virus coat proteins; the nucleic acid bases present in the single-stranded RNA could also be characterized. In contrast, the solution VCD spectra showed the characteristic VCD bands for alpha-helical structures in the coat proteins but not for RNA. Both sets of results clearly indicated that the coat protein conformations are dominated by helical structures, in agreement with earlier reports. VCD results also indicated that the coat protein structures in PVX and NMV are similar to each other and somewhat different from that of TMV. The present study demonstrates the feasibility of measuring VCD spectra for viruses and extracting structural information from these spectra.

  14. Expression of chimeric P450 genes encoding flavonoid-3', 5'-hydroxylase in transgenic tobacco and petunia plants(1).

    Science.gov (United States)

    Shimada, Y; Nakano-Shimada, R; Ohbayashi, M; Okinaka, Y; Kiyokawa, S; Kikuchi, Y

    1999-11-19

    Flavonoid-3',5'-hydroxylase (F3'5'H), a member of the cytochrome P450 family, is the key enzyme in the synthesis of 3', 5'-hydroxylated anthocyanins, which are generally required for blue or purple flowers. A full-length cDNA, TG1, was isolated from prairie gentian by heterologous hybridization with a petunia cDNA, AK14, which encodes F3'5'H. To investigate the in vivo function of TG1 and AK14, they were subcloned into a plant expression vector and expressed under the control of the CaMV35S promoter in transgenic tobacco or petunia, both of which originally lack the enzyme. Transgenic petunia plants had a dramatic change in flower color from pink to magenta with a high content of 3',5'-hydroxylated anthocyanins. In contrast, transgenic tobacco plants had minimal color change with at most 35% 3',5'-hydroxylated anthocyanin content. These results indicate that the products of TG1 and AK14 have F3'5'H activity in planta and that interspecific gene transfer alters anthocyanin pigment synthesis. The difference in apparent F3'5'H activity between tobacco and petunia is discussed.

  15. Gravisensitivity of various host plant -virus systems in simulated microgravity

    Science.gov (United States)

    Mishchenko, Lidiya; Taran, Oksana; Gordejchyk, Olga

    In spite of considerable achievements in the study of gravity effects on plant development, some issues of gravitropism, like species-specificity and gravitation response remain unclear. The so-lution of such problems is connected with the aspects of life supply, in piloted space expeditions. The role of microgravity remains practically unstudied in the development of relations in the system host plant-virus, which are important for biotechnologies in crop production. It is ev-ident that the conditions of space flight can act as stressors, and the stress inducted by them favors the reactivation of latest herpes viruses in humans (satish et al., 2009) Viral infections of plants, which also can be in a latest state at certain stages of plant organism development, cause great damage to the growth and development of a host plant. Space flight conditions may cause both reactivation of latent viral infection in plants and its elimination, as it has been found by us for the system WSMW -wheat (Mishchenko et al., 2004). Our further research activities were concentrated on the identification of gravisensitivity in the system virus -potato plant to find out whether there was any species -related specificity of the reaction. In our research we used potato plants of Krymska Rosa, Zhuravushka, Agave, Belarosa, Kupalinka, and Zdubytok varieties. Simulated microgravity was ensured by clinostats KG-8 and Cycle -2. Gravisensitiv-ity has been studied the systems including PVX, PVM and PVY. Virus concentrations have been determined by ELISA using LOEWE reagents (placecountry-regionGermany). Virus iden-tification by morphological features were done by electron microscopy. For the system PVX -potato plant, we found the reduction in virus antigens content with prolonged clinostating. On the 18th day of cultivation, the plants showed a high level of X-virus antigen content on both stationary (control) and clinostated variants. On 36th and 47th day, depending plant variety, clinostated

  16. Recent insights into plant-virus interactions through proteomic analysis.

    Science.gov (United States)

    Di Carli, Mariasole; Benvenuto, Eugenio; Donini, Marcello

    2012-10-05

    Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative "second generation" proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation

  17. Assessment of airborne virus contamination in wastewater treatment plants

    OpenAIRE

    Masclaux, Frédéric; Hotz, Philipp; Gashi, Drita; Savova-Bianchi, Dessislava; Oppliger, Anne

    2014-01-01

    INTRODUCTION: Occupational exposure to bioaerosols in wastewater treatment plants (WWTP) and its consequence on workers׳ health are well documented. Most studies were devoted to enumerating and identifying cultivable bacteria and fungi, as well as measuring concentrations of airborne endotoxins, as these are the main health-related factors found in WWTP. Surprisingly, very few studies have investigated the presence and concentrations of airborne virus in WWTP. However, many enteric viruses ar...

  18. Chloroplast: The Trojan Horse in Plant-Virus Interaction.

    Science.gov (United States)

    Bhattacharyya, Dhriti; Chakraborty, Supriya

    2017-01-05

    Chloroplast is one of the most dynamic organelle of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, takes active part in defence response, and is crucial for inter-organelle signaling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. Chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. In fact, large proportions of affected gene products in a virus infected plant are closely associated to chloroplast and photosynthesis process. Although chloroplast is deficient in gene-silencing machinery, it elicits effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce extensive network of stromules which are involved in both viral propagation and anti-viral defence. From last few decades' study, involvement of chloroplast in regulating plant-virus interaction has become increasingly evident. Current review presents an exhaustive account of these facts, with their implication in pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interaction and explained the existing gaps in current knowledge, which will promote the virologists to utilize the chloroplast genome-based antiviral resistance in economically important crops. This article is protected by copyright. All rights reserved.

  19. CD4+ and CD8+ T cells can act separately in tumour rejection after immunization with murine pneumotropic virus chimeric Her2/neu virus-like particles.

    Directory of Open Access Journals (Sweden)

    Kalle Andreasson

    Full Text Available BACKGROUND: Immunization with murine pneumotropic virus virus-like particles carrying Her2/neu (Her2MPtVLPs prevents tumour outgrowth in mice when given prophylactically, and therapeutically if combined with the adjuvant CpG. We investigated which components of the immune system are involved in tumour rejection, and whether long-term immunological memory can be obtained. METHODOLOGY AND RESULTS: During the effector phase in BALB/c mice, only depletion of CD4+ and CD8+ in combination, with or without NK cells, completely abrogated tumour protection. Depletion of single CD4+, CD8+ or NK cell populations only had minor effects. During the immunization/induction phase, combined depletion of CD4+ and CD8+ cells abolished protection, while depletion of each individual subset had no or negligible effect. When tumour rejection was studied in knock-out mice with a C57Bl/6 background, protection was lost in CD4-/-CD8-/- and CD4-/-, but not in CD8-/- mice. In contrast, when normal C57Bl/6 mice were depleted of different cell types, protection was lost irrespective of whether only CD4+, only CD8+, or CD4+ and CD8+ cells in combination were eradicated. No anti-Her2/neu antibodies were detected but a Her2/neu-specific IFNgamma response was seen. Studies of long-term memory showed that BALB/c mice could be protected against tumour development when immunized together with CpG as long as ten weeks before challenge. CONCLUSION: Her2MPtVLP immunization is efficient in stimulating several compartments of the immune system, and induces an efficient immune response including long-term memory. In addition, when depleting mice of isolated cellular compartments, tumour protection is not as efficiently abolished as when depleting several immune compartments together.

  20. Antiviral activity of plant extract from Tanacetum vulgare against Cucumber Mosaic Virus and Potato Virus Y

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-09-01

    Full Text Available Cucumber mosaic virus (CMV and Potato virus Y (PVY have been described among the top five important viruses infecting vegetable species worldwide. They cause severe damages in fruits and cultivated plants. There is currently no available effective pesticide to control these viral diseases. Higher plants contain a wide spectrum of secondary metabolites such as phenolics, flavonoids, quinones, tannins, essential oils, alkaloids, saponins, sterols and others. Extracts prepared from different plants have been reported to have a variety of properties including antifungal, antiviral and antibacterial properties against pathogens. Tanacetum vulgare (Tansy is native to Europe, Asia, and North Africa. It has many horticultural and pharmacological qualities. T. vulgare is principally used in traditional Asian and North African medicine as an antihelminthic, antispasmodic, stimulant to abdominal viscera, tonic, antidiabetic and diuretic, and it is antihypertensive. In our research we established antiviral effect of methanol extract from T. vulgare against CMV and PVY in tomato plants.

  1. Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems.

    Science.gov (United States)

    Taliansky, M E; Brown, J W S; Rajamäki, M L; Valkonen, J P T; Kalinina, N O

    2010-01-01

    The nucleolus is a dynamic subnuclear body with roles in ribosome subunit biogenesis, mediation of cell-stress responses, and regulation of cell growth. An increasing number of reports reveal that similar to the proteins of animal viruses, many plant virus proteins localize in the nucleolus to divert host nucleolar proteins from their natural functions in order to exert novel role(s) in the virus infection cycle. This chapter will highlight studies showing how plant viruses recruit nucleolar functions to facilitate virus translation and replication, virus movement and assembly of virus-specific ribonucleoprotein (RNP) particles, and to counteract plant host defense responses. Plant viruses also provide a valuable tool to gain new insights into novel nucleolar functions and processes. Investigating the interactions between plant viruses and the nucleolus will facilitate the design of novel strategies to control plant virus infections.

  2. Use of recombinant lentivirus pseudotyped with vesicular stomatitis virus glycoprotein G for efficient generation of human anti-cancer chimeric T cells by transduction of human peripheral blood lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    Kolokoltsov Andrey A

    2006-02-01

    Full Text Available Abstract Background Genetic redirection of lymphocytes that have been genetically engineered to recognize antigens other than those originally programmed in their germlines is a potentially powerful tool for immunotherapy of cancers and potentially also of persistent viral infections. The basis for this procedure is that both cancers and some viruses have developed strikingly similar mechanisms of evading attacks by host immune mechanisms. To redirect human peripheral blood lymphocytes (PBLs with a chimeric T cell receptor (chTCR so that they recognize a new target requires a high degree of transfection efficiency, a process that is regarded as technically demanding. Results Infection with a retroviral vector carrying a chTCR cassette was shown to transduce 100% of rapidly dividing murine T cells but typically, only ~10% of PBLs could be infected with the same vector. In contrast with other retroviruses, lentiviruses integrate their genomes into non-dividing cells. To increase host cell range, vesicular stomatitis virus G protein was pseudotyped with a lentivirus vector, which resulted in ~100% PBL transduction efficiency. Signaling of PBLs bearing chimeric receptors was shown by specific proliferation on exposure to cells expressing cognate ligand. Further, T-bodies against CEA showed a startling abilty to cause regression of maligant colon tumors in a nude mouse model of human cancer. Conclusion A lentivirus/VSV pseudotyped virus, which does not require replicating cells for integration of its genome, efficiently transduced a high proportion of human PBLs with chTCRs against CEA. PBLs transduced by infection with a lentivirus/VSV pseudotyped vector were able to proliferate specifically in vitro on exposure to CEA-expressing cells and further they had a startling therapeutic effect in a mouse model of human colon cancer.

  3. Transformation of tobacco plant (Nicotiana tabacum L. with the recombinant hepatitis B virus genes 35SHBsAg and 35SHBsAgER

    Directory of Open Access Journals (Sweden)

    Juliana Martins Ribeiro

    2010-03-01

    Full Text Available The recombinant surface antigen of hepatitis B virus (HBsAg, purified from transgenic plants, proved to be efficient when utilized for raising anti-HB antibodies for the prevention of hepatitis B. Because of the important role of the HBsAg antigen in hepatitis B prevention, the coding sequence of HBsAg antigen, with or without the addition of the carboxi-terminus sequence for protein retention in the endoplasmatic reticulum, was linked to cauliflower mosaic virus 35S promoter, tobacco mosaic virus leader sequence Ω, and the transcription terminator sequence. The aim of this work was to clone the chimeric gene 35SHBsAgER in the plant expression vector pGPTV/Kan/Asc. The resulting plasmid, called pG35SHBsAgER, and another plasmid produced previously in our laboratory called pG35SHBsAg, were transferred to Agrobacterium tumefaciens, and tobacco leaves, of the SR1 cultivar were used as explants for genetic transformation. Twenty-one fully regenerated plants were obtained (10 for the pG35SHBsAg construction and 11 for the pG35SHBsAgER construction. The genomic DNA of all plants was analyzed by PCR, and the presence of the transgene was confirmed in all plants.

  4. A Review of Detection Methods for the Plant Viruses

    Directory of Open Access Journals (Sweden)

    Ho-jong Ju

    2014-09-01

    Full Text Available The early and accurate detection of plant viruses is an essential component to control those. Because the globalization of trade by free trade agreement (FTA and the rapid climate change promote the country-tocountry transfer of viruses and their hosts and vectors, diagnosis of viral diseases is getting more important. Because symptoms of viral diseases are not distinct with great variety and are confused with those of abiotic stresses, symptomatic diagnosis may not be appropriate. From the last three decades, enzyme-linked immunosorbent assays (ELISAs, developed based on serological principle, have been widely used. However, ELISAs to detect plant viruses decrease due to some limitations such as availability of antibody for target virus, cost to produce antibody, requirement of large volume of sample, and time to complete ELISAs. Many advanced techniques allow overcoming demerits of ELISAs. Since the polymerase chain reaction (PCR developed as a technique to amplify target DNA, PCR evolved to many variants with greater sensitivity than ELISAs. Many systems of plant virus detection are reviewed here, which includes immunological-based detection system, PCR techniques, and hybridization-based methods such as microarray. Some of techniques have been used in practical, while some are still under developing to get the level of confidence for actual use.

  5. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    Science.gov (United States)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  6. Proteomic analysis of the plant-virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato.

    Science.gov (United States)

    Di Carli, Mariasole; Villani, Maria Elena; Bianco, Linda; Lombardi, Raffaele; Perrotta, Gaetano; Benvenuto, Eugenio; Donini, Marcello

    2010-11-05

    Cucumber mosaic virus (CMV), a member of the Cucumovirus genus, is the causal agent of several plant diseases in a wide range of host species, causing important economic losses in agriculture. Because of the lack of natural resistance genes in most crops, different genetic engineering strategies have been adopted to obtain virus-resistant plants. In a previous study, we described the engineering of transgenic tomato plants expressing a single-chain variable fragment antibody (scFv G4) that are specifically protected from CMV infection. In this work, we characterized the leaf proteome expressed during compatible plant-virus interaction in wild type and transgenic tomato. Protein changes in both inoculated and apical leaves were revealed using two-dimensional gel electrophoresis (2-DE) coupled to differential in gel electrophoresis (DIGE) technology. A total of 2084 spots were detected, and 50 differentially expressed proteins were identified by nanoscale liquid chromatographic-electrospray ionization-ion trap-tandem mass spectrometry (nLC-ESI-IT-MS/MS). The majority of these proteins were related to photosynthesis (38%), primary metabolism (18%), and defense activity (14%) and demonstrated to be actively down regulated by CMV in infected leaves. Moreover, our analysis revealed that asymptomatic apical leaves of transgenic inoculated plants had no protein profile alteration as compared to control wild type uninfected plants demonstrating that virus infection is confined to the inoculated leaves and systemic spread is hindered by the CMV coat protein (CP)-specific scFv G4 molecules. Our work is the first comparative study on compatible plant-virus interactions between engineered immunoprotected and susceptible wild type tomato plants, contributing to the understanding of antibody-mediated disease resistance mechanisms.

  7. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis

    OpenAIRE

    Qiang Wang; Xiaonan Ma; ShaSha Qian; Xin Zhou; Kai Sun; Xiaolan Chen; Xueping Zhou; Jackson, Andrew O.; Zhenghe Li

    2015-01-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The ...

  8. Inhibition of a plant virus infection by analogs of melittin.

    Science.gov (United States)

    Marcos, J F; Beachy, R N; Houghten, R A; Blondelle, S E; Pérez-Payá, E

    1995-01-01

    An approach that enables identification of specific synthetic peptide inhibitors of plant viral infection is reported. Synthetic analogs of melittin that have sequence and structural similarities to an essential domain of tobacco mosaic virus coat protein were found to possess highly specific antiviral activity. This approach involves modification of residues located at positions analogous to those that are critical for virus assembly. The degree of inhibition found correlates well with sequence similarities between the viral capsid protein and the melittin analogs studied as well as with the induced conformational changes that result upon interaction of the peptides and ribonucleic acid. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8618922

  9. The ecology of tropical plant viruses

    OpenAIRE

    Thresh, J. Michael

    1998-01-01

    In recent decades ecology has become one of the dominant themes of the biological sciences. However, this has not always been so as the subject emerged from the specialist study of plant and animal communities in natural habitats that were often remote and sometimes exotic. It has since become a unifying all-embracing discipline that is of great importance, not only in botany, zoology and microbiology, but also in international affairs in relation to current issues concerning the environment,...

  10. Status and prospects of plant virus control through interference with vector transmission

    NARCIS (Netherlands)

    Bragard, C.; Caciagli, P.; Lemaire, O.; Lopez-Moya, J.J.; MacFarlane, S.; Peters, D.; Susi, P.; Torrance, L.

    2013-01-01

    Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus–vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, pla

  11. Status and prospects of plant virus control through interference with vector transmission

    NARCIS (Netherlands)

    Bragard, C.; Caciagli, P.; Lemaire, O.; Lopez-Moya, J.J.; MacFarlane, S.; Peters, D.; Susi, P.; Torrance, L.

    2013-01-01

    Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus–vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers,

  12. Evidence for plant viruses in the region of Argentina Islands, Antarctica.

    Science.gov (United States)

    Polischuk, Valery; Budzanivska, Irena; Shevchenko, Tetyana; Oliynik, Svitlana

    2007-02-01

    This work focused on the assessment of plant virus occurrence among primitive and higher plants in the Antarctic region. Sampling occurred during two seasons (2004/5 and 2005/6) at the Ukrainian Antarctic Station 'Academician Vernadskiy' positioned on Argentina Islands. Collected plant samples of four moss genera (Polytrichum, Plagiatecium, Sanionia and Barbilophozia) and one higher monocot plant species, Deschampsia antarctica, were further subjected to enzyme-linked immunosorbent assay to test for the presence of common plant viruses. Surprisingly, samples of Barbilophozia and Polytrichum mosses were found to contain antigens of viruses from the genus Tobamovirus, Tobacco mosaic virus and Cucumber green mottle mosaic virus, which normally parasitize angiosperms. By contrast, samples of the monocot Deschampsia antarctica were positive for viruses typically infecting dicots: Cucumber green mottle mosaic virus, Cucumber mosaic virus and Tomato spotted wilt virus. Serological data for Deschampsia antarctica were supported in part by transmission electron microscopy observations and bioassay results. The results demonstrate comparatively high diversity of plant viruses detected in Antarctica; the results also raise questions of virus specificity and host susceptibility, as the detected viruses normally infect dicotyledonous plants. However, the means of plant virus emergence in the region remain elusive and are discussed.

  13. Production of plant virus inhibitor by Phytolacca americana suspension culture.

    Science.gov (United States)

    Misawa, M; Hayashi, M; Tanaka, H

    1975-09-01

    The inhibitory activity of tobacco mosaic virus (TMV) infection was assayed with the extracts of various callus tissues derived from the intact plants. Phytolacca americana callus was selected as a producer of the virus inhibitor and its cultural conditions in suspension were examined for cell growth and the inhibitor production. A modified liquid medium containing twofold concentrations of all components in that of Murashige and Skoog plus2,4-D (1.0 mg/liter) and sucrose (6%), but without any vitamins and glycine was chosen for production of higher levels of the inhibitor. TMV infections in tobacco, bean, and tomato plants were markedly inhibited by the introduction of the disrupted whole broth of suspension cultured P. americana.

  14. Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum.

    Science.gov (United States)

    Jiang, Daohong; Fu, Yanping; Guoqing, Li; Ghabrial, Said A

    2013-01-01

    Sclerotinia sclerotiorum is a notorious plant fungal pathogen with a broad host range including many important crops, such as oilseed rape, soybean, and numerous vegetable crops. Hypovirulence-associated mycoviruses have attracted much attention because of their potential as biological control agents for combating plant fungal diseases and for use in fundamental studies on fungal pathogenicity and other properties. This chapter describes several mycoviruses that were isolated from hypovirulent strains except for strain Sunf-M, which has a normal phenotype. These viruses include the geminivirus-like mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), Sclerotinia debilitation-associated RNA virus (SsDRV), Sclerotinia sclerotiorum RNA virus L (SsRV-L), Sclerotinia sclerotiorum hypovirus 1 (SsHV-1), Sclerotinia sclerotiorum mitoviruses 1 and 2 (SsMV-1, SsMV-2), and Sclerotinia sclerotiorum partitivirus S (SsPV-S). Unlike many other fungi, incidences of mixed infections with two or more mycoviruses in S. sclerotiorum are particularly high and very common. The interaction between SsDRV and S. sclerotiorum is likely to be unique. The significance of these mycoviruses to fungal ecology and viral evolution and the potential for biological control of Sclerotinia diseases using mycoviruses are discussed.

  15. Micropropagation of tulip: production of virus-free stock plants.

    Science.gov (United States)

    Podwyszyńska, Małgorzata; Sochacki, Dariusz

    2010-01-01

    We describe here a new tulip micropropagation method based on the cyclic shoot multiplication in presence of the thidiazuron (TDZ), which enables the production of virus-free stock plants, speeds up breeding, and provides new genotypes for the market. In our novel protocol, cyclic shoot multiplication can be performed for 2-3 years by using TDZ instead of other cytokinins, as 6-benzylaminopurine (BAP) and N(6)-(-isopentyl)adenine (2iP). It makes possible to produce 500-2,000 microbulbs from one healthy plant. There are six main stages of tulip micropropagation. Stage 0 is the selection of true-to-type and virus-free plants, confirmed by ELISA. Fragments of flower stems isolated from bulbs are used as initial explants. Shoot multiplication is based on the regeneration of adventitious shoots, which are sub-cultured every 8 weeks. In the Stage 3, the specially prepared shoots are induced by low temperature treatment to form bulbs which finally develop on a sucrose-rich medium at 20 degrees C. Bulbs are then dried for 6 weeks and rooted in vivo. The number of multiplication subcultures should be limited to 5-10 cycles in order to lower the risk of mutation. Virus indexing should be repeated 3-4 times, at the initial stage and then during shoot multiplication. Genetic stability of micropropagated shoots can be confirmed using molecular markers.

  16. Is there a role for symbiotic bacteria in plant virus transmission?

    Science.gov (United States)

    During the process of circulative plant virus transmission by insect vectors, viruses interact with different insect vector tissues prior to transmission to a new host plant. An area of intense debate in the field is whether bacterial symbionts of insect vectors are involved in the virus transmissi...

  17. Impaired virus control and severe CD8+ T-cell-mediated immunopathology in chimeric mice deficient in gamma interferon receptor expression on both parenchymal and hematopoietic cells

    DEFF Research Database (Denmark)

    Henrichsen, Pernille; Bartholdy, Christina; Christensen, Jan Pravsgaard

    2005-01-01

    Bone marrow chimeras were used to determine the cellular target(s) for the antiviral activity of gamma interferon (IFN-gamma). By transfusing such mice with high numbers of naive virus-specific CD8(+) T cells, a system was created in which the majority of virus-specific CD8(+) T cells would...... virus completely lack the ability to control the infection and develop severe wasting disease. Further, the study shows that IFN-gamma receptor expression on parenchymal cells in the viscera is more important for virus control than IFN-gamma receptor expression on bone marrow-derived cells....

  18. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    Directory of Open Access Journals (Sweden)

    Fanny Balique

    2015-04-01

    Full Text Available Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  19. Single amino acid substitution in the methyltransferase domain of Paprika mild mottle virus replicase proteins confers the ability to overcome the high temperature-dependent Hk gene-mediated resistance in Capsicum plants.

    Science.gov (United States)

    Matsumoto, Katsutoshi; Johnishi, Kousuke; Hamada, Hiroyuki; Sawada, Hiromasa; Takeuchi, Shigeharu; Kobayashi, Kappei; Suzuki, Kazumi; Kiba, Akinori; Hikichi, Yasufumi

    2009-03-01

    Capsicum plants harboring the Hk gene (Hk) show resistance to Paprika mild mottle virus (PaMMV) at 32 degrees C but not 24 degrees C. To identify the viral elicitor that activates the Hk-mediated resistance, several chimeric viral genomes were constructed between PaMMV and Tobacco mosaic virus-L. Infection patterns of these chimeric viruses in Hk-harboring plants revealed responsibility of PaMMV replicase genes for activation of the Hk-mediated resistance. The comparison of nucleotide sequence of replicase genes between PaMMV and PaHk1, an Hk-resistance-breaking strain of PaMMV, revealed that the adenine-to-uracil substitution at the nucleotide position 721 causes an amino acid change from threonine to serine at the 241st residue in the methyltransferase domain. Introduction of the A721U mutation into the replicase genes of parental PaMMV overcame the Hk resistance at 32 degrees C. The results indicate that Hk-mediated resistance is induced by PaMMV replicase proteins and that methyltransferase domain has a role in this elicitation.

  20. Challenge pools of hepatitis C virus genotypes 1-6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models

    DEFF Research Database (Denmark)

    Bukh, Jens; Meuleman, Philip; Tellier, Raymond

    2010-01-01

    Chimpanzees represent the only animal model for studies of the natural history of hepatitis C virus (HCV). To generate virus stocks of important HCV variants, we infected chimpanzees with HCV strains of genotypes 1-6 and determined the infectivity titer of acute-phase plasma pools in additional a...

  1. A Current Overview of the Papaya meleira virus, an Unusual Plant Virus

    Directory of Open Access Journals (Sweden)

    Paolla M. V. Abreu

    2015-04-01

    Full Text Available Papaya meleira virus (PMeV is the causal agent of papaya sticky disease, which is characterized by a spontaneous exudation of fluid and aqueous latex from the papaya fruit and leaves. The latex oxidizes after atmospheric exposure, resulting in a sticky feature on the fruit from which the name of the disease originates. PMeV is an isometric virus particle with a double-stranded RNA (dsRNA genome of approximately 12 Kb. Unusual for a plant virus, PMeV particles are localized on and linked to the polymers present in the latex. The ability of the PMeV to inhabit such a hostile environment demonstrates an intriguing interaction of the virus with the papaya. A hypersensitivity response is triggered against PMeV infection, and there is a reduction in the proteolytic activity of papaya latex during sticky disease. In papaya leaf tissues, stress responsive proteins, mostly calreticulin and proteasome-related proteins, are up regulated and proteins related to metabolism are down-regulated. Additionally, PMeV modifies the transcription of several miRNAs involved in the modulation of genes related to the ubiquitin-proteasome system. Until now, no PMeV resistant papaya genotype has been identified and roguing is the only viral control strategy available. However, a single inoculation of papaya plants with PMeV dsRNA delayed the progress of viral infection.

  2. Modification of non-vector aphid feeding behavior on virus-infected host plant.

    Science.gov (United States)

    Hu, Zuqing; Zhao, Huiyan; Thieme, Thomas

    2013-01-01

    Virus-infected host plants can have positive, neutral or negative effects on vector aphids. Even though the proportion of non-vector aphids associated with a plant far exceeds that of vector species, little is known about the effect of virus-infected plants on non-vector aphids. In the present study, the English grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae), a non-vector of Wheat dwarf virus (WDV) and Cereal yellow dwarf virus-RPV (CYDV-RPV), was monitored on, virus-infected, virus-free and leafhopper/aphid-infested, and virus- and insect-free (control) barley, Hordeum vulgare L. (Poales: Poaceae), plants. Electrical penetration graph recordings were performed. Compared with the control plants, S. avenae on infected plants exhibited reduced non-probing and pathway phase, and increased phloem sap ingestion phase, and more aphids reached sustained phloem ingestion. However, the electrical penetration graph parameters described above showed no significant differences in aphid feeding behavior on virus-free and vector pre-infested plants and the control barley plants during S. avenae feeding. The results suggest that WDV/CYDV-RPV-infected host plants positively affected the feeding behavior of the non-vector aphid S. avenae. Based on these results, the reasons and trends among the virus-infected host plants' effects on the feeding behavior of non-vector aphids are discussed.

  3. Detection of plant virus in meristem by immunohistochemistry and in situ hybridization.

    Science.gov (United States)

    Mochizuki, Tomofumi; Ohki, Satoshi T

    2015-01-01

    Most plant viruses do not infect the shoot apical meristem (SAM) of a host plant, and this virus-free region of meristem tissue has been used to obtain virus-free clones by meristem tip culture. Thus, the validation of viral distribution in meristem tissues is important for ensuring the appropriate excision of virus-free meristem tips. Although immunohistochemical microscopy and in situ hybridization are classical techniques, they allow us to determine the presence or absence of plant viruses in the shoot meristem tissues of a host plant. Briefly, meristem tissues are excised from infected plants, fixed, embedded in paraffin medium, and prepared in semithin sections (10-15 μm). By treating these sections with an antibody against viral protein or with a probe complementary to viral RNA, the viral distribution in the meristem tissue can be clearly observed. Importantly, these procedures are broadly applicable to most virus (and viroid) and host plant combinations.

  4. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.

    Science.gov (United States)

    Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N

    2016-11-09

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  5. Modification of Non-Vector Aphid Feeding Behavior on Virus-Infected Host Plant

    OpenAIRE

    Hu, Zuqing; Zhao, Huiyan; Thieme, Thomas

    2013-01-01

    Virus-infected host plants can have positive, neutral or negative effects on vector aphids. Even though the proportion of non-vector aphids associated with a plant far exceeds that of vector species, little is known about the effect of virus-infected plants on non-vector aphids. In the present study, the English grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae), a non-vector of Wheat dwarf virus (WDV) and Cereal yellow dwarf virus-RPV (CYDV-RPV), was monitored on, virus-infected,...

  6. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Bingxin; Zhao; Xiaoxia; Pan; Yumei; Teng; Wenyue; Xia; Jing; Wang; Yuling; Wen; Yuanding; Chen

    2015-01-01

    VP7 of group A rotavirus(RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector,three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains.Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6 F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  7. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs.

    Science.gov (United States)

    Zhao, Bingxin; Pan, Xiaoxia; Teng, Yumei; Xia, Wenyue; Wang, Jing; Wen, Yuling; Chen, Yuanding

    2015-10-01

    VP7 of group A rotavirus (RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector, three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains. Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  8. Isolation and Identification of Virus dsRNA from Strawberry Plants

    Institute of Scientific and Technical Information of China (English)

    LI He; DAI Hong-yan; ZHANG Zhi-hong; GAO Xiu-yan; DU Guo-dong; ZHANG Xin-yu

    2007-01-01

    The analysis of virus genome is based on nucleic acid isolation. The aims of this study were to develop a method for isolation and identification of virus double-stranded ribonucleic acid (dsRNA) and to elucidate the nucleotide sequences of strawberry virus. Using the modified method, virus dsRNA was extracted from strawberry virus indicator plants and cultivated strawberry plants and detected using agarose gel electrophoresis with ethidium bromide staining and reverse transcription-polymerase chain reaction (RT-PCR). The quantity of virus dsRNA varied among strawberry cultivars. The quantity of dsRNA from in vitro plantlets was higher than that from the young leaves of field plants. For the field-grown plants, there was more dsRNA in the young leaves. Virus dsRNA extracted from strawberry plants was resistant to deoxyribonuclease Ⅰ (DNase Ⅰ ), but evidently, it became resistant to ribonuclease A (RNase A) only in the presence of 0.5 M NaCl. Its bands in agarose gel could be readily recycled using an agarose gel DNA purification kit. With RT-PCR, the segments of both strawberry mottle virus and Strawberry mild yellow edge virus genomes were amplified by using the virus dsRNA recycled from gel or treated with DNase Ⅰ /RNase A as templates. The system developed for dsRNA isolation and identification in strawberry plants laid a sound foundation for the work on genome analysis of strawberry virus isolates in China.

  9. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses

    Science.gov (United States)

    Li, Linlin; Joseph, G. Victoria; Wang, Chunlin; Jones, Morris; Fellers, Gary M.; Kunz, Thomas H.; Delwart, Eric

    2010-01-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.

  10. Innovative tools for detection of plant pathogenic viruses and bacteria.

    Science.gov (United States)

    López, María M; Bertolini, Edson; Olmos, Antonio; Caruso, Paola; Gorris, María Teresa; Llop, Pablo; Penyalver, Ramón; Cambra, Mariano

    2003-12-01

    Detection of harmful viruses and bacteria in plant material, vectors or natural reservoirs is essential to ensure safe and sustainable agriculture. The techniques available have evolved significantly in the last few years to achieve rapid and reliable detection of pathogens, extraction of the target from the sample being important for optimising detection. For viruses, sample preparation has been simplified by imprinting or squashing plant material or insect vectors onto membranes. To improve the sensitivity of techniques for bacterial detection, a prior enrichment step in liquid or solid medium is advised. Serological and molecular techniques are currently the most appropriate when high numbers of samples need to be analysed. Specific monoclonal and/or recombinant antibodies are available for many plant pathogens and have contributed to the specificity of serological detection. Molecular detection can be optimised through the automatic purification of nucleic acids from pathogens by columns or robotics. New variants of PCR, such as simple or multiplex nested PCR in a single closed tube, co-operative-PCR and real-time monitoring of amplicons or quantitative PCR, allow high sensitivity in the detection of one or several pathogens in a single assay. The latest development in the analysis of nucleic acids is micro-array technology, but it requires generic DNA/RNA extraction and pre-amplification methods to increase detection sensitivity. The advances in research that will result from the sequencing of many plant pathogen genomes, especially now in the era of proteomics, represent a new source of information for the future development of sensitive and specific detection techniques for these microorganisms.

  11. (Restriction of virus infection by plants: Annual report, 1986)

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, G.

    1986-12-05

    This research concerns the strong resistance, or even immunity, against a specific virus that is exhibited by one or a few lines of a plant species, in contrast to the general susceptibility of most lines of that species. The contrast between the reactions to virus inoculation of different lines of one species implies that a single gene or a very few genes may mediate the resistance or immunity. The prospects for isolating, studying and transferring such a gene should be good for a system with these characteristics. Seedlings of a line Arlington of the cowpea (Vigna unguiculata) fail to support the replication of cowpea mosaic virus strain SB (CPMV-SB). Genetic crosses of Arlington cowpea to the systemic host Blackeye 5 cowpea show that the immunity is inherited as a simple dominant gene. In contrast to the seedlings, the protoplasts of the Arlington cowpea support CPMV-SB replication, but only to a very low level compared to protoplasts of Blackeye 5 cowpeas. From evidence reported earlier we concluded that Arlington cowpea protoplasts restrict the production of CPMV-SB proteins. We postulated, and obtained evidence for, a proteinase inhibitor that is specific for a CPMV-SB proteinase. This proteinase inhibitor is our prime candidate for the mediator of the resistance of Arlington protoplasts to CPMV-SB. Progress to date is described.

  12. [Restriction of virus infection by plants: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, G.

    1986-12-05

    This research concerns the strong resistance, or even immunity, against a specific virus that is exhibited by one or a few lines of a plant species, in contrast to the general susceptibility of most lines of that species. The contrast between the reactions to virus inoculation of different lines of one species implies that a single gene or a very few genes may mediate the resistance or immunity. The prospects for isolating, studying and transferring such a gene should be good for a system with these characteristics. Seedlings of a line Arlington of the cowpea (Vigna unguiculata) fail to support the replication of cowpea mosaic virus strain SB (CPMV-SB). Genetic crosses of Arlington cowpea to the systemic host Blackeye 5 cowpea show that the immunity is inherited as a simple dominant gene. In contrast to the seedlings, the protoplasts of the Arlington cowpea support CPMV-SB replication, but only to a very low level compared to protoplasts of Blackeye 5 cowpeas. From evidence reported earlier we concluded that Arlington cowpea protoplasts restrict the production of CPMV-SB proteins. We postulated, and obtained evidence for, a proteinase inhibitor that is specific for a CPMV-SB proteinase. This proteinase inhibitor is our prime candidate for the mediator of the resistance of Arlington protoplasts to CPMV-SB. Progress to date is described.

