WorldWideScience

Sample records for chickpea nohutta mutasyon

  1. Chickpea improvement programme

    International Nuclear Information System (INIS)

    Chickpea is an important crop grown in winter in Pakistan. Creation of genetic variability and performance of chickpea mutants in micro yield trials at Nuclear Institute of food and Agriculture (NIFA) Fasilabad, Pakistan are discussed. The mutant line gave significantly highest number of pods, grains per plant, harvest index and yield. The result revealed significant difference among different varieties for the character studies of chickpea and testing of mutants against gram blight in disease screening nurseries have been discussed. (A.B.)

  2. Ascochyta Blight of Chickpea

    OpenAIRE

    Kahraman, Ali; Ozkan, Zuhal

    2016-01-01

    Ascochyta blight (Ascochyta rabiei) which is also called as anthracnose is the most important yield increasing fungal disease in chickpea production over the world and usually depends on winter rains. Symptoms of disease usually appear around flowering and podding time as patches of blighted plants in the field. Typical circular spots appear on leaves and pods, elongated lesions on stem, and deep cankerous lesions on seeds. Present research was made to an evaluation of ascochyta blight, main ...

  3. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoy Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parent varieties were ILC-482, AK-7114 and AKCIN-91 had been used in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350 and 400 Gy for field experiments, respectively. As a result of these experiments, two promising mutant lines were chosen and given to the Seed Registration and Certification Center for official registration These two promising mutants were tested at five different locations of Turkey, in 2004 and 2005 years. After 2 years of registration experiments one of outstanding mutants was officially released as mutant chickpea variety under the name TAEK-SAGEL, in 2006. Some basic characteristics of this mutant are; earliness (95-100 day), high yield capacity (180-220 kg/da), high seed protein (22-25 %), first pot height (20-25 cm), 100 seeds weight (42-48 g), cooking time (35-40 min) and resistance to Ascochyta blight.

  4. Development of Transgenics in Chickpea.

    Science.gov (United States)

    Chickpea (Cicer arietinum L.) is an important food crop in much of the developing world and ranks third in production among food legumes. Chickpea production is limited worldwide by drought, insect damage from Helicoverpa armigera, Callosobruchus maculatus and C. chinensis and disease pressure from ...

  5. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, cheakpea is also energy source because of its high carbohydrate content. It is very rich in some vitamin and mineral basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parents varieties were ILC-482, AK-7114 and AKCIN-91 (9 % seed moisture content and germination percentage 98 %) in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350, 400, 500 ve 600 Gy for greenhouse experiments and 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy for field experiments, respectively. One thousand seeds for per treatment were sown in the field for the M1. At maturity, 3500 single plants were harvested and 20 seeds were taken from each M1 plant and planted in the following season. During plant growth

  6. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    OpenAIRE

    Aurelia Ionescu; Iuliana Aprodu; Gabriela Gurau; Iuliana Banu

    2011-01-01

    Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the stora...

  7. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.;

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P < 0.05) seedling rate...... and height and caused delay and reduction in seed emergence, quinoa was shown to be more resistant than chickpea. Dry biomass, seed yield, harvest index and crop water productivity were affected significantly (P < 0.05) by salinity where increasing salinity level led to decrease in dry biomass, root...... volume and seed yield for both quinoa and chickpea while increasing salinity resulted in increase - in the case of quinoa - and decrease - in the case of chickpea - in harvest index and crop water productivity. Na+ and Na+/K+ ratio increased with increasing irrigation water salinity, while K+ content...

  8. EFFECTIVE INCENTIVES AND CHICKPEA COMPETITIVENESS IN INDIA

    OpenAIRE

    Rao, Krishna D.; Kyle, Steven C.

    1997-01-01

    This paper attempts to measure the impact of government intervention in product and factor markets on chickpea competitiveness in India. This is done by estimating the nominal (NPC), effective (EPC) and effective subsidy (ESC) protection coefficients for chickpea and its main competing crops -wheat and mustard. Further, the Net Economic Benefit (NEB) in the production of these three crops is estimated to indicate where comparative advantage and production efficiency in production lie. In addi...

  9. Phylogenetic diversity of Mesorhizobium in chickpea

    Indian Academy of Sciences (India)

    Dong Hyun Kim; Mayank Kaashyap; Abhishek Rathore; Roma R Das; Swathi Parupalli; Hari D Upadhyaya; S Gopalakrishnan; Pooran M Gaur; Sarvjeet Singh; Jagmeet Kaur; Mohammad Yasin; Rajeev K Varshney

    2014-06-01

    Crop domestication, in general, has reduced genetic diversity in cultivated gene pool of chickpea (Cicer arietinum) as compared with wild species (C. reticulatum, C. bijugum). To explore impact of domestication on symbiosis, 10 accessions of chickpeas, including 4 accessions of C. arietinum, and 3 accessions of each of C. reticulatum and C. bijugum species, were selected and DNAs were extracted from their nodules. To distinguish chickpea symbiont, preliminary sequences analysis was attempted with 9 genes (16S rRNA, atpD, dnaJ, glnA, gyrB, nifH, nifK, nodD and recA) of which 3 genes (gyrB, nifK and nodD) were selected based on sufficient sequence diversity for further phylogenetic analysis. Phylogenetic analysis and sequence diversity for 3 genes demonstrated that sequences from C. reticulatum were more diverse. Nodule occupancy by dominant symbiont also indicated that C. reticulatum (60%) could have more various symbionts than cultivated chickpea (80%). The study demonstrated that wild chickpeas (C. reticulatum) could be used for selecting more diverse symbionts in the field conditions and it implies that chickpea domestication affected symbiosis negatively in addition to reducing genetic diversity.

  10. Below ground nitrogen in fababean and chickpea

    International Nuclear Information System (INIS)

    Isotopic and non-isotopic methods were used to quantify below ground nitrogen (BGN) for two winter legumes, fababean (Vicia faba) and chickpea (Cicer arietinum), under glasshouse and field conditions. In the glasshouse study, estimates of BGN for fababean and chickpea, respectively, were 13 and 10% of total plant N (physical recovery), 11 and 52% (soil 15N dilution), 30 and 52% (mass N balance), 39 and 53% (15N-shoot labelling), 37 and 42% (adjusted 15N shoot labelling), and 33 and 43 % (15N balance). In the field experiment, values were 25 and 77% (15N-shoot labelling), 24 and 68% (adjusted 15N shoot labelling) and 29 and 60% (15N balance). When averaged across all estimates (other than physical recovery), BGN of glasshouse-grown plants represented 31% of total plant N for fababean and 48% for chickpea. By comparison, the mean values for BGN as percent of total plant N in the field study using the two methods considered likely to give the most reliable results (adjusted 15N shoot labelling and 15N balance) were 27% for fababean and 64% for chickpea. (author)

  11. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  12. mutagenic treatments and selection in chickpea

    International Nuclear Information System (INIS)

    the present study was carried out through the three subsequent winter seasons of 1980/1981,1981/1982 and 1982/1983 at the experimental research center, faculty of agriculture , university of cairo, at giza and at the experimental farm belonging to the egyptian energy establishment, inshas. this investigation included two experiments . the first experiment was conducted to study the effect of gamma rays and Ems. on yield and yield components of four genotypes of chickpea. the second experiment was designed to study the effect of selection through the mutagenic treatments.the materials used consisted of four chickpea genotypes, three of them (i.e giza 1, Nec 1055 and Nec 1046) are kabuli type and the fourth (Family 88) is desi type

  13. Conceptual design of a chickpea harvesting header

    Directory of Open Access Journals (Sweden)

    H. Golpira

    2013-07-01

    Full Text Available Interest in the development of stripper headers is growing owing to the excessive losses of combine harvesters and costs of manually harvesting for chickpeas. The design of a new concept can enhance the mechanized process for chickpea harvesting. A modified stripper platform was designed, in which passive fingers with V-shape slots removes the pods from the anchored plant. The floating platform was accompanied by a reel to complete the harvesting header. Black-box modeling was used to redesign the functional operators of the header followed by an investigation of the system behavior. Physical models of the platform and reel were modified to determine the crucial variables of the header arrangement during field trials. The slot width was fixed at 40 mm, finger length at 40 mm, keyhole diameter at 10 mm and entrance width at 6 mm; the batted reel at peripheral diameter of 700 mm and speed at 50 rpm. A tractor-mounted experimental harvester was built to evaluate the work quality of the stripper header. The performance of the prototype was tested with respect to losses and results confirmed the efficiency of the modified stripper header for chickpea harvesting. Furthermore, the header with a 1.4 m working width produced the spot work rates of 0.42 ha h-1.

  14. Impact of Genomic Technologies on Chickpea Breeding Strategies

    Directory of Open Access Journals (Sweden)

    Rajeev K. Varshney

    2012-08-01

    Full Text Available The major abiotic and biotic stresses that adversely affect yield of chickpea (Cicer arietinum L. include drought, heat, fusarium wilt, ascochyta blight and pod borer. Excellent progress has been made in developing short-duration varieties with high resistance to fusarium wilt. The early maturity helps in escaping terminal drought and heat stresses and the adaptation of chickpea to short-season environments. Ascochyta blight continues to be a major challenge to chickpea productivity in areas where chickpea is exposed to cool and wet conditions. Limited variability for pod borer resistance has been a major bottleneck in the development of pod borer resistant cultivars. The use of genomics technologies in chickpea breeding programs has been limited, since available genomic resources were not adequate and limited polymorphism was observed in the cultivated chickpea for the available molecular markers. Remarkable progress has been made in the development of genetic and genomic resources in recent years and integration of genomic technologies in chickpea breeding has now started. Marker-assisted breeding is currently being used for improving drought tolerance and combining resistance to diseases. The integration of genomic technologies is expected to improve the precision and efficiency of chickpea breeding in the development of improved cultivars with enhanced resistance to abiotic and biotic stresses, better adaptation to existing and evolving agro-ecologies and traits preferred by farmers, industries and consumers.

  15. PLATELET AGGREGATION AND ANTI-INFLAMMATORY EFFECTS OF GARDEN PEA, DESI CHICKPEA AND KABULI CHICKPEA

    Czech Academy of Sciences Publication Activity Database

    ZIA-UL-HAQ, M.; ALI KHAN, B.; Landa, Přemysl; Kutil, Zsófia; AHMED, S.; QAYUM, M.; Ahmad, S.

    2012-01-01

    Roč. 69, č. 4 (2012), s. 707-711. ISSN 0001-6837 Institutional research plan: CEZ:AV0Z50380511 Keywords : platelet aggregation * Garden pea * Desi chickpea Subject RIV: EF - Botanics Impact factor: 0.665, year: 2012 http://home.ueb.cas.cz/publikace/2012_Haq_ACTA_POLONIAE_PHARMACEUTICA_707.pdf

  16. Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers.

    Directory of Open Access Journals (Sweden)

    Gaurav Agarwal

    Full Text Available Chickpea (Cicer arietinum L. is an important crop legume plant with high nutritional value. The transcriptomes of desi and wild chickpea have already been sequenced. In this study, we sequenced the transcriptome of kabuli chickpea, C. arietinum (genotype ICCV2, having higher commercial value, using GS-FLX Roche 454 and Illumina technologies. The assemblies of both Roche 454 and Illumina datasets were optimized using various assembly programs and parameters. The final optimized hybrid assembly generated 43,389 transcripts with an average length of 1065 bp and N50 length of 1653 bp representing 46.2 Mb of kabuli chickpea transcriptome. We identified a total of 5409 simple sequence repeats (SSRs in these transcript sequences. Among these, at least 130 and 493 SSRs were polymorphic with desi (ICC4958 and wild (PI489777 chickpea, respectively. In addition, a total of 1986 and 37,954 single nucleotide polymorphisms (SNPs were predicted in kabuli/desi and kabuli/wild genotypes, respectively. The SNP frequency was 0.043 SNP per kb for kabuli/desi and 0.821 SNP per kb for kabuli/wild, reflecting very low genetic diversity in chickpea. Further, SSRs and SNPs present in tissue-specific and transcription factor encoding transcripts have been identified. The experimental validation of a selected set of polymorphic SSRs and SNPs exhibited high intra-specific polymorphism potential between desi and kabuli chickpea, suggesting their utility in large-scale genotyping applications. The kabuli chickpea gene index assembled, and SSRs and SNPs identified in this study will serve as useful genomic resource for genetic improvement of chickpea.

  17. HOST PLANT RESISTANCE AND INSECT PEST MANAGEMENT IN CHICKPEA

    Science.gov (United States)

    Nearly 60 insect species feed on chickpea worldwide, of which cutworms (black cutworm - Agrotis ipsilon and turnip moth - Agrotis segetum), leaf feeding caterpillars (leaf caterpillar - Spodoptera exigua and hairy caterpillar - Spilarctia oblique), leaf miners (Liriomyza cicerina), aphids (Aphis cra...

  18. Thermoluminescence properties of irradiated chickpea and corn

    Science.gov (United States)

    Necmeddin Yazici, A.; Bedir, Metin; Bozkurt, Halil; Bozkurt, Hüseyin

    2008-02-01

    A study was carried out to establish a detection method for irradiated chickpea and corn by thermoluminescence (TL) method. The leguminous were packed in polyethylene bags and then the packets were irradiated at room temperature at different doses by 60Co gamma source at 1, 4, 8 and 10 kGy. Minerals extracted from the leguminous were deposited onto a clean aluminum disc and TL intensities of the minerals were measured by TL. It was observed that the extracted samples from both leguminous exhibit good TL Intensity and the TL intensity of glow curves of them increased proportionally to irradiation doses. The TL glow curve of both irradiated leguminous presents a single broad peak below 400 °C. The TL trapping parameters glow peaks were estimated by the additive dose (AD), Tm(Ea)-Tstop and computerized glow curve deconvolution (CGCD) methods. The fading characteristics of glow curves were also recorded up to 6 months.

  19. Global transcriptome analysis of developing chickpea (Cicer arietinum L. seeds

    Directory of Open Access Journals (Sweden)

    Seema ePradhan

    2014-12-01

    Full Text Available Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L. seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilised to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analysed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs, about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  20. Developmental expansion of the hilum in chickpea seed coats

    Science.gov (United States)

    Successful growth of seeds is dependent on the flow of nutrients from vegetative tissues to the developing ovule. In legumes like chickpea (Cicer arietinum L.), the pathway for this nutrient flow includes the pod wall surrounding the seeds, and ultimately the funiculus, which is the structure conne...

  1. Screening of chickpea advanced lines for sources of resistance against blight and wilt two major diseases of chickpea

    International Nuclear Information System (INIS)

    Chickpea (Cicer arietinum L.) an important food legume, ranks third in the world. In Pakistan yield of chickpea is low due to the prevalence of wilt and blight diseases - the two destructive diseases. The control measures available are not feasible and economical, except to exploit host plant resistance mechanism to identify the sources of resistance in existing chickpea germplasm. Fifty four advance chickpea genotypes were screened in blight screening nursery and wilt sick plot. Out of total 54 genotypes 23 were resistant and 16 were moderately resistant to Ascochyta blight disease. Among 23 resistant genotypes; K0058-09, K0062-09, K0066-09, D095-09, K07A005, BK05A015 and BK04A013 had disease rating mean of 3. The results of early wilt showed 19 genotypes as highly resistant and 15 as resistant. The genotypes K0070-09, BKK17106, CH 65/02 and BK04A013 were highly susceptible to wilt during early pathogen infection at seedling stage while the genotypes K0063-09, BKK17106 and BK04A013 were susceptible during late season. Resistance sources identified could be exploited directly and also may be transferred through hybridization to high yielding disease susceptible genotypes. (author)

  2. Properties and stability of deep-fat fried chickpea products

    OpenAIRE

    Bozdemir, S.; Güneṣer, O.; Yılmaz, E.

    2015-01-01

    The aims of this study were to develop new snack foods prepared from deep frying whole chickpeas and evaluating the properties and storage stability of the new products. The most remarkable results found were: moisture content (3.48–9.19%), water activity (0.1833–0.5936), hardness (3243–4056 g), L (42.01–65.79), a* (10.56–19.24), b* (30.80–42.20), free fatty acidity (0.2195–0.3467%), pero xide value (3.167–5.25 meq O2·kg−1), total phenolic (22.34–37.34 mgGA·100g−1 chickpea), antioxidant capac...

  3. Fate and effects of lindane in a chickpea field

    International Nuclear Information System (INIS)

    The effect of lindane on non-target organisms and the concentrations of its residues in soil and the chickpea crop were investigated over three years. Lindane had adverse effects on some elements of the ecosystem. Ants (Formicidae), spiders (Aranae) and beetles (Carabidae), to a lesser extent, were more affected than Collembola. Organic matter, buried in non-degradable open-mesh bags in the plots, was slightly more degraded in the control plots than in the sprayed plots suggesting that the soil microflora and microfauna had been inhibited by the lindane. However, it was shown by chemical analyses that lindane was degraded in both soils and plants to one tenth of the original concentrations after application in 2 months and 1 month, respectively. Some concentrations (0.2-1.2 mg kg-1) of lindane were found in the harvested grain of the chickpea plants. (author). 1 ref., 6 tabs

  4. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.)

    Science.gov (United States)

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea. PMID:27348121

  5. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea. PMID:27348121

  6. Phenotyping chickpeas and pigeonpeas for adaptation to drought.

    Science.gov (United States)

    Upadhyaya, H D; Kashiwagi, J; Varshney, R K; Gaur, P M; Saxena, K B; Krishnamurthy, L; Gowda, C L L; Pundir, R P S; Chaturvedi, S K; Basu, P S; Singh, I P

    2012-01-01

    The chickpea and pigeonpea are protein-rich grain legumes used for human consumption in many countries. Grain yield of these crops is low to moderate in the semi-arid tropics with large variation due to high GxE interaction. In the Indian subcontinent chickpea is grown in the post-rainy winter season on receding soil moisture, and in other countries during the cool and dry post winter or spring seasons. The pigeonpea is sown during rainy season which flowers and matures in post-rainy season. The rainy months are hot and humid with diurnal temperature varying between 25 and 35°C (maximum) and 20 and 25°C (minimum) with an erratic rainfall. The available soil water during post-rainy season is about 200-250 mm which is bare minimum to meet the normal evapotranspiration. Thus occurrence of drought is frequent and at varying degrees. To enhance productivity of these crops cultivars tolerant to drought need to be developed. ICRISAT conserves a large number of accessions of chickpea (>20,000) and pigeonpea (>15,000). However only a small proportion (crop improvement programs mainly due to non-availability of reliable information on traits of economic importance. To overcome this, core and mini core collections (10% of core, 1% of entire collection) have been developed. Using the mini core approach, trait-specific donor lines were identified for agronomic, quality, and stress related traits in both crops. Composite collections were developed both in chickpea (3000 accessions) and pigeonpea (1000 accessions), genotyped using SSR markers and genotype based reference sets of 300 accessions selected for each crop. Screening methods for different drought-tolerant traits such as early maturity (drought escape), large and deep root system, high water-use efficiency, smaller leaflets, reduced canopy temperature, carbon isotope discrimination, high leaf chlorophyll content (drought avoidance), and breeding strategies for improving drought tolerance have been discussed. PMID

  7. EFFICACY OF DIFFERENT INORGANIC MOLECULES ON WILT PATHOGEN OF CHICKPEA

    Directory of Open Access Journals (Sweden)

    S.Ranjitha Rani

    2014-11-01

    Full Text Available Chickpea (Cicer arietinum L. is one of the most important legumes grown in Asia. Though the area under this crop is more, the average yield per hectare is low because of several biotic and abiotic factors. Among them, the wilt caused by Fusarium oxysporum f.sp. ciceri is most destructive seed and soil borne disease. (Haware et al., 1986 which threatens successful cultivation of chickpea and causes severe losses in chickpea growing areas. (Grewal et al.,1974b and Singh et al.,1977. Different insecticides and herbicides were tried under in vitro, the insecticides Emamectin benzoate 5% SG, Imidachloprid 75% WP, Quinalphos 25% EC, Entrust 80% WP were used in three different concentrations. Among these highest per cent growth of inhibition of Fusarium oxysporum f.sp. ciceri was observed in Imidacloprid 0.3g (50.92% followed by Emamectin benzoate 0.05 mg (35.55%. The herbicides viz., Pendimethalin 30%EC, Imazathaphyr 10% SL, 2,4-D sodium salt 80%WP, Metsulfuron methyl 20% WG were used in three different concentrations, highest per cent growth of inhibition of Fusarium oxysporum f.sp. ciceri was observed in Pendimethalin 0.5ml (73.33%, followed by Pendimethalin 0.4ml (65.55%.

  8. Saponins from soy and chickpea: stability during beadmaking and in vitro bioaccessibility

    Science.gov (United States)

    This study investigated the stability of saponins during the making and simulated digestion of soy and soy-chickpea breads and the bioaccessibility of saponins in digested breads. Recovery of saponins in soy bread exceeded that in soy-chickpea breads, and recovery of type A and B saponins was great...

  9. Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches

    NARCIS (Netherlands)

    Huang, J.; Schols, H.A.; Soest, van J.J.G.; Jin, Z.; Sulmann, E.; Voragen, A.G.J.

    2007-01-01

    Starches from cowpea and chickpea seeds were isolated and their properties were compared with those of commercial yellow pea starch. Amylose contents were 25.8%, 27.2%, and 31.2%, and the volume mean diameter of granules, determined in the dry state, were 15.5, 17.9, and 33.8 ¿m for cowpea, chickpea

  10. Bioavailability of iron from a traditional Tunisian meal with chickpeas fed to healthy rats.

    Science.gov (United States)

    Hamdaoui, M; Doghri, T; Tritar, B

    1992-01-01

    The influence of a diet of couscous with chickpeas, a traditional Tunisian meal, or one providing iron as ferrous sulfate, on the utilization of 59Fe was evaluated in studies with rats. The iron content of the couscous and chickpea preparation was 30 mg/kg dry weight. There was no difference in the relative absorption of iron from ferrous sulfate or couscous with chickpeas, suggesting that iron from this preparation may be a good dietary source of nonheme iron for rats. Couscous and chickpeas consumption in Tunisia are estimated at 13.3 and 3.2 kg per capita/year, respectively. Our results in rats indicate that these foods could contribute a large proportion of an individual's iron requirement. We conclude that the plant foods, especially the chickpeas, can be excellent sources of dietary-available iron. PMID:1530281

  11. Effects of chickpea flour on wheat pasting properties and bread making quality.

    Science.gov (United States)

    Mohammed, I; Ahmed, Abdelrahman R; Senge, B

    2014-09-01

    Pulses (pea, chickpea, lentil, bean) are an important source of food proteins. They contain high amounts of lysine, leucine, aspartic acid, glutamic acid and arginine and provide well balanced essential amino acid profiles when consumed with cereals. The influence of partial substitution of wheat flour with chickpea flour at the levels of 10, 20 and 30 % was carried out to study their pasting properties and bread making quality. Pasting properties were determined using Micro Visco-Amylo-Graph Analyser and Farinograph. The pasting temperature increased with increase chickpea flour concentration and the temperature of pasting ranged between 62 to 66.5 °C. No peak of viscosity curve was found for pure chickpea flour and have higher pasting temperature than pure wheat flour. Chickpea flour addition increased the water absorption and dough development time (p flour in dough affected bread quality in terms of volume, internal structure and texture. The color of crust and crumb got progressively darker as the level of chickpea flour substitution increased. While the substitution of wheat flour with 10 % chickpea flour gave loaves as similar as control. PMID:25190845

  12. High Quality DNA Isolation Method for Chickpea Genotypes

    OpenAIRE

    CİNGİLLİ, Hasibe; Abdülkadir AKÇİN

    2005-01-01

    In chickpea breeding genetic studies of individual plants need to be evaluated at the DNA level using molecular markers. A simple and reliable DNA extraction method is a prerequisite. This small-scale method is cetyltrimethylammonium bromide (CTAB)-based and extracts DNA from 1 to 3 folded young leaves processed in a 1.5 ml tube with 0.5 ml of extraction buffer and homogenized using an electric drill. Compared with the micro-prep method the improved mini-prep CTAB method is highly efficient a...

  13. Organoleptic and glycemic properties of chickpea-wheat composite breads

    OpenAIRE

    Zafar, Tasleem A.; Al-Hassawi, Fatima; Al-Khulaifi, Fatima; Al-Rayyes, Ghanima; Waslien, Carol; Huffman, Fatma G.

    2013-01-01

    Prevalence of obesity and type-2-diabetes requires dietary manipulation. It was hypothesized that wheat-legume-composite breads will reduce the spike of blood glucose and increase satiety. Four pan bread samples were prepared: White bread (WB) as standard, Whole-wheat bread (WWB), WWB supplemented with chickpea flour at 25 % (25%ChB) and 35 % (35%ChB) levels. These breads were tested in healthy female subjects for acceptability and for effect on appetite, blood glucose, and physical discomfor...

  14. Genetic Improvement of Chickpea (Cicer arietinum L.) Using Induced Mutations

    International Nuclear Information System (INIS)

    The main target of chickpea breeding programmes has been to develop high yielding cultivars. In an attempt to induce genetic variability for improvement of locally popular chickpea cultivar Vijay (Phule G-81-1-1), we employed three well known mutagens, sodium azide (SA), ethyl methane sulphonate (EMS) and gamma radiation (GR). The objective was to provide genetic variability in the yield contributing traits that can be exploited for a genetic improvement of chickpea. Seeds of Chickpea cultivar Vijay were treated with three different concentrations / doses of SA (2, 3 and 4 mM), EMS (8, 12 and 16 mM) and gamma radiations (400, 500 and 600 Gy). In M1 generation no dominant mutations were observed, many different mutants were screened and isolated in M2 generation such as chlorophyll mutations (alnina, chlorina and xantha); leaf mutations (gigas, compact and curly); pod mutations (small, roundish, gigas and narrow elongated); seed mutations (green, dark brown, rough seed coat); flower mutations (white flower and open); morphological mutations (early, sterile, tall and gigas). True breeding mutant lines in M3 generation differed considerably in their quantitative traits from the parent cultivar. The early mutant lines matured 10 days earlier than the parent variety. The range in plant height was expanded from 0.02 to 14.91cm. Gigas mutant lines obtained after 400 Gy gamma irradiation were the tallest (44.44cm), with a 2-3 fold increase in pod and seed size over the control. Mutagenic treatments also caused changes in seed size and seed coat. Considerable genotypic variation was observed with regards to the number of seeds and pods per plant. Small leaf mutants showed double the number of seeds and pods per plant. As a result of mutagenic treatments, genetic variation was induced in mutants with respect to different quantitative characters. Induced mutant lines showed both positive and negative increase in the quantitative traits. Variation was also observed for crude

  15. Development of an early maturing chickpea variety, BINASOLA-3

    International Nuclear Information System (INIS)

    Chickpea has higher yield potential, more important nutrients and diversified use than all other pulse crops in Bangladesh. Nevertheless, farmers are not very interested in growing this crop because the varieties have a long maturity period, small seed size and poor seed yielding. For this reason huge amounts of chickpea seeds are imported every year in exchange for valuable foreign currency. A mutation-breeding program was undertaken at Bangladesh Institute of Nuclear Agriculture (BINA) in 1989 to develop an early maturing, large seeded and high yielding variety of chickpea. Seeds of the two exotic lines G-97 (now Binasola-2) and G-319 were treated with gamma-rays, sodium azide and a combination of the two mutagens. The following doses of gamma rays: 0, 200, 300, 400 and 500 Gy, concentrations of sodium azide: 0.4 mM, and combined doses: 200 Gy+0.4 mM, 300 Gy+0.4 mM, 400 Gy+0.4 mM and 500 Gy+0.4 mM were used. In the first year, the treated seeds were grown dose-wise and raised as M1 generation during 1989. M2 seeds were harvested from 4,542 individual M1 plants. These were grown in plant- progeny- rows in M2 generation. Eighty-seven individual M2 plants were selected, from which 16 M4 lines were further selected and put into preliminary observation trials in M4. Among them, one elite mutant L-84, which was derived from a single plant in the population of the 200 Gy gamma-ray treated G-97 was tested in M5, M6 and M7 along with other mutants and its parent. Finally the mutant was evaluated in advanced, zonal yield trials and farmers field trials in the following generations from 1995-2001 along with two selected lines and three released varieties (Hyprosola, Binasola-2 and Barisola-3). All the selected lines were grown at different agro-ecological zones in Bangladesh to observe the yield and other potentiality. Mutant performance was evaluated under two management practices i.e., Research management and Farmers' management. In the research management practices, NPK

  16. IDENTIFICATION OF PHARMACEUTICAL EXCIPIENT BEHAVIOR OF CHICKPEA (CICER ARIETINUM) STARCH IN GLICLAZIDE IMMEDIATE RELEASE TABLETS.

    Science.gov (United States)

    Meka, Venkata Srikanth; Yee, Phung; Sheshala, Ravi

    2016-01-01

    In the past few years, there are number of researchers carrying out their research on the excipients derived from polysaccharides and some of these researches show that natural excipients are comparable and can serve as an alternative to the synthetic excipients. Hence, the objectives of this research are to characterize the naturally sourced chickpea starch powder and to study the pharmaceutical excipient behavior of chickpea starch in gliclazide immediate release (IR) tablets. In this research, the binding properties of chickpea starch were compared to that of povidone, whereas the disintegrant properties of chickpea starch were compared to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Flow property of chickpea starch was assessed with the measurement of bulk density, tapped density, compressibility index and angle of repose. Calibration curve for gliclazide in phosphate buffer pH 7.4 was developed. Gliclazide IR tablets were then produced with direct compression method. Physicochemical characteristics of the tablets, including thickness, tablet weight uniformity, hardness, disintegration time and friability were evaluated. Then, in vitro dissolution studies were performed by following United States Pharmacopeia (USP) dissolution method. The dissolution results were analyzed and compared with t30, t50, dissolution efficiency (DE). Lastly, drug-excipient compatibility studies, including Fourier transform infrared (FTIR) spectroscopic analysis and differential scanning calorimetric (DSC) analysis were carried out. Fair flow property was observed in the chickpea starch powder. Furthermore, the tablets produced passed all the tests in physicochemical characteristics evaluation except hardness and disintegration test. Additionally, in vitro dissolution studies show that chickpea starch acted as a disintegrant instead of a binder in gliclazide IR tablets and its disintegrant properties were comparable to those of crospovidone, croscarmellose

  17. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    OpenAIRE

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity i...

  18. Integrating Cultivar Resistance and Seed Treatment with Planting Dates to Manage Chickpea Ascochyta Blight

    OpenAIRE

    C. Akem; S. Kabbabeh; Ahmed, S.

    2004-01-01

    The influence of chickpea (Cicer arietinum) planting date on seasonal epidemics of Ascochyta blight caused by Ascochyta rabiei (Pass.) Labrousse and on grain yield was evaluated during the 1997 and 1998 cropping seasons. Two chickpea cultivar (Ghab 1 and Ghab 3) and 2 breeding lines (FLIP 90-96 and F 88-85) were used in the field trials at 3 different locations representing the different agro ecological zones in which winter chickpea is grown in Syria and in most of the Mediterranean countrie...

