WorldWideScience

Sample records for chilled water system

  1. Energetic optimization of the chilled water systems operation at hotels

    Directory of Open Access Journals (Sweden)

    Reineris Montero Laurencio

    2015-12-01

    Full Text Available The hotel exploitation, while continuing to satisfy the customers, needs to decrease the requests of electric power as the principal energy carrier. Solving issues regarding the occupation of a hotel integrally, taking the air conditioning as center of attention, which demands the bigger consumptions of electricity, results in a complex task. To solve this issue, a procedure was implemented to optimize the operation of the water-chilled systems. The procedure integrates an energy model with a strategy of low occupation following energetic criteria based on combinatorial-evolutionary criteria. To classify the information, the formulation of the tasks and the synthesis of the solutions, a methodology of analysis and synthesis of engineering is used. The energetic model considers the variability of the local climatology and the occupation of the selected rooms, and includes: the thermal model of the building obtained by means of artificial neural networks, the hydraulic model and the model of the compression work. These elements allow to find the variable of decision occupation, performing intermediate calculations to obtain the velocity of rotation in the centrifugal pump and the output temperature of the cooler water, minimizing the requirements of electric power in the water-chilled systems. To evaluate the states of the system, a combinatorial optimization is used through the following methods: simple exhaustive, stepped exhaustive or genetic algorithm depending on the quantity of variants of occupation. All calculation tasks and algorithms of the procedure were automated through a computer application.

  2. Thermoeconomic evaluation of air conditioning system with chilled water storage

    International Nuclear Information System (INIS)

    Lin, Hu; Li, Xin-hong; Cheng, Peng-sheng; Xu, Bu-gong

    2014-01-01

    Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

  3. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  4. Targeting and design of chilled water network

    International Nuclear Information System (INIS)

    Foo, Dominic C.Y.; Ng, Denny K.S.; Leong, Malwynn K.Y.; Chew, Irene M.L.; Subramaniam, Mahendran; Aziz, Ramlan; Lee, Jui-Yuan

    2014-01-01

    Highlights: • Minimum flowrate targeting for chilled water network. • Mixed series/parallel configuration of chilled water-using units. • Integrated cooling and chilled water networks. - Abstract: Chilled water is a common cooling agent used in various industrial, commercial and institutional facilities. In conventional practice, chilled water is distributed via chilled water networks (CHWNs) in parallel configuration to provide required air conditioning and/or equipment cooling in the heating, ventilating and air conditioning (HVAC) system. In this paper, process integration approach based on pinch analysis technique is used to address energy efficiency issues in the CHWN system for grassroots design problem. Graphical and algebraic targeting techniques are developed to identify the minimum chilled water flowrate needed to remove a given amount of heat load from the CHWN. Doing this leads to higher chilled water return temperature and enhanced energy efficiency of the HVAC system. A recent proposed network design technique is extended to synthesize the CHWN in a mixed series/parallel configuration. A novel concept of integrated cooling and chilled water networks (IWN) is also proposed in this work, with its targeting and design techniques presented. Hypothetical examples and an industrial case study are solved to elucidate the proposed approaches

  5. Georgia Institute of Technology chilled water system evaluation and master plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-15

    As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

  6. Microbiological evaluation of chicken carcasses in an immersion chilling system with water renewal at 8 and 16 hours.

    Science.gov (United States)

    Souza, L C T; Pereira, J G; Spina, T L B; Izidoro, T B; Oliveira, A C; Pinto, J P A N

    2012-05-01

    Since 2004, Brazil has been the leading exporter of chicken. Because of the importance of this sector in the Brazilian economy, food safety must be ensured by control and monitoring of the production stages susceptible to contamination, such as the chilling process. The goal of this study was to evaluate changes in microbial levels on chicken carcasses and in chilling water after immersion in a chilling system for 8 and 16 h during commercial processing. An objective of the study was to encourage discussion regarding the Brazilian Ministry of Agriculture Livestock and Food Supply regulation that requires chicken processors to completely empty, clean, and disinfect each tank of the chilling system after every 8-h shift. Before and after immersion chilling, carcasses were collected and analyzed for mesophilic bacteria, Enterobacteriaceae, coliforms, and Escherichia coli. Samples of water from the chilling system were also analyzed for residual free chlorine. The results do not support required emptying of the chiller tank after 8 h; these tanks could be emptied after 16 h. The results for all carcasses tested at the 8- and 16-h time points indicated no significant differences in the microbiological indicators evaluated. These data provide both technical and scientific support for discussing changes in federal law regarding the management of immersion chilling water systems used as part of the poultry processing line.

  7. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    Science.gov (United States)

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  8. An operational experience with cooling tower water system in chilling plant

    International Nuclear Information System (INIS)

    Rajan, Manju B.; Roy, Ankan; Ravi, K.V.

    2015-01-01

    Cooling towers are popular in industries as a very effective evaporative cooling technology for air conditioning. Supply of chilled water to air conditioning equipments of various plant buildings and cooling tower water to important equipments for heat removal is the purpose of chilling plant at PRPD. The cooling medium used is raw water available at site. Water chemistry is maintained by make-up and blowdown. In this paper, various observations made during plant operation and equipment maintenance are discussed. The issues observed was scaling and algal growth affecting the heat transfer and availability of the equipment. Corrosion related issues were observed to be less significant. Scaling indices were calculated to predict the behavior. (author)

  9. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    Science.gov (United States)

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic

  10. Optimal design and operation of a thermal storage system for a chilled water plant serving pharmaceutical buildings

    Energy Technology Data Exchange (ETDEWEB)

    Henze, Gregor P. [University of Nebraska, Architectural Engineering, Omaha, NE 68182 (United States); Biffar, Bernd; Kohn, Dietmar [Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach D-88400 (Germany); Becker, Martin P. [University of Applied Sciences Biberach, Architectural Engineering, Biberach D-88400 (Germany)

    2008-07-01

    A group of buildings in the pharmaceutical industry located in Southern Germany is experiencing a trend of growing cooling loads to be met by the chilled water plant composed of 10 chillers of greatly varying cost effectiveness. With a capacity shortfall inevitable, the question arises whether to install an additional chiller or improve the utilization of the existing chillers, in particular those with low operating costs per unit cooling, through the addition of a chilled water thermal energy storage (TES) system. To provide decision support in this matter, an optimization environment was developed and validated that adopts mixed integer programming as the approach to optimizing the chiller dispatch for any load condition, while an overarching dynamic programming based optimization approach optimizes the charge/discharge strategy of the TES system. In this fashion, the chilled water plant optimization is decoupled but embedded in the TES control optimization. The approach was selected to allow for arbitrary constraints and optimization horizons, while ensuring a global optimum to the problem. Optimization scenarios have been defined that include current load conditions as well cooling loads that are elevated by 25% from current conditions in order to reflect the expected growth in cooling demand in the near future; both scenarios analyzed the impact of storage capacity by investigating several TES tank capacities. The annual optimization runs revealed that - based on the elevated cooling load scenario - the smallest TES system pays back the incremental investment necessary for the TES system in about three years; based on today's cooling loads the static payback is approximately six years. As the efficiency and cost of operating the existing chillers vary over a wide range, the TES system allows for a reduction in operating costs for the chilled water plant by avoiding the operation of inefficient chillers (such as the single-stage absorption type) and

  11. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    Science.gov (United States)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  12. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  13. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    International Nuclear Information System (INIS)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ''Availability of HVAC and Chilled Water Systems.'' The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ''generic'' insights on potential design-related and configuration-related vulnerabilities and potential high-frequency (∼1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations

  14. Value-impact assessment for resolution of generic safety issue 143 - availability of HVAC and chilled water systems

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Marler, J.E.; Vo, T.V. [Pacific Northwest Laboratory, Richland, WA (United States)] [and others

    1995-02-01

    The Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission (NRC), has conducted an assessment of the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, {open_quotes}Availability of Heating, Ventilation, and Air Conditioning (HVAC) and Chilled Water Systems.{close_quotes} This assessment was conducted to identify vulnerabilities related to failure of HVAC, chilled water and room cooling systems and develop estimates of the core damage frequencies and public risks associated with failures of these systems. This information was used to develop proposed resolution strategies to this generic issue and perform a value/impact assessment to determine their cost-effectiveness. Probabilistic risk assessments (PRAs) for four representative plants from the basis for the core damage frequency and public risk calculations. Internally-initiated core damage sequences as well as external events were considered. Three proposed resolution strategies were developed for this safety issue and it was determined that all three were not cost-effective. Additional evaluations were performed to develop {open_quotes}generic{close_quotes} insights on potential design-related vulnerabilities and potential high-frequency accident sequences that involve failures of HVAC/room cooling functions.

  15. Value-impact assessment for resolution of generic safety issue 143 - availability of HVAC and chilled water systems

    International Nuclear Information System (INIS)

    Daling, P.M.; Marler, J.E.; Vo, T.V.

    1995-01-01

    The Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission (NRC), has conducted an assessment of the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, open-quotes Availability of Heating, Ventilation, and Air Conditioning (HVAC) and Chilled Water Systems.close quotes This assessment was conducted to identify vulnerabilities related to failure of HVAC, chilled water and room cooling systems and develop estimates of the core damage frequencies and public risks associated with failures of these systems. This information was used to develop proposed resolution strategies to this generic issue and perform a value/impact assessment to determine their cost-effectiveness. Probabilistic risk assessments (PRAs) for four representative plants from the basis for the core damage frequency and public risk calculations. Internally-initiated core damage sequences as well as external events were considered. Three proposed resolution strategies were developed for this safety issue and it was determined that all three were not cost-effective. Additional evaluations were performed to develop open-quotes genericclose quotes insights on potential design-related vulnerabilities and potential high-frequency accident sequences that involve failures of HVAC/room cooling functions

  16. HVAC system modernization and implementation of a new chilled water system

    International Nuclear Information System (INIS)

    Jodlowiec, D.; Perez-Guilarte Moreno, C.

    2011-01-01

    Iberdrola Engineering and Construction managed the implementation of a new ventilation system and cooling in the turbine building at the Laguna Verde NPP, fundamental systems to maintain optimum environmental conditions within the same, to improve and ensure the smooth operation of all electrical equipment, contributing to the achievement of increased power to 120%.

  17. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  18. Chilled water optimization at Beek INEOS PVC Plant : ammonia cycle

    NARCIS (Netherlands)

    Karami Alaghinloo, B.

    2012-01-01

    In BEEK INEOS PVC plant, polymerization takes place in a suspension process in twenty reactors in five lines. As the reaction is exothermic, a 17MW chilled water unit (CWU) removing heat from reactors which are producing different grades in batch processes. The objective of the project was to

  19. Design and Modelling of Water Chilling Production System by the Combined Effects of Evaporation and Night Sky Radiation

    Directory of Open Access Journals (Sweden)

    Ahmed Y. Taha Al-Zubaydi

    2014-01-01

    Full Text Available The design and mathematical modelling of thermal radiator panel to be used primarily to measure night sky radiation wet coated surface is presented in this paper. The panel consists of an upper dry surface coated aluminium sheet laminated to an ethylene vinyl acetate foam backing block as an insulation. Water is sprayed onto the surface of the panel so that an evaporative cooling effect is gained in addition to the radiation effect; the surface of a panel then is wetted in order to study and measure the night sky radiation from the panel wet surface. In this case, the measuring water is circulated over the upper face of this panel during night time. Initial TRNSYS simulations for the performance of the system are presented and it is planned to use the panel as calibrated instruments for discriminating between the cooling effects of night sky radiation and evaporation.

  20. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  1. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw; Saththasivam, Jayaprakash; Saha, Bidyut Baran; Chua, Kian Jon; Srinivasa Murthy, S.; Ng, Kim Choon

    2017-01-01

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  2. Study of a Two-Pipe Chilled Beam System for both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Gordnorouzi, Rouzbeh; Hultmark, Göran; Afshari, Alireza

    Active chilled beam systems are used to provide heating and cooling in order to achieve comfortable thermal indoor climate. For heating and cooling applications, an active chilled beam has two water circuits comprising four pipes that supply warm and cold water respectively to the beam coil...... according to the space demand. Lindab Comfort A/S has introduced an active chilled beam system which has just one water circuit (two pipes) that is used for both heating and cooling. The concept is based on high temperature cooling and low temperature heating. In this study the energy saving potential...

  3. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran

    2013-01-01

    Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The buil...

  4. Influence of the ventilation system on thermal comfort of the chilled panel system in heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhe; Ding, Yan; Wang, Shuo; Yin, Xinglei; Wang, Menglei [Tianjin University, Tianjin 300072 (China)

    2010-12-15

    In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation. (author)

  5. Use mobile pumps and liquid chilling water units to provide chilled water for nuclear reactor during nuclear power plant accident

    International Nuclear Information System (INIS)

    Zhang Guobin; Feng Jiaxuan

    2012-01-01

    From the nuclear accident in Japan Fuksuhima in March this year, despite a shut down of the reactor, the residue heat inside the reactor was not able to remove due to the failure of the cooling system and it finally caused the catastrophe. It was observed that when the failure of the cooling system after an earthquake of magnitude 9 and a tsunami of 28 meters height, the containment vessel for the reactor core was still able to maintain its integrity in the first 24 hours before the first explosion was happened. A backup emergency heat removal system for nuclear power plants using mo- bile pumps and liquid chilling units has been proposed 20 years ago by Cheung [Ref. 1]. Due to the fact that there are more than 400 nuclear power plants around the world and 10% of them are located in earthquake active zone, together with the aging of some of the power plants which were built more than 30 years ago, the risk of another nuclear accident becomes high. An emergency safety measure has to be designed in order to deal with the unforeseen scenario. This re- port re-visits the proposal again; to re-design to the suit the need and to integrate with the current situation of the nuclear industry. (authors)

  6. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants.

    Science.gov (United States)

    Zhang, Zi-Shan; Liu, Mei-Jun; Gao, Hui-Yuan; Jin, Li-Qiao; Li, Yu-Ting; Li, Qing-Ming; Ai, Xi-Zhen

    2015-10-16

    Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.

  7. HVAC system modernization and implementation of a new chilled water system; Modernizacion del Sistema de HVAC e implantacion de un nuevo Sistema de Agua Enfriada de CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Jodlowiec, D.; Perez-Guilarte Moreno, C.

    2011-07-01

    Iberdrola Engineering and Construction managed the implementation of a new ventilation system and cooling in the turbine building at the Laguna Verde NPP, fundamental systems to maintain optimum environmental conditions within the same, to improve and ensure the smooth operation of all electrical equipment, contributing to the achievement of increased power to 120%.

  8. Survivability of chilled water networks on board ships when using dincs

    NARCIS (Netherlands)

    Smit, C.S.

    2012-01-01

    Fast reaction is required when a chilled water distribution network on board a naval ship is damaged. Without immediate isolation of the leakage area, all water supply is lost soon, with immense consequences for the ship’s operational state. The only solution for that is using an automated recovery

  9. The responses of antioxidant system in bitter melon, sponge gourd, and winter squash under flooding and chilling stresses

    Science.gov (United States)

    Do, Tuong Ha; Nguyen, Hoang Chinh; Lin, Kuan-Hung

    2018-04-01

    The objective of this paper was to review the responses of antioxidant system and physiological parameters of bitter melon (BM), sponge gourd (SG), and winter squash (WS) under waterlogged and low temperature conditions. The BM and SG plants were subjected to 0-72 h flooding treatments, and BM and WS plants were exposed to chilling at 12/7 °C (day/night) for 0-72 h. Different genotypes responded differently to environmental stress according to their various antioxidant system and physiological parameters. Increased ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities provided SG and WS plants with increased waterlogging and chilling stress tolerance, respectively, compared to BM plants. The APX gene from SG and the SOD gene from WS were then cloned, and the regulation of APX and SOD gene expressions under flooding and chilling stress, respectively, were also measured. Increased expression of APX and SOD genes was accompanied by the increased activity of the enzyme involved in detoxifying reactive oxygen species (ROS) in response to those stresses. Both APX and SOD activities can be used for selecting BM lines with the best tolerances to water logging and chilling stresses.

  10. Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water.

    Science.gov (United States)

    Rowan, N J; Espie, S; Harrower, J; Anderson, J G; Marsili, L; MacGregor, S J

    2007-12-01

    A pulsed-plasma gas-discharge (PPGD) system was developed for the novel decontamination of chilled poultry wash water. Treatment of poultry wash water in the plasma generation chamber for up to 24 s at 4 degrees C reduced Escherichia coli NCTC 9001, Campylobacter jejuni ATCC 33560, Campylobacter coli ATCC 33559, Listeria monocytogenes NCTC 9863, Salmonella enterica serovar Enteritidis ATCC 4931, and S. enterica serovar Typhimurium ATCC 14028 populations to non-detectable levels ( or = 3 log CFU/ml) in recalcitrant B. cereus NCTC 11145 endospore numbers within 30 s, the level of endospore reduction was dependent on the nature of the sparged gas used in the plasma treatments. Scanning electron microscopy revealed that significant damage occurred at the cellular level in PPGD-treated test organisms. This electrotechnology delivers energy in intense ultrashort bursts, generating products such as ozone, UV light, acoustic and shock waves, and pulsed electric fields that have multiple bactericidal properties. This technology offers an exciting complementary or alternative approach for treating raw poultry wash water and for preventing cross-contamination in processing environments.

  11. Dynamic modeling of stratification for chilled water storage tank

    International Nuclear Information System (INIS)

    Osman, Kahar; Al Khaireed, Syed Muhammad Nasrul; Ariffin, Mohd Kamal; Senawi, Mohd Yusoff

    2008-01-01

    Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

  12. Improved energy performance of air cooled centrifugal chillers with variable chilled water flow

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2008-01-01

    This paper considers how to apply optimum condensing temperature control and variable chilled water flow to increase the coefficient of performance (COP) of air cooled centrifugal chillers. A thermodynamic model for the chillers was developed and validated using a wide range of operating data and specifications. The model considers real process phenomena, including capacity control by the inlet guide vanes of the compressor and an algorithm to determine the number and speed of condenser fans staged based on a set point of condensing temperature. Based on the validated model, it was found that optimizing the control of condensing temperature and varying the evaporator's chilled water flow rate enable the COP to increase by 0.8-191.7%, depending on the load and ambient conditions. A cooling load profile of an office building in a subtropical climate was considered to assess the potential electricity savings resulting from the increased chiller COP and optimum staging of chillers and pumps. There is 16.3-21.0% reduction in the annual electricity consumption of the building's chiller plant. The results of this paper provide useful information on how to implement a low energy chiller plant

  13. Humidification of unwrapped chilled meat on retail display using an ultrasonic fogging system.

    Science.gov (United States)

    Brown, Tim; Corry, Janet E L; Evans, Judith A

    2007-12-01

    The effects of an ultrasonic humidification system on unwrapped meat in a chilled retail display cabinet were assessed. Humidification raised the relative humidity of the cabinet air from a mean of 76.7% to just below saturation at 98.8%. This reduced the mean evaporative weight loss from whole samples of meat after 14h from 1.68% to 0.62% of their initial weight. The rate of deterioration in the appearance of the meat due to dehydration was reduced to the extent that while the unhumidified trial was terminated after 14h because all samples were judged to be unacceptable, the humidified trial was continued for 24h without any major changes in appearance. Levels of presumptive pseudomonas bacteria were relatively high in water samples taken from the humidification system and defrost water during the humidified trial, but Legionella spp. were not isolated. Significant increases in the numbers of bacteria on the meat during either trial were only found in one case, that of humidified minced beef. However, some of the samples had high counts even before display, and this may have masked any effect due to humidification. Differences in levels of air-borne contamination were small and inconsistent. Air temperatures were raised by humidification by between 1 and 2°C and this was reflected in similarly raised product temperatures. Temperatures of air leaving the evaporator indicated that this was due to icing of the evaporator in the periods leading up to defrosts.

  14. Flow meter fault isolation in building central chilling systems using wavelet analysis

    International Nuclear Information System (INIS)

    Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei

    2006-01-01

    This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters

  15. Study of a two-pipe chilled beam system for both cooling and heating of office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, R. [Univ. of Boraes, Boraes (Sweden); Hultmark, G. [Lindab Comfort A/S, Farum (Denmark); Afshari, A. (ed.); Bergsoee, N.C. [Aalborg Univ.. Statens Byggeforskningsinstitut (SBi), Copenhagen (Denmark)

    2013-05-15

    The main aim of this master thesis was to investigate possibilities and limitations of a new system in active chilled beam application for office buildings. Lindab Comfort A/S pioneered the presented system. The new system use two-pipe system, instead of the conventional active chilled beam four-pipe system for heating and cooling purposes. The Two-Pipe System which is studied in this project use high temperature cooling and low temperature heating with water temperatures of 20 deg. C to 23 deg. C, available for free most of the year. The system can thus take advantage of renewable energy. It was anticipated that a Two-Pipe System application enables transfer of energy from warm spaces to cold spaces while return flows, from cooling and heating beams, are mixed. BSim software was chosen as a simulation tool to model a fictional office building and calculate heating and cooling loads of the building. Moreover, the effect of using outdoor air as a cooling energy source (free cooling) is investigated through five possible scenarios in both the four pipe system and the Two-Pipe System. The calculations served two purposes. Firstly, the effect of energy transfer in the Two-Pipe System were calculated and compared with the four pipe system. Secondly, free cooling effect was calculated in the Two-Pipe System and compared with the four pipe system. The simulation results showed that the energy transfer, as an inherent characteristic in the Two-Pipe System, is able to reduce up to 3 % of annual energy use compared to the four pipe system. Furthermore, different free cooling applications in the Two-Pipe System and the four pipe system respectively showed that the Two-Pipe System requires 7-15 % less total energy than the four pipe system in one year. In addition, the Two-Pipe System can save 18-57 % of annual cooling energy when compared to the four pipe system. (Author)

  16. A corporate water footprint case study: The production of Gazpacho, a chilled vegetable soup

    Directory of Open Access Journals (Sweden)

    G. Rivas Ibáñez

    2017-06-01

    Full Text Available This paper analyses the water footprint (WF for 1 L of gazpacho, a chilled vegetable soup produced by an agrifood company located in south-eastern Spain, one of the driest regions in Europe. An overview of the main environmental impacts of its WF was carried out by identifying hotspots (high risks areas based on a Water Stress indicator. The total WF calculated for 1 L gazpacho is 580.5 L, which mostly stems from the supply chain (99.9%, olive oil being the major contributor to total WF despite the very low amount used (2%. Most of the WF comes from green water (69%, 23% from blue and 8% represents the grey water. Pollution due to micropollutants such as pesticides, which are not yet regulated, has been taken into account in the WF calculation, pointing out that new regulation of micropollutants is needed to avoid their exclusion in the operational grey WF.

  17. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling*#

    Science.gov (United States)

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    2016-01-01

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. PMID:27921397

  18. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling.

    Science.gov (United States)

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.

  19. Assessment of electrical stunning in fresh water of African Catfish (Clarias gariepinus) and chilling in ice water for loss of consciousness and sensibility

    NARCIS (Netherlands)

    Lambooij, E.; Kloosterboer, R.J.; Gerritzen, M.A.; Vis, van de J.W.

    2006-01-01

    The overall objective of the study was to evaluate loss of consciousness and sensibility after electrical stunning in fresh water and live chilling in ice water for slaughter of African catfish using measurement of electrical brain and heart activity. To provoke immediate loss of consciousness and

  20. Evaluation of an Extremum Seeking Control Based Optimization and Sequencing Strategy for a Chilled-water Plant

    OpenAIRE

    Zhao, Zhongfan; Li, Yaoyu; Mu, Baojie; Salsbury, Timothy I.; House, John M.

    2016-01-01

    Chilled-water plants with multiple chillers account for a significant fraction of energy use in large commercial buildings. Real-time optimization and sequencing of such plants is thus critical for building energy efficiency. Due to the cost and complexity associated with calibrating a chiller plant model to field operation, model-free control has become an attractive solution. Recently, Mu et al. (2015) proposed a model-free real-time optimization and sequencing strategy based on extremum se...

  1. The big chill puts the electric system under tension

    International Nuclear Information System (INIS)

    Huet, Sylvestre

    2012-01-01

    Written at the occasion of a cold wave in France in February 2012 with a new peak in electricity consumption, the article first analyses the specific meteorological conditions associated with this event, and then outlines that the massive use of electric heating makes the French system particularly sensitive to temperatures, but also that the peak is also due to the massive use of electric domestic appliances at about 7 p.m. He describes how this peak is faced in terms of energy sources and outlines that there was no risk for grid security. He comments the availability of nuclear and hydroelectric energy, and of other energies (oil, coal, gas), and the margin levels. He finally states that costs of a cold wave are predictable and could be mitigated by supporting the installation of energy-saving or non-electric heating systems

  2. Chilling injury

    African Journals Online (AJOL)

    ahar

    2013-12-18

    Dec 18, 2013 ... ROS avoidance genes play pivotal role in defense mechanism against chilling injury derived oxidative stress. ... Low temperature storage is a postharvest technology ..... crops is highly dependent on ethylene production and.

  3. Medical chilling device designed for hypothermic hydration graft storage system: Design, thermohydrodynamic modeling, and preliminary testing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Hongik University, Seoul (Korea, Republic of)

    2015-02-15

    Hypothermic hydration graft storage is essential to reduce the metabolic demand of cells in vitro. The alleviated metabolic demands reduce the emergence rate of anaerobic metabolism generating adenosine triphosphate (ATP) energy that creates free radicals. The cessive free radicals can damage cells and tissues due to their highly oxidative power with molecules. Current cooling systems such as a conventional air cooling system and an ice pack system are inappropriate for chilling cell tissues in vitro because of inconvenience in use and inconsistent temperature sustainability caused by large size and progressive melting, respectively. Here, we develop a medical chilling device (MCD) for hypothermic hydration graft storage based on thermo-hydrodynamic modeling and thermal electric cooling technology. Our analysis of obtained hydrodynamic thermal behavior of the MCD revealed that the hypothermic condition of 4 .deg. C was continuously maintained, which increased the survival rates of cells in vitro test by reduced free radicals. The validated performance of the MCD promises future development of an optimal hypothermic hydration graft storage system designed for clinical use.

  4. Cooling water for SSC experiments: Supplemental Conceptual Design Report (SCDR)

    International Nuclear Information System (INIS)

    Doyle, R.E.

    1989-01-01

    This paper discusses the following topics on cooling water design on the superconducting super collider; low conductivity water; industrial cooling water; chilled water systems; and radioactive water systems

  5. Reducing a solar-assisted air-conditioning system’s energy consumption by applying real-time occupancy sensors and chilled water storage tanks throughout the summer: A case study

    International Nuclear Information System (INIS)

    Rosiek, S.; Batlles, F.J.

    2013-01-01

    Highlights: • We present an innovative occupancy and chilled water storage-based operation mode. • This mode was implemented to the solar-assisted air-conditioning system. • It permits to save 42% of total electrical energy during one cooling period. • It allows storing the excess cooling capacity of the absorption chiller. • It prevents the sudden start/stop (on/off cycles) of the absorption chiller. - Abstract: This study describes an innovative occupancy and chilled-water storage-based operation sequence implemented in a solar-assisted air-conditioning system. The core purpose of this solar-assisted air-conditioning system is to handle the cooling and heating load of the Solar Energy Research Centre (CIESOL), thus minimising its environmental impact. In this study, the cooling mode was investigated with special attention focused on the chilled-water storage circuit. The critical concern is that the solar-assisted air-conditioning system should always operate considering the actual load conditions, not using an abstract maximum load that is predetermined during the system’s design process, which can lead to energy waste during periods of low occupancy. Thus, the fundamental problem is to identify the optimum operation sequence for the solar-assisted air-conditioning system that provides the best energy performance. The significance of this work lies in the demonstration of a new operation strategy that utilises real-time occupancy monitoring and chilled-water storage tanks to improve the efficiency of solar-assisted air-conditioning systems, thereby reducing their electricity consumption. Adopting this strategy resulted in a large energy-saving potential. The results demonstrate that during one cooling period, it is possible to conserve approximately 42% of the total electrical energy consumed by the system prior to the adoption of this operation strategy

  6. Water relation response to soil chilling of six olive (Olea europaea L.) cultivars with different frost resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, D.; Gijon, M. C.; Marino, J.; Moriana, A.

    2010-07-01

    The relationship between the water relations of six olive cultivars exposed to different soil temperatures (14 0.1, 9.9 0.1 and 5.8 0.2 degree centigrade) and their inherent frost resistance (as determined by two different methods) was investigated. Soil chilling was achieved by introducing pots of olive plants into water baths. The water relations of these plants were compared to those of plants kept under conditions of room temperature. The cultivars Frantoio, Picual and Changlot Real began to show significant dehydration below 14 degree centigrade, while Cornicabra, Arbequina and Ascolana Tenera showed this below 10 degree centigrade. This response is probably due to delayed stomatal closure. Only Cornicabra and Picual showed a significant reduction in leaf conductance (below 10 degree centigrade and 6 degree centigrade respectively). This absence of stomatal control led to a significantly greater dehydration in Ascolana Tenera. These variations in response to the soil chilling temperature suggest that different mechanisms may be at work, and indicate that would be necessary to study the influence of rootstock in the frost resistance of olive plants. The variations recorded grouped the cultivars as either resistant (Cornicabra), tolerant (Picual, Ascolana Tenera and Arbequina), or sensitive (Frantoio and Changlot Real). This classification is in line with the frost resistance reported for these cultivars in the literature, and with the results obtained in the present work using the stomatal density and ion leakage methods of determining such resistance. (Author) 40 refs.