  13. Supplementation of inactivated influenza vaccine with norovirus P particle-M2e chimeric vaccine enhances protection against heterologous virus challenge in chickens

    Science.gov (United States)

    Elaish, Mohamed; Ali, Ahmed; Xia, Ming; Ibrahim, Mahmoud; Jang, Hyesun; Hiremath, Jagadish; Dhakal, Santosh; Helmy, Yosra A.; Jiang, Xi; Renukaradhya, Gourapura J.; Lee, Chang-Won

    2017-01-01

    The current inactivated influenza vaccines provide satisfactory protection against homologous viruses but limited cross-protection against antigenically divergent strains. Consequently, there is a need to develop more broadly protective vaccines. The highly conserved extracellular domain of the matrix protein 2 (M2e) has shown promising results as one of the components of a universal influenza vaccine in different animal models. As an approach to overcome the limited, strain specific, protective efficacy of inactivated influenza vaccine (IIV), a combination of recombinant M2e expressed on the surface of norovirus P particle (M2eP) and IIV was tested in chickens. Co-immunization of birds with both vaccines did not affect the production of M2e-specific IgG antibodies compared to the group vaccinated with M2eP alone. However, the co-immunized birds developed significantly higher pre-challenge hemagglutination inhibition antibody titers against the homologous IIV antigen and heterologous challenge virus. These combined vaccine groups also had cross reactive antibody responses against different viruses (H5, H6, and H7 subtypes) compared to the IIV alone vaccinated group. Upon intranasal challenge with homologous and heterologous viruses, the combined vaccine groups showed greater reduction in viral shedding in tracheal swabs compared to those groups receiving IIV alone. Moreover, M2eP antisera from vaccinated birds were able to bind to the native M2 expressed on the surface of whole virus particles and infected cells, and inhibit virus replication in vitro. Our results support the potential benefit of supplementing IIV with M2eP, to expand the vaccine cross protective efficacy. PMID:28151964

  14. Humans Have Antibodies against a Plant Virus: Evidence from Tobacco Mosaic Virus

    Science.gov (United States)

    Liu, Ruolan; Vaishnav, Radhika A.; Roberts, Andrew M.; Friedland, Robert P.

    2013-01-01

    Tobacco mosaic virus (TMV), a widespread plant pathogen, is found in tobacco (including cigarettes and smokeless tobacco) as well as in many other plants. Plant viruses do not replicate or cause infection in humans or other mammals. This study was done to determine whether exposure to tobacco products induces an immune response to TMV in humans. Using a sandwich ELISA assay, we detected serum anti-TMV antibodies (IgG, IgG1, IgG3, IgG4, IgA, and IgM) in all subjects enrolled in the study (20 healthy smokers, 20 smokeless-tobacco users, and 20 non-smokers). Smokers had a higher level of serum anti-TMV IgG antibodies than non-smokers, while the serum level of anti-TMV IgA from smokeless tobacco users was lower than smokers and non-smokers. Using bioinformatics, we also found that the human protein TOMM40L (an outer mitochondrial membrane 40 homolog – like translocase) contains a strong homology of six contiguous amino acids to the TMV coat protein, and TOMM40L peptide exhibited cross-reactivity with anti-TMV antibodies. People who smoke cigarettes or other tobacco products experience a lower risk of developing Parkinson’s disease, but the mechanism by which this occurs is unclear. Our results showing molecular mimicry between TMV and human TOMM40L raise the question as to whether TMV has a potential role in smokers against Parkinson’s disease development. The potential mechanisms of molecular mimicry between plant viruses and human disease should be further explored. PMID:23573274

  15. Host ecology determines the dispersal patterns of a plant virus.

    Science.gov (United States)

    Trovão, Nídia Sequeira; Baele, Guy; Vrancken, Bram; Bielejec, Filip; Suchard, Marc A; Fargette, Denis; Lemey, Philippe

    2015-01-01

    Since its isolation in 1966 in Kenya, rice yellow mottle virus (RYMV) has been reported throughout Africa resulting in one of the economically most important tropical plant emerging diseases. A thorough understanding of RYMV evolution and dispersal is critical to manage viral spread in tropical areas that heavily rely on agriculture for subsistence. Phylogenetic analyses have suggested a relatively recent expansion, perhaps driven by the intensification of agricultural practices, but this has not yet been examined in a coherent statistical framework. To gain insight into the historical spread of RYMV within Africa rice cultivations, we analyse a dataset of 300 coat protein gene sequences, sampled from East to West Africa over a 46-year period, using Bayesian evolutionary inference. Spatiotemporal reconstructions date the origin of RMYV back to 1852 (1791-1903) and confirm Tanzania as the most likely geographic origin. Following a single long-distance transmission event from East to West Africa, separate viral populations have been maintained for about a century. To identify the factors that shaped the RYMV distribution, we apply a generalised linear model (GLM) extension of discrete phylogenetic diffusion and provide strong support for distances measured on a rice connectivity landscape as the major determinant of RYMV spread. Phylogeographic estimates in continuous space further complement this by demonstrating more pronounced expansion dynamics in West Africa that are consistent with agricultural intensification and extensification. Taken together, our principled phylogeographic inference approach shows for the first time that host ecology dynamics have shaped the historical spread of a plant virus.

  16. Virus infection mediates the effects of elevated CO2 on plants and vectors

    Science.gov (United States)

    Trębicki, Piotr; Vandegeer, Rebecca K.; Bosque-Pérez, Nilsa A.; Powell, Kevin S.; Dader, Beatriz; Freeman, Angela J.; Yen, Alan L.; Fitzgerald, Glenn J.; Luck, Jo E.

    2016-03-01

    Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.

  17. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV)+ B cell lymphomas.

    Science.gov (United States)

    Hatton, Olivia; Lambert, Stacie L; Krams, Sheri M; Martinez, Olivia M

    2012-01-01

    The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.

  18. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV+ B cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Olivia Hatton

    Full Text Available The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1, activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.

  19. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy Mahmoud

    2016-11-24

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence that is capable of hybridizing to a nucleotide sequence of the pathogenic virus and that directs inactivation of the pathogenic virus species or plurality of viral species by the CRISPR/Cas9 system. The heterologous nucleotide sequence can be complementary to, but not limited to an Intergenic Region (IR) of the Tomato Yellow Leaf Curl Virus (TYLCV), Further provided are methods of generating a genetically modified plant that is resistant to a virus pathogen by a heterologous CRISPR/Cas9 system and expression of a gRNA specifically targeting the virus.

  20. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control.

    Science.gov (United States)

    Cao, Jing; Guenther, Richard H; Sit, Tim L; Lommel, Steven A; Opperman, Charles H; Willoughby, Julie A

    2015-05-13

    Plant parasitic nematodes are one of the world's major agricultural pests, causing in excess of $157 billion in worldwide crop damage annually. Abamectin (Abm) is a biological pesticide with a strong activity against a wide variety of plant parasitic nematodes. However, Abm's poor mobility in the soil compromises its nematicide performance because of the limited zone of protection surrounding the growing root system of the plant. In this study, we manipulated Abm's soil physical chemistry by encapsulating Abm within the Red clover necrotic mosaic virus (RCNMV) to produce a plant virus nanoparticle (PVN) delivery system for Abm. The transmission electron microscopic and dynamic light scattering characterization of Abm-loaded PVN (PVN(Abm)) indicated the resultant viral capsid integrity and morphology comparable to native RCNMV. In addition, the PVN(Abm) significantly increased Abm's soil mobility while enabling a controlled release strategy for Abm's bioavailability to nematodes. As a result, PVN(Abm) enlarged the zone of protection from Meloidogyne hapla root knot nematodes in the soil as compared to treating with free Abm molecules. Tomato seedlings treated with PVN(Abm) had healthier root growth and a reduction in root galling demonstrating the success of this delivery system for the increased efficacy of Abm to control nematode damage in crops.

  1. Genetically engineered virus-resistant plants in developing countries: current status and future prospects.

    Science.gov (United States)

    Reddy, D V R; Sudarshana, M R; Fuchs, M; Rao, N C; Thottappilly, G

    2009-01-01

    Plant viruses cause severe crop losses worldwide. Conventional control strategies, such as cultural methods and biocide applications against arthropod, nematode, and plasmodiophorid vectors, have limited success at mitigating the impact of plant viruses. Planting resistant cultivars is the most effective and economical way to control plant virus diseases. Natural sources of resistance have been exploited extensively to develop virus-resistant plants by conventional breeding. Non-conventional methods have also been used successfully to confer virus resistance by transferring primarily virus-derived genes, including viral coat protein, replicase, movement protein, defective interfering RNA, non-coding RNA sequences, and protease, into susceptible plants. Non-viral genes (R genes, microRNAs, ribosome-inactivating proteins, protease inhibitors, dsRNAse, RNA modifying enzymes, and scFvs) have also been used successfully to engineer resistance to viruses in plants. Very few genetically engineered (GE) virus resistant (VR) crops have been released for cultivation and none is available yet in developing countries. However, a number of economically important GEVR crops, transformed with viral genes are of great interest in developing countries. The major issues confronting the production and deregulation of GEVR crops in developing countries are primarily socio-economic and related to intellectual property rights, biosafety regulatory frameworks, expenditure to generate GE crops and opposition by non-governmental activists. Suggestions for satisfactory resolution of these factors, presumably leading to field tests and deregulation of GEVR crops in developing countries, are given.

  2. Trends in plant virus epidemiology: opportunities from new or improved technologies.

    Science.gov (United States)

    Jones, R A C

    2014-06-24

    This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and

  3. Plant Virus Differentially Alters the Plant's Defense Response to Its Closely Related Vectors

    Science.gov (United States)

    Shi, Xiaobin; Pan, Huipeng; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Liu, Yang; Fang, Yong; Chen, Gong; Gao, Xiwu; Zhang, Youjun

    2013-01-01

    Background The whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. In recent years, B. tabaci Q has invaded China, and Q has displaced B in many areas now. In a number of regions of the world, invasion by B and/or Q has been followed by outbreaks of tomato yellow leaf curl virus (TYLCV). Our previous study showed TYLCV directly and indirectly modified the feeding behavior of B. tabaci in favor of Q rather than B. Methodology/Principal Findings In this study, we quantified the salicylic acid (SA) titers and relative gene expression of SA in tomato leaves that were infested with viruliferous or non-viruliferous B and Q. We also measured the impacts of exogenous SA on the performance of B and Q, including the effects on ovary development. SA titer was always higher in leaves that were infested with viruliferous B than with viruliferous Q, whereas the SA titer did not differ between leaves infested with non-viruliferous B and Q. The relative gene expression of SA signaling was increased by feeding of viruliferous B but was not increased by feeding of viruliferous Q. The life history traits of B and Q were adversely affected on SA-treated plants. On SA-treated plants, both B and Q had lower fecundity, shorter longevity, longer developmental time and lower survival rate than on untreated plants. Compared with whiteflies feeding on control plants, those feeding on SA-treated plants had fewer oocytes and slower ovary development. On SA-treated plants, viruliferous B had fewer oocytes than viruliferous Q. Conclusions/Significance These results indicate that TYLCV tends to induce SA-regulated plant defense against B but SA-regulated plant defense against Q was reduced. In other words, Q may have a mutualistic relationship with TYLCV that results in the reduction of the plant's defense response. PMID:24391779

  4. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread

    Science.gov (United States)

    Dall’Ara, Mattia; Ratti, Claudio; Bouzoubaa, Salah E.; Gilmer, David

    2016-01-01

    Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the “life aspects” of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant. PMID:27548199

  5. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread.

    Science.gov (United States)

    Dall'Ara, Mattia; Ratti, Claudio; Bouzoubaa, Salah E; Gilmer, David

    2016-08-18

    Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.

  6. Preparation and characterization of recombinant Llama VHH-human IgGFc chimeric antibody against H5N1 hemagglutinin from avian influenza virus%羊驼抗H5N1血凝素重链可变区-人IgGFc段嵌合抗体的制备和鉴定

    Institute of Scientific and Technical Information of China (English)

    夏立亮; 吴标; 程亚庭; 蔡家麟; 王颖; 赵国屏

    2012-01-01

    To prepare and characterize llama variable domain of heavy chain of heavy-chain antibody-human IgGlFc (VHH-hFc) chimeric antibody against hemagglutinin from H5N1 avian influenza virus, recombinant expression vector pET-22b-VHH23-hFc was constructed and VHH23-hFc chimeric antibody was expressed in E. coli BL2KDE3) strain by IPTG induction. As VHH23-hFc antibody was accumulated in inclusion bodies, two different refolding methods, dialysis and on-column refolding, were compared for the refolding efficacy and the optimal method was adopted for preparation of VHH23-hFc chimeric antibody. The activity and thermal stability of VHH antibodies were tested by ELISA. By using dialysis refolding procedure, VHH23-hFc chimeric antibody has been obtained with higher yield and good quality. The affinity constant of VHH23-hFc chimeric antibody was 2. 24 × 106 mol/L as determined by ELISA. VHH23-hFc chimeric antibody also displayed good thermal stability. The half-life span of VHH23-hFc chimeric antibody in mice was up to 35 hrs, which is comparable to conventional chimeric antibodies. Taken together, our results indicated that VHH23-hFc chimeric antibody against hemagglutinin derived from H5N1 avian influenza virus has been obtained with high activity, good thermal stability as well as longer half-life span, which provides basis for future functional study both in vitro and in vivo.%本研究旨在制备羊驼抗H5N1禽流感病毒的重链抗体可变区-人Fc段嵌合体抗体制备,对所得嵌合抗体进行制备和功能鉴定,为临床应用奠定基础.用pET-22b表达载体构建抗H5N1禽流感病毒羊驼重链可变区(VHH)-人IgG1Fc嵌合基因,以包涵体形式表达VHH23-hFc嵌合抗体蛋白,采用优化的方法复性后,获得高纯度VHH23-hFc嵌合抗体,用ELISA法鉴定嵌合抗体亲和力、热稳定性和小鼠体内的半衰期.结果显示,透析复性后原核表达的抗H5N1禽流感病毒VHH23-hFc嵌合抗体亲和力为2.24×106 mol/L,具有较好

  7. Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense)

    OpenAIRE

    Lehtonen, Päivi T; Helander, Marjo; Shahid A Siddiqui; Lehto, Kirsi; Saikkonen, Kari

    2006-01-01

    We studied the effects of fungal endophyte infection of meadow ryegrass (Lolium pratense=Festuca pratensis) on the frequency of the barley yellow dwarf virus (BYDV). The virus is transferred by aphids, which may be deterred by endophyte-origin alkaloids within the plant. In our experiment, we released viruliferous aphid vectors on endophyte-infected and endophyte-free plants in a common garden. The number of aphids and the percentage of BYDV infections were lower in endophyte-infected plants ...

  8. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2015-10-01

    Full Text Available Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV. The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N, phosphoprotein (P, large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

  9. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

    Science.gov (United States)

    Wang, Qiang; Ma, Xiaonan; Qian, ShaSha; Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O; Li, Zhenghe

    2015-10-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

  10. Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus.

    Science.gov (United States)

    He, Wen-Bo; Li, Jie; Liu, Shu-Sheng

    2015-01-08

    Plant viruses interact with their insect vectors directly and indirectly via host plants, and this tripartite interaction may produce fitness benefits to both the vectors and the viruses. Our previous studies show that the Middle East-Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex improved its performance on tobacco plants infected by the Tomato yellow leaf curl China virus (TYLCCNV), which it transmits, although virus infection of the whitefly per se reduced its performance. Here, we use electrical penetration graph recording to investigate the direct and indirect effects of TYLCCNV on the feeding behaviour of MEAM1. When feeding on either cotton, a non-host of TYLCCNV, or uninfected tobacco, a host of TYLCCNV, virus-infection of the whiteflies impeded their feeding. Interestingly, when viruliferous whiteflies fed on virus-infected tobacco, their feeding activities were no longer negatively affected; instead, the virus promoted whitefly behaviour related to rapid and effective sap ingestion. Our findings show differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus, and help to unravel the behavioural mechanisms underlying a mutualistic relationship between an insect vector and a plant virus that also has features reminiscent of an insect pathogen.

  11. Evolution of Wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation.

    Science.gov (United States)

    French, Roy; Stenger, Drake C

    2003-01-01

    Like many other plant RNA viruses, Wheat streak mosaic virus (WSMV) sequence diversity within and among infected plants is low given the large number of virions produced. This may be explained by considering aspects of plant virus life history. Intracellular replication of RNA viruses is predominately linear, not exponential, which means that the rate at which mutations accumulate also is linear. Bottlenecks during systemic movement further limit diversity. Analysis of mixed infections with two WSMV isolates suggests that about four viral genomes participate in systemic invasion of each tiller. Low effective population size increases the role of stochastic processes on dynamics of plant virus population genetics and evolution. Despite low pair-wise diversity among isolates, the number of polymorphic sites within the U.S. population is about the same as between divergent strains or a sister species. Characteristics of polymorphism in the WSMV coat protein gene suggest that most variation appears neutral.

  12. A randomized study of the immunogenicity and safety of Japanese encephalitis chimeric virus vaccine (JE-CV) in comparison with SA14-14-2 vaccine in children in the Republic of Korea.

    Science.gov (United States)

    Kim, Dong Soo; Houillon, Guy; Jang, Gwang Cheon; Cha, Sung-Ho; Choi, Soo-Han; Lee, Jin; Kim, Hwang Min; Kim, Ji Hong; Kang, Jin Han; Kim, Jong-Hyun; Kim, Ki Hwan; Kim, Hee Soo; Bang, Joon; Naimi, Zulaikha; Bosch-Castells, Valérie; Boaz, Mark; Bouckenooghe, Alain

    2014-01-01

    A new live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) has been developed based on innovative technology to give protection against JE with an improved immunogenicity and safety profile. In this phase 3, observer-blind study, 274 children aged 12-24 months were randomized 1:1 to receive one dose of JE-CV (Group JE-CV) or the SA14-14-2 vaccine currently used to vaccinate against JE in the Republic of Korea (Group SA14-14-2). JE neutralizing antibody titers were assessed using PRNT50 before and 28 days after vaccination. The primary endpoint of non-inferiority of seroconversion rates on D28 was demonstrated in the Per Protocol analysis set as the difference between Group JE-CV and Group SA14-14-2 was 0.9 percentage points (95% confidence interval [CI]: -2.35; 4.68), which was above the required -10%. Seroconversion and seroprotection rates 28 days after administration of a single vaccine dose were 100% in Group JE-CV and 99.1% in Group SA14-14-2; all children except one (Group SA14-14-2) were seroprotected. Geometric mean titers (GMTs) increased in both groups from D0 to D28; GM of titer ratios were slightly higher in Group JE-CV (182 [95% CI: 131; 251]) than Group SA14-14-2 (116 [95% CI: 85.5, 157]). A single dose of JE-CV was well tolerated and no safety concerns were identified. In conclusion, a single dose of JE-CV or SA14-14-2 vaccine elicited a comparable immune response with a good safety profile. Results obtained in healthy Korean children aged 12-24 months vaccinated with JE-CV are consistent with those obtained in previous studies conducted with JE-CV in toddlers.

  13. Occurrence and distribution of ten viruses infecting cucurbit plants in Guilan province, Iran.

    Science.gov (United States)

    Gholamalizadeh, R; Vahdat, A; Keshavarz, T; Elahinia, A; Bananej, K

    2008-01-01

    During the 2006 and 2007 growing seasons, a systematic survey was conducted in open-field of melon (Cucumis melo L.), cucumber (C. sativus L.), squash (Cucurbita sp.), and watermelon (Citrulus lanatus L.) crops in 16 major cucurbit-growing areas of Guilan province in Iran. Symptomatic leaf samples were collected and screened by double-antibody sandwich ELISA (DAS-ELISA) or RT-PCR to detect Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Cucurbit aphid-borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Squash mosaic virus (SqMV), Papaya ringspot virus type W (PRSV-W), Watermelon chlorotic stunt virus (WmCSV), Melon necrotic spot virus (MNSV), Zucchini yellow fleck virus (ZYFV), and Ourmia melon virus (OuMV). The majority of tested samples (73.7%) were infected by at least one of the viruses considered. OuMV, ZYMV, WMV, and WmCSV were the most prevalent viruses and were detected in tested cucurbit plants. The incidence of multiple infections with 2 or more viruses was also relatively high, 63.3, 48.6, 42.7, and 26.7% of the infected samples of melon, cucumber, squash, and watermelon, respectively. The high incidence of OuMV and WmCSV suggested that these viruses might turn out to be an important threat for the melon and cucumber crops in the province.

  14. Production System of Virus-free Apple Plants Using Heat Treatment and Shoot Tip CultureShoot Tip Culture

    OpenAIRE

    Gunsup Lee; Il Sheob Shin; Kang Hee Cho; Se Hee Kim; Juhee Shin; Dae Hyun Kim; Jeong Hee Kim; Hyun Ran Kim

    2013-01-01

    In worldwide, viral diseases of apple plants has caused the serious problems like reduced production and malformation of fruits. Also, the damages of apple plants by virus and/or viroid infection (Apple chlorotic leaf spot virus, Apple stem grooving virus, Apple mosaic virus, and Apple scar skin viroid) were reported in Korea. However there is few report about the protection approach against the infection by apple viruses. Therefore, this paper introduced the experimental protocol...

  15. A mini-review of anti-hepatitis B virus activity of medicinal plants

    Directory of Open Access Journals (Sweden)

    Manzer H. Siddiqui

    2017-01-01

    Full Text Available Medicinal plants are of undoubted value, as they have been used for centuries to treat various diseases and health disorders in almost every part of the world. In several studies, the use of medicinal plants was found effective in treatment of infectious and non-infectious diseases. The World Health Organization has been working for many years to identify all surviving medicinal plants on the earth. An important step has also been taken by the Natural Health Product Regulation of Canada for promotion and usages of natural products. At present, the rapidly growing population of the world is facing many challenges from various infectious diseases that are associated with hepatitis A, B and C virus, human immunodeficiency virus, influenza virus, dengue virus and new emerging viruses. Hepatitis B virus causes a severe and frequently transmittable disease of the liver. Millions of people worldwide suffer from hepatitis B virus (HBV infection. The drugs available on the market for the treatment of hepatitis B are not sufficient and also cause side effects in patients suffering from HBV infection. The pharmaceutical companies are searching for suitable alternative and natural inhibitors of HBV. Therefore, it is important to explore and use plants as a source of new medicines to treat this infectious disease, because single plants contain a priceless pool of active ingredients which could help in the production of pharmaceutical-grade peptides or proteins. However, the knowledge of the antiviral activity of medicinal plants is still limited.

  16. Replication-competent chimeric lenti-oncovirus with expanded host cell tropism.

    Science.gov (United States)

    Reiprich, S; Gundlach, B R; Fleckenstein, B; Uberla, K

    1997-04-01

    Baboon bone marrow was grafted into human immunodeficiency virus type 1-infected patients in the course of recent trials for AIDS treatment. Since the baboon genome harbors multiple copies of an endogenous oncovirus, chimeric lenti-oncoviruses could emerge in the xenotransplant recipient. To analyze the potential replication competence of hybrid viruses between different genera of retroviruses, we replaced most of the env gene of simian immunodeficiency virus with the env gene of an amphotropic murine leukemia virus. The hybrid virus could be propagated in human T-cell lines, in peripheral blood mononuclear cells of rhesus macaques, and in CD4- B-cell lines. Because of the expanded cell tropism, the hybrid virus might have a selective advantage in comparison to parental viruses. Therefore, emerging chimeric viruses may be considered a serious risk of xenotransplantation. A note of caution is also suggested for the use of pseudotyped lentiviral vectors for human gene therapy.

  17. Effects of introduced and indigenous viruses on native plants: exploring their disease causing potential at the agro-ecological interface.

    Science.gov (United States)

    Vincent, Stuart J; Coutts, Brenda A; Jones, Roger A C

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host-virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface.

  18. Guiding plant virus particles to integrin-displaying cells

    Science.gov (United States)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity

  19. In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operation.

    Science.gov (United States)

    Shih, Sharon M-H; Doran, Pauline M

    2009-09-10

    Plant virus accumulation was investigated in vitro using three different forms of plant tissue culture. Suspended cells, hairy roots and shooty teratomas of Nicotiana benthamiana were infected with tobacco mosaic virus (TMV) using the same initial virus:biomass ratio. Viral infection did not affect tissue growth or morphology in any of the three culture systems. Average maximum virus concentrations in hairy roots and shooty teratomas were similar and about an order of magnitude higher than in suspended cells. Hairy roots were considered the preferred host because of their morphological stability in liquid medium and relative ease of culture. The average maximum virus concentration in the hairy roots was 0.82+/-0.14 mg g(-1) dry weight; viral coat protein represented a maximum of approximately 6% of total soluble protein in the biomass. Virus accumulation in hairy roots was investigated further using different modes of semi-continuous culture operation aimed at prolonging the root growth phase and providing nutrient supplementation; however, virus concentrations in the roots were not enhanced compared with simple batch culture. The relative infectivity of virus in the biomass declined by 80-90% during all the cultures tested, irrespective of the form of plant tissue used or mode of culture operation. Hairy root cultures inoculated with a transgenic TMV-based vector in batch culture accumulated green fluorescent protein (GFP); however, maximum GFP concentrations in the biomass were relatively low at 39 microg g(-1) dry weight, probably due to genetic instability of the vector. This work highlights the advantages of using hairy roots for in vitro propagation of TMV compared with shooty teratomas and suspended plant cells, and demonstrates that batch root culture is more effective than semi-continuous operations for accumulation of high virus concentrations in the biomass.

  20. Plant-derived vaccine protects target animals against a viral disease

    DEFF Research Database (Denmark)

    Dalsgaard, Kristian; Uttenthal, Åse; Jones, T.D.

    1997-01-01

    The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucle....... The epitope used occurs in three different virus species-MEV, canine parvovirus, and feline panleukopenia virus-and thus the same vaccine could be used in three economically important viral hosts-mink, dogs, and cats, respectively....

  1. Odor, Not Performance, Dictates Bemisia tabaci's Selection between Healthy and Virus Infected Plants

    Science.gov (United States)

    Chen, Gong; Su, Qi; Shi, Xiaobin; Liu, Xin; Peng, Zhengke; Zheng, Huixin; Xie, Wen; Xu, Baoyun; Wang, Shaoli; Wu, Qingjun; Zhou, Xuguo; Zhang, Youjun

    2017-01-01

    Although, insect herbivores are generally thought to select hosts that favor the fitness of their progeny, this “mother-knows-best” hypothesis may be challenged by the presence of a plant virus. Our previous study showed that the whitefly, Bemisia tabaci, the obligate vector for transmitting Tomato yellow leaf curl virus (TYLCV), preferred to settle and oviposit on TYLCV-infected rather than healthy host plant, Datura stramonium. The performances of B. tabaci larvae and adults were indeed improved on virus-infected D. stramonium, which is consistent with “mother-knows-best” hypothesis. In this study, B. tabaci Q displayed the same preference to settle and oviposit on Tomato spotted wilt virus (TSWV)-infected host plants, D. stramonium and Capsicum annuum, respectively. As a non-vector of TSWV, however, insect performance was impaired since adult body size, longevity, survival, and fecundity were reduced in TSWV infected D. stramonium. This appears to be an odor-mediated behavior, as plant volatile profiles are modified by viral infection. Infected plants have reduced quantities of o-xylene and α-pinene, and increased levels of phenol and 2-ethyl-1-hexanol in their headspace. Subsequent behavior experiments showed that o-xylene and α-pinene are repellant, while phenol and 2-ethyl-1-hexanol are attractive. This indicates that the preference of B. tabaci for virus-infected plants is modulated by the dynamic changes in the volatile profiles rather than the subsequent performances on virus-infected plants. PMID:28360861

  2. Ribonuclease activity of buckwheat plant (Fagopyrum esculentum cultivars with different sensitivities to buckwheat burn virus

    Directory of Open Access Journals (Sweden)

    Y. R. Sindarovska

    2014-06-01

    Full Text Available Ribonucleases (RNases are present in base-level amounts in intact plants, but this level is able to increase greatly under stress conditions. The possible cause for such an increase is protection against plant RNA-virus attack. Buckwheat burn virus (BBV is a highly virulent pathogen that belongs to Rhabdoviridae family. In our study, we have analyzed the correlation between RNase activity and resistance of different buckwheat cultivars to BBV infection. Two cultivars, Kara-Dag and Roksolana, with different sensitivities to BBV have been used. Kara-Dag is a cultivar with medium sensitivity to virus and Roksolana is a tolerant cultivar. It has been shown that the base level of RNase activity in Roksolana cultivar was in most cases higher than the corresponding parameter in Kara-Dag cultivar. Both infected and uninfected plants of Roksolana cultivar demonstrated high RNase activity during two weeks. Whereas infected plants of Kara-Dag cultivar demonstrated unstable levels of RNase activity. Significant decline in RNase activity was detected on the 7th day post infection with subsequent gradual increase in RNase activity. Decline of the RNase activity during the first week could promote the virus replication and therefore more successful infection of upper leaves of plants. Unstable levels of RNase activity in infected buckwheat plants may be explained by insufficiency of virus-resistant mechanisms that determines the medium sensitivity of the cultivar to BBV. Thus, plants of buckwheat cultivar having less sensitivity to virus, displayed in general higher RNase activity.

  3. Ribonuclease activity of buckwheat plant (Fagopyrum esculentum) cultivars with different sensitivities to buckwheat burn virus.

    Science.gov (United States)

    Sindarovska, Y R; Guzyk, O I; Yuzvenko, L V; Demchenko, O A; Didenko, L F; Grynevych, O I; Spivak, M Ya

    2014-01-01

    Ribonucleases (RNases) are present in base-level amounts in intact plants, but this level is able to increase greatly under stress conditions. The possible cause for such an increase is protection against plant RNA-virus attack. Buckwheat burn virus (BBV) is a highly virulent pathogen that belongs to Rhabdoviridae family. In our study, we have analyzed the correlation between RNase activity and resistance of different buckwheat cultivars to BBV infection. Two cultivars, Kara-Dag and Roksolana, with different sensitivities to BBV have been used. Kara-Dag is a cultivar with medium sensitivity to virus and Roksolana is a tolerant cultivar. It has been shown that the base level of RNase activity in Roksolana cultivar was in most cases higher than the corresponding parameter in Kara-Dag cultivar. Both infected and uninfected plants of Roksolana cultivar demonstrated high RNase activity during two weeks. Whereas infected plants of Kara-Dag cultivar demonstrated unstable levels of RNase activity. Significant decline in RNase activity was detected on the 7th day post infection with subsequent gradual increase in RNase activity. Decline of the RNase activity during the first week could promote the virus replication and therefore more successful infection of upper leaves of plants. Unstable levels of RNase activity in infected buckwheat plants may be explained by insufficiency of virus-resistant mechanisms that determines the medium sensitivity of the cultivar to BBV. Thus, plants of buckwheat cultivar having less sensitivity to virus, displayed in general higher RNase activity.

  4. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Directory of Open Access Journals (Sweden)

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  5. Characterization, Diagnosis & Management of Plant Viruses, Vol. 2. Horticultural Crops

    Science.gov (United States)

    Characterization of viruses in fruit tree crops is complicated due to the fact that many cultivated fruit crops are maintained through vegetative propagation and mixed infection of several viruses in a fruit tree is a common phenomenon. Viruses have undoubtedly infected fruit trees and cause diseas...

  6. Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses

    Directory of Open Access Journals (Sweden)

    Livia Stavolone

    2017-09-01

    Full Text Available The extracellular matrix (ECM of animal and plants cells plays important roles in viral diseases. While in animal cells extracellular matrix components can be exploited by viruses for recognition, attachment and entry, the plant cell wall acts as a physical barrier to viral entry and adds a higher level of difficulty to intercellular movement of viruses. Interestingly, both in plant and animal systems, ECM can be strongly remodeled during virus infection, and the understanding of remodeling mechanisms and molecular players offers new perspectives for therapeutic intervention. This review focuses on the different roles played by the ECM in plant and animal hosts during virus infection with special emphasis on the similarities and differences. Possible biotechnological applications aimed at improving viral resistance are discussed.

  7. The effect of transmission route on plant virus epidemic development and disease control.

    Science.gov (United States)

    Jeger, Michael J; Madden, Laurence V; van den Bosch, Frank

    2009-05-21

    A model for indirect vector transmission and epidemic development of plant viruses is extended to consider direct transmission through vector mating. A basic reproduction number is derived which is the sum of the R(0) values specific for three transmission routes. We analyse the model to determine the effect of direct transmission on plant disease control directed against indirect transmission. Increasing the rate of horizontal sexual transmission means that vector control rate or indirect transmission rate must be increased/decreased substantially to maintain R(0) at a value less than 1. By contrast, proportionately increasing the probability of transovarial transmission has little effect. Expressions are derived for the steady-state values of the viruliferous vector population. There is clear advantage for an insect virus in indirect transmission to plants, especially where the sexual and transovarial transmission rates are low; however information on virulence-transmissibility relationships is required to explain the evolution of a plant virus from an insect virus.

  8. Synergistic interaction between the Potyvirus, Turnip mosaic virus and the Crinivirus, Lettuce infectious yellows virus in plants and protoplasts.

    Science.gov (United States)

    Wang, Jinbo; Turina, Massimo; Medina, Vicente; Falk, Bryce W

    2009-09-01

    Lettuce infectious yellows virus (LIYV), the type member of the genus Crinivirus in the family Closteroviridae, is specifically transmitted by the sweet potato whitefly (Bemisia tabaci) in a semipersistent manner. LIYV infections result in a low virus titer in plants and protoplasts, impeding reverse genetic efforts to analyze LIYV gene/protein functions. We found that synergistic interactions occurred in mixed infections of LIYV and Turnip mosaic virus (TuMV) in Nicotiana benthamiana plants, and these resulted in enhanced accumulation of LIYV. Furthermore, we examined the ability of transgenic plants and protoplasts expressing only the TuMV P1/HC-Pro sequence to enhance the accumulation of LIYV. LIYV RNA and protein titers increased by as much as 8-fold in these plants and protoplasts relative to control plants. LIYV infections remained phloem-limited in P1/HC-Pro transgenic plants, suggesting that enhanced accumulation of LIYV in these plants was due primarily to increased replication efficiency, not to greater spread.

  9. Complete Genome Sequence of a Carnation Mottle Virus Infecting Hop Plants

    OpenAIRE

    Jo, Yeonhwa; Choi, Hoseong; Cho, Won Kyong

    2015-01-01

    The Carnation mottle virus (CarMV) is a single positive-strand RNA virus belonging to the genus Carmovirus. The major natural host for CarMV is the carnation. In this study, using transcriptome data, we provide for the first time a nearly complete genome sequence of CarMV infecting hop plants.

  10. Plum pox virus (PPV) genome expression in genetically engineered RNAi plants

    Science.gov (United States)

    An important approach to controlling sharka disease caused by Plum pox virus (PPV) is the development of PPV resistant plants using small interfering RNAs (siRNA) technology. In order to evaluate siRNA induced gene silencing, we studied, based on knowledge of the PPV genome sequence, virus genome t...

  11. Highly Specific Detection of Five Exotic Quarantine Plant Viruses using RT-PCR

    Directory of Open Access Journals (Sweden)

    Hoseong Choi

    2013-03-01

    Full Text Available To detect five plant viruses (Beet black scorch virus, Beet necrotic yellow vein virus, Eggplant mottled dwarf virus, Pelargonium zonate spot virus, and Rice yellow mottle virus for quarantine purposes, we designed 15 RT-PCR primer sets. Primer design was based on the nucleotide sequence of the coat protein gene, which is highly conserved within species. All but one primer set successfully amplified the targets, and gradient PCRs indicated that the optimal temperature for the 14 useful primer sets was 51.9°C. Some primer sets worked well regardless of annealing temperature while others required a very specific annealing temperature. A primer specificity test using plant total RNAs and cDNAs of other plant virus-infected samples demonstrated that the designed primer sets were highly specific and generated reproducible results. The newly developed RT-PCR primer sets would be useful for quarantine inspections aimed at preventing the entry of exotic plant viruses into Korea.

  12. Biological and molecular events associated with simultaneous transmission of plant viruses by invertebrate and fungal vectors.

    Science.gov (United States)

    Syller, Jerzy

    2014-05-01

    Viruses are likely to be the most dangerous parasites of living organisms because of their widespread occurrence, possible deleterious effects on their hosts and high rates of evolution. Virus host-to-host transmission is a critical step in the virus life cycle, because it enables survival in a given environment and efficient dissemination. As hosts of plant viruses are not mobile, these pathogens have adopted diverse transmission strategies involving various vector organisms, mainly arthropods, nematodes, fungi and protists. In nature, plants are often infected with more than one virus at a time, thereby creating potential sources for vectors to acquire and transmit simultaneously two or more viruses. Simultaneous transmission can result in multiple infections of new host plants, which become subsequent potential sources of the viruses, thus enhancing the spread of the diseases caused by these pathogens. Moreover, it can contribute to the maintenance of viral genetic diversity in the host communities. However, despite its possible significance, the problem of the simultaneous transmission of plant viruses by vectors has not been investigated in detail. In this review, the current knowledge on multiple viral transmissions by aphids, whiteflies, leafhoppers, planthoppers, nematodes and fungi is outlined. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  13. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Groen, Simon C; Jiang, Sanjie; Murphy, Alex M; Cunniffe, Nik J; Westwood, Jack H; Davey, Matthew P; Bruce, Toby J A; Caulfield, John C; Furzer, Oliver J; Reed, Alison; Robinson, Sophie I; Miller, Elizabeth; Davis, Christopher N; Pickett, John A; Whitney, Heather M; Glover, Beverley J; Carr, John P

    2016-08-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  14. Plant virus directed fabrication of nanoscale materials and devices.