  19. Organoleptic and glycemic properties of chickpea-wheat composite breads.

    Science.gov (United States)

    Zafar, Tasleem A; Al-Hassawi, Fatima; Al-Khulaifi, Fatima; Al-Rayyes, Ghanima; Waslien, Carol; Huffman, Fatma G

    2015-04-01

    Prevalence of obesity and type-2-diabetes requires dietary manipulation. It was hypothesized that wheat-legume-composite breads will reduce the spike of blood glucose and increase satiety. Four pan bread samples were prepared: White bread (WB) as standard, Whole-wheat bread (WWB), WWB supplemented with chickpea flour at 25 % (25%ChB) and 35 % (35%ChB) levels. These breads were tested in healthy female subjects for acceptability and for effect on appetite, blood glucose, and physical discomfort in digestion. The breads were rated >5.6 on a 9-point hedonic scale with WB significantly higher than all other breads. No difference in area under the curve (AUC) for appetite was found, but blood glucose AUC was reduced as follows: 35%ChB 25%ChB = WWB or 35%ChB. We conclude that addition of chickpea flour at 35 % to whole wheat produces a bread that is acceptable to eat, causing no physical discomfort and lowers the glycemic response. PMID:25829607

  20. 'CM 88' - A multiple disease resistant chickpea mutant variety

    International Nuclear Information System (INIS)

    Full text: Chickpea is the most important grain legume crop of Pakistan. Ascochyta blight (Ascochyta rabiei) and Fusarium wilt (Fusarium oxysporum F. sp cicer) are most serious diseases, having the potential to devastate a crop. A multiple disease resistant and high yielding mutant CM 88 has been developed through 100 Gy gamma irradiation treatment of variety 'C 727'. This was once a widely grown and popular variety, which lost its resistance to Ascochyta and was replaced. The selection of mutants was performed in the M2 generation grown in the Ascochyta blight nursery and sixteen mutants were selected. In the subsequent generations CM 88 proved resistant to both Ascochyta blight and Fusarium wilt, and exhibited superiority in agronomic characteristics. CM 88 was also tested for many years in the various yield trials on research stations and farmers fields throughout the country. In these trials it out yielded both the parent and standard varieties. The mutant CM 88 has been approved by the Punjab Seed Council on 27 October 1994 for general cultivation in the Punjab Province, especially the Thal area which accounts for more than 70% of the area under chickpea cultivation. (author)

  1. An Update on Genetic Resistance of Chickpea to Ascochyta Blight

    Directory of Open Access Journals (Sweden)

    Mamta Sharma

    2016-03-01

    Full Text Available Ascochyta blight (AB caused by Ascochyta rabiei (Pass. Labr. is an important and widespread disease of chickpea (Cicer arietinum L. worldwide. The disease is particularly severe under cool and humid weather conditions. Breeding for host resistance is an efficient means to combat this disease. In this paper, attempts have been made to summarize the progress made in identifying resistance sources, genetics and breeding for resistance, and genetic variation among the pathogen population. The search for resistance to AB in chickpea germplasm, breeding lines and land races using various screening methods has been updated. Importance of the genotype × environment (GE interaction in elucidating the aggressiveness among isolates from different locations and the identification of pathotypes and stable sources of resistance have also been discussed. Current and modern breeding programs for AB resistance based on crossing resistant/multiple resistant and high-yielding cultivars, stability of the breeding lines through multi-location testing and molecular marker-assisted selection method have been discussed. Gene pyramiding and the use of resistant genes present in wild relatives can be useful methods in the future. Identification of additional sources of resistance genes, good characterization of the host–pathogen system, and identification of molecular markers linked to resistance genes are suggested as the key areas for future study.

  2. Agrobacterium-mediated transformation of chickpea with -amylase inhibitor gene for insect resistance

    Indian Academy of Sciences (India)

    S Ignacimuthu; S Prakash

    2006-09-01

    Chickpea is the world’s third most important pulse crop and India produces 75% of the world’s supply. Chickpea seeds are attacked by Callosobruchus maculatus and C. chinensis which cause extensive damage. The -amylase inhibitor gene isolated from Phaseolus vulgaris seeds was introduced into chickpea cultivar K850 through Agrobacterium-mediated transformation. A total of 288 kanamycin resistant plants were regenerated. Only 0.3% of these were true transformants. Polymerase chain reaction (PCR) analysis and Southern hybridization confirmed the presence of 4.9 kb -amylase inhibitor gene in the transformed plants. Western blot confirmed the presence of -amylase inhibitor protein. The results of bioassay study revealed a significant reduction in the survival rate of bruchid weevil C. maculatus reared on transgenic chickpea seeds. All the transgenic plants exhibited a segregation ratio of 3:1.

  3. Allelic Variation within Single Podded Gene Characterized by STMS Marker in Chickpea

    Institute of Scientific and Technical Information of China (English)

    H. Ali; M.A. Haq; N. Iqbal; A. Hameed; T.M. Shah; B.M. Atta

    2007-01-01

    @@ Chickpea (Cicer arietinum L.), is an important grain legume crop throughout the world especially in developing countries. However the average yield worldwide is considered to be lower than its potential yield (Singh et al.,1994).

  4. Effect of the Chickpea (Cicer arietinum L. Flour Addition on Physicochemical Properties of Wheat Bread

    Directory of Open Access Journals (Sweden)

    Simona Man

    2015-05-01

    Full Text Available Chickpea flour is a good source of proteins, fibers, minerals and other bioactive compounds and it could be an ideal ingredient for improve the nutritional value of bread and bakery products. The aim of this study was to supplement wheat flour (WF with various levels of chickpea flour (CF in order to obtain bread with good nutritional and quality characteristics. Four experimental variants obtained by substituting wheat flour with different proportions (0%, 10%, 20%, and 30% of chickpea flour were used. The results showed a valuable increment in bread protein and fiber content. The volume of the breads decreased as the level of chickpea flour (CF increased due the dilution of gluten content in the blend and due to the interactions among fiber components, water and gluten. Nevertheless, substitution at 10%, 20% and 30%, gives parameter values at least as good as the control sample (WFB and produces acceptable bread, in terms of weight, volume and sensorial properties.

  5. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    OpenAIRE

    M. Sreevidya; Gopalakrishnan, S.; H. Kudapa; Varshney, R. K.

    2016-01-01

    Abstract The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures f...

  6. Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules

    OpenAIRE

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Prakash, Bandikinda; Sathya, Arumugam; Vijayabharathi, Rajendran

    2014-01-01

    A bacterium, isolated from nodules of chickpea grown in alluvial soils of Haryana state of India, designated as IC-76 was characterized for in vitro plant growth-promoting (PGP) properties and further evaluated under greenhouse, on-station and on-farm field conditions for PGP activity in chickpea. The isolate IC-76 produced indole acetic acid, siderophore, hydrocyanic acid, cellulase, protease, and β-1,3-glucanase. When the bacterium was evaluated individually for their PGP potential in the g...

  7. Nutritional Profile and Carbohydrate Characterization of Spray-Dried Lentil, Pea and Chickpea Ingredients

    OpenAIRE

    Susan M Tosh; Farnworth, Edward R; Yolanda Brummer; Duncan, Alison M; Wright, Amanda J; Boye, Joyce I; Michèle Marcotte; Marzouk Benali

    2013-01-01

    Although many consumers know that pulses are nutritious, long preparation times are frequently a barrier to consumption of lentils, dried peas and chickpeas. Therefore, a product has been developed which can be used as an ingredient in a wide variety of dishes without presoaking or precooking. Dried green peas, chickpeas or lentils were soaked, cooked, homogenized and spray-dried. Proximate analyses were conducted on the pulse powders and compared to an instant mashed potato product. Because ...

  8. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    OpenAIRE

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...

  9. Effect of chickpea aqueous extracts, organic extracts, and protein concentrates on cell proliferation.

    Science.gov (United States)

    Girón-Calle, Julio; Vioque, Javier; del Mar Yust, María; Pedroche, Justo; Alaiz, Manuel; Millán, Francisco

    2004-01-01

    Pulses should be part of a healthy diet, and it is also becoming clear that they have health-promoting effects. Nevertheless, most studies on the bioactive or health-promoting properties of pulses have been carried out using soybeans. We have studied cell growth-regulating properties, which may be responsible for anti-cancer properties, in chickpea seeds. Chickpea seeds are a staple in the traditional diet of many Mediterranean, Asian, and South and Central American countries. In addition, chickpea seeds have industrial applications since they can be used for the preparation of protein concentrates and isolates. The cell lines Caco-2 (epithelial intestinal) and J774 (macrophages) have been exposed to chickpea seed extracts and protein preparations in order to screen the different chickpea fractions for effects on cell growth. Both cell growth-promoting and cell growth-inhibiting effects were found. Most interestingly, a fraction soluble in ethanol and acetone specifically and almost completely inhibited the growth of Caco-2 cells exhibiting a cancerous phenotype. It is concluded that chickpea seeds are a source of bioactive components and deserve further study for their possible anti-cancer effect. PMID:15298756

  10. New Lines of Chickpea Against Fusarium Oxysporum f. sp. Ciceris Wilt

    Directory of Open Access Journals (Sweden)

    Rosa M. Arvayo-Ortiz

    2012-01-01

    Full Text Available Problem statement: In Mexico, 70 and 20% of chickpea is produced in Sinaloa and Sonora, respectively. In Sonora wilting by Fusarium Oxysporum f. sp. Ciceris (FOC causes losses of up to 60%, while in other parts of the world ranged from 12-15% annually. The aim of this study was to evaluate the resistance of new lines of chickpea obtained through breeding programs against FOC wilt. Approach: In order to evaluate the resistance of new chickpea lines: Hoga-012, Hoga-490-2 and Hoga-508, including the two most important commercial cultivars in Mexico: Blanco Sinaloa-92 and Costa-2004 and as control two cultivars: JG-62 (susceptible and WR-315 (resistant, a pathogen city test was performed with races 0 and 5 of FOC. Plants were evaluated based on leaf and root damage during 50 days, using a hedonic scale of five levels (0-4. Results: New chickpea lines as well as commercial cultivars were susceptible to races 0 and 5 of FOC. Changes (PConclusion: New lines of chickpea and commercial cultivars did not show resistance to FOC races isolated in chickpea fields of Sonora. Thus, it should be continued in the search for resistant genotypes through breeding programs to assist in controlling the disease.

  11. A high yielding, better quality chickpea mutant variety 'NIFA-95'

    International Nuclear Information System (INIS)

    Chickpea or gram (Cicer arietinum L.) is an important legume crop of Pakistan, grown on over one million hectares annually. The national average yield of the crop is very low (0.5 t/ha) and thus the country had to spent about 2 billion rupees ($ 50 million) on import of pulses. The main causes of low yield are non-availability of genetic sources for resistance to various diseases especially gram blight Ascochyta rabiei (Pass.) Lab., insect pest (Pod borer) and non-adoption of proper production technology by the farmers. This calls for earnest efforts of breeders to evolve high yielding and disease resistant varieties of chickpea for provision of quality seeds to the farming community to increase production of this important crop. Seeds of a highly blight susceptible variety '6153' were irradiated at 200 Gy dose of gamma radiation in 1985 and the promising mutant line CMN-446-4 was selected in M3 generation on the basis of disease resistance, greater number of pods and better plant type. After confirmation of its resistance to blight in M4 and M5, the mutant line was evaluated in various trials at different locations. In the advanced and zonal yield trials during 1993-95, the line CMN-446-4 produced the highest grain yield of 2,600 kg/ha as compared to the rest of the mutants and varieties. The line was also evaluated in the chickpea national uniform yield trial, conducted on over 11 locations in the country during 1993-94. In this trial, the mutant line ranked 3rd by producing an average yield of 1,528 kg/ha as compared to the two check varieties 'Punjab-91' (1,316 kg/ha) and 'Paidar-91' (1,391 kg/ha). The mutant line CMN-446-4 is moderately resistant to gram blight, highly resistant to stored pest (pulse beetle), contains 25.3% more protein as compared to the parental variety 6153 and is also better in nitrogen fixing capacity.The proposal for release of the mutant line CMN-446-4 as a new variety under the name 'NIFA-95' for general cultivation in the rainfed area

  12. Properties and stability of deep-fat fried chickpea products

    Directory of Open Access Journals (Sweden)

    Bozdemir, S.

    2015-03-01

    Full Text Available The aims of this study were to develop new snack foods prepared from deep frying whole chickpeas and evaluating the properties and storage stability of the new products. The most remarkable results found were: moisture content (3.48–9.19%, water activity (0.1833–0.5936, hardness (3243–4056 g, L (42.01–65.79, a* (10.56–19.24, b* (30.80–42.20, free fatty acidity (0.2195–0.3467%, pero xide value (3.167–5.25 meq O2·kg−1, total phenolic (22.34–37.34 mgGA·100g−1 chickpea, antioxidant capacity (6.53–31.61 mmol Trolox·100g−1 chickpea, absorbed fat (13.46–13.92%, and caloric value (453.17–488.49 kcal·100g−1 chickpea. Hexanal, 2,5-dimethylpyrazine, nonanal, benzaldehyde, p-cymene, and carvacrol were the major volatile compounds determined. The color, hardness, moisture content, water activity, free fatty acids, and peroxide value of the products were monitored for three months at room temperature. Consumer acceptance tests were conducted to reveal the changes which occurred during the storage period. All the products developed and evaluated in this study show potential in the market and industry, with the plain type being the preferred product.Los objetivos de este estudio fueron el desarrollo de nuevos aperitivos elaborados mediante fritura de garbanzos enteros y la evaluación de las propiedades y estabilidad de los nuevos productos durante el almacenamiento. Los resultados mas destacados fueron: contenido de humedad (3,48–9,19%, actividad de agua (0,1833–0,5936, dureza (3243–4056 g, L (42,01 a 65,79, a* (10.56–19,24, b* (30,80–42,20, ácidos grasos libres (0,2195–0,3467%, índice de peróxido (3,167 a 5,25 meq O2·kg −1, fenoles total (22,34–37,34 mgGA·100g−1 garbanzo, capacidad antioxidante (6.53– 31.61 mmol Trolox·100 g−1 garbanzos, grasa absorbida (13,46–13,92%, y el valor calórico (453,17 a 488,49 kcal·100 g−1 de garbanzos. Además, los componentes volátiles más importantes

  13. Identification of resistant sources in chickpea against fusarium wilt

    International Nuclear Information System (INIS)

    Wilt caused by Fusarium oxysporum Schlechtend.Fr. f. sp. ciceris is a devastating disease of chickpea in Pakistan. In the present study 321 genotypes from different sources were evaluated under controlled condition to identify genetic sources of resistance against this disease at seedling and reproductive stage. Disease reaction at two stages revealed considerable variation among the genotypes. At seedling stage disease incidence varied from 0 to 29.3% whereas at reproductive stage ranged from 0 to 57%. At seedling stage 173 genotypes were resistant, 54 were tolerant and 94 were susceptible, whereas at reproductive stage, 102 genotypes were resistant, 36 were tolerant and 183 were susceptible. Eighty two genotypes showed steady resistance at both stages. These genotypes may be exploited for the development of resistant cultivars against wilt. (author

  14. Chefe (ICCV 92318 - a new kabuli chickpea variety for Ethiopia

    Directory of Open Access Journals (Sweden)

    Ketema Daba

    2005-12-01

    Full Text Available ICCV 92318, a new kabuli chickpea cultivar developed from (ICCV 2 x Surutato x ICC 7344, was selected for multilocation evaluation along with the controls DZ 10-4 (local cultivar and Arerti (standard cultivar. The trials were conducted at 7 locations in Patancheru, Andhra Pradesh, India, during 1999/2000 and 2000/01 and at 4 locations during 2001/02. The overall average yield of ICCV 92318 was 2546 kg/ha against 2864 kg/ha for Arerti and 2093 kg/ha for DZ 10-4. Although ICCV 92318 was not superior to Arerti in yield, it was selected for release primarily because of its attractive and larger (35 g per 100-seed weight seeds compared to Arerti (26 g per 100-seed weight, and high resistance to Fusarium wilt (Fusarium oxysporum f.sp. ciceris. It was released as cv. Chefe in 2004.

  15. Suppression of seed rot and preemergence of chickpea by seed treatments with fluorescent pseudomonads in Iran.

    Science.gov (United States)

    Ahmadzadeh, M; Sharifi-Tehrani, A

    2006-01-01

    Species of Pythium isolated from rotted chickpea seeds and damped-off seedlings and chickpea soils at experimental field of Agriculture faculty of Tehran University in Karaj area that caused seed rot and preemergence damping-off of chickpea were Pyhium ultimum var. ultimum. One of the most important of soilborne fungal pathogens of the chickpea in Iran is seed rot and preemergence damping-off caused by Pythium ultimum Trow. Consequently, growers can expect as much as > 80% reduction in stand and yield if measures are not taken to control Pythium. Currently, most commercial seeds of chickpea are treated with pesticides. Fluorescent pseudomonads applied to seed are known to reduce soilborne diseases of chickpea caused by Pythium spp. In this study rotted chickpea seeds and diseased seedlings and soil samples were collected from experimental field in Karaj. Soils and roots used as sources of bacteria were collected from field. Fluorescent pseudomonads were isolated by plating samples on S1 and King's Medium B (KMB). Bacteria were preserved in 0.1 M MgSO4 for long-term storage; and NAG (containing 2% glucose) slants and plates at 4 degrees C short-term storage. Of 20 fluorescent pseudomonads isolated on S1 medium, 2 isolates selected for next tests. All strains significantly increased emergence as compared to the infested control in greenhouse trial; isolate Pf-4 consistently provided the best protection against Pythium. Seedling emergence from all bacteria seed treatments was statistically lower than the chemical treatments. All strains significantly increased fresh weight of chickpea as compared to the infested control in greenhouse trial. Seed treatment with metalaxyl were statistically better than captan in sterilized soil. In nonsterilized soil collected from the field artificially infested with P. ultimum, all strains significantly increased fresh weight of chickpea as compared to the infested control in greenhouse trial. Seedling emergence from seed treatment

  16. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    Science.gov (United States)

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  17. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea

    Directory of Open Access Journals (Sweden)

    Parvaiz eAhmad

    2016-03-01

    Full Text Available This work was designed to evaluate whether external application of nitric oxide (NO in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L. plants. SNAP (50 μM was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl. Salt stress negatively affected growth and biomass yield, leaf relative water content (LRWC and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars, hydrogen peroxide (H2O2 and malondialdehyde (MDA, as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and glutathione reductase (GR in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt-induced oxidative damage by enhancing the biosynthesis of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system.

  18. Nitrogen fixation by U.S. and Middle Eastern chickpeas with commercial and wild Middle Eastern inocula

    Science.gov (United States)

    Chickpeas (Cicer arietinum L.) are native to the Middle East (ME), and must be inoculated with symbiotic bacteria in order to fix nitrogen (N) in North American soils. Commercial inocula for chickpea contain several strains of the known N-fixing symbiont Mesorhizobium ciceri. It is not known whethe...

  19. Ascochyta blight of chickpea reduced 38% by application of Aureobasidium pullulans (anamorphic Dothioraceae, Dothideales) to post harvest debris.

    Science.gov (United States)

    In 2004-2005, early winter application of suspensions of Aureobasidium pullulans (AuP) conidia to post-harvest chickpea debris resulted in significantly fewer spring-time Ascochyta blight lesions on chickpea test plants relative to controls. Survival of plants adjacent to treated debris was higher t...

  20. Gamma rays induced bold seeded high yielding mutant in chickpea

    International Nuclear Information System (INIS)

    In pulses especially in chickpea (Cicer arietinum L.), genetic variability has been exhausted due to natural selection and hence conventional breeding methods are not very fruitful. Mutation techniques are the best methods to enlarge the genetically conditioned variability of a species within a short time and have played a significant role in the development of many crop varieties. Investigations on the effects of ionizing radiations and chemical mutagens in induction of macro-mutations have received much attention owing to their utmost importance in plant breeding. The present study reports a bold seeded mutant in chickpea, the most dominating pulse crop on the Indian subcontinent. Fresh seeds of chickpea variety 'Pusa-212' were procured from IARI, New Delhi and treated with different doses/concentrations of gamma rays (60Co source at NBRI, Lucknow) and ethyl methanesulphonate (EMS), individually as well as in combination, to raise the M1 generation. Seeds of M1 plants were sown to raise M2 plant progenies. A bold seeded mutant was isolated from 400 Gy gamma ray treatments. The mutant was confirmed as true bred, all the mutant seeds gave rise to morphologically similar plants in M3, which were quite distinct from the control. The bold seeded mutant showed 'gigas' characteristics and vigorous growth. The plant remained initially straight but later on attained a trailing habit due to heavy secondary branching. The leaves, petioles, flowers, pods and seeds were almost double that of the parent variety, in size. The flowering occurred 10 days later than the parent and maturity was also delayed accordingly. Observations were recorded on various quantitative traits. Plant height and number of primary branches showed a significant improvement over the parent. It is interesting to note that the number of pods and number of seeds per pod significantly decreased. However, the hundred seed weight (31.73±0.59g) in the mutant plants was more than double in the parent variety

  1. COMPARATIVE EVALUATION OF THE NUTRITIVE VALUE OF DIFFERENT VARIETIES OF PEA AND CHICKPEA GRAIN IN DROUGHT CONDITIONS

    Directory of Open Access Journals (Sweden)

    Коnоnеnко S. I.

    2015-03-01

    Full Text Available The article presents materials on comparative study of the nutritional value of chickpeas and peas which are widespread in the arid zone of the Southern Urals. The scheme of the scientific and economic experiments involved the assessment of yield formation of chickpeas and peas during the vegetation. The study showed that different varieties of chickpea and pea have considerable difference in the content of nutrients. The amount of crude protein in the pea grain ranged from 25.1 to 26.8%, and chickpea – 21.7 - 22.9%. With regard to the fat, its highest concentration was in chickpea grain - 3.63%, on average, which is 1.16% higher than on average in the pea grain. The chemical composition of the pea and chickpea grain of different varieties points to differences in their composition and homogeneity within the culture. Basing on the study, we recommend to sow chickpea and pea grain in the middle of May to obtain the highest yield, this, in turn, has a positive effect on the nutritional value of the crops. When selecting plants for cultivation in the conditions of the Southern Urals, it is preferable to choose the variety of Madonna pea, which has a higher potential for yield than the chickpea variety Krasnokutsky-123. It has been experimentally found that chickpea grain has better moisture-retaining power in a bound condition during the vegetation period as compared to the relevant characteristics of pea grain, which is a positive drought-resistant value of crop. In structural elements of the harvest the peas showed the trend of the highest rates in comparison with the corresponding elements in chickpeas

  2. MANAGEMENT OF ROOT ROT DISEASE [MACROPHOMINA PHASEOLINA (TASSI. GOID] OF CHICKPEA THROUGH BOTANICALS AND OIL CAKES

    Directory of Open Access Journals (Sweden)

    S. S. KANSARA

    2013-01-01

    Full Text Available Occurrence of root rot disease in chickpea has become a major constraint for cultivation of chickpea. Consideringthe fact, below investigation was carried out for this pathological problem. The efficacy of various botanicals andoil cakes were evaluated against Macrophomina phaseolina (Tassi. Goid causing dry root rot of chickpea. Thephyto extracts of thirteen plant species were evaluated in vitro by poisoned food technique against M. phaseolina.The extract of garlic cloves (Allium sativum L. was proved excellent with maximum inhibiting (73 % mycelialgrowth and sclerotial formation followed by rhizome extract of turmeric (Curcuma longa L (63.98 %. The fourorganic extracts were tested against M. phaseolina by poisoned food technique in vitro. Significantly least growthof mycelium and maximum mycelium inhibition was recorded in extracts of neem cake (59.40 % followed byfarm yard manure (42.56 %. Next best in order of merit were castor cake and mustard cake.

  3. UHT PROCESSED CHICKPEA LIQUID MEAL: A NOVEL CONCEPT OF A CONVENIENT LIQUID FOOD

    Directory of Open Access Journals (Sweden)

    Robert W. Hosken

    2002-04-01

    Full Text Available Chickpea liquid meal (CLM is a new concept of a convenient liquid food. It is a complex colloidal system, which is composed of dehulled chickpea flour as the major ingredient and with the addition of other ingredients (protein, fat, sucrose, dried glucose syrup, maltodextrin, vitamins, minerals, etc. The product is expected to have a balanced nutritional composition; acceptable flavor, taste and thickness; homogenous and smooth texture; stable colloid; and can be stored for a long of period (commercially sterile. This paper presents an overview of the literature information on the production, nutritional quality and functional properties of the chickpea, and the technology of liquid meal, which is applicable to CLM. It also outlines possible problems that influence consumer acceptability of the product. Some preliminary results of our study are also reported.

  4. Evaluation of advanced chickpea genotypes for resistance to pod borer, helicoverpa armigera (hubner) (lepidoptera: noctuidae)

    International Nuclear Information System (INIS)

    Field studies were conducted to evaluate the comparative varietal resistance in thirteen advanced desi chickpea genotypes against chickpea pod borer (CPB), Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) during 2007-2008. Weekly observations showed that mean larval population of CPB in different genotypes ranged from 0.33 to 4.33 per meter row from first week of March to third week of April, where the pod damage varied from 7.4 to 14.2%. The results manifest that among the tested genotypes, B 8/02, showed the maximum resistant to CPB along with B 8/03, CH 4/02 and CH 9/02 with highest resistant to CPB, less larval population per plant, minimum pod damage and highest grain yield with increase of 256.8 to 285.7% with respect to check. Therefore, conclude that these genotypes can be used in crossing/evolving new elite chickpea varieties. (author)

  5. Expansion in chickpea (Cicer arietinum L.) seed during soaking and cooking

    Science.gov (United States)

    Sayar, Sedat; Turhan, Mahir; Köksel, Hamit

    2016-01-01

    The linear and volumetric expansion of chickpea seeds during water absorption at 20, 30, 50, 70, 85 and 100°C was studied. Length, width and thickness of chickpea seeds linearly increased with the increase in moisture content at all temperatures studied, where the greatest increase was found in length. Two different mathematical approaches were used for the determination of the expansion coefficients. The plots of the both linear and volumetric expansion coefficients versus temperature exhibited two linear lines, the first one was through 20, 30 and 50ºC and the second one was trough 70, 85 and 100ºC. The crossing point (58ºC) of these lines was very close to the gelatinisation temperature (60ºC) of chickpea starch.

  6. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singh

    2016-01-01

    Full Text Available Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE across a broad range 3.0–10.0 immobilized pH gradient (IPG strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.

  7. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry.

    Science.gov (United States)

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0-10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana. PMID:27144024

  8. Effects of moisture content and number of loadings on force relaxation behaviour of chickpea kernels

    Directory of Open Access Journals (Sweden)

    D.D. Mann

    2005-12-01

    Full Text Available Basic rheological property (force relaxation of a single kernel of chickpea under uni-axial compression was studied. Information on the force relaxation behaviour of chickpea kernels is not available. Meanwhile, no papers was found to study the effects of number of loadings on stress relaxation behaviour of grains and fruits. In this study the effects of moisture content and number of loadings were studied on force relaxation behaviour of chickpea kernels. The results showed that the chickpea kernels had a time dependent behaviour similar to other viscoelastic materials. The three-term Maxwell model with a maximum relative difference (MRD of 5% and R2 higher than 0.997 was chosen as the best fit equation to the relaxation data. Moisture content had a decreasing effect on the first term of the three-term Maxwell model (F1, t1, but the number of loadings had an increasing effect on the first term of the Maxwell model. For all moisture contents and number of loadings, the grain tissue dissipates a major proportion of the initially applied force at a relatively slow rate. As the number of loading increases, the kernel becomes more elastic. Consequently, more force was required to maintain a certain deformation level. A master curve was proposed to determine the force relaxation behaviour of the chickpea kernels at moisture contents between 6.7 and 18% for 1 to 9 cycles of loadings. The Peleg and Pollak model was unsatisfactory for representing the relaxation force for chickpea kernels.

  9. The Effect of Salinity Stress on Germination of Chickpea (Cicer arietinum L. Land Race of Tigray

    Directory of Open Access Journals (Sweden)

    Tsegazeabe H. Haileselasie

    2012-09-01

    Full Text Available Salinity is one of the major stresses especially in arid and semiarid regions, which severely limit crop production. It impairs seed germination, reduces nodule formation, retards plant development and reduce crop yield. Salinity affects germination and physiology of crops due to osmotic potential which prevents water up take and by toxic effect of ions on embryo viability. This study was conducted to assess the effect of salinity on germination of chickpea (Cicer arietinum L. in the laboratory of Mekelle University by using NaCl and Na2So4 to simulate salinity and tape water as control group. The seeds of chickpea (Cicer arietinum landraces were collected from Hagereselam and Samre. Then 10 seeds of chickpea from both sites were treated in each salt concentration in 3 replications designed by using complete random block design. The result of the experiment showed that the concentrations of salt have a negative impact on the germination and growth of chickpea, as a result when the concentration of salt increases, the germination, water uptake and length of root and shoot decreases. Furthermore we found that different salinity simulated having different impacts on germination. Our result clearly indicated that NaCl highly affects germination and growth of chickpea than Na2SO4. Meanwhile, the effect of salinity for both land race have significance difference in parameters of water up take, % of germination, length of root and shoot (t-test n = 25 p<0.05. Our result further indicated that there is a difference in sanity tolerance level between the 2 land races of chickpea.

  10. Biofortification of iron in chickpea by plant growth promoting rhizobacteria

    International Nuclear Information System (INIS)

    Iron deficiency is a major nutritional disorder being responsible to affect millions of people around the globe. Its malnutrition may be reduced through biofortification: a process to produce micronutrient enriched staple food. Plant growth promoting rhizobacteria (PGPR) can fortify iron content within edible plant tissues by enhancing its availability through various mechanisms. In a pot study, five bacterial isolates (S1, S2, S3, S4 and S5) were tested for improving plant growth and bioavailable iron (Fe) content in chickpea where Fe was applied in the form of iron sulphate solution. Results showed that inoculation with PGPR significantly enhanced the plant height, root length, root fresh and dry weights, shoot fresh and dry weights and Fe content compared to un-inoculated control plants. Application of FeSO/sub 4/ significantly improved the Fe content upto 100 and 173% in grain and shoot respectively, as compared to control. Application of PGPR along with iron showed 81 and 75% increase in grain and shoot iron contents, respectively, over control. These results suggested that PGPR can help plants to uptake extra Fe from soil, if soil is supplemented with additional Fe. These findings advocate that microbial assisted biofortification in grain can alleviate micronutrient deficiency in humans especially in resource limited countries. (author)

  11. Varietal differences in photosynthesis and productivity of chickpea

    International Nuclear Information System (INIS)

    In 12 genotypes of chickpea (Cicer arietinum Linn.) there was considerable variability in the activity of RuDPC, and PEPC, and in the net photosynthetic rate, photorespiration, leaf area index (LAI), biological yield, sink components and seed yield, with little diversity in CO2-compensation point. The net photosynthetic rate did not have significant correlations with RuDPC or PEPC activity and photorespiration, but it was correlated positively with PEPC activity at flowering and negatively with photorespiration at flower-bud initiation. Assimilate production seemed to determine seed yield, as high photosynthetic rate at the stage of flower-bud initiation increased pods/plant. The net photosynthesis during grain development and the LAI at the full-bloom stage determined the differences in biological yield, which was positively correlated with 1,000 seed weight. Seed number/pod, however, was not related to assimilate production. 14CO2 was used in the study to estimate the rate of photosynthesis. (auth.)

  12. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)

    OpenAIRE

    Rajeev K. Varshney; Thudi, Mahendar; Nayak, Spurthi N.; Gaur, Pooran M.; Kashiwagi, Junichi; Krishnamurthy, Lakshmanan; Jaganathan, Deepa; Koppolu, Jahnavi; Bohra, Abhishek; Tripathi, Shailesh; Rathore, Abhishek; Aravind K. Jukanti; Jayalakshmi, Veera; Vemula, Anilkumar; Singh, S. J.

    2013-01-01

    Key message Analysis of phenotypic data for 20 drought tolerance traits in 1–7 seasons at 1–5 locations together with genetic mapping data for two mapping populations provided 9 QTL clusters of which one present on CaLG04 has a high potential to enhance drought tolerance in chickpea improvement. Abstract Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in the arid and semi-arid regions of the world. Drought is one of the major constra...