  7. Optimización de sistemas centralizados de agua helada en la etapa prematura del diseño comercial // Optimization of chilled water system in premature stage of coommercial design

    Directory of Open Access Journals (Sweden)

    Yarelis Valdivia‐Nodal

    2012-01-01

    Full Text Available En el presente trabajo se propone un procedimiento para la optimización de un sistema de climatizacióncentralizada por agua helada en la etapa prematura del diseño comercial, para ello se crea un modelohíbrido que combina herramientas termoeconómicas con técnicas de inteligencia artificial como son lasredes neuronales artificiales y los algoritmos genéticos para minimizar el costo de los productos finales delsistema (agua fría para climatización de locales y agua caliente para calentamiento de agua sanitaria.Con este objetivo se calculan las variables de diseño y de operación que garantizan el mínimo costo totaldel sistema, formado por los costos capitales de cada uno de sus componentes y el costo asociado a laenergía consumidaPalabras claves: termoeconomía, optimización, algoritmos genéticos, sistemas de climatizacióncentralizada.__________________________________________________________________AbstractIn this paper the procedure of optimization for the conceptual design of a centralized air conditioning chillerwater system is developed, for which a hybrid model is created that combines thermoeconomic tools withartificial intelligence technique such as Artificial Neural Networks (ANN and Genetic Algorithms (GA forthe optimization of the final products of the system. With this objective the design and operation variablesare calculated that guarantees the minimum total cost of the system, including the capital costs of each ofits components and the cost associated to the energy consumed.Key words: thermoeconomic, optimization, genetic algorithms, chiller.

  8. THE EFFECTS OF SPRAY-CHILLING ASSOCIATED TO CONVENTIONAL CHILLING ON MASS LOSS, BACTERIOLOGYCAL AND PHYSICO-CHEMICAL QUALITY OF BEEF CARCASS

    Directory of Open Access Journals (Sweden)

    Moacir Evandro Lage

    2006-10-01

    Full Text Available The purpose of this study was to verify the effect of conventional air chilling associated to intermittent spray-chilling treatment, on weight loss, physico-chemical and bacteriological quality of beef carcasses. Two plants of commercial beef slaughterhouse located in Goiânia and fiscalized by the Federal Inspection Service were used to develop the research. The spray-chilling treatment was accomplished in an intermittent way, commanded by acontrolled logical program, with cycles of 90 seconds, in intervals of 30 minutes, during the first 4 hours of the chilling process. Physico-chemical and bacteriological analysis were made in spray-chilled water and carcasses samples, according to recommendation of the effective legislation.The average values of carcasses weight loss of treatment group were lower to the ones verified for the control group,in both plants, A and B, (P < 0,001, showing a high economic potential. As a conclusion of physico-chemical and bacteriological analysis results of water and meat samples, it is clear that the technology of chilling beef carcasses inthe conventional system associated to spraying did not interfere in the quality of meat, and it can become an analysis object on part of official organs for sanitary regulation and fiscalization, for its definitive adoption. KEY WORDS: Spray-chilling, shrinkage, beef carcass.

  9. External tank chill effect on the space transportation system launch pad environment

    Science.gov (United States)

    Ahmad, R. A.; Boraas, S.

    1991-01-01

    The external tank (ET) of the STS contains liquid oxygen and liquid hydrogen as oxidizer and fuel for the SSMEs. Once the cryogen have been loaded into the ET, the temperature of the air surrounding the STS is chilled by the cold outer surface of the ET. This paper describes a two-dimensional flow and thermal analysis to determine this chill effect on the STS launch pad environment subsequent to the ET loading operation. The analysis was done assuming winter conditions and a northwest wind direction. An existing CFD code, PHOENICS '81, was used in the study. The results are presented as local and average values of the heat transfer coefficient, the Nusselt number, and the surface temperature around the redesigned solid rocket motors (RSRMs) and the ET. The temperature depression caused by the ET chilling of the air in the vicinity of the RSRMs was calculated to be 3 F below the ambient. This compares with the observed 1-2 F RSRM surface temperature depression based upon measurements made prior to the winter flight of STS-29. Since the surface temperature would be expected to be slightly higher than the local air temperature, the predicted temperature depression of the air appears to be substantiated.

  10. Washing and chilling as critical control points in pork slaughter hazard analysis and critical control point (HACCP) systems.

    Science.gov (United States)

    Bolton, D J; Pearce, R A; Sheridan, J J; Blair, I S; McDowell, D A; Harrington, D

    2002-01-01

    The aim of this research was to examine the effects of preslaughter washing, pre-evisceration washing, final carcass washing and chilling on final carcass quality and to evaluate these operations as possible critical control points (CCPs) within a pork slaughter hazard analysis and critical control point (HACCP) system. This study estimated bacterial numbers (total viable counts) and the incidence of Salmonella at three surface locations (ham, belly and neck) on 60 animals/carcasses processed through a small commercial pork abattoir (80 pigs d(-1)). Significant reductions (P HACCP in pork slaughter plants. This research will provide a sound scientific basis on which to develop and implement effective HACCP in pork abattoirs.

  11. Fuzzy control for optimal operation of complex chilling systems; Betriebsoptimierung von komplexen Kaelteanlagen mit Fuzzy-Control

    Energy Technology Data Exchange (ETDEWEB)

    Talebi-Daryani, R. [Fachhochschule Koeln (Germany). Lehrgebiet und Lab. fuer Regelungs- und Gebaeudeleittechnik; Luther, C. [JCI Regelungstechnik GmbH, Koeln (Germany)

    1998-05-01

    The optimization potentials for the operation of chilling systems within the building supervisory control systems are limited to abilities of PLC functions with their binary logic. The aim of this project is to replace inefficient PLC-solutions for the operation of chilling system by a Fuzzy control system. Optimal operation means: reducing operation time and operation costs of the system, reducing cooling energy generation- and consumption costs. Analysis of the thermal behaviour of the building and the chilling system is necessary, in order to find the current efficient cooling potentials and cooling methods during the operation. Three different Fuzzy controller have been developed with a total rule number of just 70. This realized Fuzzy control system is able to forecast the maximum cooling power of the building, but also to determine the cooling potential of the out door air. This new Fuzzy control system has been successfully commissioned, and remarkable improvement of the system behaviour is reached. Comparison of the system behaviour before and after the implementation of Fuzzy control system proved the benefits of the Fuzzy logic based operation system realized here. The system described here is a joint project between the University of applied sciences Cologne, and Johnson Controls International Cologne. The Fuzzy software tool used here (SUCO soft Fuzzy TECH 4.0), was provided by Kloeckner Moeller Bonn. (orig.) [Deutsch] Die Betriebsoptimierung von Kaelteanlagen innerhalb von Gebaeudeleitsystemen ist auf die Faehigkeiten von logischen Steuerverknuepfungen der Digitaltechnik begrenzt. In diesem Zusammenhang kann nur ein geringer Anteil der Information ueber das thermische Speicherverhalten des jeweiligen Gebaeudes herangezogen werden. Ziel des vorliegenden Projektes war es, die unzureichenden logischen Steuerverknuepfungen durch ein Fuzzy-Control-System zu ersetzen, um die Arbeitsweise der Kaelteanlage zu optimieren. Die Optimierungskriterien dieses

  12. Effect of rearing system on body traits and fillet quality of meagre (Argyrosomus regius, Asso 1801 chilled for a short time

    Directory of Open Access Journals (Sweden)

    Roberta Martelli

    2013-04-01

    Full Text Available The purpose of this study was to evaluate qualitative traits of meagre (Argyrosomus regius from two different rearing systems (land-based tank filled with geothermal water vs offshore sea cage and after short-term storage at chilling temperature (1, 2, or 3 days. Fish originated from the same batch were fed the same diet. Morpho-biometric traits, L*, a*, and b* colour parameters, texture, free water, proximate composition, total lipids, fatty acids, iron, and selenium contents were analyzed in the fillets. Most parameters were affected by rearing system. Compared to tank-reared fish, caged fish were shorter, poorer in visceral fat, and had higher incidence in cavity content and liver, lower incidence in gonads and head. Caged fish also had softer fillets in the epaxial site, which showed a higher tendency towards greenish colour. Caged fish also showed higher lipid content but lower Fe and Se content. Tank-reared fish fillets were more abundant in PUFAn-3, mainly due to DHA (18.54 vs 12.95%; P<0.001 and consequently showed the best healthiness indexes. Minimal changes, mostly involving colour and texture, were detected during the first three days of refrigerated storage. During storage, no significant modification of the parameters investigated could be ascribed to the rearing system

  13. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  14. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  15. Fault Diagnosis Of A Water For Injection System Using Enhanced Structural Isolation

    DEFF Research Database (Denmark)

    Laursen, Morten; Blanke, Mogens; Düstegör, Dilek

    2008-01-01

    A water for injection system supplies chilled sterile water as solvent to pharmaceutical products. There are ultimate requirements to the quality of the sterile water, and the consequence of a fault in temperature or in flow control within the process may cause loss of one or more batches...

  16. Chilling Out With Colds

    Science.gov (United States)

    ... and use the time to read, listen to music, or watch a movie. In other words, chill out and you might prevent a cold! Reviewed by: Patricia ... Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  17. Boron nutrition and chilling tolerance of warm climate crop species.

    Science.gov (United States)

    Huang, Longbin; Ye, Zhengqian; Bell, Richard W; Dell, Bernard

    2005-10-01

    Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B

  18. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    Science.gov (United States)

    2017-10-26

    TO OTHER ZONE DAMPERS N.O. TEMPERATURE SENSOR CHILLED WATER ZONE 1 STAT SUPPLY FAN COLD DECK COIL TO OTHER ZONE DAMPERS ZONE 1 DAMPER ACTUATOR HOT... water pump usage were considered. Figure 25. Condensing Boiler Combustion Efficiencies 3. Chilled water system losses : Similarly, electrical energy...required to meet cooling demands at the chilled water coil BTU meter is dependent on network losses and chiller energy efficiency ratios. Using

  19. Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Emilio; Escobar, Arseny; Bravo, Bigail; Montoya, Pablo [Instituto Interamericano de Cooperacion para la Agricultura (IICA), Chiapas (Mexico); Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA), Mexico, D.F. (Mexico). Programa Moscafrut

    2010-07-15

    We evaluated three packing systems (PARC boxes, 'GT' screen towers and 'MX' screen towers) for the emergence and sexual maturation of sterile fruit flies, at three adult fl y densities (1, 1.2 and 1.3 fly/cm 2) and three food types. At the lowest density, results showed no significant differences in the longevity and flight ability of adult Anastrepha ludens (Loew) and Anastrepha obliqua Macquart among the three packing systems. Higher densities resulted in a decrease in these parameters. In the evaluation of the three food types, no significant differences were found either on longevity or flight ability of A. ludens. However, the greatest longevity for both sexes A. obliqua was obtained with commercial powdered Mb and the mix of sugar, protein and corn starch on paper (SPCP) food types. The highest value for flight ability in A. obliqua males was obtained with powdered Mb and SPCP food types, and for females with Mb powdered food. Our data indicated that GT and MX screen tower packing systems are an alternative to the PARC boxes, since they were suitable for adult fl y sexual maturation without any harm to their longevity or flight ability. The tested foods were equivalent in both fruit fl y species, with the exception of the agar type for A. obliqua, which yielded the lowest biological parameters evaluated. Our results contribute to the application of new methods for the packing and release of sterile flies in large-scale programs. (author)

  20. Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique

    International Nuclear Information System (INIS)

    Hernandez, Emilio; Escobar, Arseny; Bravo, Bigail; Montoya, Pablo; Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion

    2010-01-01

    We evaluated three packing systems (PARC boxes, 'GT' screen towers and 'MX' screen towers) for the emergence and sexual maturation of sterile fruit flies, at three adult fl y densities (1, 1.2 and 1.3 fly/cm 2) and three food types. At the lowest density, results showed no significant differences in the longevity and flight ability of adult Anastrepha ludens (Loew) and Anastrepha obliqua Macquart among the three packing systems. Higher densities resulted in a decrease in these parameters. In the evaluation of the three food types, no significant differences were found either on longevity or flight ability of A. ludens. However, the greatest longevity for both sexes A. obliqua was obtained with commercial powdered Mb and the mix of sugar, protein and corn starch on paper (SPCP) food types. The highest value for flight ability in A. obliqua males was obtained with powdered Mb and SPCP food types, and for females with Mb powdered food. Our data indicated that GT and MX screen tower packing systems are an alternative to the PARC boxes, since they were suitable for adult fl y sexual maturation without any harm to their longevity or flight ability. The tested foods were equivalent in both fruit fl y species, with the exception of the agar type for A. obliqua, which yielded the lowest biological parameters evaluated. Our results contribute to the application of new methods for the packing and release of sterile flies in large-scale programs. (author)

  1. STUDY OF CYLPEBS CHILLING

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2016-01-01

    Full Text Available Methods of increasing the shock resistance of cast-iron grinding bodies are researched. The models of heat transfer in the process of casting and shock-abrasive wear are presented. Tooling to produce experimental samples of milling bodies chilling(gravity die casting is manufactured, samples of cylpebs are produced.

  2. Chilling injury in mangoes

    NARCIS (Netherlands)

    Arafat, L.A.E.T.

    2005-01-01

    At present, the value and production quantity of mango fruits are increasing worldwide. Many studies emphasize how chilling injury phenomena affect the quality of tropical fruits, such as mango, during postharvest handling, transport, and storage. Since mango is one of the most favored and popular

  3. Demonstration of Noncorrosive, Capacitance- Based Water-Treatment Technology for Chilled-Water Cooling Systems

    Science.gov (United States)

    2014-09-01

    maintenance personnel or chemical service provider. Corrosion coupons were installed at all four sites to match the metallurgy of the equipment. The...return (CWR) piping of each condenser. To install the capacitor rods, 1.5 in. mild steel thread-o-lets* were welded into a pipe elbow. Figure 5 shows...threaded external pipe fitting that is welded to a hole in a pipe wall to create a new branch connection. ERDC/CERL TR-14-15 10 Figure 4. Chillers

  4. Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang?

    Science.gov (United States)

    Ippolito, M P; Fasciano, C; d'Aquino, L; Morgana, M; Tommasi, F

    2010-01-01

    Extensive agriculture application of rare earth elements (REEs) in Far East countries might cause spreading of these metals in aquatic and terrestrial ecosystems, thus inducing a growing concern about their environmental impact. In this work the effects of a mix of different REE nitrate (RE) and of lanthanum nitrate (LA) on catalase and antioxidant systems involved in the ascorbate-glutathione cycle were investigated in common duckweed Lemna minor L. The results indicated that L. minor shows an overall good tolerance to the presence of REEs in the media. Treatments at concentrations up to 5 mM RE and 5 mM LA did not cause either visible symptoms on plants or significant effects on reactive oxygen species (ROS) production, chlorophyll content, and lipid peroxidation. Toxic effects were observed after 5 days of exposition to 10 mM RE and 10 mM LA. A remarkable increase in glutathione content as well as in enzymatic antioxidants was observed before the appearance of the stress symptoms in treated plants. Duckweed plants pretreated with RE and LA were also exposed to chilling stress to verify whether antioxidants variations induced by RE and LA improve plant resistance to the chilling stress. In pretreated plants, a decrease in ascorbate and glutathione redox state and in chlorophyll content and an increase in lipid peroxidation and ROS production levels were observed. The use of antioxidant levels as a stress marker for monitoring REE toxicity in aquatic ecosystems by means of common duckweed is discussed.

  5. ChillFish

    DEFF Research Database (Denmark)

    Sonne, Tobias; Jensen, Mads Møller

    2016-01-01

    Breathing exercises can help children with ADHD control their stress level, but it can be hard for a child to sustain attention throughout such an exercise. In this paper, we present ChillFish, a breath-controlled biofeedback game designed in collaboration with ADHD professionals to investigate...... the possibilities of combining breathing exercises and game design. Based on a pilot study with 16 adults, we found that playing ChillFish had a positive effect, helping the participants to reach a relaxed state similar to the one offered by traditional breathing exercises. Further, we analyze the opportunities...... and challenges of creating a tangible respiration-based controller and use it as a core game mechanic. Finally, we discuss the challenge of balancing engagement and relaxation in physically controlled games for children with ADHD in order to make a game that can be calming and still sustain their attention....

  6. Irradiation of chilled lamb

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1985-04-01

    Chilled, vacuum-packed New Zealand lamb loins have been irradiated at doses between 1-8 kGy. The report outlines the methods used and provides dosimetry details. An appendix summarises the results of a taste trial conducted on the irradiated meat by the Meat Industry Research Institute of New Zealand. This showed that, even at 1 kGy, detectable flavours were induced by the radiation treatment

  7. Impact of heat load location and strength on air flow pattern with a passive chilled beam system

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, Risto [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland); Saarinen, Pekka; Koskela, Hannu [Finnish Institute of Occupational Health, Lemminkaisenkatu 14-18 B, 20520 Turku (Finland); Hole, Alex [Arup, Rob Leslie-Carter, Level 10, 201 Kent Street, Sydney, NSW 2000 (Australia)

    2010-01-15

    A passive chilled beam is a source of natural convection, creating a flow of cold air directly into the occupied zone. Experiments were conducted in a mock-up of an office room to study the air velocities in the occupied spaces. In addition, velocity profiles are registered when underneath heat loads exist and the cool and warm air flows interact. Experimental laboratory study revealed that in the case of the underneath heat gains, even no upward plume was generated and the dummy only acted as a flow obstacle, having a significant effect on the velocity profile. Furthermore, in an actual occupied office environment, the thermal plumes and the supply air diffuser mixed effectively the whole air volume. The maximum air velocity measured was still below 0.25 m/s with the extremely high heat gain of 164 W/m{sup 2}. The results demonstrate that analysis methods were the interaction of convection flow and jet are not taken into account could not accurately describe air movement and draught risk in the occupied room space. (author)

  8. Using a concentrate of phenols obtained from olive vegetation water to preserve chilled food: two case studies

    Directory of Open Access Journals (Sweden)

    Luca Fasolato

    2016-05-01

    Full Text Available Phenols are plant metabolites characterised by several interesting bioactive properties such as antioxidant and bactericidal activities. In this study the application of a phenols concentrate (PC from olive vegetation water to two different fresh products – gilt-head seabream (Sparus aurata and chicken breast – was described. Products were treated in a bath of PC (22 g/L; chicken breast or sprayed with two different solutions (L1:0.75 and L2:1.5 mg/mL; seabream and then stored under refrigeration conditions. The shelf life was monitored through microbiological analyses – quality index method for seabream and a specific sensory index for raw breast. The secondary products of lipid-peroxidation of the chicken breast were determined using the thiobarbituric acid reactive substances (TBARs test on cooked samples. Multivariate statistical techniques were adopted to investigate the impact of phenols and microbiological data were fitted by DMfit software. In seabream, the levels of PC did not highlight any significant difference on microbiological and sensory features. DMfit models suggested an effect only on H2S producing bacteria with an increased lag phase compared to the control samples (C: 87 h vs L2: 136 h. The results on chicken breast showed that the PC bath clearly modified the growth of Pseudomonas and Enterobacteriaceae. The phenol dipping was effective in limiting lipid-peroxidation (TBARs after cooking. Treated samples disclosed an increase of shelf life of 2 days. These could be considered as preliminary findings suggesting the use of this concentrate as preservative in some fresh products.

  9. Evaluation of trigeneration system using microturbine, ammonia-water absorption chiller, and a heat recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Preter, Felipe C.; Rocha, Marcelo S.; Simoes-Moreira, Jose Roberto [SISEA - Alternative Energy Systems Lab. Dept. of Mechanical Engineering. University of Sao Paulo (EP/USP), SP (Brazil)], e-mails: felipe.preter@poli.usp.br, msrocha@poli.usp.br, jrsimoes@usp.br; Andreos, Ronaldo [COMGAS - Companhia de Gas de Sao Paulo, SP (Brazil)], e-mail: randreos@comgas.com.br

    2010-07-01

    In this work, a CCHP or tri generation system has been projected, mounted, and tested in laboratory, combining a microturbine for power generation, a heat recovery boiler for hot water production, and an ammonia water absorption chiller for chilled water production. The project was motivated by the large practical applications of this kind of energy recovery system in commerce, and industry, and, in general, more than 85% of the energy source is used as power, hot water, and cold water. In the first part, the trigeneration system theoretical model is detailed, and in the second part, experimental results are presented for different operation conditions. (author)

  10. Performance of personalized ventilation combined with chilled ceiling in an office room: inhaled air quality and contaminant distribution

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2014-01-01

    people (exhaled air, bioeffluents) and building materials (wall painting). Personalized ventilation combined with chilled ceiling ensured highest air quality at the workstation under all conditions. Pollutant concentration in the occupied zone away from the workstations did not differ substantially...... between the tested systems. Chilled ceiling combined with personalized ventilation working as the only air supplying system may be optimal solution in many buildings.......In a simulated two persons’ office room inhaled air quality and contaminant distribution provided with personalized ventilation combined with chilled ceiling, mixing ventilation only, chilled ceiling with mixing ventilation and chilled ceiling with mixing and personalized ventilation was studied...

  11. SolarChill - a solar PV refrigerator without battery

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, P.H.; Poulsen, S.; Katic, I. [Danish Technological Inst., Taastrup (Denmark)

    2004-07-01

    A solar powered refrigerator (SolarChill) has been developed in an international project involving Greenpeace International, GTZ, UNICEF, UNEP, WHO, industrial partners and Danish Technological Institute. The refrigerator is able to operate directly on solar PV panels, without battery or additional electronics, and is therefore suitable for locations where little maintenance and reliable operation is mandatory. The main objective of the SolarChill Project is to help deliver vaccines and refrigeration to the rural poor. To achieve this objective, the SolarChill Project developed - and plans to make freely available a versatile refrigeration technology that is environmentally sound, technologically reliable, and affordable. SolarChill does not use any fluorocarbons in its cooling system or in the insulation. For domestic and small business applications, another type of solar refrigerator is under development. This is an upright type, suitable for cool storage of food and beverages in areas where grid power is non-existent or unstable. The market potential for this type is thus present in industrialised countries as well as in countries under development. The unique feature of SolarChill is that energy is stored in ice instead of in batteries. An ice compartment keeps the cabinet at desired temperatures during the night. The paper describes the product development, possible SolarChill applications and experience with the two types of solar refrigerators, as well as results from the laboratory and field test. (orig.)

  12. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  13. An Economic Analysis of Air-Conditioning Systems with Off-Peak Chilled-Water Storage.

    Science.gov (United States)

    1981-09-01

    request and basic ideas for our thesis, John Frounfelker for the BLAST orientation, and John Harriot and Ed Fink for their help in developing the...regulatory authority to consider at least once, for each utility for which it has ratemaking authority, the following by November 1981: 1. Cost of...passing external to the compressor (3:12.10). Centrifugal chillers adjust compressor capacity through variable inlet guide vanes placed in front of the

  14. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  15. Ruoanvalmistuspaperi Cook and chill prosessissa

    OpenAIRE

    Sarjohalme, Sirkka; Helin, Inga

    2012-01-01

    Opinnäytetyö lähti liikkeelle opinnäytetyön tilaajan, Metsä Tissuen, toiveesta tutkia Cook and chill -ruoanvalmistuspaperin soveltuvuutta Cook and chill -tuotantotapaan ammattikeittiöissä. Uudet toimintamenetelmät eroavat perinteisistä menetelmistä käytännössä näkyvimmin siinä, että ruoanvalmistus ei ole sidottu tarjoilupaikkaan ja ruoan tarjoilun ei tarvitse välttämättä tapahtua valmistuspäivänä. Tähän perustuu myös Cook and chill -tuotantotapa. Tutkimusyhteistyötä tehtiin Pirkkalan tuotanto...

  16. Comparison of microbial load in immersion chilling water and poultry carcasses after 8, 16 and 24 working hours Comparação da carga microbiana em águas de pré-resfriamento e carcaças de frangos, após jornadas de trabalho de 8, 16 e 24 horas

    Directory of Open Access Journals (Sweden)

    Ricardo Cavani

    2010-07-01

    Full Text Available Poultry processing facilities are known for using a great amount of water, which is mainly used on carcasses chilling stage. In Brazil, meat regulations state that each chiller tank must be emptied, cleaned and sanitized every 8 working hours. The aim of the current study was to assess the microbial load of chiller water used in poultry immersion chilling system after 8, 16 and 24 working hours in order to evaluate the reduction of water changes and chiller sanitization. Conventional physicochemical and microbiological assays were done in water supply samples (n=69 to suppress interferences caused by freshwater addition; pre chilled (n=345 post chilled carcasses (n=345 and chiller water samples of the last stage (n=69. The results showed no significant differences on microbial load samples between the three shifts suggesting that the proposed reduction may be secure and reduces the volume of wastewater that would impact the environment, besides improving the rational use of processing time.As atividades dos estabelecimentos de abate de frangos são conhecidas por utilizarem grandes volumes de água durante seus processos, principalmente no processo de resfriamento das carcaças de frangos. Parte desse volume utilizado se faz necessário, em cumprimento à legislação que determina que cada tanque do sistema de pré-resfriadores contínuos por imersão deve ser completamente esvaziado, limpo e desinfetado no final de cada período de trabalho (oito horas. O objetivo deste estudo foi comparar a carga microbiana das águas do sistema de resfriamento e das carcaças de frango ao final de oito, dezesseis e vinte e quatro horas de trabalho do abatedouro, para possível redução do número de vezes do completo esvaziamento dos tanques do sistema de resfriamento. Foram avaliadas, por meio de métodos convencionais microbiológicos e físico-químicos, amostras da água de abastecimento (n=69, visando a evitar possível interferência nas contagens das

  17. Cook & Chill - Rapid Chilling of Food 'in situ'

    DEFF Research Database (Denmark)

    Paul, Joachim

    2003-01-01

    for a given product and process and to compare different cooling fluids and methods. Chilling of hot products in professional cooking kettles immediately after cooking is achieved best by using Binary Ice. The paper gives an equation, which describes the cooling velocity for such kettles and other products...

  18. Chilled storage of foods - principles

    Science.gov (United States)

    Chilled storage is the most common method for preserving perishable foods. The consumers’ increasing demand for convenient, minimally processed foods has caused food manufacturers to increase production of refrigerated foods worldwide. This book chapter reviews the development of using low tempera...

  19. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  20. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch.

    Science.gov (United States)

    Zhu, Dawei; Wei, Haiyan; Guo, Baowei; Dai, Qigen; Wei, Cunxu; Gao, Hui; Hu, Yajie; Cui, Peiyuan; Li, Min; Huo, Zhongyang; Xu, Ke; Zhang, Hongcheng

    2017-12-15

    This study investigates the effect of chilling stress, over a period of three days after anthesis, on the physicochemical properties of starches derived from six rice cultivars. Chilling stress significantly affected the grain characteristics and physicochemical properties of rice starches, except for those of two varieties, NJ 9108 and ZD 18. In the other four rice cultivars subjected to chilling stress, the content of medium, and large sized granules showed a decrease, and an increase, respectively. Amylose content increased as a result of chilling stress, thereby resulting in starch with a lower swelling power, water solubility, and higher retrogradation enthalpy and gelatinization temperature. Chilling stress led to deterioration of cooked rice quality as determined by the pasting properties of starch. This study indicated that among the cultivars studied, the two rice varieties most resistant to chilling stress after rice anthesis were NJ 9108 and ZD 18. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  2. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  3. Deteriorating Inventory Model for Chilled Food

    OpenAIRE

    Yang, Ming-Feng; Tseng, Wei-Chung

    2015-01-01

    With many aspects that affect inventory policy, product perishability is a critical aspect of inventory policy. Most goods will deteriorate during storage and their original value will decline or be lost. Therefore, deterioration should be taken into account in inventory practice. Chilled food products are very common consumer goods that are, in fact, perishable. If the chilled food quality declines over time customers are less likely to buy it. The value the chilled food retains is, however,...

  4. Individually controlled localized chilled beam in conjunction with chilled ceiling: Part 2 – Human response

    DEFF Research Database (Denmark)

    Arghand, Taha; Pastuszka, Zuzanna; Bolashikov, Zhecho Dimitrov

    2016-01-01

    The response of 24 subjects to the local environment established by localized chilled beam combined with chilled ceiling (LCBCC) was studied and compared with response to the environment generated by mixing ventilation combined with chilled ceiling (CCMV) at two temperature conditions of 26°C and...

  5. Individually controlled localized chilled beam in conjunction with chilled ceiling: Part 1 – Physical environment

    DEFF Research Database (Denmark)

    Arghand, Taha; Bolashikov, Zhecho Dimitrov; Kosonen, Risto

    2016-01-01

    This study investigates the indoor environment generated by localized chilled beam coupled with chilled ceiling (LCBCC) and compares it with the environment generated by mixing ventilation coupled with chilled ceiling (CCMV). The experiments were performed in a mock-up of single office (4.1 m × 4...