    Science.gov (United States)

    Culver, James N; Brown, Adam D; Zang, Faheng; Gnerlich, Markus; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-05-01

    Bottom-up self-assembly methods in which individual molecular components self-organize to form functional nanoscale patterns are of long-standing interest in the field of materials sciences. Such self-assembly processes are the hallmark of biology where complex macromolecules with defined functions assemble from smaller molecular components. In particular, plant virus-derived nanoparticles (PVNs) have drawn considerable attention for their unique self-assembly architectures and functionalities that can be harnessed to produce new materials for industrial and biomedical applications. In particular, PVNs provide simple systems to model and assemble nanoscale particles of uniform size and shape that can be modified through molecularly defined chemical and genetic alterations. Furthermore, PVNs bring the added potential to "farm" such bio-nanomaterials on an industrial scale, providing a renewable and environmentally sustainable means for the production of nano-materials. This review outlines the fabrication and application of several PVNs for a range of uses that include energy storage, catalysis, and threat detection.

  15. SAT Type Foot-and-Mouth Disease (FMD) Chimeric Vaccine Elicits Protection in Pigs

    Science.gov (United States)

    The recent development of infectious cDNA clone technology for foot-and-mouth disease (FMD), Southern African Territories (SAT) viruses has provided a valuable tool for genetic and biological characterization of field and laboratory strains. Recombinant chimeric viruses, containing the capsid-coding...

  16. Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2016-11-08

    Plant viruses infect many economically important crops, including wheat, cotton, maize, cassava, and other vegetables. These viruses pose a serious threat to agriculture worldwide, as decreases in cropland area per capita may cause production to fall short of that required to feed the increasing world population. Under these circumstances, conventional strategies can fail to control rapidly evolving and emerging plant viruses. Genome-engineering strategies have recently emerged as promising tools to introduce desirable traits in many eukaryotic species, including plants. Among these genome engineering technologies, the CRISPR (clustered regularly interspaced palindromic repeats)/CRISPR-associated 9 (CRISPR/Cas9) system has received special interest because of its simplicity, efficiency, and reproducibility. Recent studies have used CRISPR/Cas9 to engineer virus resistance in plants, either by directly targeting and cleaving the viral genome, or by modifying the host plant genome to introduce viral immunity. Here, we briefly describe the biology of the CRISPR/Cas9 system and plant viruses, and how different genome engineering technologies have been used to target these viruses. We further describe the main findings from recent studies of CRISPR/Cas9-mediated viral interference and discuss how these findings can be applied to improve global agriculture. We conclude by pinpointing the gaps in our knowledge and the outstanding questions regarding CRISPR/Cas9-mediated viral immunity.

  17. Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance

    Science.gov (United States)

    Zaidi, Syed Shan-e-Ali; Tashkandi, Manal; Mansoor, Shahid; Mahfouz, Magdy M.

    2016-01-01

    Plant viruses infect many economically important crops, including wheat, cotton, maize, cassava, and other vegetables. These viruses pose a serious threat to agriculture worldwide, as decreases in cropland area per capita may cause production to fall short of that required to feed the increasing world population. Under these circumstances, conventional strategies can fail to control rapidly evolving and emerging plant viruses. Genome-engineering strategies have recently emerged as promising tools to introduce desirable traits in many eukaryotic species, including plants. Among these genome engineering technologies, the CRISPR (clustered regularly interspaced palindromic repeats)/CRISPR-associated 9 (CRISPR/Cas9) system has received special interest because of its simplicity, efficiency, and reproducibility. Recent studies have used CRISPR/Cas9 to engineer virus resistance in plants, either by directly targeting and cleaving the viral genome, or by modifying the host plant genome to introduce viral immunity. Here, we briefly describe the biology of the CRISPR/Cas9 system and plant viruses, and how different genome engineering technologies have been used to target these viruses. We further describe the main findings from recent studies of CRISPR/Cas9-mediated viral interference and discuss how these findings can be applied to improve global agriculture. We conclude by pinpointing the gaps in our knowledge and the outstanding questions regarding CRISPR/Cas9-mediated viral immunity. PMID:27877187

  18. Plant microRNAs and their role in defense against viruses: a bioinformatics approach

    Directory of Open Access Journals (Sweden)

    López Camilo

    2010-07-01

    Full Text Available Abstract Background microRNAs (miRNAs are non-coding short RNAs that regulate gene expression in eukaryotes by translational inhibition or cleavage of complementary mRNAs. In plants, miRNAs are known to target mostly transcription factors and are implicated in diverse aspects of plant growth and development. A role has been suggested for the miRNA pathway in antiviral defense in plants. In this work, a bioinformatics approach was taken to test whether plant miRNAs from six species could have antiviral activity by targeting the genomes of plant infecting viruses. Results All plants showed a repertoire of miRNAs with potential for targeting viral genomes. The viruses were targeted by abundant and conserved miRNA families in regions coding for cylindrical inclusion proteins, capsid proteins, and nuclear inclusion body proteins. The parameters for our predicted miRNA:target pairings in the viral genomes were similar to those for validated targets in the plant genomes, indicating that our predicted pairings might behave in-vivo as natural miRNa-target pairings. Our screening was compared with negative controls comprising randomly generated miRNAs, animal miRNAs, and genomes of animal-infecting viruses. We found that plant miRNAs target plant viruses more efficiently than any other sequences, but also, miRNAs can either preferentially target plant-infecting viruses or target any virus without preference. Conclusions Our results show a strong potential for antiviral activity of plant miRNAs and suggest that the miRNA pathway may be a support mechanism to the siRNA pathway in antiviral defense.

  19. The potential of plant viruses to promote genotypic diversity via genotype x environment interactions

    DEFF Research Database (Denmark)

    van Mölken, Tamara; Stuefer, Josef F.

    2011-01-01

    † Background and Aims Genotype by environment (G × E) interactions are important for the long-term persistence of plant species in heterogeneous environments. It has often been suggested that disease is a key factor for the maintenance of genotypic diversity in plant populations. However, empirical...... evidence for this contention is scarce. Here virus infection is proposed as a possible candidate for maintaining genotypic diversity in their host plants. † Methods The effects of White clover mosaic virus (WClMV) on the performance and development of different Trifolium repens genotypes were analysed...... and the G × E interactions were examined with respect to genotypespecific plant responses to WClMV infection. Thus, the environment is defined as the presence or absence of the virus. † Key Results WClMV had a negative effect on plant performance as shown by a decrease in biomass and number of ramets...

  20. Detection of viruses using discarded plants from wild mountain gorillas and golden monkeys.

    Science.gov (United States)

    Smiley Evans, Tierra; Gilardi, Kirsten V K; Barry, Peter A; Ssebide, Benard Jasper; Kinani, Jean Felix; Nizeyimana, Fred; Noheri, Jean Bosco; Byarugaba, Denis K; Mudakikwa, Antoine; Cranfield, Michael R; Mazet, Jonna A K; Johnson, Christine K

    2016-11-01

    Infectious diseases pose one of the most significant threats to the survival of great apes in the wild. The critically endangered mountain gorilla (Gorilla beringei beringei) is at high risk for contracting human pathogens because approximately 60% of the population is habituated to humans to support a thriving ecotourism program. Disease surveillance for human and non-human primate pathogens is important for population health and management of protected primate species. Here, we evaluate discarded plants from mountain gorillas and sympatric golden monkeys (Cercopithecus mitis kandti), as a novel biological sample to detect viruses that are shed orally. Discarded plant samples were tested for the presence of mammalian-specific genetic material and two ubiquitous DNA and RNA primate viruses, herpesviruses, and simian foamy virus. We collected discarded plant samples from 383 wild human-habituated mountain gorillas and from 18 habituated golden monkeys. Mammalian-specific genetic material was recovered from all plant species and portions of plant bitten or chewed by gorillas and golden monkeys. Gorilla herpesviral DNA was most consistently recovered from plants in which leafy portions were eaten by gorillas. Simian foamy virus nucleic acid was recovered from plants discarded by golden monkeys, indicating that it is also possible to detect RNA viruses from bitten or chewed plants. Our findings show that discarded plants are a useful non-invasive sampling method for detection of viruses that are shed orally in mountain gorillas, sympatric golden monkeys, and potentially other species. This method of collecting specimens from discarded plants is a new non-invasive sampling protocol that can be combined with collection of feces and urine to evaluate the most common routes of viral shedding in wild primates. Am. J. Primatol. 78:1222-1234, 2016. © 2016 Wiley Periodicals, Inc.

  1. Intracellular Transport of Plant Viruses: Finding the Door out of the Cell

    Institute of Scientific and Technical Information of China (English)

    James E. Schoelz; Phillip A. Harries; Richard S. Nelson

    2011-01-01

    Plant viruses are a class of plant pathogens that specialize in movement from cell to cell.As part of their arsenal for infection of plants,every virus encodes a movement protein (MP),a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell.As our knowledge of intercellular transport has increased,it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD.Just as viruses are too large to fit through an unmodified plasmodesma,they are also too large to be freely diffused through the cytoplasm of the cell.Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP,including viral proteins originally associated with replication or gene expression.In this review,we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD,in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.

  2. Emaravirus: A Novel Genus of Multipartite, Negative Strand RNA Plant Viruses

    Directory of Open Access Journals (Sweden)

    Hans-Peter Mühlbach

    2012-09-01

    Full Text Available Ringspot symptoms in European mountain ash (Sorbus aucuparia L., fig mosaic, rose rosette, raspberry leaf blotch, pigeonpea sterility mosaic (Cajanus cajan and High Plains disease of maize and wheat were found to be associated with viruses that share several characteristics. They all have single-stranded multipartite RNA genomes of negative orientation. In some cases, double membrane-bound virus-like particles of 80 to 200 nm in diameter were found in infected tissue. Furthermore, at least five of these viruses were shown to be vectored by eriophyid mites. Sequences of European mountain ash ringspot-associated virus (EMARaV, Fig mosaic virus (FMV, rose rosette virus (RRV, raspberry leaf blotch virus (RLBV, pigeonpea sterility mosaic virus and High Plains virus strongly support their potential phylogenetic relationship. Therefore, after characterization of EMARaV, the novel genus Emaravirus was established, and FMV was the second virus species assigned to this genus. The recently sequenced RRV and RLBV are supposed to be additional members of this new group of plant RNA viruses.

  3. An improved electrochemiluminescence polymerase chain reaction method for highly sensitive detection of plant viruses

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yabing [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China); Xing Da [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)]. E-mail: xingda@scnu.edu.cn; Zhu Debin [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China); Liu Jinfeng [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

    2007-01-23

    Recently, we have reported an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection of genetically modified organisms. The ECL-PCR method was further improved in the current study by introducing a multi-purpose nucleic acid sequence that was specific to the tris(bipyridine) ruthenium (TBR) labeled probe, into the 5' terminal of the primers. The method was applied to detect plant viruses. Conserved sequence of the plant viruses was amplified by PCR. The product was hybridized with a biotin labeled probe and a TBR labeled probe. The hybridization product was separated by streptavidin-coated magnetic beads, and detected by measuring the ECL signals of the TBR labeled. Under the optimized conditions, the experiment results show that the detection limit is 50 fmol of PCR products, and the signal-to-noise ratio is in excess of 14.6. The method was used to detect banana streak virus, banana bunchy top virus, and papaya leaf curl virus. The experiment results show that this method could reliably identity viruses infected plant samples. The improved ECL-PCR approach has higher sensitivity and lower cost than previous approach. It can effectively detect the plant viruses with simplicity, stability, and high sensitivity.

  4. Detection of plant viruses in mixed infection by a macroarray-assisted method.

    Science.gov (United States)

    Shimura, Hanako; Furuta, Kazuyoshi; Masuta, Chikara

    2015-01-01

    The protocol for a simple, sensitive, and specific method using a cDNA macroarray to detect multiple viruses is provided. The method can be used even at the production sites for crops, which need a reliable routine diagnosis for mixed infection of plant viruses. The method consists of three steps: RNA extraction, duplex RT-PCR, and "microtube hybridization" (MTH). Biotinylated cDNA probes are prepared using RT-PCR and used to hybridize a nylon membrane containing target viral cDNAs by MTH. Positive signals can be visualized by colorimetric reaction and judged by eyes. We here demonstrate this method to detect asparagus viruses (Asparagus virus 1 and Asparagus virus 2) from latently infected asparagus plants.

  5. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress

    National Research Council Canada - National Science Library

    Pantaleo, Vitantonio; Vitali, Marco; Boccacci, Paolo; Miozzi, Laura; Cuozzo, Danila; Chitarra, Walter; Mannini, Franco; Lovisolo, Claudio; Gambino, Giorgio

    2016-01-01

    .... Taking advantage of the miRNA responsiveness to stresses and the availability of virus-free Vitis vinifera plants and those infected only by a latent virus, we have analysed grapevines subjected...

  6. Current impact and future directions of high throughput sequencing in plant virus diagnostics.

    Science.gov (United States)

    Massart, Sebastien; Olmos, Antonio; Jijakli, Haissam; Candresse, Thierry

    2014-08-08

    The ability to provide a fast, inexpensive and reliable diagnostic for any given viral infection is a key parameter in efforts to fight and control these ubiquitous pathogens. The recent developments of high-throughput sequencing (also called Next Generation Sequencing - NGS) technologies and bioinformatics have drastically changed the research on viral pathogens. It is now raising a growing interest for virus diagnostics. This review provides a snapshot vision on the current use and impact of high throughput sequencing approaches in plant virus characterization. More specifically, this review highlights the potential of these new technologies and their interplay with current protocols in the future of molecular diagnostic of plant viruses. The current limitations that will need to be addressed for a wider adoption of high-throughput sequencing in plant virus diagnostics are thoroughly discussed.

  7. Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control.

    Science.gov (United States)

    Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M

    2016-10-01

    The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.

  8. Cross-kingdom sequence similarities between human micro-RNAs and plant viruses.

    Science.gov (United States)

    Rebolledo-Mendez, Jovan D; Vaishnav, Radhika A; Cooper, Nigel G; Friedland, Robert P

    2013-09-01

    Micro-RNAs regulate the expression of cellular and tissue phenotypes at a post-transcriptional level through a complex process involving complementary interactions between micro-RNAs and messenger-RNAs. Similar nucleotide interactions have been shown to occur as cross-kingdom events; for example, between plant viruses and plant micro-RNAs and also between animal viruses and animal micro-RNAs. In this study, this view is expanded to look for cross-kingdom similarities between plant virus and human micro-RNA sequences. A method to identify significant nucleotoide sequence similarities between plant viruses and hsa micro-RNAs was created. Initial analyses demonstrate that plant viruses contain nucleotide sequences which exactly match the seed sequences of human micro-RNAs in both parallel and anti-parallel directions. For example, the bean common mosaic virus strain NL4 from Colombia contains sequences that match exactly the seed sequence for micro-RNA of the hsa-mir-1226 in the parallel direction, which suggests a cross-kingdom conservation. Similarly, the rice yellow stunt viral cRNA contains a sequence that is an exact match in the anti-parallel direction to the seed sequence of hsa-micro-RNA let-7b. The functional implications of these results need to be explored. The finding of these cross-kingdom sequence similarities is a useful starting point in support of bench level investigations.

  9. Chimeric enzymes with improved cellulase activities

    Science.gov (United States)

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  10. Liver transplantation : chimerism, complications and matrix metalloproteinases

    NARCIS (Netherlands)

    Hove, Willem Rogier ten

    2011-01-01

    Chimerism after orthotopic liver transplantation (OLT) is the main focus of the studies described in this thesis. The first study showed that chimerism of different cell lineages within the liver graft does occur after OLT. Subsequently, in allogeneic blood stem cell recipients, chimerism was demons

  11. Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus

    DEFF Research Database (Denmark)

    Langeveld, J.P.M.; Brennan, F.R.; Martinez-Torrecuadrada, J.L.

    2001-01-01

    A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1...

  12. Production of Brugmansia plants free of Colombian datura virus by in vitro ribavirin chemotherapy

    Science.gov (United States)

    Brugmansia x candida Pers ‘Creamsickle’ plants produced by in vitro treatment with ribavirin, and no thermal therapy, remained polymerase chain reaction (PCR-) negative for Columbian datura virus (CDV) after one year. The plants were produced by establishing B. x candida ‘Creamsickle’ shoot cultures...

  13. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mushegian, Arcady R., E-mail: mushegian2@gmail.com [Division of Molecular and Cellular Biosciences, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States); Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es [Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 València (Spain); The Santa Fe Institute, Santa Fe, NM 87501 (United States)

    2015-02-15

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, and positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.

  14. DNA Virus Vectors for Vaccine Production in Plants: Spotlight on Geminiviruses

    Directory of Open Access Journals (Sweden)

    Kathleen L. Hefferon

    2014-08-01

    Full Text Available Plants represent a safe, efficacious and inexpensive production platform by which to provide vaccines and other therapeutic proteins to the world’s poor. Plant virus expression vector technology has rapidly become one of the most popular methods to express pharmaceutical proteins in plants. This review discusses several of the state-of-the-art plant expression systems based upon geminiviruses that have been engineered for vaccine production. An overview of the advantages of these small, single-stranded DNA viruses is provided and comparisons are made with other virus expression systems. Advances in the design of several different geminivirus vectors are presented in this review, and examples of vaccines and other biologics generated from each are described.

  15. Status and prospects of plant virus control through interference with vector transmission.

    Science.gov (United States)

    Bragard, C; Caciagli, P; Lemaire, O; Lopez-Moya, J J; MacFarlane, S; Peters, D; Susi, P; Torrance, L

    2013-01-01

    Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus-vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, planthoppers, treehoppers, mites, nematodes, and zoosporic endoparasites. Strategies for control of vectors by host resistance, chemicals, and integrated pest management are reviewed. Many gaps in the knowledge of the transmission mechanisms and a lack of available host resistance to vectors are evident. Advances in genome sequencing and molecular technologies will help to address these problems and will allow innovative control methods through interference with vector transmission. Improved knowledge of factors affecting pest and disease spread in different ecosystems for predictive modeling is also needed. Innovative control measures are urgently required because of the increased risks from vector-borne infections that arise from environmental change.

  16. The spectrum of viruses isolated from Pulsatilla pratensis (Ranunculaceae a native plant of Ukraine

    Directory of Open Access Journals (Sweden)

    О. А. Shydlovska

    2016-03-01

    Full Text Available The article is devoted to virus screening of wild plants of Ukraine’s flora. The object of the research is the Red Book plant Pulsatilla pratensis (L. Mill., which grows on the territory of Kanev Nature Reserve. Isolated isometric infectious virus-like particles with diameters of 34, 36, 43, 47, 50 and 57 nm were isolated from selected plants of P. pratensis. In our research, determination of the infectious nature of the pathogen, host range, concentration of viruses in plants, species identity and virus isolation from the mixture in mixed viral infections were carried with using indicator plants. The typical viral symptoms were observed on indicator plants: browning of the leaf plate, mottling, chlorosis and necrosis. All symptoms were systemic and could be caused by a variety of viruse species. Virions with sizes from 34 to 43 nm produced the necrotic and chlorotic spotting on Chenopodium amaranticolor Coste and Reyn. On the other hand, virions with sizes from 47 to 57 nm produced the necrosis, chlorosis and deformation of the leaf plates on Cucumis sativus L. That is not typical for viruses previously discovered on P. pratensis. The viruses isolated in these plants viruses were cumulated in small concentrations and rapidly lost their infectivity. The number of isolated viruses was insufficient for their identification. Four bacteriophage isolates with long phage tails of different size were isolated from P. pratensis roots and radical soil. The biological (lytic activity towards the tracer bacteria, the morphology of negative colonies, and bacteriophage protein structure were characterized. According to our research, it is possible to divide phages into three subgroups that probably correspond to three different types of viruses. Results of the polypeptide analysis may reflect an evolutionary process in a population of phages that had a common ancestor. Comparison of phage proteins of different hosts shows a variety of molecular weights of

  17. N-Glycosylation Modification of Plant-Derived Virus-Like Particles: An Application in Vaccines

    OpenAIRE

    Hyun-Soon Kim; Jae-Heung Jeon; Kyung Jin Lee; Kisung Ko

    2014-01-01

    Plants have been developed as an alternative system to mammalian cells for production of recombinant prophylactic or therapeutic proteins for human and animal use. Effective plant expression systems for recombinant proteins have been established with the optimal combination of gene expression regulatory elements and control of posttranslational processing of recombinant glycoproteins. In plant, virus-like particles (VLPs), viral “empty shells” which maintain the same structural characteristic...

  18. Placental chimerism in early human pregnancy

    Directory of Open Access Journals (Sweden)

    Ashutosh Halder

    2005-01-01

    Full Text Available Background0 : Human chimerism is rare and usually uncovered through investigations of ambiguous genitalia or blood grouping or prenatal diagnosis. Most of the publications on placental chimerism are mainly case reports. There is no systematic search with sensitive techniques for placental chimerism in human. Aim0 : This study was aimed to asses placental chimerism through two sensitive molecular techniques i.e., interphase fluorescent in situ hybridization and quantitative fluorescent PCR. Material and methods0 : Placental chimerism was analyzed using X & Y dual color fluorescent in-situ hybridization onto 154 placentae from natural conceptions, obtained at termination of pregnancy between 7 to 16 weeks of gestation. Results0 : Three cases of placental sex chromosome chimerism were observed (1.95%. Exclusion of maternal contamination and diagnosis was confirmed later by quantitative fluorescent PCR. Conclusion0 : This finding indicates that placental chimerism in early human pregnancy is not rare.

  19. Generation and preclinical evaluation of a DENV-1/2 prM+E chimeric live attenuated vaccine candidate with enhanced prM cleavage.

    Science.gov (United States)

    Keelapang, Poonsook; Nitatpattana, Narong; Suphatrakul, Amporn; Punyahathaikul, Surat; Sriburi, Rungtawan; Pulmanausahakul, Rojjanaporn; Pichyangkul, Sathit; Malasit, Prida; Yoksan, Sutee; Sittisombut, Nopporn

    2013-10-17

    In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM+E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.

  20. Tubular structure induced by a plant virus facilitates viral spread in its vector insect.

    Directory of Open Access Journals (Sweden)

    Qian Chen

    Full Text Available Rice dwarf virus (RDV replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.

  1. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas.

    Science.gov (United States)

    Ramkat, Rose C; Calari, Alberto; Maghuly, Fatemeh; Laimer, Margit

    2011-08-03

    Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA) for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA) were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV), Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya) contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV) and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a) primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b) primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully.

  2. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Maghuly Fatemeh

    2011-08-01

    Full Text Available Abstract Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV, Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully.

  3. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  4. Mesoporous Silicon with Modified Surface for Plant Viruses and Their Protein Particle Sensing

    Directory of Open Access Journals (Sweden)

    Kae Dal Kwack

    2008-10-01

    Full Text Available Changes in electric parameters of a mesoporous silicon treated by a plasma chemical etching with fluorine and hydrogen ions, under the adsorption of NEPO (Nematodetransmitted Polyhedral plant viruses such as TORSV (Tomato Ringspot Virus, GFLV (Grapevine Fan Leaf Virus and protein macromolecule from TORSV particles are described. The current response to the applied voltage is measured for each virus particle to investigate the material parameters which are sensitive to the adsorbed particles. The peculiar behaviors of the response are modeled by the current-voltage relationship in a MOSFET. This model explains the behavior well and the double gate model of the MOSFET informs that the mesoporous silicon is a highly sensitive means of detecting the viruses in the size range less than 50 nm.

  5. An E2-Substituted Chimeric Pestivirus With DIVA Vaccine Properties

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Nielsen, Jens

    An advantage of the use of chimeric pestiviruses as modified live vaccines against classical swine fever (CSF) resides in their capacity to be manipulated to achieve the characteristics desired for safe and efficacious DIVA vaccines. We have recently generated a new chimeric virus, Riems26_E2gif...... engineered specifically for this purpose. The E2-substituted Riems26_E2gif was derived by homologues recombination of the complete E2 protein encoding genome region from Border disease strain Gifhorn into a bacterial artificial chromosome (BAC) harbouring the genome of the CSFV vaccine strain C......-Riems. The virulence, immunogenicity and vaccine properties of Riems26_E2gif were tested in a vaccine-challenge experiment in pigs. Riems26_E2gif vaccinated pigs could be differentiated from infected pigs using a CSFV-E2 specific ELISA. Following challenge infection with highly virulent CSFV strain Koslov, all...

  6. Histogenesis of potato light sprouts in healthy plants and those infected with potato leaf roll virus

    Directory of Open Access Journals (Sweden)

    Grażyna Garbaczewska

    2013-12-01

    Full Text Available Developmental stages of potato (Solanum tuberosum light sprouts in healthy plants and those infected with potato leaf roll virus (PLRV have been distinguished. Potato light sprouts from healthy tubers differentiate in the early stages to the apical and basal parts, which are characterized by distinct dynamics of growth. Ultrastructural examination of apex meristem and phloem ontogeny was carried out for healthy plants. In the development of potato light sprouts of plants infected with PLRV a great many anomalies have been described. Three types of light sprouts developed from infected tubers. Anatomical investigations indicated a rapid growth of the number of necroses in the phloem, and submicroscopic observations showed the presence of virus particles and cytopathological structures: tubular and vesicular structures, paramural bodies and callose deposits. In the companion cells of the phloem the occurrence of very regular inclusions of virus particles was recorded.

  7. A biodistribution study of two differently shaped plant virus nanoparticles reveals new peculiar traits.

    Science.gov (United States)

    Lico, Chiara; Giardullo, Paola; Mancuso, Mariateresa; Benvenuto, Eugenio; Santi, Luca; Baschieri, Selene

    2016-12-01

    Self-assembling plant virus nanoparticles (pVNPs) have started to be explored as nanometre-sized objects for biomedical applications, such as vaccine or drug delivery and imaging. Plant VNPs may be ideal tools in terms of biocompatibility and biodegradability endowed with a wide diversity of symmetries and dimensions, easy chemical/biological engineering, and rapid production in plants. Recently, we defined that icosahedral Tomato bushy stunt virus (TBSV) and filamentous Potato virus X (PVX) are neither toxic nor teratogenic. We report here the results of an interdisciplinary study aimed to define for the first time the biodistribution of unlabelled, unpegylated, underivatized TBSV and PVX by proved detecting antibodies. These data add new insights on the in vivo behaviour of these nano-objects and demonstrate that the pVNPs under scrutiny are each intrinsically endowed with peculiar properties foreshadowing different applications in molecular medicine.

  8. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection.

    Science.gov (United States)

    Maliogka, Varvara I; Calvo, María; Carbonell, Alberto; García, Juan Antonio; Valli, Adrian

    2012-07-01

    HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.

  9. Restriction of virus infection by plants. Final report, July 1, 1987--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, G.

    1992-12-31

    The basis of genotypic resistance of the Arlington line of cowpea (Vigna unguiculata) against cowpea mosaic virus (CPMV) has been attributed, to an inhibitor of the processing of CPMV polyproteins. We sought to purify the protein that is postulated to be the inhibitor of polyprotein processing and to characterize the inhibitor and its gene. Such information can be the basis for engineering resistance to specific viruses in plants. In studies with cherry leafroll virus (CLRV) we sought understanding of the biochemical basis of the resistance.

  10. The degradation of potato virus M (PVM particles in plant cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-02-01

    Full Text Available Degradation of potato virus M particles was observed in the cells of Solanum tuberosum, Solanum rostratum, Lycopersicon esculentum and Lycopersicon chilense plants infected with this virus. PVM particles found in the cytoplasm of infected parenchyma cells grouped together in the form of inclusions, often found near the tonoplast. The ends of the virus particles and the tonoplast came into close contact. Cytoplasmic protrusions containing PVM particles, reaching into vacuoles were formed in those places. In addition to a large central vacuole, small vacuoles were observed in cells containing PVM particles. Various stages of degradation of cytoplasmic protrusions were observed both in the large and small vacuoles.

  11. Induction of pluripotent protective immunity following immunisation with a chimeric vaccine against human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Jie Zhong

    Full Text Available Based on the life-time cost to the health care system, the Institute of Medicine has assigned the highest priority for a vaccine to control human cytomegalovirus (HCMV disease in transplant patients and new born babies. In spite of numerous attempts successful licensure of a HCMV vaccine formulation remains elusive. Here we have developed a novel chimeric vaccine strategy based on a replication-deficient adenovirus which encodes the extracellular domain of gB protein and multiple HLA class I & II-restricted CTL epitopes from HCMV as a contiguous polypeptide. Immunisation with this chimeric vaccine consistently generated strong HCMV-specific CD8(+ and CD4(+ T-cells which co-expressed IFN-gamma and TNF-alpha, while the humoral response induced by this vaccine showed strong virus neutralizing capacity. More importantly, immunization with adenoviral chimeric vaccine also afforded protection against challenge with recombinant vaccinia virus encoding HCMV antigens and this protection was associated with the induction of a pluripotent antigen-specific cellular and antibody response. Furthermore, in vitro stimulation with this adenoviral chimeric vaccine rapidly expanded multiple antigen-specific human CD8(+ and CD4(+ T-cells from healthy virus carriers. These studies demonstrate that the adenovirus chimeric HCMV vaccine provides an excellent platform for reconstituting protective immunity to prevent HCMV diseases in different clinical settings.

  12. Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa.

    Science.gov (United States)

    Shaw, Jane; Love, Andrew J; Makarova, Svetlana S; Kalinina, Natalia O; Harrison, Bryan D; Taliansky, Michael E

    2014-01-01

    Cajal bodies (CBs) are distinct nuclear bodies physically and functionally associated with the nucleolus. In addition to their traditional function in coordinating maturation of certain nuclear RNAs, CBs participate in cell cycle regulation, development, and regulation of stress responses. A key "signature" component of CBs is coilin, the scaffolding protein essential for CB formation and function. Using an RNA silencing (loss-of-function) approach, we describe here new phenomena whereby coilin also affects, directly or indirectly, a variety of interactions between host plants and viruses that have RNA or DNA genomes. Moreover, the effects of coilin on these interactions are manifested differently: coilin contributes to plant defense against tobacco rattle virus (tobravirus), tomato black ring virus (nepovirus), barley stripe mosaic virus (hordeivirus), and tomato golden mosaic virus (begomovirus). In contrast, with potato virus Y (potyvirus) and turnip vein clearing virus (tobamovirus), coilin serves to increase virus pathogenicity. These findings show that interactions with coilin (or CBs) may involve diverse mechanisms with different viruses and that these mechanisms act at different phases of virus infection. Thus, coilin (CBs) has novel, unexpected natural functions that may be recruited or subverted by plant viruses for their own needs or, in contrast, are involved in plant defense mechanisms that suppress host susceptibility to the viruses.

  13. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections

    Directory of Open Access Journals (Sweden)

    Vargas Marisol

    2003-03-01

    Full Text Available Abstract Background Double-stranded RNA (dsRNA is a potent initiator of gene silencing in a diverse group of organisms that includes plants, Caenorhabditis elegans, Drosophila and mammals. We have previously shown and patented that mechanical inoculation of in vitro-transcribed dsRNA derived from viral sequences specifically prevents virus infection in plants. The approach required the in vitro synthesis of large amounts of RNA involving high cost and considerable labour. Results We have developed an in vivo expression system to produce large amounts of virus-derived dsRNAs in bacteria, with a view to providing a practical control of virus diseases in plants. Partially purified bacterial dsRNAs promoted specific interference with the infection in plants by two viruses belonging to the tobamovirus and potyvirus groups. Furthermore, we have demonstrated that easy to obtain, crude extracts of bacterially expressed dsRNAs are equally effective protecting plants against virus infections when sprayed onto plant surfaces by a simple procedure. Virus infectivity was significantly abolished when plants were sprayed with French Press lysates several days before virus inoculation. Conclusion Our approach provides an alternative to genetic transformation of plant species with dsRNA-expressing constructs capable to interfere with plant viruses. The main advantage of this mode of dsRNA production is its simplicity and its extremely low cost compared with the requirements for regenerating transgenic plants. This approach provides a reliable and potential tool, not only for plant protection against virus diseases, but also for the study of gene silencing mechanisms in plant virus infections.

  14. Assessment of the efficacy of membrane filtration processes to remove human enteric viruses and the suitability of bacteriophages and a plant virus as surrogates for those viruses.

    Science.gov (United States)

    Shirasaki, N; Matsushita, T; Matsui, Y; Murai, K

    2017-02-24

    Here, we evaluated the efficacy of direct microfiltration (MF) and ultrafiltration (UF) to remove three representative human enteric viruses (i.e., adenovirus [AdV] type 40, coxsackievirus [CV] B5, and hepatitis A virus [HAV] IB), and one surrogate of human caliciviruses (i.e., murine norovirus [MNV] type 1). Eight different MF membranes and three different UF membranes were used. We also examined the ability of coagulation pretreatment with high-basicity polyaluminum chloride (PACl) to enhance virus removal by MF. The removal ratios of two bacteriophages (MS2 and φX174) and a plant virus (pepper mild mottle virus; PMMoV) were compared with the removal ratios of the human enteric viruses to assess the suitability of these viruses to be used as surrogates for human enteric viruses. The virus removal ratios obtained with direct MF with membranes with nominal pore sizes of 0.1-0.22 μm differed, depending on the membrane used; adsorptive interactions, particularly hydrophobic interactions between virus particles and the membrane surface, were dominant factors for virus removal. In contrast, direct UF with membranes with nominal molecular weight cutoffs of 1-100 kDa effectively removed viruses through size exclusion, and >4-log10 removal was achieved when a membrane with a nominal molecular weight cutoff of 1 kDa was used. At pH 7 and 8, in-line coagulation-MF with nonsulfated high-basicity PACls containing Al30 species had generally a better virus removal (i.e., >4-log10 virus removal) than the other aluminum-based coagulants, except for φX174. For all of the filtration processes, the removal ratios of AdV, CV, HAV, and MNV were comparable and strongly correlated with each other. The removal ratios of MS2 and PMMoV were comparable or smaller than those of the three human enteric viruses and MNV, and were strongly correlated with those of the three human enteric viruses and MNV. The removal ratios obtained with coagulation-MF for φX174 were markedly smaller than

  15. Generation of chimeric rhesus monkeys.

    Science.gov (United States)

    Tachibana, Masahito; Sparman, Michelle; Ramsey, Cathy; Ma, Hong; Lee, Hyo-Sang; Penedo, Maria Cecilia T; Mitalipov, Shoukhrat

    2012-01-20

    Totipotent cells in early embryos are progenitors of all stem cells and are capable of developing into a whole organism, including extraembryonic tissues such as placenta. Pluripotent cells in the inner cell mass (ICM) are the descendants of totipotent cells and can differentiate into any cell type of a body except extraembryonic tissues. The ability to contribute to chimeric animals upon reintroduction into host embryos is the key feature of murine totipotent and pluripotent cells. Here, we demonstrate that rhesus monkey embryonic stem cells (ESCs) and isolated ICMs fail to incorporate into host embryos and develop into chimeras. However, chimeric offspring were produced following aggregation of totipotent cells of the four-cell embryos. These results provide insights into the species-specific nature of primate embryos and suggest that a chimera assay using pluripotent cells may not be feasible.

  16. Barley Yellow Mosaic Virus VPg Is the Determinant Protein for Breaking eIF4E-Mediated Recessive Resistance in Barley Plants

    Science.gov (United States)

    Li, Huangai; Kondo, Hideki; Kühne, Thomas; Shirako, Yukio

    2016-01-01

    In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus) factor(s) responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6) in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10) and rym5-non-breaking (JK05) isolates indicated that genome-linked viral protein (VPg) is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120, and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants. PMID:27746794

  17. Characterization of expression of Puumala virus nucleocapsid protein in transgenic plants.

    Science.gov (United States)

    Khattak, Shahryar; Darai, Gholamreza; Süle, Sandor; Rösen-Wolff, Angela

    2002-01-01

    Transgenic plants expressing a foreign gene are a suitable system for the production of relevant immunogens in high amounts that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study, the expression of the nucleocapsid (N) protein of hantavirus serotype Puumala in tobacco and potato plants was investigated. Transgenic tobacco and potato plants were generated and established. These transgenic plants expressed the N protein of Puumala virus strain CG-1820. No major differences were observed when the phenotype and growth rates of transgenic plants were compared to those of normal plants. However, it was found that the leaves of transgenic tobacco plants were more slender and the tubers of transgenic potato plants were smaller than those in normal plants. In order to investigate the distribution of the expression of the foreign gene in transgenic plants, the proteins of leaves and roots of the individual transgenic tobacco and potato plants were examined by Western blot analyses. It was found that all transgenic tobacco and potato plants expressed the N protein in the leaves, whereas transgenic potato plants are able to significantly express the viral proteins also in the tubers and roots. The antigens were expressed at a level of 1 ng of protein/5 microg of dried leaves. The hantaviral recombinant N proteins obtained from transgenic tobacco and potato plants were able to elicit specific humoral and mucosal immune responses when administered intraperitoneally or orally to rabbits and mice. The expression of viral proteins in plants has two major advantages compared to other expression systems: firstly, there is no risk of contamination with mammalian viruses or other pathogens, and secondly, the production of high amounts of antigens is cheap and therefore of great economic interest.