  13. Stability Analysis of some Winter Sown Chickpea Cultivars in East Mediterranean Region

    OpenAIRE

    ÖZDEMİR, Saim

    1998-01-01

    In this experiment, yield stabilty of 10 winter growth chickpea genotypes were investigated in Adana, Kahramanmaraş and Hatay Yayladağ. Experiments were located Çukurova University, Agricultural Faculty, Crop Science Department Experimental area in Adana, and farmers field in Kahramanmaraş and Hatay-Yayladağ. Chickpea variety that newly registered for winter crop ILC 482 (Güney Sarısı)), ILC-195, FLIP 85-14C (Menemen 92), FLIP 85-135C( Taşova 89) and promissing line FLIP 84-17C, FLIP 85-4C, F...

  14. Assessment of the estrogenic activities of chickpea (Cicer arietinum L) sprout isoflavone extract in ovariectomized rats

    OpenAIRE

    Ma, Hai-rong; Wang, Jie; Qi, Hong-xue; Gao, Yan-hua; Pang, Li-Juan; Yang, Yi(Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan, ROC); Wang, Zhen-Hua; Duan, Ming-jun; Chen, Hua; Cao, Xu; Aisa, Haji Akber

    2013-01-01

    Aim: Chickpea (Cicer arietinum L) is a traditional Uighur herb. In this study we investigated the estrogenic activities of the isoflavones extracted from chickpea sprouts (ICS) in ovariectomized rats. Methods: Ten-week-old virgin Sprague-Dawley female rats were ovariectomized (OVX). The rats were administered via intragastric gavage 3 different doses of ICS (20, 50, or 100 mg·kg−1·d−1) for 5 weeks. Their uterine weight and serum levels of 17β-estradiol (E2), follicle stimulating hormone (FSH)...

  15. Saponins from Soy and Chickpea: Stability during Beadmaking and in Vitro Bioaccessibility

    OpenAIRE

    Serventi, Luca; Chitchumroonchokchai, Chureeporn; RIEDL, KEN M.; Kerem, Zohar; Berhow, Mark A.; Vodovotz, Yael; Schwartz, Steven J.; Failla, Mark L.

    2013-01-01

    This study investigated the stability of saponins during the making and simulated digestion of soy and soy–chickpea breads and the bioaccessibility of saponins in digested breads. Recovery of saponins in soy bread exceeded that in soy–chickpea breads, and recovery of type A and B saponins was greater than for type E and DDMP saponins. Simulated digestion of breads resulted in greater relative losses of type A and DDMP saponins than type B and E saponins due in part to conversion of DDMP. Bioa...

  16. Weed species in chickpea in Southeast Anatolian Region and their distribution and densities.

    OpenAIRE

    Demir, A.; TEPE, I.; Erman, M

    2008-01-01

    This study was carried out to identify some important weeds in chickpea growing areas in Adıyaman, Diyarbakır, Mardin and Şanlıurfa provinces where chickpea is one of the most important agricultural crop in 2000. For this aim, a survey was performed in these provinces. According to survey results, 30 species belong to 3 different families in Monocotyledons and 125 species belong to 30 different in Dicotyledons, totally 155 species were identified. 91 species in Adıyaman, 123 species in...

  17. Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor.

    Science.gov (United States)

    Varma Penmetsa, R; Carrasquilla-Garcia, Noelia; Bergmann, Emily M; Vance, Lisa; Castro, Brenna; Kassa, Mulualem T; Sarma, Birinchi K; Datta, Subhojit; Farmer, Andrew D; Baek, Jong-Min; Coyne, Clarice J; Varshney, Rajeev K; von Wettberg, Eric J B; Cook, Douglas R

    2016-09-01

    Chickpea (Cicer arietinum) is among the founder crops domesticated in the Fertile Crescent. One of two major forms of chickpea, the so-called kabuli type, has white flowers and light-colored seed coats, properties not known to exist in the wild progenitor. The origin of the kabuli form has been enigmatic. We genotyped a collection of wild and cultivated chickpea genotypes with 538 single nucleotide polymorphisms (SNPs) and examined patterns of molecular diversity relative to geographical sources and market types. In addition, we examined sequence and expression variation in candidate anthocyanin biosynthetic pathway genes. A reduction in genetic diversity and extensive genetic admixture distinguish cultivated chickpea from its wild progenitor species. Among germplasm, the kabuli form is polyphyletic. We identified a basic helix-loop-helix (bHLH) transcription factor at chickpea's B locus that conditions flower and seed colors, orthologous to Mendel's A gene of garden pea, whose loss of function is associated invariantly with the kabuli type of chickpea. From the polyphyletic distribution of the kabuli form in germplasm, an absence of nested variation within the bHLH gene and invariant association of loss of function of bHLH among the kabuli type, we conclude that the kabuli form arose multiple times during the phase of phenotypic diversification after initial domestication of cultivated chickpea. PMID:27193699

  18. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.)

    Science.gov (United States)

    Satheesh, Viswanathan; Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tejkumar; Kumar, Vajinder; Jain, Pradeep K.; Chinnusamy, Viswanathan; Bhat, Shripad R.; Srinivasan, R.

    2016-01-01

    Steroidogenic acute regulatory related transfer (StART) proteins that are involved in transport of lipid molecules, play a myriad of functions in insects, mammals and plants. These proteins consist of a modular START domain of approximately 200 amino acids which binds and transfers the lipids. In the present study we have performed a genome-wide search for all START domain proteins in chickpea. The search identified 36 chickpea genes belonging to the START domain family. Through a phylogenetic tree reconstructed with Arabidopsis, rice, chickpea, and soybean START proteins, we were able to identify four transmembrane START (TM-START) proteins in chickpea. These four proteins are homologous to the highly conserved mammalian phosphatidylcholine transfer proteins. Multiple sequence alignment of all the transmembrane containing START proteins from Arabidopsis, rice, chickpea, and soybean revealed that the amino acid residues to which phosphatidylcholine binds in mammals, is also conserved in all these plant species, implying an important functional role and a very similar mode of action of all these proteins across dicots and monocots. This study characterizes a few of the not so well studied transmembrane START superfamily genes that may be involved in stress signaling. Expression analysis in various tissues showed that these genes are predominantly expressed in flowers and roots of chickpea. Three of the chickpea TM-START genes showed induced expression in response to drought, salt, wound and heat stress, suggesting their role in stress response. PMID:26445326

  19. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase.

    Science.gov (United States)

    Ercan, Pınar; El, Sedef Nehir

    2016-08-15

    The total saponin content and its in vitro bioaccessibilities in Tribulus terrestris and chickpea were determined by a static in vitro digestion method (COST FA1005 Action INFOGEST). Also, in vitro inhibitory effects of the chosen food samples on lipid and starch digestive enzymes were determined by evaluating the lipase, α-amylase and α-glucosidase activities. The tested T. terrestris and chickpea showed inhibitory activity against α-glucosidase (IC50 6967 ± 343 and 2885 ± 85.4 μg/ml, respectively) and α-amylase (IC50 343 ± 26.2 and 167 ± 6.12 μg/ml, respectively). The inhibitory activities of T. terrestris and chickpea against lipase were 15.3 ± 2.03 and 9.74 ± 1.09 μg/ml, respectively. The present study provides the first evidence that these food samples (T. terrestris, chickpea) are potent inhibitors of key enzymes in digestion of carbohydrates and lipids in vitro. PMID:27006227

  20. Variation in the Agronomic and Morphological Traits of Iranian Chickpea Accessions

    Institute of Scientific and Technical Information of China (English)

    Mohammad Reza NAGHAVI; Mohammad Reza JAHANSOUZ

    2005-01-01

    Landraces of chickpea (Cicer arietinum L.) in Iran have not been adequately characterized for their agronomic and morphological traits. Such characterization would be helpful in the development of improved cultivars, so in this study 362 chickpea accessions, collected from the major chickpea growing areas of Iran, were evaluated to determine their phenotypic diversity. High coefficients of variation (CVs)were recorded in pods/branch, seeds/pod, yield/plant, seeds/plant, pods/plant and branches/plant. Using principal component (PC) analysis, the first four PCs with eigenvalues more than 1 contributed 84.10% of the variability among accessions, whereas PC5 to PC10 were less than unity. PC1 was positively related to days to first maturity, days to 50% flowering and days to 50% maturity. The characters with the greatest weight on PC2 were seeds/plant and yield/plant, whereas PC3 was mainly related to pods/plant, seeds/pod and 100-seed weight, and PC4 was positively related to pods/branch and negatively to branches/plant. The germplasm was grouped into four clusters using cluster analysis. Each cluster had some specific characteristics of its own and the cluster I was clearly separated from clusters Ⅱ, Ⅲ and Ⅳ. These accessions are an important resource for the establishment of a core collection of chickpeas in the world.

  1. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Kumar, Manoj; Mishra, Sankalp; Dixit, Vijaykant; Kumar, Manoj; Agarwal, Lalit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    Two plant growth promoting rhizobacteria (PGPR) Pseudomonas putida NBRIRA and Bacillus amyloliquefaciens NBRISN13 with ability to tolerate abiotic stress along with multiple PGP traits like ACC deaminase activity, minerals solubilisation, hormones production, biofilm formation, siderophore activity were evaluated for their synergistic effect to ameliorate drought stress in chickpea. Earlier we have reported both the strains individually for their PGP attributes and stress amelioration in host plants. The present study explains in detail the possibilities and benefits of utilizing these 2 PGPR in consortium for improving the chickpea growth under control and drought stressed condition. In vitro results clearly demonstrate that both the PGPR strains are compatible to each other and their synergistic growth enhances the PGP attributes. Greenhouse experiments were conducted to evaluate the effect of inoculation of both strains individually and consortia in drought tolerant and sensitive cultivars (BG362 and P1003). The growth parameters were observed significantly higher in consortium as compared to individual PGPR. Colonization of both PGPR in chickpea rhizosphere has been visualized by using gfp labeling. Apart from growth parameters, defense enzymes, soil enzymes and microbial diversity were significantly modulated in individually PGPR and in consortia inoculated plants. Negative effects of drought stress has been ameliorated and apparently seen by higher biomass and reversal of stress indicators in chickpea cultivars treated with PGPR individually or in consortia. Findings from the present study demonstrate that synergistic application has better potential to improve plant growth promotion under drought stress conditions. PMID:26362119

  2. Nutritional and chemical alteration of raw, irradiated and cooked chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    The work objective was analyzing the centesimal and mineral composition to verifying the alterations on the nutritional characteristics caused by the cooking process. Also were carried out analysis of the iron availability in vitro, protein digestibility in vitro and the profile of amino acids in the raw and cooked in the control and irradiated seeds (doses of 2 kGy, 4 kGy, 6 kGy, 8 kGy and 10 kGy). The results of the mineral analysis showed that only phosphorus decrease with cooking process and it decreased ash and carbohydrates available. In the control and in the doses of 4 kGy and 6 kGy the cooking has not influenced the digestibility of the protein, but the treatments that received radiation doses of 2 kGy, 8 kGy and 10 kGy were influenced. The cooked chickpea has shown better digestibility in higher doses of radiation although the treatments have shown low digestibility. The raw chickpea presented a better dialysis of iron in the control and in the doses 2 kGy and 4 kGy and the cooked chickpea presented improvement according to the increase of radiation doses. In relation to the essential amino acids, the chickpea has presented an adequate nutritional value, except for the methionine. (author)

  3. Biological control of chickpea wilt caused by fusarium oxysporum f.sp.ciceris

    International Nuclear Information System (INIS)

    This study was conducted in an attempt to control chickpea (Cicer arietinum L.) wilt, caused by fusarium oxysporum f.sp. ciceris, using antagonistic properties of soil microorganisms. It also aimed at avoiding problems resulting from the use of chemical fungicides. A trichoderma sp. was isolated from the rhizosphere of a resistant chickpea variety (ICCV-2) and a bacillus sp. from the rhizosphere and rhizoplane of the same variety. Both microorganisms proved to be effective in controlling the disease. In addition, trichoderma harzianum, which was obtained from Giza Research Station in Egypt, was also antagonistic to fusarium oxysporum f. sp. ciceris Wilt incidence was significantly reduced when chickpea was grown in posts containing soil mixed with any of the three antagonists or when chickpea seeds were initially treated with the seed-dressing fungicide vincit at 2 ml/kg seeds. Trichoderma harzianum proved to be the best bioagent as it gave the lowest disease incidence. In the field, the two trichoderma spp. were as effective as vincit in causing reduction in the wilt incidence. At the higher concentration of 140 g/m''2, the two antagonists were effective throughout the growth period, but they were less effective at the lower concentration of 70 g/m''2 particularly at the seedling stage.(Author)

  4. Determining nutrients degradation kinetics of chickpea (Cicer arietinum straw using nylon bag technique in sheep

    Directory of Open Access Journals (Sweden)

    A. Mirzaei-Aghsaghali

    2012-05-01

    Full Text Available Straw a by-product from grain legume crops is produced in large quantities in Iran. Straw is constant component of ruminant diets on small holder farms; however, there is little information about its nutritive value. Accordingly experiment was conducted to determine the chemical composition and ruminal organic matter (OM and crude protein (CP degradability of chickpea straw using nylon bags (in situ technique. Replicated samples were incubated at 0, 2, 4, 8, 12, 24, 48 and 72 hours in three rumen canulated Ghezel rams with 50±3 kg body weight. Dry matter (DM, CP, ether extract (EE, OM, crude fiber (CF and nitrogen free extract (NFE content of chickpea straws were 92.2, 6.1, 5.5, 92.0, 34.3 and 46.2%, respectively. The soluble fraction (a of the OM and CP of chickpea straw was 17.5 and 40.8% and potential degradability (a+b of OM and CP was 56.7 and 72.0%, respectively. Effective degradability at different passage rates (2, 5 and 8% per hours for OM was 51.0 44.9 and 40.7% and for CP were 68.4, 64.3 and 61.3%, respectively. In conclusion, based on chemical composition and degradation characteristics, chickpea straw could have moderate nutritive value for ruminants.

  5. The Improvement of TAEK-Sagel Chickpea (Cicer arietinum L.) Mutant Variety in Turkey

    International Nuclear Information System (INIS)

    This research is aimed to improve chickpea varieties that are well-adapted to chickpea growing areas, resistant to cold, suitable to machinery harvest type, exhibit high yield and high protein content, bigger seed size, resistance to antracnose and other diseases and pests, and improved quality characteristics. This chickpea breeding project was started with ILC 482, Akcin-91 and AK 71114 parental varieties and eight different gamma radiation dose rates between 50-400Gy were used. After following mutation breeding steps, location experiments started for testing yield and quality characteristics in 2004. According to the results of these experiments two outstanding mutant lines were given for registration. One of them was registrated TAEK Sagel in 2006. In this paper, the yield and quality characteristics of 'TAEK-Sagel' mutant chickpea variety are discussed. It was found that this mutant has 186 kg/da average yield with 23% seed protein content. In addition, its cooking time was shorter than the others (37 minutes). (author)

  6. Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.)

    Czech Academy of Sciences Publication Activity Database

    Vláčilová, K.; Ohri, D.; Vrána, Jan; Čihalíková, Jarmila; Doleželová, Marie; Kahl, G.; Doležel, Jaroslav

    2002-01-01

    Roč. 10, č. 8 (2002), s. 695-706. ISSN 0967-3849 R&D Projects: GA AV ČR IAA6038204; GA AV ČR IBS5038104 Institutional research plan: CEZ:AV0Z5038910 Keywords : cell cycle * chickpea (Cicer arietinum) * human cytogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.828, year: 2002

  7. The chickpea, summer cropping, and a new model for pulse domestication in the ancient near east.

    Science.gov (United States)

    Abbo, Shahal; Shtienberg, Dan; Lichtenzveig, Judith; Lev-Yadun, Simcha; Gopher, Avi

    2003-12-01

    The widely accepted models describing the emergence of domesticated grain crops from their wild type ancestors are mostly based upon selection (conscious or unconscious) of major features related either to seed dispersal (nonbrittle ear, indehiscent pod) or free germination (nondormant seeds, soft seed coat). Based on the breeding systems (self-pollination) and dominance relations between the allelomorphs of seed dispersal mode and seed dormancy, it was postulated that establishment of the domesticated forms and replacement of the wild ancestral populations occurred in the Near East within a relatively short time. Chickpea (Cicer arietinum L.), however, appears as an exception among all other "founder crops" of Old World agriculture because of its ancient conversion into a summer crop. The chickpea is also exceptional because its major domestication trait appears to be vernalization insensitivity rather than pod indehiscence or free germination. Moreover, the genetic basis of vernalization response in wild chickpea (Cicer reticulatum Ladiz.) is polygenic, suggesting that a long domestication process was imperative due to the elusive phenotype of vernalization nonresponsiveness. There is also a gap in chickpea remains in the archaeological record between the Late Prepottery Neolithic and the Early Bronze Age. Contrary to the common view that Levantine summer cropping was introduced relatively late (Early Bronze Age), we argue for an earlier (Neolithic) Levantine origin of summer cropping because chickpea, when grown as a common winter crop, was vulnerable to the devastating pathogen Didymella rabiei, the causal agent of Ascochyta blight. The ancient (Neolithic) conversion of chickpea into a summer crop required seasonal differentiation of agronomic operation from the early phases of the Neolithic revolution. This topic is difficult to deal with, as direct data on seasonality in prehistoric Old World field crop husbandry are practically nonexistent. Consequently

  8. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea.

    Science.gov (United States)

    Sreevidya, M; Gopalakrishnan, S; Kudapa, H; Varshney, R K

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20°C to 40°C, pH range of 7-11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  9. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought

    Directory of Open Access Journals (Sweden)

    Pang Edwin CK

    2007-09-01

    Full Text Available Abstract Background Cultivated chickpea (Cicer arietinum has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. Results The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. Conclusion The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.

  10. Identification of candidate genes for dissecting complex branch number trait in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Kumar, Vinod; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-04-01

    The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350-400kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958×ICC 17160)- and intra (ICC 12299×ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4-5 fold) of the validated seven branch number-associated genes especially in high branch number as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations was apparent. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea. PMID:26940492

  11. Plant water relations and photosynthetic activity in three Tunisian chickpea (Cicer arietinum L.) genotypes subjected to drought

    OpenAIRE

    KROUMA, Abdelmajid

    2010-01-01

    Chickpea (Cicer arietinum L.) is an important food crop grown under rainfed conditions in Mediterranean regions in which drought is a major limiting factor for production. In these areas little attention is given to legumes, and efforts to identify drought-tolerant genotypes are primarily focused on major cereal crops. In the current study a greenhouse experiment was conducted to assess the effects of drought stress on plant growth, photosynthesis, and water relations in 3 Tunisian chickpea g...

  12. Efficacy of Combined Formulations of Fungicides with Different Modes of Action in Controlling Botrytis Gray Mold Disease in Chickpea

    OpenAIRE

    Rashid, M. H.; M. Ashraf Hossain; Kashem, M. A.; Shiv Kumar; Rafii, M. Y.; M. A. Latif

    2014-01-01

    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for...

  13. Sources of resistance in chickpea (cicer arietinum l.) land races against ascochyta rabiei causal agent of ascochyta blight disease

    International Nuclear Information System (INIS)

    Ascochyta blight disease, caused by the fungus Ascochyta rabiei, is a major yield limiting factor of chickpea in Turkey and around the world. This study was conducted to identify sources of genetic resistance against chickpea blight caused by Ascochyta rabiei. For this purpose, 68 chickpea land races of different origins were evaluated in both field and growth chamber conditions during 2008-2009 growing seassons. Two standard cultivars were used as a reference, Inci (resistant) and Canitez (susceptible). Disease severity scoring was conducted on a 1-9 rating scale 21 days after inoculation in growth chamber test and at flowering and pot filling stages in field tests. Analysis of variance (ANOVA) test showed a significant difference among the chickpea landraces in ascochyta blight resistance at p<0.05. None of the chickpea land races was highly resistant to the pathogen in growth chamber and field conditions. Only two landraces (10A and 28B) were moderately resistant to the disease. Some of the landraces resulted in a particular plant to exhibit no disease symptoms, indicating that the variation within chickpea land races was high. Therefore, seeds of this plant were harvested separately and preserved for further evaluations. (author)

  14. In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars.

    Science.gov (United States)

    Chung, Hyun-Jung; Liu, Qiang; Hoover, Ratnajothi; Warkentin, Tom D; Vandenberg, Bert

    2008-11-15

    In vitro starch digestibility, expected glycemic index (eGI), and thermal and pasting properties of flours from pea, lentil and chickpea grown in Canada under identical environmental conditions were investigated. The protein content and gelatinization transition temperatures of lentil flour were higher than those of pea and chickpea flours. Chickpea flour showed a lower amylose content (10.8-13.5%) but higher free lipid content (6.5-7.1%) and amylose-lipid complex melting enthalpy (0.7-0.8J/g). Significant differences among cultivars within the same species were observed with respect to swelling power, gelatinization properties, pasting properties and in vitro starch digestibility, especially chickpea flour from desi (Myles) and kabuli type (FLIP 97-101C and 97-Indian2-11). Lentil flour was hydrolyzed more slowly and to a lesser extent than pea and chickpea flours. The amount of slowly digestible starch (SDS) in chickpea flour was the highest among the pulse flours, but the resistant starch (RS) content was the lowest. The eGI of lentil flour was the lowest among the pulse flours. PMID:26047429

  15. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea

    Science.gov (United States)

    Garg, Rohini; Shankar, Rama; Thakkar, Bijal; Kudapa, Himabindu; Krishnamurthy, Lakshmanan; Mantri, Nitin; Varshney, Rajeev K.; Bhatia, Sabhyata; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea. PMID:26759178

  16. Control of root rot of chickpea caused by Sclerotium rolfsii by different agents and gamma radiation

    International Nuclear Information System (INIS)

    Sclerotium rolfsii causes root rot disease in several crops including chickpea that result in low yield. Artificial infection of chickpea seedlings by S. rolfsii in vitro demonstrated that different tissues of the plant completely disintegrated by fungal infection. In vitro and green house pot experiments demonstrated that inducers in combination with fungicides, oils and bio agents resulted in about 80 % suppression of root rot disease. Treatments have no phyto toxic effect on chickpea seedlings at low doses. Gliocladium virens and Gliocladium deliquescens were effective as biocontrol agents against Sclerotium rolfsii. The percent of survival plants, fresh weight, dry weight and plant height of chickpea plants increased with different treatments with inducers compared with the control. Chlorophyll a, b, and total chlorophyll amounts increased to the maximum values. The activity of two plant enzymes, peroxidase and polyphenol oxidase increased. In this study, gamma irradiation of chickpea seeds at doses 5, 10, 15, 20, 25 and 30 Gy have negative effect on survival, plant height, fresh weight and dry weight of chickpea. The effect of gamma irradiation at doses 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kGy on the antagonistic effect of Gliocladium virens and Gliocladium deliquescens against S. rolfsii were investigated. The results revealed that gamma irradiation increase the antagonistic effect of Gliocladium virens and Gliocladium deliquescens against S. rolfsii . Effect of gamma irradiation at doses of 0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 5 kGy on the mycelial growth and pathogenicity of S. rolfsii were investigated. The results revealed that gamma irradiation at doses 0.25 up to 3.0 kGy increase the pathogenicity of S. rolfsii but gamma irradiation at dose 5.0 kGy completely inhibited the growth of S. rolfsii. Extracellular polygalacturonase was characterized and purified by precipitation with 70 % ammonium sulfate, dialysis and gel filtration through Sephadex 75

  17. Biological N2 Fixation by Chickpea in inter cropping System on Sand Soil

    International Nuclear Information System (INIS)

    A field experiment was carried out at the plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The benefits of N2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. in cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes , where benefit is found ,it is mainly due to sparing of soil N rather than direct transfer from the legume. inter cropped wheat has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system induced an increase of wheat grain yield against the sole system. regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between organic sources reflected the superiority of under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil system. While totally organic materials had accumulates more N in grain than those of underrated treated control. In the same time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. Among the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (% Ndfa) shoots and seeds of chickpea plant: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  18. Studies on fact of 14C-lindane in soil and chickpea plants under laboratory conditions

    International Nuclear Information System (INIS)

    The degradation of 14C-lindane (γ-1,2,3,4,5,6 - hexachlorocyclohexane) was investigated under laboratory conditions. Chickpea plants and soil were treated with 14C-lindane. The results indicated a decrease of lindane on the plant surface from 36.6% to 6.5% and a corresponding increase in extractable residues from within the plant from 12.5% to 34.5% during the 60 days of the trial. In the soil, extractable residues decreased from 47.4% to 31.2%. Bound residues in both plant and soil remained low throughout the trial. After 60 days, the chickpea plants took up 16.4% of the lindane applied to the soil. (author). 2 refs, 7 figs

  19. The improvement of TAEK-SAGEL chickpea (Cicer arietinum L.) mutant variety in Turkey

    International Nuclear Information System (INIS)

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, because of it's high carbohydrate content, it is also energy source. It is very rich some vitamin and minerals basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea varieties with large seeds, good cooking quality and high protein content. Seeds of the Ak-71114 and Akcin chickpea varieties were irradiated with 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy of gamma rays by using60Cosource. One thousand seeds for per treatment were sown in the field for the M1. At maturity, 3500 single plants were harvested and 20 seeds taken from each M1 plant and planted in the following season. During plant growth, mutants of the desired traits (earliness, yield per plant, first pot height and Ascochyta blight (Ascochyta rabie) resistance) were identified an isolated. 2520 desirable M2 mutants were selected and grown in progeny rows as the M3 generation. The protein content was analyzed for the M3-M4 seeds. In M5 generation, preliminary yield trials had been conducted and based on field observations, quality criteria (grain size

  20. FUNCTIONAL PROPERTIES OF DEFATTED CHICKPEA (CICER ARIETINUM, L. FLOUR AS INFLUENCED BY THERMOPLASTIC EXTRUSION

    Directory of Open Access Journals (Sweden)

    Maria Filomena Claret Fernandes de Aguiar VALIM

    2009-07-01

    Full Text Available

    Defatted chickpea (Cicer arietinum, L flour was submitted to thermoplastic extrusion at three feed moisture levels (13%, 18% and 27%. The functional properties of raw and extruded flours were investigated. The nitrogen solubility index of raw chickpea flour was minimum at pH 4.0 but increased at both lower and higher pHs. Extrusion reduced nitrogen solubility drastically for all feed moisture levels. Water and oil absorption capacity were significantly (p O < 05 increased after extrusion treatment. Foam stability could be improved by extrusion and was positively influenced by alkaline pH. It was also verified that extrusion cooking increased significantly (p O < 05 the emulsifying capacity of the extruded flour with 13% moisture level in water.

  1. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars

    OpenAIRE

    Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y. (Yahya)

    2010-01-01

    Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to investigate the effect of drought stress on proline content, chlorophyll content, photosynthesis and transpiration, stomatal conductance and yield characteristics in three varieties of chickpea (drought tolerant Bivaniej and ILC482 and drought sensitive Pirouz). A field experiment with four irrigation regimes was carried out in a randomized complete block design with three replications....

  2. Structural, functional, and ACE inhibitory properties of water-solublepolysaccharides from chickpea flours

    OpenAIRE

    Mokni Ghribi, abir; Sila, Assaâd; Maklouf Gafsi, Ines; Blecker, Christophe; Danthine, Sabine; Attia, Hamadi; Bougatef, Ali; Besbes, Souhail

    2015-01-01

    tThe present study aimed to characterize and investigate the functional and angiotensin-I convertingenzyme (ACE) inhibition activities of chickpea water-soluble polysaccharides (CPWSP). Physico-chemicalcharacteristics were determined by nuclear magnetic resonance spectroscopy (NMR), Fourier transform-infrared spectroscopy (FT-IR) analysis, and X-ray diffractometry (XRD). Functional properties (waterholding capacity: WHC, water solubility index: WSI, swelling capacity: SC, oil holding capacity...

  3. Integrating Cultivar Resistance and Seed Treatment with Planting Dates to Manage Chickpea Ascochyta Blight

    Directory of Open Access Journals (Sweden)

    C. Akem

    2004-01-01

    Full Text Available The influence of chickpea (Cicer arietinum planting date on seasonal epidemics of Ascochyta blight caused by Ascochyta rabiei (Pass. Labrousse and on grain yield was evaluated during the 1997 and 1998 cropping seasons. Two chickpea cultivar (Ghab 1 and Ghab 3 and 2 breeding lines (FLIP 90-96 and F 88-85 were used in the field trials at 3 different locations representing the different agro ecological zones in which winter chickpea is grown in Syria and in most of the Mediterranean countries. Four field plantings were made at 14-day intervals from mid November to mid March. All plots were initially inoculated with infected debris and disease development followed natural prevailing environmental conditions. Ascochyta blight disease severity ratings were taken at early flowering and again at podding and grain yield for each plot was measured at harvest. There was a significant (p<0.05 increase in disease severity between the first and third planting in all the entries at all the locations and for both years. The difference in disease severity resulted in significant yield differences but not in differences in seed quality. Under Syrian and Mediterranean conditions, an increase in Ascochyta blight severity can be expected with early planting of chickpea before January and this can result in a corresponding big loss in crop yield. The loss in yield from disease through early plantings however, is more than compensated for, by the reduction in yield due to other environmental parameters in late spring planting, if moderate resistant cultivars are planted.

  4. Developing of technology and studing the quality of functional bread enriched with dry chickpea flour

    OpenAIRE

    Georgieva Antoaneta Vassileva

    2015-01-01

    Recipes and technologies for the preparation of high quality bread based on wheat flour type 500 by the use of different amounts of chickpeas flour (10%, 20% and 30%) as a proportion of the flour mass have been developed. Based on this, test laboratory bakings of bread have been performed. Finished products were qualified by their organoleptic properties (appearance, colour of the bread bark, colour of the bread crumb, porosity, stickiness, elasticity, flavor and smell, aftertaste) and physic...

  5. JAZ repressors: Possible Involvement in Nutrients Deficiency Response in Rice and Chickpea

    Directory of Open Access Journals (Sweden)

    Ajit P. Singh

    2015-11-01

    Full Text Available Jasmonates (JA are well-known phytohormones which play important roles in plant development and defence against pathogens. Jasmonate ZIM domain (JAZ proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behaviour of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify ten novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK and micronutrients (Zn, Fe deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity towards type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations

  6. Interactions of Meloidogyne incognita, Xanthomonas campestris, and Rhizobium sp. in the disease complex of chickpea

    OpenAIRE

    SIDDIQUI, Zaki Anwar; FATIMA, Munavvar; ALAM, Subha

    2013-01-01

    The effects of Meloidogyne incognita, Xanthomonas campestris, and Rhizobium sp., alone or in combination, on the disease complex in chickpea were examined. Individual inoculation with M. incognita and X. campestris caused significant reductions in plant growth, while inoculation with Rhizobium sp. resulted in a significant increase in plant growth. Inoculation with M. incognita and X. campestris together caused a greater reduction in plant growth than the damage caused by each of them alone. ...