  6. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  7. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  8. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    Science.gov (United States)

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  9. The Big Chill

    CERN Multimedia

    2001-01-01

    In just five years the LHC's twenty-seven kilometre ring of superconducting magnets will be brought down to a chily 1.9 Kelvin - some 300 degrees below room temperature - as CERN's new flagship accelerator is commissioned. Validating all the systems that will cool and power the LHC is the job of String 2, a chain of prototype magnets currently being put through its paces in SM18.

  10. Energy evaluation of optimal control strategies for central VWV chiller systems

    International Nuclear Information System (INIS)

    Jin Xinqiao; Du Zhimin; Xiao Xiaokun

    2007-01-01

    Under various conditions, the actual load of the heating, ventilation and air conditioning (HVAC) systems is less than it is originally designed in most operation periods. To save energy and to optimize the controls for chilling systems, the performance of variable water volume (VWV) systems and characteristics of control systems are analyzed, and three strategies are presented and tested based on simulation in this paper. Energy evaluation for the three strategies shows that they can save energy to some extent, and there is potential remained. To minimize the energy consumption of chilling system, the setpoints of controls of supply chilled water temperature and supply head of secondary pump should be optimized simultaneously

  11. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  12. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  13. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  14. GENERAL ALGORITHMIC SCHEMA OF THE PROCESS OF THE CHILL AUXILIARIES PROJECTION

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The general algorithmic diagram of systematization of the existing approaches to the process of projection is offered and the foundation of computer system of the chill mold arming construction is laid.

  15. Human response to individually controlled micro environment generated with localized chilled beam

    DEFF Research Database (Denmark)

    Uth, Simon C.; Nygaard, Linette; Bolashikov, Zhecho Dimitrov

    2014-01-01

    Indoor environment in a single-office room created by a localised chilled beam with individual control of the primary air flow was studied. Response of 24 human subjects when exposed to the environment generated by the chilled beam was collected via questionnaires under a 2-hour exposure including...... and local thermal sensation reported by the subjects with the two systems. Both systems were equally acceptable. At 26°C the individual control of the localised chilled beam lead to higher acceptability of the work environment. At 28°C the acceptability decreased with the two systems. It was not acceptable...... different work tasks at three locations in the room. Response of the subjects to the environment generated with a chilled ceiling combined with mixing air distribution was used for comparison. The air temperature in the room was kept at 26 or 28 °C. Results show no significant difference in the overall...

  16. Effects of watertable and fertilizer management on susceptibility of tomato fruit to chilling injury

    International Nuclear Information System (INIS)

    Dodds, G.T.; Trenholm, L.; Madramootoo, C.A.

    1996-01-01

    In a 2-year study (1993-1994), 'New Yorker' tomato (Lycopersicon esculentum Mill.) plants grown in field lysimeters were subjected to four water table depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface) factorially combined with 5 potassium/calcium fertilization combinations. Mature-green fruit from four replicates of each treatment were stored at 5C for 21 days, and fruit color was monitored with a tristimulus colorimeter. Fruit were subsequently allowed to ripen at 20C for 10 days, at which time chilling injury was assessed on the basis of delayed ripening and area of lesions. Potassium and calcium applied in the field had no effect on chilling tolerance of the fruit. In the drier year (1993), shallower WTD treatments generally yielded fruit that changed color less during chilling and were more chilling-sensitive based on delayed ripening. In the wetter year, differences in color change and chilling tolerance between WTD, if any, were small. Over both years, lesion area varied with WTD, but not in a consistent manner. Based on these results, we suggest that differences in water availability should be considered when studying tomato fruit chilling

  17. Effects of watertable and fertilizer management on susceptibility of tomato fruit to chilling injury

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, G. T. [McGill University, Sainte Anne-de-Bellevue, Que. (Canada); Trenholm, L.; Madramootoo, C. A.

    1996-05-15

    In a 2-year study (1993-1994), 'New Yorker' tomato (Lycopersicon esculentum Mill.) plants grown in field lysimeters were subjected to four water table depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface) factorially combined with 5 potassium/calcium fertilization combinations. Mature-green fruit from four replicates of each treatment were stored at 5C for 21 days, and fruit color was monitored with a tristimulus colorimeter. Fruit were subsequently allowed to ripen at 20C for 10 days, at which time chilling injury was assessed on the basis of delayed ripening and area of lesions. Potassium and calcium applied in the field had no effect on chilling tolerance of the fruit. In the drier year (1993), shallower WTD treatments generally yielded fruit that changed color less during chilling and were more chilling-sensitive based on delayed ripening. In the wetter year, differences in color change and chilling tolerance between WTD, if any, were small. Over both years, lesion area varied with WTD, but not in a consistent manner. Based on these results, we suggest that differences in water availability should be considered when studying tomato fruit chilling.

  18. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars

    Directory of Open Access Journals (Sweden)

    Saddam eHussain

    2016-02-01

    Full Text Available Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox priming, chemical priming, and hormonal priming, in enhancing the chilling tolerance in rice. The most effective reagents and their pre-optimized concentrations based on preliminary experiments were used in this study. Two different rice cultivars were sown under chilling stress (18˚C and normal temperatures (28˚C in separate growth chambers. A non-primed control treatment was also maintained for comparison. Chilling stress caused erratic and delayed germination, poor seedling growth, reduced starch metabolism and lower respiration rate, while higher lipid peroxidation and hydrogen peroxide accumulation in rice seedlings of both cultivars. Nevertheless, all the seed priming treatments effectively alleviated the negative effects of chilling stress. In addition, seed priming treatments triggered the activities of superoxide dismutase, peroxidase, and catalase, and enhanced the accumulations of glutathione and free proline in rice seedlings, which suggests that these measures help prevent the rice seedlings from chilling induced oxidative stress. Chemical priming with selenium and hormonal priming with salicylic acid remained more effective treatments for both rice cultivars under chilling stress than all other priming treatments. The better performance and greater tolerance of primed rice seedlings was associated with enhanced starch metabolism, high respiration rate, lower lipid peroxidation, and strong antioxidative defense system under chilling stress.

  19. Chills

    Science.gov (United States)

    ... the child to be uncomfortable, give pain-relieving tablets or liquid. Non-aspirin pain-relievers such as ... fever. In: Hall JE, ed. Guyton and Hall Textbook of Medical Physiology . 13th ed. Philadelphia, PA: Elsevier; ...

  20. Aquifer thermal-energy-storage costs with a seasonal-chill source

    Science.gov (United States)

    Brown, D. R.

    1983-01-01

    The cost of energy supplied by an aquifer thermal energy storage (ATES) ystem from a seasonal chill source was investigated. Costs were estimated for point demand and residential development ATES systems using the computer code AQUASTOR. AQUASTOR was developed at PNL specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on the costs of ATES delivered chill were: system size; well flow rate; transmission distance; source temperature; well depth; and cost of capital. The effects of each parameter are discussed. Two primary constraints of ATES chill systems are the extremely low energy density of the storage fluid and the prohibitive costs of lengthly pipelines for delivering chill to residential users. This economic analysis concludes that ATES-delivered chill will not be competitive for residential cooling applications. The otherwise marginal attractiveness of ATES chill systems vanishes under the extremely low load factors characteristic of residential cooling systems. (LCL)

  1. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    Science.gov (United States)

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles...

  2. Impact of broiler processing scalding and chilling profiles on carcass and breast meat yield.

    Science.gov (United States)

    Buhr, R J; Walker, J M; Bourassa, D V; Caudill, A B; Kiepper, B H; Zhuang, H

    2014-06-01

    The effect of scalding and chilling procedures was evaluated on carcass and breast meat weight and yield in broilers. On 4 separate weeks (trials), broilers were subjected to feed withdrawal, weighed, and then stunned and bled in 4 sequential batches (n = 16 broilers/batch, 64 broilers/trial). In addition, breast skin was collected before scalding, after scalding, and after defeathering for proximate analysis. Each batch of 16 carcasses was subjected to either hard (60.0°C for 1.5 min) or soft (52.8°C for 3 min) immersion scalding. Following defeathering and evisceration, 8 carcasses/batch were air-chilled (0.5°C, 120 min, 86% RH) and 8 carcasses/batch were immersion water-chilled (water and ice 0.5°C, 40 min). Carcasses were reweighed individually following evisceration and following chilling. Breast meat was removed from the carcass and weighed within 4 h postmortem. There were significant (P defeathered eviscerated weights did not differ between the scalding and chilling treatments. During air-chilling all carcasses lost weight, resulting in postchill carcass yield of 73.0% for soft-scalded and 71.3% for hard-scalded carcasses, a difference of 1.7%. During water-chilling all carcasses gained weight, resulting in heavier postchill carcass weights (2,031 g) than for air-chilled carcasses (1,899 g). Postchill carcass yields were correspondingly higher for water-chilled carcasses, 78.2% for soft-scalded and 76.1% for hard-scalded carcasses, a difference of 2.1%. Only in trials 1 and 4 was breast meat yield significantly lower for hard-scalded, air-chilled carcasses (16.1 and 17.5%) than the other treatments. Proximate analysis of skin sampled after scalding or defeathering did not differ significantly in moisture (P = 0.2530) or lipid (P = 0.6412) content compared with skin sampled before scalding. Skin protein content was significantly higher (P defeathering. The hard-scalding method used in this experiment did not result in increased skin lipid loss either

  3. Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration

    Directory of Open Access Journals (Sweden)

    Rongzhou Man

    2017-08-01

    Full Text Available Insufficient chilling resulting from rising winter temperatures associated with climate warming has been an area of particular interest in boreal and temperate regions where a period of cool temperatures in fall and winter is required to break plant dormancy. In this study, we examined the budburst and growth of trembling aspen (Populus tremuloides Michx., balsam poplar (Populus balsamifera L., white birch (Betula papyrifera Marsh., black spruce (Picea mariana (Mill. B.S.P., white spruce (Picea glauca (Moench Voss, jack pine (Pinus banksiana Lamb., and lodgepole pine (Pinus contorta Dougl. ex. Loud. seedlings subjected to typical northern Ontario, Canada, spring conditions in climate chambers after different exposures to natural chilling. Results indicate that chilling requirements (cumulative weighted chilling hours differed substantially among the seven species, ranging from 300 to 500 h for spruce seedlings to more than 1100 h for trembling aspen and lodgepole pine. Only spruce seedlings had fulfilled their chilling requirements before December 31, whereas the other species continued chilling well into March and April. Species with lower chilling requirements needed more heat accumulation for budburst and vice versa. Insufficient chilling delayed budburst but only extremely restricted chilling hours (<400 resulted in abnormal budburst and growth, including reduced needle and shoot expansion, early budburst in lower crowns, and erratic budburst on lower stems and roots. Effects, however, depended on both the species’ chilling requirements and the chilling–heat relationship. Among the seven tree species examined, trembling aspen is most likely to be affected by reduced chilling accumulation possible under future climate scenarios, followed by balsam poplar, white birch, lodgepole pine, and jack pine. Black and white spruce are least likely to be affected by changes in chilling hours.

  4. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  5. Effect of Nitric Oxide Application on Reduction of Undesirable Effects of Chilling on Washington Navel orange (Citrus sinensis L. Fruit During Storage

    Directory of Open Access Journals (Sweden)

    bahareh ghorbani

    2018-02-01

    Full Text Available Introduction: Chilling injury (CI is the primary postharvest problem of orange (Citrus sinensis L. and many other horticultural crops during storage. Washington Navel orange fruits are susceptible to CI during storage below 5°C, and the main CI symptoms are surface pitting, browning, discoloration and decay. Several promising methods have been developed to alleviate CI symptoms of orange fruit. These include postharvest physical treatments with UV-C, modified atmosphere packaging, temperature conditioning, and chemical treatments with plant growth regulators. Oxidative stress from excessive reactive oxygen species (ROS has been associated with appearance of chilling damage in fruits. The oxidation of ROS is due to their reaction with numerous cell components coursing a cascade of oxidative reactions and consequent inactivation of enzymes, lipid peroxidation, protein degradation, and DNA damage. Aerobic organisms have evolved well-developed defense systems to establish a fine-tuned balance between ROS production and removal plants are protected against ROS effects by a complex antioxidant system. This involved both lipid soluble antioxidant (α- tocopherol and carotenoids and water soluble reductants (glutathion and ascorbate and enzymes, such as catalase (CAT, ascorbate peroxidase (APX, superoxide dismutase (SOD and peroxidase (POD. Previous studies have shown that there is a positive relationship between the antioxidant enzymes activity and the chilling tolerance in harvested fruits. Nitric oxide (NO is an important signaling molecule involved in many plant physiological processes. It has also been indicated that NO protects plant cells against oxidative stress by reducing ROS accumulation. When exogenously applied, NO has been shown to result in an improved chilling tolerance and reduced incidence of chilling injury in several fruits. The objectives of this study were to evaluate the effects of NO on chilling injury, lipid peroxidation

  6. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  7. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  8. Chemical additive to enhance antimicrobial efficacy of chlorine and control cross-contamination during immersion chill of broiler carcasses.

    Science.gov (United States)

    Schambach, B T; Berrang, M E; Harrison, M A; Meinersmann, R J

    2014-09-01

    Immersion chilling of broiler carcasses can be a site for cross-contamination between the occasional highly contaminated carcass and those that are co-chilled. Chlorine is often used as an antimicrobial but can be overcome by organic material. A proprietary chlorine stabilizer (T-128) based on phosphoric acid-propylene glycol was tested as a chill tank additive in experiments simulating commercial broiler chilling. In bench-scale experiments, 0.5% T-128 was compared with plain water (control), 50 ppm of chlorine, and the combination of 0.5% T-128 with 50 ppm of chlorine to control transfer of Salmonella and Campylobacter from inoculated wing drummettes to co-chilled uninoculated drummettes. Both chlorine and T-128 lessened cross-contamination with Salmonella (P additional experiment demonstrated that the antimicrobial effect of T-128 was not due merely to a lower pH. In commercial broiler chilling, a pH close to 6.0 is preferred to maximize chlorine effectiveness, while maintaining water-holding capacity of the meat. In a set of pilot-scale experiments with T-128, a near-ideal pH of 6.3 was achieved by using tap water instead of the distilled water used in bench-scale experiments. Pilot-scale chill tanks were used to compare the combination of 0.5% T-128 and 50 ppm of chlorine with 50 ppm of plain chlorine for control of cross-contamination between whole carcasses inoculated with Salmonella and Campylobacter and co-chilled uninoculated carcasses. The T-128 treatment resulted in significantly less crosscontamination by either direct contact or water transfer with both organisms compared with plain chlorine treatment. T-128 may have use in commercial broiler processing to enhance the effectiveness of chlorine in processing water.

  9. Effect of heat treatment and shelf life on chilling injury of mango cv. Nam Dok Mai

    Directory of Open Access Journals (Sweden)

    Apiradee Muangdech

    2017-10-01

    Full Text Available This study was aimed to investigate the effect of heat treatment and shelf life on chilling injury of mango cv.Nam Dok Mai.The heat treatment of mango pulp during storage were determined by hot air oven set at 34 and 38°C for three intervals, as 24, 48, and 72 hours, then they were subsequently stored at 5°C for 10, 20, and 30 days to determine the appropriate shelf life. The findings showed that the symptom of mango fruit after chilling injury appeared within the 30th day of storage at 5°C. Several symptoms of mango fruit after chilling injury treatment were observed, i.e., pitting, browning on the skin, water soaking, and rapid rotting of the fruits that resulted in shorter shelf life. It was found that chilling injury mangoes had lower level of total soluble solid, higher disease incidence, and lower quality of fruit when compared with normal ripe-mango fruits at 25°C. Mango fruits treated at 34°C for either 24 or 48 hours, and at 38°C for 24 hours prior to cold storage at 5°C for 10 and 20 days showed a significant reduction in the chilling injury (CI index when compared to that of non-heated fruits. On the other hand, the heat treatment did not affect fruit weight loss, firmness, color changes, and water soaking at 5°C.

  10. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  11. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2015-01-01

    The thermal environment and air quality conditions provided with combined system of chilled ceiling and personalized ventilation (PV) were studied in a simulated office room for two occupants. The proposed system was compared with total volume HVAC solutions used today, namely mixing ventilation...... and chilled ceiling combined with mixing ventilation. The objective of the study was to evaluate whether PV can be the only ventilation system in the rooms equipped with chilled ceiling. The room air temperature was 26°C in cases with traditional systems and 28°C when PV was used. PV supplied air...... with the temperature of 25°C. PV improved thermal conditions and was up to nearly 10 times more efficient in delivering clean air at workstations than mixing ventilation systems, which resulted in strong protection of occupants from the cross-infection. In the room space outside workstations no substantial differences...

  12. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  13. Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage

    NARCIS (Netherlands)

    Yan, C.; Shi, W.; Li, X.; Zhao, Y.

    2016-01-01

    Seasonal cold storage using natural cold sources for cooling is a sustainable cooling technique. However, this technique suffers from limitations such as large storage space and poor reliability. Combining seasonal storage with short-term storage might be a promising solution while it is not

  14. The inheritance of chilling tolerance in tomato (Lycopersicon spp.)

    NARCIS (Netherlands)

    Venema, JH; Linger, P; van Heusden, AW; van Hasselt, PR; Brueggemann, W

    During the past 25 years, chilling tolerance of the cultivated (chilling-sensitive) tomato Lycopersicon esculentum and its wild, chilling-tolerant relatives L. peruvianum and L. hirsutum (and, less intensively studied, L. chilense) has been the object of several investigations. The final aim of

  15. 77 FR 10772 - Fresh and Chilled Atlantic Salmon From Norway

    Science.gov (United States)

    2012-02-23

    ... and Chilled Atlantic Salmon From Norway Determination On the basis of the record \\1\\ developed in the... countervailing duty order and antidumping duty order on fresh and chilled Atlantic salmon from Norway would not... and Chilled Atlantic Salmon from Norway: Investigation Nos. 701-TA-302 and 731-TA-454 (Third Review...

  16. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  17. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  18. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  19. Guns on Campus: A Chilling Effect

    Science.gov (United States)

    Mash, Kenneth M.

    2013-01-01

    The author of this article observes that, while much has been written on the overall topic of safety with regard to allowing guns on college campuses, little has been said about how allowing the possession of deadly weapons can create a "chilling effect" on academic discussions. This article considers how some universities have…

  20. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M

    2009-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...

  1. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van

    2010-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...

  2. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  3. Effect of Salicylic Acid on Prevention of Chilling Injury of Cherry Tomato (Lycopersicun esculentum cv. Messina(

    Directory of Open Access Journals (Sweden)

    hanifeh seyed hajizadeh

    2018-02-01

    Full Text Available Introduction: Fruits and vegetables play a major role in providing vitamins and minerals that are essential in the metabolism. In addition to providing vitamins and minerals compounds, they are called secondary metabolites. Tomatoes are one of the most vegetables in diets of people around the world. Low temperature stress associated with the production of reactive oxygen species causing damage can occur before or after harvest, farm, transportation, storage and marketing. Today, a greater emphasis is placed on post-harvest storage of agricultural products to increase productivity and make better use of labor resources, worker, energy and money, rather than an increase in production. One of the most promising treatments is the use of salicylic acid for prevention of the frost damage of post-harvest fruits and vegetables with different mechanisms such as increased enzymatic and non-enzymatic antioxidant system activity. Salicylic acid is known as a signal molecule in the induction defense mechanisms in plants. SA is a well-known phenol that can prevent ACO activity that is the direct precursor of ethylene and decreases Reactive Oxygen Species (ROS with increasing enzyme antioxidant activity. Salicylic acid is a natural phenolic compound known as a plant hormone having positive effect on storage life and quality of fruits. This study aimed to investigate the effects of pre- and post-harvest application of salicylic acid on antioxidant properties and quality of tomato and its effect was evaluated on prevention of chilling injury of cherry tomatoes during cold storage. Material and Methods: This research was conducted in a greenhouse of Horticulture Department of University of Maragheh. Treatments were included before harvest at fruit set stage with the control (distilled water and 0.75 mM salicylic acid spraying and after harvest, red ripened fruits were used for treatments control and immersion in 0.75 mM salicylic acid. Then all the treated fruits

  4. Amelioration of chilling effects by CO/sub 2/ enrichment. [Echinochloa crus-galli; Eleusine indica

    Energy Technology Data Exchange (ETDEWEB)

    Potvin, C.

    1985-01-01

    To analyze the effect of CO/sub 2/ enrichment on the chilling-sensitivity of C/sub 4/ plants from contrasting habitats, plants of Echinochloa crus-galli from Quebec, North Carolina and Mississippi and Eleusine indica from Mississippi were grown for 4 weeks under three thermoperiods (28/22, 24/18 and 21/15/sup 0/C) and two atmospheric CO/sub 2/ concentrations (350 and 675 ..mu..l l/sup -1/). They were then submitted to 1 night chilling at 7/sup 0/C. Photosynthetic carbon uptake, stomatal conductances, and internal CO/sub 2/ concentration were measured using an infra-red gas analyzer in an open system before and after the chilling and during the recovery. Chilling induces a decrease in photosynthesis and conductance and, at 350 ..mu..l l/sup -1/, in internal CO/sub 2/. The decrease in photosynthesis is less important for high CO/sub 2/ grown plants at 28/22/sup 0/C. Chilling generates chlorotic bands on leaf blades but less chlorosis is observed in enriched CO/sub 2/. 17 references, 3 figures, 3 tables.

  5. Involvement of Polyamines in the Chilling Tolerance of Cucumber Cultivars

    Science.gov (United States)

    Shen, Wenyun; Nada, Kazuyoshi; Tachibana, Shoji

    2000-01-01

    The possible involvement of polyamines (PAs) in the chilling tolerance of cucumber (Cucumis sativus L. cv Jinchun No. 3 and cv Suyo) was investigated. Plants with the first expanded leaves were exposed to 3°C or 15°C in the dark for 24 h (chilling), and then transferred to 28°C/22°C under a 12-h photoperiod for another 24 h (rewarming). Chilling-tolerant cv Jinchun No. 3 showed a marked increase of free spermidine (Spd) in leaves, once during chilling and again during rewarming. Putrescine increased significantly during rewarming, but the increase of spermine was slight. Any of these PAs did not increase in chilling-sensitive cv Suyo during either period. PA-biosynthetic enzyme activities appear to mediate these differences between cultivars. Pretreatment of Spd to cv Suyo prevented chill-induced increases in the contents of hydrogen peroxide in leaves and activities of NADPH oxidases and NADPH-dependent superoxide generation in microsomes and alleviated chilling injury. Pretreatment of methylglyoxal-bis-(guanylhydrazone), a PA biosynthesis inhibitor, to chilled cv Jinchun No. 3 prevented Spd increase and enhanced microsomal NADPH oxidase activity and chilling injury. The results suggest that Spd plays important roles in chilling tolerance of cucumber, probably through prevention of chill-induced activation of NADPH oxidases in microsomes. PMID:10982456

  6. A study on the kinetic behavior of Listeria monocytogenes in ice cream stored under static and dynamic chilling and freezing conditions.

    Science.gov (United States)

    Gougouli, M; Angelidis, A S; Koutsoumanis, K

    2008-02-01

    The kinetic behavior of Listeria monocytogenes in 2 commercial ice cream products (A and B) that were inoculated and stored under static chilling (4 to 16 degrees C), static freezing (-5 to -33 degrees C), dynamic chilling, and dynamic chilling-freezing conditions was studied, simulating conditions of the aging process and of normal or abuse conditions during distribution and storage. The ice cream products A and B had different compositions but similar pH (6.50 and 6.67, respectively) and water activity (0.957 and 0.965, respectively) values. For both chilling and freezing conditions, the kinetic behavior of the pathogen was similar in the 2 products, indicating that the pH and water activity, together with temperature, were the main factors controlling growth. Under chilling conditions, L. monocytogenes grew well at all temperatures tested. Under freezing conditions, no significant changes in the population of the pathogen were observed throughout a 90-d storage period for either of the inoculum levels tested (10(3) and 10(6) cfu/g). Growth data from chilled storage conditions were fitted to a mathematical model, and the calculated maximum specific growth rate was modeled as a function of temperature by using a square root model. The model was further validated under dynamic chilling and dynamic chilling-freezing conditions by using 4 different storage temperature scenarios. Under dynamic chilling conditions, the model accurately predicted the growth of the pathogen in both products, with 99.5% of the predictions lying within the +/- 20% relative error zone. The results from the chilling-freezing storage experiments showed that the pathogen was able to initiate growth within a very short time after a temperature upshift from freezing to chilling temperatures. This indicates that the freezing conditions did not cause a severe stress in L. monocytogenes cells capable of leading to a significant "additional" lag phase during the subsequent growth of the pathogen at

  7. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  8. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh..

    Directory of Open Access Journals (Sweden)

    Gulshan Kumar

    Full Text Available Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover

  9. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.).

    Science.gov (United States)

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  10. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  11. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  12. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  13. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  14. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  15. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  16. Superchilling of muscle foods: Potential alternative for chilling and freezing.

    Science.gov (United States)

    Banerjee, Rituparna; Maheswarappa, Naveena Basappa

    2017-12-05

    Superchilling is an attractive technique for preservation of muscle foods which freezes part of the water and insulate the food products from temperature fluctuations thereby enhancing the shelf-life during storage, transportation and retailing. Superchilling process synergistically improves the product shelf-life when used in combination with vacuum or modified atmospheric packaging. The shelf-life of muscle foods was reported to be increased by 1.5 to 4.0 times relative to traditional chilling technique. Advantages of superchilling and its ability to maintain the freshness of muscle foods over freezing has been discussed and its potential for Industrial application is highlighted. Present review also unravel the mechanistic bases for ice-crystal formation during superchilling and measures to ameliorate the drip loss. The future challenges especially automation in superchilling process for large scale Industrial application is presented.

  17. An Autonomous Distributed Control System for Naval Platforms

    NARCIS (Netherlands)

    Janssen, J.A.A.J.; Logtmeijer, R.A.; Bodegraven, K.S. van

    2009-01-01

    The success of the missions of naval ships depends highly on the availability of sensor, weapon, and command systems. These systems depend on support systems such as chilled water systems and electrical power systems. Disturbances caused by technical problems or battle damage may result in

  18. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  19. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  20. Human perception of indoor environment generated by chilled ceiling combined with mixing ventilation or localised chilled beam under cooling mode

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Nygaard, Linette; Uth, Simon C.

    2014-01-01

    Experiments with 24 subjects were performed to study and compare the human perception of the indoor environment under summer conditions generated by a chilled ceiling combined with overhead mixing ventilation and localised chilled beam. The experiments were performed in an experimental chamber (4....../s and 16 0C. The localised chilled beam was installed over the workstation placed by the simulated window. During the experiment the subjects were delegated control over the primary flow rate supplied by the localised chilled beam. The whole exposure lasted 2 hours with 30 min of acclimatisation before...

  1. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  3. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    Science.gov (United States)

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  4. WATER SPRAY-CHILLING OF BEEF CARCASSES AND MEAT AGEING ON WEIGHT LOSS, COLOR AND LONGISSIMUS LUMBORUM ACCEPTANCE ASPERSÃO DE ÁGUA FRIA NO INÍCIO DO RESFRIAMENTO DE CARCAÇAS BOVINAS E MATURAÇÃO DA CARNE SOBRE O PESO, COR E ACEITAÇÃO DO MÚSCULO LONGISSIMUS LUMBORUM

    Directory of Open Access Journals (Sweden)

    PEDRO EDUARDO DE FELÍCIO

    2007-12-01

    Full Text Available

    The objective of this experiment was to evaluate the effects of spray-chilling in carcasses weight loss, purge loss, color and appearance of aged striploin (m. Longissi-mus lumborum steaks. Two lots of intact male, nearly 12 month old, grain finished cattle, were slaughtered, being 16 of the Montana composite breed, in the first slaughter, and 24 crossbreds (½ Nelore X ½ Simental in the second one. After bleeding, electrical stimulation, skinning and evisceration, the carcasses submitted to one of the two cooling systems: (1 Without spray-chilling (SA; (2 With spray-chilling (CA. Carcasses were weighted before and after cooling. In the boning room steaks of 2.5 cm thick from the striploin were taken, vacuum packaged, and aged for 7, 14, 30 and 60 days. Samples were then removed from the package, placed in an expanded polystyrene trays covered with a PVC film, and exposed in refrigerated displays for 48 hours. CIE Lab color was measured after 24 hours using a hand colorimeter. A visual analysis of the samples was also done for the attributes of color, overall acceptability, and buying option. The spray-chilling was efficient in reducing the weight loss (P<0.05. Effects (P<0.001 of the spray-chilling and aging time on purge loss were observed. The samples from the CA carcasses had higher (P<0.001 purge loss, which had an increase at 30 or more days of aging in this treatment but not in the SA. No effect (P>0.05 of the spray-chilling treatment and aging time was observed on the color visual analysis.

    Key-words:  Beef quality purge loss,  spray-chilling, striploin, vacuum package.