  18. Evidence of local adaptation in plant virus effects on host-vector interactions.

    Science.gov (United States)

    Mauck, K E; De Moraes, C M; Mescher, M C

    2014-07-01

    Recent research suggests that plant viruses, and other pathogens, frequently alter host-plant phenotypes in ways that facilitate transmission by arthropod vectors. However, many viruses infect multiple hosts, raising questions about whether these pathogens are capable of inducing transmission-facilitating phenotypes in phylogenetically divergent host plants and the extent to which evolutionary history with a given host or plant community influences such effects. To explore these issues, we worked with two newly acquired field isolates of cucumber mosaic virus (CMV)-a widespread multi-host plant pathogen transmitted in a non-persistent manner by aphids-and explored effects on the phenotypes of different host plants and on their subsequent interactions with aphid vectors. An isolate collected from cultivated squash fields (KVPG2-CMV) induced in the native squash host (Cucurbita pepo) a suite of effects on host-vector interactions suggested by previous work to be conducive to transmission (including reduced host-plant quality for aphids, rapid aphid dispersal from infected to healthy plants, and enhanced aphid attraction to the elevated emission of a volatile blend similar to that of healthy plants). A second isolate (P1-CMV) collected from cultivated pepper (Capsicum annuum) induced more neutral effects in its native host (largely exhibiting non-significant trends in the direction of effects seen for KVPG2-CMV in squash). When we attempted cross-host inoculations of these two CMV isolates (KVPG2-CMV in pepper and P1-CMV in squash), P1-CMV was only sporadically able to infect the novel host; KVPG2-CMV infected the novel pepper host with somewhat reduced success compared with its native host and reached virus titers significantly lower than those observed for either strain in its native host. Furthermore, KVPG2-CMV induced changes in the phenotype of the novel host, and consequently in host-vector interactions, dramatically different than those observed in the native

  19. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    Full Text Available A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV, Rice stripe virus (RSV and Southern rice black streaked dwarf virus (SRBSDV. Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  20. First discovery of acetone extract from cottonseed oil sludge as a novel antiviral agent against plant viruses.

    Science.gov (United States)

    Zhao, Lei; Feng, Chaohong; Hou, Caiting; Hu, Lingyun; Wang, Qiaochun; Wu, Yunfeng

    2015-01-01

    A novel acetone extract from cottonseed oil sludge was firstly discovered against plant viruses including Tobacco mosaic virus (TMV), Rice stripe virus (RSV) and Southern rice black streaked dwarf virus (SRBSDV). Gossypol and β-sitosterol separated from the acetone extract were tested for their effects on anti-TMV and analysed by nuclear magnetic resonance (NMR) assay. In vivo and field trials in different geographic distributions and different host varieties declared that this extract mixture was more efficient than the commercial agent Ningnanmycin with a broad spectrum of anti-plant-viruses activity. No phytotoxic activity was observed in the treated plants and environmental toxicology showed that this new acetone extract was environmentally friendly, indicating that this acetone extract has potential application in the control of plant virus in the future.

  1. In vitro and in vivo toxicity evaluation of plant virus nanocarriers.

    Science.gov (United States)

    Blandino, Agnese; Lico, Chiara; Baschieri, Selene; Barberini, Lanfranco; Cirotto, Carlo; Blasi, Paolo; Santi, Luca

    2015-05-01

    The use of biological self-assembling materials, plant virus nanoparticles in particular, appears very intriguing as it allows a great choice of symmetries and dimensions, easy chemical and biological engineering of both surface and/or internal cavity as well as safe and rapid production in plants. In this perspective, we present an initial evaluation of the safety profile of two structurally different plant viruses produced in Nicotiana benthamiana L. plants: the filamentous Potato virus X and the icosahedral Tomato bushy stunt virus. In vitro haemolysis assay was used to test the cytotoxic effects, which could arise by pVNPs interaction with cellular membranes, while early embryo assay was used to evaluate toxicity and teratogenicity in vivo. Data indicates that these structurally robust particles, still able to infect plants after incubation in serum up to 24h, have neither toxic nor teratogenic effects in vitro and in vivo. This work represents the first safety-focused characterization of pVNPs in view of their possible use as drug delivery carriers.

  2. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  3. Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki on a broad range of viruses.

    Directory of Open Access Journals (Sweden)

    Kyoko Ueda

    Full Text Available Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus. We found that extracts from persimmon (Diospyros kaki, which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.

  4. Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses.

    Science.gov (United States)

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.

  5. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  6. The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses.

    Science.gov (United States)

    Wang, Shao-Dong; Zhu, Feng; Yuan, Shu; Yang, Hui; Xu, Fei; Shang, Jing; Xu, Mo-Yun; Jia, Shu-Dan; Zhang, Zhong-Wei; Wang, Jian-Hui; Xi, De-Hui; Lin, Hong-Hui

    2011-07-01

    Salicylic acid (SA) is required for plant systemic acquired resistance (SAR) to viruses. However, SA-deficient plants adapt to RNA virus infections better, which show a lighter symptom and have less reactive oxygen species (ROS) accumulation. The virus replication levels are higher in the SA-deficient plants during the first 10 days, but lower than the wild-type seedlings after 20 dpi. The higher level of glutathione and ascorbic acid (AsA) in SA-deficient plants may contribute to their alleviated symptoms. Solo virus-control method for mortal viruses results in necrosis and chlorosis, no matter what level of virus RNAs would accumulate. Contrastingly, early and high-dose AsA treatment alleviates the symptom, and eventually inhibits virus replication after 20 days. ROS eliminators could not imitate the effect of AsA, and could neither alleviate symptom nor inhibit virus replication. It suggests that both symptom alleviation and virus replication control should be considered for plant virus cures.

  7. The first phlebo-like virus infecting plants: a case study on the adaptation of negative-stranded RNA viruses to new hosts.

    Science.gov (United States)

    Navarro, Beatriz; Minutolo, Maria; De Stradis, Angelo; Palmisano, Francesco; Alioto, Daniela; Di Serio, Francesco

    2017-07-28

    A novel negative-stranded (ns) RNA virus associated with a severe citrus disease reported more than 80 years ago has been identified. Transmission electron microscopy showed that this novel virus, tentatively named citrus concave gum-associated virus, is flexuous and non-enveloped. Notwithstanding, its two genomic RNAs share structural features with members of the genus Phlebovirus, which are enveloped arthropod-transmitted viruses infecting mammals, and with a group of still unclassified phlebo-like viruses mainly infecting arthropods. CCGaV genomic RNAs code for an RNA-dependent RNA polymerase, a nucleocapsid protein and a putative movement protein showing structural and phylogenetic relationships with phlebo-like viruses, phleboviruses and the unrelated ophioviruses, respectively, thus providing intriguing evidence of a modular genome evolution. Phylogenetic reconstructions identified an invertebrate-restricted virus as the most likely ancestor of this virus, revealing that its adaptation to plants was independent from and possibly predated that of the other nsRNA plant viruses. These data are consistent with an evolutionary scenario in which trans-kingdom adaptation occurred several times during the history of nsRNA viruses and followed different evolutionary pathways, in which genomic RNA segments were gained or lost. The need to create a new genus for this bipartite nsRNA virus and the impact of the rapid and specific detection methods developed here on citrus sanitation and certification are also discussed. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  8. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    Directory of Open Access Journals (Sweden)

    Juliette Doumayrou

    2016-11-01

    Full Text Available Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  9. The elimination of viruses from garlic (Allium sativum L. plants by thermotherapy and meristem tip culture

    Directory of Open Access Journals (Sweden)

    Marek S. Szyndel

    2013-12-01

    Full Text Available The production of virus free garlic plants from totally cvs Jana, Mera and ecotype Zamojski was attempted by means of thermotherapy and meristem tip culture. The cloves and the aerial bulbils after hot air treatment in a growth chamber at 36ºC for 30-35 days or at 26-28ºC for 3-4 months in greenhouse were used to meristem tip culture on M. S. medium. In the 26-28ºC treatment 19.5 % of meristerns produced plants and 22.5 % of these were virus free. In the 36ºC treatment 14.5 % of the meristems developed into plantlets and 34.6 % of them were virus free. The plantlets were indexed by "sap-dip" electron microscopy methods.

  10. Plant viruses and bacteriophages for drug delivery in medicine and biotechnology.

    Science.gov (United States)

    Czapar, Anna E; Steinmetz, Nicole F

    2017-06-01

    There are a wide variety of synthetic and naturally occurring nanomaterials under development for nanoscale cargo-delivery applications. Viruses play a special role in these developments, because they can be regarded as naturally occurring nanomaterials evolved to package and deliver cargos. While any nanomaterial has its advantage and disadvantages, viral nanoparticles (VNPs), in particular the ones derived from plant viruses and bacteriophages, are attractive options for cargo-delivery as they are biocompatible, biodegradable, and non-infectious to mammals. Their protein-based structures are often understood at atomic resolution and are amenable to modification with atomic-level precision through chemical and genetic engineering. Here we present a focused review of the emerging technology development of plant viruses and bacteriophages targeting human health and agricultural applications. Key target areas of development are their use in chemotherapy, photodynamic therapy, pesticide-delivery, gene therapy, vaccine carriers, and immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Selection of tomato plants resistant to a local Polish isolate of tomato spotted wilt virus (TSWV).

    Science.gov (United States)

    Czech, Andrzej S; Szklarczyk, Marek; Gajewski, Zbigniew; Zukowska, Ewa; Michalik, Barbara; Kobyłko, Tadeusz; Strzałka, Kazimierz

    2003-01-01

    We found that the Sw-5 gene confers resistance to one of the Polish isolates of tomato spotted wilt virus (TSWV). A series of tomato breeding accessions was analysed along with standards of resistance and susceptibility to TSWV. The presence of the Sw-5 gene was determined using the available PCR marker. Subsequently plants from these accessions were grown in the presence of the TSWV isolate from Poland. Some of them developed severe symptoms of the TSWV disease. Expression of the virus proteins was also assayed in tissues of the investigated plants. We found general agreement between either lack or presence of the disease symptoms, virus proteins and resistance gene. Some observed discrepancies of these data are also discussed. Our results indicate that marker-assisted selection can be used for breeding of the TSWV-resistant tomato in Poland.

  12. First report of zucchini tigre mosaic virus infecting several cucurbit plants in China

    Science.gov (United States)

    Pumpkin (Cucurbita moschata Duch.), Cucumber (Cucumis sativus Linn.) and Zucchini (Cucurbita pepo Linn.) are important crops in tropical and subtropical regions in the world, and they are popular vegetable crops in China. There are currently 59 viruses known infecting cucurbit plants which including...

  13. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    Science.gov (United States)

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  14. Occurence of Cucumber Mosaic Virus in Ornamental Plants and Perspectives of Transgenic Control

    NARCIS (Netherlands)

    Chen, Y.K.

    2003-01-01

    This thesis described the characterization of a range of ornamental-infecting Cucumber mosaic virus strains and the development of novel transgene constructs to improve the efficiency of obtaining resistant transformants which is essential for most ornamental plants that are diffi

  15. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses.

    Science.gov (United States)

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-03-07

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as "DECS-C," is a powerful method for detecting novel plant viruses.

  16. Occurence of Cucumber Mosaic Virus in Ornamental Plants and Perspectives of Transgenic Control

    NARCIS (Netherlands)

    Chen, Y.K.

    2003-01-01

    This thesis described the characterization of a range of ornamental-infecting Cucumber mosaic virus strains and the development of novel transgene constructs to improve the efficiency of obtaining resistant transformants which is essential for most ornamental plants that are

  17. A new application of plant virus nanoparticles as drug delivery in breast cancer

    DEFF Research Database (Denmark)

    Esfandiari, Neda; Arzanani, Mohsen Karimi; Soleimani, Masoud

    2016-01-01

    Nanoparticles based on non-pathogenic viruses have opened up a novel sector in nanotechnology. Viral nanoparticles based on plant viruses have clear advantages over any synthetic nanoparticles as they are biocompatible and biodegradable self-assembled and can be produced inexpensively on a large...... scale. From several such under-development platforms, only a few have been characterized in the target-specific drugs into the cells. Potato virus X is presented as a carrier of the chemotherapeutic drug Herceptin that is currently used as a targeted therapy in (HER2+) breast cancer patients. Here, we...... used nanoparticles formed from the potato virus X to conjugate the Herceptin (Trastuzumab) monoclonal antibody as a new option in specific targeting of breast cancer. Bioconjugation was performed by EDC/sulfo-n-hydroxysuccinimide (sulfo-NHS) in a two-step protocol. Then, the efficiency of conjugation...

  18. Annulate lamellae in phloem cells of virus-infected Sonchus plants.

    Science.gov (United States)

    Steinkamp, M P; Hoefert, L L

    1977-07-01

    The occurrence of annulate lamellae (AL) in differentiating phloem of Sonchus oleraceus (Compositae) singly infected with sowthistle yellow vein virus (SYVV) and doubly infected with a combination of SYVV and beet yellow stunt virus is documented by electron microscopy. Cell types in which AL were found were immature sieve elements and phloem parenchyma cells. AL were found only in cells that also contained SYVV particles although a direct association between the virus and AL was not apparent. The substructure of the AL and the relationships between the AL and the nuclear envelope and endoplasmic reticulum are similar to those reported in other descriptions of this organelle in the literature. This report appears to be the first one concerning the association of AL with a plant virus disease.

  19. Virus infection elevates transcriptional activity of miR164a promoter in plants

    Directory of Open Access Journals (Sweden)

    Rodriguez María C

    2009-12-01

    Full Text Available Abstract Background Micro RNAs (miRs constitute a large group of endogenous small RNAs that have crucial roles in many important plant functions. Virus infection and transgenic expression of viral proteins alter accumulation and activity of miRs and so far, most of the published evidence involves post-transcriptional regulations. Results Using transgenic plants expressing a reporter gene under the promoter region of a characterized miR (P-miR164a, we monitored the reporter gene expression in different tissues and during Arabidopsis development. Strong expression was detected in both vascular tissues and hydathodes. P-miR164a activity was developmentally regulated in plants with a maximum expression at stages 1.12 to 5.1 (according to Boyes, 2001 along the transition from vegetative to reproductive growth. Upon quantification of P-miR164a-derived GUS activity after Tobacco mosaic virus Cg or Oilseed rape mosaic virus (ORMV infection and after hormone treatments, we demonstrated that ORMV and gibberellic acid elevated P-miR164a activity. Accordingly, total mature miR164, precursor of miR164a and CUC1 mRNA (a miR164 target levels increased after virus infection and interestingly the most severe virus (ORMV produced the strongest promoter induction. Conclusion This work shows for the first time that the alteration of miR pathways produced by viral infections possesses a transcriptional component. In addition, the degree of miR alteration correlates with virus severity since a more severe virus produces a stronger P-miR164a induction.

  20. Production of Platinum Atom Nanoclusters at One End of Helical Plant Viruses

    Directory of Open Access Journals (Sweden)

    Yuri Drygin

    2013-01-01

    Full Text Available Platinum atom clusters (Pt nanoparticles, Pt-NPs were produced selectively at one end of helical plant viruses, tobacco mosaic virus (TMV and potato virus X (PVX, when platinum coordinate compounds were reduced chemically by borohydrides. Size of the platinum NPs depends on conditions of the electroless deposition of platinum atoms on the virus. Results suggest that the Pt-NPs are bound concurrently to the terminal protein subunits and the 5′ end of encapsidated TMV RNA. Thus, a special structure of tobacco mosaic virus and potato X virus particles with nanoparticles of platinum, which looks like a push-pin with platinum head and virus needle, was obtained. Similar results were obtained with ultrasonically fragmented TMV particles. By contrast, the Pt-NPs fully filled the central axial hole of in vitro assembled RNA-free TMV-like particles. We believe that the results presented here will be valuable in the fundamental understanding of interaction of viral platforms with ionic metals and in a mechanism of nanoparticles formation.

  1. A Perspective on the Development of Plant-Made Vaccines in the Fight against Ebola Virus

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Nieto-Gómez, Ricardo; Angulo, Carlos

    2017-01-01

    The Ebola virus (EBOV) epidemic indicated a great need for prophylactic and therapeutic strategies. The use of plants for the production of biopharmaceuticals is a concept being adopted by the pharmaceutical industry, with an enzyme for human use currently commercialized since 2012 and some plant-based vaccines close to being commercialized. Although plant-based antibodies against EBOV are under clinical evaluation, the development of plant-based vaccines against EBOV essentially remains an unexplored area. The current technologies for the production of plant-based vaccines include stable nuclear expression, transient expression mediated by viral vectors, and chloroplast expression. Specific perspectives on how these technologies can be applied for developing anti-EBOV vaccines are provided, including possibilities for the design of immunogens as well as the potential of the distinct expression modalities to produce the most relevant EBOV antigens in plants considering yields, posttranslational modifications, production time, and downstream processing. PMID:28344580

  2. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV.

    Directory of Open Access Journals (Sweden)

    Xiaolin Wen

    Full Text Available Respiratory syncytial virus (RSV and human metapneumovirus (HMPV are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1 is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections.

  3. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV

    Science.gov (United States)

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J.; Leser, George P.; Lamb, Robert A.; Crowe, James E.; Jardetzky, Theodore S.

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  4. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  5. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks.

    Science.gov (United States)

    Prasch, Christian Maximilian; Sonnewald, Uwe

    2013-08-01

    Considering global climate change, the incidence of combined drought and heat stress is likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little has been known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multifactorial test system, allowing simultaneous application of heat, drought, and virus stress, was developed in Arabidopsis (Arabidopsis thaliana). Comparative analysis of single, double, and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multifactorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analyses identified heat as the major stress factor, clearly separating heat-stressed from non-heat-stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically regulated under triple stress. Furthermore, we showed that virus-treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced the expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response, which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered turnip mosaic virus-specific signaling networks, which led to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multifactorial stress and allow identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment.

  6. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid.

    Science.gov (United States)

    Shang, Jing; Xi, De-Hui; Xu, Fei; Wang, Shao-Dong; Cao, Sen; Xu, Mo-Yun; Zhao, Ping-Ping; Wang, Jian-Hui; Jia, Shu-Dan; Zhang, Zhong-Wei; Yuan, Shu; Lin, Hong-Hui

    2011-02-01

    Plant viruses cause many diseases that lead to significant economic losses. However, most of the approaches to control plant viruses, including transgenic processes or drugs are plant-species-limited or virus-species-limited, and not very effective. We introduce an application of jasmonic acid (JA) and salicylic acid (SA), a broad-spectrum, efficient and nontransgenic method, to improve plant resistance to RNA viruses. Applying 0.06 mM JA and then 0.1 mM SA 24 h later, enhanced resistance to Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV) and Turnip crinkle virus (TCV) in Arabidopsis, tobacco, tomato and hot pepper. The inhibition efficiency to virus replication usually achieved up to 80-90%. The putative molecular mechanism was investigated. Some possible factors affecting the synergism of JA and SA have been defined, including WRKY53, WRKY70, PDF1.2, MPK4, MPK2, MPK3, MPK5, MPK12, MPK14, MKK1, MKK2, and MKK6. All genes involving in the synergism of JA and SA were investigated. This approach is safe to human beings and environmentally friendly and shows potential as a strong tool for crop protection against plant viruses.

  7. The Two-Faced Potato Virus X: From Plant Pathogen to Smart Nanoparticle.

    Science.gov (United States)

    Lico, Chiara; Benvenuto, Eugenio; Baschieri, Selene

    2015-01-01

    Potato virus X (PVX) is a single-stranded RNA plant virus, historically investigated in light of the detrimental effects on potato, the world's fourth most important food commodity. The study of the interactions with cells, and more generally with the plant, both locally and systemically, significantly contributed to unveil the mechanisms underlying gene silencing, fundamental not only in plant virology but also in the study of gene expression regulation. Unraveling the molecular events of PVX infection paved the way for the development of different viral expression vectors and consequential applications in functional genomics and in the biosynthesis of heterologous proteins in plants. Apart from that, the ease of manipulation and the knowledge of the virus structure (particle dimensions, shape and physicochemical features) are inspiring novel applications, mainly focused on nanobiotechnology. This review will lead the reader in this area, spanning from fundamental to applied research, embracing fields from plant pathology to vaccine and drug-targeted delivery, imaging and material sciences. Due to the versatile moods, PVX holds promise to become an interesting nanomaterial, in view to create the widest possible arsenal of new "bio-inspired" devices to face evolving issues in biomedicine and beyond.

  8. Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    2014-07-01

    Full Text Available For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors-the mode of transmission, and host adaptation in response to parasite evolution-in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence.

  9. Vertical Transmission Selects for Reduced Virulence in a Plant Virus and for Increased Resistance in the Host

    Science.gov (United States)

    Pagán, Israel; Montes, Nuria; Milgroom, Michael G.; García-Arenal, Fernando

    2014-01-01

    For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors—the mode of transmission, and host adaptation in response to parasite evolution—in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical) transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence. PMID:25077948

  10. RNA Interference in Insect Vectors for Plant Viruses

    Directory of Open Access Journals (Sweden)

    Surapathrudu Kanakala

    2016-12-01

    Full Text Available Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  11. RNA Interference in Insect Vectors for Plant Viruses.

    Science.gov (United States)

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-12-12

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  12. Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants.

    Science.gov (United States)

    Li, Yongqiang; Deng, Congliang; Shang, Qiaoxia; Zhao, Xiaoli; Liu, Xingliang; Zhou, Qi

    2016-02-01

    Virus-derived small interfering RNAs (vsiRNAs) of cucumber green mottle mosaic virus (CGMMV), a member of the genus Tobamovirus, were characterised in cucumber plants by deep sequencing. CGMMV vsiRNAs of 21-22 nt in length predominated, suggesting that there might be a conserved mechanism of DCL2 and DCL4 involvement in the biogenesis of vsiRNAs, as well as a common RNA silencing pathway in CGMMV-infected cucumber plants. The 5'-terminal base of vsiRNAs was biased towards C/A/U, suggesting that CGMMV vsiRNAs might be loaded into diverse AGO-containing RISCs to disturb the gene expression of host plants. Possible targets for some of the vsiRNAs were also predicted.

  13. The relationship of within-host multiplication and virulence in a plant-virus system.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    Full Text Available BACKGROUND: Virulence does not represent any obvious advantage to parasites. Most models of virulence evolution assume that virulence is an unavoidable consequence of within-host multiplication of parasites, resulting in trade-offs between within-host multiplication and between-host transmission fitness components. Experimental support for the central assumption of this hypothesis, i.e., for a positive correlation between within-host multiplication rates and virulence, is limited for plant-parasite systems. METHODOLOGY/PRINCIPAL FINDINGS: We have addressed this issue in the system Arabidopsis thaliana-Cucumber mosaic virus (CMV. Virus multiplication and the effect of infection on plant growth and on viable seed production were quantified for 21 Arabidopsis wild genotypes infected by 3 CMV isolates. The effect of infection on plant growth and seed production depended of plant architecture and length of postembryonic life cycle, two genetically-determined traits, as well as on the time of infection in the plant's life cycle. A relationship between virus multiplication and virulence was not a general feature of this host-parasite system. This could be explained by tolerance mechanisms determined by the host genotype and operating differently on two components of plant fitness, biomass production and resource allocation to seeds. However, a positive relationship between virus multiplication and virulence was detected for some accessions with short life cycle and high seed weight to biomass ratio, which show lower levels of tolerance to infection. CONCLUSIONS/SIGNIFICANCE: These results show that genotype-specific tolerance mechanisms may lead to the absence of a clear relationship between parasite multiplication and virulence. Furthermore, a positive correlation between parasite multiplication and virulence may occur only in some genotypes and/or environmental conditions for a given host-parasite system. Thus, our results challenge the general

  14. Integration of plant viruses in electron beam lithography nanostructures

    Science.gov (United States)

    Alonso, Jose M.; Ondarçuhu, Thierry; Bittner, Alexander M.

    2013-03-01

    Tobacco mosaic virus (TMV) is the textbook example of a virus, and also of a self-assembling nanoscale structure. This tubular RNA/protein architecture has also found applications as biotemplate for the synthesis of nanomaterials such as wires, as tubes, or as nanoparticle assemblies. Although TMV is, being a biological structure, quite resilient to environmental conditions (temperature, chemicals), it cannot be processed in electron beam lithography (eBL) fabrication, which is the most important and most versatile method of nanoscale structuring. Here we present adjusted eBL-compatible processes that allow the incorporation of TMV in nanostructures made of positive and negative tone eBL resists. The key steps are covering TMV by polymer resists, which are only heated to 50 °C, and development (selective dissolution) in carefully selected organic solvents. We demonstrate the post-lithography biochemical functionality of TMV by selective immunocoating of the viral particles, and the use of immobilized TMV as direct immunosensor. Our modified eBL process should be applicable to incorporate a wide range of sensitive materials in nanofabrication schemes.

  15. Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus.

    Science.gov (United States)

    Vassilakos, Nikon; Simon, Vincent; Tzima, Aliki; Johansen, Elisabeth; Moury, Benoît

    2016-02-01

    In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates with contrasted levels of adaptation to C. annuum showed that the P3 and, to a lower extent, the CI cistron played important roles in infectivity toward C. annuum. The three analytical approaches pinpointed a single nonsynonymous substitution in the P3 and P3N-PIPO cistrons that evolved several times independently and conferred adaptation to C. annuum. In addition to increasing our knowledge of host jumps in plant viruses, this study illustrates also the efficiency of locus-by-locus AMOVA and combined approaches to identify adaptive mutations in the genome of RNA viruses.

  16. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile.

    Science.gov (United States)

    González, Alejandra V; Santelices, Bernabé

    2017-01-01

    Chimerism occurs when two genetically distinct conspecific individuals fuse together generating a single entity. Coalescence and chimerism in red seaweeds has been positively related to an increase in body size, and the consequent reduction in susceptibility to mortality factors, thus increasing survival, reproductive potential and tolerance to stress in contrast to genetically homogeneous organisms. In addition, they showed that a particular pattern of post-fusion growth maintains higher genetic diversity and chimerism in the holdfast but homogenous axes. In Chilean kelps (brown seaweeds), intraorganismal genetic heterogeneity (IGH) and holdfast coalescence has been described in previous research, but the extent of chimerism in wild populations and the patterns of distribution of the genetically heterogeneous thallus zone have scarcely been studied. Since kelps are under continuous harvesting, with enormous social, ecological and economic importance, natural chimerism can be considered a priceless in-situ reservoir of natural genetic resources and variability. In this study, we therefore examined the frequency of IGH and chimerism in three harvested populations of Lessonia spicata. We then evaluated whether chimeric wild-type holdfasts show higher genetic diversity than erect axes (stipe and lamina) and explored the impact of this on the traditional estimation of genetic diversity at the population level. We found a high frequency of IGH (60-100%) and chimerism (33.3-86.7%), varying according to the studied population. We evidenced that chimerism occurs mostly in holdfasts, exhibiting heterogeneous tissues, whereas stipes and lamina were more homogeneous, generating a vertical gradient of allele and genotype abundance as well as divergence, constituting the first time "within- plant" genetic patterns have been reported in kelps. This is very different from the chimeric patterns described in land plants and animals. Finally, we evidenced that IGH affected genetic

  17. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes.

    Science.gov (United States)

    Mushegian, Arcady R; Elena, Santiago F

    2015-02-01

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, and positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts.

  18. Development of RT-PCR and Nested PCR for Detecting Four Quarantine Plant Viruses Belonging to Nepovirus

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2013-09-01

    Full Text Available For quarantine purpose, we developed the RT- and nested PCR module of Tomato black ring virus (TBRV, Arabis mosaic virus (ArMV, Cherry leafroll virus (CLRV and Grapevine fanleaf virus (GFLV. The PCR modules, developed in this study make diagnosis more convenient and speedy because of same PCR condition. And also, the methods are more accurate because it can check whether the result is contamination or not using the mutation-positive control. We discard or return the 27 cases of Nepovirus infection seed by employing the module past 3 years. This study provides a rapid and useful method for detection of four quarantine plant viruses.

  19. Development of the large-scale oligonucleotide chip for the diagnosis of plant viruses and its practical use.

    Science.gov (United States)

    Nam, Moon; Kim, Jeong-Seon; Lim, Seungmo; Park, Chung Youl; Kim, Jeong-Gyu; Choi, Hong-Soo; Lim, Hyoun-Sub; Moon, Jae Sun; Lee, Su-Heon

    2014-03-01

    A large-scale oligonucleotide (LSON) chip was developed for the detection of the plant viruses with known genetic information. The LSON chip contains two sets of 3,978 probes for 538 species of targets including plant viruses, satellite RNAs and viroids. A hundred forty thousand probes, consisting of isolate-, species- and genus-specific probes respectively, are designed from 20,000 of independent nucleotide sequence of plant viruses. Based on the economic importance, the amount of genome information, and the number of strains and/or isolates, one to fifty-one probes for each target virus are selected and spotted on the chip. The standard and field samples for the analysis of the LSON chip have been prepared and tested by RT-PCR. The probe's specific and/or nonspecific reaction patterns by LSON chip allow us to diagnose the unidentified viruses. Thus, the LSON chip in this study could be highly useful for the detection of unexpected plant viruses, the monitoring of emerging viruses and the fluctuation of the population of major viruses in each plant.

  20. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of Maize fine streak rhabdovirus transmission

    Science.gov (United States)

    Background: Leafhoppers (Hemiptera:Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in...

  1. Growth characteristics of the chimeric Japanese encephalitis virus vaccine candidate, ChimeriVax-JE (YF/JE SA14--14--2), in Culex tritaeniorhynchus, Aedes albopictus, and Aedes aegypti mosquitoes.

    Science.gov (United States)

    Bhatt, T R; Crabtree, M B; Guirakhoo, F; Monath, T P; Miller, B R

    2000-04-01

    The Japanese encephalitis (JE) virus vaccine candidate, ChimeriVax-JE, which consists of a yellow fever (YF) 17D virus backbone containing the prM and E genes from the JE vaccine strain JE SA14--14--2, exhibits restricted replication in non-human primates, producing only a low-level viremia following peripheral inoculation. Although this reduces the likelihood that hematophagous insects could become infected by feeding on a vaccinated host, it is prudent to investigate the replication kinetics of the vaccine virus in mosquito species that are known to vector the viruses from which the chimera is derived. In this study ChimeriVax-JE virus was compared to its parent viruses, as well as to wild-type JE virus, for its ability to replicate in Culex tritaeniorhynchus, Aedes albopictus, and Aedes aegypti mosquitoes. Individual mosquitoes were exposed to the viruses by oral ingestion of a virus-laden blood meal or by intrathoracic (IT) virus inoculation. ChimeriVax-JE virus did not replicate following ingestion by any of the three mosquito species. Additionally, replication was not detected after IT inoculation of ChimeriVax-JE in the primary JE virus vector, Cx. tritaeniorhynchus. ChimeriVax-JE exhibited moderate growth following IT inoculation into Ae. aegypti and Ae. albopictus, reaching titers of 3.6-5.0 log(10) PFU/mosquito. There was no change in the virus genotype associated with replication in mosquitoes. Similar results were observed in mosquitoes of all three species that were IT inoculated or had orally ingested the YF 17D vaccine virus. In contrast, all mosquitoes either IT inoculated with or orally fed wild-type and vaccine JE viruses became infected, reaching maximum titers of 5.4-7.3 log(10) PFU/mosquito. These results indicate that ChimeriVax-JE virus is restricted in its ability to infect and replicate in these mosquito vectors. The low viremia caused by ChimeriVax-JE in primates and poor infectivity for mosquitoes are safeguards against secondary spread

  2. 体外培养的嵌合体丙型肝炎病毒感染Huh7.5细胞的透射电镜观察%Observation of chimeric hepatitis C virus In infected Huh7.5 cell through transmission electron microscopy

    Institute of Scientific and Technical Information of China (English)

    马力; 魏欣; 张野; 王平忠; 连建奇; 贾战生

    2009-01-01

    目的 通过透射电子显微镜技术观察体外培养的嵌合体丙型肝炎病毒(HCV)感染Huh7.5细胞后胞内病毒颗粒的形态学特征及细胞内部超微结构的变化.方法 将含有全长HCV嵌合基因组的质粒pFL-J6/JFH体外转录为HCV RNA,电穿孔转染至Huh7.5细胞,实时定量聚合酶链反应(qRT-PCR)测定培养上清中病毒数量;间接免疫荧光检测病毒蛋白的表达;收取转染后细胞培养上清感染原始Huh7.5细胞,制作超薄细胞切片,透射电子显微镜技术观察被感染细胞中病毒颗粒的形态学特征及细胞超微结构的变化.结果 qRT-PCR显示不同时间点收取的转染后细胞培养上清中含有高水平的病毒量;间接免疫荧光显示病毒NSSA非结构蛋白高表达;透射电子显微镜观察到被感染的Huh7.5细胞内含有大量有包膜或无包膜的病毒样颗粒,细胞质内部分膜性细胞器增生,出现黄病毒科病毒感染后特征性结构及某种未知结构等.结论 体外培养的嵌合体HCV具有HCV颗粒的形态学特征,并能够有效感染人源性肝细胞Huh7.5.%Objective To observe the morphological characteristics of HCV particles and intracel-lular ultrastructure changes in Huh7. 5 cells which was infected with chimeric HCV via transmission electron microscopy. Methods Plasmid J6/JFH encoding the full length HCV chimeric genome was transcribed to HCV RNA in vitro and the RNA was transfected into Huh7.5 cells by electroporation. Quantitative real-time PCR(qRT-PCR) was used to assay HCV copies of the supernatant of transfected cells. Indirect immunofluo-rescence was used to detect the expression of HCV proteins. The cell culture superoatant were used to infect narve Huh7.5 cells, transmission electron microscopy was used to observe morphological characteristics of vi-rus particles and intracellular ultrastructure changes in infected Huh7. 5 cells. Results qRT-PCR showed high level virus copies in supernatant of transfected cells

  3. Pepper mild mottle virus, a plant virus associated with specific immune responses, Fever, abdominal pains, and pruritus in humans.

    Directory of Open Access Journals (Sweden)

    Philippe Colson

    Full Text Available BACKGROUND: Recently, metagenomic studies have identified viable Pepper mild mottle virus (PMMoV, a plant virus, in the stool of healthy subjects. However, its source and role as pathogen have not been determined. METHODS AND FINDINGS: 21 commercialized food products containing peppers, 357 stool samples from 304 adults and 208 stool samples from 137 children were tested for PMMoV using real-time PCR, sequencing, and electron microscopy. Anti-PMMoV IgM antibody testing was concurrently performed. A case-control study tested the association of biological and clinical symptoms with the presence of PMMoV in the stool. Twelve (57% food products were positive for PMMoV RNA sequencing. Stool samples from twenty-two (7.2% adults and one child (0.7% were positive for PMMoV by real-time PCR. Positive cases were significantly more likely to have been sampled in Dermatology Units (p<10(-6, to be seropositive for anti-PMMoV IgM antibodies (p = 0.026 and to be patients who exhibited fever, abdominal pains, and pruritus (p = 0.045, 0.038 and 0.046, respectively. CONCLUSIONS: Our study identified a local source of PMMoV and linked the presence of PMMoV RNA in stool with a specific immune response and clinical symptoms. Although clinical symptoms may be imputable to another cofactor, including spicy food, our data suggest the possibility of a direct or indirect pathogenic role of plant viruses in humans.

  4. Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses.

    Science.gov (United States)

    Gilbertson, Robert L; Batuman, Ozgur; Webster, Craig G; Adkins, Scott

    2015-11-01

    Emergence of insect-transmitted plant viruses over the past 10-20 years has been disproportionately driven by two so-called supervectors: the whitefly, Bemisia tabaci, and the Western flower thrips, Frankliniella occidentalis. High rates of reproduction and dispersal, extreme polyphagy, and development of insecticide resistance, together with human activities, have made these insects global pests. These supervectors transmit a diversity of plant viruses by different mechanisms and mediate virus emergence through local evolution, host shifts, mixed infections, and global spread. Associated virus evolution involves reassortment, recombination, and component capture. Emergence of B. tabaci-transmitted geminiviruses (begomoviruses), ipomoviruses, and torradoviruses has led to global disease outbreaks as well as multiple paradigm shifts. Similarly, F. occidentalis has mediated tospovirus host shifts and global dissemination and the emergence of pollen-transmitted ilarviruses. The plant virus-supervector interaction offers exciting opportunities for basic research and global implementation of generalized disease management strategies to reduce economic and environmental impacts.