  7. Evaluation of chickpea and groundnut for N2 fixation and yield in Bangladesh

    International Nuclear Information System (INIS)

    Field experiments on chickpea and groundnut were variously carried out at four locations in Bangladesh. Generally consistent trends were obtained in terms of positive effects of inoculation with rhizobia, and genotypic diversity for components of N2 fixation and yield. Inoculation of groundnut increased average nodule number by 77% at Rajshahi, 99% at Mymensingh and 148% at Jamalput. The increases in nodule dry weight, plant dry weight, pod and stover yields due to inoculation ranged from 93 to 146%, 55 to 77%, 43 to 50% and 29 to 80%, respectively. At all three locations, significant differences were found amongst the genotypes for nodulation, dry matter production and yield. Mutant genotype 62-30 was superior for most components, and statistically better than the present variety Dacca-1 for all characteristics investigated. Inoculant application to chickpea resulted in at least a doubling of nodule number at Ishurdi and Mymensingh; on average, there was a three-fold increase in nodule mass as a result of inoculation. Seed-yield increases due to inoculation ranged from 24 to 50%. Inoculated cv. G-97 recorded a seed yield of about 1.5 t/ha at Ishurdi, 47% higher than that produced by Nabin, a variety widely cultivated in Bangladesh. Total-N yield and the amount of N fixed by G-97 with inoculant were also higher than for Hyprosola, which is known for high yield and protein content. In a screening trial at Mymensingh the commercial chickpea Nabin and Hyprosola were consistently inferior to advanced lines produced by mutation breeding. Of 12 mutant groundnut genotypes tested, D1-15KR/62-30 maintained superiority for almost all components. Most of the mutants performed better than the commercial variety Dacca-1. The data show the potential for increasing chickpea and groundnut yields in Bangladesh by improving N2 fixation via selection of superior genotype in conjunction with compatible rhizobia

  8. Marker-trait association study for protein content in chickpea (Cicer arietinum L.)

    Indian Academy of Sciences (India)

    A. A. Jadhav; S. J. Rayate; L. B. Mhase; M. Thudi; A. Chitikineni; P. N. Harer; A. S. Jadhav; R. K. Varshney; P. L. Kulwal

    2015-06-01

    Chickpea (Cicer arietinum L.) is the second most important cool season food legume cultivated in arid and semiarid regions of the world. The objective of the present study was to study variation for protein content in chickpea germplasm, and to find markers associated with it. A set of 187 genotypes comprising both international and exotic collections, and representing both desi and kabuli types with protein content ranging from 13.25% to 26.77% was used. Twenty-three SSR markers representing all eight linkage groups (LG) amplifying 153 loci were used for the analysis. Population structure analysis identified three subpopulations, and corresponding $Q$ values of principal components were used to take care of population structure in the analysis which was performed using general linear and mixed linear models. Marker-trait association (MTA) analysis identified nine significant associations representing four QTLs in the entire population. Subpopulation analyses identified ten significant MTAs representing five QTLs, four of which were common with that of the entire population. Two most significant QTLs linked with markers TR26.205 and CaM1068.195 were present on LG3 and LG5. Gene ontology search identified 29 candidate genes in the region of significant MTAs on LG3. The present study will be helpful in concentrating on LG3 and LG5 for identification of closely linked markers for protein content in chickpea and for their use in molecular breeding programme for nutritional quality improvement.

  9. Application of INAA for phyto-accumulation study of selenium by chickpea plant

    International Nuclear Information System (INIS)

    The phyto-accumulation efficacy of selenium (Se) from soil by chickpea plant is reported. Chickpea plants were grown in soil having different concentrations (1-4 mg kg-1) of Se. Samples of soil and different parts of chickpea plants in Se rich soil were analyzed for determination of Se concentrations by instrumental neutron activation analysis (INAA). Samples were irradiated in self-serve facility of CIRUS reactor, BARC, Mumbai at a neutron flux of the order of 1013 cm-2 s-1. The gamma activity at 264.7 keV of 75Se (119.8 d) was measured using a 45% relative efficiency HPGe detector coupled to MCA. Dependence of Se distribution in soil and plants on its spiking concentration was evaluated in this work. The Se concentrations determined in plant parts grown in control soil and in soil spiked with Se (4 mg kg-1) are in the range of 0.6-0.8 and 65-68 mg kg-1 respectively. (author)

  10. Nutritional Profile and Carbohydrate Characterization of Spray-Dried Lentil, Pea and Chickpea Ingredients

    Directory of Open Access Journals (Sweden)

    Susan M. Tosh

    2013-07-01

    Full Text Available Although many consumers know that pulses are nutritious, long preparation times are frequently a barrier to consumption of lentils, dried peas and chickpeas. Therefore, a product has been developed which can be used as an ingredient in a wide variety of dishes without presoaking or precooking. Dried green peas, chickpeas or lentils were soaked, cooked, homogenized and spray-dried. Proximate analyses were conducted on the pulse powders and compared to an instant mashed potato product. Because the health benefits of pulses may be due in part to their carbohydrate content, a detailed carbohydrate analysis was carried out on the pulse powders. Pulse powders were higher in protein and total dietary fibre and lower in starch than potato flakes. After processing, the pulse powders maintained appreciable amounts of resistant starch (4.4%–5.2%. Total dietary fibre was higher in chickpeas and peas (26.2% and 27.1% respectively than lentils (21.9%, whereas lentils had the highest protein content (22.7%. Pulse carbohydrates were rich in glucose, arabinose, galactose and uronic acids. Stachyose, a fermentable fibre, was the most abundant oligosaccharide, making up 1.5%–2.4% of the dried pulse powders. Spray-drying of cooked, homogenized pulses produces an easy to use ingredient with strong nutritional profile.

  11. Response of chickpea (cicer aeritinum L.) to sulphur fertilization for yield, nodulation and nitrogen fixation

    International Nuclear Information System (INIS)

    Sulphur fertilization (5, 10, 15, 20, 25, 30 mg/kg soil) of the chickpea as ground elemental sulphur in the presence of uniform dressing of nitrogen, phosphorus (P/sub 2/O/sub 5/) and Potash (K /sub 2/O) each applied at the rate of 5, 40, 20 mg/kg soil, respectively improved significantly the modulation response (number and weight of nodules/plant), and increased significantly the dry matter yield of pods of the crop by 23.0 to 59.0 percent, of shoots by 22 to 61.0 percent and of roots by 13.0 to 22.0 percent. Sulphur application also improved significantly the N concentration and uptake by pods, shoots and roots of chickpea. The increase in N uptake by pods was in the range of 33 to 92 percent, by shoots in the range of 65 to 115 percent and by the roots in the range of 52 to 65.0 percent. Sulphur at the rate of 10 mg/kg soil was the optimum dose in the present experiment, which increased the dry matter yield of roots, shoots and pods by 22.0 to 59.0 percent and N uptake by roots, shoots and pods of chickpea by 65.0 to 115.0 percent. (author)

  12. AGRONOMICAL CHARACTERISTICS OF SEVERAL CHICKPEA ECOTYPES (CICER ARIETINUM GROWN IN TURKEY

    Directory of Open Access Journals (Sweden)

    H. VURAL

    2007-08-01

    Full Text Available The chickpea is an important field crop for low quality fields and drought-enduring, in Isparta ecology, as a sowing duty covers a large area. This research has been conducted in order to determine the most suitable chickpea line and varieties in the grain-chickpea sowing duty system of the Isparta city ecological conditions. Eleven cultivars and lines grown in Turkey were used in this two-year long study (between the years 1996 and 1997, which involved a randomize block experimental design with four replications. Data were analyzed by multivariate statistical methods. According to the two-year results, the differences between the lines and cultivars were found to be important in all components observed. The annual differences proved significant for all components, except the number of pods per plant and the height of the first pod from the ground. Anthracnose (Ascochyta rabiei pass. Lab. was not found in any cultivar and line in natural conditions, in none of the tow years. One principal component (PC1 was found by factorial analyses. The eleven examined cultivars were separated in two main groups and three subclusters by cluster analyses.

  13. DNA polymorphisms in chickpea accessions as revealed by PCR-based markers.

    Science.gov (United States)

    Yadav, P; Koul, K K; Shrivastava, N; Mendaki, M J; Bhagyawant, S S

    2015-01-01

    Chickpea is a food legume which is alleged to be a preferred source of protein next only to milk. Germplasm of cultivated chickpea available is deficient in desired genetic variation. Genetic manipulations therefore, necessitate the genetic exploitation of its related annual and wild species. 42 RAPD and 41 ISSR markers were employed to ascertain polymorphism across 20 genotypes which were collected from 10 different geographical areas of the world. RAPD marker detected 51% genetic polymorphisms while ISSR marker detected 54 %. With an average of 6.5 each RAPD primer amplified 5—8 bands. Similarly with an average of 7.9 each ISSR primer amplified 4—12 bands. The cluster dendrogram demonstrated a similarity coefficient range from 0.80 to 0.92 due to RAPD markers, whereas with ISSR primers the cluster dendrogram showed similarity coefficient of 0.60 to 1.00. Accessions from same geographical area seem to be genetically similar than those from geographically distant and isolated ones. When however compared, interestingly the ISSR dendrogram showed more correlation with pedigree data than the RAPD dendrogram. The variability index worked out in the present study ranges from 0.79 to 0.96. Since the ultimate reason for such studies is selection of diverse genetic accessions for their recommendation to breeding programmers, the accessions like ICC6263, ICC6306 and ICC17160 can be recommended as parents. Further breeding programmes can therefore be planned to procure additional variation complexes in chickpea genetic stocks. PMID:26516116

  14. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression.

    Directory of Open Access Journals (Sweden)

    Medha L Upasani

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f.sp. ciceri (Foc is a constant threat to chickpea productivity in several parts of the world. Understanding the molecular basis of chickpea-Foc interaction is necessary to improve chickpea resistance to Foc and thereby the productivity of chickpea. We transformed Foc race 2 using green fluorescent protein (GFP gene and used it to characterize pathogen progression and colonization in wilt-susceptible (JG62 and wilt-resistant (Digvijay chickpea cultivars using confocal microscopy. We also employed quantitative PCR (qPCR to estimate the pathogen load and progression across various tissues of both the chickpea cultivars during the course of the disease. Additionally, the expression of several candidate pathogen virulence genes was analyzed using quantitative reverse transcriptase PCR (qRT-PCR, which showed their characteristic expression in wilt-susceptible and resistant chickpea cultivars. Our results suggest that the pathogen colonizes the susceptible cultivar defeating its defense; however, albeit its entry in the resistant plant, further proliferation is severely restricted providing an evidence of efficient defense mechanism in the resistant chickpea cultivar.

  15. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression.

    Science.gov (United States)

    Upasani, Medha L; Gurjar, Gayatri S; Kadoo, Narendra Y; Gupta, Vidya S

    2016-01-01

    Fusarium wilt caused by Fusarium oxysporum f.sp. ciceri (Foc) is a constant threat to chickpea productivity in several parts of the world. Understanding the molecular basis of chickpea-Foc interaction is necessary to improve chickpea resistance to Foc and thereby the productivity of chickpea. We transformed Foc race 2 using green fluorescent protein (GFP) gene and used it to characterize pathogen progression and colonization in wilt-susceptible (JG62) and wilt-resistant (Digvijay) chickpea cultivars using confocal microscopy. We also employed quantitative PCR (qPCR) to estimate the pathogen load and progression across various tissues of both the chickpea cultivars during the course of the disease. Additionally, the expression of several candidate pathogen virulence genes was analyzed using quantitative reverse transcriptase PCR (qRT-PCR), which showed their characteristic expression in wilt-susceptible and resistant chickpea cultivars. Our results suggest that the pathogen colonizes the susceptible cultivar defeating its defense; however, albeit its entry in the resistant plant, further proliferation is severely restricted providing an evidence of efficient defense mechanism in the resistant chickpea cultivar. PMID:27227745

  16. Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Tripathi, Rudra D; Nautiyal, Chandra S

    2015-07-01

    Trichoderma reesei is an industrially important fungi which also imparts stress tolerance and plant growth promotion in various crops. Arsenic (As) contamination of field soils is one of the challenging problems in agriculture, posing potential threats for both human health and the environment. Plants in association with microbes are a liable method to improve metal tolerance and enhance crop productivity. Chickpea (Cicer arietinum L.), is an important grain legume providing cheap source of protein in semi-arid regions including As affected areas. In this study we report the role of T. reesei NBRI 0716 (NBRI 0716) in supporting chickpea growth and improving soil quality in As simulated conditions. NBRI 0716 modulated the As speciation and its availability to improve grain yield and quality (amino acids and mineral content) in chickpea (C. arietinum L.) plants grown in As spiked soil (100 mg As kg(-1) soil). Arsenic accumulation and speciation results indicate that arsenate [As(V)] was the dominant species in chickpea seeds and rhizosphere soil. The Trichoderma reduced total grain inorganic As (Asi) by 66% and enhanced dimethylarsonic acid (DMA) and monomethylarsinic acid (MMA) content of seed and rhizosphere soil. The results indicate a probable role of NBRI 0716 in As methylation as the possible mechanism for maneuvering As stress in chickpea. Analysis of functional diversity using carbon source utilization (Biolog) showed significant difference in diversity and evenness indices among the soil microbial rhizosphere communities. Microbial diversity loss caused by As were prevented in the presence of Trichoderma NBRI 0716. PMID:25839184

  17. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism

    OpenAIRE

    Kaushal, Neeru; Gupta, Kriti; Bhandhari, Kalpna; Kumar, Sanjeev; Thakur, Prince; Nayyar, Harsh

    2011-01-01

    Chickpea is a heat sensitive crop hence its potential yield is considerably reduced under high temperatures exceeding 35 °C. In the present study, we evaluated the efficacy of proline in countering the damage caused by heat stress to growth and to enzymes of carbon and antioxidative metabolism in chickpea. The chickpea seeds were raised without (control) and with proline (10 μM) at temperatures of 30/25 °C, 35/30 °C, 40/35 °C and 45/40 °C as day/ night (12 h/12 h) in a growth chamber. The sho...

  18. Effects of Fungicides, Essential Oils and Gamma Irradiated Bioagents on Chickpea Root Rot Caused by Sclerotium rolfsii

    International Nuclear Information System (INIS)

    Sclerotium rolfsii (S. rolfsii) causes root rot disease in several crops including Cicer arietinum (chickpea) that results in low yield. In vitro experiments on fungicides, vitavax and monceren T, and essential oils, clove and mint oils, were conducted to control root rot disease of chickpea caused by S. rolfsii. The treatments resulted in 80 % suppression of root rot disease. Gliocladium virens (G. virens) and Gliocladium deliquescens (G. deliquescens) were effective as biocontrol agents against S. rolfsii. The results showed that these treatments greatly reduced the root rot disease in chickpea. In this study, the effect of gamma irradiation at doses 0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kGy on the pathogenecity of G. virens and G. deliquescens against S. rolfsii were investigated. The results revealed that gamma irradiation increased the pathogenecity of G. virens and G. deliquescens against S. rolfsii

  19. Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L. varieties differing in drought tolerance

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasis

    2010-02-01

    Full Text Available Abstract Background Chickpea (C. arietinum L. ranks third in food legume crop production in the world. However, drought poses a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Unfortunately, cultivated chickpea has a high morphological but narrow genetic diversity, and understanding the genetic processes of this plant is hindered by the fact that the chickpea genome has not yet been sequenced and its EST resources are limited. In this study, two chickpea varieties having contrasting levels of drought-tolerance were analyzed for differences in transcript profiling during drought stress treatment by withdrawal of irrigation at different time points. Transcript profiles of ESTs derived from subtractive cDNA libraries constructed with RNA from whole seedlings of both varieties were analyzed at different stages of stress treatment. Results A series of comparisons of transcript abundance between two varieties at different time points were made. 319 unique ESTs available from different libraries were categorized into eleven clusters according to their comparative expression profiles. Expression analysis revealed that 70% of the ESTs were more than two fold abundant in the tolerant cultivar at any point of the stress treatment of which expression of 33% ESTs were more than two fold high even under the control condition. 53 ESTs that displayed very high fold relative expression in the tolerant variety were screened for further analysis. These ESTs were clustered in four groups according to their expression patterns. Conclusions Annotation of the highly expressed ESTs in the tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Results from this study may help in targeting useful genes for improving drought tolerance in chickpea.

  20. Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism.

    Science.gov (United States)

    Nasr Esfahani, Maryam; Kusano, Miyako; Nguyen, Kien Huu; Watanabe, Yasuko; Ha, Chien Van; Saito, Kazuki; Sulieman, Saad; Herrera-Estrella, Luis; Tran, L S

    2016-08-01

    Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops. PMID:27450089

  1. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Srinivasan Ramamurthy

    2009-11-01

    Full Text Available Abstract Background Chickpea (Cicer arietinum L., an important grain legume crop of the world is seriously challenged by terminal drought and salinity stresses. However, very limited number of molecular markers and candidate genes are available for undertaking molecular breeding in chickpea to tackle these stresses. This study reports generation and analysis of comprehensive resource of drought- and salinity-responsive expressed sequence tags (ESTs and gene-based markers. Results A total of 20,162 (18,435 high quality drought- and salinity- responsive ESTs were generated from ten different root tissue cDNA libraries of chickpea. Sequence editing, clustering and assembly analysis resulted in 6,404 unigenes (1,590 contigs and 4,814 singletons. Functional annotation of unigenes based on BLASTX analysis showed that 46.3% (2,965 had significant similarity (≤1E-05 to sequences in the non-redundant UniProt database. BLASTN analysis of unique sequences with ESTs of four legume species (Medicago, Lotus, soybean and groundnut and three model plant species (rice, Arabidopsis and poplar provided insights on conserved genes across legumes as well as novel transcripts for chickpea. Of 2,965 (46.3% significant unigenes, only 2,071 (32.3% unigenes could be functionally categorised according to Gene Ontology (GO descriptions. A total of 2,029 sequences containing 3,728 simple sequence repeats (SSRs were identified and 177 new EST-SSR markers were developed. Experimental validation of a set of 77 SSR markers on 24 genotypes revealed 230 alleles with an average of 4.6 alleles per marker and average polymorphism information content (PIC value of 0.43. Besides SSR markers, 21,405 high confidence single nucleotide polymorphisms (SNPs in 742 contigs (with ≥ 5 ESTs were also identified. Recognition sites for restriction enzymes were identified for 7,884 SNPs in 240 contigs. Hierarchical clustering of 105 selected contigs provided clues about stress- responsive

  2. Effect of low doses of gamma irradiation and N-fertilizer on N-sources in chickpea, using 15N

    International Nuclear Information System (INIS)

    A pot experiment was conducted to study the effect of low doses of gamma irradiation on the performance of winter chickpea in the presence of different levels of ammonium sulfate. The results showed an apparent effect of radiation and N-fertilizer on nodulation and N sub 2 -fixation. High levels of N-NH sup + sup 4 decreased N sub 2 - fixation but not nodule formation. However, the Presowing irradiation of chickpea with 10 Gy reduced the negative effect on N - fertilizer on N sub 2 - fixation (Author)

  3. 丽江鹰嘴豆异黄酮的含量测定%Lijiang chickpea Isoflavones Content determination

    Institute of Scientific and Technical Information of China (English)

    罗永会; 张翠香

    2012-01-01

    This study Lijiang chickpea seed as raw material extraction isoflavone genistein, at the same time as control products Determination of Lijiang chickpea Isoflavones Content, for Lijiang the development and application of chicken beans provide some experimental data.%本实验拟丽江鹰嘴豆种子为原料提取异黄酮,同时以染料木素为对照品测定丽江鹰嘴豆异黄酮的含量,为丽江的鸡豆的开发应用提供一定的实验数据。

  4. Fertilizer-N uptake by Chickpea and Wheat Crops under Intercropping System using 15N Tracer Technique

    International Nuclear Information System (INIS)

    A field experiment was carried out at the Plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. The lowest portion of nitrogen derived from fertilizer was resulted from application of compost and chickpea straw treatments. It is worthy to mention that full recommend dos of fertilizer (20 kg N fed-1) was efficiently used by shoots of chickpea plants. Portion of nitrogen derived from fertilizer by seeds of chickpea was lower than those recorded with shoots. Generally, there was no big significant difference between nitrogen gained by shoots and seeds from the organic materials. This holds true with all treatments. More declines in nitrogen derived from soil percentages were resulted from application of cow manure and compost treatments under different rate of mineral fertilizer, the application 100% MF treatment induced higher nitrogen derived from soil pool as compared to the other treatments. The best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general, nitrogen derived from air by shoots lower than those up taken by seeds of chickpea plant. Application of wheat straw and compost treatments were enhanced the nitrogen derived from fertilizer by straw of wheat plant as compared to caw manure, maize stalk, chickpea straw, but Ndff% in grains of wheat , cow manure and maize stalk increased as compared to the other treatment. Application of organic materials, chickpea straw and cow manure achieved the highest value of Ndfo% by straw of wheat plant as compared to maize stalk, compost and wheat straw. But values of nitrogen derived from organic in grains of wheat plants, the application of chickpea straw and wheat straw

  5. Influence of water deficit on transpiration and radiation use efficiency of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Information on the relationship between biomass production, radiation use and water use of chickpea (Cicer arietinum L.) is essential to estimate biomass production in different water regimes. Experiments were conducted during three post-rainy seasons on a Vertisol (a typic pallustert) to study the effect of water deficits on radiation use, radiation use efficiency (RUE), transpiration and transpiration efficiency (TE) of chickpea. Different levels of soil water availability were created, either by having irrigated and non-irrigated plots or using a line source. Biomass production was linearly related to both cumulative intercepted solar radiation and transpiration in both well watered and water deficit treatments. Soil water availability did not affect RUE (total dry matter produced per unit of solar radiation interception) when at least 30% of extractable soil water (ESW) was present in the rooting zone, but below 30% ESW, RUE decreased linearly with the decrease in soil water content. RUE was also significantly correlated (R2 = 0.61, P < 0.01) with the ratio of actual to potential transpiration (T/Tp) and it declined curvilinearly with the decrease in T/Tp. TE decreased with the increase in saturation deficit (SD) of air. Normalization of TE with SD gave a conservative value of 4.8 g kPa kg−1. To estimate biomass production of chickpea in different environments, we need to account for the effect of plant water deficits on RUE in a radiation-based model and the effect of SD on TE in a transpiration-based model. (author)

  6. evaluation of biological nitrogen fixation process by chickpea using 15N tracer techniques

    International Nuclear Information System (INIS)

    the effect of gradual increase in fertilizer-N rates added to chickpea plants that cultivated in pots packed with light textured soil collected from surrounding area of biotechnology research center, libya was examined in pot experiment. seeds were inoculated with rhizobium strain as peat-based inocula or in liquid culture. Also, un inoculated treatment was included. 15 N-labelled urea(5% atom excess) was applied as N-fertilizer source at rates of 0,20, 40,60,80 and 100 Kg N ha-1. growth parameters of chickpea plants were positively affected by N-fertilizer but bacterial inoculation did not reflected significant difference with levels of 40,60 and 80 kg ha-1..dry matter accumulation was increased with increasing N fertilizer levels up to 80 Kg N ha-1 as compared to the unfertilized control then decreased at the level of 100 kg N ha-1. this holds true under inoculated and un inoculated treatments. similar trend was noticed with nitrogen uptake by chickpea shoots.accordingly, portion of N derived from fertilizer had been increased. nitrogen fixation (% N dfa), as estimated using isotope dilution approach, was increased with increasing N rates up to moderate additions (60 kg N ha-1) , then tended to decrease. Rhizobium inoculation has an important effect on enhancement of plant growth and N acquisition when low to moderate levels of fertilizer was added. The results obtained in this work suggests application of bio fertilization technology in combination with chemical fertilizers under field conditions to get advanced to generalize the data released from such investigations

  7. Androgenesis in chickpea: Anther culture and expressed sequence tags derived annotation

    DEFF Research Database (Denmark)

    Panchangam, Sameera Sastry; Mallikarjuna, Nalini; Gaur, Pooran M.;

    2014-01-01

    Double haploid technique is not routinely used in legume breeding programs, though recent publications report haploid plants via anther culture in chickpea (Cicer arietinum L.). The focus of this study was to develop an efficient and reproducible protocol for the production of double haploids with...... consistent with 3-5 nucleate microspores and 2-7 celled structures with no further growth. To gain a further insight into the molecular mechanism underlying the switch from microsporogenesis to androgenesis, bioinformatics tools were employed. The challenges on the roles of such genes were reviewed while an...

  8. Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus

    Directory of Open Access Journals (Sweden)

    Eshwar K

    2005-08-01

    Full Text Available Abstract Background Chickpea is a major crop in many drier regions of the world where it is an important protein-rich food and an increasingly valuable traded commodity. The wild annual Cicer species are known to possess unique sources of resistance to pests and diseases, and tolerance to environmental stresses. However, there has been limited utilization of these wild species by chickpea breeding programs due to interspecific crossing barriers and deleterious linkage drag. Molecular genetic diversity analysis may help predict which accessions are most likely to produce fertile progeny when crossed with chickpea cultivars. While, trait-markers may provide an effective tool for breaking linkage drag. Although SSR markers are the assay of choice for marker-assisted selection of specific traits in conventional breeding populations, they may not provide reliable estimates of interspecific diversity, and may lose selective power in backcross programs based on interspecific introgressions. Thus, we have pursued the development of gene-based markers to resolve these problems and to provide candidate gene markers for QTL mapping of important agronomic traits. Results An EST library was constructed after subtractive suppressive hybridization (SSH of root tissue from two very closely related chickpea genotypes (Cicer arietinum. A total of 106 EST-based markers were designed from 477 sequences with functional annotations and these were tested on C. arietinum. Forty-four EST markers were polymorphic when screened across nine Cicer species (including the cultigen. Parsimony and PCoA analysis of the resultant EST-marker dataset indicated that most accessions cluster in accordance with the previously defined classification of primary (C. arietinum, C. echinospermum and C. reticulatum, secondary (C. pinnatifidum, C. bijugum and C. judaicum, and tertiary (C. yamashitae, C. chrossanicum and C. cuneatum gene-pools. A large proportion of EST alleles (45% were only

  9. Critical period of weed control in chickpea under non-irrigated conditions

    OpenAIRE

    TEPE, Işık; Erman, Murat; YERGİN, Reyyan; BÜKÜN, Bekir

    2011-01-01

    The present study was conducted during the growing seasons of 2005, 2006, and 2007 to determine the critical period of weed control (CPWC) in chickpea (cv. Aziziye 94). In order to evaluate the beginning of CPWC, weeds were allowed to compete at weekly intervals for 1 to 8 weeks after emergence (WAE) and, at the end of CPWC, plots were kept weed-free at weekly intervals for 1 to 8 WAE by periodic hand hoeing. The beginning and the end of CPWC were based on 5% acceptable yield loss (AYL) level...

  10. Chickpea protein hydrolysate as a substitute for serum in cell culture

    OpenAIRE

    Girón-Calle, Julio; Vioque, Javier; Pedroche, Justo; Alaiz, Manuel; Yust, María M.; Megías, Cristina; Millán, Francisco

    2008-01-01

    The growth of mammalian cells in vitro requires the use of rich culture media that are prepared by combining serum with specific nutrient formulations. Serum, the most expensive component of culture media, provides a complex mixture of growth factors and nutrients. Protein hydrolysates that can support in vitro cell growth and eliminate or reduce the need to use serum have been obtained from different sources. Here we describe the use of two food grade proteases to produce a chickpea protein ...

  11. Heat and mass transfer analysis of convective drying of chickpea (Cicer arietinum)

    International Nuclear Information System (INIS)

    The objective of this article is to describe the modelling and simulation of the dehydration of chickpea in a complex drying system process, using COMSOL Multiphysics Program. A model, based on mass and energy balances, was developed for the simulation of unsteady convective drying with air (3.0 m/s and 60 °C). The program predicted an 8 hours-dehydration time, with an effective moisture diffusivity of 3.1 *10−10 which was experimentally obtained. The empirical model that best represented the process was the exponential one

  12. Assessment of Response to Drought Stress of Chickpea (Cicer arietinumL.) Lines Under Rainfed Conditions

    OpenAIRE

    TOKER, Cengiz; ÇAĞIRGAN, M. İlhan

    1998-01-01

    Totally sixty four chickpea lines were grown for assesment of response to drought stress in the stress and non-stress environments under rainfed conditions. The seed yield of the lines when grown under the non-stress condition increased at a rate of 53% over the in stress condition. The line, FLIP 92-154C, was determinated as the best tolerant line to drought stress environment under the field condition. Also, seed yield strongly correlated with biological yield, harvest index, mean produc...

  13. Changes in photosynthetic carbon metabolism in senescent leaves of chickpea, Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar V. Murumkar

    2014-02-01

    Full Text Available Photosynthetic processes in mature and senescent leaves of chickpea (Cicer arietinum L. have been compared. With age, leaf photosynthetic pigments viz. chlorophyll a, chlorophyll b and carotenoids, and rate of 14°C fixation were considerably affected. Analysis of δ13C, and short term photosynthetic products showed no major change in the path of photosynthetic carbon fixation. Study of long term photosynthetic 14C assimilation revealed that in old senescent leaves, 14C incorporation into organic acid and sugar fractions was enhanced.

  14. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells.

    Science.gov (United States)

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man-Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells. PMID:27602272

  15. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    Science.gov (United States)

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells. PMID:27602272

  16. GGE biplot analysis based selection of superior chickpea (cicer arietinum L.) inbred lines under variable water environments

    International Nuclear Information System (INIS)

    Chickpea is an important legume crop and grown mainly on the marginal lands in Pakistan. Insufficient and erratic water availability is severe problem for this crop. Hence, breeding chickpea for low moisture stress tolerance is absolutely important in this era of climate change. Research work was started with evaluation of mini core collection of 450 chickpea lines and 42 lines were retained after three years of selection under different water treatments. These 42 lines were used in current study for evaluation and further selection under three water treatments. Detailed study on these lines was conducted under irrigated, rainfed and tunnel conditions (no rainfall and irrigation) during 2012-13 and 2013-14. Data were collected for yield and yield components which were subjected to analysis of variance and GGE biplot analysis. Analysis showed highly significant differences among lines for all traits under study. Mean comparison showed less differences between irrigated and rainfed conditions than tunnel for all traits. GGE biplot ranked chickpea lines as; above average, below average, stable, unstable and ideally performing. Lines present closer to ideal genotype on GGE biplot were worthy for selection because these had higher mean values with stable performances across different water treatments. The ideal lines in these experiments; K008-11, CM1592/08, CM526/05, D089-11, TGDX201, D094-11 and K051-11 were selected with higher yield potential. (author)

  17. Cicer L., a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation

    NARCIS (Netherlands)

    Maesen, van der L.J.G.

    1972-01-01

    1. The history of the chickpea or gram, Cicer arietinum L., has been described from Homer's time and the earliest finds, 5450 B.C. in Hacilar, Turkey, up to the present day. The crop was first domesticated in Asia Minor and was introduced in India either from Central Asia or Asia Minor, the two mai

  18. Comprehensive transcriptome assembly of Chickpea (Cicer arietinum L. using sanger and next generation sequencing platforms: development and applications.