    O objetivo desta pesquisa foi avaliar os efeitos da aspersão de água gelada, nas primeiras seis horas de resfriamento, nas perdas de peso por evaporação das carcaças e, também, do tempo de maturação em embalagem a vácuo, nas perdas por exsudação da carne, e na cor e aceita

  5. Chilling and heat requirements for flowering in temperate fruit trees.

    Science.gov (United States)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  6. Chilling and heat requirements for flowering in temperate fruit trees

    Science.gov (United States)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  7. Incidence of chilling injury in fresh-cut 'Kent' mangoes

    Science.gov (United States)

    The preferred storage temperature for fresh-cut fruits in terms of visual quality retention is around 5 °C, which is considered to be a chilling temperature for chilling sensitive tropical fruits like mango (Mangifera indica L.). Changes in visual and compositional quality factors, aroma volatile pr...

  8. Differential responses of two rubber tree clones to chilling stress ...

    African Journals Online (AJOL)

    Chilling stress is one of the most important environmental factors that limit the growth, distribution and yield of rubber tree in China. The effects of chilling stress on the grated plants of two rubber trees clones, GT1 and Wenchang217, were studied by physiological methods in controlled light chamber in order to explore the ...

  9. Effects of chilling on protein synthesis in tomato suspension cultures

    International Nuclear Information System (INIS)

    Matadial, B.; Pauls, K.P.

    1989-01-01

    The effect of chilling on cell growth, cell viability, protein content and protein composition in suspension cultures of L. esculentum and L. hirsutum was investigated. Cell growth for both species was arrested at 2 degrees C but when cultures were transferred to 25 degree C cell growth resumed. There was no difference in viability between control and chilled cultures of L. esculentum, however, L. hirsutum control cultures exhibited larger amounts of Fluorescein Diacetate induced fluorescence than chilled cultures. 35 S-methionine incorporation into proteins was 2.5-2 times higher in L. hirsutum than in L. esculentum. Quantitative and qualitative differences, in 35 S-methionine labelled proteins, between chilled and control cultures were observed by SDS-PAGE and fluorography. Protein content in chilled cultures decreased over time but then increased when cultures were transferred to 25 degrees C

  10. Tetra-combined cogeneration system. Exergy and thermo economic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    This paper presents the description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller. The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  11. Tetra-combined cogeneration system. Exergy and thermoeconomic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    The description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam is presented. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller.The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  12. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

    Science.gov (United States)

    Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

  13. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  14. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  15. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  16. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  17. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  18. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  19. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  20. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  1. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  2. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Macaluso, Adriano; Piacentino, Antonio; Vanoli, Laura

    2016-01-01

    Highlights: • Exergetic and exergoeconomic analysis of hybrid renewable system is presented. • The system provides electric, thermal and cooling energy and desalinated water. • Exergy efficiency varies between 40–50% in the winter and 16–20% in the summer. • Electricity and fresh water costs vary between 15–17 and 57–60 c€/kW h_e_x. • Chilled and hot water costs vary between 18.6–18.9 and 1.6–1.7 c€/kW h_e_x. - Abstract: A dynamic simulation model of a novel solar–geothermal polygeneration system and the related exergetic and exergoeconomic analyses are presented in this paper. The plant is designed in order to supply electrical, thermal and cooling energy and fresh water for a small community, connected to a district heating and cooling network. The hybrid system is equipped with an Organic Rankine Cycle fueled by medium-enthalpy geothermal energy and by a Parabolic Trough Collector solar field. Geothermal brine is also used for space heating and cooling purposes. Finally, geothermal fluid supplies heat to a Multi-Effect Distillation unit, producing also desalinized water from seawater. Dynamic simulations were performed in order to design the system. The overall simulation model, implemented in TRNSYS environment, includes detailed algorithms for the simulation of system components. Detailed control strategies were included in the model in order to properly manage the system. An exergetic and exergoeconomic analysis is also implemented. The exergetic analysis allows to identify all the aspects that affect the global exergy efficiency, in order to suggest possible system enhancements. The accounting of exergoeconomic costs aims at establishing a monetary value to all material and energy flows, then providing a reasonable basis for price allocation. The analysis is applied to integral values of energy and a comparison of results between summer and winter season is performed. Results are analyzed on different time bases presenting

  4. Laparoscopic artificial insemination in dairy sheep with chilled ...

    African Journals Online (AJOL)

    Jane

    2011-06-27

    C. Unilateral intrauterine ... conception rates to intrauterine insemination with chilled semen was relatively higher than Chios ewes. Key words: .... fertility trials and the effects of dilution methods on freezing ram semen in the ...

  5. Risky Drinking Can Put a Chill on Your Summer Fun

    Science.gov (United States)

    ... on Your Summer Fun Print version Risky Drinking Can Put a Chill on Your Summer Fun Summer ... adults involve the use of alcohol. 1 Swimmers can get in over their heads. Alcohol impairs judgment ...

  6. Cod and rainbow trout as freeze-chilled meal elements

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Nielsen, Jette; Jørgensen, Bo

    2010-01-01

    Meal elements' are elements of a meal, e.g. portions of pre-fried meat, sauces, frozen fish or pre-processed vegetables typically prepared industrially. The meal elements are distributed to professional satellite kitchens, where the staff can combine them into complete meals. Freeze......-chilling is a process consisting of freezing and frozen storage followed by thawing and chilled storage. Combining the two would enable the manufacturer to produce large quantities of frozen meal elements to be released into the chill chain according to demand. We have studied the influence of freeze...... days of chilled storage, and the corresponding time for rainbow trout was 10 days. After this period the sensory quality decreased and chemical indicators of spoilage were seen to increase. CONCLUSION: The consistent quality during storage and the high-quality shelf life are practically applicable...

  7. GPM GROUND VALIDATION CHILL RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CHILL radar data for the Midlatitude Continental Convective Clouds Experiment (MC3E) held in Oklahoma were collected while the NASA ER-2 aircraft conducted a...

  8. Energy Systems Training Programs and Certifications Survey White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Daryl [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thirumaran, Kiran [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    Compressed air system, industrial refrigeration system, chilled water system, pump system, fan system, steam system, process heating system, and combined heat and power system are the major industrial energy systems. By helping enhance knowledge and skills of workforce, training and certification programs on these systems are essential to improve energy efficiency of manufacturing facilities. A literature survey of currently available training and certification programs on these systems was conducted.

  9. Chilling outweighs photoperiod in preventing precocious spring development.

    Science.gov (United States)

    Laube, Julia; Sparks, Tim H; Estrella, Nicole; Höfler, Josef; Ankerst, Donna P; Menzel, Annette

    2014-01-01

    It is well known that increased spring temperatures cause earlier onset dates of leaf unfolding and flowering. However, a temperature increase in winter may be associated with delayed development when species' chilling requirements are not fulfilled. Furthermore, photosensitivity is supposed to interfere with temperature triggers. To date, neither the relative importance nor possible interactions of these three factors have been elucidated. In this study, we present a multispecies climate chamber experiment to test the effects of chilling and photoperiod on the spring phenology of 36 woody species. Several hypotheses regarding their variation with species traits (successional strategy, floristic status, climate of their native range) were tested. Long photoperiods advanced budburst for one-third of the studied species, but magnitudes of these effects were generally minor. In contrast to prior hypotheses, photosensitive responses were not restricted to climax or oceanic species. Increased chilling length advanced budburst for almost all species; its effect greatly exceeding that of photoperiod. Moreover, we suggest that photosensitivity and chilling effects have to be rigorously disentangled, as the response to photoperiod was restricted to individuals that had not been fully chilled. The results indicate that temperature requirements and successional strategy are linked, with climax species having higher chilling and forcing requirements than pioneer species. Temperature requirements of invasive species closely matched those of native species, suggesting that high phenological concordance is a prerequisite for successful establishment. Lack of chilling not only led to a considerable delay in budburst but also caused substantial changes in the chronological order of species' budburst. The results reveal that increased winter temperatures might impact forest ecosystems more than formerly assumed. Species with lower chilling requirements, such as pioneer or invasive

  10. Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

    Directory of Open Access Journals (Sweden)

    Matt B. Brearley

    2017-12-01

    Full Text Available Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (≤ 5 minutes due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift. Keywords: Fluid consumption, gastric emptying, hot and humid conditions, hydration, occupational

  11. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis.

    Science.gov (United States)

    Cooper, James W; Hu, Yan; Beyyoudh, Leila; Yildiz Dasgan, H; Kunert, Karl; Beveridge, Christine A; Foyer, Christine H

    2018-01-17

    Strigolactones (SL) fulfil important roles in plant development and stress tolerance. Here we characterised the role of SL in the dark chilling tolerance of pea and Arabidopsis by analysis of mutants that are defective in either SL synthesis or signalling. Pea mutants (rms3, rms4, rms5) had significantly greater shoot branching with higher leaf chlorophyll a/b ratios and carotenoid contents than the wild type. Exposure to dark chilling significantly decreased shoot fresh weights but increased leaf numbers in all lines. However, dark chilling treatments decreased biomass (dry weight) accumulation only in rms3 and rms5 shoots. Unlike the wild type plants, chilling-induced inhibition of photosynthetic carbon assimilation was observed in the rms lines and also in max3-9, max4-1, max2-1 mutants that are defective in SL synthesis or signalling. When grown on agar plates the max mutant rosettes accumulated less biomass than the wild type. The synthetic SL, GR24 decreased leaf area in the wild type, max3-9 and max4-1 mutants but not in max2-1 in the absence of stress. Moreover, a chilling-induced decrease in leaf area was observed in all the lines in the presence of GR24. We conclude that SL plays an important role in the control of dark chilling tolerance. This article is protected by copyright. All rights reserved.

  12. Polyphenol oxidase and peroxidase expression in four pineapple varieties (Ananas comosus L.) after a chilling injury.

    Science.gov (United States)

    Raimbault, Astrid-Kim; Marie-Alphonsine, Paul-Alex; Horry, Jean-Pierre; Francois-Haugrin, Madlyn; Romuald, Karell; Soler, Alain

    2011-01-12

    Pineapple internal browning (IB) is a chilling injury that produces enzymatic browning associated with flesh translucency. Pineapple biodiversity allowed the investigation of how polyphenol oxidase (PPO) and peroxidase (POD) activities with their different isoforms are involved in the IB mechanism. Fruits of four varieties that expressed IB symptoms differently, Smooth Cayenne (SCay) and the hybrids MD2, Flhoran 41 (Flh 41), and Flhoran 53 (Flh 53), were stressed by cold. The susceptible varieties showed classical brown spots but different patterns of IB, whereas MD2 and controls showed no IB. Enzymatic activities were measured on fruit protein extracts and PPO and POD isoforms separated on mini-gels (PhastSystem). Only PPO activity was significantly enhanced in the presence of IB. Up to six PPO isoforms were identified in the susceptible varieties. PPO was barely detectable in the nonsusceptible variety MD2 and in controls. The number of PPO isoforms and the total PPO activity after chilling are varietal characteristics.

  13. Water-Cooled Data Center Packs More Power Per Rack | Poster

    Science.gov (United States)

    By Frank Blanchard and Ken Michaels, Staff Writers Behind each tall, black computer rack in the data center at the Advanced Technology Research Facility (ATRF) is something both strangely familiar and oddly out of place: It looks like a radiator. The back door of each cabinet is gridded with the coils of the Liebert cooling system, which circulates chilled water to remove heat

  14. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Shaikh, N.U.; Siddiqui, M.A

    2012-01-01

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

  15. Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems

    Science.gov (United States)

    2017-05-24

    control systems, it was determined that this project will employ the model of a Ship Chilled Water Distribution System as a central use case. This model...Siemens Corporation Corporate Technology Unrestricted. Distribution Statement A. Approved for public...release; distribution is unlimited. Page 1 of 4 Secure & Resilient Functional Modeling for Navy Cyber-Physical Systems FY17 Quarter 1 Technical Progress

  16. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  17. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  18. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  19. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  20. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  1. Effects of chilling and ABA on [3H]gibberellin A4 metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    International Nuclear Information System (INIS)

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.; Mullins, M.G.

    1987-01-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with [ 3 H]GA 4 (of high specific activity, 4.81 x 10 19 becquerel per millimole) for 48 hours at 26 0 C. Chilling had little effect on the total amount of free [ 3 H]GA-like metabolites formed during incubation at 26 0 C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble [ 3 H] metabolites formed at 26 0 C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA 12 aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with [ 3 H]GA 4 treatment at 26 0 C, reduced the uptake of [ 3 H] GA 4 but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26 0 C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs)

  2. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  3. Advanced Mars Water Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Mars Water Acquisition System (AMWAS) recovers and purifies water from Mars soils for oxygen and fuel production, life support, food production, and...

  4. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  5. Online chilling effects in England and Wales

    Directory of Open Access Journals (Sweden)

    Judith Townend

    2014-04-01

    Full Text Available Open and free internet-based platforms are seen as an enabler of global free expression, releasing writers from commercial and space constraints. However, many are working without the assistance of an in-house lawyer, or other legal resources. This may lead to undue suppression of public interest material, with important implications for freedom of expression and the democratic function of media. Two online surveys among digital and online journalists in England and Wales in 2013 indicated that the majority of encounters with defamation and privacy law take place outside the courts, with few formally recorded legal actions. This was particularly evident in a sample of ‘hyperlocal’ and local community publishers. In light of the results, this paper calls for a reappraisal of overly simplistic judicial and media applications of the ‘chilling effect’ doctrine, in order to expose its subjectivities and complexities. Additionally, attention needs to be paid to global and cross-jurisdictional media-legal environments, in order to help develop better internet policy and legal frameworks for protecting legitimate expression.

  6. Experimental investigation on an ammonia-water-lithium bromide absorption refrigeration system without solution pump

    International Nuclear Information System (INIS)

    Wu Tiehui; Wu Yuyuan; Yu Zhiqiang; Zhao Haichen; Wu Honglin

    2011-01-01

    ammonia-water solution with ammonia mass fraction of 50% was applied. In above two operating situations, the temperature of hot water, cooling water and chilled water in the system would be kept almost constant, respectively.

  7. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  8. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  9. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  10. Inhibition of chloroplast protein synthesis following light chilling of tomato

    International Nuclear Information System (INIS)

    Kent, J.; Ort, D.

    1989-01-01

    In the present study we looked at the effects of a high light chill on the pulsed incorporation of 35 S methionine into total, stromal, and thylakoid proteins of lightly abraded leaflets of 18-21 day old tomato (Lycopersicon esculentum Mill ca. Floramerica) seedlings. Based on gel fluorographic patterns of marker proteins that are indicative of the net rates of chloroplast and cytoplasmic protein synthesis, there appears to be a nearly complete cessation of chloroplastic protein synthesis. No labeling is observed for either the stromal large subunit of Rubisco or the thylakoid-bound alpha and beta subunits of the coupling factor. One notable exception, however, appears to be the 32 kd, D1 protein. Its net synthetic rate remains high despite the inhibition of other chloroplastically synthesized proteins. The small subunit of Rubicso, LHCP-II, as well as several other proteins of known cytoplasmic origin, were still synthesized, albeit, at lower than control rates. Light chilling of chill-insensitive spinach produced a similar, but less dramatic differential behavior between chloroplastic and cytoplasmic protein synthesis. It appears, in chilling-sensitive plants, that chloroplast protein synthesis exhibits a greater sensitivity to low temperature inhibition than does cytoplasmic protein synthesis and that recovery of chloroplast protein synthesis may play an important role in recovery of photosynthetic activity following chilling

  11. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  12. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  13. Functional systems of a pressurized water reactor

    International Nuclear Information System (INIS)

    Heinzel, V.

    1982-01-01

    The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

  14. Kansas Water Quality Action Targeting System (KATS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This system is a revision of the original KATS system developed in 1990 as a tool to aid resource managers target Kansas valuable and vulnerable water resources for...

  15. Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Szczepanik, Jarosław; Sowiński, Paweł

    2016-10-20

    Chilling stress is known to affect the water balance in plants, which often manifests itself in the decrease of the water potential in different organs. Relationships between chilling, assimilate transport and water balance are far from being understood. Although aquaporins play a key role in regulating water balance in plants, especially under stress conditions, the role of individual aquaporins in stress response remains unclear. In this report we show the specific localization within plasma membranes of one of the aquaporins (PIP2;3) in the leaves of two maize inbred lines differing in their chilling-sensitivity. This form of aquaporin has been also observed in thick-walled sieve elements - an additional type of sieve tubes of unclear function found only in monocotyledons. Moderate chilling (about 15°C) caused significant reduction of labelling in these cells accompanied by a steep decrease in the water potential in leaves of chilling-sensitive maize line. Our results suggest that both PIP2;3 and thick-walled sieve tubes may be an unknown element of the mechanism of the response of maize to cold stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Defect and Innovation of Water Rights System

    Institute of Scientific and Technical Information of China (English)

    Zhou Bin

    2008-01-01

    The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

  17. Effect of irradiation on microbiological safety of chilled cooked dumpling

    International Nuclear Information System (INIS)

    Jia Chunfeng; Jia Yingmin; Gao Meixu; Sun Baozhong

    2005-01-01

    Chinese Dumplings are popular ethnic prepared meal in China. The effects of irradiation on the survival of Salmonella enteritidis, Listeria monocytogenes and Staphylococcus aureus, which are possible pathogenic bacteria in the chilled and cooked dumpling with vacuum package, were studied. The results showed that the D 10 values of Sal. enteritidis, Staph. aureus and L. monocytogenes were 0.31, 0.44 and 0.45 kGy, respectively. After 4 kGy irradiation, the hygienic and safe characters of the chilled and cooked dumpling were acceptable according to our national industrial standard. So the vacuum packaging and 4 kGy irradiation treatment might insure the safety of the chilled and cooked dumpling. (authors)

  18. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  19. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  20. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  1. Principle, function, experiences, hybrid chilled ceilings; Prinzip, Funktion, Erfahrungen. Hybrid-Kuehldecken

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Uwe W. [Hochschule Luzern (Switzerland). Technik und Architektur

    2010-12-15

    Hybrid chilled ceilings combine a radiation chilled ceiling with thermal activations of a concrete ceiling. The activation permits the utilization of alternative and/or small cold generators for the efficient night cooling. The traditional chilled ceiling grants a speedy reaction to load variations as well as a reduction of the reverberation periods. In addition, the combination supplies a draught-free insertion of air. Beside established solutions, MWH Barcol-Air (Staefa, Switzerland) also offers project-specific hybrid chilled ceilings.

  2. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  3. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  4. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  5. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  6. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  7. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  8. PWR secondary water chemistry diagnostic system

    International Nuclear Information System (INIS)

    Miyazaki, S.; Hattori, T.; Yamauchi, S.; Kato, A.; Suganuma, S.; Yoshikawa, T.

    1989-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend operating life of the plant. We developed an advanced water chemistry management system which is able to monitor and diagnose secondary water chemistry. A prototype system had been installed at one plant in Japan since Nov. 1986 in order to evaluate system performance and man-machine interface. The diagnosis system has been successfully tested off line using synthesized plant data for various cases. We are continuing to improve the applicability and develop new technology which make it evaluate steam generator crevice chemistry. (author)

  9. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  10. 75 FR 32370 - Final Results of Antidumping Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon...

    Science.gov (United States)

    2010-06-08

    ... Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon from Norway AGENCY: Import... Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon from Norway SUMMARY: On August 5... antidumping order on fresh and chilled Atlantic Salmon from Norway and preliminarily determined that Nordic...

  11. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  12. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  13. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  14. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  15. A global analysis of the comparability of winter chill models for fruit and nut trees.

    Science.gov (United States)

    Luedeling, Eike; Brown, Patrick H

    2011-05-01

    Many fruit and nut trees must fulfill a chilling requirement to break their winter dormancy and resume normal growth in spring. Several models exist for quantifying winter chill, and growers and researchers often tacitly assume that the choice of model is not important and estimates of species chilling requirements are valid across growing regions. To test this assumption, Safe Winter Chill (the amount of winter chill that is exceeded in 90% of years) was calculated for 5,078 weather stations around the world, using the Dynamic Model [in Chill Portions (CP)], the Chilling Hours (CH) Model and the Utah Model [Utah Chill Units (UCU)]. Distributions of the ratios between different winter chill metrics were mapped on a global scale. These ratios should be constant if the models were strictly proportional. Ratios between winter chill metrics varied substantially, with the CH/CP ratio ranging between 0 and 34, the UCU/CP ratio between -155 and +20 and the UCU/CH ratio between -10 and +5. The models are thus not proportional, and chilling requirements determined in a given location may not be valid elsewhere. The Utah Model produced negative winter chill totals in many Subtropical regions, where it does not seem to be useful. Mean annual temperature and daily temperature range influenced all winter chill ratios, but explained only between 12 and 27% of the variation. Data on chilling requirements should always be amended with information on the location and experimental conditions of the study in which they were determined, ideally including site-specific conversion factors between winter chill models. This would greatly facilitate the transfer of such information across growing regions, and help prepare growers for the impact of climate change.

  16. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  17. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  18. Models of the Water Systems in Mauritius

    OpenAIRE

    Toth, F.L.

    1992-01-01

    Criteria for sustainable development in terms of managing a nation's water resources include the availability of water in required quantity and appropriate quality. This paper presents a set of water models developed for the IIASA/UNFPA Mauritius Project for use as an integral part of a system of models including demographic, economic, and land use models. The paper identifies the most important factors determining the available freshwater resources in Mauritius (climate, geology, hydrology),...

  19. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  20. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  1. Efficacy of chlorine dioxide against Listeria monocytogenes in brine chilling solutions.

    Science.gov (United States)

    Valderrama, W B; Mills, E W; Cutter, C N

    2009-11-01

    Chilled brine solutions are used by the food industry to rapidly cool ready-to-eat meat products after cooking and before packaging. Chlorine dioxide (ClO(2)) was investigated as an antimicrobial additive to eliminate Listeria monocytogenes. Several experiments were performed using brine solutions made of sodium chloride (NaCl) and calcium chloride (CaCl(2)) inoculated with L. monocytogenes and/or treated with 3 ppm of ClO(2). First, 10 and 20% CaCl(2) and NaCl solutions (pH 7.0) were inoculated with a five-strain cocktail of L. monocytogenes to obtain approximately 7 log CFU/ml and incubated 8 h at 0 degrees C. The results demonstrated that L. monocytogenes survived in 10% CaCl(2), 10 and 20% NaCl, and pure water. L. monocytogenes levels were reduced approximately 1.2 log CFU/ml in 20% CaCl(2). Second, inoculated ( approximately 7 log CFU/ml) brine solutions (10 and 20% NaCl and 10% CaCl(2)) treated with 3 ppm of ClO(2) resulted in a approximately 4-log reduction of the pathogen within 90 s. The same was not observed in a solution of 20% CaCl(2); further investigation demonstrated that high levels of divalent cations interfere with the disinfectant. Spent brine solutions from hot dog and ham chilling were treated with ClO(2) at concentrations of 3 or 30 ppm. At these concentrations, ClO(2) did not reduce L. monocytogenes. Removal of divalent cations and organic material in brine solutions prior to disinfection with ClO(2) should be investigated to improve the efficacy of the compound against L. monocytogenes. The information from this study may be useful to processing establishments and researchers who are investigating antimicrobials in chilling brine solutions.

  2. Tratamentos de pré-resfriamento e resfriamento sobre a qualidade de carne de peito de frango Pre-chilling and chilling treatments on poultry breast meat quality

    Directory of Open Access Journals (Sweden)

    Maria Cristina Bressan

    2004-06-01

    Full Text Available O total de 402 frangos foi processado em abatedouro comercial e submetido a seis tratamentos de resfriamento. Inicialmente as carcaças foram pré-resfriadas (PR por imersão em água e gelo, seguido de resfriamento (R a -35°C e estocagem a 4°C por 20 horas. Os tratamentos foram: a (0°C/30min, -35°C/3h e 15min, b (10°C/30min, 0°C/30min, -35°C/2h e 45 min, c (10°C/30min, -35°C/3h e 15min, d (20°C/30min, 0°C/30min, -35°C/2h e 45min, e (20°C/30min, -35°C/3h e 15min e F (20°C/30min, 0°C/3h e 15min. Temperaturas baixas utilizadas após a evisceração aceleraram a instalação do rigor em músculos pectoralis major (PM. Aos 45min post mortem carcaças sem PR (A ou PR a 10°C (B tiveram músculo PM com menor (PA total of 402 poultry was processed in a commercial poultry processing plant and submitted to six chilling treatments. Initially, the carcasses were chilled by immersion in water and ice, followed by cooling at -35°C or storage at 4°C for 20 hours. The treatments were: A (0°C/30min, -35°C/3h and 15min, B (10°C/30min, 0°C/30min, -35°C/2h and 45min, C (10°C/30min, -35°C/3h and 15min, D (20°C/30min, 0°C/30min, -35°C/2h and 45min, E (20°C/30min, -35°C/3h and 15min and F (20°C/30min, 0°C/3h and 15min. Low temperatures used after evisceration, accelerated the onset and resolution of rigor in pectoralis major (PM muscles. Up to 45 minutes post mortem, carcasses without pre-chilling (A or pre-chilled at 10°C (B, showed lower (P<0.001 pH values of 5.75 and 5.81, while in carcasses pre-chilled at 20°C (D, the values were higher, reaching 5.95. After 4h post mortem, the R values found in treatments A and B, with averages of 1.51 and 1.44, were higher (P<0.05 than the value of 1.32 found in treatment D. The luminescence (L* was influenced (P<0.001 by the treatments (in treatments A, B and C, the averages were 48.2, 47.7 and 47.6, while in treatments D and E, they were 45.5 and 45.7, respectively. The greater values for

  3. Changes in water-soluble vitamins and antioxidant capacity of fruit juice-milk beverages as affected by high-intensity pulsed electric fields (HIPEF) or heat during chilled storage.

    Science.gov (United States)

    Salvia-Trujillo, Laura; Morales-de la Peña, Mariana; Rojas-Graü, Alejandra; Martín-Belloso, Olga

    2011-09-28

    The effect of high-intensity pulsed electric fields (HIPEF) or thermal processes and refrigerated storage on water-soluble vitamins and antioxidant capacity of beverages containing fruit juices and whole (FJ-WM) or skim milk (FJ-SM) was assessed. Peroxidase (POD) and lipoxygenase (LOX) inactivation as well as color changes were also studied. High vitamin C retention was observed in HIPEF and thermally treated beverages, but a significant depletion of the vitamin during storage occurred, which was correlated with antioxidant capacity. HIPEF treatment did not affect the concentration of group B vitamins, which also remained constant over time, but thermally treated beverages showed lower riboflavin (vitamin B2) concentration. With regard to enzyme activity, thermal processing was more effective than HIPEF on POD and LOX inactivation. The color of the beverages was maintained after HIPEF processing and during storage. Consequently, HIPEF processing could be a feasible technology to attain beverages with fruit juices and milk with high vitamin content and antioxidant potential.

  4. Variation in fruit chilling injury among mango cultivars

    NARCIS (Netherlands)

    Phakawatmongkol, W.; Ketsa, S.; Doorn, van W.G.

    2004-01-01

    Mango(Mangifera indica L.) fruit of six cultivars ('Kaew', 'Rad', 'Okrong', 'Tongdum', 'Nam Dok Mai' and 'Nungklangwun') were stored at 4, 8 and 12degreesC (85-90% RH) and randomly sampled every 5 days. Chilling injury was manifested initially as a gray to brown discoloration of the peel, followed

  5. Overhead irrigation increased winter chilling and floral bud ...

    African Journals Online (AJOL)

    Eucalyptus nitens requires a sufficiently cold winter to produce flower buds. In areas in South Africa where E. nitens commercial plantations as well as breeding and production seed orchards are located, winter chilling is often insufficient for floral bud initiation. Hence, under such conditions, E. nitens floral bud and seed ...

  6. Water masers in the Kronian system

    NARCIS (Netherlands)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco; Fernández, J. A.; Lazzaro, D.; Prialnik, D.; Schulz, R.

    2010-01-01

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we

  7. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  8. APPLICATION OF A PHOTOVOLTAIC SYSTEM IN WATER ...

    African Journals Online (AJOL)

    use of the Photovoltaic system for water pumping is explored. .... employed to advantage for rural Ethiopia are solar energy, wind ... Kwh/sq.m/day and with a yearly average of about .... equator. Well Data : Total head 62m ... Investment return in photovoltaic potable water ... without any considerable change in performance.

  9. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  10. Effect of Heat Shock Treatment and Aloe Vera Coating to Chilling Injury Symptom in Tomato (Lycopersicon asculantum Mill.

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2012-04-01

    Full Text Available This research was undertaken to determine the effect of length in heat shock and edible coating as pre-storage treatment to Chilling Injury (CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.. Heat Shock Treatment (HST was conducted at three different levels of length, which were, 20; 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock, AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

  11. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  12. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  13. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  14. Direct chill casting of aluminium alloys under electromagnetic interaction by permanent magnet assembly

    Science.gov (United States)

    Bojarevičs, Andris; Kaldre, Imants; Milgrāvis, Mikus; Beinerts, Toms

    2018-05-01

    Direct chill casting is one of the methods used in industry to obtain good microstructure and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal. In this study, we offer the use of electromagnetic interaction to modify melt convection near the solidification interface. Solidification under various electromagnetic interactions has been widely studied, but usually at low solidification velocity and high thermal gradient. This type of interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus leading to improved material structure and properties. Realization of experimental small-scale crystallizer and electromagnetic system has been described in this article.