  5. Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    RNA silencing is a post-transcriptional genesilencing phenomenon induced by double-stranded RNA (dsRNA).In an attempt to generate dsRNA-mediated transgenic maize plants resistant to sugarcane mosaic virus (SCMV),we cloned SCMV Nib gene-specificsequences and inserted it into the binary vector p3301 in the sense and antisense orientations (named SCMVir-Nib),which could produce RNAs capable of duplex formation in plant cells.Maize immature embryos were co-cultured with Agrobacterium carrying two vectors,one marker-free vector harboring the SCMVirNIb and one vector harboring bar gene as the selective marker.Resistant calli were recovered by selection on medium containing Biolaphos.Among the regenerated plantlets from resistant calli,14 plants have been certified to contain SCMVirNIb by PCR amplification and DNA dot blot.T1 plants derived from the 14 plants were challenged in a greenhouse with SCMV inoculums and the percentages of resistant plants in 11 T1 lines were higher than 60%.One plant in the T1 line was found to carry SCMVirNIb without bar gene by PCR assay.T2 plants derived from T1 SCMV resistant transgenic plants were challenged with SCMV inoculums in field.The percentages of resistant plants from 3 lines,including the line derived from the marker-free transgenic plant,were higher than 85%.The non-transgenic control plants were all susceptible.Further molecular analysis confirmed that the resistant plants from the marker-free transgenic line contained SCMVirNIb but not the bar gene.

  6. Serotype Chimeric Human Adenoviruses for Cancer GeneTherapy

    Directory of Open Access Journals (Sweden)

    Akseli Hemminki

    2010-09-01

    Full Text Available Cancer gene therapy consists of numerous approaches where the common denominator is utilization of vectors for achieving therapeutic effect. A particularly potent embodiment of the approach is virotherapy, in which the replication potential of an oncolytic virus is directed towards tumor cells to cause lysis, while normal cells are spared. Importantly, the therapeutic effect of the initial viral load is amplified through viral replication cycles and production of progeny virions. All cancer gene therapy approaches rely on a sufficient level of delivery of the anticancer agent into target cells. Thus,enhancement of delivery to target cells, and reduction of delivery to non-target cells, in an approach called transductional targeting, is attractive. Both genetic and non-genetic retargeting strategies have been utilized. However, in the context of oncolytic viruses, it is beneficial to have the specific modification included in progeny virions and hence genetic modification may be preferable. Serotype chimerism utilizes serotype specific differences in receptor usage, liver tropism and seroprevalence in order to gain enhanced infection of target tissue. This review will focus on serotype chimeric adenoviruses for cancer gene therapy applications.

  7. I. Identification and characterization of dasheen mosaic virus in Chinese evergreen plants (Aglaonema commutatum) in California. II. New approaches for detecting plant viruses

    Energy Technology Data Exchange (ETDEWEB)

    Kositratana, W.

    1985-01-01

    Chinese evergreen plants (Aglaonema commutatum) with symptoms of mild stunting, chlorosis, leaf distortion and mosaic, were observed in Southern California. Flexuous rods (ca. 750 nm) were detected in leaf dip and partially purified preparations. Dasheen mosac virus (DMV) was identified as the causal agent on the basis of host range, morphology and reaction with DMV antiserum in immunodouble diffusion and immunosorbent electron microscopy (ISEM) tests. Tetragonia expansa was found to be a new host of this virus. Surveys indicate that DMV is not widespread in cultivars of A. commutatum in Southern California. The virus was purified from leaves of seedling Philodendron selloum by clarification with CCl/sub 4/, CHCl/sub 3/, and Triton X-100, precipitation with PEG-8000 and centrifugation in either Cs/sub 2/SO/sub 4/-sucrose cushion gradients or Cs/sub 2/SO/sub 4/ equilibrium density gradients. Purified virions formed a single UV-absorbing infectious band with densities of 1.31 and 1.245 g/ml in CsCl/sub 2/ and Cs/sub 2/SO/sub 4/ equilibrium density gradients, respectively, and a sedimentation coefficient of 154 S as determined by a linear-log sucrose density gradient centrifugation. Dasheen mosaic virus has a plus-sense ssRNA with the M.W. of 3.2 x 10/sup 6/ under denaturing conditions. Molecular hybridization analysis using /sup 3/H-complementary DNA specific to DMV-Ca RNA showed that DMV-Ca isolate was more closely related to DMV-Fiji isolate than to DMV-Fla isolate, and was very distantly related to ZYMV, TEV. PeMoC and PVY.

  8. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile

    Science.gov (United States)

    2017-01-01

    Chimerism occurs when two genetically distinct conspecific individuals fuse together generating a single entity. Coalescence and chimerism in red seaweeds has been positively related to an increase in body size, and the consequent reduction in susceptibility to mortality factors, thus increasing survival, reproductive potential and tolerance to stress in contrast to genetically homogeneous organisms. In addition, they showed that a particular pattern of post-fusion growth maintains higher genetic diversity and chimerism in the holdfast but homogenous axes. In Chilean kelps (brown seaweeds), intraorganismal genetic heterogeneity (IGH) and holdfast coalescence has been described in previous research, but the extent of chimerism in wild populations and the patterns of distribution of the genetically heterogeneous thallus zone have scarcely been studied. Since kelps are under continuous harvesting, with enormous social, ecological and economic importance, natural chimerism can be considered a priceless in-situ reservoir of natural genetic resources and variability. In this study, we therefore examined the frequency of IGH and chimerism in three harvested populations of Lessonia spicata. We then evaluated whether chimeric wild-type holdfasts show higher genetic diversity than erect axes (stipe and lamina) and explored the impact of this on the traditional estimation of genetic diversity at the population level. We found a high frequency of IGH (60–100%) and chimerism (33.3–86.7%), varying according to the studied population. We evidenced that chimerism occurs mostly in holdfasts, exhibiting heterogeneous tissues, whereas stipes and lamina were more homogeneous, generating a vertical gradient of allele and genotype abundance as well as divergence, constituting the first time “within- plant” genetic patterns have been reported in kelps. This is very different from the chimeric patterns described in land plants and animals. Finally, we evidenced that IGH affected

  9. VAPA, an innovative "virus-acquisition phenotyping assay" opens new horizons in research into the vector-transmission of plant viruses.

    Directory of Open Access Journals (Sweden)

    Alexandre Martinière

    Full Text Available Host-to-host transmission--a key step in plant virus infection cycles--is ensured predominantly by vectors, especially aphids and related insects. A deeper understanding of the mechanisms of virus acquisition, which is critical to vector-transmission, might help to design future virus control strategies, because any newly discovered molecular or cellular process is a potential target for hampering viral spread within host populations. With this aim in mind, an aphid membrane-feeding assay was developed where aphids transmitted two non-circulative viruses [cauliflower mosaic virus (CaMV and turnip mosaic virus] from infected protoplasts. In this assay, virus acquisition occurs exclusively from living cells. Most interestingly, we also show that CaMV is less efficiently transmitted by aphids in the presence of oryzalin--a microtubule-depolymerising drug. The example presented here demonstrates that our technically simple "virus-acquisition phenotyping assay" (VAPA provides a first opportunity to implement correlative studies relating the physiological state of infected plant cells to vector-transmission efficiency.

  10. VAPA, an innovative "virus-acquisition phenotyping assay" opens new horizons in research into the vector-transmission of plant viruses.

    Science.gov (United States)

    Martinière, Alexandre; Macia, Jean-Luc; Bagnolini, Guillaume; Jridi, Chiraz; Bak, Aurélie; Blanc, Stéphane; Drucker, Martin

    2011-01-01

    Host-to-host transmission--a key step in plant virus infection cycles--is ensured predominantly by vectors, especially aphids and related insects. A deeper understanding of the mechanisms of virus acquisition, which is critical to vector-transmission, might help to design future virus control strategies, because any newly discovered molecular or cellular process is a potential target for hampering viral spread within host populations. With this aim in mind, an aphid membrane-feeding assay was developed where aphids transmitted two non-circulative viruses [cauliflower mosaic virus (CaMV) and turnip mosaic virus] from infected protoplasts. In this assay, virus acquisition occurs exclusively from living cells. Most interestingly, we also show that CaMV is less efficiently transmitted by aphids in the presence of oryzalin--a microtubule-depolymerising drug. The example presented here demonstrates that our technically simple "virus-acquisition phenotyping assay" (VAPA) provides a first opportunity to implement correlative studies relating the physiological state of infected plant cells to vector-transmission efficiency.

  11. Production System of Virus-free Apple Plants Using Heat Treatment and Shoot Tip CultureShoot Tip Culture

    Directory of Open Access Journals (Sweden)

    Gunsup Lee

    2013-12-01

    Full Text Available In worldwide, viral diseases of apple plants has caused the serious problems like reduced production and malformation of fruits. Also, the damages of apple plants by virus and/or viroid infection (Apple chlorotic leaf spot virus, Apple stem grooving virus, Apple mosaic virus, and Apple scar skin viroid were reported in Korea. However there is few report about the protection approach against the infection by apple viruses. Therefore, this paper introduced the experimental protocol for the development of virus-free apple cultivars (Danhong, Hongan, Saenara, Summerdream. Apple plants were treated at 37oC for 4 weeks and shoot tips were cultured in vitro. After heat treatment, the detection of apple viruses was performed by RT-PCR using virusspecific detection primers in new apple cultivars. With the heat treatments followed by in vitro shoot tip culture, the proportion of virus-free stocks of ‘Danhong’, ‘Hongan’, ‘Saenara’, and ‘Summerdream’ was 28%, 16%, 12%, and 12%, respectively. Taken together, this approach can be a good tool for production of virus-free apple stocks.

  12. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2015-12-01

    Full Text Available We developed a loop-mediated isothermal amplification (LAMP method to rapidly diagnose Wheat streak mosaic virus (WSMV during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

  13. Screening, isolation and optimization of anti-white spot syndrome virus drug derived from terrestrial plants

    Institute of Scientific and Technical Information of China (English)

    Upasana Ghosh; Somnath Chakraborty; Thangavel Balasubramanian; Punyabrata Das

    2014-01-01

    Objective: To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various terrestrial plants and to evaluate the efficacy of the same in host–pathogen interaction model.Methods:Thirty plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti–WSSV property in Litopenaeus vannamei. The best anti–WSSV plant isolate, TP22C was isolated and further analyzed. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug.Results: Seven plant isolates exhibited significant survivability in host. The drug TP22C thus formulated showed 86% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of TP22C required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 750 mg/kg body weight/day survived at the rate of 86%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection.Conclusions:The drug TP22C derived from Momordica charantia is a potent anti-white spot syndrome virus drug.

  14. The nine C-terminal residues of the grapevine fanleaf nepovirus movement protein are critical for systemic virus spread.

    Science.gov (United States)

    Belin, C; Schmitt, C; Gaire, F; Walter, B; Demangeat, G; Pinck, L

    1999-06-01

    The grapevine fanleaf virus (GFLV) RNA2-encoded polyprotein P2 is proteolytically cleaved by the RNA1-encoded proteinase to yield protein 2A, 2B(MP) movement protein and 2C(CP) coat protein. To further investigate the role of the 2B(MP) and 2C(CP) proteins in virus movement, RNA2 was engineered by alternatively replacing the GFLV 2B(MP) and 2C(CP) genes with their counterparts from the closely related Arabis mosaic virus (ArMV). Transcripts of all chimeric RNA2s were able to replicate in Chenopodium quinoa protoplasts and form tubules in tobacco BY-2 protoplasts in the presence of the infectious transcript of GFLV RNA1. Virus particles were produced when the GFLV 2C(CP) gene was replaced with its ArMV counterpart, but systemic virus spread did not occur in C. quinoa plants. In addition, chimeric RNA2 containing the complete ArMV 2B(MP) gene was neither encapsidated nor infectious on plants, probably because polyprotein P2 was incompletely processed. However, chimeric RNA2 encoding ArMV 2B(MP), in which the nine C-terminal residues were those of GFLV 2B(MP), formed virus particles and were infectious in the presence of GFLV but not ArMV 2C(CP). These results suggest that the nine C-terminal residues of 2B(MP) must be of the same virus origin as the proteinase for efficient proteolytic processing of polyprotein P2 and from the same virus origin as the 2C(CP) for systemic virus spread.

  15. Effects of the Number of Genome Segments on Primary and Systemic Infections with a Multipartite Plant RNA Virus

    OpenAIRE

    Sánchez-Navarro, Jesús A.; Zwart, Mark P.; Elena, Santiago F

    2013-01-01

    Multipartite plant viruses were discovered because of discrepancies between the observed dose response and predictions of the independent-action hypothesis (IAH) model. Theory suggests that the number of genome segments predicts the shape of the dose-response curve, but a rigorous test of this hypothesis has not been reported. Here, Alfalfa mosaic virus (AMV), a tripartite Alfamovirus, and transgenic Nicotianatabacum plants expressing no (wild type), one (P2), or two (P12) viral genome seg...

  16. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range

    Science.gov (United States)

    Tatineni, Satyanarayana; Robertson, Cecile J.; Garnsey, Stephen M.; Dawson, William O.

    2011-01-01

    Viruses have evolved as combinations of genes whose products interact with cellular components to produce progeny virus throughout the plants. Some viral genes, particularly those that are involved in replication and assembly, tend to be relatively conserved, whereas other genes that have evolved for interactions with the specific host for movement and to counter host–defense systems tend to be less conserved. Closteroviridae encode 1–5 nonconserved ORFs. Citrus tristeza virus (CTV), a Closterovirus, possesses nonconserved p33, p18, and p13 genes that are expendable for systemic infection of the two laboratory hosts, Citrus macrophylla and Mexican lime. In this study, we show that the extended host range of CTV requires these nonconserved genes. The p33 gene was required to systemically infect sour orange and lemon trees, whereas either the p33 or the p18 gene was sufficient for systemic infection of grapefruit trees and the p33 or the p13 gene was sufficient for systemic infection of calamondin plants. Thus, these three genes are required for systemic infection of the full host range of CTV, but different genes were specific for different hosts. Remarkably, either of two genes was sufficient for infection of some citrus hybrids. These findings suggest that CTV acquired multiple nonconserved genes (p33, p18, and p13) and, as a result, gained the ability to interact with multiple hosts, thus extending its host range during the course of evolution. These results greatly extend the complexity of known virus–plant interactions. PMID:21987809

  17. Progress in Chimeric Vector and Chimeric Gene Based Cardiovascular Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    HU Chun-Song; YOON Young-sup; ISNER Jeffrey M.; LOSORDO Douglas W.

    2003-01-01

    Gene therapy for cardiovascular diseases has developed from preliminary animal experiments to clinical trials. However, vectors and target genes used currently in gene therapy are mainly focused on viral, nonviral vector and single target gene or monogene. Each vector system has a series of advantages and limitations. Chimeric vectors which combine the advantages of viral and nonviral vector,chimeric target genes which combine two or more target genes and novel gene delivery modes are being developed. In this article, we summarized the progress in chimeric vectors and chimeric genes based cardiovascular gene therapy, which including proliferative or occlusive vascular diseases such as atheroslerosis and restenosis, hypertonic vascular disease such as hypertension and cardiac diseases such as myocardium ischemia, dilated cardiomyopathy and heart failure, even heart transplantation. The development of chimeric vector, chimeric gene and their cardiovascular gene therapy is promising.

  18. Infection of host plants by Cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani.

    Science.gov (United States)

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2015-06-04

    Plant viruses can profoundly alter the phenotypes of their host plants, with potentially far-reaching implications for ecology. Yet few studies have explored the indirect, host-mediated, effects of plant viruses on non-vector insects. We examined how infection of Cucurbita pepo plants by Cucumber mosaic virus (CMV) impacted the susceptibility of aphids (Myzus persicae) to attack by the parasitoid wasp Aphidius colemani. In semi-natural foraging assays, we observed higher rates of aphid parasitism on infected plants compared to healthy plants. Subsequent experiments revealed that this difference is not explained by different attack rates on plants differing in infection status, but rather by the fact that parasitoid larvae successfully complete their development more often when aphid hosts feed on infected plants. This suggests that the reduced nutritional quality of infected plants as host for aphids--documented in previous studies--compromises their ability to mount effective defenses against parasitism. Furthermore, our current findings indicate that the aphid diet during parasitoid development (rather than prior to wasp oviposition) is a key factor influencing resistance. These findings complement our previous work showing that CMV-induced changes in host plant chemistry alter patterns of aphid recruitment and dispersal in ways conducive to virus transmission.

  19. Evaluation of Plant Growth Promoting Rhizobacteria as a Protecting Agent Against Cucumber Mosaic Virus and Chilli Veinal Mottle Virus on Chillipepper

    Directory of Open Access Journals (Sweden)

    MUHAMMAD TAUFIK

    2005-12-01

    Full Text Available This study was conducted to evaluate the effectiveness of plant growth promoting rhizobacteria (PGPR in protecting chillipepper plant from infection of cucumber mosaic virus (CMV and chilli veinal mottle virus (ChiVMV. Seven isolates of PGPR, i.e. BC1, BTP2H, BTP3G, BTP3O BTP1, BTP2D, and T1F were applied as seed treatment and soil drench. Plants height, number of branch, and fruits weight were measured every one and ten weeks after virus inoculation. Virus concentration in plants and disease incidence were confirmed by enzyme-linked immunosorbant assay (ELISA. Results showed that inoculation with PGPR improved the seed germination. Eight days after sowing, the percentage of PGPR treated seed germination reached 50-84%; whereas those of untreated seed reached only 18%. In general, PGPR treatment significantly reduced (p < 0.05 the effect of virus infection on plant growth. Two PGPR isolates, i.e. BTP1 and BTP2H, maintained fruit weight of infected plants as good as those of healthy plants. Based on ELISA, PGPR was able to inhibit the disease incidence. The BTP3O and BTP2D isolates even protected the plant from ChiVMV infection. Concentration of salicylic acid and peroxidase were relatively higher on plants treated with PGPR than those without PGPR treatment. This gave an indication that PGPR may act as induction agents for systemic acquired resistance. Therefore, PGPR treatment is a promising strategy to control viral diseases on chillipepper.

  20. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  1. A simple method for screening of plant NBS-LRR genes that confer a hypersensitive response to plant viruses and its application for screening candidate pepper genes against Pepper mottle virus.

    Science.gov (United States)

    Tran, Phu-Tri; Choi, Hoseong; Kim, Saet-Byul; Lee, Hyun-Ah; Choi, Doil; Kim, Kook-Hyung

    2014-06-01

    Plant NBS-LRR genes are abundant and have been increasingly cloned from plant genomes. In this study, a method based on agroinfiltration and virus inoculation was developed for the simple and inexpensive screening of candidate R genes that confer a hypersensitive response to plant viruses. The well-characterized resistance genes Rx and N, which confer resistance to Potato virus X (PVX) and tobamovirus, respectively, were used to optimize a transient expression assay for detection of hypersensitive response in Nicotiana benthamiana. Infectious sap of PVX and Tobacco mosaic virus were used to induce hypersensitive response in Rx- and N-infiltrated leaves, respectively. The transient expression of the N gene induced local hypersensitive response upon infection of another tobamovirus, Pepper mild mottle virus, through both sap and transcript inoculation. When this method was used to screen 99 candidate R genes from pepper, an R gene that confers hypersensitive response to the potyvirus Pepper mottle virus was identified. The method will be useful for the identification of plant R genes that confer resistance to viruses. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. CRYOTHERAPY: A NEW TECHNIQUE TO OBTAIN GRAPEVINE PLANTS FREE OF VIRUSES

    Directory of Open Access Journals (Sweden)

    JEAN CARLOS BETTONI

    2016-01-01

    Full Text Available ABSTRACT Through in vitro tissue culture techniques it is possible to propagate high quality nursery plants faster. Cryotherapy is a promising tool, based on in vitro culture techniques, for achieving in a short time, high frequency of regenerating plants free of viruses. The objective of this review is to present and analyze the results of research conducted in cryotherapy methods based on cryopreservation protocols for recovery of cultivars free of micro-organisms with potential agronomic interest. The main methods employed in cryotherapy are encapsulation-dehydration, vitrification, encapsulation-vitrification and droplet vitrification, which are based on the immersion of preconditioned shoot tips in liquid nitrogen, followed by their recovery in vitro on to culture media for regeneration of healthy plantlets. Improvements to cryotherapy protocols used for grapevine are still needed, since there are variations in response according to the genotype. The published research mostly relates to Vitis vinifera and the few studies applied to other species show that the protocols need to be improved. This specificity goes beyond species, with different responses among cultivars, limiting the broader application of the technology. On the other hand, traditional methods used for virus removal from infected plant materials also have limitations and therefore investment in research for the development and application of cryopreservation techniques is highly justified, considering its efficiency and low-cost, once the protocols are developed. High frequency of virus-free plants among regenerants within a short time frame is the most desirable aspect of cryotherapy. Therefore, these advantages make the technique a promising tool for institutions mandated to the development of high-health planting materials with high genetic and agronomic potential for viticulture.

  3. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    Full Text Available The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect, and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect. Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.

  4. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system.

    Science.gov (United States)

    Pagán, Israel; González-Jara, Pablo; Moreno-Letelier, Alejandra; Rodelo-Urrego, Manuel; Fraile, Aurora; Piñero, Daniel; García-Arenal, Fernando

    2012-01-01

    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.

  5. A strategy for screening an inhibitor of viral silencing suppressors, which attenuates symptom development of plant viruses.

    Science.gov (United States)

    Shimura, Hanako; Fukagawa, Takako; Meguro, Ayano; Yamada, Hirokazu; Oh-Hira, Mahito; Sano, Shinsuke; Masuta, Chikara

    2008-12-10

    To find out whether we can control plant virus diseases by blocking viral RNA silencing suppressors (RSSs), we developed a strategy to screen inhibitors that block the association of RSSs with siRNAs using a surface plasmon resonance assay. The screened chemicals were tested in competition with RSSs for binding to siRNAs using a mobility shift assay. We then confirmed that tested chemicals actually inhibited the RSS activity in vivo using a protoplast assay which was developed for this purpose. This entire system can be adapted to screening inhibitors of not only plant viruses but also some animal viruses possessing RSSs.

  6. Tomato yellow leaf curl viruses: ménage à trois between the virus complex, the plant and the whitefly vector.

    Science.gov (United States)

    Díaz-Pendón, Juan Antonio; Cañizares, M Carmen; Moriones, Enrique; Bejarano, Eduardo R; Czosnek, Henryk; Navas-Castillo, Jesús

    2010-07-01

    Tomato yellow leaf curl disease (TYLCD) is one of the most devastating viral diseases affecting tomato crops in tropical, subtropical and temperate regions of the world. Here, we focus on the interactions through recombination between the different begomovirus species causing TYLCD, provide an overview of the interactions with the cellular genes involved in viral replication, and highlight recent progress on the relationships between these viruses and their vector, the whitefly Bemisia tabaci. The tomato yellow leaf curl virus-like viruses (TYLCVs) are a complex of begomoviruses (family Geminiviridae, genus Begomovirus) including 10 accepted species: Tomato yellow leaf curl Axarquia virus (TYLCAxV), Tomato yellow leaf curl China virus (TYLCCNV), Tomato yellow leaf curl Guangdong virus (TYLCGuV), Tomato yellow leaf curl Indonesia virus (TYLCIDV), Tomato yellow leaf curl Kanchanaburi virus (TYLVKaV), Tomato yellow leaf curl Malaga virus (TYLCMalV), Tomato yellow leaf curl Mali virus (TYLCMLV), Tomato yellow leaf curl Sardinia virus (TYLCSV), Tomato yellow leaf curl Thailand virus (TYLCTHV), Tomato yellow leaf curl Vietnam virus (TYLCVNV) and Tomato yellow leaf curl virus(TYLCV). We follow the species demarcation criteria of the International Committee on Taxonomy of Viruses (ICTV), the most important of which is an 89% nucleotide identity threshold between full-length DNA-A component nucleotide sequences for begomovirus species. Strains of a species are defined by a 93% nucleotide identity threshold. The primary host of TYLCVs is tomato (Solanum lycopersicum), but they can also naturally infect other crops [common bean (Phaseolus vulgaris), sweet pepper (Capsicum annuum), chilli pepper (C. chinense) and tobacco (Nicotiana tabacum)], a number of ornamentals [petunia (Petuniaxhybrida) and lisianthus (Eustoma grandiflora)], as well as common weeds (Solanum nigrum and Datura stramonium). TYLCVs also infect the experimental host Nicotiana benthamiana. Infected tomato

  7. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  8. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Science.gov (United States)

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593

  9. The symptom difference induced by Tobacco mosaic virus and Tomato mosaic virus in tobacco plants containing the N gene is determined by movement protein gene

    Institute of Scientific and Technical Information of China (English)

    YU; Cui; HU; Dongwei; DONG; Jiahong; CUI; Xiaofeng; WU; Jun

    2004-01-01

    Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) are two closely related viruses in the genus Tobamovirus, but they induce obviously different sizes of necrotic lesions in tobacco plants containing the N gene. Comparison of the symptoms produced by TMV, ToMV and a chimaeric virus (T/OMP), in which the TMV movement protein (MP) gene was replaced by the ToMV MP gene, showed T/OMP caused necrotic lesions that were similar in size to those of ToMV in tobacco plants containing the N gene. The coat protein and MP of the three viruses accumulated in planta with similar levels, and the replication level of TMV and T/OMP in protoplasts also had no difference. Comparison of the activities of defense-related enzymes (PAL, POD and PPO) induced by the three viruses also showed that the variability of enzyme activity induced by T/OMP was similar to that induced by TMV, but different from that induced by ToMV. The results indicate that the size difference of necrotic lesions induced by TMV and ToMV in tobacco plants containing the N gene results from the functional difference of their MP genes.

  10. Investigation of twenty selected medicinal plants from Malaysia for anti-Chikungunya virus activity.

    Science.gov (United States)

    Chan, Yik Sin; Khoo, Kong Soo; Sit, Nam Weng Weng

    2016-09-01

    Chikungunya virus is a reemerging arbovirus transmitted mainly by Aedes mosquitoes. As there are no specific treatments available, Chikungunya virus infection is a significant public health problem. This study investigated 120 extracts from selected medicinal plants for anti-Chikungunya virus activity. The plant materials were subjected to sequential solvent extraction to obtain six different extracts for each plant. The cytotoxicity and antiviral activity of each extract were examined using African monkey kidney epithelial (Vero) cells. The ethanol, methanol and chloroform extracts of Tradescantia spathacea (Commelinaceae) leaves showed the strongest cytopathic effect inhibition on Vero cells, resulting in cell viabilities of 92.6% ± 1.0% (512 μg/ml), 91.5% ± 1.7% (512 μg/ml) and 88.8% ± 2.4% (80 μg/ml) respectively. However, quantitative RT-PCR analysis revealed that the chloroform extract of Rhapis excelsa (Arecaceae) leaves resulted in the highest percentage of reduction of viral load (98.1%), followed by the ethyl acetate extract of Vernonia amygdalina (Compositae) leaves (95.5%). The corresponding 50% effective concentrations (EC50) and selectivity indices for these two extracts were 29.9 ± 0.9 and 32.4 ± 1.3 μg/ml, and 5.4 and 5.1 respectively. Rhapis excelsa and Vernonia amygdalina could be sources of anti-Chikungunya virus agents. [Int Microbiol 19(3):175-182 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  11. Using transgenic plants and modified plant viruses for the development of treatments for human diseases.

    Science.gov (United States)

    Loh, Hwei-San; Green, Brian J; Yusibov, Vidadi

    2017-08-08

    Production of proteins in plants for human health applications has become an attractive strategy attributed by their potentials for low-cost production, increased safety due to the lack of human or animal pathogens, scalability and ability to produce complex proteins. A major milestone for plant-based protein production for use in human health was achieved when Protalix BioTherapeutics produced taliglucerase alfa (Elelyso(®)) in suspension cultures of a transgenic carrot cell line for the treatment of patients with Gaucher's disease, was approved by the USA Food and Drug Administration in 2012. In this review, we are highlighting various approaches for plant-based production of proteins and recent progress in the development of plant-made therapeutics and biologics for the prevention and treatment of human diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge.

    Science.gov (United States)

    Maree, Francois F; Nsamba, Peninah; Mutowembwa, Paidamwoyo; Rotherham, Lia S; Esterhuysen, Jan; Scott, Katherine

    2015-06-09

    The genetic diversity of the three Southern African Territories (SAT) types of foot-and-mouth disease virus (FMDV) reflects high antigenic variation, and indications are that vaccines targeting each SAT-specific topotype may be needed. This has serious implications for control of FMD using vaccines as well as the choice of strains to include in regional antigen banks. Here, we investigated an intra-serotype chimeric virus, vSAT2(ZIM14)-SAT2, which was engineered by replacing the surface-exposed capsid-coding region (1B-1D/2A) of a SAT2 genome-length clone, pSAT2, with that of the field isolate, SAT2/ZIM/14/90. The chimeric FMDV produced by this technique was viable, grew to high titres and stably maintained the 1B-1D/2A sequence upon passage. Chemically inactivated, oil adjuvanted vaccines of both the chimeric and parental immunogens were used to vaccinate cattle. The serological response to vaccination showed the production of strong neutralizing antibody titres that correlated with protection against homologous FMDV challenge. We also predicted a good likelihood that cattle vaccinated with an intra-serotype chimeric vaccine would be protected against challenge with viruses that caused recent outbreaks in southern Africa. These results provide support that chimeric vaccines containing the external capsid of field isolates induce protective immune responses in FMD host species similar to the parental vaccine.

  13. Manufacture of diploid/tetraploid chimeric mice.

    OpenAIRE

    Lu, T Y; Markert, C L

    1980-01-01

    Tetraploid mouse embryos were produced by cytochalasin B treatment. These embryos usually die before completion of embryonic development and are abnormal morphologically and physiologically. The tetraploid embryos can be rescued to develop to maturity by aggregating them with normal diploid embryos to produce diploid/tetraploid chimeric mice. The diploid/tetraploid chimeric embryos are frequently abnormal: the larger the proportion of tetraploid cells, the greater the abnormality. By karyotyp...

  14. Analysis of the systemic colonization of cucumber plants by Cucumber green mottle mosaic virus.

    Science.gov (United States)

    Moreno, I M; Thompson, J R; García-Arenal, F

    2004-03-01

    Systemic movement of Cucumber green mottle mosaic virus (CGMMV) in cucumber plants was shown to be from photoassimilate source to sink, thus indicating phloem transport. Nevertheless, CGMMV was not detected by immunocytochemical procedures in the intermediary cell-sieve element complex in inoculated cotyledons, where photoassimilate loading occurs. In stem internodes, CGMMV was first localized in the companion cells of the external phloem and subsequently in all tissues except the medulla, therefore suggesting leakage of the virus from, and reloading into, the transport phloem during systemic movement. In systemically infected sink leaves, CGMMV was simultaneously detected in the xylem and phloem. Interestingly, CGMMV accumulated to high levels in the differentiating tracheids of young leaves implying that the xylem could be involved in the systemic movement of CGMMV. This possibility was tested using plants in which cell death was induced in a portion of the stem by steam treatment. At 24 degrees C, steam treatment effectively prevented the systemic movement of CGMMV, even though viral RNA was detected in washes of the xylem above the steamed internode suggesting that xylem circulation occurred. At 29 degrees C, CGMMV systemically infected steam-treated cucumber plants, indicating that CGMMV can move systemically via the xylem. Xylem transport of CGMMV was, however, less efficient than phloem transport in terms of the time required for systemic infection and the percentage of plants infected.

  15. Highly Sensitive and Practical Detection of Plant Viruses via Electrical Impedance of Droplets on Textured Silicon-Based Devices

    Science.gov (United States)

    Ambrico, Marianna; Ambrico, Paolo Francesco; Minafra, Angelantonio; De Stradis, Angelo; Vona, Danilo; Cicco, Stefania R.; Palumbo, Fabio; Favia, Pietro; Ligonzo, Teresa

    2016-01-01

    Early diagnosis of plant virus infections before the disease symptoms appearance may represent a significant benefit in limiting disease spread by a prompt application of appropriate containment steps. We propose a label-free procedure applied on a device structure where the electrical signal transduction is evaluated via impedance spectroscopy techniques. The device consists of a droplet suspension embedding two representative purified plant viruses i.e., Tomato mosaic virus and Turnip yellow mosaic virus, put in contact with a highly hydrophobic plasma textured silicon surface. Results show a high sensitivity of the system towards the virus particles with an interestingly low detection limit, from tens to hundreds of attomolar corresponding to pg/mL of sap, which refers, in the infection time-scale, to a concentration of virus particles in still-symptomless plants. Such a threshold limit, together with an envisaged engineering of an easily manageable device, compared to more sophisticated apparatuses, may contribute in simplifying the in-field plant virus diagnostics. PMID:27869726

  16. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector.

    Directory of Open Access Journals (Sweden)

    Yan Huo

    2014-03-01

    Full Text Available Most plant viruses are transmitted by hemipteroid insects. Some viruses can be transmitted from female parent to offspring usually through eggs, but the mechanism of this transovarial transmission remains unclear. Rice stripe virus (RSV, a Tenuivirus, transmitted mainly by the small brown planthopper (Laodelphax striatellus, is also spread to the offspring through the eggs. Here, we used the RSV-planthopper system as a model to investigate the mechanism of transovarial transmission and demonstrated the central role of vitellogenin (Vg of L. striatellus in the process of virus transmission into the eggs. Our data showed Vg can bind to pc3 in vivo and in vitro and colocalize in the germarium. RSV filamentous ribonucleoprotein particles (RNPs only accumulated in the terminal filaments and pedicel areas prior to Vg expression and was not present in the germarium until Vg was expressed, where RSV RNPs and Vg had colocalized. Observations by immunoelectron microscopy (IEM also indicated that these two proteins colocalized in nurse cells. Knockdown of Vg expression due to RNA interference resulted in inhibition of the invasion of ovarioles by RSV. Together, the data obtained indicated that RSV RNPs may enter the nurse cell of the germarium via endocytosis through binding with Vg. Finally, the virus enters the oocytes through nutritive cords, using the same route as for Vg transport. Our results show that the Vg of L. striatellus played a critical role in transovarial transmission of RSV and shows how viruses can use existing transovarial transportation systems in insect vectors for their own purposes.

  17. Transgenic plants expressing HC-Pro show enhanced virus sensitivity while silencing of the transgene results in resistance

    NARCIS (Netherlands)

    Mlotshwa, S.; Verver, J.; Sithole-Niang, I.; Prins, M.; Kammen, van A.; Wellink, J.

    2002-01-01

    Nicotiana benthamiana plants were engineered to express sequences of the helper component-proteinase (HC-Pro) of Cowpea aphid-borne mosaic potyvirus (CABMV). The sensitivity of the transgenic plants to infection with parental and heterologous viruses was studied. The lines expressing HC-Pro showed

  18. Production of Hybrid Chimeric PVX Particles Using a Combination of TMV and PVX-Based Expression Vectors.

    Science.gov (United States)

    Dickmeis, Christina; Honickel, Mareike Michaela Antonia; Fischer, Rainer; Commandeur, Ulrich

    2015-01-01

    We have generated hybrid chimeric potato virus X (PVX) particles by coexpression of different PVX coat protein fusions utilizing tobacco mosaic virus (TMV) and PVX-based expression vectors. Coinfection was achieved with a modified PVX overcoat vector displaying a fluorescent protein and a TMV vector expressing another PVX fluorescent overcoat fusion protein. Coexpression of the PVX-CP fusions in the same cells was confirmed by epifluorescence microscopy. Labeling with specific antibodies and transmission electron microscopy revealed chimeric particles displaying green fluorescent protein and mCherry on the surface. These data were corroborated by bimolecular fluorescence complementation. We used split-mCherry fragments as PVX coat fusions and confirmed an interaction between the split-mCherry fragments in coinfected cells. The presence of assembled split-mCherry on the surface confirmed the hybrid character of the chimeric particles.