    Directory of Open Access Journals (Sweden)

    Himabindu Kudapa

    Full Text Available A comprehensive transcriptome assembly of chickpea has been developed using 134.95 million Illumina single-end reads, 7.12 million single-end FLX/454 reads and 139,214 Sanger expressed sequence tags (ESTs from >17 genotypes. This hybrid transcriptome assembly, referred to as Cicer arietinumTranscriptome Assembly version 2 (CaTA v2, available at http://data.comparative-legumes.org/transcriptomes/cicar/lista_cicar-201201, comprising 46,369 transcript assembly contigs (TACs has an N50 length of 1,726 bp and a maximum contig size of 15,644 bp. Putative functions were determined for 32,869 (70.8% of the TACs and gene ontology assignments were determined for 21,471 (46.3%. The new transcriptome assembly was compared with the previously available chickpea transcriptome assemblies as well as to the chickpea genome. Comparative analysis of CaTA v2 against transcriptomes of three legumes - Medicago, soybean and common bean, resulted in 27,771 TACs common to all three legumes indicating strong conservation of genes across legumes. CaTA v2 was also used for identification of simple sequence repeats (SSRs and intron spanning regions (ISRs for developing molecular markers. ISRs were identified by aligning TACs to the Medicago genome, and their putative mapping positions at chromosomal level were identified using transcript map of chickpea. Primer pairs were designed for 4,990 ISRs, each representing a single contig for which predicted positions are inferred and distributed across eight linkage groups. A subset of randomly selected ISRs representing all eight chickpea linkage groups were validated on five chickpea genotypes and showed 20% polymorphism with average polymorphic information content (PIC of 0.27. In summary, the hybrid transcriptome assembly developed and novel markers identified can be used for a variety of applications such as gene discovery, marker-trait association, diversity analysis etc., to advance genetics research and breeding

  19. Production of wheat preceded with fallow versus continuous wheat or following chickpea or lentil in the Syrian Arab Republic

    International Nuclear Information System (INIS)

    Two crop rotation experiments with 9 treatments and 4 replicates were laid down in a split plot design two sides, in the Northern and Southern Provinces of Syria. The experimental treatments were three 2-course crop rotations: fallow-wheat, chickpea/lentil-wheat and wheat-wheat (continuous wheat), with three rates of N fertilizer applications. 15N-labelled fertilizer was used as tracer to measure fertilizer use efficiency (UFE) and residual N transferred to the second, subsequent crop in the rotation. Total dry matter production of wheat following legumes was higher than continuous wheat or fallow-wheat rotation. Depending on soil inorganic N, dry matter yields were either increased with N addition or there was almost no effect. Measurements of soil water content during the growing season showed that the soil water storage over depth of 120 cm at harvest was higher after fallow than after chickpea, lentil or wheat. However, the observed differences were diminished at the beginning of the subsequent growing season. Contributions of fertilizer N to total N yield were 5-20% for wheat, 1-4% for chickpea, and 4% for lentil. Chickpea fixed 46-127 kg N ha-1 which contributed 65-85% of the total N yield in the crop. Fixed nitrogen was somewhat low for lentil, amounting to only 22-32% of the total N yield. Mineral nitrogen enrichment of the soil resulting from fallow was about 8-13 kg N ha-1. Residual N transferred to the subsequent wheat crop from lentil was rather low. However, it was detectable (3 kg N ha-1). No residual N benefits could be measured from chickpea. Fertilizer use efficiency varied depending on the crop: 22-57, 17-21, and 8-12% for wheat, lentil and chickpea, respectively. Rotation revenues, based on equivalent starch values (STE) from one cycle of rotation showed that wheat-wheat and chickpea-wheat rotations had almost similar revenues. However, they were higher than lentil-wheat and fallow-wheat rotations. (author). 8 refs, 9 figs, 4 tabs

  20. Comprehensive transcriptome assembly of Chickpea (Cicer arietinum L.) using sanger and next generation sequencing platforms: development and applications.

    Science.gov (United States)

    Kudapa, Himabindu; Azam, Sarwar; Sharpe, Andrew G; Taran, Bunyamin; Li, Rong; Deonovic, Benjamin; Cameron, Connor; Farmer, Andrew D; Cannon, Steven B; Varshney, Rajeev K

    2014-01-01

    A comprehensive transcriptome assembly of chickpea has been developed using 134.95 million Illumina single-end reads, 7.12 million single-end FLX/454 reads and 139,214 Sanger expressed sequence tags (ESTs) from >17 genotypes. This hybrid transcriptome assembly, referred to as Cicer arietinumTranscriptome Assembly version 2 (CaTA v2, available at http://data.comparative-legumes.org/transcriptomes/cicar/lista_cicar-201201), comprising 46,369 transcript assembly contigs (TACs) has an N50 length of 1,726 bp and a maximum contig size of 15,644 bp. Putative functions were determined for 32,869 (70.8%) of the TACs and gene ontology assignments were determined for 21,471 (46.3%). The new transcriptome assembly was compared with the previously available chickpea transcriptome assemblies as well as to the chickpea genome. Comparative analysis of CaTA v2 against transcriptomes of three legumes - Medicago, soybean and common bean, resulted in 27,771 TACs common to all three legumes indicating strong conservation of genes across legumes. CaTA v2 was also used for identification of simple sequence repeats (SSRs) and intron spanning regions (ISRs) for developing molecular markers. ISRs were identified by aligning TACs to the Medicago genome, and their putative mapping positions at chromosomal level were identified using transcript map of chickpea. Primer pairs were designed for 4,990 ISRs, each representing a single contig for which predicted positions are inferred and distributed across eight linkage groups. A subset of randomly selected ISRs representing all eight chickpea linkage groups were validated on five chickpea genotypes and showed 20% polymorphism with average polymorphic information content (PIC) of 0.27. In summary, the hybrid transcriptome assembly developed and novel markers identified can be used for a variety of applications such as gene discovery, marker-trait association, diversity analysis etc., to advance genetics research and breeding applications in

  1. Early selection of kabuli chickpea genotypes (Cicer arietinum L. tolerant to osmotic water stress

    Directory of Open Access Journals (Sweden)

    Kamel Ben Mbarek

    2013-05-01

    Full Text Available Eight " kabuli " chickpea genotypes Beja1, Amdoun1, Nayer, Kasseb, Bochra, FLP96-114C, FLP88-42C and Chetoui were germinated, in two in vitro culture media, particularly, agar and filter paper Watman n°2 and under tree osmotic water pressures (OWP: -0,33; -4 and -8 bars induced by PEG8000. On filter paper, germination appeared more accelerated with a higher rate compared to the agar media. Osmotic water stress has negatively affected the seeds germination and the seedlings vegetative development parameters. Osmotic water pressure - 8 bars completely inhibited seeds germination on filter paper media. On the other hand, on agar media, it caused a feeble germination rate and a stunting of the seedlings. A broad genotypic variability of the chickpea cultivars was revealed toward the osmotic water stress. Tolerance index to osmotic water stress revealed three groups of cultivars: (1 Nayer and Kasseb are tolerant, (2 Bochra, FLIP88-42C and Chetoui are fairly tolerant and (3 Amdoun1, Beja1 and FLIP96-114C are sensitive to this abiotic stress.

  2. Response of vetch, lentil, chickpea and red pea to pre- or post-emergence applied herbicides

    Directory of Open Access Journals (Sweden)

    I. Vasilakoglou

    2013-09-01

    Full Text Available Broad-leaved weeds constitute a serious problem in the production of winter legumes, but few selective herbicides controlling these weeds have been registered in Europe. Four field experiments were conducted in 2009/10 and repeated in 2010/11 in Greece to study the response of common vetch (Vicia sativa L., lentil (Lens culinaris Medik., chickpea (Cicer arietinum L. and red pea (Lathyrus cicera L. to several rates of the herbicides pendimethalin, S-metolachlor, S-metolachlor plus terbuthylazine and flumioxazin applied pre-emergence, as well as imazamox applied post-emergence. Phytotoxicity, crop height, total weight and seed yield were evaluated during the experiments. The results of this study suggest that common vetch, lentil, chickpea and red pea differed in their responses to the herbicides tested. Pendimethalin at 1.30 kg ha-1, S-metolachlor at 0.96 kg ha-1 and flumioxazine at 0.11 kg ha-1 used as pre-emergence applied herbicides provided the least phytotoxicity to legumes. Pendimethalin at 1.98 kg ha-1 and both rates of S-metolachlor plus terbuthylazine provided the greatest common lambsquarters (Chenopodium album L. control. Imazamox at 0.03 to 0.04 kg ha-1 could also be used as early post-emergence applied herbicide in common vetch and red pea without any significant detrimental effect.

  3. Effect of P application methods on yield of chickpea (Cicer arietinum L.) and P utilization

    International Nuclear Information System (INIS)

    Broadcast and placement techniques for P application were evaluated in relation to P utilization in chickpea on sandy loam alluvial soil (Typic, Ustochrept) at Indian Agriculture Research Institute (IARI) farm. Grain yield response per unit quantity of added P was highest at lowest rate of P application. A significant increase in total P uptake was noticed with subsequent increase in the dose of application upto 60 kg P2O5/ha, while percent P utilization declined steadily from 16.5 to 7.5 with increase in the levels of phosphate from 30 to 90 kg P2O5/ha respectively. Placement of phosphate at 3-4 cm below the seed proved superior to broadcast as noted by significantly higher values of grain yield, per cent P utilization and P uptake at flowering as well as maturity. Moreover, the results from alternate tagging technique conclusively indicated that chickpea derived relatively more P from the basal dose than from the siderdressed fertilizer. (author). 9 refs., 2 tabs

  4. Comparative efficacy of different fungicides against fusarium wilt of chickpea (cicer arietinum l.)

    International Nuclear Information System (INIS)

    Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris (Foc) is the most serious and widespread disease of chickpea, causing a 100% loss under favorable conditions. Fourteen fungicides were evaluated against wilt pathogen In vitro with five different concentrations ranging from 1-10000 ppm. Among these only Carbendazim and Thiophanate-methyl was found as the most effective at all used concentrations. Other fungicides like Aliette, Nativo, Hombre-excel and Dividend star were found to be moderately effective. Whereas, remaining fungicides were ineffective against the targeted pathogen. Generally, a positive co-relation was observed between increasing concentrations of the tested fungicides and inhibition of Foc. Based on In vitro results Carbendazim, Thiophanate-methyl, Aliette, Dividend-star, Hombre-excel, Score and Nativo were selected for pot and field experiments. The higher concentrations of the few fungicides completely inhibited the pathogen as well as found to be phytotoxic and suppressed the plant growth while lower concentrations promoted the growth of chickpea plants. On over all bases, the Carbendazim and Thiophanate-methyl, followed by Aliette and Nativo were more effective in reducing the impact of pathogen as well as enhancing the plant growth in greenhouse experiment. Under field conditions, all fungicides except Score remarkably decreased the disease development and subsequently increased the plant growth as well as grain yield as compared to untreated plants. (author)

  5. Effect of radiation and soaking on trypsin inhibitor and protein content of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Composition of Ascochyta-blight resistant chickpea for proximate components, vitamins, energy and trypsin inhibitor, was determined. The influence of irradiation and soaking at ambient temperatures (25-35deg C) on trypsin inhibitor activity (TIA) and protein content of chickpea, was investigated. A significant linear relation (r = -0.960 to -0.987) was found between the loss of TIA and soaking time of irradiated and unirradiated seeds (p < 0.05) and the rate of loss increased with increasing radiation dose (0.25-1.00 kGy). However, effect of radiation alone was negligible. Maximum decrease (30.7%) in TIA (from 330.0 to 228.6 TiU/g) occurred during soaking for 12 h of 1.00 kGy sample. The protein contents increased from an initial value of 21.7% to 23.4% and 22.7% as a result of soaking for 12 h in tap and distilled waters, respectively. Radiation treatment exhibited little or no effect. (author)

  6. Accumulation of heavy metals by chickpea grown in fly Ash treated soil: effect on antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vimal Chandra; Singh, Jay Shankar [Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, Uttar Pradesh (India); Kumar, Akhilesh; Tewari, D.D. [Department of Botany, Maharani Lal Kunwari Post Graduate College, Balrampur, Uttar Pradesh (India)

    2010-12-15

    Chickpea grown in fly ash (FA) treated soil (25, 50, and 100% FA) was used to evaluate the effect of FA on antioxidants, metal concentration (Fe, Zn, Cu, Cr, and Cd), photosynthetic pigments (chlorophyll a (chl-a), chlorophyll b (chl-b), total chlorophyll (total chl), and carotenoids), growth and yield performance. All antioxidants in roots, shoots and leaves of chickpea increase with increasing FA doses to combat FA stress. The activities of antioxidants were more in the root tissues to cope with stress induced in the plants as compared to shoot and leaf. Concentration of metals was found maximum in roots than the shoots and seeds. The highest concentration of Fe and lowest level of Cd were recorded in all treatments of FA for different parts of the plant. The treated crop showed reduced level of chlorophyll but enhanced level of carotenoids and protein. However, root length, number of nodules and biomass in 25 and 50% FA treatments did not differ significantly in comparison to respective control plants. These results suggest that heavy metals of FA causes oxidative stress in this crop and the antioxidant enzymes could help a pivotal role against oxidative injury. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Evaluation of N2 fixation by nodulation-variants of chickpea in India

    International Nuclear Information System (INIS)

    Five nodulation-variants of chickpea (Cicer arietinum L.) cv. ICC 5003, delineated on the basis of visual ratings ('S1' for minimum nodulation to 'S5' for maximum), were used to investigate the optimum levels of nodulation and N2 fixation for growth and yield. Two field experiments were conducted, with fertilizer N (enriched in 15N) applied at 10 ('N1') or 100 kg ha-1 ('N2') on contrasting soils in different years; plants were evaluated for nodulation, growth, N2 fixation and yield. Experiment 2 included high-nodulating (HN) and low-nodulating (LN) selections of cvv. ICC 4948, ICC 14196 and Kourinsky. Non-nodulating selections of chickpea were included as references to quantify N2 fixation. In both experiments the trends in amounts of N fixed by the five selections at N1 were similar when assessed by 15N-enriched and by N-difference methods. The percent N derived from N2 fixation (estimated from 15N data) correlated with yield and amount of N fixed in Experiment 2, but not Experiment 1. The relative nodulation differences were consistent across locations; the S4 and S5 (and HN) lines were generally superior to S1 and S2 (and LN) for nodulation, N2-fixation, total dry matter and grain yield. Nodule number and mass correlated significantly (P2-fixed in both experiments

  8. Screening of ten advanced chickpea lines for blight and wilt resistance

    International Nuclear Information System (INIS)

    Ten advanced chickpea lines developed at NIAB were screened for resistance to Ascochyta blight and Fusarium wilt diseases in different sets of experiments conducted under controlled environment. Inoculation of plants by spore suspension of virulent strains of Ascochyta rabiei revealed that one line (97313) was resistant tolerant, two lines (97305, 97392) were tolerant, six lines (97306, 97310, 97311, 97303, 97302, 97393) were tolerant/susceptible and one line (97301) was susceptible. Screening of the same lines against Fusarium wilt by water culture method showed that two lines (97301, 97313) were moderately resistant, four lines (97302, 97303, 97306, 97393) were tolerant and the remaining four lines were susceptible. Screening through phytotoxic culture filtrates revealed that two lines (97302, 97313) were less sensitive to culture filtrates of Ascochyta rabiei and Fusarium oxysporum than the resistant check (CM88). These lines were also analyzed spectrophotometrically for peroxidase enzyme activity. Maximum enzyme activity was detected after 48 hours of inoculation with A. rabiei in three lines (97305, 97311, 97313) and resistant check (CM88) while enzyme activity in the remaining lines reached its maximum after 72 hours of inoculation which was comparable to the susceptible check (Pb-1). These studies lead to the conclusion that one line (97313) exhibited resistance against both the diseases and can be used as a source of resistance for further improvement of chickpea germplasm. (author)

  9. Thermoluminescence studies of calcite extracted from natural sand used in making roasted chickpea

    International Nuclear Information System (INIS)

    In this study, thermoluminescence (TL) properties of the calcite extracted from natural sand which is used in making roasted chickpeas were investigated. And also the effects of different thermal treatments on thermoluminescence glow curve were observed. Two distinct TL peaks were observed at ∼130 °C and ∼230 °C. The annealing of sample, especially at 900 °C, causes a huge enhancement in sensitization of TL. Linearity in dose response is observed for the values up to 0.6 kGy and above 0.6 kGy linearity is not preserved and dose response becomes sublinear. The best reproducibility is obtained when the samples are annealed between 400°C and 600 °C. - Highlights: • The natural sand sample used in making roasted chickpea shows thermoluminescence properties. • Annealing at 900 °C for about 15 min gives best TL output. • A good sensitization of about 70 factor was observed in annealed samples when they were compared with no annealed samples. • At doses lower than 0.6 kGy, dose response is linear and sublinear at doses higher than 0.6 kGy. • The best reproducibility is obtained when the samples are annealed between 400 °C and 600 °C

  10. Thermoluminescence studies of calcite extracted from natural sand used in making roasted chickpea

    Energy Technology Data Exchange (ETDEWEB)

    Toktamiş, Hüseyin, E-mail: toktamis@gantep.edu.tr; Toktamiş, Dilek; Necmeddin Yazici, A.

    2014-09-15

    In this study, thermoluminescence (TL) properties of the calcite extracted from natural sand which is used in making roasted chickpeas were investigated. And also the effects of different thermal treatments on thermoluminescence glow curve were observed. Two distinct TL peaks were observed at ∼130 °C and ∼230 °C. The annealing of sample, especially at 900 °C, causes a huge enhancement in sensitization of TL. Linearity in dose response is observed for the values up to 0.6 kGy and above 0.6 kGy linearity is not preserved and dose response becomes sublinear. The best reproducibility is obtained when the samples are annealed between 400°C and 600 °C. - Highlights: • The natural sand sample used in making roasted chickpea shows thermoluminescence properties. • Annealing at 900 °C for about 15 min gives best TL output. • A good sensitization of about 70 factor was observed in annealed samples when they were compared with no annealed samples. • At doses lower than 0.6 kGy, dose response is linear and sublinear at doses higher than 0.6 kGy. • The best reproducibility is obtained when the samples are annealed between 400 °C and 600 °C.

  11. Activity of the Recommended and Optimized Rates of Pyridate on Chickpea - Mesorhizobium mediterraneum Symbiosis

    Directory of Open Access Journals (Sweden)

    Mehdi PARSA

    2014-03-01

    Full Text Available Crop-rhizobium symbiosis can be influenced by leaching of herbicides which is unavoidable after their application. Due to an adjuvant which might help to develop the low-use-rate of herbicide, an experiment was carried out to compare the impact of the recommended rate (1200 g active ingredient ha-1 and the optimized rate (282.15 g active ingredient ha-1 of pyridate on the biological properties of eight chickpea cultivars inoculated with Mesorhizobium mediterraneum, grown in pots. Based on the required rate of herbicide to give 95% control of common lambsquarters (Chenopodium album L. value, the efficacy of pyridate improved up to 3.87-fold by adding methylated rapeseed oil to spray solution. The ‘Desi’ cultivar had significantly higher nodulation than ‘Kabuli’ cultivar. In general, toxicity of the recommended rate was higher than the optimized rate. With the exception of root dry weight, all of the measured parameters were significantly affected by the recommended rate of pyridate in varying degrees. The symbiotic properties of chickpea cultivars were affected more than 10% at the recommended dose. The reduced nodulation ranged from 29% to 73% among cultivars exposed to pyridate at the recommended dose. The ‘Desi’ cultivar was more sensitive than the ‘Kabuli’ to the recommended rate of pyridate. We may conclude that effective low-use-rate of pyridate via applying of activator adjuvants should be noted.

  12. Induced mutations in chickpea (Cicer arietinum L.) II. frequency and spectrum of chlorophyll mutations

    International Nuclear Information System (INIS)

    A comparative study of frequency and spectrum of chlorophyll mutations induced by two physical (gamma rays, fast neutrons) and two chemical mutagens (NMU, EMS) in relation to the effects in M1 plants and induction of mutations in M2 was made in four chickpea (Cicer arietinum L.) varieties, two desi (G 130 & H 214) one Kabuli (C 104) and one green seeded (L 345). The treatments included three doses each of gamma rays (400, 500 & 600 Gy) and fast neutrons (5, 10 & 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU [0.01% (20h), & 0.02% (8h)] and EMS [0.1% (20h) & 0.2% (8h)]. The frequencies and spectrum of three different kinds of induced chlorophyll mutations in the order albina (43.5%), chlorina (27.3%) and xantha (24.2%) were recorded. Chemical mutagens were found to be efficient in inducing chlorophyll mutations in chickpea. Highest frequency of mutations was observed in green seeded var. L 345 (83% of M1 families and 19.9/1000 M2 plants). Kabuli var. C 104 was least responsive for chlorophyll mutations

  13. Assessment the effects of different tillage methods on chickpea yield and some yield components

    Directory of Open Access Journals (Sweden)

    Abdullah KASAP

    2013-06-01

    Full Text Available This study was carried out to determine the effects of different soil tillage methods on crop yield and some yield components in chickpea cultivation. For this reason, experimental trials were performed in Çayköy and Güzelpınar in Tokat-Kazova during 2008, 2009 and 2010. In this trials Gökçe cultivar of chickpea was used. Six different soil tillage methods were applied which were, mouldboard plough tillage in fall + cultivator in the spring + tooth harrow (Method A, mouldboard plough tillage in spring + cultivator + tooth harrow (Method B, rotary tiller in the spring (Method C, chisel in the spring + disc harrow and slider (Method D, strip tillage with router rotary hoe (Method E and direct seeding (Method F. Trials were set up in completely randomized block design with three replications. The results indicated that the highest average plant and seed yield per square meter was obtained with method A (470.74 g and 260.63 g and followed by method B (459.43 g and 254.18 g and method D (447.82 g and 247.23 g. In terms of factors evaluated; A, B and D methods were superior compared to the other methods.

  14. Comparative analysis of expressed sequence tags (ESTs between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress

    Directory of Open Access Journals (Sweden)

    Raju N L

    2011-04-01

    Full Text Available Abstract Background Chickpea (Cicer arietinum L. is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs by suppression subtraction hybridization (SSH to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea. Results EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant and ICC 1882 (drought resistant exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs (10 each for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons, 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71% unigenes showed significant BLASTX similarity ( Conclusion Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide a better insight into the selection of candidate genes (both up- and downregulated associated with drought tolerance. These results can be used to identify suitable targets for manipulating the drought-tolerance trait in chickpea.

  15. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.)

    OpenAIRE

    Srinivasan Ramamurthy; Xiao Yongli; Vadez Vincent; Deokar Amit A; Balaji Jayashree; Kashiwagi Junichi; Lekha Pazhamala; Hiremath Pavana J; Varshney Rajeev K; Gaur Pooran M; Siddique Kadambot HM; Town Christopher D; Hoisington David A

    2009-01-01

    Abstract Background Chickpea (Cicer arietinum L.), an important grain legume crop of the world is seriously challenged by terminal drought and salinity stresses. However, very limited number of molecular markers and candidate genes are available for undertaking molecular breeding in chickpea to tackle these stresses. This study reports generation and analysis of comprehensive resource of drought- and salinity-responsive expressed sequence tags (ESTs) and gene-based markers. Results A total of...

  16. DNA methylation and physio-biochemical analysis of chickpea in response to cold stress.

    Science.gov (United States)

    Rakei, Aida; Maali-Amiri, Reza; Zeinali, Hassan; Ranjbar, Mojtaba

    2016-01-01

    Cold stress (CS) signals are translated into physiological changes as products of direct and/or indirect of gene expression regulated by different factors like DNA methylation. In this study, some of these factors were comparatively studied in two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold-tolerant genotype, and ILC533, cold susceptible one) under control (23 °C) and days 1, 3, and 6 after exposing the seedlings to CS (4 °C). Under CS, tolerant genotype prevented H2O2 accumulation which led to a decrease in damage indices (malondialdehyde and electrolyte leakage index) compared to susceptible one. The significant activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and polyphenol oxidase) along with a significant proportion of change in DNA methylation/demethylation patterns were often effective factors in preserving cell against cold-induced oxidative stress. Chickpea cells in response to CS changed access to their genome as the number of bands without change from day 1 to day 6 of exposure to CS particularly in tolerant genotype was decreased. During CS, the methylation level was higher compared to demethylation (29.05 vs 19.79 %) in tolerant genotype and (27.92 vs 22.09 %) in susceptible one. However, for prolonged periods of CS, changes in demethylated bands in tolerant genotype were higher than that of in susceptible one (9.24 vs 4.13 %), indicating higher potential for activation of CS responsive genes. Such a status along with higher activity of antioxidants and less damage indices could be related to cold tolerance (CT) mechanisms in chickpea. Sequencing analysis confirmed the important role of some specific DNA sequences in creating CT with possible responsive components involved in CS. Thus, dynamic assessment using multi-dimensional approaches allows us to progressively fill in the gaps between physio-biochemical and molecular events in creating CT, to comprehend better the

  17. Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Gujaria, Neha; Kumar, Ashish; Dauthal, Preeti; Dubey, Anuja; Hiremath, Pavana; Bhanu Prakash, A; Farmer, Andrew; Bhide, Mangla; Shah, Trushar; Gaur, Pooran M; Upadhyaya, Hari D; Bhatia, Sabhyata; Cook, Douglas R; May, Greg D; Varshney, Rajeev K

    2011-05-01

    A transcript map has been constructed by the development and integration of genic molecular markers (GMMs) including single nucleotide polymorphism (SNP), genic microsatellite or simple sequence repeat (SSR) and intron spanning region (ISR)-based markers, on an inter-specific mapping population of chickpea, the third food legume crop of the world and the first food legume crop of India. For SNP discovery through allele re-sequencing, primer pairs were designed for 688 genes/expressed sequence tags (ESTs) of chickpea and 657 genes/ESTs of closely related species of chickpea. High-quality sequence data obtained for 220 candidate genic regions on 2-20 genotypes representing 9 Cicer species provided 1,893 SNPs with an average frequency of 1/35.83 bp and 0.34 PIC (polymorphism information content) value. On an average 2.9 haplotypes were present in 220 candidate genic regions with an average haplotype diversity of 0.6326. SNP2CAPS analysis of 220 sequence alignments, as mentioned above, provided a total of 192 CAPS candidates. Experimental analysis of these 192 CAPS candidates together with 87 CAPS candidates identified earlier through in silico mining of ESTs provided scorable amplification in 173 (62.01%) cases of which predicted assays were validated in 143 (82.66%) cases (CGMM). Alignments of chickpea unigenes with Medicago truncatula genome were used to develop 121 intron spanning region (CISR) markers of which 87 yielded scorable products. In addition, optimization of 77 EST-derived SSR (ICCeM) markers provided 51 scorable markers. Screening of easily assayable 281 markers including 143 CGMMs, 87 CISRs and 51 ICCeMs on 5 parental genotypes of three mapping populations identified 104 polymorphic markers including 90 markers on the inter-specific mapping population. Sixty-two of these GMMs together with 218 earlier published markers (including 64 GMM loci) and 20 other unpublished markers could be integrated into this genetic map. A genetic map developed here

  18. Chickpea (Cicer arietinum L.) physiological, chemical and growth responses to irrigation with saline water

    DEFF Research Database (Denmark)

    Hirich, Abdelaziz; Omari, Halima El; Jacobsen, Sven-Erik;

    2014-01-01

    -conventional water resources such as saline/brackish water and treated waste water for irrigation. With this in mind, an experiment was conducted in the south of Morocco to investigate the effect of irrigation with saline water on a local variety of chickpea. Irrigation with water of different salinity levels...... was carried out on pot experiments. Differences in water uptake and plant growth; as well as proline, soluble sugar, and Na+ and K+ contents of the plant were quantified. The results showed a negative relationship between increasing water salinity and most of the measured plant growth parameters. Irrigation...... these threshold values one may expect the crop yield parameters to be affected. The quantified responses also indicate the rate of change of yield parameters in response to the irrigation water salinity level. This could help in avoiding significant yield reduction when deciding on the irrigation water salinity...

  19. Exploring Western Ghats microbial diversity for antagonistic microorganisms against fungal phytopathogens of pepper and chickpea

    Directory of Open Access Journals (Sweden)

    B.N. RAMKUMAR

    2015-08-01

    Full Text Available Newly isolated microbial cultures from Western Ghat soil samples of Kerala region in India were screened for antagonistic activity by well diffusion and dual culture plating against Phytophthora capsici and Rhizoctonia solani, infecting pepper and chickpea, respectively. Bioactive samples were made by varying solvent extraction of the culture broths of the potent isolates belongs to Actinomycetes, Pseudomonas, Bacillus and Trichoderma. The efficacy of the isolates to produce other potent antifungal metabolites such as cell wall degrading enzymes, HCN and volatile compounds were also checked. Treatment with antagonistic isolates in vivo under greenhouse conditions revealed significant reduction of the disease intensity of foot rot disease of black pepper and collar rot of chick pea.

  20. Effect of irradiation and germination on trypsin inhibitor and protein content of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Effect of irradiation (0.005-0.20 kGy) and subsequent germination on trypsin inhibitor activity (TIA) and protein content of chickpea, was studied. The results revealed a significant linear relation (r = -0.981 to -0.992) between the loss of TIA and germination time, and the rate of TIA destruction increased with irradiation dose (p < 0.05). Maximum destruction (43.8%) of the TIA occurred on germination for 120 hr of 0.20 kGy sample (from 330.0 to 185.3 TIU/g). Initially protein content was 21.7% and the value significantly increased to maximum levels of 27.5% and 27.9% in distilled and tap water respectively during germination for 120 hr of 0.10 kGy sample (p < 0.05). Protein contents were not affected by irradiation

  1. Changes in the inorganic status and enzyme activities in senescent leaves of chickpea, Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Chandrashekkhar V. Murumkar

    2014-02-01

    Full Text Available The changes in the level of some inorganic constituents and the activities of some important enzyme systems in senescent leaves of chickpea (Cicer arietinum L. have been studied. In senescent leaves, a marked decline in the potassium and phosphorus contents was evident which was accompanied by the accumulation of calcium, silicon, chloride and manganese. Leaf senescence was accompanied by a great increase in hydrolytic processes, as revealed by the increase in the activities of acid phosphatase, alkaline phosphatase, ATPase, inorganic pyrophosphatase and 3-phosphoglycerate phosphatase. The activities of nitrogen metabolism enzymes, namely nitrate reductase, nitrite reductase, glutamine synthetase and alanine aminotransferase, and of photorespiratory enzymes -- phosphoglycolate phosphatase, glycolate oxidase and catalase, were lower in senescent leaves. Leaf senescence was further associated with an increase in the activities of peroxidase and polyphenol oxidase, a considerable depression in pyruvate kinase activity, and a slight elevation in aldolase activity.

  2. Chickpea and cowpea grain improvement using mutation and other advanced genetic techniques

    International Nuclear Information System (INIS)

    The use of genetic engineering methodologies in breeding programmes seems to be very promising to find new resistance-related genes present in other phyla, to clone and transfer them into plants; and, to shorten the time to obtain an improved genotype since only a single gene is involved in this process. The main ''bottle-neck'' to apply this scheme in chickpea and cowpea is the absence of a reliable protocol of regeneration and genetic transformation. In this frame, following some pilot experiments on these grain legumes to induce regeneration and gene transfer, we attempted to find a regeneration medium, assay the effect of different hormones on young tissues; and, to select the best procedures for transfer of genes into the plant genome

  3. Modulation in radiation-induced changes in peroxidase activity with gibberellic acid in seedling's growth in chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Changes in the effects of gamma irradiation (10 to 110 Kr) with gibberellic acid (GA/sub 3/) for peroxidase activity, in relation to early days of seedling's growth in Kabulic chickpea cultivar, Noor-91, were evaluated. Stimulation in peroxidase activity over control was recorded at all the irradiation treatments from 3rd to 8th day of seedling's development. Increase in peroxidase activity at 10 and 20 Kr was due to the increase in metabolic activity, while higher doses of gamma radiation account for the damaging action and production of peroxy radicals. However, stimulation in fresh weight was observed only at 10 Kr of gamma irradiation. Postmutagenic application of Ga/sub 3/ protect the seedlings from radiation injury, by increasing the peroxides activity, and increased the fresh weight of chickpea seedlings. (author)

  4. Quality of Low Fat Chicken Nuggets: Effect of Sodium Chloride Replacement and Added Chickpea (Cicer arietinum L.) Hull Flour

    OpenAIRE

    Verma, Arun K; Banerjee, Rituparna; Sharma, B. D.

    2012-01-01

    While attempting to develop low salt, low fat and high fibre chicken nuggets, the effect of partial (40%) common salt substitution and incorporation of chickpea hull flour (CHF) at three different levels viz., 5, 7.5 and 10% (Treatments) in pre-standardized low fat chicken nuggets (Control) were observed. Common salt replacement with salt substitute blend led to a significant decrease in pH, emulsion stability, moisture, ash, hardness, cohesiveness, gumminess and chewiness values while incorp...

  5. Growth and Nitrogen Fixation in Silicon and/or Potassium Fed Chickpeas Grown under Drought and Well Watered Conditions

    Directory of Open Access Journals (Sweden)

    Fawaz Kurdali

    2013-08-01

    Full Text Available A pot experiment was conducted to study the effects of silicon (Si and/or potassium (K on plant growth, nitrogen uptake and N2-fixation in water stressed (FC1 and well watered (FC2 chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. For most of the growth parameters, it was found that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of almost all studied parameters. The Si100K+ (FC1 and Si50K+ (FC2 treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leave’s dry matter in response to the solely added Si (Si50K- and Si100K- is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE. Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be also considered an important element for the symbiotic performance of chickpea plants. It can be concluded that the synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.