  15. The oxidative stability of chilled and frozen pilchards used as feed for captive southern bluefin tuna

    DEFF Research Database (Denmark)

    Fitz-Gerald, C.H.; Bremner, Allan

    1998-01-01

    . Vacuum packaging in a film of low permeability to oxygen was less effective than glazing and is not recommended due to cost. Pilchards in which oxidation had commenced before freezing continued to oxidise in frozen storage irrespective of whether they were glazed or vacuum packed. It was thus thoroughly...... demonstrated that the oil in the pilchards is very readily oxidised and careful handling, chilling, freezing and storage procedures need to be adopted to provide a product which is a nutritionally sound feed material for captive tuna. The demerit point scoring system was found to be a rapid evaluative...

  16. Combining active chilled beams and air-cleaning technologies to improve the indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2013-01-01

    This project is part of a long-term research programme to study the possibilities of using efficient air-cleaning technologies to improve the indoor air quality in buildings. The purpose of this part of the project was to study the energy-saving potential of combining the cooling and cleaning of ...... than 5 Pa (0.104 Ibf /ft2). Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 h-1. However, the efficiency of the chilled beam in exchanging heat was reduced by 38%....

  17. Combining active chilled beams and air cleaning technologies to improve indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2012-01-01

    This project is part of a long-term research programme studying the possibilities of using efficient air cleaning technologies to improve the indoor air quality in buildings. The purpose of this part of the project is to study energy-saving potential by combining cooling and cleaning of air in of....... Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 (h-1). However, the efficiency of the chilled beam in exchanging the heat reduced by 38%....

  18. Impact of personalized ventilation combined with chilled ceiling on eye irritation symptoms

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Marcol, Bartosz; Kaczmarczyk, Jan

    2014-01-01

    Personalized ventilation (PV) improves inhaled air quality, because it provides fresh air to each workstation and directly to occupant’s breathing zone. The PV alone can be used for room ventilation when applied in conjunction with ceiling radiant cooling system, which removes sensible heat loads...... from the space. Combining PV with chilled ceiling may be an effective way to provide thermal comfort in rooms at air temperature higher than the recommended in the standards upper limit of 26°C (category II), because the operative temperature will be lower. However, combination of high air temperature...

  19. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    ht ly M or e W or kl oa d; 5 -M or e W or kl oa d; 6 -S ig ni fic an lty M or...install the water harvesting and pump system was captured from the contractor cost proposal. 7.1.3 Water Cost Water purchased from the Port Hueneme Water...818) 737-2734 KDuke@valleycrest.com Contractor Tom Santoianni 1205 Mill Rd. Bldg. 1430 Public Works, Ventura (805) 982-4075 Tom.Santoianni@navy.mil Energy Manager

  20. Modelagem do sistema de resfriamento por imersão de carcaças de frangos utilizando redes neurais artificiais = Modeling of the poultry carcass immersion chilling system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Túlio Klassen

    2009-04-01

    water cooling time and temperature, and as output variable the temperature of the chicken when exiting the chiller.The results obtained showed that the network with 8 neurons in the input layer and 24 in the hidden layer best represented the investigated system.

  1. Solar heating and cooling system for an office building at Reedy Creek Utilities

    Science.gov (United States)

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  2. Adjustable speed drives improve circulating water system

    International Nuclear Information System (INIS)

    Dent, R.A.; Dicic, Z.

    1994-01-01

    This paper illustrates the integration of electrical and mechanical engineering requirements to produce a solution to past problems and future operating demands. The application of adjustable speed drives in the modifications of the circulating water system at Indian Point No. 3 Nuclear Power Plant provided increased operating flexibility, efficiency and avoided otherwise costly renovations to the plant electrical systems. Rectification of the original inadequate design of the circulating water system, in addition to maximizing plant efficiency consistent with environmental considerations, formed the basis for this modification. This entailed replacement of all six circulating water pumps and motors and physical modifications to the intake system. This paper details the methodology used in this engineering task. The new system was installed successfully and has been operating reliably and economically for the past eight years

  3. Effects of chilling temperatures on photosynthesis

    Science.gov (United States)

    Environmental stress is an inescapable reality for most plants growing in natural settings. Conditions of sub or supra-optimal temperatures, water deficit, water logging, salinity, and pollution can have dramatic effects on plant growth and development, and in agricultural settings, yield. In cotton...

  4. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  5. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO 3 - and NO 2 - as the e - acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop

  6. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  7. Use of low-dose irradiation to enhance the safety and quality of chilled ready meals

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, E M [Department of Food Science, Queen' s University Belfast (QUB) (United Kingdom); Patterson, M F [Food Science Division, Department of Agriculture and Rural Development (DARD), Belfast (United Kingdom)

    2002-07-01

    The market for 'cook-chill' ready meals has expanded significantly during the past ten years. This specific category of food has been defined as a catering system based on the full cooking of food followed by fast chilling and storage in controlled temperature conditions (0-3 deg. C) and subsequent thorough re-heating before consumption. Such meals cover a wide range of commodities including meat, poultry, fish, vegetables, pasta and desserts and are used at home by consumers and by the catering industry for use, for example, as hospital meals or meals-on-wheels. These products have a relatively short shelf-life with a recommended maximum shelf-life of 5 days at 0-3 deg. C including the day of cooking. In addition, there are other concerns with regard to microbiological quality, reduced sensory quality and decreased nutritive value. It has been suggested that low-dose irradiation could be used to extend the shelf-life of these products while at the same time reducing the risk of food poisoning. Research carried out at QUB and DARD has readily demonstrated that the safety and shelf-life of chilled ready meals consisting of meat (chicken, beef or pork) and certain vegetables (e.g. broccoli, carrots and roast potatoes) can be enhanced by irradiation doses of 2 or 3 kGy without having a detrimental effect on sensory or nutritional quality. To date, investigations have been limited to such traditional meals with no research being carried out on the more popular ready meals such as lasagna, cottage pies, curries, etc. which have a relatively short shelf-life upon purchase. It is therefore the objective of this work program to investigate the effect of low-dose irradiation (1-5 kGy) on the microbiological, sensory and nutritional quality of these meals and to determine if their overall quality can be enhanced.

  8. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress.

    Science.gov (United States)

    Kołodziejczyk, Izabela; Dzitko, Katarzyna; Szewczyk, Rafał; Posmyk, Małgorzata M

    2016-04-01

    Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500 μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  10. Distilled Water Distribution Systems. Laboratory Design Notes.

    Science.gov (United States)

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  11. BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...

  12. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  13. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  14. Service water system aging assessment - Phase I

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Zimmerman, P.W.; Gore, M.L.

    1988-01-01

    The Service Water System (SWS) represents the final heat transfer loop between decay heat generated in the nuclear core and the safe dispersal of that heat energy in the environment. It is the objective of this investigation to demonstrate that aging phenomena can be identified and quantified such that aging degradation of system components can be detected and mitigated prior to the reduction of system availability to below an acceptable threshold. The approach used during the Phase I task was to (1) perform a literature search of government and private sector reports which relate to service water, aging related degradation, and potential methodologies for analysis; (2) assemble a data base which contains all the commercial power plants in the US, their Service Water System configuration, characteristics, and water source; (3) obtain and examine the available service water data from large generic data bases, i.e. NPRDS, LER, NPE, inspection reports, and other relevant plant reference data; (4) perform a fault tree analysis of a typical plant service water systems to examine failure propagation and understand specific input requirements of probabilistic risk analyses; (5) develop an in-depth questionnaire protocol for examining the information resource at a power plant which is not available through data base query and visit a central station power plant and solicit the required information; (6) analyze the information obtained from the in-depth plant interrogation and draw contrasts and conclusions with the data base information; (7) utilize the plant information to perform an interim assessment of service water system degradation mechanisms and focus future investigations. This paper addresses the elements of this task plan numbered 1, 3, 6, and 7. The remaining items are detailed in the phase-I report

  15. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  16. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  17. Effects of chilled-then-frozen storage (up to 52weeks) on lamb M. longissimus lumborum quality and safety parameters.

    Science.gov (United States)

    Coombs, Cassius E O; Holman, Benjamin W B; Collins, Damian; Friend, Michael A; Hopkins, David L

    2017-12-01

    This study evaluated the effect of chilled followed by frozen storage on lamb quality and safety parameters. Experimental (n=360) M. longissimus lumborum (LL) were randomly sampled from the boning room of a commercial Australian abattoir, at 24 h post-mortem, and assigned to five chilled storage periods (0, 2, 4, 6 and 8 weeks) and six subsequent frozen storage periods (0, 4, 8, 12, 24 and 52 weeks). Upon completion of each storage treatment combination, corresponding LL were sub-sectioned and analysed for colour stability (0, 1, 2 and 3 days), shear force, fluid losses (purge, thaw and cooking losses), intramuscular fat content, sarcomere length, water activity and microbial load (lactic acid bacteria, Enterobacteriaceae sp., Brochothrix thermosphacta, Clostridium perfringens and Escherichia coli). LL stored chilled for 2-4 weeks prior to freezing presented superior results for shear force, display colour and low levels of spoilage microbes, correlating with good eating quality and safety following more than one year of frozen storage. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species.

    Science.gov (United States)

    Harrington, Constance A; Gould, Peter J

    2015-01-01

    Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season and they exhibit a tradeoff between amount of forcing and chilling. That is, the parallel model of chilling and forcing was effective in predicting budburst and well chilled plants require less forcing for bud burst than plants which have received less chilling. Genotypes differed in the shape of the possibility line which describes the quantitative tradeoff between chilling and forcing units. Plants which have an obligate chilling requirement (Douglas-fir, western hemlock, western larch, pines, and true firs) and received no or very low levels of chilling did not burst bud normally even with long photoperiods. Pacific madrone and western redcedar benefited from chilling in terms of requiring less forcing to promote bud burst but many plants burst bud normally without chilling. Equations predicting budburst were developed for each species in our trials for a portion of western North America under current climatic conditions and for 2080. Mean winter temperature was predicted to increase 3.2-5.5°C and this change resulted in earlier predicted budburst for Douglas-fir throughout much of our study area (up to 74 days earlier) but later budburst in some southern portions of its current range (up to 48 days later) as insufficient chilling is predicted to occur. Other species all had earlier predicted dates of budburst by 2080 than currently. Recent warming trends have resulted in earlier budburst for some woody plant species; however, the substantial winter warming predicted by some climate models will reduce future chilling in some locations such that budburst will not consistently occur earlier.

  19. Control of cucumber (Cucumis sativus L. tolerance to chilling stress – evaluating the role of ascorbic acid and glutathione

    Directory of Open Access Journals (Sweden)

    Alexander S. Lukatkin

    2014-12-01

    Full Text Available Chilling temperatures (1-10 ºC are known to disturb cellular physiology, cause oxidative stress via creating imbalance between generation and metabolism of reactive oxygen species (ROS leading finally to cell and/or plant death. Owing to known significance of low molecular antioxidants - ascorbic acid (AsA and glutathione (GSH in plant stress-tolerance, this work analyzes the role of exogenously applied AsA and GSH in the alleviation of chilling stress (3°C-impact in cucumber (Cucumis sativus L. cv. Vjaznikowskij 37 plants. Results revealed AsA and GSH concentration dependent metabolism of ROS such as superoxide (O2•‾ and the mitigation of ROS-effects such as lipid peroxidation (LPO as well as membrane permeability (measured as electrolyte leakage in C. sativus leaf discs. AsA concentration (750 µM and GSH (100 µM exhibited maximum reduction in O2•‾ generation, LPO intensity as well as electrolyte leakage, all of these were increased in cold water (3°C and 25°C-treated leaf discs. However, AsA, in particular, had a pronounced antioxidative effect, more expressed in case of leaf discs during chilling (3°C; whereas, at temperature 25°C, some AsA concentrations (such as 50 and 100 mM AsA exhibited a prooxidative effect that requires molecular-genetic studies. Overall, it is inferred that AsA and GSH have high potential for sustainably increasing chilling-resistance in plants.

  20. Human Response to Personalized Ventilation Combined with Chilled Ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Marcol, Bartosz

    2014-01-01

    Personalized ventilation (PV) improves inhaled air quality, because it provides fresh air to each workstation and directly to occupant’s breathing zone. Previous research was focused on combining PV with additional total volume air distribution, i.e. mixing ventilation or displacement ventilation......, the use of radiant ceiling cooling will provide operative temperature lower than the air temperature and will improve further occupants’ thermal comfort at warm environment. Therefore combining PV with chilled ceiling may be an effective way to provide thermal comfort in rooms at temperature higher than...... temperature for chilled ceiling was 15,5/16,8°C at room air temperature of 26°C and 19,5/20,6°C at 28°C. During the experiment the subjects were performing typical office tasks at workstations with computers. Exposure included also increased activity level office work for a period of 25 min...

  1. Water maser emission from exoplanetary systems

    Science.gov (United States)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  2. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  3. Control of chilling tendency in grey cast iron reuse

    Directory of Open Access Journals (Sweden)

    Saliu Ojo Seidu

    2013-02-01

    Full Text Available In grey cast iron remelt and recycling, white iron can result in the cast product if careful control of the chilling tendency is not ensured. Many jobbing foundries are constrained in furnace types and available foundry additives that the operation always results in white irons. This study is towards ensuring grey iron is reproduced from cast iron scrap auto engine blocks, when using a diesel fired rotary furnace and a FeSi alloy for structural modification (inoculation. With varying addition rate of the FeSi alloy to the tapped molten metal, chill wedge tests were performed on two different wedge samples of type W (according to ASTM A367- wedge test with cooling modulus of 0.45 cm (W3½ and 0.54 cm (W4. The carbon equivalents for the test casts were within hypoeutectic range (3.85 wt. (% to 4.11 wt. (%. In the W4 wedge sample, at 2.0 wt. (% addition rate of the FeSi alloy, the relative clear chill was totally reduced to zero from 19.76%, while the relative mottled chill was brought down to 9.59% from 33.71%. The microstructure from the cast at this level of addition was free of carbidic phases; it shows randomly oriented graphite flakes evenly distributed in the iron matrix. Hardness assessment shows that increasing rate of FeSi addition results in decreasing hardness, with maximum effect at 2.0 wt. (% addition. With equivalent aspect ratio (cooling modulus in a target cast product, this addition rate for this FeSi alloy under this furnace condition will attain graphitized microstructure in the cast product.

  4. Control of chilling tendency in grey cast iron reuse

    Directory of Open Access Journals (Sweden)

    Saliu Ojo Seidu

    2012-01-01

    Full Text Available In grey cast iron remelt and recycling, white iron can result in the cast product if careful control of the chilling tendency is not ensured. Many jobbing foundries are constrained in furnace types and available foundry additives that the operation always results in white irons. This study is towards ensuring grey iron is reproduced from cast iron scrap auto engine blocks, when using a diesel fired rotary furnace and a FeSi alloy for structural modification (inoculation. With varying addition rate of the FeSi alloy to the tapped molten metal, chill wedge tests were performed on two different wedge samples of type W (according to ASTM A367- wedge test with cooling modulus of 0.45 cm (W3½ and 0.54 cm (W4. The carbon equivalents for the test casts were within hypoeutectic range (3.85 wt. (% to 4.11 wt. (%. In the W4 wedge sample, at 2.0 wt. (% addition rate of the FeSi alloy, the relative clear chill was totally reduced to zero from 19.76%, while the relative mottled chill was brought down to 9.59% from 33.71%. The microstructure from the cast at this level of addition was free of carbidic phases; it shows randomly oriented graphite flakes evenly distributed in the iron matrix. Hardness assessment shows that increasing rate of FeSi addition results in decreasing hardness, with maximum effect at 2.0 wt. (% addition. With equivalent aspect ratio (cooling modulus in a target cast product, this addition rate for this FeSi alloy under this furnace condition will attain graphitized microstructure in the cast product.

  5. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  6. Chill-inducing music enhances altruism in humans

    Directory of Open Access Journals (Sweden)

    Hajime eFukui

    2014-10-01

    Full Text Available Music is a universal feature of human cultures, and it has both fascinated and troubled many researchers. In this paper we show through the Dictator Game that an individual’s listening to preferred chill-inducing music may promote altruistic behavior that extends beyond the bounds of kin selection or reciprocal altruism. Participants were 22 undergraduate and postgraduate students who were divided into two groups, the In-group (IG and the Out-group (OG, and they acted as dictators. The dictators listened to their own preferred chill-inducing music, to music they disliked, or to silence, and then played the Dictator Game. In this hypothetical experiment, the dictators were given real money (which they did not keep and were asked to distribute it to the recipients, who were presented as stylized images of men and women displayed on a computer screen. The dictators played the Dictator Game both before and after listening to the music. Both male and female dictators gave more money after listening to their preferred music and less after listening to the music they disliked, whereas silence had no effect on the allocated amounts. The group to which the recipient belonged did not influence these trends. The results suggest that listening to preferred chill-inducing music promotes altruistic behavior.

  7. Chill-inducing music enhances altruism in humans.

    Science.gov (United States)

    Fukui, Hajime; Toyoshima, Kumiko

    2014-01-01

    Music is a universal feature of human cultures, and it has both fascinated and troubled many researchers. In this paper we show through the dictator game (DG) that an individual's listening to preferred "chill-inducing" music may promote altruistic behavior that extends beyond the bounds of kin selection or reciprocal altruism. Participants were 22 undergraduate and postgraduate students who were divided into two groups, the in-group and the out-group, and they acted as dictators. The dictators listened to their own preferred "chill-inducing" music, to music they disliked, or to silence, and then played the DG. In this hypothetical experiment, the dictators were given real money (which they did not keep) and were asked to distribute it to the recipients, who were presented as stylized images of men and women displayed on a computer screen. The dictators played the DG both before and after listening to the music. Both male and female dictators gave more money after listening to their preferred music and less after listening to the music they disliked, whereas silence had no effect on the allocated amounts. The group to which the recipient belonged did not influence these trends. The results suggest that listening to preferred "chill-inducing" music promotes altruistic behavior.

  8. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  9. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  10. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  11. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  12. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  13. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  14. Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms

    OpenAIRE

    Puig, Clara Pons; Dagar, Anurag; Marti Ibanez, Cristina; Singh, Vikram; Crisosto, Carlos H; Friedman, Haya; Lurie, Susan; Granell, Antonio

    2015-01-01

    Background: Cold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of 'Oded' (high tolerant) and 'Hermoza' (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analy...

  15. Vernalization and the Chilling Requirement to Exit Bud Dormancy: Shared or Separate Regulation?

    Directory of Open Access Journals (Sweden)

    Amy M Brunner

    2014-12-01

    Full Text Available Similarities have long been recognized between vernalization, the prolonged exposure to cold temperatures that promotes the floral transition in many plants, and the chilling requirement to release bud dormancy in woody plants of temperate climates. In both cases the extended chilling period occurring during winter is used to coordinate developmental events to the appropriate seasonal time. However, whether or not these processes share common regulatory components and molecular mechanisms remain largely unknown. Both gene function and association genetics studies in Populus are beginning to answer this question. In Populus, studies have revealed that orthologs of the antagonistic flowering time genes FT and CEN/TFL1 might have central roles in both processes. We review Populus seasonal shoot development related to dormancy release and the floral transition and evidence for FT/TFL1-mediated regulation of these processes to consider the question of regulatory overlap. In addition, we discuss the potential for and challenges to integrating functional and population genomics studies to uncover the regulatory mechanisms underpinning these processes in woody plant systems.

  16. An application of the gas-fired chilling and heating units to domestic houses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H.; Yang, Y.M.; Chae, J.M.; Bang, H.S.; Kwon, O.B.; Yoo, S.I.; Kim, T.H. [R and D Center, Korea Gas Co. (Korea); Lee, T.W.; Kim, T.H.; Kim, B.H.; Hwang, I.J.; Kim, J.Y.; Kim, C.D.; Park, S.J. [Korea Institute of Construction Technology (Korea)

    1999-10-01

    Following researches and considerations were performed in this study for an efficient application of gas-fired chilling and heating units to the residential buildings. (1) Status of domestic cooling and heating for residential building. (2) Various introduction schemes of outdoor unit. (3) Design exclusive area for the gas appliance and installation of it. (4) Ventilation of exhaust gas and heat. (5) Prepare the installation specifications or standards for gas-fired chilling and heating units. (6) Design technique of plumbing for cooling and heating. (7) Evaluation of unit's capacity considering the thermal load of domestic buildings. (8) Cooling and heating system with the unit. (9) Fundamental test for evaluation of applicability. (10) Actual design and construction of experimental house for an application and a demonstration of the developed gas units. (11) Field test for cooling and heating. (12) Evaluation of economic efficiency. (13) Establish a business potential. (14) Establishment of legal and systematic support, energy rate. (15) Troubleshooting in the course of development and application of the new gas appliance. 41 refs., 214 figs., 52 tabs.

  17. Water electrolysis system refurbishment and testing

    Science.gov (United States)

    Greenough, B. M.

    1972-01-01

    The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.

  18. CLASSIFICATION OF THE MGR SITE WATER SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site water system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  19. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  20. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  1. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  2. Water distribution systems design optimisation using metaheuristics ...

    African Journals Online (AJOL)

    The topic of multi-objective water distribution systems (WDS) design optimisation using metaheuristics is investigated, comparing numerous modern metaheuristics, including several multi-objective evolutionary algorithms, an estimation of distribution algorithm and a recent hyperheuristic named AMALGAM (an evolutionary ...

  3. Experimental study on improved two-bed silica gel-water adsorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Xia Zaizhong [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: xzz@sjtu.edu.cn; Wang Dechang; Zhang Jincui [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2008-06-15

    A novel silica gel-water adsorption chiller with two chambers has been built in Shanghai Jiao Tong University (SJTU). This chiller combines two single bed systems (basic system) without any vacuum valves. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute one adsorption/desorption unit. In this work, the chiller is developed and improved. The improved chiller is composed of three vacuum chambers: two adsorption/desorption vacuum chambers (the same structure as the former chiller) and one heat pipe working vacuum chamber. The evaporators of these two adsorption/desorption units are combined by a heat pipe. So, no valves are installed in the chilled water sub system and one vacuum valve connects the two adsorption/desorption chambers together to improve its performance. The performance of the chiller is tested. As the results, the refrigerating capacity and the COP of the chiller are, respectively, 8.69 kW and 0.388 for the heat source temperature of 82.5 deg. C, the cooling water temperature of 30.4 deg. C and the chilled water outlet temperature of 11.9 deg. C. For a chilled water outlet temperature of 16.5 deg. C, the COP reaches 0.432, while the refrigerating capacity is near 11 kW. There is an improvement of at least 12% for the COP compared with the former chillers.

  4. Experimental study on improved two-bed silica gel-water adsorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zaizhong [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China); Wang, Dechang; Zhang, Jincui [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2008-06-15

    A novel silica gel-water adsorption chiller with two chambers has been built in Shanghai Jiao Tong University (SJTU). This chiller combines two single bed systems (basic system) without any vacuum valves. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute one adsorption/desorption unit. In this work, the chiller is developed and improved. The improved chiller is composed of three vacuum chambers: two adsorption/desorption vacuum chambers (the same structure as the former chiller) and one heat pipe working vacuum chamber. The evaporators of these two adsorption/desorption units are combined by a heat pipe. So, no valves are installed in the chilled water sub system and one vacuum valve connects the two adsorption/desorption chambers together to improve its performance. The performance of the chiller is tested. As the results, the refrigerating capacity and the COP of the chiller are, respectively, 8.69 kW and 0.388 for the heat source temperature of 82.5 C, the cooling water temperature of 30.4 C and the chilled water outlet temperature of 11.9 C. For a chilled water outlet temperature of 16.5 C, the COP reaches 0.432, while the refrigerating capacity is near 11 kW. There is an improvement of at least 12% for the COP compared with the former chillers. (author)

  5. Water column separation in power plant circulating water systems

    International Nuclear Information System (INIS)

    Papadakis, C.N.

    1977-01-01

    Power plant circulating water system condensers operate with a siphon. Column separation is a common occurence in such condensers during low pressure transients. The assumptions that no gas evolves from solution leads to very conservative values of maximum pressures upon rejoining of separated column. A less conservative method led to the development of a macroscopic mathematical model including the presence of air and vapor in a cavity which forms at the top of the condenser. The method of characteristics is used to solve the equations. A case study is analyzed to illustrate the applicability of the developed mathematical model and to provide comparisons of the results obtained

  6. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  7. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  8. Identification of chilling and heat requirements of cherry trees--a statistical approach.

    Science.gov (United States)

    Luedeling, Eike; Kunz, Achim; Blanke, Michael M

    2013-09-01

    Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. 'Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. 'Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package ('chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. 'Payne') at Davis, California.

  9. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  10. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  11. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    Science.gov (United States)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  12. Comparison of tissue deterioration of ripening banana fruit (Musa spp., AAA group, Cavendish subgroup) under chilling and non-chilling temperatures.

    Science.gov (United States)

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, Carlos E

    2018-03-08

    In fleshy fruits, induced programmed cell death (PCD) has been observed in heat-treated tomato, and in ethylene-treated and low-temperature exposure in immature cucumber. No other fleshy fruit has been evaluated for chilling-injury-induced PCD, especially mature fruit with full ripening capacity. The purpose of this research was to identify and evaluate the presence of PCD processes during the development of low-temperature-induced physiopathy of banana fruit. Exposure of fruit to 5 °C for 4 days induced degradative processes similar to those occurring during ripening and overripening of non-chilled fruit. Nuclease from banana peel showed activity in both DNA substrates and RNA substrates. No exclusive low-temperature-induced proteases and nucleases were observed. DNA of chilled peel showed earlier signs of degradation and higher levels of DNA tailing during overripening. This study shows that exposure to low temperatures did not induce a pattern of degradative processes that differed from that occurring during ripening and overripening of non-chilled fruit. DNA showed earlier signs of degradation and higher levels of DNA tailing. Nuclease activity analysis showed bifunctionality in both chilled and non-chilled tissue and no chilling-exclusive protease and nuclease. Fleshy fruit might use their available resources on degradative processes and adjust them depending on environmental conditions. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  14. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  15. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  16. Army Energy and Water Reporting System Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating

  17. Process and system for treating waste water

    Science.gov (United States)

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  18. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  19. Biofouling and biocorrosion in industrial water systems.

    Science.gov (United States)

    Coetser, S E; Cloete, T E

    2005-01-01

    Corrosion associated with microorganisms has been recognized for over 50 years and yet the study of microbiologically influenced corrosion (MIC) is relatively new. MIC can occur in diverse environments and is not limited to aqueous corrosion under submerged conditions, but also takes place in humid atmospheres. Biofouling of industrial water systems is the phenomenon whereby surfaces in contact with water are colonized by microorganisms, which are ubiquitous in our environment. However, the economic implications of biofouling in industrial water systems are much greater than many people realize. In a survey conducted by the National Association of Corrosion Engineers of the United States ten years ago, it was found that many corrosion engineer did not accept the role of bacteria in corrosion, and many of then that did, could not recognize and mitigate the problem. Biofouling can be described in terms of its effects on processes and products such as material degradation (bio-corossion), product contamination, mechanical blockages, and impedance of heat transfer. Microorganisms distinguish themselves from other industrial water contaminants by their ability to utilize available nutrient sources, reproduce, and generate intra- and extracellular organic and inorganic substances in water. A sound understanding of the molecular and physiological activities of the microorganisms involved is necessary before strategies for the long term control of biofouling can be format. Traditional water treatment strategies however, have largely failed to address those factors that promote biofouling activities and lead to biocorrosion. Some of the major developments in recent years have been a redefinition of biofilm architecture and the realization that MIC of metals can be best understood as biomineralization.

  20. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    Directory of Open Access Journals (Sweden)

    Piljae Im

    2018-01-01

    Full Text Available The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m2 new addition. This recycled water heat pump (RWHP system uses seven 105 kW (cooling capacity modular water-to-water heat pumps (WWHPs. Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW or 7 °C chilled water (CHW to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly, reduced CO2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.

  1. Guidelines for transient analysis in water transmission and distribution systems

    NARCIS (Netherlands)

    Pothof, I.W.M.; Karney, B.W.

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent,

  2. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  3. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  4. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  5. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  6. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  7. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  8. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  9. Radioecological models for inland water systems

    International Nuclear Information System (INIS)

    Raskob, W.; Popov, A.; Zheleznyak, M.J.

    1998-04-01

    Following a nuclear accident, radioactivity may either be directly discharged into rivers, lakes and reservoirs or - after the re-mobilisation of dry and wet deposited material by rain events - may result in the contamination of surface water bodies. These so-called aquatic exposure pathways are still missing in the decision support system IMIS/PARK. Therefore, a study was launched to analyse aquatic and radioecological models with respect to their applicability for assessing the radiation exposure of the population. The computer codes should fulfil the following requirements: 1. to quantify the impact of radionuclides in water systems from direct deposition and via runoff, both dependent on time and space, 2. to forecast the activity concentration in water systems (rivers and lakes) and sediment, both dependent on time and space, and 3. to assess the time dependent activity concentration in fish. To that purpose, a literature survey was conducted to collect a list of all relevant computer models potentially suitable for these tasks. In addition, a detailed overview of the key physical process was provided, which should be considered in the models. Based on the three main processes, 9 codes were selected for the runoff from large watersheds, 19 codes for the river transport and 14 for lakes. (orig.) [de

  10. Performance of Chilled Beam with Radial Swirl Jet and Diffuse Ceiling Air Supply in Heating Mode

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Melikov, Arsen Krikor

    2013-01-01

    ). The room air temperature was kept at 21 °C. Tracer gas was used to simulate pollution from floor and desk. The experimental conditions comprised: 1) night time without heat sources in the room; the room air conditioning system was used to heat up the room; 2) heat load generated by an occupant (simulated...... by dressed thermal manikin) and a laptop; 3) heating by convectors positioned under the window (convectors used alone and convector used together with CSW supplying isothermal air for ventilation). The heat distribution provided by the systems was not effective compare to the distribution provided......The performance of diffuse ceiling air supply and chilled beam with swirl jet (CSW) in heating mode (winter situation) was studied and compared with regard to the generated indoor environment. An office mock-up with one occupant was simulated in a test room (4.5 x 3.95 x 3.5 m3 (L x W x H...