  19. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  20. Feasibility Study for Detection of Turnip yellow mosaic virus (TYMV Infection of Chinese Cabbage Plants Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Saetbyeol Kim

    2013-03-01

    Full Text Available Raman spectroscopy provides many advantages compared to other common analytical techniques due to its ability of rapid and accurate identification of unknown specimens as well as simple sample preparation. Here, we described potential of Raman spectroscopic technique as an efficient and high throughput method to detect plants infected by economically important viruses. To enhance the detection sensitivity of Raman measurement, surface enhanced Raman scattering (SERS was employed. Spectra of extracts from healthy and Turnip yellow mosaic virus (TYMV infected Chinese cabbage leaves were collected by mixing with gold (Au nanoparticles. Our result showed that TYMV infected plants could be discriminated from non-infected healthy plants, suggesting the current method described here would be an alternative potential tool to screen virus-infection of plants in fields although it needs more studies to generalize the technique.

  1. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control.

    Science.gov (United States)

    Jones, Roger A C

    2009-05-01

    This review focuses on virus-plant pathosystems at the interface between managed and natural vegetation, and describes how rapid expansion in human activity and climate change are likely to impact on plants, vectors and viruses causing increasing instability. It starts by considering virus invasion of cultivated plants from their wild ancestors in the centres of plant domestication in different parts of the world and subsequent long distance movement away from these centres to other continents. It then describes the diverse virus-plant pathosystem scenarios possible at the interface between managed and natural vegetation and gives examples that illustrate situations where indigenous viruses emerge to damage introduced cultivated plants and newly introduced viruses become potential threats to biodiversity. These examples demonstrate how human activities increasingly facilitate damaging new encounters between plants and viruses worldwide. The likely effects of climate change on virus emergence are emphasised, and the major factors driving virus emergence, evolution and greater epidemic severity at the interface are analysed and explained. Finally, the kinds of challenges posed by rapidly changing world conditions to achieving effective control of epidemics of emerging plant viruses, and the approaches needed to address them, are described.

  2. Bean yellow disorder virus: Parameters of transmission by Bemisia tabaci and host plant range

    Institute of Scientific and Technical Information of China (English)

    German Martín; Isabel Maria Cuadrado; Dirk Janssen

    2011-01-01

    Bean yellow disorder virus(BnYDV)was recently identified as the first crinivirus(family Closteroviridae)that infects members of the family Leguminosae.It was first observed during the autumn of 2003,causing heavy losses in French bean (Phaseolus vulgaris L.)grown commercially in Spain.The virus is transmitted by the sweetpotato whitefly,Bemisia tabaci(Hemiptera:Aleyrodidae)Q-biotype,and disease symptoms resemble nutritional disorders consisting of interveinal mottling and yellowing in leaves,combined with stiffness or brittleness,and are typically produced on the middle to lower parts of the plant.Transmission experiments showed that 50% and 100% of B.tabaci adults acquired the virus after a feeding period of 3 and 7 h,respectively.Viruliferous whiteflies infected 66% and 100% of P.vulgaris plants after a feeding period of 12 and 24 h,respectively.The transmission efficiency of single whiteflies was 37% and persistence of BnYDV in the vector lasted up to 2 weeks with a half-life of 9 days.BnYDV was transmitted to P.vulgaris,Pisum sativum L.,Lens culinaris Medik.,and Vicia faba L.,but not to Vigna unguiculata L.,Glycine max(L.) Merr.,Cicer arietum L.,and to crop species belonging to families of the Solanaceae and Cucurbitaceae.No virus was detected in field samples collected from 30 different species from Boraginaceae,Asteraceae,Geraniaceae,Lamiaceae,Leguminosae,Malvaceae,Scrophulariaceae,Thymelaeaceae and Verbenaceae.The restricted host range and efficient management of crops regarding whitefly infestation may be key elements in the control of BnYDV.

  3. Anti-herpes simplex virus activities of crude water extracts of Thai medicinal plants.

    Science.gov (United States)

    Yoosook, C; Bunyapraphatsara, N; Boonyakiat, Y; Kantasuk, C

    2000-01-01

    A number of Thai medicinal plants, recommended as remedies for herpesvirus infection and have been used in primary health care were investigated for their intracellular activities against herpes simplex viruses (HSV). Centella asiatica L., Maclura cochinchinensis Cornor, and Mangifera indica L. contained both anti-HSV-1 and -2 activities, as determined by plaque inhibition assay. An inhibition of the production of infectious HSV-2 virions from infected Vero cells could also be demonstrated. Combinations of each of these reconstituted extracts with 9-(2-hydroxyethoxymethyl) guanosine (acyclovir; ACV) resulted either in subadditive, additive, or synergistic interaction, against HSV-2, depending on the dose of ACV used; mixture of C. asiatica and M. indica exerted an additive effect in a similar assay. Furthermore, the inhibitory effects of these plant extracts were also substantiated by flow cytometric analysis of virus-specific antigens in the infected cells. The active constituent present in C. asiatica extract was determined to be asiaticoside while in M. indica was mangiferin. Thus, these data suggest therapeutic potential of these plant extracts.

  4. Different Virus-Derived siRNAs Profiles between Leaves and Fruits in Cucumber Green Mottle Mosaic Virus-Infected Lagenaria siceraria Plants.

    Science.gov (United States)

    Li, Junmin; Zheng, Hongying; Zhang, Chenhua; Han, Kelei; Wang, Shu; Peng, Jiejun; Lu, Yuwen; Zhao, Jinping; Xu, Pei; Wu, Xiaohua; Li, Guojing; Chen, Jianping; Yan, Fei

    2016-01-01

    RNA silencing is an evolutionarily conserved antiviral mechanism, through which virus-derived small interfering RNAs (vsiRNAs) playing roles in host antiviral defense are produced in virus-infected plant. Deep sequencing technology has revolutionized the study on the interaction between virus and plant host through the analysis of vsiRNAs profile. However, comparison of vsiRNA profiles in different tissues from a same host plant has been rarely reported. In this study, the profiles of vsiRNAs from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus (CGMMV) were comprehensively characterized and compared. Many more vsiRNAs were present in infected leaves than in fruits. vsiRNAs from both leaves and fruits were mostly 21- and 22-nt in size as previously described in other virus-infected plants. Interestingly, vsiRNAs were predominantly produced from the viral positive strand RNAs in infected leaves, whereas in infected fruits they were derived equally from the positive and negative strands. Many leaf-specific positive vsiRNAs with lengths of 21-nt (2058) or 22-nt (3996) were identified but only six (21-nt) and one (22-nt) positive vsiRNAs were found to be specific to fruits. vsiRNAs hotspots were only present in the 5'-terminal and 3'-terminal of viral positive strand in fruits, while multiple hotspots were identified in leaves. Differences in GC content and 5'-terminal nucleotide of vsiRNAs were also observed in the two organs. To our knowledge, this provides the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant.

  5. Influence of the simulated microgravity on biomass and contents of carbohydrates at virus-infected wheat plants

    Science.gov (United States)

    Mishchenko, L.; Silayeva, A.; Mishchenko, I.; Boyko, A.

    The effects of clinostating has been studied on the contents of biomass, soluble carbohydrates and starches in Wheat streak mosaic virus (WSMV) infected plants of wheat Donska semidwarf, Albatross Odessky, Kollectivna-3 (summer), and Apogee (early-ripe, superdwarf). Plants in conditions of horizontal and vertical rotation with a frequency 2 min-1 were grown in containers during 35 days. WSMV was accumulated on barley i dicator plants of Ros' variety for then subsequent infestation by this virus of a part of clinostating and motionless wheat plants in a stage of 3 leaves. Researches have shown, that the most suitable for ground experiments with clinostating were Kollectivna-3 and Apogee varieties. At vertical and horizontal rotation of wheat plants of Kollectivna - 3 variety the weight of roots increased and that of above-ground part (leaves and stalks) decreased in comparison with motionless control plants, that resulted in decrease of the ratio of a biomass of an above-ground part to a root system. In Apogee variety the weight of the above-ground part of healthy plants at vertical clinostating decreased by 23 % in comparison with motionless variant, and the biomass of virus-infected plants was reduced on the average by 14 % in comparison with infected motionless control. The weight of above-ground part of infected and healthy motionless plants practically did not differ. Vertical clinorotation of plants caused the reduction of ear weight while in horizontally rotated plants and in the motionless control there were no difference. The number of ears in Apogee variety practically did not change in all variants of the experiment, and plant weight at clinostating decreased in both healthy, and virus infected plants. For the period of cultivation in Kollectivna-3 variety ears were not formed at all. The contents of soluble carbohydrates (reducing and saccharose) in leaves and stalks of healthy and virus infected at clinostating was increased in Apogee in 1,6-2,2 times

  6. Penicillinase-based enzyme-linked immunosorbent assay for the detection of plant viruses.

    Science.gov (United States)

    Sudarshana, M R; Reddy, D V

    1989-10-01

    A penicillinase (PNC)-based, enzyme-linked immunosorbent assay (ELISA) was standardized to detect maize mosaic virus (MMV) in sorghum leaf extracts, peanut mottle virus (PMV) in pea leaf extracts, and tomato spotted wilt virus (TSWV) in peanut leaf extracts. Rabbit Fc-specific antibodies were conjugated with PNC by a single step glutaraldehyde bridge. Among several indicators tested, bromothymol blue (BTB) was found suitable for measuring PNC activity under simulated conditions. Two reagents, starch-iodine complex (SIC) and a mixed pH indicator, containing bromocresol purple and BTB (2:1) used earlier for the PNC-based ELISA, were compared with BTB for utilization in the PNC-based ELISA. SIC gave a slightly higher virus titre than BTB or the mixed pH indicator, but it often gave nonspecific reactions. Sodium or potassium salts of penicillin-G at 0.5-1.0 mg/ml and BTB at 0.2 mg/ml were found to be suitable as substrate-indicator mixture for PNC-based ELISA. The sensitivity of the PNC system was comparable to those of the alkaline phosphatase (ALP) and horseradish peroxidase (HRP) systems in detecting MMV, PMV, and TSWV. The PNC conjugate could be used at a greater dilution than those of the ALP and HRP conjugates and the BTB substrate mixture was stable for at least 3 weeks at 4 degrees C. Penicillin is readily available in developing countries, and at a substantially lower cost than p-nitrophenyl phosphate, the commonly used substrate for ALP in the plate ELISA. Thus the PNC-based ELISA provides a less expensive means for assaying plant viruses by ELISA.

  7. Interactive physiological response of potato (Solanum tuberosum L. plants to fungal colonization and Potato virus Y (PVY infection

    Directory of Open Access Journals (Sweden)

    Dominika Thiem

    2014-11-01

    Full Text Available Potato plants can be colonized by various viruses and by symbiotic, saprophytic and pathogenic fungi. However, the significance of interactions of viral infection and fungal colonization is hardly known. This work presents a model experiment in which the influence of three different types of fungal associations on the growth and physiology of the potato variety Pirol was tested individually or in combination with infection by PVY. It was hypothesized that simultaneous viral and fungal infections increase the biotic stress of the host plant, but mutualistic plant-fungal associations can mask the impact of viral infection. In the present study, a symbiotic arbsucular mycorrhizal fungus, Glomus intraradices, significantly stimulated the growth of plants infected with PVY. In contrast, two saprophytic Trichoderma spp. strains either did not influence or even inhibited the growth of PVY-infected plants. Also, inoculation of PVY-infected potato plants with a pathogenic strain of Colletotrichum coccodes did not inhibit the plant growth. Growth of the PVY-free potato plants was not promoted by the symbiotic fungus, whereas T. viride, T. harzianum and C. coccodes had an evident inhibitory effect. The strongest growth inhibition and highest concentration of H2O2, as an indicator of biotic stress, was observed in PVY-free potato plants inoculated with T. harzianum and C. coccodes strains. Surprisingly, ultrastructural analysis of PVY-infected plant roots colonized by G. intraradices showed virus-like structures in the arbuscules. This pointed to the possibility of mycorrhizal-mediated transmission of virus particles and has to be further examined by testing with immunoassays and real transmission to uninfected plants. In conclusion, although mycorrhiza formation might decrease the impact of PVY infection on plants, a possible role of mycorrhizal fungi as virus vectors is discussed.

  8. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV.

    Directory of Open Access Journals (Sweden)

    Hada Wuriyanghan

    Full Text Available The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli, is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum, which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum, tomatillo (Physalis philadelphica and tobacco (Nicotiana tabacum plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX and Tobacco rattle virus (TRV did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant

  9. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV).

    Science.gov (United States)

    Wuriyanghan, Hada; Falk, Bryce W

    2013-01-01

    The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will

  10. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif

    DEFF Research Database (Denmark)

    von Rosen, Tanya; Rangelova, Desislava Yordanova; Nielsen, Jens

    2014-01-01

    Live modified vaccines to protect against classical swine fever virus (CSFV), based on chimeric pestiviruses, have been developed to enable serological Differentiation of Infected from Vaccinated Animals (DIVA). In this context, the chimeric virus CP7_E2gif vaccine candidate is unique as it does...... not include any CSFV components. In the present study, the DIVA vaccine properties of CP7_E2gif were evaluated in comparison to the conventional live attenuated Riemser C-strain vaccine. Sera and tonsil samples obtained from pigs immunised with these two vaccines were analysed. No viral RNA was found in serum...... after vaccination with CP7_E2gif, whereas some serum samples from C-strain vaccinated animals were positive. In both vaccinated groups, individual viral RNA-positive tonsil samples were detected in animals euthanised between 7 and 21 days post vaccination. Furthermore, serum samples from these animals...

  11. Chimerism and xenotransplantation. New concepts.

    Science.gov (United States)

    Starzl, T E; Rao, A S; Murase, N; Demetris, A J; Thomson, A; Fung, J J

    1999-02-01

    In both transplant and infectious circumstances, the immune response is governed by migration and localization of the antigen. If the antigenic epitopes of transgenic xenografts are sufficiently altered to avoid evoking the destructive force of innate immunity, the mechanisms of engraftment should be the same as those that permit the chimerism-dependent immunologic confrontation and resolution that is the basis of allograft acceptance. In addition to "humanizing" the epitopes, one of the unanswered questions is whether the species restriction of complement described in 1994 by Valdivia and colleagues also necessitates the introduction of human complement regulatory genes in animal donors. Because the liver is the principal or sole source of most complement components, the complement quickly is transformed to that of the donor after hepatic transplantation. Thus, the need for complementary regulatory transgenes may vary according to the kind of xenograft used. Much evidence shows that physiologically important peptides produced by xenografts (e.g., insulin, clotting factors, and enzymes) are incorporated into the metabolic machinery of the recipient body. To the extent that this is not true, xenotransplantation could result in the production of diseases that are analogous to inborn errors of metabolism. In the climate of pessimism that followed the failures of baboon to human liver xenotransplantation in 1992-1993, it seemed inconceivable that the use of even more discordant donors, such as the pig, could ever be seriously entertained; however, this preceded insight into the xenogeneic and allogeneic barriers that has brought transplantation infectious immunity to common ground. With this new insight and the increasing ease of producing transgenic donors, the goal of clinical xenotransplantation may not be so distant.

  12. A map of the diversity of RNA3 recombinants appearing in plants infected with Cucumber mosaic virus and Tomato aspermy virus.

    Science.gov (United States)

    de Wispelaere, Mélissanne; Gaubert, Stéphane; Trouilloud, Séverine; Belin, Christophe; Tepfer, Mark

    2005-01-05

    In order to better understand the role of recombination in creating the diversity of viral genomes that is acted on by selection, we have studied in detail the population of recombinant RNA3 molecules occurring in tobacco plants coinfected with wild-type strains of cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) under conditions of minimal selection pressure. Recombinant RNA3s were observed in 9.6% of the samples. Precise homologous recombination predominated since it was observed at 28 different sites, primarily in six hot spots. Imprecise homologous recombination was observed at two sites, particularly within a GU repeat in the 5' noncoding region. Seven of the eight aberrant homologous recombination sites observed were clustered in the 3' noncoding region. These results have implications on the role of recombination in host adaptation and virus evolution. They also provide essential baseline information for understanding the potential epidemiological impact of recombination in transgenic plants expressing viral sequences.

  13. Genetic determinism and evolutionary reconstruction of a host jump in a plant virus

    DEFF Research Database (Denmark)

    Vassilakos, Nikon; Simon, Vincent; Tzima, Aliki

    2016-01-01

    analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates...... with contrasted levels of adaptation to C. annuum showed that the P3 and, to a lower extent, the CI cistron played important roles in infectivity toward C. annuum. The three analytical approaches pinpointed a single nonsynonymous substitution in the P3 and P3N-PIPO cistrons that evolved several times...

  14. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase of coat protein subgroup II gene from Cucumber mosaic virus

    Science.gov (United States)

    Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These...

  15. Host Recovery and Reduced Virus Level in the Upper Leaves after Potato virus Y Infection Occur in Tobacco and Tomato but not in Potato Plants

    Directory of Open Access Journals (Sweden)

    Xianzhou Nie

    2015-02-01

    Full Text Available In this study, the recovery phenomenon following infection with Potato virus Y (PVY was investigated in tobacco (Nicotiana tobaccum, tomato (Solanum lycopersicum and potato (Solanum tuberosum plants. In tobacco plants, infection of severe strains of PVY (PVYN or PVYN:O induced conspicuous vein clearing and leaf deformation in the first three leaves above the inoculated leaves, but much milder symptoms in the upper leaves. The recovery phenotype was not obvious in tobacco plants infected with PVY strain that induce mild symptoms (PVYO. However, regardless of the virus strains, reduction in PVY RNA levels was similarly observed in the upper leaves of these plants. Removal of the first three leaves above the inoculated leaves interfered with the occurrence of recovery, suggesting that the signal(s mediating the recovery is likely generated in these leaves. In PVYN or PVYN:O but not in PVYO-infected tobacco plants, the expression of PR-1a transcripts were correlated with the accumulation level of PVY RNA. Reduced level of PVY RNA in the upper leaves was also observed in infected tomato plants, whereas such phenomenon was not observed in potato plants. PVY-derived small RNAs were detected in both tobacco and potato plants and their accumulation levels were correlated with PVY RNA levels. Our results demonstrate that the recovery phenotype following PVY infection is host-specific and not necessarily associated with the expression of PR-1a and generation of PVY small RNAs.

  16. Ultrastructural Alteration of Maize Plants Infected with the Maize Rough Dwarf Virus

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-hui; GUO Xing-qi; YE Bao-hua; GUO Yan-kui

    2002-01-01

    The ultrastruetural alteration of maize plants infected with the maize rough dwarf virus (MRDV) was studied with transmission electron microscopy. The results revealed that aggregates of virus particles, with a diameter of 60nm, were found in the root cell, and always distributed near the vacuole membrane. However, no such particles were checked in leaf cells. Moreover, no virus was observed in choroplasts,mitochondria nuclei, plasmodesmata or intercellular canal of all kinds of infected cells of maize, either.Structures of various organelles changed in the infected leaf and root cells of maize. An inward collapse and localized splitting of the tonoplast were observed, the chloropoast structure was destroyed by MRDV, and the number of destroyed or dysplasia chloroplast in leaf cells with serious symptoms was more than that in leaves without symptoms. The matrix of mitochondria in cells infected by MRDV decreased and some of them expanded and destructed. Nuclei was abnormal and the nuclear membrane was broken, In addition, the infected cells were characterized by a voluminous cytoplasm containing hypertrophied endoplasmic reticulum, with rich ribosome content and lots of starch grain.

  17. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  18. Characterization of chimeric Bacillus thuringiensis Vip3 toxins.

    Science.gov (United States)

    Fang, Jun; Xu, Xiaoli; Wang, Ping; Zhao, Jian-Zhou; Shelton, Anthony M; Cheng, Jiaan; Feng, Ming-Guang; Shen, Zhicheng

    2007-02-01

    Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.

  19. Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control.

    Science.gov (United States)

    Gottula, J; Fuchs, M

    2009-01-01

    The concept of pathogen-derived resistance (PDR) describes the use of genetic elements from a pathogen's own genome to confer resistance in an otherwise susceptible host via genetic engineering [J. Theor. Biol. 113 (1985) 395]. Illustrated with the bacteriophage Qbeta in Escherichia coli, this strategy was conceived as a broadly applicable approach to engineer resistance against pathogens. For plant viruses, the concept of PDR was validated with the creation of tobacco plants expressing the coat protein gene of Tobacco mosaic virus (TMV) and exhibiting resistance to infection by TMV [Science 232 (1986) 738]. Subsequently, virus-resistant horticultural crops were developed through the expression of viral gene constructs. Among the numerous transgenic crops produced and evaluated in the field, papaya resistant to Papaya ringspot virus (PRSV) [Annu. Rev. Phytopathol. 36 (1998) 415] and summer squash resistant to Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus, and/or Watermelon mosaic virus [Biotechnology 13 (1995) 1458] were released for commercial use in the USA. Although cultivated on limited areas, the adoption rate of cultivars derived from these two crops is increasing steadily. Tomato and sweet pepper resistant to CMV and papaya resistant to PRSV were also released in the People's Republic of China. Applying the concept of PDR provides unique opportunities for developing virus-resistant crops and implementing efficient and environmentally sound management approaches to mitigate the impact of virus diseases. Based on the tremendous progress made during the past quarter century, the prospects of further advancing this innovative technology for practical control of virus diseases are very promising.

  20. Apple latent spherical virus vector as vaccine for the prevention and treatment of mosaic diseases in pea, broad bean, and eustoma plants by bean yellow mosaic virus.

    Science.gov (United States)

    Satoh, Nozomi; Kon, Tatsuya; Yamagishi, Noriko; Takahashi, Tsubasa; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2014-11-07

    We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV) harboring a segment of the Bean yellow mosaic virus (BYMV) genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  1. Apple Latent Spherical Virus Vector as Vaccine for the Prevention and Treatment of Mosaic Diseases in Pea, Broad Bean, and Eustoma Plants by Bean Yellow Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nozomi Satoh

    2014-11-01

    Full Text Available We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV harboring a segment of the Bean yellow mosaic virus (BYMV genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases.

  2. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors.

    Science.gov (United States)

    Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2009-09-01

    Virus-induced gene silencing (VIGS) has great potential as a reverse-genetics tool in plant genomics. In this study, we examined the potential of VIGS in soybean seeds and the emergence stage of soybean plants using Apple latent spherical virus (ALSV) vectors. Inoculation of an ALSV vector (soyPDS-ALSV) carrying a fragment of the soybean phytoene desaturase (soyPDS) gene into soybean seedlings resulted in a highly uniform photo-bleached phenotype, typical of PDS inhibition, on the upper leaves throughout plant growth. The photo-bleached phenotype was also found on all immature pods, all seed coats, and about 50% embryos of seeds on soybean plants infected with soyPDS-ALSV. Infection with an ALSV vector (soyIFS2-ALSV) having a fragment of soybean isoflavone synthase 2 (soyIFS2) gene also led to a reduction of the levels of both soyIFS2- and soyIFS1- mRNAs and an isoflavone content in the cotyledons of about 36% mature seeds of infected soybean plants. Furthermore, VIGS of soyPDS was induced in the next generation plants by the seed transmission of soyPDS-ALSV. Thus ALSV vectors will be useful for studying gene functions in the reproductive stages and early growth stages, such as emergence and cotyledon stages, in addition to the vegetative stages of soybean plants.

  3. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1.

    Science.gov (United States)

    Sassi, A Ben; Harzallah-Skhiri, F; Bourgougnon, N; Aouni, M

    2008-01-10

    Fifteen species of Tunisian traditional medicinal plants, belonging to 10 families, were selected for this study. They were Inula viscosa (L.) Ait and Reichardia tingitana (L.) Roth ssp. discolor (Pom.) Batt. (Asteraceae), Mesembryanthemum cristallinum L. and M. nodiflorum L. (Aizoaceae), Arthrocnemum indicum (Willd.) Moq., Atriplex inflata Muell., A. parvifolia Lowe var. ifiniensis (Caball) Maire, and Salicornia fruticosa L. (Chenopodiaceae), Cistus monspeliensis L. (Cistaceae), Juniperus phoenicea L. (Cupressaceae), Erica multiflora L. (Ericaceae), Frankenia pulverulenta L. (Frankeniaceae), Hypericum crispum L. (Hypericaceae), Plantago coronopus L. ssp. eu-coronopus Pilger var. vulgaris G.G. (Plantaginaceae) and Zygophyllum album L. (Zygophyllaceae). Fifty extracts prepared from those plants were screened in order to assay their antiviral activity against Herpes simplex virus type 1 (HSV-1), using neutral red incorporation. Extracts from eight plants among these 15 showed some degree of antiviral activity, while the methanolic extract of E. multiflora was highly active with EC(50) of 132.6 microg mL(-1). These results corroborate that medicinal plants from Tunisia can be a rich source of potential antiviral compounds.

  4. Screening, isolation and optimization of anti-white spot syndrome virus drug derived from marine plants

    Institute of Scientific and Technical Information of China (English)

    Somnath Chakraborty; Upasana Ghosh; Thangavel Balasubramanian; Punyabrata Das

    2014-01-01

    Objective: To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various marine floral ecosystems and to evaluate the efficacy of the same in host–pathogen interaction model.Methods:ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti-WSSV property in Litopenaeus vannamei. By means of chemical processes, the purified anti-WSSV plant isolate, MP07X was derived. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug.Results:Thirty species of marine plants were subjected to Soxhlet extraction using water, formulated showing 85% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of MP07X required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 1000 mg/kg body weight/day survived at the rate of 85%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection.Conclusions:Nine plant isolates exhibited significant survivability in host. The drug MP07X thus The drug MP07X derived from Rhizophora mucronata is a potent anti-WSSV drug.

  5. Immunogenicity of plant-produced African horse sickness virus-like particles: implications for a novel vaccine.

    Science.gov (United States)

    Dennis, Susan J; Meyers, Ann E; Guthrie, Alan J; Hitzeroth, Inga I; Rybicki, Edward P

    2017-06-26

    African horse sickness (AHS) is a debilitating and often fatal viral disease affecting horses in much of Africa, caused by the dsRNA orbivirus African horse sickness virus (AHSV). Vaccination remains the single most effective weapon in combatting AHS, as there is no treatment for the disease apart from good animal husbandry. However, the only commercially available vaccine is a live-attenuated version of the virus (LAV). The threat of outbreaks of the disease outside its endemic region and the fact that the LAV is not licensed for use elsewhere in the world, have spurred attempts to develop an alternative safer, yet cost-effective recombinant vaccine. Here, we report the plant-based production of a virus-like particle (VLP) AHSV serotype five candidate vaccine by Agrobacterium tumefaciens-mediated transient expression of all four capsid proteins in Nicotiana benthamiana using the cowpea mosaic virus-based HyperTrans (CPMV-HT) and associated pEAQ plant expression vector system. The production process is fast and simple, scalable, economically viable, and most importantly, guinea pig antiserum raised against the vaccine was shown to neutralize live virus in cell-based assays. To our knowledge, this is the first report of AHSV VLPs produced in plants, which has important implications for the containment of, and fight against the spread of, this deadly disease. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Transmission of Grapevine virus A and Grapevine leafroll-associated virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) Nymphs From Plants With Mixed Infections.

    Science.gov (United States)

    Bertin, S; Cavalieri, V; Gribaudo, I; Sacco, D; Marzachì, C; Bosco, D

    2016-08-01

    Mealybugs (Hemiptera: Pseudococcidae) represent a serious threat for viticulture as vectors of phloem-restricted viruses associated with the grapevine rugose wood and leafroll diseases. Heliococcus bohemicus (Šulc) is known to be involved in the spread of these two viral diseases, being a vector of the Grapevine virus A (GVA) and the Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3). This study investigated the acquisition and transmission efficiency of H. bohemicus fed on mixed-infected plants. Nymphs were field-collected onto GVA, GLRaV-1, and GLRaV-3 multiple-infected grapevines in two vineyards in North-Western Italy, and were used in transmission experiments under controlled conditions. Even if most of the collected nymphs were positive to at least one virus, transmission occurred only to a low number of test grapevines. The transmission frequency of GLRaV-3 was the highest, whereas GVA was transmitted to few test plants. The transmission of multiple viruses occurred at low rates, and nymphs that acquired all the three viruses then failed to transmit them together. Statistical analyses showed that the three viruses were independently acquired and transmitted by H. bohemicus and neither synergistic nor antagonistic interactions occurred among them. GVA and GLRaVs transmission efficiencies by H. bohemicus were lower than those reported for other mealybug vectors. This finding is consistent with the slow spread of leafroll and rugose wood diseases observed in Northern Italy, where H. bohemicus is the predominant vector species.

  7. Experimental evolution of an emerging plant virus in host genotypes that differ in their susceptibility to infection.

    Science.gov (United States)

    Hillung, Julia; Cuevas, José M; Valverde, Sergi; Elena, Santiago F

    2014-09-01

    This study evaluates the extent to which genetic differences among host individuals from the same species condition the evolution of a plant RNA virus. We performed a threefold replicated evolution experiment in which Tobacco etch potyvirus isolate At17b (TEV-At17b), adapted to Arabidopsis thaliana ecotype Ler-0, was serially passaged in five genetically heterogeneous ecotypes of A. thaliana. After 15 passages we found that evolved viruses improved their fitness, showed higher infectivity and stronger virulence in their local host ecotypes. The genome of evolved lineages was sequenced and putative adaptive mutations identified. Host-driven convergent mutations have been identified. Evidences supported selection for increased translational efficiency. Next, we sought for the specificity of virus adaptation by infecting all five ecotypes with all 15 evolved virus populations. We found that some ecotypes were more permissive to infection than others, and that some evolved virus isolates were more specialist/generalist than others. The bipartite network linking ecotypes with evolved viruses was significantly nested but not modular, suggesting that hard-to-infect ecotypes were infected by generalist viruses whereas easy-to-infect ecotypes were infected by all viruses, as predicted by a gene-for-gene model of infection.

  8. Susceptibility of pea, horse bean and bean to viruses in dependence on the age of the inoculated plants

    Directory of Open Access Journals (Sweden)

    Władysław Błaszczak

    2013-12-01

    Full Text Available Three cultivars of pea did not differ in their susceptibility to Cucumber Mosaic Virus (CMV notwithstanding the age of the inoculated plants. But their susceptibility to infection with Bean Yellow Mosaic Virus (BYMV differed. Horse bean cultivars 'Nadwiślański' and 'Major' proved to be less susceptible to Broad Bean True Mosaic Virus (BBTMV when older plants were-inoculated. Two bean cultivars 'Złota Saxa' and 'Earle' appeared to be susceptible to BBTMV only in the phase of developing primary leaves and the age-dependent resistance to infection increased faster in plants of the cv. 'Złota Saxa'. Both cultivars of bean showed also age-dependent resistance to infection by BYMV. All these viruses restricted growth and yield of plants. The decreases were greater when younger plants were inoculated. These dependences appeared most distinctly in pea cv. 'Sześciotygodniowy' infected with CMV and in two cultivars of bean infected with BYMV.

  9. Meristem culture for the elimination of the virus S of the potato in plants cultivated in vitro

    Directory of Open Access Journals (Sweden)

    Leyanis García-Águila

    2001-04-01

    Full Text Available The virus S of potato was detected in three varieties of scientific and productive interests during propagation in vitro of different genotypes. With the objective of obtaining plants free of virus, three sizes of meristems (0.3 to 0.2mm, 0.2 to 0.1mm, and 0.1 to 0.06mm were studied. For the growth of the meristems a culture medium was used that contained Murashige and Skoog (1962 salts, 1 mg.l-1 thyamine, 100 mg.l-1 myoinositol, 1 mg.l-1 gibberelic acid and 1.8 mg.l-1 gelling agent. The plants regenerated from meristems and after two transfers to multiplication culture medium were diagnosed through the ELISA technique. As a result 96.6% of cleaness was obtained when the range of meristem size was from 0.1 to 0.06 mm. The regeneration percentages of plants from the meristems decreased, as the range of size was smaller. Key words: regeneration of plants, Solanum tuberosum L, virus infection, virus free plants

  10. Comparative insecticidal properties of two nucleopolyhedrovirus vectors encoding a similar toxin gene chimer.

    Science.gov (United States)

    Treacy, M F; Rensner, P E; All, J N

    2000-08-01

    Laboratory, greenhouse and field studies were conducted to characterize the insecticidal properties of genetically altered forms of Autographa californica (Speyer) nucleopolyhedrovirus (AcNPV) and Helicoverpa zea (Boddie) NPV (HzNPV) against selected heliothine species. The altered viruses each contained a chimeric 0.8-kb fragment encoding the insect-specific, sodium channel neurotoxin from the Algerian scorpion Androctonus australis Hector (AaIT, hence recombinant viruses designated Ac-AaIT and Hz-AaIT). Based on LD50 values, results from diet-overlay bioassays showed Ac-AaIT and Hz-AaIT to be equally virulent against larval tobacco budworm, Heliothis virescens (F.), but Hz-AaIT averaged 1,335-fold greater bioactivity than Ac-AaIT against larval cotton bollworm, Helicoverpa zea (Boddie). Hz-AaIT killed larvae of both heliothine species at rates significantly faster than those imparted by HzNPV (viral LT50 values averaged 2.5 and 5.6 d, respectively). In greenhouse studies, foliar sprays of Ac-AaIT and Hz-AaIT were equally effective in controlling H. virescens on cotton; however, Hz-AaIT provided control of H. zea on cotton at a level superior to that of Ac-AaIT. For example, after three weekly sessions of foliar application and H. zea artificial infestation, cotton treated with Ac-AaIT or Hz-AaIT at 10 x 10(11) occulsion bodies (OB)/ha averaged 2.5 and 16.2 nondamaged flower buds per plant, respectively. Another greenhouse study conducted against heliothine species on cotton showed that the quicker killing speed exhibited by Hz-AaIT led to improved plant protection versus HzNPV. Finally, results from three field trials demonstrated that Hz-AaIT at 5-12 x 10(11) OB/ha provided control of the heliothine complex in cotton at levels slightly better than Bacillus thuringiensis, equal to the macrolide, spinosad, and only slightly less than that of selected pyrethroid and carbamate insecticides. Overall, results from these studies indicate that, because of host range

  11. Protecting crops from non-persistently aphid-transmitted viruses: a review on the use of barrier plants as a management tool.

    Science.gov (United States)

    Hooks, Cerruti R R; Fereres, Alberto

    2006-09-01

    Barrier plants are a management tool based on secondary plants used within or bordering a primary crop for the purpose of disease control. Aphid-transmitted viruses account for approximately 50% of the 600 known viruses with an invertebrate vector. Barrier plants may act as real natural sinks for non-persistent aphid-transmitted viruses and have proved in the past to be an effective crop management strategy to protect against virus infection. Increasing the knowledge on aphid host seeking and flying behaviour, and on how barrier plants may affect the behaviour of aphids and their natural enemies will allow further development of this environmentally-friendly habitat manipulation strategy. An ideal plant barrier should be a non-host for the virus and the vector, but appealing to aphid landing and attractive to their natural enemies and should allow sufficient residence time to allow aphid probing before taking-off occurs. In this review, we have addressed why aphids are manageable by barrier cropping, the mechanisms by which barrier plants affect the occurrence of non-persistently aphid-transmitted viruses and the limitations of using barrier plants as a virus control strategy. Finally, we have pointed out future directions of research that should be conducted to integrate barrier cropping with other disease management strategies, and optimise and extend the use of barrier plants as a strategy for managing aphid-transmitted virus diseases.

  12. Simian-Human immunodeficiency viruses expressing chimeric subtype B/C Vpu proteins demonstrate the importance of the amino terminal and transmembrane domains in the rate of CD4(+) T cell loss in macaques.

    Science.gov (United States)

    Ruiz, Autumn; Schmitt, Kimberly; Culley, Nathan; Stephens, Edward B

    2013-01-20

    Previously, we reported that simian-human immunodeficiency viruses expressing either the lab adapted subtype B (SHIV(KU-1bMC33)) or subtype C (SHIV(SCVpu)) Vpu proteins of human immunodeficiency virus type 1 (HIV-1) had different rates of CD4(+) T cell loss following inoculation into macaques. In this study, we have generated SHIVs that express either the subtype B or subtype C N-terminal (NTD) and transmembrane (TMD) domains and the opposing cytoplasmic domain (SHIV(VpuBC), SHIV(VpuCB)). In culture systems, SHIV(VpuBC) replicated faster than SHIV(VpuCB) while both proteins exhibited similar ability to down-modulate CD4 surface expression. Following inoculation into macaques, SHIV(VpuBC) resulted in rapid CD4(+) T cell loss similar to the parental SHIV(KU-1bMC33), while the rate of CD4(+) T cell loss in those inoculated with SHIV(VpuCB) was intermediate of SHIV(SCVpu) and SHIV(KU-1bMC33). These results emphasize the importance of the Vpu NTD/TMD region in the rate of CD4(+) T cell loss in the pathogenic X4 SHIV/macaque model.

  13. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection.