  6. Suitable gamma ray dose determination in order to induce genetic variation in kaboli chickpea (Cicer Arietinum L)

    International Nuclear Information System (INIS)

    In spite of chickpea's use in Iran and its ability of being replaced to adjust the shortage of protein in dietary habits, yield production is very low. One of the main reasons for chickpea's low yield production is its sensitiveness to some diseases, pest and environmental stresses. Genetic variation in chickpea is very low, because of its self pollination. In breeding programs, genetic variation plays an essential role so that the induction of genetic variation in plant population is very important for the plant breeders. The induced mutation through different kinds of mutagens is one of the important ways of genetic variation. In this research, first the sensitiveness of four cultivars (ILC.486, Philip86, Bivinich, Jam) were assessed to different gamma ray doses (100, 200, 300, 400 Gy). The results showed that with an increase in gamma ray dose, the growth rate of chickpea's genotypes decreases. In this respect, the decrease of growth rate has a linear relationship with the gamma ray dose and it is independent from the genotypes. The root length is more sensitive to gamma ray doses than its shoot, and it was observed that at the low doses the root growth decreases, comparing to the shoot growth. On the other hand, in high doses of gamma ray growth abrasion (Ageotropism, Albinism and etc.) were observed. Some traits variation (such as leaf shape, leaf size, leaf color, Albinism, etc.) were seen in M2 generation, and finally to continue the project, three doses of gamma ray (150,200,250) were selected for the next year

  7. Nodulation, dry matter production and N2 fixation by fababean and chickpea as affected by soil moisture and potassium fertilizer

    International Nuclear Information System (INIS)

    The impact of three rates of K-fertilizer (0, 75, and 150 kg K2O/ha)on nodulation, dry matter production and N2 fixation by fababean (Vicia faba L.) and chickpea (Cirer arietinum L.) was evaluated in a pot experiment. The plants were subjected to three soil moisture regimes (low, 45-50%; moderate, 55-60% and high 75-80% of field capacity). 15N-isotope dilution method was employed to evaluate N2 fixation using a non-fixing chickpea genotype as a reference crop. Water restriction drastically affected dry matter production, nodulation and N2 fixation by both plant species. The negative effect of water stress on %N2 fixed was more prominent in chickpea (11-58%) than in fababean (68-81%) under low and high % of field capacity, respectively. Plant species differed in their response to K-fertilizer as a mean to enhance growth and overcome the stress conditions. The higher level of K fertilizer increased both dry matter production and total N2 fixed in fababean, but did not have any impact on chickpea. %N2 fixed, however, appeared to be unaffected by K fertilizer as a mean of alleviating drought stress in both plant species. Therefore, it appears that, under the experimental conditions, the beneficial effect of potassium on water-stressed fababean resulted from stimulation the growth rather than improving the N2-fixation efficiency. However, under well-watered plants, a high requirement of the symbiotic system to potassium is needed to ensure and optimal growth and N2-fixation. (author)

  8. Effect of some botanicals for the management of plant-parasitic nematodes and soil-inhabiting fungi infesting chickpea

    OpenAIRE

    RIZVI, Rose; MAHMOOD, Irshad; TIYAGI, Sartaj Ali; KHAN, Zehra

    2012-01-01

    A field experiment was conducted during 2009-2011 at the University Agricultural Research Farm to evaluate the efficacious nature of some botanicals such as Argemone mexicana, Calotropis procera, Solanum xanthocarpum, and Eichhornia echinulata in combination with normal as well as deep ploughing against plant-parasitic nematodes and soil-inhabiting fungi infesting chickpea (Cicer arietinum L.) cultivar K-850 in relation to its growth characteristics. Significant reduction was observed in the ...

  9. Role of Rhizobium Inoculation in Chickpea (Cicer arietinum L.) Under Water Stress Conditions

    OpenAIRE

    Rahat Parveen; Sadiq, M.; Muzammil Saleem

    1999-01-01

    Two chickpea varieties viz., 90122 and 93081 were subjected to Rhizobium inoculation with BioPower under water stress conditions, imposed by withholding water. Stress reduced all the parameters including yield components and this effect was more pronounced by stress at reproductive stage as compared with vegetative stage. Rhizobium inoculation enhanced yield under both normal and stressed conditions, but its performance was better under normal than under stress. Rhizobium inoculation proved i...

  10. Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Gangola, Manu P; Jaiswal, Sarita; Kannan, Udhaya; Gaur, Pooran M; Båga, Monica; Chibbar, Ravindra N

    2016-05-01

    To understand raffinose family oligosaccharides (RFO) metabolism in chickpea (Cicer arietinum L.) seeds, RFO accumulation and corresponding biosynthetic enzymes activities were determined during seed development of chickpea genotypes with contrasting RFO concentrations. RFO concentration in mature seeds was found as a facilitator rather than a regulating step of seed germination. In mature seeds, raffinose concentrations ranged from 0.38 to 0.68 and 0.75 to 0.99 g/100 g, whereas stachyose concentrations varied from 0.79 to 1.26 and 1.70 to 1.87 g/100 g indicating significant differences between low and high RFO genotypes, respectively. Chickpea genotypes with high RFO concentration accumulated higher concentrations of myo-inositol and sucrose during early seed developmental stages suggesting that initial substrate concentrations may influence RFO concentration in mature seeds. High RFO genotypes showed about two to three-fold higher activity for all RFO biosynthetic enzymes compared to those with low RFO concentrations. RFO biosynthetic enzymes activities correspond with accumulation of individual RFO during seed development. PMID:26953100

  11. Morphological Variability and Races of Fusarium oxysporum f.sp. ciceris Associated with Chickpea (Cicer arietinum Crops

    Directory of Open Access Journals (Sweden)

    Rosa M. Arvayo-Ortiz

    2011-01-01

    Full Text Available Problem statement: Mexico is the third largest producer and exporter of chickpea (Cicer arietinum, with the states of Sinaloa and Sonora accounting for 70 and 20% of Mexicos production, respectively. The most damaging disease affecting this species is caused by Fusarium oxysporum f.sp. Ciceris (FOC, which causes losses of up to 60% in Sonora. The objective of this study was to isolate and characterize the phenotype and genetics of FOC collected from affected chickpea plants in northwestern Mexico and to identify the abiotic factors that allow it to develop. Approach: Sampling focused on affected plants from 12 crops in Sonora and Sinaloa. Based on 355 isolated strains, using Polymerase Chain Reaction (PCR 161 were positive for FOC. Results: Of the 161 strains, 91 were identified as races previously recorded for the Americas: Yellowing (R0 (41%, R1B/C (15% and wilting (R5 (14% and R6 (28% reflecting the symptoms observed in the areas sampled. The other 70 isolates could be nonpathogenic, or could be races yet to be recorded for the Americas. Conclusion: Morphological variability in FOC was high in the main chickpea producing regions in northwestern Mexico and was not a function of the physical and chemical properties of the soil, nor of the geographic location of the cropfields. This is the first report of races of FOC in Mexico.

  12. Efficacy of Combined Formulations of Fungicides with Different Modes of Action in Controlling Botrytis Gray Mold Disease in Chickpea

    Directory of Open Access Journals (Sweden)

    M. H. Rashid

    2014-01-01

    Full Text Available Botrytis gray mold (BGM caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L. and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur in Bangladesh for three years (2008, 2009, and 2010. Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%, and Protaf 250EC, propiconazole (0.05%], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%; Secure 600 WG, phenomadone + mancozeb (0.2%; and Companion, mancozeb 63% + carbendazim 12% (0.2%]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1–9 scale and the highest increase (38% of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.

  13. Physiological variability and in vitro antifungal activity against Botrytis cinerea causing botrytis gray mold of chickpea (Cicer arietinum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosen, M. I.; Ahmed, A. U.; Islam, M. R.

    2010-07-01

    Physiological variability was studied in 10 isolates of Botrytis cinerea causing botrytis gray mold of chickpea, collected from diverse agro climatic areas in Bangladesh. The optimum temperature and pH for the best mycelial radial growth of B. cinerea were 20 degree centigrade and 4.5, respectively. The mycelial radial growth increased with the temperature up to 20 degree centigrade thereafter it decreased gradually up to 30 degree centigrade and no growth was observed at 35 degree centigrade. Chickpea dextrose agar (CDA) medium supported the highest mycelial radial growth (79.17 mm). The quickest (in 5 days) sclerotia initiation was recorded on chickpea destrose agar and lentil dextrose agar (LDA) culture media while the highest number of spores (2.5104 mL{sup -}1) were recorded on LDA medium. The antagonist Trichoderma harzianum was found to be a good bio-control agent against B. cinerea. Among the seven fungicides Bavistin 50 WP (Carbendazim), CP-Zim 50 WP (Carbendazim), Sunphanate 70 WP (Thiophanate methyl) and Rovral 50 WP (Iprodione) were the most effective to inhibit the mycelial radial growth of B. cinerea at 500 mg L{sup -}1 concentration. (Author) 13 refs.

  14. The use of phenotypic correlations and factor analysis in determining characters for grain yield selection in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Toker, Cengiz; Ilhan Cagirgan, M

    2004-01-01

    To our knowledge, this is the first report on the use of factor analysis in determining characters for yield selection in chickpea (Cicer arietinum L.). The present investigation was undertaken to evaluate yield criteria in chickpea using phenotypic correlations and factor analysis. Factor 1 composed of biological yield, reaction to ascochyta blight (Ascochyta rabiei (Pass.) Labr.), plant height, grain yield and harvest index. Factor 2 consisted of branches and pods per plant. Factor 3 encompassed of only the grain weight. The total factors explained 92.9% of the total variance caused in the characters. The grain yield was positively and statistically significant correlated with biological yield, harvest index, plant height, branches and pods per plant, while it was negatively and statistically significant related with reaction to ascochyta blight and grain weight. Biological yield, harvest index, plant height and reaction to ascochyta blight instead of many selection criteria should previously be evaluated in selection to increase the grain yield in chickpea breeding programs. Pods per plant should be handed together with and branches per plant. Apart from the other selection criteria, the grain weight should solely be evaluated to select large grained genotypes. PMID:15198713

  15. mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea.

    Science.gov (United States)

    Das, Shouvik; Singh, Mohar; Srivastava, Rishi; Bajaj, Deepak; Saxena, Maneesha S; Rana, Jai C; Bansal, Kailash C; Tyagi, Akhilesh K; Parida, Swarup K

    2016-02-01

    The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8-10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (Caq(a)PN4.1: 867.8 kb and Caq(a)PN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (Caq(b)PN4.1: 637.5 kb and Caq(b)PN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTL-seq-driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby

  16. Relationships between transpiration efficiency and carbon isotope discrimination in chickpea (C. arietinum L

    Directory of Open Access Journals (Sweden)

    J Kashiwagi

    2006-08-01

    Full Text Available Greenhouse pot experiments were carried out in 2004 to check if there are any variations available for carbon isotope discrimination (d13C, to investigate the relationship between d13C and transpiration efficiency (TE, and to ascertain the possibility of using d13C as a surrogate for TE measurements. Ten chickpea genotypes (Annigeri, ICC 10448, ICC 13219, ICC 14199, ICC 1882, ICC 283, ICC 4958, ICC 5337, ICC 5680 and ICC 8261 with contrasting growth duration, type (desi or kabuli, growth habit and root system were used. In the well-watered pots (control, the water lost in a day was added back, whereas in the water stress-imposed pots the water, which is equivalent to 70-90% of daily transpiration, was given to avoid the rapid build up of soil water stress. There were significant differences in d13C among the 10 genotypes and the d13C in stress condition was significantly higher than that in the well-wateredcontrol. Genotype ICC 5337 showed the highest d13C (-26.0% in the stress condition. ICC 4958, a well-known drought-resistant cultivar, had superior d13C value than the other genotypes. ICC 4958 ranked second (-27.2% under stress condition and the first (-28.4% in the well-watered control condition. The genotype by irrigation (G x I interaction was significant for d13C. Among 10 genotypes, a significant difference in TE was observed in both irrigated and stress conditions. Genotype ICC 5337 showed the highest TE irrespective of irrigations of 3.9 g/kg under stress and 2.8 g/kg under well-watered control. The TE under stress was significantly higher than the TE under the control. There was a significant correlation in TE between the stress and control conditions and there was no G x I interaction observed. A significant positive correlation between d13C and TE was observed under the stress condition. However, no significant correlation was observed between d13C and TE when the plants were grown under well-watered conditions. The results shows

  17. Remobilisation of carbon and nitrogen supports seed filling in chickpea subjected to water deficit

    International Nuclear Information System (INIS)

    In the Mediterranean-type environment of south-western Australia, pod filling of chickpea occurs when net photosynthesis and nitrogen fixation is low as a result of the onset of terminal drought. Remobilization of carbon (C) and nitrogen (N) from vegetative parts to developing seed may be an important alternative source of C and N for seed filling. The contribution of stored pre-podding C and N to seed filling was studied by labelling the vegetative tissues with the stable isotopes, 13C and 15N, prior to podding and following their subsequent movement to the seed. In ICCV88201, an advanced desi breeding line, 9% of the C and 67% of the N in the seed were derived from pre-podding C and N in well-watered plants compared with 13% of the seed C and 88% of the seed N in water-stressed plants. Furthermore, the contribution of pre-podding C and N was higher for earlier set compared with later set seeds. Pre-podding C and N were derived predominantly from the leaves with relatively little from the stems, roots, and pod walls. Genotypic variation in remobilization ability was identified in contrasting desi (Tyson) and kabuli (Kaniva) cultivars. In well-watered Tyson, 9% of the seed C and 85% of the seed N were remobilised from vegetative tissues compared with 7% of the seed C and 62% of seed N in well-watered Kaniva. Water deficit decreased the amount of C remobilized by 3% in Tyson compared with 66% in Kaniva, whereas the total amount of N remobilized was decreased by 11% in Tyson and 48% in Kaniva. This was related to the maintenance of greater sink strength in Tyson, in which the number of filled pods was reduced by 66% in stressed plants compared with a 91% decrease in Kaniva. This indicates that better drought tolerance in desi genotypes is partly a consequence of better remobilization and higher pod number. These studies show that C and N assimilated prior to podding can supplement the supply of current assimilates to the filling seed in both well-watered and water

  18. Assessment of the estrogenic activities of chickpea (Cicer arietinum L) sprout isoflavone extract in ovariectomized rats

    Institute of Scientific and Technical Information of China (English)

    Hai-rong MA; Jie WANG; Hong-xue QI; Yan-hua GAO; Li-juan PANG; Yi YANG; Zhen-hua WANG

    2013-01-01

    Aim:Chickpea (Cicer arietinum L) is a traditional Uighur herb.In this study we investigated the estrogenic activities of the isoflavones extracted from chickpea sprouts (ICS) in ovariectomized rats.Methods:Ten-week-old virgin Sprague-Dawley female rats were ovariectomized (OVX).The rats were administered via intragastric gavage 3 different doses of ICS (20,50,or 100 mg·kg-1.d-1) for 5 weeks.Their uterine weight and serum levels of 17β-estradiol (E2),follicle stimulating hormone (FSH) and luteinizing hormone (LH) were measured.The epithelial height,number of glands in the uterus,and number of osteoclasts in the femur were histologically quantified,and the expression of proliferating cell nuclear antigen (PCNA) was assessed immunohistochemically.Bone structural parameters,including bone mineral density (BMD),bone volume/tissue volume (BV/TV),trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp) were measured using Micro-CT scanning.Results:Treatments of OVX rats with ICS (50 or 100 mg·kg-1.d-1) produced significant estrogenic effects on the uteruses,including the increases in uterine weight,epithelial height and gland number,as well as in the expression of the cell proliferation marker PCNA.The treatments changed the secretory profile of ovarian hormones and pituitary gonadotropins:serum E2 level was significantly increased,while serum LH and FSH levels were decreased compared with the vehicle-treated OVX rats.Furthermore,the treatments significantly attenuated the bone loss,increased BMD,BV/TV and Tb.Th and decreased Tb.Sp and the number of osteoclasts.Treatment of OVX rats with the positive control drug E2 (0.25 mg·kg-1.d-1) produced similar,but more prominent effects.Conclusion:ICS exhibits moderate estrogenic activities as compared to E2 in ovariectomized rats,suggesting the potential use of ICS for the treatment of menopausal symptoms and osteoporosis caused by estrogen deficiency.

  19. Sensory and Physicochemical Studies of Thermally Micronized Chickpea (Cicer arietinum) and Green Lentil (Lens culinaris) Flours as Binders in Low-Fat Beef Burgers.

    Science.gov (United States)

    Shariati-Ievari, Shiva; Ryland, Donna; Edel, Andrea; Nicholson, Tiffany; Suh, Miyoung; Aliani, Michel

    2016-05-01

    Pulses are known to be nutritious foods but are susceptible to oxidation due to the reaction of lipoxygenase (LOX) with linolenic and linoleic acids which can lead to off flavors caused by the formation of volatile organic compounds (VOCs). Infrared micronization at 130 and 150 °C was investigated as a heat treatment to determine its effect on LOX activity and VOCs of chickpea and green lentil flour. The pulse flours were added to low-fat beef burgers at 6% and measured for consumer acceptability and physicochemical properties. Micronization at 130 °C significantly decreased LOX activity for both flours. The lentil flour micronized at 150 °C showed a further significant decrease in LOX activity similar to that of the chickpea flour at 150 °C. The lowering of VOCs was accomplished more successfully with micronization at 130 °C for chickpea flour while micronization at 150 °C for the green lentil flour was more effective. Micronization minimally affected the characteristic fatty acid content in each flour but significantly increased omega-3 and n-6 fatty acids at 150 °C in burgers with lentil and chickpea flours, respectively. Burgers with green lentil flour micronized at 130 and 150 °C, and chickpea flour micronized at 150 °C were positively associated with acceptability. Micronization did not affect the shear force and cooking losses of the burgers made with both flours. Formulation of low-fat beef burgers containing 6% micronized gluten-free binder made from lentil and chickpea flour is possible based on favorable results for physicochemical properties and consumer acceptability. PMID:26990186

  20. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments.

    Directory of Open Access Journals (Sweden)

    Chien Van Ha

    Full Text Available The plant-specific NAC transcription factors (TFs play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control, dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR. Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.

  1. Natural incidence of aflatoxins, mycological profile and molecular characterization of aflatoxigenic strains in chickpea flour

    International Nuclear Information System (INIS)

    The mycological profile of retail chickpea flour (locall called Baisan), sold in the markets in the Rawalpindi district was studied. All the samples were tested for the contamination with aflatoxins. A total of 13 fungal species isolated from the flour and out of which, Aspergillus flavus was recorded the most common species (100%), followed by Rhizopus oryzea (50%), Aspergillus niger (40%), Penicilium digitatum (30%), Cladosporium cladosporoides, Fusarium oxysporium, Mucor recemosus, M. petrinsularis and Rhizopus arrhizus (20% each), Aspergillus oryzea, Botritus cinerea, Mucor circineloides and Penicillium sp. (10% each). Aflatoxin B1 was found in only 20% of the samples ranging from 3.03-4.24ppb. The molecular characterization was carried out by using PCR using simple sequence repeats (SSR) primers. The SSR amplification pattern clearly showed the genetic variability among the 10 strains of A. flavus. A dendrogram was generated through MVSP software program. Genotype AF04 was most diverse among all genotypes. The similarity value was ranged between 0.538 (53.8%)-0.938 (93.8%). (author)

  2. Mutation induction in mungbean, blackgram, chickpea and lentil using chemical mutagens

    International Nuclear Information System (INIS)

    Full text: Grain legumes cultivated in Bangladesh have narrow genetic bases. Seeds of four species were treated with sodium azide (NaN3) and EMS to create genetic variability. Phenotypically deviant types were selected in M2. The mungbean mutants were synchronous, early, bushy, erect and disease tolerant. Maximum frequency of variants occurred in the treatment with 0.75 mM of NaN3. The blackgram mutants were dwarf, bushy, trailing, synchronous and prolific podded. 1.0 mM NaN3 and 2% EMS concentrations produced the highest frequency of mutants. The chickpea mutants included broad-leaved, white flowered, erect, dwarf, bushy, early and chlorophyll-deficient types. White-flower mutants were reasonably free from wilt disease. The 0.4 mM concentration of NaN3 produced the highest frequency of mutants. In lentil, late flowering mutants were predominant. Some plants with increased number of pods were selected. Maximum frequency of mutants were obtained from 0.50 mM concentration of NaN3. (author)

  3. Response of rainfed chickpea (cicer arietnum L.) to tween row spatial arrangement at multiple densities

    International Nuclear Information System (INIS)

    Plant density and arrangement are important factors affecting rainfed chickpea yield. A field experiment was conducted under the Eastern Mediterranean conditions for two consecutive growing seasons (2009-2010 and 2010-2011) to evaluate the effects of plant density (20, 25, 35 and 55 plants per m 2) and spatial configuration (conventional single 36-cm row width vs 18-cm twin rows spaced 72-cm between paired-rows). The experiment was laid out in a randomized complete block design in a factorial arrangement with three replications. Light interception (LI) and leaf area index (LAI) were significantly affected by plant density. Twin-row arrangement had higher light interception efficiency (LIE) than the single-row. Plants grown in the higher plant densities had greater LAI and LI; however, they had inefficient use of incident solar radiation. The number of primary branches was significantly affected by both planting patterns and plant densities, but the number of secondary branches was significantly affected only by the plant densities. The number of pods and seeds/plant decreased with the increasing plant density. The highest seed weight/plant was recorded at the lowest density (20 plants/m2) while the lowest one was recorded at the highest plant density (55 plants/m2). Seed weight and harvest index in the twin row were significantly higher in tween row than in the single row. (author)

  4. Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate.

    Science.gov (United States)

    Mokni Ghribi, Abir; Maklouf Gafsi, Ines; Sila, Assaâd; Blecker, Christophe; Danthine, Sabine; Attia, Hamadi; Bougatef, Ali; Besbes, Souhail

    2015-11-15

    The impact of enzymatic hydrolysis by Alcalase on the conformational and functional properties of chickpea protein isolate (CPI) was investigated. The physicochemical, interfacial tension and surface characteristics of CPI and their hydrolysates (CPH) according to the degree of hydrolysis (DH) were also determined. These parameters were then related to the changes in the emulsification activity (EAI) and stability (ESI). The enzymatic hydrolysis was found to improve protein recovery and solubility, leading to a reduction in the molecular weight bands with a concomitant increase in the intensity and appearance of protein bands having apparent molecular mass below 20 kDa. The interfacial tension decreased from ∼ 66.5 mN m(-1) for CPI to ∼ 59.1 m Nm(-1) for CPH. A similar trend was observed for the surface charge which declined from -27.55 mV to -16.4 mV for the CPI and CPH, respectively. These changes were found to have a detrimental effect on the EAI and ESI values. PMID:25977033

  5. Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours.

    Science.gov (United States)

    Mokni Ghribi, Abir; Sila, Assaâd; Maklouf Gafsi, Ines; Blecker, Christophe; Danthine, Sabine; Attia, Hamadi; Bougatef, Ali; Besbes, Souhail

    2015-04-01

    The present study aimed to characterize and investigate the functional and angiotensin-I converting enzyme (ACE) inhibition activities of chickpea water-soluble polysaccharides (CPWSP). Physico-chemical characteristics were determined by nuclear magnetic resonance spectroscopy (NMR), Fourier transform-infrared spectroscopy (FT-IR) analysis, and X-ray diffractometry (XRD). Functional properties (water holding capacity: WHC, water solubility index: WSI, swelling capacity: SC, oil holding capacity: OHC, foaming, and emulsion properties) and ACE activities were also investigated using well-established procedures. The FT-IR spectra obtained for the CPWSP revealed two significant peaks, at about 3500 and 500 cm(-1), which corresponded to the carbohydrate region and were characteristic of polysaccharides. All spectra showed the presence of a broad absorption between 1500 and 670 cm(-1), which could be attributed to CH, CO, and OH bands in the polysaccharides. CPWSP had an XRD pattern that was typical for a semi-crystalline polymer with a major crystalline reflection at 19.6 °C. They also displayed important techno-functional properties (SWC, WSI, WHC, and OHC) that can be modulated according to temperature. The CPWSP were also noted to display good anti-hypertensive activities. Overall, the results indicate that CPWSP have attractive chemical, biological, and functional properties that make them potential promising candidates for application as alternative additives in various food, cosmetic, and pharmaceutical preparations. PMID:25643994

  6. Physicochemical and structural evaluation of alkali extracted chickpea starch as affected by γ-irradiation.

    Science.gov (United States)

    Bashir, Mudasir; Haripriya, Sundaramoorthy

    2016-08-01

    In this study, starch isolated from chickpea was exposed to gamma-irradiation at 0, 4, 8 and 12kGy doses. The irradiated starches were evaluated for their physicochemical, morphological and pasting properties. The results revealed significant (p≤0.05) reduction in apparent amylose content, swelling power, turbidity, syneresis, L (lightness) value, and pasting parameters whereas solubility and b (yellowness) value increased with increase in irradiation dose. X-ray diffraction showed C-type of crystallographic pattern. Relative crystallinity (RC) of irradiated starches was different at different irradiation doses. Prominent changes were recorded in the FT-IR spectra of irradiated starch samples with respect to intensity and shifting of major bands in specific regions. Analysis of O - H and C - H stretches, bending mode of water and glycoside bonds of irradiated starches revealed marked decrease in their absorbance intensities. Scanning electron microscopy revealed cracking and clumping of starch granules at elevated doses of gamma-irradiation. Radiation doses were negatively correlated to swelling power, pasting parameters (peak viscosity, hold viscosity, final viscosity, setback viscosity and pasting temperature), turbidity, syneresis and apparent amylose content except solubility. PMID:27132882

  7. Assimilatory potential of Helicoverpa armigera reared on host (Chickpea) and nonhost (Cassia tora) diets.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; Gupta, Vidya S; Slade, Susan E; Giri, Ashok P

    2011-11-01

    Adaptation to plant allelochemicals is a crucial aspect of herbivore chemical ecology. To understand an insect ecology, we studied an effect of nonhost Cassia tora seed-based diet (Ct) on growth, development, and molecular responses in Helicoverpa armigera. We employed a comparative approach to investigate the proteomic differences in gut, hemolymph, and frass of H. armigera reared on a normal (chickpea seed-based, Cp) and Ct diet. In this study, a total of 46 proteins were identified by nano-LC-MS(E). Among them, 17 proteins were up-regulated and 29 proteins were down-regulated when larvae were exposed to the Ct diet. Database searches combined with GO analysis revealed that gut proteases engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification were down-regulated in the Ct fed larvae. Proteins identified in H. armigera hemolymph were found to be involved in defense mechanisms. Moreover, proteins found in frass of the Ct fed larvae were observed to participate in energy metabolism. Biochemical and quantitative real-time PCR analysis of selected candidate proteins showed differential gene expression patterns and corroborated with the proteomic data. Our results suggest that the Ct diet could alter expression of proteins related to digestion, absorption of nutrients, adaptation, defense mechanisms, and energy metabolism in H. armigera. PMID:21936543

  8. Integrated Management of Damping-off, Root and/or Stem Rot Diseases of Chickpea and Efficacy of the Suggested Formula

    OpenAIRE

    Montaser Fawzy ABDEL-MONAIM

    2011-01-01

    Eleven fungal isolates were isolated from naturally infected chickpea roots collected from different locations in New Valley Governorate (Egypt). The isolated fungi were purified and identified as Rhizoctonia solani (5 isolates), Fusarium solani (4 isolates) and Sclerotinia sclerotiorum (2 isolates). The isolated fungi proved their pathogenicity on cv. �Giza 3�. Response of chickpea cvs. �Giza 1�, �Giza 2�, �Giza 3�, �Giza 4�, �Giza 88�, �Giza 195�, �Giza 531� to infection by the tested fungi...

  9. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum)

    OpenAIRE

    Malik, Deepak K.; Sindhu, Satyavir S.

    2011-01-01

    Pseudomonas isolates obtained from the rhizosphere of chickpea (Cicer arietinum L.) and green gram (Vigna radiata) were found to produce significant amount of indole acetic acid (IAA) when grown in a LB medium broth supplemented with L-tryptophan. Seed bacterization of chickpea cultivar C235 with different Pseudomonas isolates showed stunting effect on the development of root and shoot at 5 and 10 days of seedling growth except the strains MPS79 and MPS90 that showed stimulation of root growt...

  10. IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass.

    Science.gov (United States)

    Fierro-Coronado, Rosario Alicia; Quiroz-Figueroa, Francisco Roberto; García-Pérez, Luz María; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Maldonado-Mendoza, Ignacio Eduardo

    2014-10-01

    Rhizobacteria promote and have beneficial effects on plant growth, making them useful to agriculture. Nevertheless, the rhizosphere of the chickpea plant has not been extensively examined. The aim of the present study was to select indole-3-acetic acid (IAA) producing rhizobacteria from the rhizosphere of chickpea plants for their potential use as biofertilizers. After obtaining a collection of 864 bacterial isolates, we performed a screen using the Salkowski reaction for the presence of auxin compounds (such as IAA) in bacterial Luria-Bertani supernatant (BLBS). Our results demonstrate that the Salkowski reaction has a greater specificity for detecting IAA than other tested auxins. Ten bacterial isolates displaying a wide range of auxin accumulation were selected, producing IAA levels of 5 to 90 μmol/L (according to the Salkowski reaction). Bacterial isolates were identified on the basis of 16S rDNA partial sequences: 9 isolates belonged to Enterobacter, and 1 isolate was classified as Serratia. The effect of BLBS on root morphology was evaluated in Arabidopsis thaliana. IAA production by rhizobacteria was confirmed by means of a DR5::GFP construct that is responsive to IAA, and also by HPLC-GC/MS. Finally, we observed that IAA secreted by rhizobacteria (i) modified the root architecture of A. thaliana, (ii) caused an increase in chickpea root biomass, and (iii) activated the green fluorescent protein (GFP) reporter gene driven by the DR5 promoter. These findings provide evidence that these novel bacterial isolates may be considered as putative plant-growth-promoting rhizobacteria modifying root architecture and increasing root biomass. PMID:25231840

  11. Biological Nitrogen Fixation and Microbial Biomass N in the Rhizosphere of Chickpea as Estimated by 15N Isotope Dilution Technique

    International Nuclear Information System (INIS)

    Pot experiment was carried out with chickpea that cultivated in virgin sandy soil and inoculated with Rhizobium (Rh), mycorrhizea (VAM) and mixture of both. The objective of this work is the estimation of biological nitrogen fixation (BNF) and microbial biomass N (MBN) contribution as affected by inoculation and N and P fertilizers levels under chickpea plants. Nitrogen gained from air (Ndf A) was determined using 15N isotope dilution technique, while the MBN was detected through the fumigation-extraction method. Nitrogen and phosphorus fertilizers were applied at three levels, 0; 10 ppm N and 3.3 ppm P and 20 ppm Nand 6.6 ppm P in the form of (15NH4)2SO4 and super-phosphate, respectively. The effect of inoculation and chemical fertilizers on dry matter (DM), N and P uptake (shoot and grain), BNF and MBN were traced. The obtained data revealed that the highest DM and N uptake by chickpea shoot were recorded with the dual inoculation (Rh + VAM) at the moderate level of N and P fertilizers, while the highest DM, N and P uptake by grain were recorded with Rh solely at the same rate of fertilizers. It was clear that inoculation with Rh either alone or in combination with VAM substituted considerable amounts of N via BNF process. In this respect, dual inoculation is still superior over single inoculation. Percentages of N2-fixed was ranged from 45% to 73% in shoot while it was 27% to 69% in grain according to inoculation and fertilization treatments. Fixed N utilized by shoot was positively affected by increasing the N fertilizer rate while that derived by grain was not affected. The fluctuation in the soil microbial biomass N did not gave us a chance to recognize, exactly, the impact of inoculation and/or fertilization levels. (Authors)

  12. Nucleotide sequence of a chickpea chlorotic stunt virus relative that infects pea and faba bean in China.

    Science.gov (United States)

    Zhou, Cui-Ji; Xiang, Hai-Ying; Zhuo, Tao; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2012-07-01

    We determined the genome sequence of a new polerovirus that infects field pea and faba bean in China. Its entire nucleotide sequence (6021 nt) was most closely related (83.3% identity) to that of an Ethiopian isolate of chickpea chlorotic stunt virus (CpCSV-Eth). With the exception of the coat protein (encoded by ORF3), amino acid sequence identities of all gene products of this virus to those of CpCSV-Eth and other poleroviruses were pea mild chlorosis virus is proposed. PMID:22476900

  13. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the watershed.