  11. A water flow calorimeter calibration system

    International Nuclear Information System (INIS)

    Ullrich, F.T.

    1983-01-01

    Neutral beam systems are instrumented by several water flow calorimeter systems, and some means is needed to verify the accuracy of such systems and diagnose their failures. This report describes a calibration system for these calorimeters. The calibrator consists of two 24 kilowatt circulation water heaters, with associated controls and instrumentation. The unit can supply power from 0 to 48 kW in five coarse steps and one fine range. Energy is controlled by varying the power and the time of operation of the heaters. The power is measured by means of precision power transducers, and the energy is measured by integrating the power with respect to time. The accuracy of the energy measurement is better than 0.5% when the power supplied is near full scale, and the energy resolution is better than 1 kilojoule. The maximum energy delivered is approximately 50 megajoules. The calorimetry loop to be calibrated is opened, and the calibrator is put in series with the calorimeter heat source. The calorimeter is then operated in its normal fashion, with the calibrator used as the heat source. The calibrator can also be used in a stand alone mode to calibrate calorimeter sensors removed from systems

  12. Operator Support System for Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Shen Shifei

    1996-01-01

    Operator Support System for Pressurized Water Reactor (OSSPWR) has been developed under the sponsorship of IAEA from August 1994. The project is being carried out by the Department of Engineering Physics, Tsinghua University, Beijing, China. The Design concepts of the operator support functions have been established. The prototype systems of OSSPWR has been developed as well. The primary goal of the project is to create an advanced operator support system by applying new technologies such as artificial intelligence (AI) techniques, advanced communication technologies, etc. Recently, the advanced man-machine interface for nuclear power plant operators has been developed. It is connected to the modern computer systems and utilizes new high performance graphic displays. (author). 6 refs, 4 figs

  13. Repeated quick hot-and-chilling treatments for the inactivation of Escherichia coli O157:H7 in mung bean and radish seeds.

    Science.gov (United States)

    Bari, Md Latiful; Sugiyama, Jun; Kawamoto, Shinnichi

    2009-01-01

    The majority of the seed sprout-related outbreaks have been associated with Escherichia coli O157:H7. Therefore, it is necessary to find an effective method to inactivate these organisms on the seeds prior to sprouting. This study was conducted to assess the effectiveness of repeated quick hot-and-chilling treatments with various chemicals to inactivate E. coli O157:H7 populations inoculated onto mung bean and radish seeds intended for sprout production and to determine the effect of these treatments on seed germination. The treatment time was 20 sec for quick hot and 20 sec for quick chilling in one repeat. Likewise up to five repeats were done throughout the experiments. The chemicals used for this study were electrolyzed acidic (EO) water, phytic acid (0.05%), oxalic acid (3%), surfcera(R), and alpha-torino water(R), and distilled water was used as control. The quick hot treatment was done with 75 degrees C, 70 degrees C, and 60 degrees C, and the chilling temperature was 0 degrees C. The treated seeds were then assessed for the efficacy of this treatment in reducing populations of the pathogens and the effects of repeated quick hot-and-chilling treatments on germination yield. It was found that repeating treatment at 75 degrees C for two or three repeats with phytic acid and oxalic acid could reduce 4.38-log colony-forming unit (CFU)/g of E. coli O157:H7 in mung bean seeds. EO water and distilled water were found equally effective at 75 degrees C for four or five repeats to inactivate E. coli O157:H7 in mung bean seeds. However, alpha-torino water(R) and surfcera(R) were not found effective in comparison to other sanitizers used in this experiment. Irrespective of sanitizer used, the germination yield of the mung bean seed was not affected significantly. On the other hand, distilled water, EO water, and alpha-torino water(R) at 75 degrees C for five repeats were found effective in reducing 5.80-log CFU/g of E. coli O157:H7 in radish seeds; however, the

  14. Hydrogeological considerations in northern pipeline development. [Permafrost affected by hot or chilled pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Harlan, R L

    1974-11-01

    Some of the hydrogeological implications of construction and operation of oil and gas pipelines in northern regions of Canada are considered in relation to their potential environmental impacts and those factors affecting the security of the pipeline itself. Although the extent to which water in permafrost participates in the subsurface flow regime has not been fully demonstrated, the role of liquid as well as vapor transport in frozen earth materials can be shown from theory to be highly significant; water movement rates in frozen soil are on the same order as those in unsaturated, unfrozen soil. Below 0/sup 0/C, the unfrozen water content in a fine-grained porous medium is dependent on temperature but independent of the total water content. The thermal gradient controls the rate and direction of water movement in permafrost. The groundwater stabilizes the streamflow and in the absence of large lakes provides the main source of flow during the winter. As groundwater is frequently confined by the permafrost, degradation of the permafrost can have significant consequences. The thaw bulb formed around a hot oil pipeline can induce liquefactioned flow of the thawed material. A chilled pipeline could restrict groundwater movement, resulting in buildup of artesian conditions and icings. The liberation and absorption of latent heat on freezing and thawing affects the thermal regime in the ground surface. Recommendations are given for pipeline construction and areas for further study pointed out. (DLC)

  15. Investigation of transient chill down phenomena in tubes using liquid nitrogen

    Science.gov (United States)

    Shukla, A. K.; Sridharan, Arunkumar; Atrey, M. D.

    2017-12-01

    Chill down of cryogenic transfer lines is a crucial part of cryogenic propulsion as chill down ensures transfer of single phase fluid to the storage tanks of cryogenic engines. It also ensures single phase liquid flow at the start of the engine. Chill down time depends on several parameters such as length of the pipe, pipe diameter, orientation, mass flux etc. To understand the effect of these parameters, experiments are carried out in a set up designed and fabricated at Indian Institute of Technology Bombay using tubes of two different diameters. Experiments are conducted at different inlet pressures and mass flow rate values to understand their effect. Two different pipe sizes are taken to study the effect of variation in diameter on chill down time and quantity of cryogen required. Different orientations are taken to understand their effect on the chill down time, heat transfer coefficient and critical heat flux for the same inlet pressure and mass flux. Pipe inner wall temperature, heat transfer coefficient for different boiling regimes and critical heat flux are calculated based on measured outer surface temperature history for each case. A one dimensional energy conservation equation is solved for transient chill down process considering constant mass flux and inlet pressure to predict the chill down time. Temperature variation during chill down obtained from the numerical simulations are compared with the measured temperature history.

  16. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Temperatures and chilling and freezing procedures. 381.66 Section 381.66 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and...

  17. Response of spring type wheat (triticum aestivum l.) cultivars to different chilling treatments

    Science.gov (United States)

    Late sowing of wheat in autumn due to environmental conditions or late harvesting of cotton crop results in substantial yield loss. It may be attributed to non-fulfillment of chilling requirements. The present study was conducted to identify the chilling requirement of autumn sown cultivars of wheat...

  18. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures : review

    NARCIS (Netherlands)

    Foyer, C.H.; VanAcker, H.; Gomez, L.D.; Harbinson, J.

    2002-01-01

    Maize (Zea mays L.) is a chilling (below 15 °C) sensitive plant that shows little capacity to acclimate to low growth temperatures. Maize leaves are extremely sensitive to chilling injury, which usually results in premature leaf senescence. Leaves exposed to temperatures below 10 °C in the light

  19. Physiological girdling of pine trees via phloem chilling: proof of concept

    Science.gov (United States)

    Kurt Johnsen; Chris Maier; Felipe Sanchez; Peter Anderson; John Butnor; Richard Waring; Sune Linder

    2007-01-01

    Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root– mycorrhizal–soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both...

  20. Chemical Changes of Short-Bodied Mackerel (Rastrelliger Brachysoma) Muscle at Chilled and Frozen Storage

    International Nuclear Information System (INIS)

    Emilia Azrina Mohd Bakri; Norizzah Abd Rashid; Seng, C.C.; Anida Yusoff; Fazilah Fazilin Juhari

    2016-01-01

    This study was carried out to evaluate the chemical changes in short-bodied mackerel during chilled (4 degree Celcius) and frozen (-18 degree Celicus) storage for 18 days. The chemical changes were monitored at three days interval using Peroxide Value (PV), Thiobarbituric Acid (TBA), Total Volatile Base Nitrogen (TVBN) and Trimethylamine (TMA) tests. The PV of both chilled and frozen mackerel significantly increased (p<0.05) with storage time and the rate was significantly higher in chilled than frozen mackerel. Based on the results, the chilled and frozen mackerel started to become rancid at day 15 and day 18, respectively. Similar trend was observed for TBA value, where the malonaldehyde content significantly increased (p<0.05) for both chilled and frozen mackerel with storage time, and the rate of increase was higher in chilled than frozen mackerel. The TVBN and TMA of chilled mackerel increased significantly during storage time, but the values declined in frozen mackerel which might be due to inhibitory effects of freezing on the bacterial activities and hence avoid accumulation of TMA. Based on the chemical analyses, chilled mackerel spoiled rapidly compared to frozen mackerel. (author)

  1. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  2. Braving the chill of the market

    International Nuclear Information System (INIS)

    Kovalenko, V.

    1993-01-01

    The first nuclear powered icebreaker - the Lenin - was operated in its first version between 1959 and 1966 by the Murmansk Arctic Shipping Company (MSC). From 1970 the Soviet icebreaker programme was based on a second generation of standardised equipment. Power is from one or two KLT-40 reactors, and other standard equipment includes primary turbines rated at 27.5 MWe, auxiliary turbines rated at 2MWe, main feedpumps, generators and motors. Icebreakers using this basic design and its more recent variants have now been in operation for more than 110 000h -amassing a total of 125 reactor years - and have been built on a production line basis. Operating experience has been good; the power systems have a high reliability with minimal maintenance. The icebreakers have been able to operate continuously for as long as 400 days in the Arctic. Icebreaker availability has averaged 76-79%. Reactor scrams have averaged one event per reactor per year and they have mainly been during startup. No scram has resulted in personnel overexposure. Future developments for the icebreaker fleet are examined in this article. They include a floating nuclear plant based on icebreaker technology and supplying power to remote arctic communities. (author)

  3. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor; Li, Zhenyu; Valladares Linares, Rodrigo; Amy, Gary

    2013-01-01

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily

  4. Development of transport technique by chilling for melon fly, Bactrocera cucurbitae Coquillett (Diptela: Dephritidae)

    International Nuclear Information System (INIS)

    Tanahara, A.; Kirihara, S.; Kakinohana, H.

    1994-01-01

    To evaluate the effect of chilling on mass-reared melon fly, Bactrocera cucurbitae COQ., groups of adult flies were exposed to 3, 0.5, -2.2 and -3.5°C for 6, 12, 24 and 48h. The recovery and longevity of adult chilled for less than 24h at about 0.5°C was not adversely affected. A special container for chilled flies, which was able to keep the temperature below 10°C for 4h, was designed for their long-distance transport. The longevities of flies using aerial distribution by helicopter and hand release on the ground using the chilled transport container were compared with direct release from an emergence box without chilling at Miyagi Island in Okinawa Prefecture. There were no significant differences in longevity between the three release methods

  5. Passive systems for light water reactors

    International Nuclear Information System (INIS)

    Adinolfi, R.; Noviello, L.

    1990-01-01

    The paper reviews the most original concepts that have been considered in Italy for the back-fitting of the nuclear power plants in order to reduce the probability and the importance of the release to the environment in case of a core melt. With reference either to BWR or PWR, passive concepts have been considered for back-fitting in the following areas: pump seals damage prevention and ECCS passive operation; reactor passive depressurization; molten reactor core passive cooling; metal containment passive water cooling through a water tank located at high level; containment isolation improvement through a sealing system; containment leaks control and limitation of environmental release. In addition some considerations will be made on the protection against external events introduced from the beginning on the PUN design either on building and equipment lay-out either on structure design. (author). 5 figs

  6. Effects of Aesthetic Chills on a Cardiac Signature of Emotionality.

    Directory of Open Access Journals (Sweden)

    Maria Sumpf

    Full Text Available Previous studies have shown that a cardiac signature of emotionality (referred to as EK, which can be computed from the standard 12 lead electrocardiogram, ECG, predicts inter-individual differences in the tendency to experience and express positive emotion. Here, we investigated whether EK values can be transiently modulated during stimulation with participant-selected music pieces and film scenes that elicit strongly positive emotion.The phenomenon of aesthetic chills, as indicated by measurable piloerection on the forearm, was used to accurately locate moments of peak emotional responses during stimulation. From 58 healthy participants, continuous EK values, heart rate, and respiratory frequency were recorded during stimulation with film scenes and music pieces, and were related to the aesthetic chills. EK values, as well as heart rate, increased significantly during moments of peak positive emotion accompanied by piloerection.These results are the first to provide evidence for an influence of momentary psychological state on a cardiac signature of emotional personality (as reflected in EK values. The possibility to modulate ECG amplitude signatures via stimulation with emotionally significant music pieces and film scenes opens up new perspectives for the use of emotional peak experiences in the therapy of disorders characterized by flattened emotionality, such as depression or schizoid personality disorder.

  7. Effects of Aesthetic Chills on a Cardiac Signature of Emotionality.

    Science.gov (United States)

    Sumpf, Maria; Jentschke, Sebastian; Koelsch, Stefan

    2015-01-01

    Previous studies have shown that a cardiac signature of emotionality (referred to as EK, which can be computed from the standard 12 lead electrocardiogram, ECG), predicts inter-individual differences in the tendency to experience and express positive emotion. Here, we investigated whether EK values can be transiently modulated during stimulation with participant-selected music pieces and film scenes that elicit strongly positive emotion. The phenomenon of aesthetic chills, as indicated by measurable piloerection on the forearm, was used to accurately locate moments of peak emotional responses during stimulation. From 58 healthy participants, continuous EK values, heart rate, and respiratory frequency were recorded during stimulation with film scenes and music pieces, and were related to the aesthetic chills. EK values, as well as heart rate, increased significantly during moments of peak positive emotion accompanied by piloerection. These results are the first to provide evidence for an influence of momentary psychological state on a cardiac signature of emotional personality (as reflected in EK values). The possibility to modulate ECG amplitude signatures via stimulation with emotionally significant music pieces and film scenes opens up new perspectives for the use of emotional peak experiences in the therapy of disorders characterized by flattened emotionality, such as depression or schizoid personality disorder.

  8. Chilled beams. A versatile solution; Plafondconvectoren. Trendy en tochtvrij

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, G. [Swegon AB, Tomelila (Sweden)

    2009-04-15

    When carefully selected and installed chilled beams provide a comfortable indoor climate. However, draught should always be avoided. Computer programs for calculating the required cooling and heating capacity are very useful. CFD (computational fluid dynamics) is often used for large and complicated projects in order to predict the air currents, air flow and room temperatures. Chilled beams can flexibly be applied in open offices. Furthermore, they can easily be installed and serviced, and are very energy efficient. [Dutch] Plafondconvectoren zorgen voor een aangenaam en comfortabel binnenklimaat indien de selectie en de situering ervan in de te conditioneren ruimten zorgvuldig wordt uitgevoerd. Tochtverschijnselen moeten echter altijd worden voorkomen. Computerprogramma's voor het berekenen van het benodigde koel- en verwarmingsvermogen zijn hierbij een uitstekend hulpmiddel. Voor grote en complexe projecten wordt vaak gebruikgemaakt van CFD-simulatieprogramma's om de luchtstromen, de luchtsnelheid en de temperaturen van tevoren te kunnen voorspellen. Plafondconvectoren kunnen ook bij open kantoren flexibel worden toegepast. Ze kunnen voor alle toepassingen gemakkelijk worden gemonteerd, zijn onderhoudsvriendelijk en zorgen tevens voor een hoge mate van energie-efficiency.

  9. Climate change affects winter chill for temperate fruit and nut trees.

    Science.gov (United States)

    Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H

    2011-01-01

    Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.

  10. High throughput sequencing identifies chilling responsive genes in sweetpotato (Ipomoea batatas Lam.) during storage.

    Science.gov (United States)

    Xie, Zeyi; Zhou, Zhilin; Li, Hongmin; Yu, Jingjing; Jiang, Jiaojiao; Tang, Zhonghou; Ma, Daifu; Zhang, Baohong; Han, Yonghua; Li, Zongyun

    2018-05-21

    Sweetpotato (Ipomoea batatas L.) is a globally important economic food crop. It belongs to Convolvulaceae family and origins in the tropics; however, sweetpotato is sensitive to cold stress during storage. In this study, we performed transcriptome sequencing to investigate the sweetpotato response to chilling stress during storage. A total of 110,110 unigenes were generated via high-throughput sequencing. Differentially expressed genes (DEGs) analysis showed that 18,681 genes were up-regulated and 21,983 genes were down-regulated in low temperature condition. Many DEGs were related to the cell membrane system, antioxidant enzymes, carbohydrate metabolism, and hormone metabolism, which are potentially associated with sweetpotato resistance to low temperature. The existence of DEGs suggests a molecular basis for the biochemical and physiological consequences of sweetpotato in low temperature storage conditions. Our analysis will provide a new target for enhancement of sweetpotato cold stress tolerance in postharvest storage through genetic manipulation. Copyright © 2018. Published by Elsevier Inc.

  11. Sodium-water reaction product flow system

    Energy Technology Data Exchange (ETDEWEB)

    Shirataki, K; Wada, H

    1978-11-18

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system.

  12. Sodium-water reaction product flow system

    International Nuclear Information System (INIS)

    Shirataki, Koji; Wada, Hozumi.

    1978-01-01

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system. (Yoshihara, H.)

  13. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  14. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  15. Water quality diagnosis system for power plant

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Fukumoto, Toshihiko

    1991-01-01

    An AI diagnose system for the water quality control of a BWR type reactor is divided into a general diagnosing section for generally classifying the water quality conditions of the plant depending on a causal relation between the symptom of the water quality abnormality and its causes, generally diagnosing the position and the cause of the abnormality and ranking the items considered to be the cause, and a detail diagnosing section for a further diagnosis based on the result of the diagnosis in the former section. The general diagnosing section provides a plurality of threshold values showing the extent of the abnormality depending on the cause to the causal relation between the causes and the forecast events previously formed depending on the data of process sensors in the plant. Since the diagnosis for the abnormality and normality is given not only as an ON or OFF mode but also as the extent thereof, it can enter the detailed diagnosis in the most plausible order, based on a plurality of estimated causes, to enable to find the case and take a counter-measure in an early stage. (N.H.)

  16. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  17. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  18. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  19. Avicennia germinans (black mangrove) vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico

    Science.gov (United States)

    Madrid, Eric N.; Armitage, Anna R.; López-Portillo, Jorge

    2014-01-01

    Over the last several decades, the distribution of the black mangrove Avicennia germinans in the Gulf of Mexico has expanded, in part because it can survive the occasional freeze events and high soil salinities characteristic of the area. Vessel architecture may influence mangrove chilling and salinity tolerance. We surveyed populations of A. germinans throughout the Gulf to determine if vessel architecture was linked to field environmental conditions. We measured vessel density, hydraulically weighted vessel diameter, potential conductance capacity, and maximum tensile fracture stress. At each sampling site we recorded mangrove canopy height and soil salinity, and determined average minimum winter temperature from archived weather records. At a subset of sites, we measured carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations of A. germinans from cooler areas (Texas and Louisiana) had narrower vessels, likely reducing the risk of freeze-induced embolisms but also decreasing water conductance capacity. Vessels were also narrower in regions with high soil salinity, including Texas, USA and tidal flats in Veracruz, Mexico. Vessel density did not consistently vary with temperature or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture with narrower vessels that may increase local survival. This safe architecture appears to come at a substantial physiological cost in terms of reduction in conductance capacity and carbon fixation potential, likely contributing to lower canopy heights. The current distribution of A. germinans in the Gulf is influenced by the complex interplay between temperature, salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it is likely that this mangrove species will be able to adapt to a wide range of potential future environmental conditions, and continue its expansion in the Gulf of Mexico in response to near-term climate change

  20. Avicennia germinans (black mangrove vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Eric N Madrid

    2014-09-01

    Full Text Available Over the last several decades, the distribution of the black mangrove Avicennia germinans in the Gulf of Mexico has expanded, in part because it can survive the occasional freeze events and high soil salinities characteristic of the area. Vessel architecture may influence mangrove chilling and salinity tolerance. We surveyed populations of A. germinans throughout the Gulf to determine if vessel architecture was linked to field environmental conditions. We measured vessel density, hydraulically weighted vessel diameter, potential conductance capacity, and maximum tensile fracture stress. At each sampling site we recorded mangrove canopy height and soil salinity, and determined average minimum winter temperature from archived weather records. At a subset of sites, we measured carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations of A. germinans from cooler areas (Texas and Louisiana had narrower vessels, likely reducing the risk of freeze-induced embolisms but also decreasing water conductance capacity. Vessels were also narrower in regions with high soil salinity, including Texas, USA and tidal flats in Veracruz, Mexico. Vessel density did not consistently vary with temperature or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture with narrower vessels that may increase local survival. This safe architecture appears to come at a substantial physiological cost in terms of reduction in conductance capacity and carbon fixation potential, likely contributing to lower canopy heights. The current distribution of A. germinans in the Gulf is influenced by the complex interplay between temperature, salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it is likely that this mangrove species will be able to adapt to a wide range of potential future environmental conditions, and continue its expansion in the Gulf of Mexico in response to near

  1. Solar system design for water pumping

    Science.gov (United States)

    Abdelkader, Hadidi; Mohammed, Yaichi

    2018-05-01

    In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  2. Solar system design for water pumping

    Directory of Open Access Journals (Sweden)

    Abdelkader Hadidi

    2018-01-01

    Full Text Available In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  3. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  4. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  5. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  6. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cost reduction in deep water production systems

    International Nuclear Information System (INIS)

    Beltrao, R.L.C.

    1995-01-01

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project

  8. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  9. STANDARDIZED COSTS FOR WATER SUPPLY DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Presented within the report are cost data for construction and operation/maintenance of domestic water distribution and transmission pipelines, domestic water pumping stations, and domestic water storage reservoirs. To allow comparison of new construction with rehabilitation of e...

  10. A simple high efficiency solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, W.S.; Hodgson, D.A. [Colorado State University, Fort Collins, CO (United States). Dept. of Mechanical Engineering

    2005-07-01

    A new passive solar water pasteurization system based on density difference flow principles has been designed, built and tested. The system contains no valves and regulates flow based on the density difference between two columns of water. The new system eliminates boiling problems encountered in previous designs. Boiling is undesirable because it may contaminate treated water. The system with a total absorber area of 0.45 m2 has achieved a peak flow rate of 19.3 kg/h of treated water. Experiments with the prototype systems presented in this paper show that density driven systems are an attractive option to existing solar water pasteurization approaches. (author)

  11. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  12. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  13. Maximising water supply system yield subject to multiple reliability ...

    African Journals Online (AJOL)

    Maximising water supply system yield subject to multiple reliability constraints via simulation-optimisation. ... Water supply systems have to satisfy different demands that each require various levels of reliability ... and monthly operating rules that maximise the yield of a water supply system subject to ... HOW TO USE AJOL.

  14. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J [Energovyzkum Ltd, Brno (Switzerland); Grazl, K [Vitkovice s.c., Ostrava (Switzerland); Tischler, J; Mihalik, M [SEP Atomove Elektrarne Bohunice (Slovakia)

    1996-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  15. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  16. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  17. Advanced feed water distributing system for WWER 440 steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Grazl, K.; Tischler, J.; Mihalik, M.

    1995-01-01

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.)

  18. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  19. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    SEMMENS, L.S.

    1999-01-01

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  20. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  1. CSU-CHILL Polarimetric Radar Measurements from a Severe Hail Storm in Eastern Colorado.

    Science.gov (United States)

    Hubbert, J.; Bringi, V. N.; Carey, L. D.; Bolen, S.

    1998-08-01

    Polarimetric radar measurements made by the recently upgraded CSU-CHILL radar system in a severe hailstorm are analyzed permitting for the first time the combined use of Zh, ZDR, linear depolarization ratio (LDR), KDP, and h to infer hydrometeor types. A chase van equipped for manual collection of hail, and instrumented with a rain gauge, intercepted the storm core for 50 min. The period of golfball-sized hail is easily distinguished by high LDR (greater than or equal to 18 dB), negative ZDR (less than or equal to 0.5 dB), and low h (less than or equal to 0.93) values near the surface. Rainfall accumulation over the entire event (about 40 mm) estimated using KDP is in excellent agreement with the rain gauge measurement. Limited dual-Doppler synthesis using the CSU-CHILL and Denver WSR-88D radars permit estimates of the horizontal convergence at altitudes less than 3 km above ground level (AGL) at 1747 and 1812 mountain daylight time (MDT). Locations of peak horizontal convergence at these times are centered on well-defined positive ZDR columns. Vertical sections of multiparameter radar data at 1812 MDT are interpreted in terms of hydrometeor type. In particular, an enhanced LDR `cap' area on top of the the positive ZDR column is interpreted as a region of mixed phase with large drops mixed with partially frozen and frozen hydrometeors. A positive KDP column on the the western fringe of the main updraft is inferred to be the result of drops (1-2 mm) shed by wet hailstones. Swaths of large hail at the surface (inferred from LDR signatures) and positive ZDR at 3.5 km AGL suggest that potential frozen drop embryos are favorably located for growth into large hailstones. Thin section analysis of a sample of the large hailstones shows that 30%-40% have frozen drop embryos.

  2. Application of HACCP in Production of Chilled Meat%HACCP体系在冷却肉生产中的应用

    Institute of Scientific and Technical Information of China (English)

    刘娟

    2012-01-01

    介绍了HACCP体系及其在肉制品中的应用现状,并阐述了HACCP质量管理体系在冷却肉生产加工过程中的应用.%This paper introduced the HACCP system and its application status in meat product, and then expounded the application of HACCP quality management system in the processing of chilled pork.

  3. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  4. Effect of ageing time on suckling lamb meat quality resulting from different carcass chilling regimes.

    Science.gov (United States)

    Vieira, C; Fernández, A M

    2014-02-01

    The effect of ageing on suckling lamb carcasses subjected to three chilling treatments was studied: Conventional (2 °C for 24h), ultra-fast (-20 °C for 3.5h then 2 °C until 24h post mortem) and slow chilling (12 °C for 7h then 2 °C until 24h post mortem) treatments. Meat quality measurements were carried out in carcasses at 24h post mortem and also after 5 days of ageing. Carcass chilling losses were not affected by a chilling regime. Aged meat showed higher cooking losses than non-aged meat (p<0.05). Sarcomere length of ultra-fast t was shorter (p<0.05) than conventional and conventional was shorter than slow chilling treatment (p<0.05), at 24h and after 5 days of ageing. Conventional and ultra-fast chilling treatments resulted in higher shear force values at 24h post mortem (p<0.05) compared to slow treatment. All treatments improved sensory scores with ageing (p<0.05), but ultra-fast chilling treatment did not attain higher values as the other two treatments. © 2013.

  5. Two types of peak emotional responses to music: The psychophysiology of chills and tears

    Science.gov (United States)

    Mori, Kazuma; Iwanaga, Makoto

    2017-01-01

    People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response. PMID:28387335

  6. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits.

    Science.gov (United States)

    Lafuente, María T; Establés-Ortíz, Beatriz; González-Candelas, Luis

    2017-01-01

    Low non-freezing temperature may cause chilling injury (CI), which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.

  7. Two types of peak emotional responses to music: The psychophysiology of chills and tears.

    Science.gov (United States)

    Mori, Kazuma; Iwanaga, Makoto

    2017-04-07

    People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response.

  8. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits

    Directory of Open Access Journals (Sweden)

    María T. Lafuente

    2017-06-01

    Full Text Available Low non-freezing temperature may cause chilling injury (CI, which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.

  9. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism

    International Nuclear Information System (INIS)

    Hugly, S.; McCourt, P.; Somerville, C.; Browse, J.; Patterson, G.W.

    1990-01-01

    A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18 degree C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury - leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of 14 CO 2 into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury

  10. Detection system for continuous 222Rn monitoring in waters

    International Nuclear Information System (INIS)

    Holy, K.; Patschova, E.; Bosa, I.; Polaskova, A.; Hola, O.