    Science.gov (United States)

    Linthorst, H J; Meuwissen, R L; Kauffmann, S; Bol, J F

    1989-03-01

    Samsun NN tobacco cells were transformed with chimeric genes for pathogenesis-related (PR) proteins derived from genomic (PR-1a, GRP) or cDNA (PR-S) clones under the transcriptional control of the cauliflower mosaic virus 35S promoter. Regenerated plants were assayed by RNA and protein gel blotting, and plants showing high specific expression of the inserted genes were selected for self-pollination and seed formation. Inspection of second generation transformants showed that constitutive expression of PR-1a, GRP, and PR-S in tobacco in general does not have an effect on the phenotypic appearance of the plants or the expression of other endogenous PR genes. Furthermore, constitutive expression of the above genes does not affect the susceptibility of the plants to infection with tobacco mosaic virus or alfalfa mosaic virus.

  14. The Tomato spotted wilt virus genome is processed differentially in its plant host Arachis hypogaea and its thrips vector Frankliniella fusca

    OpenAIRE

    Stephen John Fletcher; Anita Shrestha; Jonathan Peters; Carroll, Bernard J.; Rajagopalbabu Srinivasan; Pappu, Hanu R.; Neena Mitter

    2016-01-01

    Thrips-transmitted tospoviruses are economically important viruses affecting a wide range of field and horticultural crops worldwide. Tomato spotted wilt virus is the type member of the Tospovirus genus with a broad host range of more than 900 plant species. Interactions between these viruses and their plant hosts and insect vectors via RNA interference pathways are likely a key determinant of pathogenicity. The current investigation, for the first time, compares biogenesis of small RNAs be...

  15. Chimerism in health, transplantation and autoimmunity

    NARCIS (Netherlands)

    Koopmans, Marije; Kremer Hovinga, Idske Cornelia Lydia

    2009-01-01

    The term “chimerism” originates from Greek mythology and refers to the creature Chimaera, whose body was in front a lion, the back a serpent and the midsection a goat. In medicine, the term chimerism refers to an individual, organ or part consisting of tissues of diverse genetic constitution. Pregna

  16. Simultaneous detection and identification of four cherry viruses by two step multiplex RT-PCR with an internal control of plant nad5 mRNA.

    Science.gov (United States)

    Noorani, Md Salik; Awasthi, Prachi; Sharma, Maheshwar Prasad; Ram, Raja; Zaidi, Aijaz Asgar; Hallan, Vipin

    2013-10-01

    A multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed and standardized for the simultaneous detection of four cherry viruses: Cherry virus A (CVA, Genus; Capillovirus), Cherry necrotic rusty mottle virus (CNRMV, unassigned species of the Betaflexiviridae), Little cherry virus 1 (LChV-1, Genus; Closterovirus) and Prunus necrotic ringspot virus (PNRSV, Genus; Ilarvirus) with nad5 as plant internal control. A reliable and quick method for total plant RNA extraction from pome and stone fruit trees was also developed. To minimize primer dimer formation, a single antisense primer for CVA and CNRMV was used. A mixture of random hexamer and oligo (dT) primer was used for cDNA synthesis, which was highly suited and economic for multiplexing. All four viruses were detected successfully by mRT-PCR in artificially created viral RNA mixture and field samples of sweet cherry. The identity of the viruses was confirmed by sequencing. The assay could detect above viruses in diluted cDNA (10(-4)) and RNA (10(-3), except PNRSV which was detected only till ten times lesser dilution). The developed mRT-PCR will not only be useful for the detection of viruses from single or multiple infections of sweet cherry plants but also for other stone and pome fruits. The developed method will be therefore quite helpful for virus indexing, plant quarantine and certification programs. This is the first report for the simultaneous detection of four cherry viruses by mRT-PCR.

  17. A bench-scale, cost effective and simple method to elicit Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus attack using ozone-mediated inactivated Cucumber mosaic virus inoculum.

    Science.gov (United States)

    Sudhakar, N; Nagendra-Prasad, D; Mohan, N; Murugesan, K

    2007-12-01

    Studies were undertaken to evaluate ozone for inactivation of Cucumber mosaic virus present in the inoculum and to stimulate Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus infection by using the inactivated Cucumber mosaic virus inoculum. Application of a T(4) (0.4mg/l) concentration of ozone to the inoculum containing Cucumber mosaic virus resulted in complete inactivation of the virus. The inactivated viral inoculum was mixed with a penetrator (delivery agent), referred to as T(4) preparation, and it was evaluated for the development of systemic acquired resistance in the tomato plants. Application of a T(4) preparation 5 days before inoculation with the Cucumber mosaic virus protected tomato plants from the effects of Cucumber mosaic virus. Among the components of the inactivated virus tested, coat protein subunits and aggregates were responsible for the acquired resistance in tomato plants. In field trials, the results of enzyme-linked immunosorbent assay revealed that, Cucumber mosaic virus accumulation was significantly less for all the test plants (16%) sprayed with the T(4) preparation than untreated control plants (89.5%) at 28 days postinoculation (dpi). A remarkable increase in the activities of the total soluble phenolics (10-fold) and salicylic acid (16-fold) was detected 5 days after the treatment in foliar extracts of test plants relative to untreated control plants. The results showed that treatment of tomato plants with inactivated viral inoculum led to a significant enhancement of protection against Cucumber mosaic virus attack in a manner that mimics a real pathogen and induces systemic acquired resistance.

  18. Deep Sequencing Analysis of RNAs from Citrus Plants Grown in a Citrus Sudden Death-Affected Area Reveals Diverse Known and Putative Novel Viruses

    Directory of Open Access Journals (Sweden)

    Emilyn E. Matsumura

    2017-04-01

    Full Text Available Citrus sudden death (CSD has caused the death of approximately four million orange trees in a very important citrus region in Brazil. Although its etiology is still not completely clear, symptoms and distribution of affected plants indicate a viral disease. In a search for viruses associated with CSD, we have performed a comparative high-throughput sequencing analysis of the transcriptome and small RNAs from CSD-symptomatic and -asymptomatic plants using the Illumina platform. The data revealed mixed infections that included Citrus tristeza virus (CTV as the most predominant virus, followed by the Citrus sudden death-associated virus (CSDaV, Citrus endogenous pararetrovirus (CitPRV and two putative novel viruses tentatively named Citrus jingmen-like virus (CJLV, and Citrus virga-like virus (CVLV. The deep sequencing analyses were sensitive enough to differentiate two genotypes of both viruses previously associated with CSD-affected plants: CTV and CSDaV. Our data also showed a putative association of the CSD-symptomatic plants with a specific CSDaV genotype and a likely association with CitPRV as well, whereas the two putative novel viruses showed to be more associated with CSD-asymptomatic plants. This is the first high-throughput sequencing-based study of the viral sequences present in CSD-affected citrus plants, and generated valuable information for further CSD studies.

  19. Physical Characteristics of the Leaves and Latex of Papaya Plants Infected with the Papaya meleira Virus

    Science.gov (United States)

    Magaña-Álvarez, Anuar; Vencioneck Dutra, Jean Carlos; Carneiro, Tarcio; Pérez-Brito, Daisy; Tapia-Tussell, Raúl; Ventura, Jose Aires; Higuera-Ciapara, Inocencio; Fernandes, Patricia Machado Bueno; Fernandes, Antonio Alberto Ribeiro

    2016-01-01

    Sticky disease, which is caused by Papaya meleira virus (PMeV), is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease. PMID:27092495

  20. Physical Characteristics of the Leaves and Latex of Papaya Plants Infected with the Papaya meleira Virus.

    Science.gov (United States)

    Magaña-Álvarez, Anuar; Vencioneck Dutra, Jean Carlos; Carneiro, Tarcio; Pérez-Brito, Daisy; Tapia-Tussell, Raúl; Ventura, Jose Aires; Higuera-Ciapara, Inocencio; Fernandes, Patricia Machado Bueno; Fernandes, Antonio Alberto Ribeiro

    2016-04-15

    Sticky disease, which is caused by Papaya meleira virus (PMeV), is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease.

  1. Physical Characteristics of the Leaves and Latex of Papaya Plants Infected with the Papaya meleira Virus

    Directory of Open Access Journals (Sweden)

    Anuar Magaña-Álvarez

    2016-04-01

    Full Text Available Sticky disease, which is caused by Papaya meleira virus (PMeV, is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease.

  2. Highly Sensitive Fluorescent-labeled Probes and Glass Slide Hybridization for the Detection of Plant RNA Viruses and a Viroid

    Institute of Scientific and Technical Information of China (English)

    Zhiyou DU; Bo JIN; Wenhong LIU; Liang CHEN; Jishuang CHEN

    2007-01-01

    In this study, a modified method of the conventional RNA dot-blot hybridization was established, by replacing 32P labels with CY5 labels and replacing nylon membranes with positive-charged glass slides, for detecting plant RNA viruses and a viroid. The modified RNA dot-blot hybridization method was named glass slide hybridization. The optimum efficiency of RNA binding onto the surfaces of activated glass slide was achieved using aminosilane-coated glass slide as a solid matrix and 5×saline sodium citrate (SSC) as a spotting solution. Using a CY5-labeled DNA probe prepared through PCR amplification, the optimized glass slide hybridization could detect as little as 1.71 pg of tobacco mosaic virus (TMV) RNA.The sensitivity of the modified method was four times that of dot-blot hybridization on nylon membrane with a 32P-labeled probe. The absence of false positive within the genus Potyvirus [potato virus A, potato virus Y (PVY) and zucchini yellow mosaic virus] showed that this method was highly specific. Furthermore,potato spindle tuber viroid (PSTVd) was also detected specifically. A test of 40 field potato samples showed that this method was equivalent to the conventional dot-blot hybridization for detecting PVY and PSTVd. To our knowledge, this is the first report of using dot-blot hybridization on glass slides with fluorescent-labeled probes for detecting plant RNA viruses and a viroid.

  3. Parallels and distinctions in the direct cell-to-cell spread of the plant and animal viruses.

    Science.gov (United States)

    Ritzenthaler, Christophe

    2011-11-01

    The paradigm that viruses can move directly, and in some cases covertly, between contacting target cells is now well established for several virus families. The underlying mechanisms of cell-to-cell spread, however, remain to be fully elucidated and may differ substantially depending on the viral exit/entry route and the cellular tropism. Here, two divergent cell-to-cell spread mechanisms are exemplified: firstly by human retroviruses, which rely upon transient adhesive structures that form between polarized immune cells termed virological synapses, and secondly by herpesviruses that depend predominantly on pre-existing stable cellular contacts, but may also form virological synapses. Plant viruses can also spread directly between contacting cells, but are obliged by the rigid host cell wall to move across pore structures termed plasmodesmata. This review will focus primarily on recent advances in our understanding of animal virus cell-to-cell spread using examples from these two virus families to highlight differences and similarities, and will conclude by comparing and contrasting the cell-to-cell spread of animal and plant viruses. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue.

    Science.gov (United States)

    Anderson, Joseph; Akkina, Ramesh

    2008-03-01

    Species-specific innate resistance against viral infections offers novel avenues for antiviral therapeutics. The retroviral restriction factor TRIM5alpha (tripartite motif 5alpha protein) has been shown to potently restrict human immunodeficiency virus (HIV)-1 infection in otherwise susceptible cell lines and CD34(+) cell-derived macrophages. A 13-amino acid patch in the C-terminal B30.2 (SPRY) domain of rhesus macaque TRIM5alpha has been shown to be involved in HIV-1 capsid recognition and is critical for viral inhibition. A chimeric human-rhesus TRIM5alpha (TRIM5alpha-HRH) was generated by replacing an 11-amino acid patch in the human isoform with the rhesus 13-amino acid patch. Here we show that lentiviral vector expression of this human-rhesus chimera in HIV-1-permissive MAGI-CXCR4 cells conferred resistance as well as a selective survival advantage on HIV-1 challenge. To apply these findings in a stem cell gene therapy setting, TRIM5alpha-HRH was expressed in CD34(+) cell-derived macrophages in vitro and in SCID-hu mouse-derived thymocytes in vivo. On viral challenge, transgenic macrophages and thymocytes were highly resistant to HIV-1 compared with control cells. Normal development of TRIM5alpha-HRH-expressing macrophages and in vivo-derived T cells was also observed by phenotypic flow cytometric analysis. These results demonstrate the efficacy of TRIM5alpha-HRH in a stem cell setting and its further advancement for use in gene therapy applications.

  5. Use of tissue culture techniques for producing virus-free plant in garlic and their identification through real-time PCR.

    Science.gov (United States)

    Taşkın, Hatıra; Baktemur, Gökhan; Kurul, Mehmet; Büyükalaca, Saadet

    2013-01-01

    This study was performed for comparison of meristem culture technique with shoot tip culture technique for obtaining virus-free plant, comparison of micropropagation success of two different nutrient media, and determination of effectiveness of real-time PCR assay for the detection of viruses. Two different garlic species (Allium sativum and Allium tuncelianum) and two different nutrient media were used in this experiment. Results showed that Medium 2 was more successful compared to Medium 1 for both A. tuncelianum and A. sativum (Kastamonu garlic clone). In vitro plants obtained via meristem and shoot tip cultures were tested for determination of onion yellow dwarf virus (OYDV) and leek yellow stripe virus (LYSV) through real-time PCR assay. In garlic plants propagated via meristem culture, we could not detect any virus. OYDV and LYSV viruses were detected in plants obtained via shoot tip culture. OYDV virus was observed in amount of 80% and 73% of tested plants for A. tuncelianum and A. sativum, respectively. LYSV virus was found in amount of 67% of tested plants of A. tuncelianum and in amount of 87% of tested plants of A. sativum in this study.

  6. Use of Tissue Culture Techniques for Producing Virus-Free Plant in Garlic and Their Identification through Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Hatıra Taşkın

    2013-01-01

    Full Text Available This study was performed for comparison of meristem culture technique with shoot tip culture technique for obtaining virus-free plant, comparison of micropropagation success of two different nutrient media, and determination of effectiveness of real-time PCR assay for the detection of viruses. Two different garlic species (Allium sativum and Allium tuncelianum and two different nutrient media were used in this experiment. Results showed that Medium 2 was more successful compared to Medium 1 for both A. tuncelianum and A. sativum (Kastamonu garlic clone. In vitro plants obtained via meristem and shoot tip cultures were tested for determination of onion yellow dwarf virus (OYDV and leek yellow stripe virus (LYSV through real-time PCR assay. In garlic plants propagated via meristem culture, we could not detect any virus. OYDV and LYSV viruses were detected in plants obtained via shoot tip culture. OYDV virus was observed in amount of 80% and 73% of tested plants for A. tuncelianum and A. sativum, respectively. LYSV virus was found in amount of 67% of tested plants of A. tuncelianum and in amount of 87% of tested plants of A. sativum in this study.

  7. Viral counterdefense on RNA silencing : analysis of RNA silencing suppressors from arthropod-borne negative strand RNA plant viruses

    NARCIS (Netherlands)

    Schnettler, E.

    2010-01-01

    This thesis describes that RNA silencing suppressor (RSS) proteins encoded by negative-stranded RNA plant viruses are able to interfere with different RNA silencing pathways in a variety of organisms by interacting with double stranded (ds)RNA molecules. These RSS proteins are able to counteract the

  8. Characterization of a New Tomato Spotted Wilt Virus Isolates Found in Hippeastrum hybridum (Hort. Plants in Poland

    Directory of Open Access Journals (Sweden)

    Berniak Hanna

    2016-06-01

    Full Text Available Two Tomato spotted wilt virus (TSWV isolates H1 and H2 found in Hippeastrum hybridum plants were characterized based on biological, serological, and molecular properties. Virus isolates showed differences in symptom expression – H1 isolate displayed severe necrotic spots and patterns, whereas mild mosaic symptoms were observed on H2-infected H. hybridum plants. Both TSWV isolates showed comparable reactivity with TSWV-specific antibodies and they induced similar symptoms on herbaceous indicator plants, but some differences between these isolates were detected at the nucleotide sequence level of genomic S and M ssRNAs segment fragments. The nucleotide sequences encoding nucleocapsid (N and nonstructural (NSs and NSm proteins showed 98.2%, 97.5%, and 96.5% identity, respectively. Phylogenetic analysis of N and NSs sequences conducted for tested isolates and 31 TSWV isolates included for comparison revealed that H1 and H2 isolates fell into the same cluster and they were grouped together with isolates found previously in different vegetables, ornamentals, and weeds. When NSm ORF was analyzed, the tested isolates formed a separate cluster: H1 isolate showed the highest affinity with TSWV isolates infecting chrysanthemum and pepper plants, whereas H2 isolate was most closely related to other virus isolates found in sweet pepper and tomatoes. These results indicate that both isolates were reassortants between different virus isolates, and represented two novel genetic patterns of TSWV.

  9. Viral counterdefense on RNA silencing : analysis of RNA silencing suppressors from arthropod-borne negative strand RNA plant viruses

    NARCIS (Netherlands)

    Schnettler, E.

    2010-01-01

    This thesis describes that RNA silencing suppressor (RSS) proteins encoded by negative-stranded RNA plant viruses are able to interfere with different RNA silencing pathways in a variety of organisms by interacting with double stranded (ds)RNA molecules. These RSS proteins are able to counteract the

  10. Genome sequencing and analysis of the whitefly (Bemisia tabaci) MEAM1, one of the most important vectors for plant viruses

    Science.gov (United States)

    Among whiteflies, the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex is particularly important because of its ability to transmit hundreds of plant viruses, resulting in the loss of billions of U.S. dollars on agronomically important crops such as tomato, cucurbits, cassava, and cotton worl...

  11. Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum Pox Virus.

    Science.gov (United States)

    da Câmara Machado, M L; da Câmara Machado, A; Hanzer, V; Weiss, H; Regner, F; Steinkellner, H; Mattanovich, D; Plail, R; Knapp, E; Kalthoff, B; Katinger, H

    1992-02-01

    A system was developed which allows the transfer of foreign genes into apricot cultivars. We report the transformation and regeneration of Prunus armeniaca plants with Agrobacterium tumefaciens strain LBA 4404 containing various binary plasmids, pBinGUSint, carrying the marker gene ß-glucuronidase (GUS) and pBinPPVm, carrying the coat protein gene of Plum Pox Virus (PPV). The marker gene GUS was used for optical evaluation of the efficiency of the transformation system. The coat protein gene of PPV was used to introduce coat protein mediated resistance against one of the most important pathogens of stone fruit trees in Europe and the whole Mediterranean area. This is the first report of the successful integration of a viral coat protein gene into a fruit tree species, opening a new perspective on the control of the disease.

  12. Current Status of Natural Products from Plants as Anti-herpes Simplex Virus 1 Agents

    Institute of Scientific and Technical Information of China (English)

    Yang-fei XIANG; Ying PEI; Yi-fei WANG

    2008-01-01

    Nucleoside analogues have been the mainstay of clinical treatment of herpes simplex virus 1 (HSV-1) infections since their development. However, the emergence of drug resistant strains has underlined the urgency of the discovery of novel anti-HSV-1 drugs. Natural products, which provided many novel drug leads, are known to be an important source of anti-HSV-1 agents. Herein, we present an overview of natural products with anti-HSV-1 activities isolated from a variety of plants reported in recent years. Several different compounds, mainly belonging to the three groups of polysaccharides, polyphenols and terpenes, showed antiviral effects against HSV-1, indicating their potential to be promising anti-HSV-1 agents.

  13. Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease.

    Science.gov (United States)

    Hussein, G; Miyashiro, H; Nakamura, N; Hattori, M; Kakiuchi, N; Shimotohno, K

    2000-11-01

    One hundred fifty-two methanol and water extracts of different parts of 71 plants commonly used in Sudanese traditional medicine were screened for their inhibitory effects on hepatitis C virus (HCV) protease (PR) using in vitro assay methods. Thirty-four extracts showed significant inhibitory activity (>/=60% inhibition at 100 microg/mL). Of these, eight extracts, methanol extracts of Acacia nilotica, Boswellia carterii, Embelia schimperi, Quercus infectoria, Trachyspermum ammi and water extracts of Piper cubeba, Q. infectoria and Syzygium aromaticum, were the most active (>/=90% inhibition at 100 microg/mL). From the E. schimperi extract, two benzoquinones, embelin (I) and 5-O-methylembelin (II), were isolated and found as potent HCV-PR inhibitors with IC(50) values of 21 and 46 microM, respectively. Inhibitory activities of derivatives of I against HCV-PR as well as their effects on other serine proteases were also investigated.

  14. Genetic variation in fitness within a clonal population of a plant RNA virus.

    Science.gov (United States)

    Cervera, Héctor; Elena, Santiago F

    2016-01-01

    A long-standing observation in evolutionary virology is that RNA virus populations are highly polymorphic, composed by a mixture of genotypes whose abundances in the population depend on complex interaction between fitness differences, mutational coupling and genetic drift. It was shown long ago, though in cell cultures, that most of these genotypes had lower fitness than the population they belong, an observation that explained why single-virion passages turned on Muller's ratchet while very large population passages resulted in fitness increases in novel environments. Here we report the results of an experiment specifically designed to evaluate in vivo the fitness differences among the subclonal components of a clonal population of the plant RNA virus tobacco etch potyvirus (TEV). Over 100 individual biological subclones from a TEV clonal population well adapted to the natural tobacco host were obtained by infectivity assays on a local lesion host. The replicative fitness of these subclones was then evaluated during infection of tobacco relative to the fitness of large random samples taken from the starting clonal population. Fitness was evaluated at increasing number of days post-inoculation. We found that at early days, the average fitness of subclones was significantly lower than the fitness of the clonal population, thus confirming previous observations that most subclones contained deleterious mutations. However, as the number of days of viral replication increases, population size expands exponentially, more beneficial and compensatory mutations are produced, and selection becomes more effective in optimizing fitness, the differences between subclones and the population disappeared.

  15. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro.

    Science.gov (United States)

    Jardim, A C G; Igloi, Z; Shimizu, J F; Santos, V A F F M; Felippe, L G; Mazzeu, B F; Amako, Y; Furlan, M; Harris, M; Rahal, P

    2015-03-01

    Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50=2.3μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3(∗)43 (EC50=4.0μM), 3(∗)20 (EC50=8.2μM) and 5(∗)362 (EC50=38.9μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds.

  16. GAPDH--a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement.

    Directory of Open Access Journals (Sweden)

    Masanori Kaido

    2014-11-01

    Full Text Available The formation of virus movement protein (MP-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV, a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A, which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.

  17. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    Science.gov (United States)

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  18. Occurrence and sequences of Lily mottle virus and Lily symptomless virus in plants grown from imported bulbs in Zhejiang province, China.

    Science.gov (United States)

    Zheng, H-Y; Chen, J; Zhao, M-F; Lin, L; Chen, J-P; Antoniw, J F; Adams, M J

    2003-12-01

    Degenerate primers were used to amplify virus sequences from imported lilies in Zhejiang province, China. Two viruses, Lily mottle virus (LMoV, genus Potyvirus) and Lily symptomless virus (LSV, genus Carlavirus) were detected, purified and completely sequenced from a mixed infection in a plant raised from bulbs imported from the Netherlands. The sequence of LMoV was 9644 nt long and encoded a polyprotein of 3095 amino acids with a calculated M(r) of 351.0 kDa that had only 45.1-54.4% identity to other completely sequenced potyviruses. Phylogenetic analysis of the complete polyproteins of members of the genus demonstrated that LMoV was distantly grouped with LYSV, BYMV and ClYVV. Two partial LMoV sequences from different cultivars were identical to one another and very similar (98.3% identical nucleotides) to the corresponding region of the complete sequence. Analysis of the coat protein sequences of LMoV isolates revealed two subgroups, corresponding to the earlier "Tulip breaking virus lily strain" and "Tulip band breaking virus" isolates. Our newly-determined isolates showed an extremely close relationship to the first of these. The LSV sequence was 8393 nucleotides long and had the typical carlavirus genome organization. The ORF1 protein was most closely related to that of Blueberry scorch virus (57.2% identical amino acids). Sequences of 1796 nt at the 3'-end of three additional LSV isolates from different cultivars were very similar (>98% identical nucleotides) to the corresponding region of the complete sequence. This is the first report of complete sequences for LMoV and LSV.

  19. Supervised learning classification models for prediction of plant virus encoded RNA silencing suppressors.

    Directory of Open Access Journals (Sweden)

    Zeenia Jagga

    Full Text Available Viral encoded RNA silencing suppressor proteins interfere with the host RNA silencing machinery, facilitating viral infection by evading host immunity. In plant hosts, the viral proteins have several basic science implications and biotechnology applications. However in silico identification of these proteins is limited by their high sequence diversity. In this study we developed supervised learning based classification models for plant viral RNA silencing suppressor proteins in plant viruses. We developed four classifiers based on supervised learning algorithms: J48, Random Forest, LibSVM and Naïve Bayes algorithms, with enriched model learning by correlation based feature selection. Structural and physicochemical features calculated for experimentally verified primary protein sequences were used to train the classifiers. The training features include amino acid composition; auto correlation coefficients; composition, transition, and distribution of various physicochemical properties; and pseudo amino acid composition. Performance analysis of predictive models based on 10 fold cross-validation and independent data testing revealed that the Random Forest based model was the best and achieved 86.11% overall accuracy and 86.22% balanced accuracy with a remarkably high area under the Receivers Operating Characteristic curve of 0.95 to predict viral RNA silencing suppressor proteins. The prediction models for plant viral RNA silencing suppressors can potentially aid identification of novel viral RNA silencing suppressors, which will provide valuable insights into the mechanism of RNA silencing and could be further explored as potential targets for designing novel antiviral therapeutics. Also, the key subset of identified optimal features may help in determining compositional patterns in the viral proteins which are important determinants for RNA silencing suppressor activities. The best prediction model developed in the study is available as a

  20. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants

    Directory of Open Access Journals (Sweden)

    Aleksandra eObrępalska-Stęplowska

    2015-10-01

    Full Text Available Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at 27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day on the accumulation rate of the virus and satellite RNA (satRNA in Nicotiana benthamiana plants infected by peanut stunt virus (PSV with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV+satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV+satRNA-infected plants the shift in the

  1. Simultaneous Application of Heat, Drought, and Virus to Arabidopsis Plants Reveals Significant Shifts in Signaling Networks1[W][OPEN

    Science.gov (United States)

    Prasch, Christian Maximilian; Sonnewald, Uwe

    2013-01-01

    Considering global climate change, the incidence of combined drought and heat stress is likely to increase in the future and will considerably influence plant-pathogen interactions. Until now, little has been known about plants exposed to simultaneously occurring abiotic and biotic stresses. To shed some light on molecular plant responses to multiple stress factors, a versatile multifactorial test system, allowing simultaneous application of heat, drought, and virus stress, was developed in Arabidopsis (Arabidopsis thaliana). Comparative analysis of single, double, and triple stress responses by transcriptome and metabolome analysis revealed that gene expression under multifactorial stress is not predictable from single stress treatments. Hierarchical cluster and principal component analyses identified heat as the major stress factor, clearly separating heat-stressed from non-heat-stressed plants. We identified 11 genes differentially regulated in all stress combinations as well as 23 genes specifically regulated under triple stress. Furthermore, we showed that virus-treated plants displayed enhanced expression of defense genes, which was abolished in plants additionally subjected to heat and drought stress. Triple stress also reduced the expression of genes involved in the R-mediated disease response and increased the cytoplasmic protein response, which was not seen under single stress conditions. These observations suggested that abiotic stress factors significantly altered turnip mosaic virus-specific signaling networks, which led to a deactivation of defense responses and a higher susceptibility of plants. Collectively, our transcriptome and metabolome data provide a powerful resource to study plant responses during multifactorial stress and allow identifying metabolic processes and functional networks involved in tripartite interactions of plants with their environment. PMID:23753177

  2. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    Directory of Open Access Journals (Sweden)

    Tatsuya eKon

    2014-11-01

    Full Text Available Apple latent spherical virus (ALSV is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the CaMV 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation 0 plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.

  3. Studies regarding the effects of Rosmarinus officinalis oil treatments in healthy and potato virus Y (PVY) infected plants Solanum tuberosum L.

    OpenAIRE

    Carmen Liliana BĂDĂRĂU; Angela MĂRCULESCU; Nicoleta CHIRU; Florentina DAMŞA; Andreea NISTOR

    2010-01-01

    The potato virus Y cause loss in yield and quality of tubers. Hydrogen peroxide, ascorbic acid and antioxidants such as rosmarinic acid present in oils extracted from Rosmarinus officinalis plants are implicated in signaling against stress. The effects of these chemicals on tuber yield and pigments content were evaluated in plants testing positive after virus mechanical infection. Without chemical treatment, positive plants showed significant reductions in leaf pigments content and tuber weig...

  4. Reduction of viral load in whitefly (Bemisia tabaci Gen.) feeding on RNAi-mediated bean golden mosaic virus resistant transgenic bean plants.

    Science.gov (United States)

    de Paula, Nayhanne T; de Faria, Josias C; Aragão, Francisco J L

    2015-12-02

    The RNAi concept was explored to silence the rep gene from the bean golden mosaic virus (BGMV) and a genetically modified (GM) bean immune to the virus was previously generated. We investigated if BGMV-viruliferous whiteflies would reduce viral amount after feeding on GM plants. BGMV DNA amount was significantly reduced in whiteflies feeding in GM-plants (compared with insects feeding on non-GM plants) for a period of 4 and 8 days in 52% and 84% respectively.

  5. Inhibition of brome mosaic virus (BMV) amplification in protoplasts from transgenic tobacco plants expressing replicable BMV RNAs.

    Science.gov (United States)

    Kaido, M; Mori, M; Mise, K; Okuno, T; Furusawa, I

    1995-11-01

    Transgenic tobacco plants (V123 plants) expressing a set of full-length brome mosaic virus (BMV) genomic RNAs from the cauliflower mosaic virus 35S promoter were produced. The accumulation level of BMV RNAs in V123 plant cells was approximately 1% of that in nontransgenic tobacco protoplasts inoculated with BMV RNAs. The level of BMV RNA in V123 protoplasts did not increase after inoculating the protoplasts with BMV RNAs, whereas V123 protoplasts supported the accumulation of cucumber mosaic virus (CMV) RNAs to a level similar to that in non-transgenic tobacco protoplasts after inoculation with CMV RNA. Such BMV-specific resistance was also observed in protoplasts from V12 plants expressing full-length BMV RNA1 and RNA2, both of which are required and sufficient for BMV RNA replication. On the other hand, protoplasts from M12 plants, expressing truncated BMV RNA1 and RNA2 in which the 3' 200 nucleotides required for BMV RNA replication were deleted, exhibited weaker resistance to infection with BMV RNA than V12 protoplasts, although the accumulation level of truncated BMV RNA1 and RNA2 in M12 protoplasts was higher than that of BMV RNA1 and RNA2 in V12 protoplasts. These results suggest that expression of BMV RNA replicons is involved in the induction of resistance, rather than high-level accumulation of BMV RNAs and/or their encoded proteins.

  6. Development of plants resistant to Papaya leaf distortion mosaic virus by intergeneric hybridization between Carica papaya and Vasconcellea cundinamarcensis.

    Science.gov (United States)

    Tarora, Kazuhiko; Shudo, Ayano; Kawano, Shinji; Yasuda, Keiji; Ueno, Hiroki; Matsumura, Hideo; Urasaki, Naoya

    2016-12-01

    In this study, we confirmed that Vasconcellea cundinamarcensis resists Papaya leaf distortion mosaic virus (PLDMV), and used it to produce intergeneric hybrids with Carica papaya. From the cross between C. papaya and V. cundinamarcensis, we obtained 147 seeds with embryos. Though C. papaya is a monoembryonic plant, multiple embryos were observed in all 147 seeds. We produced 218 plants from 28 seeds by means of embryo-rescue culture. All plants had pubescence on their petioles and stems characteristic of V. cundinamarcensis. Flow cytometry and PCR of 28 plants confirmed they were intergeneric hybrids. To evaluate virus resistance, mechanical inoculation of PLDMV was carried out. The test showed that 41 of 134 intergeneric hybrid plants showed no symptoms and were resistant. The remaining 93 hybrids showed necrotic lesions on the younger leaves than the inoculated leaves. In most of the 93 hybrids, the necrotic lesions enclosed the virus and prevented further spread. These results suggest that the intergeneric hybrids will be valuable material for PLDMV-resistant papaya breeding.

  7. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro

    Directory of Open Access Journals (Sweden)

    Martínez Jairo R

    2009-03-01

    Full Text Available Abstract Background An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. Aim In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV replication was investigated. Methods The cytotoxicity (CC50 on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus. Results The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 μg/mLproduced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. Conclusion The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.

  8. The global trade in fresh produce and the vagility of plant viruses: a case study in garlic.

    Science.gov (United States)

    Wylie, Stephen J; Li, Hua; Saqib, Muhammad; Jones, Michael G K

    2014-01-01

    As cuisine becomes globalized, large volumes of fresh produce are traded internationally. The potential exists for pathogens infecting fresh produce to hitchhike to new locations and perhaps to establish there. It is difficult to identify them using traditional methods if pathogens are novel, scarce, and/or unexpected. In an attempt to overcome this limitation, we used high-throughput sequencing technology as a means of detecting all RNA viruses infecting garlic (Allium sativum L.) bulbs imported into Australia from China, the USA, Mexico, Argentina and Spain, and those growing in Australia. Bulbs tested were grown over multiple vegetative generations and all were stably infected with one or more viruses, including two species not previously recorded in Australia. Present in various combinations from 10 garlic bulbs were 41 virus isolates representing potyviruses (Onion yellow dwarf virus, Leek yellow stripe virus), carlaviruses (Shallot latent virus, Garlic common latent virus) and allexiviruses (Garlic virus A, B, C, D, and X), for which 19 complete and 22 partial genome sequences were obtained, including the first complete genome sequences of two isolates of GarVD. The most genetically distinct isolates of GarVA and GarVX described so far were identified from Mexico and Argentina, and possible scenarios explaining this are presented. The complete genome sequence of an isolate of the potexvirus Asparagus virus 3 (AV3) was obtained in Australia from wild garlic (A. vineale L.), a naturalized weed. This is first time AV3 has been identified from wild garlic and the first time it has been identified beyond China and Japan. The need for routine generic diagnosis and appropriate legislation to address the risks to primary production and wild plant communities from pathogens spread through the international trade in fresh produce is discussed.

  9. The global trade in fresh produce and the vagility of plant viruses: a case study in garlic.

    Directory of Open Access Journals (Sweden)

    Stephen J Wylie

    Full Text Available As cuisine becomes globalized, large volumes of fresh produce are traded internationally. The potential exists for pathogens infecting fresh produce to hitchhike to new locations and perhaps to establish there. It is difficult to identify them using traditional methods if pathogens are novel, scarce, and/or unexpected. In an attempt to overcome this limitation, we used high-throughput sequencing technology as a means of detecting all RNA viruses infecting garlic (Allium sativum L. bulbs imported into Australia from China, the USA, Mexico, Argentina and Spain, and those growing in Australia. Bulbs tested were grown over multiple vegetative generations and all were stably infected with one or more viruses, including two species not previously recorded in Australia. Present in various combinations from 10 garlic bulbs were 41 virus isolates representing potyviruses (Onion yellow dwarf virus, Leek yellow stripe virus, carlaviruses (Shallot latent virus, Garlic common latent virus and allexiviruses (Garlic virus A, B, C, D, and X, for which 19 complete and 22 partial genome sequences were obtained, including the first complete genome sequences of two isolates of GarVD. The most genetically distinct isolates of GarVA and GarVX described so far were identified from Mexico and Argentina, and possible scenarios explaining this are presented. The complete genome sequence of an isolate of the potexvirus Asparagus virus 3 (AV3 was obtained in Australia from wild garlic (A. vineale L., a naturalized weed. This is first time AV3 has been identified from wild garlic and the first time it has been identified beyond China and Japan. The need for routine generic diagnosis and appropriate legislation to address the risks to primary production and wild plant communities from pathogens spread through the international trade in fresh produce is discussed.

  10. Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene.

    Science.gov (United States)

    Zhang, Xiuchun; Sato, Shirley; Ye, Xiaohong; Dorrance, Anne E; Morris, T Jack; Clemente, Thomas E; Qu, Feng

    2011-11-01

    Transgenic plants expressing double-stranded RNA (dsRNA) of virus origin have been previously shown to confer resistance to virus infections through the highly conserved RNA-targeting process termed RNA silencing or RNA interference (RNAi). In this study we applied this strategy to soybean plants and achieved robust resistance to multiple viruses with a single dsRNA-expressing transgene. Unlike previous reports that relied on the expression of one long inverted repeat (IR) combining sequences of several viruses, our improved strategy utilized a transgene designed to express several shorter IRs. Each of these short IRs contains highly conserved sequences of one virus, forming dsRNA of less than 150 bp. These short dsRNA stems were interspersed with single-stranded sequences to prevent homologous recombination during the transgene assembly process. Three such short IRs with sequences of unrelated soybean-infecting viruses (Alfalfa mosaic virus, Bean pod mottle virus, and Soybean mosaic virus) were assembled into a single transgene under control of the 35S promoter and terminator of Cauliflower mosaic virus. Three independent transgenic lines were obtained and all of them exhibited strong systemic resistance to the simultaneous infection of the three viruses. These results demonstrate the effectiveness of this very straight forward strategy for engineering RNAi-based virus resistance in a major crop plant. More importantly, our strategy of construct assembly makes it easy to incorporate additional short IRs in the transgene, thus expanding the spectrum of virus resistance. Finally, this strategy could be easily adapted to control virus problems of other crop plants.