  14. Allelopathic potential of Euphorbia helioscopia L. against wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medic.)

    OpenAIRE

    TANVEER, Asif; REHMAN, Aqeel; JAVAID, MUHAMMAD MANSOOR; ABBAS, Rana Nadeem

    2010-01-01

    Studies investigating the allelopathic effect of root, stem, leaf, and fruit water extracts and infested soil of Euphorbia helioscopia L. on the seed germination and seedling growth of wheat, chickpea, and lentil were conducted in a completely randomized design with 4 replications. Water extracts of root, stem, leaf, and fruit were prepared by soaking dried plant parts of E. helioscopia in water (1:20 w/v) for a period of 24 h. Seedling emergence, seedling vigor index, and total dry weight of...

  15. Mutation breeding for resistance to downy mildew and ergot in Pennisetum and to Ascochyta in chickpea

    International Nuclear Information System (INIS)

    The mutational rectification of the susceptible male steriles of otherwise food yield, and the pollen parents in pearl millet of the released hybrids has been completed successfully. The reconstituted hybrids were tested in National Coordination trials and one of them (NHB5) has been released for All-India cultivation during 1975. They were also tested in more than 2000 trials all over India in farmers' fields. The yield level of the released hybrid (NHB5) based on trials during the past four seasons is 19.2 Q/ha in 232 trials as compared to 14.5 Q/ha of HB-3 (old) based on 221 trials. Biochemical analysis of seedlings of the mutant male steriles resistant to downy mildew and their normal counterparts indicated larger peroxidase activity of high electrophoretic mobility in the resistant ones. In the trials of the reconstituted hybrids along with their normal counterparts the new hybrids proved at least as good in yield even in the absence of the disease in virulent form. Mutational rectification of the male sterile lines and pollen parents could be shown to provide resistance with wide adaptation. Nearly 400 tons of hybrid seed from mutational rectified parents has replaced the earlier hybrids and will cover an area of 80,000 ha in 1976 alone. The low incidence of downy mildew in the male sterile developed from the mutation breeding is likely to be horizontal resistance of greater stability. The M2 generation of chickpea showed appropriate skewed distribution of means for several of the 17 characters studied, including flowering time and yield

  16. Improvement of Chickpea Growth and Biological N Fixation under Water Salinity Stress

    International Nuclear Information System (INIS)

    This work had been carried out under greenhouse conditions of IAM-Bari, aimed at evaluating the effects of water and soil salinity on growth, yield and nitrogen fixation by chickpea plants inoculated with selected Rhizobium strains. Isotope dilution approach (15N) was applied for quantification of biological N fixation and portions derived from fertilizer and soil (Ndff and Ndfs, respectively). Number of pods was decreased gradually with increasing water salinity levels. High levels of salinity negatively affected shoot, root dry matter, seed yield and N accumulated in shoots and roots. A slight difference in seed N was noticed between fresh water and 9 dS/m treatments. Nitrogen derived from fertilizer by shoots was slightly increased with 3, 6 and 9 dS/m treatments, while they were notably higher than the fresh water control. More than 80% and 70% of N accumulated in shoots and seeds, respectively were derived from fixation. Portions of N2-fixed in shoots was decreased with the level of 3 dS/m as compared to the fresh water, then tended to increase with both 6 and 9 dS/m treatments. Stability of %Ndfa with increasing salinity was noticed with seeds-N. Soil-N came next as a fraction of nitrogen demand, where it increased with increasing water salinity levels. Under adverse conditions of salinity, the plants offered some of their N requirements from the other two N sources. Application of the suitable Rhizobium bacteria strains could be profits for both of the plant growth and soil fertility via N2 fixation. (Authors)

  17. Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars

    NARCIS (Netherlands)

    Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y.

    2011-01-01

    Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to investigate the effects of drought stress and subsequent recovery on protein, carbohydrate content, catalase (CAT), and peroxidase (POX) activities in three varieties of chickpea (drought tole

  18. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa

    Science.gov (United States)

    Chickpea (Cicer arietinum L.) is an important legume crop in the semi-arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly due to biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing ...

  19. Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA and multi objective genetic algorithm (MOGA approaches

    Directory of Open Access Journals (Sweden)

    Behzad Elhami

    2016-09-01

    In this study, optimization of energy consumption and environmental impacts of chickpea production was conducted using data envelopment analysis (DEA and multi objective genetic algorithm (MOGA techniques. Data were collected from 110 chickpea production enterprises using a face to face questionnaire in the cropping season of 2014–2015. The results of optimization revealed that, when applying MOGA, optimum energy requirement for chickpea production was significantly lower compared to application of DEA technique; so that, total energy requirement in optimum situation was found to be 31511.72 and 27570.61 MJ ha−1 by using DEA and MOGA techniques, respectively; showing a reduction by 5.11% and 17% relative to current situation of energy consumption. Optimization of environmental impacts by application of MOGA resulted in reduction of acidification potential (ACP, eutrophication potential (EUP, global warming potential (GWP, human toxicity potential (HTP and terrestrial ecotoxicity potential (TEP by 29%, 23%, 10%, 6% and 36%, respectively. MOGA was capable of reducing the energy consumption from machinery, farmyard manure (FYM diesel fuel and nitrogen fertilizer (the mostly contributed inputs to the environmental emissions by 59%, 28.5%, 24.58% and 11.24%, respectively. Overall, the MOGA technique showed a superior performance relative to DEA approach for optimizing energy inputs and reducing environmental impacts of chickpea production system.

  20. Prebiotic Function of Alpha-Galactooligosaccharides from Chickpea Seeds%鹰嘴豆α-低聚半乳糖的肠道益生功能

    Institute of Scientific and Technical Information of China (English)

    贺晋艳; 张芸; 李伟; 孙怡; 曾晓雄

    2011-01-01

    Crude chickpea extract was obtained from chickpea seeds by extraction with 50% ethanol aqueous solution by shaking and purified by medium-pressure activated carbon-diatomite column chromatography to obtain chickpea α-galactooligosacchardies(α-GOS) with different purities.The prebiotic function of α-GOS was evaluated by anaerobic fermentation method in vitro against human fecal bacteria and fluorescence in situ hybridization(FISH).The results demonstrated that α-GOS in chickpea was an efficient proliferation factor to beneficial bacteria such as Bifidobacterium spp.and Lactobacillus-Enterococcus spp.,and an inhibitory factor to harmful bacteria such as Bacteroides prevotella group and Clostridium histolyticum group.During the anaerobic fermentation in vitro,the bacterial composition was affected by the addition of chickpea α-GOS.However,total bacterial number had no difference.In addition,the sample with the highest content of α-GOS(90%) showed the highest prebiotic index(PI,2.00).The PI of samples containingα-GOS at the content of 70%—80% and 80%—90% and crude chickpea extract were 1.39,1.73 and 0.89,respectively,while the PI of the control sample without saccharide addition was-0.29.Therefore,α-GOS in chickpea had an excellent prebiotic function.%以鹰嘴豆为材料,通过提取与活性炭-硅藻土柱层析分离纯化,制备鹰嘴豆粗提物和不同纯化程度的鹰嘴豆α-低聚半乳糖(α-GOS)样品。采用体外厌氧粪样混合培养与荧光原位杂交技术,评价鹰嘴豆α-GOS的益生功能。结果表明:鹰嘴豆α-GOS对肠道有益菌(双歧杆菌、乳酸菌)有较好的增殖作用,而对有害菌(拟杆菌、梭状菌)的生长有一定的抑制作用;鹰嘴豆α-GOS只是改变了肠道内菌体的组成,而对总体菌群的数量基本没有影响;α-GOS含量高于90%的鹰嘴豆α-GOS样品的益生指数(PI)最高(2.00),α-GOS含量为70

  1. Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.)

    Science.gov (United States)

    Kale, Sandip M; Jaganathan, Deepa; Ruperao, Pradeep; Chen, Charles; Punna, Ramu; Kudapa, Himabindu; Thudi, Mahendar; Roorkiwal, Manish; Katta, Mohan AVSK; Doddamani, Dadakhalandar; Garg, Vanika; Kishor, P B Kavi; Gaur, Pooran M; Nguyen, Henry T; Batley, Jacqueline; Edwards, David; Sutton, Tim; Varshney, Rajeev K

    2015-01-01

    A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the “QTL-hotspot” region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1–5 seasons and 1–5 locations split the “QTL-hotspot” region into two subregions namely “QTL-hotspot_a” (15 genes) and “QTL-hotspot_b” (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined “QTL-hotspot” region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of “QTL-hotspot” for drought tolerance in chickpea. PMID:26478518

  2. Potential of recycling gamma-irradiated sewage sludge for use as a fertilizer: a study on chickpea (Cicer arietinum)

    International Nuclear Information System (INIS)

    The effects of gamma-irradiated sludge on the growth and yield of chickpea (Cicer arietinum) in pot cultures have been studied. Compared to plants grown only in soil, root length, fresh weight and dry weight of plants grown in soil supplemented with unirradiated sludge were found to be significantly reduced. This inhibition in growth was found to be nullified when plants were grown in soil supplemented with gamma-irradiated sludge, suggesting that gamma radiation induced inactivation of toxic substance(s) in sludge. The protein content of plants grown in soil supplemented with irradiated sludge was also found to be significantly increased compared to those grown with unirradiated or no sludge, after 45 days. There was no significant effect of gamma irradiated sludge on shoot length, total soluble sugars, starch content and yield of chickpea plants. The results obtained suggest that the sludge tested, and obtained from the digester of a conventional domestic sewage treatment plant, is inhibitory to several growth parameters. Gamma irradiation of sewage resulted in removal of this inhibition. This suggests a possibility of beneficial and safe recycling of gamma-irradiated sludge for agricultural uses. (author)

  3. Phospholipid mediated activation of calcium dependent protein kinase 1 (CaCDPK1 from chickpea: a new paradigm of regulation.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Dixit

    Full Text Available Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1 from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V(max of the enzyme activity by these phospholipids significantly decreased the K(m indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K(½ = 114 nM compared to PA (K(½ = 335 nM. We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.

  4. Preparation of the Sugar Free Chickpea Yoghurt%无糖鹰嘴豆酸奶的研制

    Institute of Scientific and Technical Information of China (English)

    傅樱花

    2012-01-01

    The objective was to prepare the sugar free chickpea yoghurt.The results showed that the product of sugar free chickpea yoghurt was good in color,smell and flavor under the conditions of the inoculation size dose 7%,the fermentation time 10 h at 42 ℃ and the addition 0.05% aspartame.%以鹰嘴豆、复原乳为主要原料,将保加利亚乳杆菌和嗜热链球菌作为发酵剂,按质量分数为7%进行接种,在发酵时间为10 h、发酵温度为42℃的条件下,添加不同水平的甜味剂进行无糖鹰嘴豆酸奶发酵研究。结果表明:阿斯巴甜在甜味和口感上较柔和,适合作为无糖鹰嘴豆酸奶的甜味剂使用,按质量分数0.05%水平进行添加得到的酸奶口感及风味较好。

  5. effect of two rock phosphates and inoculation with VA mycorrhizae and phosphate solubilizing bacteria on the chickpea-rhizobium symbiosis

    International Nuclear Information System (INIS)

    A pot experiment was conducted tracing the effect of two types of phosphorus applied at different rates on the release of nitrogen from fertilizer and its impact on biological nitrogen fixation . chickpea (Cicer Arietinum c v. Cicer 36-ICARDA) was inoculated with peat-based inoculum of phosphorin (Bacillus Megatherium phosphate solubilizing bacteria), Mycorrhizae (VAM) and a mixture of phosphorin and VAM. three types of P fertilizer, i.e.superphosphate, rock P1 (Safaga) and rock P2 (Abou-Trtour) were applied at rate of 25 and 50 mg Pkg-1 soil in the presence or absence of inoculum. labelled ammonium sulfate with 15N 10% atom excess was applied at rates of 15 and 30 mg N kg-1 soil for chickpea and barley (reference crop) respectively . Addition of phosphorus fertilizers, especially at the high rates, positively affected the growth and dry weight as compared to the unfertilized control. infections with VAM mixed with phosphorin under low level of rock P (Abou-tarour) gave the highest values of dry weight and N and P uptake when compared with both superphosphate-P source and control. biological N2 fixed was higher in dual inoculation treatments (i.e.phosphorin +VAM) than those receiving a single inoculum. the percentages of N2-fixed ranged from 24 to 53 according to inoculation treatments, P sources and levels

  6. Nitrogen assimilation and partitioning in rainfed grown chickpea (cicer artietinum L.) at various growth stages using 15N methodology. Final report

    International Nuclear Information System (INIS)

    A field experiment was conducted to asses the sources of N(N2 fixation, soil and fertilizer), N and P partitioning and mobilization in rainfed grown chickpea at various growth stages using 15 N technique. The A-value method, involving the application of 20 and 100 Kg N ha-1 of 15 N labelled ammonium sulphate to chickpea and wheat as a reference crop respectively used to determine the relative contribution of N for these sources. Dry matter, N and P content in shoots, roots and nodules declined rapidly after flowering. Whereas, those of pods showed considerable increases. Soil water content - as measured by neutron scattering technique - decreased severely beyond flowering. Furthermore, the crop was exposed to heat stress at pod-filling which caused a decline in N2 fixation and affected the distribution of both N and P in the plant. The peak of N2 fixation occurred between bud flower initiation and maximum flowering. It was 3 Kg N ha-1 day-1 and 41 Kg N ha-1 per growth period. N2 fixation rate peaked at flowering and declined sharply thereafter during pod-filling. Such decline was a result of changes in source-sink relationships, resulting in a greater supply of carbohydrate and phosphorus to the developing pods and a reduced supply to nodules which showed considerable senescence following flowering. There was a net mobilization of N and P from shoots and roots to developing pods beyond flowering which amounted about 81% and 70% of N and P in pods respectively. At physiological maturity, chickpea had accumulated 103 Kg N ha-1, 60% of which was derived from fixation, 35% from soil and 5% from fertilizer. After seed removal, chickpea led to a non significant residual N in soil. Methods to improve N2 fixation in rainfed grown chickpeas were discussed. (author). 38 refs., 7 tabs., 6 figs

  7. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.

    Directory of Open Access Journals (Sweden)

    Ana Paço

    Full Text Available The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials. The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants

  8. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.

    Science.gov (United States)

    Paço, Ana; Brígido, Clarisse; Alexandre, Ana; Mateos, Pedro F; Oliveira, Solange

    2016-01-01

    The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials). The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants, particularly under

  9. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes

    Science.gov (United States)

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-01-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli-type chickpeas, which are

  10. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    Science.gov (United States)

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  11. Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea.

    Science.gov (United States)

    Rahi, P; Vyas, P; Sharma, S; Gulati, Ashu; Gulati, Arvind

    2009-06-01

    The ITS region sequence of a phosphate-solubilizing fungus isolated from the rhizosphere of tea growing in Kangra valley of Himachal Pradesh showed 96% identity with Discosia sp. strain HKUCC 6626 ITS 1, 5.8S rRNA gene and ITS 2 complete sequence, and 28S rRNA gene partial sequence. The fungus exhibited the multiple plant growth promoting attributes of solubilization of inorganic phosphate substrates, production of phytase and siderophores, and biosynthesis of indole acetic acid (IAA)-like auxins. The fungal inoculum significantly increased the root length, shoot length and dry matter in the test plants of maize, pea and chickpea over the uninoculated control under the controlled environment. The plant growth promoting attributes have not been previously studied for the fungus. The fungal strain with its multiple plant growth promoting activities appears attractive towards the development of microbial inoculants. PMID:23100761

  12. Study of fusarium wilt (Fusarium oxysporum f. sp. ciceris resistance in recombinant inbred line population of chickpea

    Directory of Open Access Journals (Sweden)

    Sidramappa, S. A. Patil, Shobharani.M and P. M. Salimath

    2011-06-01

    Full Text Available Wilt caused by Fusarium oxysporum f. sp. ciceris is a devastating disease of chickpea in India. One hundred and 26 RecombinantInbred Lines (RILs derived from a cross ICCV-2 x JG 62 along with six checks were evaluated for wilt resistance underunprotected natural infestation to identify the genetic sources for resistance. The genotypes were classified as highly resistant,moderately resistant, intermediate, susceptible and highly susceptible based on per cent plants wilted. Some of genotypesshowed high resistance to fusarium wilt. The per cent plants wilted in different lines ranged from O to 100 per cent. A total of45, 31, 25, 11 and 20 genotypes fell into highly resistant, moderately resistant, intermediate, susceptible and highly susceptibleclasses respectively. Less proportion of highly resistant genotypes were observed and it may be due to the fact that the wiltresistance was governed by recessive alleles. The resistant genotypes may be exploited for the development of resistant cultivarsagainst wilt.

  13. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-01-01

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro. PMID:26516115

  14. Nitrogen and water contribution of lentil, chickpea, wheat and fallow to the subsequent wheat crop in Jordan

    International Nuclear Information System (INIS)

    Beneficial effects of fallow have been attributed to soil water conservation and to increase of available nitrogen by mineralization. Benefits of fallow in the Middle Eastern Countries, regarding water conservation, is very low and almost all the water conserved in the root zone is lost through evaporation during summer. Studying nitrogen and water contribution of lentil, chickpea, wheat, and fallow to the subsequent wheat crop has not been previously measured in Jordan using 15N-labelled fertilizer and soil moisture neutron gauges. It was shown under 6 experimental treatments and 2 cropping seasons that (i) there were no significant differences between the treatments with respect total evapotranspiration; (ii) soil water depletion from the whole solid profile was highest for wheat fertilized with 50 kg N ha-1 (WWF2), whereas the lowest soil depletion was for chickpea fertilized with 20 kg N ha-1 (CWF1); (iii) the results show that the different treatments had no significant effect on %Ndff. This insignificant effect shows that the residual effect of the legumes is not effective, and the subsequent wheat did not benefit from it. This could be attributed to the following reasons: a) drought condition usually prevails in the region during flowering stage of lentil when most of the biological nitrogen fixation (BNF) takes place. Due to these adverse conditions it is anticipated that little BNF would take place; b) since the surface soil layers are most effected by drought conditions and since the nodules are concentrated on the upper part of the root zone it is expected that BNF would be minimal. To overcome this problem it is advised to examine new lentil varieties which can flower during early winter seasons. (author). 3 figs, 4 tabs

  15. Chickpea (Cicer arietinum steep liquor as a leavening agent: Effect on dough rheology and sensory properties of bread

    Directory of Open Access Journals (Sweden)

    Saad Ahmed M.

    2015-01-01

    Full Text Available Dough fermentation is one of the oldest process in food technologies. It has been recently intensively studied for its impact on the sensory, structural, nutritional and shelf life properties of leavened baked products. The goals of this work were to investigate chickpea steep liquor (CSL as a dough-leavening agent and to study the effect of CSL on the dough rheology and sensory properties of leavened bread. CSL was prepared by submerging chickpea seeds in boiled distilled water (1:2, w/v for 24 h at 37оC, and then obtained liquor was filtered and freeze-dried to obtain CSL. The addition of CSL to wheat flour (WF brought changes in the dough mixing behavior as measured by the farinograph. An increase in the farinograph water absorption of WF dough was observed when 4.5% CSL and 1.5% yeast was added, while arrival time was not affected. Addition of CSL to the dough at a content of 4.5, 9.0 and 13.5 g CSL/300 g WF caused an increase in dough stability. The CSL addition also increased mechanical tolerance index, dough weakening and mixing time. Dough development time for all blends was higher than the control (1.2-1.5 min, while between the CSL samples no significant difference was observed. The loaf weight slightly increased from 146.2 g for control to 152.2 g for CSL fermented bread, whereas the loaf volume and specific volume of CSL-fermented bread were lower than the control. The combination of yeast and CSL increased the acceptability of bread with the increasing level of both leavening agents’. The results show that CSL could be used as an alternative to yeast for syngas fermentation. On the other hand, CLS is rich in nutrients and lower in cost compared to yeast.

  16. Agronomic Importance of First Development of Chickpea (Cicer arietinum L. Under Semi-arid Conditions: II. Seed Imbibition

    Directory of Open Access Journals (Sweden)

    A. Oksel

    2012-01-01

    Full Text Available Due to the slowness growth and weakness of the first developments of chickpea (Cicer arietinum L., it could not combated with weeds and easiliy caught up by Ascochyta blight (Ascochyta rabiei (Pass Labr. disease. Additionally, due to biotic and abiotic stress factors, esp. at the late sowing, important seed yield losses could be happened. To be able to avoid from them is only possible to accelerate of its first development as possible as. So, one of the best solutions to is to use chemical compounds such as Humic Acid (HA known soil regulator under the semi-arid conditions. With this aim this research was performed in a Randomized Complete Block Design (RCBD with four replications under semi-arid field conditions during (2008/2009 and (2009/2010 in Turkiye. Two cultivars (V1 = Gokce and V2 = Ispanyol and four seed imbibition methods (A0 = 0, A1 = Tap Water, A2 = ½ Tap Water + ½ Humic acid (HA, A3 = Full HA, as w/w and seven yield components Plant Height (PH, Number of Branches per Plant (NBP, Number of Pods per Plant (NPP, First Pod Height (NFP, Number of Seeds per Pod (NSP, Seed Weight per Plant (SWP and 100-Seed weight (HSW were investigated. The PH and FPH were affected the A0, the NBP, NPP and NSP were affected the A2 and the SWP and HSW were given the varied but not clear responses according to varieties for all the parameters in A1. The A0 and A1 were encouraged the germination and top soil of the plant but, the A2 to A3 were encouraged root system’s development. It was concluded that the A2 is a promising method which makes the maximum and positive effect to the first development of the chickpea agronomy under the semi-arid conditions.

  17. Induced mutations in chickpea (Cicer arietinum L.) I. comparative mutagenic effectiveness and efficiency of physical & chemical mutagens

    International Nuclear Information System (INIS)

    Mutagenic effectiveness usually means the rate of mutation as related to dose. Mutagenic efficiency refers to the mutation rate in relation to damage. Studies on comparative mutagenic effectiveness and efficiency of two physical (gamma rays and fast neutrons) and two chemical mutagens (NMU and EMS) on two desi (G 130 & H 214), one kabuli (C 104) and one green seeded (L 345) chickpea (Cicer arietinum L.) have been reported. The treatments included three doses each of gamma rays (400, 500 and 600 Gy) and fast neutrons (5, 10 and 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU 0.01% 20h and 0.02% 8h) and EMS (0.1% 20h and 0.2% 8h). Results indicated that chemical mutagens, particularly NMU are not only more effective but also efficient than physical mutagens in inducing mutations in chickpea. Mutagenic effectiveness and efficiency showed differential behaviour depending upon mutagen and varietal type. Chemical mutagens were more efficient than physical in inducing cholorophyll as well as viable and total number of mutations. Among the mutagens NMU was the most potent, while in the physical, gamma rays were more effective. Out of four mutagens, NMU was the most effective and efficient in inducing a high frequency and wide spectrum of chlorophyll mutations in the M2 followed by fast neutrons. While gamma rays showed least effectiveness, EMS was least efficient mutagens. Major differences in the mutagenic response of the four cultivars were observed. The varieties of desi type were more resistant towards mutagenic treatment than kabuli and green seeded type

  18. Agronomic importance of first development of chickpea (Cicer arietinum L.) under semi-arid conditions: II. Seed imbibition.

    Science.gov (United States)

    Ulukan, H; Bayraktar, N; Oksel, A; Gursoy, M; Kocak, N

    2012-02-15

    Due to the slowness growth and weakness of the first developments of chickpea (Cicer arietinum L.), it could not combated with weeds and easily caught up by Ascochyta blight (Ascochyta rabiei (Pass) Labr.) disease. Additionally, due to biotic and abiotic stress factors, esp. at the late sowing, important seed yield losses could be happened. To be able to avoid from them is only possible to accelerate of its first development as possible as. So, one of the best solutions to is to use chemical compounds such as Humic Acid (HA) known soil regulator under the semi-arid conditions. With this aim this research was performed in a Randomized Complete Block Design (RCBD) with four replications under semi-arid field conditions during (2008/2009) and (2009/2010) in Turkiye. Two cultivars (V1 = Gokce and V2 = Ispanyol) and four seed imbibition methods (A0 = 0, A1 = Tap Water, A2 = 1/2 Tap Water + 1/2 Humic acid (HA), A3 = Full HA, as w/w) and seven yield components Plant Height (PH), Number of Branches per Plant (NBP), Number of Pods per Plant (NPP), First Pod Height (NFP), Number of Seeds per Pod (NSP), Seed Weight per Plant (SWP) and 100-Seed weight (HSW) were investigated. The PH and FPH were affected the A0, the NBP, NPP and NSP were affected the A2 and the SWP and HSW were given the varied but not clear responses according to varieties for all the parameters in A1. The A0 and A1 were encouraged the germination and top soil of the plant but, the A2 to A3 were encouraged root system's development. It was concluded that the A2 is a promising method which makes the maximum and positive effect to the first development of the chickpea agronomy under the semi-arid conditions. PMID:22816177

  19. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I.

    Directory of Open Access Journals (Sweden)

    Sumanti Gupta

    Full Text Available BACKGROUND: Biotrophic interaction between host and pathogen induces generation of reactive oxygen species that leads to programmed cell death of the host tissue specifically encompassing the site of infection conferring resistance to the host. However, in the present study, biotrophic relationship between Fusarium oxysporum and chickpea provided some novel insights into the classical concepts of defense signaling and disease perception where ROS (reactive oxygen species generation followed by hypersensitive responses determined the magnitude of susceptibility or resistant potentiality of the host. METHODOLOGY/PRINCIPAL FINDINGS: Microscopic observations detected wound mediated in planta pathogenic establishment and its gradual progression within the host vascular tissue. cDNA-AFLP showed differential expression of many defense responsive elements. Real time expression profiling also validated the early recognition of the wound inducing pathogen by the host. The interplay between fungus and host activated changes in primary metabolism, which generated defense signals in the form of sugar molecules for combating pathogenic encounter. CONCLUSIONS/SIGNIFICANCE: The present study showed the limitations of hypersensitive response mediated resistance, especially when foreign encounters involved the food production as well as the translocation machinery of the host. It was also predicted from the obtained results that hypersensitivity and active species generation failed to impart host defense in compatible interaction between chickpea and Fusarium. On the contrary, the defense related gene(s played a critical role in conferring natural resistance to the resistant host. Thus, this study suggests that natural selection is the decisive factor for selecting and segregating out the suitable type of defense mechanism to be undertaken by the host without disturbing its normal metabolism, which could deviate from the known classical defense mechanisms.

  20. Electrophoretic Analysis on the Enzyme Hydrolysis of Chickpea Protein%鹰嘴豆分离蛋白酶解过程的电泳分析

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    In this paper,we determined the degree of hydrolysis(DH) of the chickpea protein with three proteolytic enzymes of alcalase,papain and bromelain(domestic)at different times,and analysed the electrophoretic pattern of the hydrolytic products. The result shows that after treated with the proteases for three hours,the chickpea proteins were mostly hydrolysed into oligopeptides,and the DH value(35.42%)of chickpea protein hydrolyzing by the three proteases above-mentioned under each optimum conditions respectively in order was much higher than that of the DH of chickpea protein hydrolyzing by the three proteases simultaneously.%  对国产碱性蛋白酶降解鹰嘴豆分离蛋白的酶解过程及酶解产物的水解度和电泳结果进行了分析研究.结果表明,国产蛋白酶可有效降解鹰嘴豆分离蛋白为小分子蛋白肽;使用碱性蛋白酶、木瓜蛋白酶、菠萝蛋白酶顺序酶解鹰嘴豆分离蛋白3 h 时的水解度可达到35.42%以上,此时绝大多数鹰嘴豆分离蛋白被降解为小分子肽.实验结果为鹰嘴豆蛋白的开发利用与鹰嘴豆的精深加工提供了科学依据.

  1. Investigation of genes encoding calcineurin B-like protein family in legumes and their expression analyses in chickpea (Cicer arietinum L..

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Meena

    Full Text Available Calcium ion (Ca2+ is a ubiquitous second messenger that transmits various internal and external signals including stresses and, therefore, is important for plants' response process. Calcineurin B-like proteins (CBLs are one of the plant calcium sensors, which sense and convey the changes in cytosolic Ca2+-concentration for response process. A search in four leguminous plant (soybean, Medicago truncatula, common bean and chickpea genomes identified 9 to 15 genes in each species that encode CBL proteins. Sequence analyses of CBL peptides and coding sequences (CDS suggested that there are nine original CBL genes in these legumes and some of them were multiplied during whole genome or local gene duplication. Coding sequences of chickpea CBL genes (CaCBL were cloned from their cDNAs and sequenced, and their annotations in the genome assemblies were corrected accordingly. Analyses of protein sequences and gene structures of CBL family in plant kingdom indicated its diverse origin but showed a remarkable conservation in overall protein structure with appearance of complex gene structure in the course of evolution. Expression of CaCBL genes in different tissues and in response to different stress and hormone treatment were studied. Most of the CaCBL genes exhibited high expression in flowers. Expression profile of CaCBL genes in response to different abiotic stresses and hormones related to development and stresses (ABA, auxin, cytokinin, SA and JA at different time intervals suggests their diverse roles in development and plant defence in addition to abiotic stress tolerance. These data not only contribute to a better understanding of the complex regulation of chickpea CBL gene family, but also provide valuable information for further research in chickpea functional genomics.

  2. Integration of Gamma Irradiation and Some Botanical oils To Protect Cowpea And Chickpea Seeds From Infestation With The Bruchid Beetle Callosobruchus Maculatus

    International Nuclear Information System (INIS)

    The lethal effect of gamma radiation doses of 0.75 or 1.0 kGy on the adults Callosobruchus maculates reared on cowpeas and chickpeas were slow during the first and third days post-treatments. By increasing the dose to 1.5 kGy, the values of the percent mortality of adults in both seeds 24 h posttreatment were 53 and 40%, respectively. On the other hand, the dose 2 kGy caused sooner mortality for adults post-treatment for cowpeas. Different concentrations from eight plant oils; lemon grass, pinus sylvestris, parsley, fennel, geranium, peppermint, petitgrain and sweet basil, were used for protection of cowpea and chickpea seeds from infestation by Callosobruchus maculates. The results showed that sweet basil and geranium caused 89 and 79 % larval mortality, respectively, in case of cowpeas at concentration 0.5 % with exposure period of 48 hour while 71.0 and 63.33% adult mortality was occurred at the same concentration of both oils in chickpeas. The latent effects of tested plant oils on adult stage when beetles of C. maculatus were fed on seeds treated with the lowest two concentrations (0.0312, 0.0625%) of tested oils, the number of eggs laid per female was decreased in female exposed to all tested oils especially in case of cowpea treated with sweet basil and lemongrass. Most of the tested oils caused high reduction in larval penetration in both types of seeds. The adult weight was non significantly reduced at all treatments. The use of different plant oils leads to reduction in the progeny comparing to the control and sweet basil or geranium was found to be highly effective in decreasing the percentage of emergence (30 and 40% , respectively). No harmful effect was observed on germination of plant oils treated cowpea and chickpea seeds with concentration 2%.