    2001-01-01

    This contribution presents one of the high-sensitive systems of continuous radon monitoring in waters. The device can be used for the continual control of 222 Rn activity concentration in water sources, for a study of the daily and seasonal variations of radon activity concentration in water systems, for the determination of the infiltration time of surface water into the ground water and for the next untraditional applications. (authors)

  11. Análisis comparativo de índices bióticos utilizados en la evaluación de la calidad de las aguas en un río mediterráneo de Chile: río Chillán, VIII Región Comparative analysis of biotic indexes used to evaluate water quality in a Mediterranean river of Chile: Chillán River, VIII Region

    Directory of Open Access Journals (Sweden)

    RICARDO FIGUEROA

    2007-06-01

    Full Text Available El uso de macroinvertebrados bentónicos como indicadores biológicos es de larga tradición en los países desarrollados y son incorporados en todas las evaluaciones de calidad ecológica de sistemas fluviales. En América Latina estos estudios son menos frecuentes y las normativas para la protección de los recursos acuáticos recién comienzan a elaborarse, como es el caso de Chile, dejando abierta la posibilidad al uso de criterios biológicos. El presente estudio realiza una adaptación de índices bióticos (IBE, BMWP, IBF y SIGNAL los que son aplicados y comparados en una cuenca mediterránea de Chile, el río Chillan. Los resultados muestran el mismo patrón de comportamiento para todos los índices, definiendo áreas en buen estado y otras fuertemente impactadas desde el punto de vista biológico. Sin embargo, el IBF y el SIGNAL son más sensibles a perturbaciones no detectadas por el IBE y BMWP. Se discute la factibilidad de aplicación y ventajas que ofrece cada uno de los índices, permitiendo hacer una propuesta metodológica para Chile centralDeveloped countries have traditionally used benthic macroinvertebrates as biological indicators, incorporating them into the environmental quality evaluations of fluvial systems. These studies are less frequent in Latin America, where the environmental protection standards for aquatic resources are just beginning to be elaborated. Thus, in Chile, the use of biocriteria for such studies remains a possibility. This study of the Chilian River (Chile adapts these biotic indexes (IBE, BMWP, IBF, and SIGNAL for their application and comparison in a Mediterranean basin. The results showed the same behavior pattern for all indexes, defining some areas as having good conditions and others, which, from a biological perspective, have been strongly impacted. Specifically, the IBF and SIGNAL indexes are more sensitive to disturbances than the IBE and BMWP. Application feasibility and the advantages of the

  12. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  13. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  14. A study of Cirus heavy water system isotopic purity

    International Nuclear Information System (INIS)

    Thomas, Shibu; Sahu, A.K.; Unni, V.K.P.; Pant, R.C.

    2000-01-01

    Cirus uses heavy water as moderator and helium as cover gas. Approximately one tonne of heavy water was added to the system every year for routine make up. Isotopic purity (IP) of this water used for addition was always higher than that of the system. Though this should increase IP of heavy water in the system, it has remained almost at the same level, over the years. A study was carried out to estimate the extent of improvement in IP of heavy water in the system that should have occurred because of this and other factors in last 30 years. Reasons for non-occurrence of such an improvement were explored. Ion exchange resins used for purification of heavy water and air ingress into helium cover gas system appear to be the principal sources of entry of light water into heavy water system. (author)

  15. The effect of the method of application and concentration of asahi sl on the response of cucumber plants to chilling stress

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2012-12-01

    Full Text Available In pot experiments conducted on cucumber cv. Śremski F1, the effect was studied of short-term chilling stress on plants which had grown from seeds germinating in the solution of Asahi SL or treated with this biostimulator during the early growth period. The plants were grown in a phytotron at an air temperature of 27/22°C (day/night, using fluorescent light with FAR flux density of 220 μmol x m-2 x s-1 and with a photoperiod of 16/8. The biostimulator was applied using the following methods: a germination of seeds in 0.01% and 0.05% solution, b watering of plants twice with 0.01% or 0.05% solution, c spraying leaves with 0.3% or 0.5% solution. Plants sprayed with distilled water were the control. After 24 hours from foliar or root application of Asahi SL, one half of the plants from each experimental series was treated for a period of 3 days at a temperature of 12/6°C, with all the other growth conditions unchanged. The obtained results show that short-term chilling stress caused a significant increase in electrolyte leakage, free proline content and in the activity of ascorbate peroxidase in leaves, but a decrease in the content of chlorophyll, its maximum fluorescence (Fm and quantum yield (Fv/Fm, carotenoid content, stomatal conductance, transpiration, photosynthesis, leaf biomass and in the activity of catalase in leaves. Foliar or root application of Asahi SL in the pre-stress period decreased the values of the traits which increased as a result of chilling or increased those which decreased. Higher concentrations of the biostimulator solutions, applied using this method, were more effective. The application of the biostimulator during seed germination did not result in significant changes in the response of plants to chilling stress.

  16. Enhanced monitor system for water protection

    Science.gov (United States)

    Hill, David E [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias [Knoxville, TN

    2009-09-22

    An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.

  17. Water hammers in direct contact heater systems

    International Nuclear Information System (INIS)

    Uffer, R.

    1983-01-01

    This paper discusses the causes and mitigation or prevention of water hammers occurring in direct contact heaters and their attached lines. These water hammers are generally caused by rapid pressure reductions in the heaters or by water lines not flowing full. Proper design and operating measures can prevent or mitigate water hammer occurrence. Water hammers often do not originate at the areas where damage is noted

  18. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    International Nuclear Information System (INIS)

    Sexton, R.A.; Meeuwsen, W.E.

    2009-01-01

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance. The KW IWTS was designed to treat basin water and maintain basin clarity during fuel retrieval, washing, and packaging activities in the KW Basin. The original design was based on a mission that was limited to handling of KW Basin fuel. The use of the IWTS was extended by the decision to transfer KE fuel to KW to be cleaned and packaged using KW systems. The use was further extended for the packaging of two more Multi-Canister Overpacks (MCOs) containing legacy fuel and scrap. Planning is now in place to clean and package Knock Out Pot (KOP) Material in MCOs using these same systems. Some washing of KOP material in the Primary Cleaning Machine (PCM) is currently being done to remove material that is too small or too large to be included in the KOP Material stream. These plans will require that the IWTS remain operational through a campaign of as many as 30 additional MCOs, and has an estimated completion date in 2012. Recent operation of the IWTS during washing of canisters of KOP Material has been impacted by low pressure readings at the inlet of the P4 Booster Pump. The system provides a low pressure alarm at 10 psig, and low-low pressure interlock at 5 psig. The response to these low readings has been to lower total system flow to between 301 and 315 gpm. In addition, the IWTS operator has been required to operate the system in manual mode and make frequent adjustments to the P4 booster pump speed during PCM washes. The preferred mode of operation is to establish a setpoint of 317 gpm for the P4 pump speed and run IWTS in semi-automatic mode. Based on hydraulic modeling compared to field data presented in this report, the low P4 inlet pressure is attributed to restrictions in the 2-inch KOP inlet hose and in the KOP itself

  19. Monitoring Performance of a combined water recycling system

    OpenAIRE

    Castleton, H.F.; Hathway, E.A.; Murphy, E.; Beck, S.B.M.

    2014-01-01

    Global water demand is expected to outstrip supply dramatically by 2030, making water recycling an important tool for future water security. A large combined grey water and rainwater recycling system has been monitored in response to an identified knowledge gap of the in-use performance of such systems. The water saving efficiency of the system was calculated at −8ṡ5% in 2011 and –10% in 2012 compared to the predicted 36%. This was due to a lower quantity of grey water and rainwater being col...

  20. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  1. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  3. Water chemistry diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Koya, Hiroshi; Osumi, Katsumi.

    1990-01-01

    The water quality control for the BWRs in Japan has advanced rapidly recently, and as to the dose reduction due to the decrease of radioactivity, Japan takes the position leading the world. In the background of the advanced water quality control like this and the increase of nuclear power plants in operation, the automation of arranging a large quantity of water quality control information and the heightening of its reliability have been demanded. Hitachi group developed the water quality synthetic control system which comprises the water quality data management system to process a large quantity of water quality data with a computer and the water quality diagnosis system to evaluate the state of operation of the plants by the minute change of water quality and to carry out the operational guide in the aspect of water quality control. To this water quality diagnosis system, high speed fuzzy inference is applied in order to do rapid diagnosis with fuzzy data. The trend of development of water quality control system, the construction of the water quality synthetic control system, the configuration of the water quality diagnosis system and the development of algorithm and the improvement of the reliability of maintenance are reported. (K.I.)

  4. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  5. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  6. Information Theory for Risk-based Water System Operation

    NARCIS (Netherlands)

    Weijs, S.V.

    2011-01-01

    Operational management of water resources needs predictions of future behavior of water systems, to anticipate shortage or excess of water in a timely manner. Because the natural systems that are part of the hydrological cycle are complex, the predictions inevitably are subject to considerable

  7. Effect of immersion chilling of broiler chicken carcasses in monochloramine on lipid oxidation and halogenated residual compound formation.

    Science.gov (United States)

    Axtell, Stephen P; Russell, Scott M; Berman, Elliot

    2006-04-01

    This study was conducted to evaluate the effect of immersion chilling of broiler chicken carcasses in tap water (TAP) or TAP containing 50 ppm of monochloramine (MON) with respect to chloroform formation, total chlorine content, 2-thiobarbituric acid (TBA) values, and fatty acid profiles. Ten broiler chicken carcasses were chilled in TAP or MON for 6 h. After exposure, the carcasses were removed and cut in half along the median plane into right and left halves. After roasting the left halves, samples of the breast, thigh, and skin (with fat) were collected, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. The uncooked right halves of each carcass were stored at 4 degrees C for 10 days and then roasted. After roasting these right halves, samples of breast, thigh, and skin (with fat) were collected from each carcass half, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. There were no statistical differences between TAP- and MON-treated fresh or stored products with regard to chloroform levels, total chlorine content, TBA values, or fatty acid profiles.

  8. Optimal water meter selection system | Johnson | Water SA

    African Journals Online (AJOL)

    Economic/financial analysis based on an income statement together with capital budgeting techniques assist with the determination of the financial suitability of investing in a new replacement water meter. This financial analysis includes various potential income and expenditure components that will result from the ...

  9. Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication

    Science.gov (United States)

    Wang, Junhong; Carlson, David J.; Parsons, David B.; Hock, Terrence F.; Lauritsen, Dean; Cole, Harold L.; Beierle, Kathryn; Chamberlain, Edward

    2003-08-01

    This study evaluates performance of humidity sensors in two widely used operational radiosondes, Vaisala and Sippican (formally VIZ), in comparison with a research quality, and potentially more accurate, chilled mirror dew-point hygrometer named ``Snow White''. A research radiosonde system carrying the Snow White (SW) hygrometer was deployed in the Oklahoma panhandle and at Dodge City, KS during the International H2O Project (IHOP_2002). A total of sixteen sondes were launched with either Vaisala RS80 or Sippican VIZ-B2 radiosondes on the same balloons. Comparisons of humidity data from the SW with Vaisala and Sippican data show that (a) Vaisala RS80-H agrees with the SW very well in the middle and lower troposphere, but has dry biases in the upper troposphere (UT), (b) Sippican carbon hygristor (CH) has time-lag errors throughout the troposphere and fails to respond to humidity changes in the UT, sometimes even in the middle troposphere, and (c) the SW can detect cirrus clouds near the tropopause and possibly estimate their ice water content (IWC). The failure of CH in the UT results in significant and artificial humidity shifts in radiosonde climate records at stations where a transition from VIZ to Vaisala radiosondes has occurred.

  10. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  11. The water energy nexus, an ISO50001 water case study and the need for a water value system

    Directory of Open Access Journals (Sweden)

    Brendan P. Walsh

    2015-06-01

    Full Text Available The world’s current utilisation of water, allied to the forecasted increase in our dependence on it, has led to the realisation that water as a resource needs to be managed. The scarcity and cost of water worldwide, along with water management practices within Europe, are highlighted in this paper. The heavy dependence of energy generation on water and the similar dependence of water treatment and distribution on energy, collectively termed the water–energy nexus, is detailed. A summary of the recently launched ISO14046 Water Footprint Standard along with other benchmarking measures is outlined and a case history of managing water using the Energy Management Standard ISO50001 is discussed in detail. From this, the requirement for a methodology for improvement of water management has been identified, involving a value system for water streams, which, once optimised will improve water management including efficiency and total utilisation.

  12. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank

    Science.gov (United States)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.

    2016-03-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.

  13. Water removal from a dry barrier cover system

    International Nuclear Information System (INIS)

    Stormont, J.C.; Ankeny, M.D.; Tansey, M.K.

    1994-01-01

    The results of the numerical simulations reveal that horizontal air flow through the coarse with reasonable pressure gradients can remove large quantities of water from the cover system. Initially, the water removal from the cover system is dominated by the evaporation and advection of water vapor out of the coarse layer. Once the coarse layer is dry, removal of water by evaporation near the fine/coarse layer interface reduces the local water content and water potential, and water moves toward the fine-coarse layer interface and becomes available for evaporation. This result is important in that it suggests the fine layer water content may be moderated by air flow in the coarse layer. Incorporating diffusion of water vapor from the fine layer into the coarse layer substantially increases the water movement out of the fine layer

  14. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  15. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  16. Water Information Management & Analysis System (WIMAS) v 4.0

    Data.gov (United States)

    Kansas Data Access and Support Center — The Water Information Management and Analysis System (WIMAS) is an ArcView based GIS application that allows users to query Kansas water right data maintained by the...

  17. Underground Water Distribution System, Fort Belvoir, Virginia. Leak Detection Survey

    National Research Council Canada - National Science Library

    1995-01-01

    .... The survey was conducted by myself, Donald Muir, Operations Coordinator, and required 12.25 working days. This was not a survey of the entire water distribution system but instead a survey of water mains 8 inch and larger...

  18. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  19. Aesthetic chills: Knowledge-acquisition, meaning-making and aesthetic emotions

    Directory of Open Access Journals (Sweden)

    Leonid Perlovsky

    2016-08-01

    Full Text Available This article addresses the relation between aesthetic emotions, knowledge-acquisition, and meaning-making. We briefly review theoretical foundations and present experimental data related to aesthetic chills. These results suggest that aesthetic chills are inhibited by exposing the subject to an incoherent prime prior to the chill-eliciting stimulation, and that a meaningful prime makes the aesthetic experience more pleasurable than a neutral or an incoherent one. Aesthetic chills induced by narrative structures seem to be related to the pinnacle of the story, to have a significant calming effect and subjects describe a strong empathy for the characters. We discuss the relation between meaning-making and aesthetic emotions at the psychological, physiological, narratological, and mathematical levels and propose a series of hypotheses to be tested in future research.

  20. Process for nondestructively testing with radioactive gas using a chill set sealant

    International Nuclear Information System (INIS)

    Gibbons, C.B.

    1975-01-01

    An article surface is nondestructively tested for substantially invisible surface voids by absorbing a radioactive gas thereon. The adsorbed radioactive gas is disproportionately retained on those surfaces presented by the substantially invisible surface voids as compared to the remaining surfaces of the article contacted by the radioactive gas. The radiation released by the radioactive gas remaining adsorbed is used to identify the substantially invisible voids. To immobilize the radioactive gas adjacent or within the surface voids, a sealant composition is provided which is capable of being chill set. The temperatures of the article surface to be tested and the sealant composition are then related so that the article surface is at a temperature below the chill set temperature of the sealant composition and the sealant composition is at a temperature above its chill set temperature. The article portion to be tested is then coated with sealant composition to form a chill set coating thereon of substantially uniform thickness. (U.S.)

  1. Neutrino oscillation provides clues to dark matter and signals from the chilled universe

    CERN Multimedia

    2006-01-01

    The new verification that oscillations exists and neutrinos have mass though not detectible easy provides the first clue to extra dimensions, dark matter, hyperspace and chilled universe acting as a platform below it. (1/2 page)

  2. Determination of Chilling and Heat Requirement of Four Apricot Cultivars of Khorasan Razavi Province

    Directory of Open Access Journals (Sweden)

    zohreh hoshyar

    2017-02-01

    Full Text Available Introduction:Dormancy is one of the most important stages in the life cycle of temperate plants and plants are required to exit from it with supply of chill unit. Flowering is defined with chilling and heat requirement. Owing to low chilling requirement, blooming happens too early and cold temperatures produce an important loss of yield by frost. In temperate fruits, awareness of the need buds to avoid winter frost is one of the main objectives in breeding programs. Studies concerning chilling and heat requirements are thus of special interest in these species, being very important for the choice of parents in breeding programs to create superior varieties of winter and spring frost (late flowering and resistant cold provide. Utah is one of the most important model was introduced in 1974 by Richardson and colleagues. Effective temperature on cold storage in Utah model is 1/9-5/2. This is 6/1-9/12 in North Carolina and 8/1-9/13 in low chilling. Temperatures above 16 have negative effect on accumulation in Utah model. Later models were developed according to the Utah model that the Low chilling requirement (18 and the North Carolina (31 models are among them. Apricot (Prunus armeniaca L. is belonging to warm temperate regions and due to the lack of compatibility and apricot spring frost in Khorasan Razavi province, the identification of varieties and genotypes with high compatibility and high thermal and cooling requirements to reduce the risk of early frost and increase production efficiency, seems important. The purpose of this study was to determine the need for chilling and heat requirement in apricot cultivars. Material and methods: In this research, chilling and heating requirements of four local cultivars of apricot were evaluated under field and laboratory conditions. This experiment was conducted at agricultural research station Golmakan. A factorial (two-factor experiment was laid out in a completely randomized design with tree

  3. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  4. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  5. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  6. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    Science.gov (United States)

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. A fuzzy recommendation system for daily water intake

    OpenAIRE

    Bin Dai; Rung-Ching Chen; Shun-Zhi Zhu; Chung-Yi Huang

    2016-01-01

    Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and a...

  8. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2013-01-03

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily desalinated at very low pressures. Thus, a device consumes less energy when recovering water. The apparatus, system and method comprise an immersed forward osmosis cell.

  9. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099.

    Science.gov (United States)

    Luedeling, Eike; Zhang, Minghua; Girvetz, Evan H

    2009-07-16

    Winter chill is one of the defining characteristics of a location's suitability for the production of many tree crops. We mapped and investigated observed historic and projected future changes in winter chill in California, quantified with two different chilling models (Chilling Hours, Dynamic Model). Based on hourly and daily temperature records, winter chill was modeled for two past temperature scenarios (1950 and 2000), and 18 future scenarios (average conditions during 2041-2060 and 2080-2099 under each of the B1, A1B and A2 IPCC greenhouse gas emissions scenarios, for the CSIRO-MK3, HadCM3 and MIROC climate models). For each scenario, 100 replications of the yearly temperature record were produced, using a stochastic weather generator. We then introduced and mapped a novel climatic statistic, "safe winter chill", the 10% quantile of the resulting chilling distributions. This metric can be interpreted as the amount of chilling that growers can safely expect under each scenario. Winter chill declined substantially for all emissions scenarios, with the area of safe winter chill for many tree species or cultivars decreasing 50-75% by mid-21st century, and 90-100% by late century. Both chilling models consistently projected climatic conditions by the middle to end of the 21st century that will no longer support some of the main tree crops currently grown in California, with the Chilling Hours Model projecting greater changes than the Dynamic Model. The tree crop industry in California will likely need to develop agricultural adaptation measures (e.g. low-chill varieties and dormancy-breaking chemicals) to cope with these projected changes. For some crops, production might no longer be possible.

  10. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  11. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  12. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  13. Significance of losses in water distribution systems in India

    OpenAIRE

    Raman, V.

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the sys...

  14. Leaks in the internal water supply piping systems

    OpenAIRE

    Orlov Evgeniy Vladimirovich; Komarov Anatoliy Sergeevich; Mel’nikov Fedor Alekseevich; Serov Aleksandr Evgen’evich

    2015-01-01

    Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold) as a result of impaired integrity, complicating the operation of a system and leading to high costs of ...

  15. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  16. Impact of Methyl Jasmonate on Enhancing Chilling Tolerance of Cucumber (Cucumis sativus L. Seedlings

    Directory of Open Access Journals (Sweden)

    F. Saydpour

    2016-12-01

    Full Text Available Cucumber is a warm season crop that suffers from chilling injury at temperatures below 10°C. In recent years, jasmonates have been used for reduction of chilling injuries in plants. An experiment was, therefore, conducted to test whether methyl jasmonate (MeJA application at various concentrations (0, 0.05, 0.1 and 0.15 mM through seed soaking or foliar spray would protect cucumber seedlings, subjected to chilling stress. Results showed that MeJA application decreased chilling index, ion leakage, malondialdehyde content and hydrogen peroxide free radical and increased growth parameters, proline contents, chlorophylls contents and antioxidant activity. Although, seed soaking method provided better protection compared to foliar spray method, the highest cold tolerance was obtained with 0.15mM MeJA application in both application methods that caused low level of chilling index (1.67, malondialdehyde content (0.11 nm g-1 FW, hydrogen peroxide free radical (0.22 nm g-1 FW and ion leakage (32.87%. In general, it may be concluded that MeJA could be used effectively to protect cucumber seedling from damaging effects of chilling stress at the early stages of growth.

  17. Microstructure of gross chill-mark defect in a glass-ceramic preform

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    The microstructure of a vacuum tube glass-ceramic preform containing gross chill-marks on the top and bottom surfaces as well as on the sides was analyzed. The preform was ceramed in a graphite mold and examined using SEM. The glass-ceramic had an extremely dense and fine crystalline structure except where the chill-marks were located. In those areas of matrix glass following the chill-mark plane were evident. It is concluded that gross chill-marks will affect the microstructure by disrupting the chemistry or nucleating characteristics in such a way that a chill-mark regon would appear to be depleted of crystallites. Although the crystallites in this region are larger, the quantity is lower than in the base glass-ceramic. The affected area caused by the chill-mark left a band of matrix glass approximately 100 μ wide. It is believed that planar defects of this size will degrade the mechanical and permeation properties of the glass-ceramic

  18. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    Science.gov (United States)

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  19. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  20. A fuzzy recommendation system for daily water intake

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2016-05-01

    Full Text Available Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and ambient temperature as the input factors and daily water intake values as the output factor. The reasoning mechanism of the fuzzy system can calculate the recommended value of daily water intake. Finally, the system will compare the actual recommended values with our system to determine the usefulness. The experimental results show that this recommendation system is effective in actual application.

  1. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  2. Deterioration and optimal rehabilitation modelling for urban water distribution systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Pipe failures in water distribution systems can have a serious impact and hence it’s important to maintain the condition and integrity of the distribution system. This book presents a whole-life cost optimisation model for the rehabilitation of water distribution systems. It combines a pipe breakage

  3. Use of ozone in a water reuse system for salmonids

    Science.gov (United States)

    Williams, R.C.; Hughes, S.G.; Rumsey, G.L.

    1982-01-01

    A water reuse system is described in which ozone is used in addition to biological filters to remove toxic metabolic wastes from the water. The system functions at a higher rate of efficiency than has been reported for other reuse systems and supports excellent growth of rainbow trout (Salmo gairdneri).

  4. Plant experience with temporary reverse osmosis makeup water systems

    International Nuclear Information System (INIS)

    Polidoroff, C.

    1986-01-01

    Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment

  5. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  6. Quantification of Water Flux in Vesicular Systems.

    Science.gov (United States)

    Hannesschläger, Christof; Barta, Thomas; Siligan, Christine; Horner, Andreas

    2018-06-04

    Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities P f . A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring P f from scattered light intensities exists, approximations potentially misjudging P f by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability p f depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.

  7. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  8. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER — BASIN WATER HIGH EFFICIENCY ION EXCHANGE WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the Basin Water System was conducted over a 54-day period between April 4, 2005 and May 28, 2005. The test was conducted at the Elsinore Valley Municipal Water District (EVMWD) Corydon Street Well in Lake Elsinore, California. The source water was a raw gr...

  9. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  10. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  11. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  12. Systems and Methods for Automated Water Detection Using Visible Sensors

    Science.gov (United States)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  13. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  14. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  15. Privatisation of water systems: Crime against humanity

    Directory of Open Access Journals (Sweden)

    Titus R. Mobie

    2009-11-01

    Full Text Available This article emphasises the importance of water resources, which are vital to the sustenance of life. Water is essential for various reasons: for drinking, for personal hygiene, for cooking, for watering crops, for cleaning our homes etc. One can therefore conclude that, without this vital resource, there is no life. It is for this reason that God, giver of life, gave water as a gift – free – both to humanity and to the rest of creation, so that we may all achieve fullness of life. This article challenges the fact that, because of the insistence of the World Bank and the International Monetary Fund on the privatisation of water supplies where the poorest of the poor are unable to pay, these people are cut off from water supplies and are deprived of the right to the fullness of life. The author emphasises that there is no life without water, that water resources are a gift from the creator and should therefore be made accessible to all, rich and poor alike.

  16. Integrated Solution Support System for Water Management

    NARCIS (Netherlands)

    Kassahun, A.; Blind, M.; Krause, A.U.M.; Roosenschoon, O.R.

    2008-01-01

    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework

  17. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  18. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  19. On numerical modeling of low-head direct chill ingot caster for magnesium alloy AZ31

    Directory of Open Access Journals (Sweden)

    Mainul Hasan

    2014-12-01

    Full Text Available A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head (LH vertical Direct Chill (DC rolling ingot caster for the common magnesium alloy AZ31. The model used in this study takes into account the coupled laminar/turbulent melt flow and solidification aspects of the process and is based on the control-volume finite-difference approach. Following the aluminum/magnesium DC casting industrial practices, the LH mold is taken as 30 mm with a hot top of 60 mm. The previously verified in-house code has been modified to model the present casting process. Important quantitative results are obtained for four casting speeds, for three inlet melt pouring temperatures (superheats and for three metal-mold contact heat transfer coefficients for the steady state operational phase of the caster. The variable cooling water temperatures reported by the industry are considered for the primary and secondary cooling zones during the simulations. Specifically, the temperature and velocity fields, sump depth and sump profiles, mushy region thickness, solid shell thickness at the exit of the mold and axial temperature profiles at the center and at three strategic locations at the surface of the slab are presented and discussed.

  20. Effect of a traditional marinating on properties of rainbow trout fillet during chilled storage.

    Science.gov (United States)

    Maktabi, Siavash; Zarei, Mehdi; Chadorbaf, Milad

    2016-01-01

    In recent years, there has been an increasing interest in using food additives from natural sources to improve taste and also extend the shelf-life of semi-preserved foodstuffs. The aim of this study was to examine the chemical and microbiological changes promoted by a local marinating process in rainbow trout fillets during chilled storage. Fish fillets were immersed in marinades and stored at 4 ˚C for 10 days and were analyzed for total volatile basic nitrogen (TVN), thiobarbitoric acid (TBA), water holding capacity (WHC), pH, mesophilic and psychrophilic bacterial count every two days. Variations in TBA and WHC were not statistically significant between marinated and control groups. The values of TVN, pH, total psychrophilic bacteria count (TPC) and total mesophilic bacteria count (TMC) in marinated samples were significantly lower than controls. The most obvious finding of this study was that traditional marinated rainbow trout fillet stored in 4 ˚C had no undesirable changes at least for eight days.

  1. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  2. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  3. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  4. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  5. System analysis of membrane facilitated water generation from air humidity

    NARCIS (Netherlands)

    Bergmair, D.; Metz, S.J.; Lange, de H.C.; Steenhoven, van A.A.

    2014-01-01

    The use of water vapor selective membranes can reduce the energy requirement for extracting water out of humid air by more than 50%. We performed a system analysis of a proposed unit, that uses membranes to separate water vapor from other atmospheric gases. This concentrated vapor can then be

  6. Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems ...

    African Journals Online (AJOL)

    Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems. ... method has been used to study heavy metal interaction in model lake water in KNO3 ... is of no consequential effect because in its normal state, the [OH-] of the lake water is ...

  7. Sources Of Incidental Events In Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-11-01

    Full Text Available The publication presents the main types of incidental events in collective water supply system. The special attention was addressed to the incidental events associated with a decrease in water quality, posing a threat to the health and life of inhabitants. The security method against incidental contamination in the water source was described.

  8. 工业活塞式冷水机组冷媒系统进水事故的处理%Handing of Water Seepage Accident of Cooling - medium System for Industrial Piston Chiller

    Institute of Scientific and Technical Information of China (English)

    刘文军

    2011-01-01

    The accident reason for industrial piston water chilling unit with oxygen making industry was analyzed,it was definited processing measure and verify result.%对制氧行业工业用冷水机组进水事故进行了因为分析,确定了处理措施,并验证了处理结果.

  9. Start of the big chill for the LHC

    CERN Document Server

    2007-01-01

    The cooling of Sector 7-8 of the LHC, the first to undergo the process, is under way to the 1.9 K necessary for superconductivity. During the night of 14 to 15 March, an important milestone was reached when the entire sector was cooled to 4.5 K, the temperature of liquid helium. The two graphs above show the progression of cooling in Sector 7-8. The first gives the status of the sector on Tuesday 6 March at 4:00 pm, the second on Wednesday 7 March at 10:00 am. Each square represents a magnet.It's the start of the big chill for the LHC. Since the middle of January, the teams from the Accelerator Cryogenics group have been working to cool down the first sector of the machine. Three kilometres of magnets between Point 7 (Ferney-Voltaire) and Point 8 (Prévessin) are to be cooled to 1.9 Kelvin (-271°C), colder than outer space. The first step in the process was to cool the sector to 80 K. Following mechanical and electrical integrity tests at this temperature, it was then further cooled to 20 K for additional e...