  11. Impaired plant growth and development caused by human immunodeficiency virus type 1 Tat.

    Science.gov (United States)

    Cueno, Marni E; Hibi, Yurina; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    Previous attempts to express the human immunodeficiency virus 1 (HIV-1) Tat (trans-activator of transcription) protein in plants resulted in a number of physiological abnormalities, such as stunted growth and absence of seed formation, that could not be explained. In the study reported here, we expressed Tat in tomato and observed phenotypic abnormalities, including stunted growth, absence of root formation, chlorosis, and plant death, as a result of reduced cytokinin levels. These reduced levels were ascribed to a differentially expressed CKO35 in Tat-bombarded tomato. Of the two CKO isoforms that are naturally expressed in tomato, CKO43 and CKO37, only the expression of CKO37 was affected by Tat. Our analysis of the Tat confirmed that the Arg-rich and RGD motifs of Tat have functional relevance in tomato and that independent mutations at these motifs caused inhibition of the differentially expressed CKO isoform and the extracellular secretion of the Tat protein, respectively, in our Tat-bombarded tomato samples.

  12. High Yield Technique of Virus-free Potato Favorite Planting in Paddy

    Directory of Open Access Journals (Sweden)

    Yan-xia Zhang

    2013-04-01

    Full Text Available To screen the best combination cultivation factors, the orthogonal test was conducted on the 6 factors of virus-free potato Favorite including sowing time, density, urea, calcium superphosphate, potassium sulfate and zinc, planted in paddy field of Xian-ning, Luo-tian and Guang-shui. The results showed that: a experimental site had significant influence on growth period (F = 147.08>F0.01, sowing date had great significant influence on growth period (F = 15.68>F0.01, with the delay of sowing date, the growth period was short (R1 = 0.9851**. b Density had great significant influence on yield (F = 4.0>F0.01, the yield could be increased with the density increasing (R2 = 0.9782**, sowing date had significant influence on yield (F = 3.55>F0.05. c The maximum yield and economic return appeared at the treatment of seeding date December 10, seeding density 75000 plant/hm2, N 75 kg/hm2, phosphorus fertilizer 900 kg/hm2, potassium sulfate 450 kg/hm2 and zinc 22.5 kg/hm2, with the yield 31185 kg/hm2 and economic benefit 26833 Yuan/hm2.

  13. Production of yam mosaic virus (ymv)-free Dioscorea opposita plants by cryotherapy of shoot-tips.

    Science.gov (United States)

    Shin, Jong Hee; Kang, Dong Kyoon; Sohn, Jae Keun

    2013-01-01

    In the present study, Yam mosaic virus (YMV) could be efficiently eliminated by cryotherapy in Dioscorea opposita. Shoot apices were precultured for 16 h with 0.3 M sucrose, encapsulated in sodium alginate and dehydrated for 4 h prior to direct immersion in liquid nitrogen. Up to 90 percent of the plants regenerated from cryopreserved shoot tips were YMV-free, whereas only 40% of those regenerated using meristem culture were YMV-free. YMV-free yam plantlets could be propagated in vitro through nodal stem culture, with sequential subculturing at 6-week intervals on medium containing 0.5 mg per liter kinetin. The microtubers formed at the bottom and axil of the explants, incubated at 30 degreeC after being chilled (4 degree C) for 3 months, could be sprouted successfully under in vivo conditions. Healthy plants were established without any damaging symptoms of the virus. Thus, cryotherapy provides an alternative method for efficient elimination of yam viruses, and could be simultaneously used for long-term storage of yam germplasm and for the production of virus-free plants.

  14. Hijack it, Change it: How do Plant Viruses Utilize the Host Secretory Pathway for Efficient Viral Replication and Spread?

    Directory of Open Access Journals (Sweden)

    Camilo ePatarroyo

    2013-01-01

    Full Text Available The secretory pathway of eukaryotic cells has an elaborated set of endomembrane compartments involved in the synthesis, modification and sorting of proteins and lipids. The secretory pathway in plant cells shares many features with that in other eukaryotic cells but also has distinct characteristics important for fundamental cell and developmental processes and for proper immune responses. Recently, there has been evidence that the remodeling of this pathway, and often the formation of viral induced organelles, play an important role in viral replication and spread. The modification of the host secretory pathway seems to be a common feature among most single-stranded positive ss(+RNA and even some DNA viruses. In this review, we will present the recent advances in the organization and dynamics of the plant secretory pathway and the molecular regulation of membrane trafficking in the pathway. We will also discuss how different plant viruses may interact with the host secretory pathway for their efficient replication and spread, with a focus on Tobacco mosaic virus (TMV and Turnip mosaic virus (TuMV.

  15. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication.

    Science.gov (United States)

    Yao, Youli; Kathiria, Palak; Kovalchuk, Igor

    2013-01-01

    In the past, we showed that local infection of tobacco leaves with either tobacco mosaic virus or oilseed rape mosaic virus (ORMV) resulted in a systemic increase in the homologous recombination frequency (HRF). Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 h post-infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  16. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication

    Directory of Open Access Journals (Sweden)

    Youli eYao

    2013-03-01

    Full Text Available In the past, we showed that local infection of tobacco leaves with either Tobacco mosaic virus (TMV or Oilseed rape mosaic virus (ORMV resulted in a systemic increase in the homologous recombination frequency (HRF. Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 hours post infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  17. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis.

    Directory of Open Access Journals (Sweden)

    Ji-Si Zhang

    Full Text Available The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'. Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS. Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution

  18. Efficient gene silencing mediated by tobacco rattle virus in an emerging model plant physalis.

    Science.gov (United States)

    Zhang, Ji-Si; Zhao, Jing; Zhang, Shaohua; He, Chaoying

    2014-01-01

    The fruit of Physalis has a berry and a novelty called inflated calyx syndrome (ICS, also named the 'Chinese lantern'). Elucidation of the underlying developmental mechanisms of fruit diversity demands an efficient gene functional inference platform. Here, we tested the application of the tobacco rattle virus (TRV)-mediated gene-silencing system in Physalis floridana. First, we characterized the putative gene of a phytoene desaturase in P. floridana (PfPDS). Infecting the leaves of the Physalis seedlings with the PfPDS-TRV vector resulted in a bleached plant, including the developing leaves, floral organs, ICS, berry, and seed. These results indicated that a local VIGS treatment can efficiently induce a systemic mutated phenotype. qRT-PCR analyses revealed that the bleaching extent correlated to the mRNA reduction of the endogenous PfPDS. Detailed comparisons of multiple infiltration and growth protocols allowed us to determine the optimal methodologies for VIGS manipulation in Physalis. We subsequently utilized this optimized VIGS methodology to downregulate the expression of two MADS-box genes, MPF2 and MPF3, and compared the resulting effects with gene-downregulation mediated by RNA interference (RNAi) methods. The VIGS-mediated gene knockdown plants were found to resemble the mutated phenotypes of floral calyx, fruiting calyx and pollen maturation of the RNAi transgenic plants for both MPF2 and MPF3. Moreover, the two MADS-box genes were appeared to have a novel role in the pedicel development in P. floridana. The major advantage of VIGS-based gene knockdown lies in practical aspects of saving time and easy manipulation as compared to the RNAi. Despite the lack of heritability and mosaic mutation phenotypes observed in some organs, the TRV-mediated gene silencing system provides an alternative efficient way to infer gene function in various developmental processes in Physalis, thus facilitating understanding of the genetic basis of the evolution and development

  19. Ecological Fitness of Non-vector Planthopper Sogatella furcifera on Rice Plants Infected with Rice Black Streaked Dwarf Virus

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-chan; XU Hong-xing; ZHENG Xu-song; YANG Ya-jun; GAO Guang-chun; PAN Jian-hong; LU Zhong-xian

    2012-01-01

    We evaluated the effects of rice black streak dwarf virus (RBSDV)-infested rice plants on the ecological parameters and its relevant defensive and detoxification enzymes of white-backed planthopper (WBPH) in laboratory for exploring the relationship between RBSDV and the non-vector planthopper.The results showed that nymph survival rate,female adult weight and fecundity,and egg hatchability of WBPH fed on RBSDV-infested rice plants did not markedly differ from those on healthy plants,whereas the female adult longevity and egg duration significantly shortened on diseased plants.Furthermore,significantly higher activities of defensive enzymes (dismutase,catalase and peroxidase) and detoxification enzymes (acetylcholinesterase,carboxylesterase and glutathione S-transferase) were found in WBPH adults fed on infected plants.Results implied that infestation by RBSDV increased the ecological fitness of non-vector planlhopper population.

  20. Microarray analysis of tomato plants exposed to the nonviruliferous or viruliferous whitefly vector harboring Pepper golden mosaic virus.

    Science.gov (United States)

    Musser, Richard O; Hum-Musser, Sue M; Gallucci, Matthew; DesRochers, Brittany; Brown, Judith K

    2014-01-01

    Plants are routinely exposed to biotic and abiotic stresses to which they have evolved by synthesizing constitutive and induced defense compounds. Induced defense compounds are usually made, initially, at low levels; however, following further stimulation by specific kinds of biotic and abiotic stresses, they can be synthesized in relatively large amounts to abate the particular stress. cDNA microarray hybridization was used to identify an array of genes that were differentially expressed in tomato plants 15 d after they were exposed to feeding by nonviruliferous whiteflies or by viruliferous whiteflies carrying Pepper golden mosaic virus (PepGMV) (Begomovirus, Geminiviridae). Tomato plants inoculated by viruliferous whiteflies developed symptoms characteristic of PepGMV, whereas plants exposed to nonviruliferous whitefly feeding or nonwounded (negative) control plants exhibited no disease symptoms. The microarray analysis yielded over 290 spotted probes, with significantly altered expression of 161 putative annotated gene targets, and 129 spotted probes of unknown identities. The majority of the differentially regulated "known" genes were associated with the plants exposed to viruliferous compared with nonviruliferous whitefly feeding. Overall, significant differences in gene expression were represented by major physiological functions including defense-, pathogen-, photosynthesis-, and signaling-related responses and were similar to genes identified for other insect-plant systems. Viruliferous whitefly-stimulated gene expression was validated by real-time quantitative polymerase chain reaction of selected, representative candidate genes (messenger RNA): arginase, dehydrin, pathogenesis-related proteins 1 and -4, polyphenol oxidase, and several protease inhibitors. This is the first comparative profiling of the expression of tomato plants portraying different responses to biotic stress induced by viruliferous whitefly feeding (with resultant virus infection

  1. Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity

    NARCIS (Netherlands)

    Dobnik, David; Lazar, Ana; Stare, Tjaša; Gruden, Kristina; Vleeshouwers, Vivianne G.A.A.; Žel, Jana

    2016-01-01

    Background: Virus-induced gene silencing (VIGS) is an optimal tool for functional analysis of genes in plants, as the viral vector spreads throughout the plant and causes reduced expression of selected gene over the whole plant. Potato (Solanum tuberosum) is one of the most important food crops,

  2. Genetic Structure and Molecular Variability Analysis of Citrus sudden death-associated virus Isolates from Infected Plants Grown in Brazil

    Directory of Open Access Journals (Sweden)

    Emilyn Emy Matsumura

    2016-12-01

    Full Text Available Citrus sudden death-associated virus (CSDaV is a monopartite positive-sense single-stranded RNA virus that was suggested to be associated with citrus sudden death (CSD disease in Brazil. Here, we report the first study of the genetic structure and molecular variability among 31 CSDaV isolates collected from both symptomatic and asymptomatic trees in CSD-affected areas. Analyses of partial nucleotide sequences of five domains of the CSDaV genomic RNA, including those encoding for the methyltransferase, the multi-domain region (MDR, the helicase, the RNA-dependent RNA polymerase and the coat protein, showed that the MDR coding region was the most diverse region assessed here, and a possible association between this region and virus adaption to different host or plant tissues is considered. Overall, the nucleotide diversity (π was low for CSDaV isolates, but the phylogenetic analyses revealed the predominance of two main groups, one of which showed a higher association with CSD-symptomatic plants. Isolates obtained from CSD-symptomatic plants, compared to those obtained from asymptomatic plants, showed higher nucleotide diversity, nonsynonymous and synonymous substitution rates and number of amino acid changes on the coding regions located closer to the 5’ end region of the genomic RNA. This work provides new insights into the genetic diversity of the CSDaV, giving support for further epidemiological studies.

  3. Application of a simple and affordable protocol for isolating plant total nucleic acids for RNA and DNA virus detection.

    Science.gov (United States)

    Arruabarrena, Ana; Benítez-Galeano, María José; Giambiasi, Mario; Bertalmío, Ana; Colina, Rodney; Hernández-Rodríguez, Lester

    2016-11-01

    Standard molecular methods for plant virus diagnosis require the purification of RNA or DNA extracts from a large number of samples, with sufficient concentration and quality for their use in PCR, RT-PCR, or qPCR analysis. Most methods are laborious and use either hazardous and/or costly chemicals. A previously published protocol for RNA isolation from several plant species yields high amounts of good quality RNA-DNA mixture in a simple, safe and inexpensive manner. In the present work, this method was tested to obtain RNA-DNA extracts from leaves of tomato, potato and three species of citrus, and was compared with two commercial kits. The results demonstrated that this protocol offers at least comparable nucleic acid quality, quantity and purity to those provided by commercial phenol-based or spin column systems and that are suitable to be used in PCR, RT-PCR and qPCR for virus and viroid detection. Because of its easy implementation and the use of safe and inexpensive reagents, it can be easily implemented to work in plant virus and viroid detection in different plant species. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Genetic Structure and Molecular Variability Analysis of Citrus sudden death-associated virus Isolates from Infected Plants Grown in Brazil

    Science.gov (United States)

    Matsumura, Emilyn Emy; Coletta Filho, Helvécio Della; de Oliveira Dorta, Silvia; Nouri, Shahideh; Machado, Marcos Antonio

    2016-01-01

    Citrus sudden death-associated virus (CSDaV) is a monopartite positive-sense single-stranded RNA virus that was suggested to be associated with citrus sudden death (CSD) disease in Brazil. Here, we report the first study of the genetic structure and molecular variability among 31 CSDaV isolates collected from both symptomatic and asymptomatic trees in CSD-affected areas. Analyses of partial nucleotide sequences of five domains of the CSDaV genomic RNA, including those encoding for the methyltransferase, the multi-domain region (MDR), the helicase, the RNA-dependent RNA polymerase and the coat protein, showed that the MDR coding region was the most diverse region assessed here, and a possible association between this region and virus adaption to different host or plant tissues is considered. Overall, the nucleotide diversity (π) was low for CSDaV isolates, but the phylogenetic analyses revealed the predominance of two main groups, one of which showed a higher association with CSD-symptomatic plants. Isolates obtained from CSD-symptomatic plants, compared to those obtained from asymptomatic plants, showed higher nucleotide diversity, nonsynonymous and synonymous substitution rates and number of amino acid changes on the coding regions located closer to the 5’ end region of the genomic RNA. This work provides new insights into the genetic diversity of the CSDaV, giving support for further epidemiological studies. PMID:27999249

  5. Effect of Raspberry bushy dwarf virus, Raspberry leaf mottle virus, and Raspberry latent virus on plant growth and fruit crumbliness in ‘Meeker’ red Raspberry

    Science.gov (United States)

    Raspberry crumbly fruit in red raspberry (Rubus idaeus L.), widespread in the Pacific Northwest of the United States and British Columbia, Canada, is most commonly caused by a virus infection. Raspberry bushy dwarf virus (RBDV) has long been attributed as the causal agent of the disease. Recently, t...

  6. 2b or Not 2b: Experimental Evolution of Functional Exogenous Sequences in a Plant RNA Virus

    Science.gov (United States)

    Zwart, Mark P.; Ambrós, Silvia; Carrasco, José L.; Elena, Santiago F.

    2017-01-01

    Horizontal gene transfer (HGT) is pervasive in viruses and thought to be a key mechanism in their evolution. On the other hand, strong selective constraints against increasing genome size are an impediment for HGT, rapidly purging horizontally transferred sequences and thereby potentially hindering evolutionary innovation. Here, we explore experimentally the evolutionary fate of viruses with simulated HGT events, using the plant RNA virus Tobacco etch virus (TEV), by separately introducing two functional, exogenous sequences to its genome. One of the events simulates the acquisition of a new function though HGT of a conserved AlkB domain, responsible for the repair of alkylation or methylation damage in many organisms. The other event simulates the acquisition of a sequence that duplicates an existing function, through HGT of the 2b RNA silencing suppressor from Cucumber mosaic virus. We then evolved these two viruses, tracked the maintenance of the horizontally transferred sequences over time, and for the final virus populations, sequenced their genome and measured viral fitness. We found that the AlkB domain was rapidly purged from the TEV genome, restoring fitness to wild-type levels. Conversely, the 2b gene was stably maintained and did not have a major impact on viral fitness. Moreover, we found that 2b is functional in TEV, as it provides a replicative advantage when the RNA silencing suppression domain of HC-Pro is mutated. These observations suggest a potentially interesting role for HGT of short functional sequences in ameliorating evolutionary constraints on viruses, through the duplication of functions. PMID:28137747

  7. Spectral reflectance, chlorophyll fluorescence and virological investigations of tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV)

    Science.gov (United States)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Application of multispectral remote sensing techniques to plant condition monitoring has been adopted for various purposes. Remote sensing is a reliable tool for detecting signs of vege-tation stress and diseases. Spectral reflectance and chlorophyll fluorescence are functions of tissue optical properties and biological status of the plants, and illumination conditions. The mean reflectance spectrum depends on the relative composition of all the pigments in the leaf including chlorophylls, carotenoids etc. Chlorophyll fluorescence results from the primary re-actions of photosynthesis and during the last decade it finds widening application as a means for revelation of stress and diseases. The changes in chlorophyll function take place before the alteration in chlorophyll content to occur so that changes in the fluorescence signal arise before any visible signs are apparent. The aim of our investigations was to study the development and spreading out of a viral infection on the leaves of two cultivars tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV). We applied two remote sensing tech-niques (spectral reflectance and chlorophyll fluorescence measurements) for evaluation of the changes in the optical properties of the plants in accordance to their physiological status. The serological analyses via the Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) were made with appropriate kits (Leowe, Germany) for quantitative assessment of the concentration of viruses in the plants. The tobacco plants were grown in green house under controlled conditions. The first cultivar Nevrocop 1146 is known as resistive to the TMV, i.e. it shows hypersensitive response. The second cultivar named Krumovgrad is normally sen-sitive to the TMV. At growth stage 4-6 expanded leaf, up to one leaf from 20 plants for each cultivar were inoculated with TMV. The leaves opposite to the infected ones formed the group of control (untreated) leaves. The

  8. Heterologous expression of plant virus genes that suppress post-transcriptional gene silencing results in suppression of RNA interference in Drosophila cells

    Directory of Open Access Journals (Sweden)

    Canto Tomas

    2004-08-01

    Full Text Available Abstract Background RNA interference (RNAi in animals and post-transcriptional gene silencing (PTGS in plants are related phenomena whose functions include the developmental regulation of gene expression and protection from transposable elements and viruses. Plant viruses respond by expressing suppressor proteins that interfere with the PTGS system. Results Here we demonstrate that both transient and constitutive expression of the Tobacco etch virus HC-Pro silencing suppressor protein, which inhibits the maintenance of PTGS in plants, prevents dsRNA-induced RNAi of a lacZ gene in cultured Drosophila cells. Northern blot analysis of the RNA present in Drosophila cells showed that HC-Pro prevented degradation of lacZ RNA during RNAi but that there was accumulation of the short (23nt RNA species associated with RNAi. A mutant HC-Pro that does not suppress PTGS in plants also does not affect RNAi in Drosophila. Similarly, the Cucumber mosaic virus 2b protein, which inhibits the systemic spread of PTGS in plants, does not suppress RNAi in Drosophila cells. In addition, we have used the Drosophila system to demonstrate that the 16K cysteine-rich protein of Tobacco rattle virus, which previously had no known function, is a silencing suppressor protein. Conclusion These results indicate that at least part of the process of RNAi in Drosophila and PTGS in plants is conserved, and that plant virus silencing suppressor proteins may be useful tools to investigate the mechanism of RNAi.

  9. Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection.

    Science.gov (United States)

    Balzarini, Jan; Hatse, Sigrid; Vermeire, Kurt; Princen, Katrien; Aquaro, Stefano; Perno, Carlo-Federico; De Clercq, Erik; Egberink, Herman; Vanden Mooter, Guy; Peumans, Willy; Van Damme, Els; Schols, Dominique

    2004-10-01

    The plant lectins derived from Galanthus nivalis (Snowdrop) (GNA) and Hippeastrum hybrid (Amaryllis) (HHA) selectively inhibited a wide variety of human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains and clinical (CXCR4- and CCR5-using) isolates in different cell types. They also efficiently inhibited infection of T lymphocytes by a variety of mutant virus strains. GNA and HHA markedly prevented syncytium formation between persistently infected HUT-78/HIV cells and uninfected T lymphocytes. The plant lectins did not measurably affect the antiviral activity of other clinically approved anti-HIV drugs used in the clinic when combined with these drugs. Short exposure of the lectins to cell-free virus particles or persistently HIV-infected HUT-78 cells markedly decreased HIV infectivity and increased the protective (microbicidal) activity of the plant lectins. Flow cytometric analysis and monoclonal antibody binding studies and a PCR-based assay revealed that GNA and HHA do not interfere with CD4, CXCR4, CCR5, and DC-SIGN and do not specifically bind with the membrane of uninfected cells. Instead, GNA and HHA likely interrupt the virus entry process by interfering with the virus envelope glycoprotein. HHA and GNA are odorless, colorless, and tasteless, and they are not cytotoxic, antimetabolically active, or mitogenic to human primary T lymphocytes at concentrations that exceed their antivirally active concentrations by 2 to 3 orders of magnitude. GNA and HHA proved stable at high temperature (50 degrees C) and low pH (5.0) for prolonged time periods and can be easily formulated in gel preparations for microbicidal use; they did not agglutinate human erythrocytes and were not toxic to mice when administered intravenously.

  10. The Plant Virus Tomato Spotted Wilt Tospovirus Activates the Immune System of Its Main Insect Vector, Frankliniella occidentalis

    Science.gov (United States)

    Medeiros, Ricardo B.; Resende, Renato de O.; de Ávila, Antonio Carlos

    2004-01-01

    Tospoviruses have the ability to infect plants and their insect vectors. Tomato spotted wilt virus (TSWV), the type species in the Tospovirus genus, infects its most important insect vector, Frankliniella occidentalis, the western flower thrips (WFT). However, no detrimental effects on the life cycle or cytopathological changes have been reported in the WFT after TSWV infection, and relatively few viral particles can be observed even several days after infection. We hypothesized that TSWV infection triggers an immune response in the WFT. Using subtractive cDNA libraries to probe WFT DNA macroarrays, we found that the WFT's immune system is activated by TSWV infection. The activated genes included (i) those encoding antimicrobial peptides, such as defensin and cecropin; (ii) genes involved in pathogen recognition, such as those encoding lectins; (iii) those encoding receptors that activate the innate immune response, such as Toll-3; and (iv) those encoding members of signal transduction pathways activated by Toll-like receptors, such as JNK kinase. Transcriptional upregulation of these genes after TSWV infection was confirmed by Northern analysis, and the kinetics of the immune response was measured over time. Several of the detected genes were activated at the same time that viral replication was first detected by reverse transcription-PCR. To our knowledge, this is the first report of the activation of an insect vector immune response by a plant virus. The results may lead to a better understanding of insects' immune responses against viruses and may help in the future development of novel control strategies against plant viruses, as well as human and animal viruses transmitted by insect vectors. PMID:15113877

  11. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies.

    Science.gov (United States)

    Fuchs, Marc; Gonsalves, Dennis

    2007-01-01

    Potential safety issues have been raised with the development and release of virus-resistant transgenic plants. This review focuses on safety assessment with a special emphasis on crops that have been commercialized or extensively tested in the field such as squash, papaya, plum, grape, and sugar beet. We discuss topics commonly perceived to be of concern to the environment and to human health--heteroencapsidation, recombination, synergism, gene flow, impact on nontarget organisms, and food safety in terms of allergenicity. The wealth of field observations and experimental data is critically evaluated to draw inferences on the most relevant issues. We also express inside views on the safety and benefits of virus-resistant transgenic plants, and recommend realistic risk assessment approaches to assist their timely deregulation and release.

  12. Traffic jam on the cellular secretory pathway generated by a replication protein from a plant RNA virus.

    Science.gov (United States)

    Hyodo, Kiwamu; Kaido, Masanori; Okuno, Tetsuro

    2014-01-01

    Although positive-strand RNA [(+)RNA] viruses have a limited coding capacity, they can replicate efficiently in host cells because of their ability to use host-derived proteins, membranes, lipids, and metabolites, and to rewire cellular trafficking pathways. Previously, we showed that a plant RNA virus, the Red clover necrotic mosaic virus (RCNMV), hijacked Arf1 and Sar1, which are small GTPases that regulate the biogenesis of COPI and COPII vesicles, respectively, for viral RNA replication. These small GTPases are relocated from appropriate subcellular compartments to the viral RNA replication sites by p27 replication protein, which raises the possibility that RCNMV interferes with the cellular secretory pathway. Here, we examined this possibility by using green fluorescent protein-fused rice SCAMP1 and Arabidopsis LRR84A as secretory pathway marker proteins and showed that p27 inhibited the trafficking of these proteins. RCNMV-mediated inhibition of the host secretion pathway and its possible impact on plant-virus interaction are discussed.

  13. A 1-Year Quantitative Survey of Noro-, Adeno-, Human Boca-, and Hepatitis E Viruses in Raw and Secondarily Treated Sewage from Two Plants in Norway.

    Science.gov (United States)

    Myrmel, M; Lange, H; Rimstad, E

    2015-09-01

    A study of enteric viruses in raw and treated sewage from two secondary treatment plants, which received sewage from Oslo city (plant A) and small municipalities in Hedmark county in Norway (plant B), showed high levels of noro-, adeno-, and bocavirus throughout the year. A seasonal variation was observed for adeno- and GII norovirus with higher levels during winter and bocavirus that had more positive samples during winter. The virus concentrations in raw sewage were comparable in the two plants, with medians (log10 genome copies per liter) of 6.1, 6.3, 6.0, and 4.5 for noro GI, noro GII, adeno-, and bocavirus, respectively. The level of hepatitis E virus was not determined as it was below the limit of quantification. The mean log10 virus reduction was 0.55 (plant A) and 1.44 (plant B) with the highest reduction found in the plant with longer hydraulic retention time. The adenoviruses were dominantly serotype 41, while serotype 12 appeared sporadically. Of the 102 raw and treated sewage samples that were tested, eight were positive for hepatitis E virus of which four were from treated sewage. Two of the four obtained gene sequences from hepatitis E virus originated from the rural sewage samples and showed high similarity with a genotype 3 strain of hepatitis E virus detected in local piglets. Two other hepatitis E virus sequences obtained from urban sewage samples showed high similarities with genotype 3 strains isolated from urban sewage in Spain and a human genotype 1 isolate from India. The study gives information on the levels of noroviruses in raw and treated sewage, which is valuable to risk assessment, information indicating that some infections with hepatitis E viruses in Norway have a regional origin and that human bocavirus 2 and 3 are prevalent in the Norwegian population.

  14. Amplicon based RNA interference targeting V2 gene of cotton leaf curl Kokhran virus-Burewala strain can provide resistance in transgenic cotton plants

    Science.gov (United States)

    An RNAi based gene construct designated “C2” was used to target the V2 region of the cotton leaf curl virus (CLCuV) genome which is responsible for virus movement. The construct was transformed into two elite cotton varieties MNH-786 and VH-289. A shoot apex method of plant transformation using Agr...

  15. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na(+) and K(+) in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na(+)-toxicity for plants.

  16. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy.

    Science.gov (United States)

    La Rosa, Giuseppina; Pourshaban, Manoochehr; Iaconelli, Marcello; Muscillo, Michele

    2010-01-01

    The prevalence of enteric viruses in wastewater, the efficacy of wastewater treatments in eliminating such viruses, and potential health risks from their release into the environment or by recycling of treated wastewaters, are very important issues in environmental microbiology. In this study we performed a quantitative TaqMan real-time PCR (polymerase chain reaction) analysis of enteric viruses on samples of influents and effluents from 5 wastewater treatment plants in and around Rome. Three epidemiologically important, waterborne enteric viruses were analyzed: adenoviruses, enteroviruses and noroviruses (GI and GII) and compared to classical bacterial indicators of fecal contamination. The concentration of adenoviruses was the highest, in both raw and treated waters. Mean values in influents were ranked as follows: adenovirus > norovirus GI > norovirus GII > enterovirus. In effluents, the ranking was: adenovirus > norovirus GI > enterovirus > norovirus GII. Removal efficiencies ranged from 35% (enterovirus) to 78% (norovirus GI), while removal efficiency for bacterial indicators was up to 99%. Since molecular quantification does not necessarily indicate an actual threat to human health, we proceeded to evaluate the infectivity of enterovirus particles in treated effluents through integrated cell culture and real-time PCR. Infectivity assays detected live virions in treated water, pointing to potential public health risks through the release of these viruses into the environment. A better understanding of viral presence and resistance to sewage purification processes have the potential of contributing to the effective management of risks linked to the recycling of treated wastewater, and its discharge into the environment.

  17. Single- and double-stranded viral RNAs in plants infected with the potexviruses papaya mosaic virus and foxtail mosaic virus.

    Science.gov (United States)

    Mackie, G A; Johnston, R; Bancroft, J B

    1988-01-01

    Three classes of viral RNA were recovered from polyribosomes purified from papaya leaves infected with papaya mosaic virus (PapMV) and from barley leaves infected with foxtail mosaic virus (FoMV): full-length viral RNAs [6.8 and 6.2 kilobases (kb), respectively]; less abundant intermediate subgenomic RNAs (2.2 and 1.9 kb), and abundant, small subgenomic RNAs (1 and 0.9 kb). Small amounts of the PapMV-specified 1.0-kb subgenomic RNA were encapsidated, whereas no encapsidated subgenomic RNAs could be found in preparations of FoMV. Immunoprecipitation of the products of in vitro translation of the small subgenomic RNA of both viruses showed that it codes for the corresponding viral coat protein. FoMV genomic RNA isolated from polyribosomes also directed the efficient synthesis of a 37- to 38-kilodalton protein which was immunoprecipitated by an antiserum raised against the coat protein. We presume this product to be a readthrough protein initiated to the 5' side of and in the same reading frame as the coat protein-coding sequences in FoMV RNA. The predominant double-stranded viral-specified RNAs in tissues infected with PapMV, FoMV, and clover yellow mosaic virus were genome sized (6.8, 6.2, and 7.0 kb pairs, respectively). If double-stranded RNAs corresponding to coat protein subgenomic RNAs exist, they must be present in much lower relative abundances.

  18. Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid.

    Science.gov (United States)

    Aguilar, Emmanuel; Cutrona, Carmen; Del Toro, Francisco J; Vallarino, José G; Osorio, Sonia; Pérez-Bueno, María Luisa; Barón, Matilde; Chung, Bong-Nam; Canto, Tomás; Tenllado, Francisco

    2017-07-18

    It has been hypothesized that plants can get beneficial trade-offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus-induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought-tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus-infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid-independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non-infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness. © 2017 John Wiley & Sons Ltd.

  19. Assessment of the prevalence of enteric viruses in the final effluents of two peri-urban wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Onele Gcilitshana

    2017-02-01

    Full Text Available Objective: To assess the prevalence of enteric viruses in the final effluents of two peri-urban wastewater treatment plants (WWTPs in Amathole District Municipality in the Eastern Cape Province of South Africa from September 2012 to August 2013. Methods: Water samples were collected monthly from the final effluents of the selected WWTPs (WWTP-K and WWTP-R located in Komga and East London, respectively in Amathole District Municipality for a period of 12 months between September 2012 and August 2013. RTPCR was used for the detection of adenoviruses (AdV, rotaviruses and hepatitis A virus while conventional PCR was used to delineate all detected viruses into their serotypes using specific primer sets. Results: None of the viruses were detected in samples from WWTP-R. In effluent samples from WWTP-K, rotaviruses were detected in 58% (7/12 of the samples in concentrations ranging from 1.7 × 104 to 2.3 × 106 genome copies/L while AdV and hepatitis A virus were detected in 17% (2/12 of the samples in concentrations ranging from 4.5 × 10 to 2.8 × 102 and 2.3 × 10 to 7.1 × 10 genome copies/L, respectively. Molecular characterization of AdV positive samples showed the presence of species B, species C and species F (AdV41 from the May and June 2013 samples. Conclusions: Detection of enteric viruses in final effluents reflects the inability of WWTPs to completely remove viruses from final effluents and the likelihood of contaminating receiving watersheds with potentially virulent viral particles, which may pose a serious health risk to people directly utilizing such water either for consumption or full contact purposes.

  20. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral particles as a non-transmissible bivalent marker vaccine candidate against CSF and JE infections

    Science.gov (United States)

    A trans-complemented CSF- JE chimeric viral replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The E2 gene of CSFV Alfort/187 strain was deleted and the resultant plasmid pA187delE2 was inserted by a fragment containing the region coding for a truncate...

  1. Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses.

    Science.gov (United States)

    Donaire, Livia; Pagán, Israel; Ayllón, María A

    2016-12-01

    The molecular characterization of a novel negative single-stranded RNA virus infecting the plant pathogenic fungus Botrytis cinerea is reported here. Comparison of the sequence of Botrytis cinerea negative-stranded RNA virus 1 (BcNSRV-1) showed a strong identity with RNA dependent RNA polymerases (RdRps) of plant pathogenic emaraviruses and tospoviruses. We have also found all the molecular signatures present in the RdRp of the genus Emaravirus and in other genera of family Bunyaviridae: the conserved TPD triplet and RY dinucleotide, the three basic residues in premotif A and the conserved motifs A, B, C, D, and E. Our results showed that BcNSRV-1 is phylogenetically close to members of the genus Emaravirus and of the family Bunyaviridae, and an ancestral state reconstruction using the conserved RdRp motifs of type members of each family of (-)ssRNA viruses indicated that BcNSRV-1 could possibly derive from an invertebrate and vertebrate-infecting virus. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Regional atmospheric composition modeling with CHIMERE

    Science.gov (United States)

    Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; Mailler, S.; Meleux, F.; Monge, J.-L.; Pison, I.; Turquety, S.; Valari, M.; Vautard, R.; Vivanco, M. G.

    2013-01-01

    Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources), stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM). The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  3. Regional atmospheric composition modeling with CHIMERE

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-01-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM. The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  4. Mouse x pig chimeric antibodies expressed in Baculovirus retain the same properties of their parent antibodies.

    Science.gov (United States)

    Jar, Ana M; Osorio, Fernando A; López, Osvaldo J

    2009-01-01

    The development of hybridoma and recombinant DNA technologies has made it possible to use antibodies against cancer, autoimmune disorders, and infectious diseases in humans. These advances in therapy, as well as immunoprophylaxis, could also make it possible to use these technologies in agricultural species of economic importance such as pigs. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus causing very important economic losses to the industry. Passive transfer of antibodies obtained by biotechnology could be used in the future to complement or replace vaccination against this and other pig pathogens. To this end, we constructed and studied the properties of chimeric mouse x pig anti-PRRSV antibodies. We cloned the constant regions of gamma-1 and gamma-2 heavy chains and the lambda light chain of pig antibodies in frame with the variable regions of heavy and light chains of mouse monoclonal antibody ISU25C1, which has neutralizing activity against PRRSV. The coding regions for chimeric IgG1 and IgG2 were expressed in a baculovirus expression system. Both chimeric antibodies recognized PRRSV in ELISA as well as in a Western-blot format and, more importantly, were able to neutralize PRRSV in the same fashion as the parent mouse monoclonal antibody ISU25C1. In addition, we show that both pig IgG1 and IgG2 antibodies could bind complement component C1q, with IgG2 being more efficient than IgG1 in binding C1q. Expressing chimeric pig antibodies with protective capabilities offers a new alternative strategy for infectious disease control in domestic pigs.

  5. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vacci