  10. The chilling effect: how do researchers react to controversy?

    Directory of Open Access Journals (Sweden)

    Joanna Kempner

    2008-11-01

    Full Text Available BACKGROUND: Can political controversy have a "chilling effect" on the production of new science? This is a timely concern, given how often American politicians are accused of undermining science for political purposes. Yet little is known about how scientists react to these kinds of controversies. METHODS AND FINDINGS: Drawing on interview (n = 30 and survey data (n = 82, this study examines the reactions of scientists whose National Institutes of Health (NIH-funded grants were implicated in a highly publicized political controversy. Critics charged that these grants were "a waste of taxpayer money." The NIH defended each grant and no funding was rescinded. Nevertheless, this study finds that many of the scientists whose grants were criticized now engage in self-censorship. About half of the sample said that they now remove potentially controversial words from their grant and a quarter reported eliminating entire topics from their research agendas. Four researchers reportedly chose to move into more secure positions entirely, either outside academia or in jobs that guaranteed salaries. About 10% of the group reported that this controversy strengthened their commitment to complete their research and disseminate it widely. CONCLUSIONS: These findings provide evidence that political controversies can shape what scientists choose to study. Debates about the politics of science usually focus on the direct suppression, distortion, and manipulation of scientific results. This study suggests that scholars must also examine how scientists may self-censor in response to political events.

  11. The Chilling Effect: How Do Researchers React to Controversy?

    Science.gov (United States)

    Kempner, Joanna

    2008-01-01

    Background Can political controversy have a “chilling effect” on the production of new science? This is a timely concern, given how often American politicians are accused of undermining science for political purposes. Yet little is known about how scientists react to these kinds of controversies. Methods and Findings Drawing on interview (n = 30) and survey data (n = 82), this study examines the reactions of scientists whose National Institutes of Health (NIH)-funded grants were implicated in a highly publicized political controversy. Critics charged that these grants were “a waste of taxpayer money.” The NIH defended each grant and no funding was rescinded. Nevertheless, this study finds that many of the scientists whose grants were criticized now engage in self-censorship. About half of the sample said that they now remove potentially controversial words from their grant and a quarter reported eliminating entire topics from their research agendas. Four researchers reportedly chose to move into more secure positions entirely, either outside academia or in jobs that guaranteed salaries. About 10% of the group reported that this controversy strengthened their commitment to complete their research and disseminate it widely. Conclusions These findings provide evidence that political controversies can shape what scientists choose to study. Debates about the politics of science usually focus on the direct suppression, distortion, and manipulation of scientific results. This study suggests that scholars must also examine how scientists may self-censor in response to political events. PMID:19018657

  12. Running Club Warm Up Staves Off Winter's Chill

    CERN Multimedia

    2001-01-01

    Not deterred by winter's chill, over 900 runners met at the CERN Prévesin site for Escalade training. Think the sudden cold snap is a reason to stay indoors? Think again! The CERN running club has just recently had the honour of holding the November 11th Escalade training session, and with over 900 runners present at the Prévessin site it was clear that the chilly temperatures were no barrier whatsoever. The story behind Escalade training starts back in 1977 when a group of running enthusiasts from the Stade Genève club decided to organize a running race in the Old Town in conjunction with the Escalade festivities. They were told that no normal people would think of organizing a running race in the month of December, but fortunately they ignored the advice! From the initial 50 or so runners, these Escalade races have grown into an institution and now attract upwards of 15,000 people of all ages from 5 to over 80 each year. And with over 30% of each year's runners participat...

  13. The Pluralistic Water Research Concept: A New Human-Water System Research Approach

    Directory of Open Access Journals (Sweden)

    Mariele Evers

    2017-11-01

    Full Text Available The use and management of water systems is influenced by a number of factors, such as economic growth, global change (e.g., urbanization, hydrological-climatic changes, politics, history and culture. Despite noteworthy efforts to develop integrative approaches to analyze water-related problems, human-water research remains a major challenge for scholars and decision makers due to the increasing complexity of human and water systems interactions. Although existing concepts try to integrate the social and water dimensions, they usually have a disciplinary starting point and perspective, which can represent an obstacle to true integration in human-water research. Hence, a pluralistic approach is required to better understand the interactions between human and water systems. This paper discusses prominent human-water concepts (Integrated Water Resources Management (IWRM, socio-hydrology, and political ecology/hydrosocial approach and presents a newly developed concept termed pluralistic water research (PWR. This is not only a pluralistic but also an integrative and interdisciplinary approach which aims to coherently and comprehensively integrate human-water dimensions. The different concepts are illustrated in a synopsis, and diverse framing of research questions are exemplified. The PWR concept integrates physical and social sciences, which enables a comprehensive analysis of human-water interactions and relations. This can lead to a better understanding of water-related issues and potentially sustainable trajectories.

  14. Use of methanol as cryoprotectant and its effect on sox genes and proteins in chilled zebrafish embryos.

    Science.gov (United States)

    Desai, Kunjan; Spikings, Emma; Zhang, Tiantian

    2015-08-01

    Methanol is a widely used cryoprotectant (CPA) in cryopreservation of fish embryos, however little is known about its effect at the molecular level. This study investigated the effect of methanol on sox gene and protein expression in zebrafish embryos (50% epiboly) when they were chilled for 3 h and subsequently warmed and cultured to the hatching stages. Initial experiments were carried out to evaluate the chilling tolerance of 50% epiboly embryos which showed no significant differences in hatching rates for up to 6 h chilling in methanol (0.2-, 0.5- and 1 M). Subsequent experiments in embryos that had been chilled for 3 h in 1 M methanol and warmed and cultured up to the hatching stages found that sox2 and sox3 gene expression were increased significantly in hatched embryos that had been chilled compared to non-chilled controls. Sox19a gene expression also remained above control levels in the chilled embryos at all developmental stages tested. Whilst stable sox2 protein expression was observed between non-chilled controls and embryos chilled for 3 h with or without MeOH, a surge in sox19a protein expression was observed in embryos chilled for 3 h in the presence of 1 M MeOH compared to non-chilled controls and then returned to control levels by the hatching stage. The protective effect of MeOH was increased with increasing concentrations. Effect of methanol at molecular level during chilling was reported here first time which could add new parameter in selection of cryoprotectant while designing cryopreservation protocol. Copyright © 2015. Published by Elsevier Inc.

  15. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    Science.gov (United States)

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  17. System for harvesting water wave energy

    Science.gov (United States)

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun

    2016-07-19

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  18. Hydroponic systems and water management in aquaponics: A review

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2017-09-01

    Full Text Available Aquaponics (AP, the integrated multi-trophic fish and plants production in quasi-closed recirculating system, is one of the newest sustainable food production systems. The hydroponic component of the AP directly influences water quality (in turn influencing fish growth and health, and water consumption (through evapotranspiration of the entire system. In order to assess the role of the design and the management of the hydroponic component on the overall performance, and water consumption of the aquaponics, 122 papers published from 1979 to 2017 were reviewed. Although no unequivocal results were found, the nutrient film technique appears in several aspects less efficient than medium-based or floating raft hydroponics. The best system performance in terms of fish and plant growth, and the highest nutrient removal from water was achieved at water flow between 0.8 L min–1 and 8.0 L min–1. Data on water consumption of aquaponics are scarce, and no correlation between the ratio of hydroponic unit surface/fish tank volume and the system water loss was found. However, daily water loss was positively correlated with the hydroponic surface/fish tank volume ratio if the same experimental conditions and/or systems were compared. The plant species grown in hydroponics influenced the daily water loss in aquaponics, whereas no effect was exerted by the water flow (reciprocating flood/drain cycle or constant flow or type (medium-based, floating or nutrient film technique of hydroponics.

  19. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  20. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  1. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  2. The optimisation of a water distribution system using Bentley WaterGEMS software

    Directory of Open Access Journals (Sweden)

    Świtnicka Karolina

    2017-01-01

    Full Text Available The proper maintenance of water distribution systems (WDSs requires from operators multiple actions in order to ensure optimal functioning. Usually, all requirements should be adjusted simultaneously. Therefore, the decision-making process is often supported by multi-criteria optimisation methods. Significant improvements of exploitation conditions of WDSs functioning can be achieved by connecting small water supply networks into group systems. Among many potential tools supporting advanced maintenance and management of WDSs, significant improvements have tools that can find the optimal solution by the implemented mechanism of metaheuristic methods, such as the genetic algorithm. In this paper, an exemplary WDS functioning optimisation is presented, in relevance to a group water supply system. The action range of optimised parameters included: maximisation of water flow velocity, regulation of pressure head, minimisation of water retention time in a network (water age and minimisation of pump energy consumption. All simulations were performed in Bentley WaterGEMS software.

  3. Study of Advanced Oxidation System for Water Treatment

    International Nuclear Information System (INIS)

    Widdi Usada; Bambang Siswanto; Suryadi; Agus Purwadi; Isyuniarto

    2007-01-01

    Hygiene water is still a big problem globally as well as energy and food, especially in Indonesia where more than 70 % lived in Java island. One of the efforts in treating hygiene water is to recycle the used water. In this case it is needed clean water technology. Many methods have been done, this paper describes the advanced oxidation technology system based on ozone, titania and plasma discharge. (author)

  4. Changes in visual quality, physiological and biochemical parameters assessed during the postharvest storage at chilling or non-chilling temperatures of three sweet basil (Ocimum basilicum L.) cultivars.

    Science.gov (United States)

    Fratianni, Florinda; Cefola, Maria; Pace, Bernardo; Cozzolino, Rosaria; De Giulio, Beatrice; Cozzolino, Autilia; d'Acierno, Antonio; Coppola, Raffaele; Logrieco, Antonio Francesco; Nazzaro, Filomena

    2017-08-15

    Leaves of three different sweet basil (Ocimum basilicum L.) cultivars (Italico a foglia larga, Cammeo, and Italiano classico) packed in macro-perforated polyethylene bags were stored at chilling (4°C) or non-chilling temperature (12°C) for 9days. During storage, visual quality, physiological (respiration rate, ethylene production, ammonium content) and chemical (antioxidant activity, total polyphenols and polyphenol profile) parameters were measured. Detached leaves stored at chilling temperature showed visual symptoms related to chilling injury, while ethylene production and ammonium content resulted associated to cultivar sensibility to damage at low temperature. Storage at 4°C caused a depletion in polyphenols content and antioxidant capability, which was preserved at 12°C. Regarding the polyphenols profile, stressful storage conditions did not enhance the phenolic metabolism. However, leaves stored at 12°C did not loss a significant amount of metabolites respect to fresh leaves, suggesting the possibility to extend the storability after the expiration date, for a possible recovery of bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Water quality in North American river systems

    International Nuclear Information System (INIS)

    Becker, C.D.; Neitzel, D.A.

    1992-01-01

    This book is about water quality and other characteristics of selected ecosystems in North America. It is also about changes that have occurred in these ecosystems as a result of recent human activities-changes that result primarily from development and exploitation to sustain the needs of an ever-increasing population and the technical innovations that sustain it. Fish populations, hydrology, and water quality control efforts are discussed

  6. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  7. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants.

    Science.gov (United States)

    Bao, Gegen; Zhuo, Chunliu; Qian, Chunmei; Xiao, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-01-01

    Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while L-ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co-expressing stylo 9-cis-epoxycarotenoid dioxygenase (SgNCED1) and yeast D-arabinono-1,4-lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild-type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co-expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought-responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold-responsive genes, but not in SgNCED1 plants. Co-expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold-responsive genes. Our result suggests that co-expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    proposed method of water pumping system also provides the cost effective and highly ... in the proposed system because of its similar operational characteristics compared to SPV generator. .... (CCM) regardless of the atmospheric conditions.

  9. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2016-05-01

    Full Text Available Plants have varying abilities to tolerate chilling (low but not freezing temperatures, and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.

  10. Influence of mist-chilling on post-harvest quality of fresh strawberries Cv. Mara des Bois and Gariguette

    Energy Technology Data Exchange (ETDEWEB)

    Allais, Irene [Cemagref, UMR Genial, 24, avenue des Landais B.P. 50085, 63172 Aubiere Cedex (France); Letang, Guy [Cemagref, UMR Genial, Parc de Tourvoie, B.P. 44, 92163 Antony Cedex (France)

    2009-09-15

    The aim of this study was to assess the impact of mist-chilling on high-grade strawberry post-harvest quality (Cultivars ''Gariguette'' and ''Mara des Bois''). Strawberries were chilled at 2 C using three processes: air blast chilling at 0.3 m s{sup -1} or 1 m s{sup -1} and mist-chilling at 1 m s{sup -1}. After chilling, fruits were submitted to different distribution chains characterised by different handling conditions and storage temperatures (2 C or 7 C) and by a 12 h retailing step at 20 C. Strawberry quality was assessed by measuring 7 parameters: weight loss, commercial loss, firmness, sugar content, acidity, colour and sensory quality. Compared to air-chilling, mist-chilling did not reduce chilling time but it reduced weight loss by 20-40%. Mist-chilling had no detrimental effect on commercial loss defined as the percentage of fruit more than 1/3 of surface affected. It did not induce any major changes on strawberry quality. Temperature fluctuations undergone during cold storage and retailing had a detrimental effect on weight loss. The beneficial effect of packaging on weight loss was confirmed. (author)

  11. Automated Water Supply System and Water Theft Identification Using PLC and SCADA

    OpenAIRE

    Prof. Anubha Panchal,; Ketakee Dagade

    2014-01-01

    In today’s world rapid growing urban residential areas, to avoid scarcity of water problems and requirements of consumers, therefore it is supposed to supply adequate water distribution networks are managed automatically. Along with this another problem in the water supply system is that public is using suction pumps to suck the water directly from the home street pipeline. The best way to improve the automation and monitoring architectures which contain a supervision and contr...

  12. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  13. Joint optimization of regional water-power systems

    Science.gov (United States)

    Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter

    2016-06-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.

  14. Estudio sobre el almacenamiento de agua helada en los sistemas de climatización centralizados; Study about cooling water storage in centralized air conditioning system

    Directory of Open Access Journals (Sweden)

    Mario Espín Pérez

    2015-04-01

    Full Text Available El desarrollo de este artículo se basa en el estudio del almacenamiento de agua helada en los sistemas de climatización. Para desplazar el consumo eléctrico fuera del horario pico, como herramienta para pretender  incrementar  la eficiencia energética y disminuir el costo de la energía eléctrica en los hoteles con clima tropical. Para ello se procede a la estimación del perfil de carga térmica del hotel Jagua mediante el software TRNSYS, diseño y comprobación del sistema de almacenamiento de agua helada incorporado a las condiciones actuales de la instalación mediante modelos matemáticos que describen su funcionamiento. El objetivo es, evaluar e ilustrar los posibles efectos cuantitativos y cualitativos del almacenamiento de agua helada en el sistema de clima centralizado de la edificación. El trabajo que se presenta se enmarca en los esfuerzos para desarrollar el uso de tecnologías sustentables y la evaluación de sistemas industriales asistidos por computadora en Cuba. The development of this paper is based on the study of cold water storage in air conditioning systems. To offset power consumption off-peak, as a tool to increase energy efficiency claim and reduce the cost of electricity in tropical hotels. To do this we proceed to estimate the thermal load profile Jagua by TRNSYS software, system design and testing of chilled water storage built into the current conditions of the system using mathematical models to describe their operation. The objective is to evaluate and illustrate the quantitative and qualitative effects of cold water storage in the building centralized climate system. The work presented is part of the efforts to develop the use of sustainable technologies and evaluation of computer-aided industrial systems in Cuba.

  15. Systems of erbium chloride- carbamide- water and erbium nitrate- carbamide- water at 30 deg C

    International Nuclear Information System (INIS)

    Ajtimbetov, K.; Sulajmankulov, K.S.; Batyuk, A.G.; Ismailov, M.

    1975-01-01

    The systems erbium chloride - carbamide - water and erbium nitrate - carbamide - water were studied by solubility method at 30 deg C. In the system erbium chloride - carbamide - water three compounds were detected: ErClsub(3).6CO(NHsub(2))sub(2), ErClsub(3).4CO(NHsub(2))sub(2), ErClsub(3).2CO(NHsub(2))sub2.6Hsub(2)O. In the system erbium nitrate -carbamide - water two new compounds were found: Er(NOsub(3))sub(3).4CO(NHsub(2))sub2, Er(NOsub(3) )sub(3)

  16. A General Water Resources Regulation Software System in China

    Science.gov (United States)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  17. Significance of losses in water distribution systems in India.

    Science.gov (United States)

    Raman, V

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 10(12) litres per year, which is equivalent to 500 million rupees.It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all.

  18. CLOSYS: Closed System for Water and Nutrient Management in Horticulture

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Dieleman, J.A.; Boulard, T.; Garate, A.; Kittas, C.; Buschmann, C.; Brajeul, E.; Wieringa, G.; Groot, de F.; Loon, van A.; Kocsanyi, L.

    2006-01-01

    The EU project CLOSYS aimed at developing a CLOsed SYStem for water and nutrients in horticulture. The main objective was to control water and nutrients accurately such that pollution is minimized and crop quality enhanced. The closed system as developed in this project consists of crop growth

  19. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O. [Energovyzkum, Brno (Switzerland); Schmidt, S.; Mihalik, M. [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1997-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  20. Particulate fingerprinting of water quality in the distribution system ...

    African Journals Online (AJOL)

    Particles in the distribution system play an important role in the perception? Not clear what is meant) of drinking water quality, particularly in association with discolouration. In The Netherlands the water quality in the distribution system is traditionally monitored by turbidity measurements. However, turbidity is hard to quantify ...

  1. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  2. GROWTH OF HETROTROPHIC BIOFILMS IN A WATER DISTRIBUTION SYSTEM SIMULATOR

    Science.gov (United States)

    The U.S. EPA has designed and constructed a distribution system simulator (DSS) to evaluate factors which influence water quality within water distribution systems. Six individual 25 meter lengths of 15 cm diameter ductile iron pipe are arranged into loop configurations. Each lo...

  3. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  4. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O [Energovyzkum, Brno (Switzerland); Schmidt, S; Mihalik, M [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1998-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  5. Artificial sweetener sucralose in U.S. drinking water systems.

    Science.gov (United States)

    Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A

    2011-10-15

    The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.

  6. A methodology for the design of photovoltaic water supply systems

    International Nuclear Information System (INIS)

    Vilela, O.C.; Fraidenraich, N.

    2001-01-01

    Photovoltaic pumping systems are used nowadays as a valuable alternative to supply water to communities living in remote rural areas. Owing to the seasonal variation and the stochastic behavior of solar radiation, at certain times the supply of water may not be able to meet demand. A study has been made of the relationship between water pumping capacity, reservoir size and water demand, for a given water deficit. As a result, curves of equal water deficit (iso-deficit lines) can be obtained for various combinations of PV pumping capacity and reservoir size. A methodology to generate those curves is described, using as its main tool the characteristic curve of the system, that is, the relationship between water flow and collected solar radiation. The characteristic curve represents the combined behavior of the water pumping system and the well. The influence of the minimum collected solar radiation level, necessary to start the system's operation (the critical radiation level I C ). is also analyzed. Results show that PV pumping systems with different characteristic curves, but with the same critical levels, yield the same set of iso-deficit lines. This drastically reduces the number of necessary solutions to those corresponding to a few values of I C . Iso-deficit lines, calculated for the locality of Recife (PE), Brazil, are used to illustrate the sizing procedure PV water supply systems. (author)

  7. Multi-spark discharge system for preparation of nutritious water

    Science.gov (United States)

    Nakaso, Tetsushi; Harigai, Toru; Kusumawan, Sholihatta Aziz; Shimomura, Tomoya; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi

    2018-01-01

    The nitrogen compound concentration in water is increased by atmospheric-pressure plasma discharge treatment. A rod-to-water electrode discharge treatment system using plasma discharge has been developed by our group to obtain water with a high concentration of nitrogen compounds, and this plasma-treated water improves the growth of chrysanthemum roots. However, it is difficult to apply the system to the agriculture because the amount of treated water obtained by using the system too small. In this study, a multi-spark discharge system (MSDS) equipped multiple spark plugs is presented to obtain a large amount of plasma-treated water. The MSDS consisted of inexpensive parts in order to reduce the system introduction cost for agriculture. To suppress the temperature increase of the spark plugs, the 9 spark plugs were divided into 3 groups, which were discharged in order. The plasma-treated water with a NO3- concentration of 50 mg/L was prepared using the MSDS for 90 min, and the treatment efficiency was about 6 times higher than that of our previous system. It was confirmed that the NO2-, O3, and H2O2 concentrations in the water were also increased by treating the water using the MSDS.

  8. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Afrah Al-Bossly, A.; El-Berry, A.; El-Berry, A.

    2012-01-01

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  9. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  10. Exergy analysis of single effect absorption refrigeration systems: The heat exchange aspect

    International Nuclear Information System (INIS)

    Joybari, Mahmood Mastani; Haghighat, Fariborz

    2016-01-01

    Highlights: • Exergy analysis of LiBr/H 2 O absorption systems with identical COP was carried out. • Exergy destruction rank: absorber followed by generator, condenser and evaporator. • Lower heat source and chilled water inlet temperature reduced exergy destruction. • Higher cooling water inlet temperature reduced exergy destruction. • Lower HTF mass flow rate increased exergy efficiency even for fixed system COP. - Abstract: The main limitation of conventional energy analysis for the thermal performance of energy systems is that this approach does not consider the quality of energy. On the other hand, exergy analysis not only provides information about the systems performance, but also it can specify the locations and magnitudes of losses. A number of studies investigated the effect of parameters such as the component temperature, and heat transfer fluid (HTF) temperature and mass flow rate on the exergetic performance of the same absorption refrigeration system; thus, reported different coefficient of performance (COP) values. However, in this study, the system COP was considered to remain constant during the investigation. This means comparing systems with different heat exchanger designs (based on HTF mass flow rate and temperature) having the same COP value. The effect of HTF mass flow rate and inlet temperature of the cooling water, chilled water and heat source on the outlet specific exergy and exergy destruction rate of each component was investigated. It was found that the lower HTF mass flow rate decreased exergy destruction of the corresponding component. Moreover, the lower temperature of heat source and chilled water inlet increased the system exergetic efficiency. That was also the case for the higher cooling water inlet temperature. Based on the analysis, since the absorber and condenser accounted for a large portion of the total exergy destruction, cooling tower modification with lower cooling water mass flow rate is recommended

  11. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  12. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Advanced treatment and reuse system developed for oilfield process water

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin

    2011-01-15

    An innovative plant to treat oilfield produced wastewater is being constructed in Trinidad and Tobago following recent regulations and industrial water supply challenges. The 4,100m3/day treatment system, developed by Golder Associates, will produce water for industrial reuse and effluent that meets new regulations. The treatment stages include: oil-water separation by gravity, equalization with a two-day capacity basin, dissolved air flotation, cooling, biotreatment/settling with immobilized cell bioreactors (ICB) technology, prefiltration/reverse osmosis and effluent storage/transfer. This advanced system will provide several important benefits including the elimination of inland discharge of minimally-treated water and the reduction of environmental and public health concerns. In addition, it will provide a new source of industrial water, resulting in a decrease in demand for fresh water. The success of this plant could lead to additional facilities in other oil field locations, expanding economic and environmental benefits of water reuse.

  14. Mediated water electrolysis in biphasic systems.

    Science.gov (United States)

    Scanlon, Micheál D; Peljo, Pekka; Rivier, Lucie; Vrubel, Heron; Girault, Hubert H

    2017-08-30

    The concept of efficient electrolysis by linking photoelectrochemical biphasic H 2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H 2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp 2 *Fe (III) ] + ) to neutral decamethylferrocene (Cp 2 *Fe (II) ) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp 2 *Fe (II) to form the corresponding hydride species, [Cp 2 *Fe (IV) (H)] + . Subsequently, [Cp 2 *Fe (IV) (H)] + spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H 2 ) and regenerate [Cp 2 *Fe (III) ] + , whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp 2 *Fe (III) ] + /Cp 2 *Fe (II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp 2 *Fe (III) ] + monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H 2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo 2 C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to

  15. Developing the Water Supply System for Travel to Mars

    Science.gov (United States)

    Jones, Harry W.; Fisher, John W.; Delzeit, Lance D.; Flynn, Michael T.; Kliss, Mark H.

    2016-01-01

    What water supply method should be used on a trip to Mars? Two alternate approaches are using fuel cell and stored water, as was done for short missions such as Apollo and the Space Shuttle, or recycling most of the water, as on long missions including the International Space Station (ISS). Stored water is inexpensive for brief missions but its launch mass and cost become very large for long missions. Recycling systems have much lower total mass and cost for long missions, but they have high development cost and are more expensive to operate than storage. A Mars transit mission would have an intermediate duration of about 450 days out and back. Since Mars transit is about ten times longer than a brief mission but probably less than one-tenth as long as ISS, it is not clear if stored or recycled water would be best. Recycling system design is complicated because water is used for different purposes, drinking, food preparation, washing, and flushing the urinal, and because wastewater has different forms, humidity condensate, dirty wash water, and urine and flush water. The uses have different requirements and the wastewater resources have different contaminants and processing requirements. The most cost-effective water supply system may recycle some wastewater sources and also provide safety reserve water from storage. Different water supply technologies are compared using mass, cost, reliability, and other factors.

  16. Approach to the health-risk management on municipal reclaimed water reused in landscape water system

    Science.gov (United States)

    Liu, X.; Li, J.; Liu, W.

    2008-12-01

    Water pollution and water heavily shortage are both main environmental conflicts in China. Reclaimed water reuse is an important approach to lessen water pollution and solve the water shortage crisis in the city. The heath risk of reclaimed water has become the focus of the public. It is impending to evaluate the health risk of reclaimed water with risk assessment technique. Considering the ways of the reclaimed water reused, it is studied that health risk produced by toxic pollutants and pathogenic microbes in the processes of reclaimed water reused in landscape water system. The pathogenic microbes monitoring techniques in wastewater and reclaimed water are discussed and the hygienic indicators, risk assessment methods, concentration limitations of pathogenic microbes for various reclaimed water uses are studied. The principle of health risk assessment is used to research the exposure level and the health risk of concerned people in a wastewater reuse project where the reclaimed water is applied for green area irrigation in a public park in Beijing. The exposure assessment method and model of various reclaimed water uses are built combining with Beijing reclaimed water project. Firstly the daily ingesting dose and lifetime average daily dose(LADD) of exposure people are provided via field work and monitoring analysis, which could be used in health risk assessment as quantitative reference. The result shows that the main risk comes from the pathology pollutants, the toxic pollutants, the eutrophication pollutants, pathogenic microbes and the secondary pollutants when municipal wastewater is reclaimed for landscape water. The major water quality limited should include pathogenic microbes, toxic pollutants, and heavy metals. Keywords: municipal wastewater, reclaimed water, landscape water, health risk

  17. Design of aquaponics water monitoring system using Arduino microcontroller

    Science.gov (United States)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  18. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  19. Morphological structure and water status in tulip bulbs from dormancy to active growth : visualization by NMR imaging

    NARCIS (Netherlands)

    Toorn, van der A.; Zemah, H.; As, van H.; Bendel, P.; Kamenetsky, R.

    2000-01-01

    Magnetic Resonance Imaging (MRI) and light and scanning electron microscopy (SEM) were used to follow time-dependent morphological changes and changes in water status of tulip bulbs (Tulipa gesneriana L., cv. ‘Apeldoorn’) during bulb storage for 12 weeks at 20 °C (non-chilled) or 4 °C (chilled) and

  20. Internet surveillance, regulation, and chilling effects online: a comparative case study

    Directory of Open Access Journals (Sweden)

    Jonathon W. Penney

    2017-05-01

    Full Text Available With internet regulation and censorship on the rise, states increasingly engaging in online surveillance, and state cyber-policing capabilities rapidly evolving globally, concerns about regulatory “chilling effects” online—the idea that laws, regulations, or state surveillance can deter people from exercising their freedoms or engaging in legal activities on the internet have taken on greater urgency and public importance. But just as notions of “chilling effects” are not new, neither is skepticism about their legal, theoretical, and empirical basis; in fact, the concept remains largely un-interrogated with significant gaps in understanding, particularly with respect to chilling effects online. This work helps fill this void with a first-of-its-kind online survey that examines multiple dimensions of chilling effects online by comparing and analyzing responses to hypothetical scenarios involving different kinds of regulatory actions—including an anti-cyberbullying law, public/private sector surveillance, and an online regulatory scheme, based on the Digital Millennium Copyright Act (DMCA, enforced through personally received legal threats/notices. The results suggest not only the existence and significance of regulatory chilling effects online across these different scenarios but also evidence a differential impact—with personally received legal notices and government surveillance online consistently having the greatest chilling effect on people’s activities online—and certain online activities like speech, search, and personal sharing also impacted differently. The results also offer, for the first time, insights based on demographics and other similar factors about how certain people and groups may be more affected than others, including findings that younger people and women are more likely to be chilled; younger people and women are less likely to take steps to resist regulatory actions and defend themselves; and anti