  3. Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling

    OpenAIRE

    Jaiswal, Dinesh Kumar; Mishra, Poonam; Subba, Pratigya; Rathi, Divya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-01-01

    Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the diff...

  4. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress.

    Science.gov (United States)

    Mridha, Nilimesh; Chattaraj, Sudipta; Chakraborty, Debashis; Anand, Anjali; Aggarwal, Pramila; Nagarajan, Shantha

    2016-09-01

    Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre-sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies. Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes. Seeds exposed to SMF (strength: 100 mT, exposure: 1 h) led to increase in root volume and surface area by 70% and 65%, respectively. This enabled the crop to utilize 60% higher moisture during the active growth period (78-118 days after sowing), when soil moisture became limiting. Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control). Seed pre-treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi-arid regions, helping in augmenting its production. It could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released. Bioelectromagnetics. 37:400-408, 2016. © 2016 Wiley Periodicals, Inc. PMID:27442612

  5. Efficacy of Mentha spicata essential oil in suppression of Aspergillus flavus and aflatoxin contamination in chickpea with particular emphasis to mode of antifungal action.

    Science.gov (United States)

    Kedia, Akash; Dwivedy, Abhishek Kumar; Jha, Dhruva Kumar; Dubey, Nawal Kishore

    2016-05-01

    The present study reports in vivo antifungal and antiaflatoxigenic efficacy of Mentha spicata essential oil (EO) against toxigenic Aspergillus flavus strain LHP(C)-D6 in chickpea food system up to 12 months of storage. In addition, the mode of antifungal action of EO was also determined to understand the mechanism of fungal growth inhibition. The in vivo study with different concentrations of M. spicata EO showed dose-dependent decrease in fungal colony count as well as aflatoxin B1 concentration. The EO caused >50% protection in inoculated sets and >70% protection in uninoculated sets of chickpea food system against A. flavus at 1.0 μL mL(-1) air concentration. However, at the same concentration, EO caused 100% inhibition to aflatoxin B1 production in both sets when analyzed through high-performance liquid chromatography (HPLC). The antifungal target of EO in fumigated cells of A. flavus was found to be the plasma membrane when analyzed through electron microscopic observations and ions leakage test. The EO fumigated chickpea seeds showed 100% seed germination and seedling growth after 12 months of storage. Based on these observations, M. spicata EO can be recommended as plant-based preservative for safe protection of food commodities during storage conditions against fungal and most importantly mycotoxin contaminations. PMID:26338202

  6. SCREENING OF OSMOTIC WATER STRESS TOLERANT CHICKPEA GENOTYPES (CICER ARIETINUM L. ON THE BASIS OF GERMINATION PARAMETERS AND ACCUMULATED SOLUBLE SUGARS AND PROLINE CONTENT

    Directory of Open Access Journals (Sweden)

    Mohsen Boubaker

    2013-06-01

    Full Text Available Eight kabuli chickpea genotypes (Cicer arietinum L. Beja1, Amdoun1, Nayer, Kasseb, Bochra, FLP96-114C, FLP88-42C and Chetoui were germinated, in vitro culture, on Whatman n° 2 filter paper media at four osmotic water pressures: -0,33; -4, -6 and -8 bars as induced by polyethylene glycol (PEG 8000. Osmotic water stress negatively affected germination parameters and enhanced soluble sugars and proline accumulation. Broad genotypic variability of the chickpea cultivars was revealed with respect to osmotic water stress. At -0,33 bars, germination occurred at a high rate and exhibited elevated germinative energy. On the other hand, OWP -8 bars proved too high, as it completely inhibited chickpea germination. Soluble sugars and proline accumulation were proportional to osmotic water pressures. Hierarchical cluster analysis revealed that under high OWP (-6 bars, genotypes Beja1, Amdoun1, Nayer, FLIP96-114C and Chetoui were sensitive to the osmotic water stress; whereas, Kasseb, Bochra and FLIP88-42C were tolerant.

  7. Promoter of CaZF, a chickpea gene that positively regulates growth and stress tolerance, is activated by an AP2-family transcription factor CAP2.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Plants respond to different forms of stresses by inducing transcription of a common and distinct set of genes by concerted actions of a cascade of transcription regulators. We previously reported that a gene, CaZF encoding a C2H2-zinc finger family protein from chickpea (Cicer arietinum imparted high salinity tolerance when expressed in tobacco plants. We report here that in addition to promoting tolerance against dehydration, salinity and high temperature, the CaZF overexpressing plants exhibited similar phenotype of growth and development like the plants overexpressing CAP2, encoding an AP2-family transcription factor from chickpea. To investigate any relationship between these two genes, we performed gene expression analysis in the overexpressing plants, promoter-reporter analysis and chromatin immunoprecipitation. A number of transcripts that exhibited enhanced accumulation upon expression of CAP2 or CaZF in tobacco plants were found common. Transient expression of CAP2 in chickpea leaves resulted in increased accumulation of CaZF transcript. Gel mobility shift and transient promoter-reporter assays suggested that CAP2 activates CaZF promoter by interacting with C-repeat elements (CRTs in CaZF promoter. Chromatin immunoprecipitation (ChIP assay demonstrated an in vivo interaction of CAP2 protein with CaZF promoter.

  8. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Directory of Open Access Journals (Sweden)

    Yash Paul Khajuria

    Full Text Available The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777 of an inter-specific reference mapping population. High amplification efficiency (87%, experimental validation success rate (81% and polymorphic potential (55% of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48% detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%. An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777 having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped

  9. Differential Sensitivity of Macrocarpa and Microcarpa Types of Chickpea (Cicer arietinum L.) to Water Stress: Association of Contrasting Stress Response with Oxidative Injury

    Institute of Scientific and Technical Information of China (English)

    Harsh Nayyar; Smita Singh; Satwinder Kaur; Sanjeev Kumar; Hari D. Upadhyaya

    2006-01-01

    Chickpea (Cicer arietinum L.) is particularly sensitive to water stress at its reproductive phase and, under conditions of water stress, will abort flowers and pods, thus reducing yield potential. There are two types of chickpea: (i) Macrocarpa ("Kabuli"), which has large, rams head-shaped, light brown seeds; and (ii)Microcarpa ("Desi"), which has small, angular and dark-brown seeds. Relatively speaking, "Kabuli" has been reported to be more sensitive to water stress than "Desi". The underlying mechanisms associated with contrasting sensitivity to water stress at the metabolic level are not well understood. We hypothesized that one of the reasons for contrasting water stress sensitivity in the two types of chickpea may be a variation in oxidative injury. In the present study, plants of both types were water stressed at the reproductive stage for 14 d. As a result of the stress, the "Kabuli" type exhibited an 80% reduction in seed yield over control compared with a 64% reduction observed for the "Desi" type. The decrease in leaf water potential (Ψw) was faster in the "Kabuli" compared with the "Desi" type. At the end of the water stress period, Ψ was reduced to -2.9 and -3.1 MPa in the "Desi" and "Kabuli" types, respectively, without any significant difference between them. On the last day of stress, "Kabuli" experienced 20% more membrane injury than "Desi". The chlorophyll content and photosynthetic rate were significantly greater in "Desi"compared with "Kabuli". The malondialdehyde and H2O2 content were markedly higher at the end of the water stress in "Kabuli" compared with "Desi", indicating greater oxidative stress in the former. Levels of anti-oxidants, such as ascorbic acid and glutathione, were significantly higher in "Desi" than "Kabuli".Superoxide dismutase and catalase activity did not differ significantly between the two types of chickpea,whereas on the 10th day, the activities of ascorbate peroxidase, dehydroascorbate reductase, and glutathione

  10. Integrated Management of Damping-off, Root and/or Stem Rot Diseases of Chickpea and Efficacy of the Suggested Formula

    Directory of Open Access Journals (Sweden)

    Montaser Fawzy ABDEL-MONAIM

    2011-08-01

    Full Text Available Eleven fungal isolates were isolated from naturally infected chickpea roots collected from different locations in New Valley Governorate (Egypt. The isolated fungi were purified and identified as Rhizoctonia solani (5 isolates, Fusarium solani (4 isolates and Sclerotinia sclerotiorum (2 isolates. The isolated fungi proved their pathogenicity on cv. �Giza 3�. Response of chickpea cvs. �Giza 1�, �Giza 2�, �Giza 3�, �Giza 4�, �Giza 88�, �Giza 195�, �Giza 531� to infection by the tested fungi was significantly varied. �Giza 1� was the most resistant one followed by �Giza 531�, while the other tested cvs. were highly susceptible. Seven biocontrol agents, namely Bacillus subtilis, B. megaterium, B. cereus, Trichoderma viride, T. harzianum, Aspergillus sp., Penicillium sp. isolated from chickpea rhizosphere, were tested for their antagonistic action against the tested pathogens. B. subtilis isolate BSM1, B. megaterium isolate TVM5, T. viride isolate TVM2 and T. harzianum isolate THM4 were the most antagonistic ones to the tested fungi in vitro, while the other isolates were moderate or weak antagonists. The most antagonistic isolates as well as the commercial biocide Rhizo-N were applied as seed treatment for controlling damping-off, root and/or stem rot diseases caused by the tested fungi under greenhouse conditions. The obtained data showed that all tested antagonistic isolates were able to cause significant reduction of damping-off, root and/or stem rot diseases in chickpea plants. T. viride (isolate TVM2 and B. megaterium (isolate BMM5 proved to be the most effective isolates for controlling the diseases. Under field condition, the obtained data indicated that all the tested antagonistic isolates significantly reduced damping-off, root and/or stem rot. T. viride (isolate TVM2 and B. megaterium (isolate BMM5 recorded the highest reduction of damping-off, root and/or stem rot in all sowing dates. Sowing of

  11. Response of chickpea (cicer arietinum L.) to various levels of phosphorus and rhizobium inoculation under rainfed condition

    International Nuclear Information System (INIS)

    A field experiment was conducted to evaluate the effect of phosphorus (P) levels and Rhizobium inoculation on yield-components and grain-yield of (chickpea c.v. NIFA-88) under rain fed conditions at Arid Zone Research Institute, Dera Ismail Khan, during 2003- 04. The treatments consisted of P levels; 0, 30, 60 and 90 kg ha-I, with and without inoculum. A basal dose of 20 kg ha-l nitrogen was applied just before sowing, at the time of seedbed preparation. The experiment was laid out according to the randomized complete block design, with three replications. The results showed significant variation in number of pods per plant, 1000 seed weight and grain yield, with the application of P and Rhizobium inoculum. The maximum number of pods per plant (25.00) was recorded in the plots receiving 60 kg P/sub 2/ O/sub 5/ h a/sup -l/ plus inoculum, but was statistically at par with the pods produced by the treatment of 90 kg P/sub 2/ O/sub 5/ ha-l plus inoculum (24.67). Phosphorus levels plus inoculum gave 11.87 percent increased number of pods per plant over mere P levels. Similarly, the maximum 1000 seed weight of 197.0 g was recorded at the rate 90 and 60 kg P/sub 2/O/sub 5/ ha-1 plus inoculum and 90 kg P/sub 2/ O/sub 5/ ha-l alone. The highest grain-yield of 1,317 kg ha/sup -l/ was obtained from the treatments where P was applied at the rate 90 and 60 kg ha-I with inoculum. The grain yield was increased 8.54 percent when P levels were applied with inoculums, as compared to Palone, on average basis. Hence, it can be concluded from the study that (I) Rhizobium inoculum application alone can increase yield, and (II) 60 kg P/sub 2/ O/sub 5/ ha-l is the most economical dose to be used with Rhizobium inoculum for obtaining higher grain-yield of chickpea. (author)

  12. Trichoderma harzianum L1 as a potential source for lytic enzymes and elicitor of defense responses in chickpea (Cicer arietinum L. against wilt disease caused by Fusarium oxysporum f. sp. ciceri.

    Directory of Open Access Journals (Sweden)

    Sreeramulu K

    2009-01-01

    Full Text Available The effect of some natural lignocellulosic substances on the production of ß-glucanase, chitinase, protease and xylanase from Trichoderma harzianum L1 has been studied under solid state fermentation conditions. Maximum activities of all these enzymes were observed in the fermentation medium containing the mixture of 1% rice bran, neem cake and 0.1% crab shell powder. The induction of plant defense response was investigated by inoculating the roots of chickpea cv JG62 with the biocontrol agent, T. harzianum L1. A root extract of chickpea inoculated with T. harzianum L1 showed increased activities of phenylalanine ammonia lyase and polyphenol oxidase, as well as induction of new trypsin and chymotrypsin inhibitors. The Fusarium oxysporum protease-2 was inhibited completely by root extract of chickpea inoculated with T. harzianum L1 and showed maximum resistance to rotting of roots caused by wilt disease

  13. Induced genetic variability in chickpea (Cicer arietinum L.) II. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens

    International Nuclear Information System (INIS)

    Comparative mutagenic effectiveness and efficiency of gamma rays and Ethyl methane sulphonate (EMS) were studied in two desi (Pb2000 and C44), one kabuli (Pb1) and one desi x kabuli introgression line (CH40/91) of chickpea. The treatments included two doses each of gamma rays and EMS calculated on the basis of their LD30. The results revealed that EMS was almost seven times more effective and its efficiency was two times higher than that of gamma rays. Mutagenic effectiveness and efficiency were found to depend upon mutagen type and the genotype and both were higher at lower doses of EMS in three genotypes except in desi genotype C44. The overall trend of mutagenic effectiveness and efficiency in both gamma radiation and EMS was in the order i.e. CH40/91 greater than Pb2000 greater than Pb1 greater than C44. The introgression line desi x kabuli genotype was found to be most resistant towards mutagenic treatments than desi and kabuli types

  14. 鹰嘴豆淀粉与玉米淀粉性质的比较%Comparative Study on Properties of Chickpea Starch and Corn Starch

    Institute of Scientific and Technical Information of China (English)

    顾楠; 刘美艳; 赵国华

    2011-01-01

    研究了新疆产鹰嘴豆淀粉的一些基本性质,并与玉米淀粉进行比较,发现鹰嘴豆淀粉中直链淀粉质量分数为31.8%,高于玉米淀粉的直链淀粉质量分数(26.6%);通过电镜扫描发现鹰嘴豆淀粉颗粒表面光滑,形状多数为椭圆形、鹅卵石状,少数为圆形,而玉米淀粉颗粒多为圆形,呈多角状;粒度分析表明鹰嘴豆淀粉的粒径范围是6.39 ~41.80 μm,体积平均粒径是16.77 μn,而玉米淀粉粒径范围是4.02~33.35 μm,体积平均粒径是14.60 μm;鹰嘴豆淀粉持水力、溶解度优于玉米淀粉,透光率低于玉米淀粉;差示扫描量热( DSC)分析发现鹰嘴豆淀粉糊化温度为60.6 ~71.8℃,相变热焓值为7.12 J/g;玉米淀粉糊化温度为65.4~75.1℃,相变热焓值为10.61 J/g.%In this paper, some basic properties of Xinjiang chickpea starch was researched, and then compared with those of corn starch. It has been found that the mass fraction of amylose starch in chickpea starch was 31. 8% , which was higher than that (26.6% ) of the corn starch; by scanning starch granules with an electron microscopy,it was found that chickpea starch grain was smooth in surface, mainly in the form of oval and cobblestone and rarely in round,while the corn starch grain was mainly round with multiple angles. The particle size analysis showed that the particle size of chickpeas starch ranged from 6.39 to 41.80μm,and the volume average particle size was 14.60μm, while those of the corn starch were from 4.02 ~ 33.35μm and 14.60μm respectively. Besides,the water holding capacity and solubility of chickpea starch were better than those of the corn starch, of which the light transmittance was lower than that of the corn starch. The differential scanning calorimetry ( DSC) analysis showed that the gelatinization temperature of the chickpea starch was between 60. 6℃ and 71. 8 ℃,and the phase transition enthalpy value was 7. 12 J/g, while those of the corn starch was

  15. Isolation, identification of antagonistic rhizobacterial strains obtained from chickpea (cicer arietinum l.) field and their in-vitro evaluation against fungal root pathogens

    International Nuclear Information System (INIS)

    Plant growth promoting rhizobacteria (PGPR), are associated with roots, found in the rhizosphere and can directly or indirectly enhance the plant growth. In this study soil was collected from rhizosphere of chickpea fields of different areas of Rawalpindi division of Pakistan. PGPR were isolated, screened and characterized. Eight isolates of rhizobacteria (RHA, RPG, RFJ, RC, RTR, RT and RK) were isolated from Rawalpindi division and were characterized. The antagonistic activity of these PGPR isolates against root infecting fungi (Fusarium oxysporum and Verticillium spp.,) was done and production of indole acetic acid (IAA), siderophore and P-solubilization was evaluated. The isolates RHA, RPG, RFJ, RC, RRD and RT were found to be positive in producing siderophore, IAA and P-solubilization. Furthermore, most of the isolates showed antifungal activity against Fusarium oxysporum, and Verticillium spp. The rhizobacterial isolates RHA, RPG, RFJ, RC, RRD, RTR, RT and RK were used as bio-inoculants that might be beneficial for chickpea cultivation as the rhizobacterial isolates possessed the plant growth promoting characters i.e. siderophore, IAA production, phosphate solubilization. In in vitro tests, Pseudomonas sp. and Bacillus spp. inhibited the mycelial growth of the fungal root pathogens. The isolates (RHA and RPG) also significantly increased (60-70%) seed germination, shoot length, root length of the chickpea. The incidence of fungi was reduced by the colonization of RHA and RPG which enhanced the seedling vigor index and seed germination. The observations revealed that isolates RHA and RPG is quite effective to reduce the fungal root infection in greenhouse, and also increases seed yields significantly. These rhizobacterial isolates appear to be efficient yield increasing as well as effective biocontrol agent against fungal root pathogen. (author)

  16. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches.

    Science.gov (United States)

    Thudi, Mahendar; Upadhyaya, Hari D; Rathore, Abhishek; Gaur, Pooran Mal; Krishnamurthy, Lakshmanan; Roorkiwal, Manish; Nayak, Spurthi N; Chaturvedi, Sushil Kumar; Basu, Partha Sarathi; Gangarao, N V P R; Fikre, Asnake; Kimurto, Paul; Sharma, Prakash C; Sheshashayee, M S; Tobita, Satoshi; Kashiwagi, Junichi; Ito, Osamu; Killian, Andrzej; Varshney, Rajeev Kumar

    2014-01-01

    To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions) for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1-7 seasons and 1-3 locations in India (Patancheru, Kanpur, Bangalore) and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia). Diversity Array Technology (DArT) markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations (r2; when r2<0.20) was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs), both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs]) and phenotyping data mentioned above employing mixed linear model (MLM) analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70) was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP) were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance. PMID:24801366

  17. Interaction between seed size and NaCl on germination and early seedling growth of some Turkish cultivars of chickpea (Cicer arietinum L.)

    Institute of Scientific and Technical Information of China (English)

    Muharrem KAYA; Gamze KAYA; Mehmet Demir KAYA; Mehmet ATAK; Sevil SAGLAM; Khalid Mahmood KHAWAR; Cemalettin Yasar CIFTCI

    2008-01-01

    Chickpea is an important food legume crop of Turkey and is largely grown for human consumption on low moisture or salt-affected soils.The objective of the study was to find the effects of NaCl stress at electrical conductivities of 4.5,8.6,12.7 and 16.3 dS/m and seed sizes (7,8 and 9 mm) on germination and early seedling growth of three popular chickpea cultivars (AKN-97,Gokce and Uzunlu-99).Mean frequency of germination,germination time,germination index,root length,shoot length and seedling fresh weight showed seed size-dependent responses of cultivars to salt stress.In general,small seeds germinated and grew more rapidly compared to medium and large seeds of the same cultivars against all levels of salt stress,with the best results in cultivar Uzunlu-99.No effect of NaCl treatments was observed on frequency of germination; however,a drastic decrease in early seedling growth was recorded at increased NaCl concentrations.Regression analysis results showed a significantly positive rela-tionship (P<0.01) between seed size and mean germination time,whereas a significantly negative relationship was recorded between seed size and germination index,root length,shoot length.Moreover,linear regression values apparently confirmed that increased seed size in each cultivar affected decreased germination index,root and shoot lengths with enhanced mean germination time.Thus,it was concluded that the use of small seeds could considerably reduce the production costs of chickpea in salt-affected soils.

  18. Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches.

    Directory of Open Access Journals (Sweden)

    Mahendar Thudi

    Full Text Available To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1-7 seasons and 1-3 locations in India (Patancheru, Kanpur, Bangalore and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia. Diversity Array Technology (DArT markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD estimated using the squared-allele frequency correlations (r2; when r2<0.20 was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs, both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs] and phenotyping data mentioned above employing mixed linear model (MLM analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70 was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance.

  19. 鹰嘴豆分离蛋白的酶解工艺研究%Study on the Enzyme Hydrolysis of Chickpea Protein

    Institute of Scientific and Technical Information of China (English)

    陈晓飞; 李锋; 周伏忠; 孙玉飞; 陈国参

    2013-01-01

    To increase the DH of chickpea protein, and provide the basis for industrialization of the enzymatic production of chickpea producing oligopeptides, the optimal condition for alcalase hydrolysis of chickpea protein was studied. The degree of hydrolysis (DH) was determined according to the pH-state method. Through a single-factor test and an orthogonal designed experiment, the alcalase hydrolysis of chickpea protein was systematically studied. Then, the three proteases of alcalase,papain and bromelain commonly hydrolyzing chickpea protein was carried out to increase the DH of chickpea protein. The results showed that the obtained optimum hydrolysis with alcalase condition was pH 8.5, temperature (T) 55℃, concentration of substrate [S] 2%, and ratio of enzyme and substate ([E]/[S]) 2%. Under this condition, the degree of hydrolysis (DH) was 27.86%. Under each optimum conditions of the three proteases respectively (The obtained optimum hydrolysis condition of alcalase was pH 8.5, temperature (T) 55℃, concentration of substrate [S] 2%, and ratio of enzyme and substate ([E]/[S]) 2%. The obtained optimum hydrolysis condition of papain and bromelain was pH 7.2, temperature (T) 55℃, concentration of substrate [S] 2%, and ratio of enzyme and substate ([E]/[S]) 2%), the chickpea protein hydrolyzing by the alcalase, papain and bromelain in turn was carried out, and the DH could reach 34.64%. The DH of chickpea protein hydrolyzing by the three proteases above-mentioned under each optimum condition respectively in turn was much higher than that of the DH of chickpea protein hydrolyzing by the three proteases simultaneously. Furthermore, the yield of oligopeptides was significantly improved.%研究鹰嘴豆分离蛋白的酶解工艺,提高鹰嘴豆蛋白水解度,为鹰嘴豆酶解生产短肽的产业化提供依据。用pH-state法计算蛋白水解度,首先通过单因素试验和正交试验,得出碱性蛋白酶水解鹰嘴豆蛋白的最佳反应条件,

  20. The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea

    OpenAIRE

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Alekhya, Gottumukkala; Prakash, Bandikinda; Kudapa, Himabindu; Rathore, Abhishek; Varshney, Rajeev Kumar

    2015-01-01

    The physiological and molecular responses of five strains of Streptomyces sp. (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), with their proven potential for charcoal rot disease control in sorghum and plant growth-promotion (PGP) in sorghum and rice, were studied to understand the mechanisms causing the beneficial effects. In this investigation, those five strains were evaluated for their PGP capabilities in chickpea in the 2012–13 and 2013–14 post-rainy seasons. All of the Streptomyces sp. str...

  1. Agronomic Importance of First Development of Chickpea (Cicer arietinum L.) Under Semi-arid Conditions: I. Effect of Powder Humic Acid

    OpenAIRE

    N. Bayraktar; Ulukan, H; N. Kocak

    2012-01-01

    Due to slow growth and weakness of the first development of chickpea (Cicer arietinum L.) plant could not combatted with weeds and easily get caught up by Ascochyta blight (Ascochyta rabiei (Pass) Labr.) disease; esp. under the late sowing and semi-arid conditions, due to effect of biotic and abiotic stress factors, significant yield losses could be arised. To be able to avoid from them is only possible to accelerate the first development of this crop. So, one of the best solutions is to use ...

  2. Agronomic Importance of First Development of Chickpea (Cicer arietinum L.) Under Semi-arid Conditions: II. Seed Imbibition

    OpenAIRE

    A. Oksel; N. Bayraktar; Ulukan, H; Gursoy, M; N. Kocak

    2012-01-01

    Due to the slowness growth and weakness of the first developments of chickpea (Cicer arietinum L.), it could not combated with weeds and easiliy caught up by Ascochyta blight (Ascochyta rabiei (Pass) Labr.) disease. Additionally, due to biotic and abiotic stress factors, esp. at the late sowing, important seed yield losses could be happened. To be able to avoid from them is only possible to accelerate of its first development as possible as. So, one of the best solutions to is to use chemical...

  3. Evaluation of some chemical and technological properties of induced erect chickpea mutant lines developed under drought stressed conditions

    International Nuclear Information System (INIS)

    Seeds of the chickpea variety Flip 99-47 C were treated with gamma rays at doses of 0, 50 and 75 Gy and sown in the winter season of 2004/2005 to raise M1 generation under ordinary (normal) irrigation conditions. Bulked seeds from each treatment were planted in the subsequent growing seasons of 2005/2006 and 2006/2007 to advance M2 and M3 generations, respectively under either ordinary (normal) irrigation or drought stress condition. In the third generation, three erect mutant lines were derived from 75 Gy mutagenic treatment under drought stress compared to semi spreading growth habit of the initiated variety Flip 99-47 C. In the winter season of 2007/2008, M4 bulked seeds from the three erect lines as well as unirradiated seeds of the original variety grown under either ordinary (normal) irrigation (2152.5 m3/fad.) or drought (1159.2 m3/fad.) conditions were analyzed for the chemical composition and nutritional values. Obtained results indicated that there were slight decreases in protein and fat contents accompanied with marginal increases in both ash and carbohydrates in seed samples of the erect mutant developed under drought stress as compared to unirradiated seeds of the original variety grown under ordinary (normal) irrigation treatment. An opposite trend was noticed between seed samples derived from the erect lines compared to seeds of the parent variety developed under drought condition. Negligible changes in levels of the minerals (iron, magnesium, calcium and phosphorus) were detected between seeds of the erect lines and the original variety that grown under either ordinary (normal) irrigation or drought conditions. Cooking time (min) and hydration coefficient values did not much differ between the three tested seed samples. Marginal differences in essential and non-essential amino acids were detected between seeds of the erect mutants and those of the initial variety grown under ordinary (normal) irrigation or drought stressed conditions

  4. From chickpeas to oil. The keys to fifteen years of hispanic-mexican economic relations (1977-1992

    Directory of Open Access Journals (Sweden)

    Santiago Forcada

    1993-07-01

    Full Text Available This article intends to analyse the evolution of economic relations between Spain and Mexico from the reestablishment of diplomatic relations taking into account both the keys to this evolution and its changes. The authors highlight three distinct periods : a boom between 1977 and 1981 ; a relapse between 1982 and 1986 and a recovery between 1987 and 1992. This division into periods takes note of an initial spectacular increase in which bilateral exchanges were multiplied up to 33 times. A five year period in which oil replaced chickpeas as the main product bought in Mexico (up to four-fifths of the total volume and in which Spanish exports multiplied themselves ten times over. Already from this first phase, the commercial balance was clearly in favour of Mexico, a fact more striking during the second period, during which Spanish imports fell up to 50% but whileher exports were reduced by two-thirds. The key was the fall in the price of oil. The continuity of Spanish oil buying in Mexico however precipitated the recovery of the third period which coincided with the signing of the General Friendship and Cooperation Agreement between both countries. In 1992 Spain regained second place as a customer of Mexico behind the United States while the joint political policies coincide in pointing out that these are two reciprocal pathways to both the EC and US markets. The authors however, sustain that the global evolution of economic blocks does not favour this vision bearing in mind that the composition of and leadership in trade between such blocks will be governed, basically, by the strategies deployed by transnational companies.

  5. Conjoint effect of oil-seed cakes and Pseudomonas fluorescens on the growth of chickpea in relation to the management of plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Rose Rizvi

    2012-12-01

    Full Text Available Soil application of organics has been explored as an alternative means of organic management of plant-parasitic nematodes. Efficiency of different oil-seed cakes of neem (Azadirachta indica, castor (Ricinus communis, groundnut (Arachis hypogaea, linseed (Linum usitatissimum, sunflower (Helianthus annuus and soybean (Glycine max were evaluated in field conditions with association of Pseudomonas fluorescens in relation to growth parameters of chickpea and population of plant-parasitic nematodes. Their efficacious nature was highly effective in reducing the population of these dominant soil nematodes. Significant improvement was observed in plant-growth parameters such as plant weight, percent pollen fertility, pod numbers, root-nodulation and chlorophyll content of chickpea, seemed to be due to reduction in disease incidence and might be due to growth promoting substances secreted by P. fluorescens. The multiplication rate of nematodes was less in the presence of P. fluorescens as compared to its absence. Most effective combination of P. fluorescens was observed with neem cake.

  6. Purification, crystallization and X-ray characterization of a Kunitz-type trypsin inhibitor protein from the seeds of chickpea (Cicer arietinum)

    International Nuclear Information System (INIS)

    The purification, characterization and crystallization of a trypsin inhibitor protein isolated from chickpea seeds are reported. A Kunitz-type trypsin inhibitor protein (CPTI) purified from chickpea seeds was estimated to have a molecular mass of 18 kDa on SDS–PAGE. The IC50 value of CPTI was determined to be 2.5 µg against trypsin. The inhibitory activity of CPTI is 114 TIU (trypsin inhibitory units) per milligram of protein, which is high compared with those of other known Kunitz-type trypsin inhibitors from legumes. CPTI crystallized in three different orthorhombic crystal forms: P21212 form A, P21212 form B and P212121. The crystals of P21212 form A, with unit-cell parameters a = 37.2, b = 41.2, c = 104.6 Å, diffracted to 2.0 Å resolution at the home source and to 1.4 Å on beamline BM14 at the ESRF. Data were also collected from crystals grown in the presence of iodine. The Matthews coefficient for these crystals was calculated to be 2.37 Å3 Da−1, corresponding to a solvent content of 42%. The other two crystal forms (P21212 form B and P212121) diffracted comparatively poorly

  7. Development and application of sequence-tagged microsatellite site (STMS) markers in chickpea (Cicer arietinum), banana (Musa spp.) and their major pathogens, Ascochyta rabiei and Mycosphaerella fijiensis

    International Nuclear Information System (INIS)

    DNA markers of various kinds have found widespread application in many facets of plant breeding and plant pathogen control. Yet another marker type, sequence-tagged microsatellite (STMS) markers, provides the markers of choice for nearly every crop because of their co-dominant nature, reliability, ease of application and high polymorphic information content. We report here on the development of a whole set of STMS markers and the respective, selected primer sequences for two important crops, chickpea (Cicer arietinum L.) and banana (Musa acuminata), and for their most devastating fungal pathogens, Ascochyta rabiei and Mycosphaerella fijiensis, respectively. These markers were generated either by direct screening of size-selected genomic libraries with microsatellite-complementary oligonucleotides, or by enrichment of DNA fragments containing microsatellite sequences. A total of 69 markers for chickpea, 15 markers for M. acuminata, 19 markers for A rabiei and 11 markers for M. fijiensis, selected on the basis of their high information content and ease of use are presented here. These can be applied for mapping of the respective genomes, for various population studies, and cultivar and isolate identification. We further demonstrate that several of these markers can potentially be applied across species boundaries and thus could increase the marker repertoire also for other species of the genus Cicer, Musa and for Ascochyta-type pathogens of bean, and potentially also of lentil and pea. (author)

  8. Dry matter yield, carbon isotope discrimination and nitrogen uptake in silicon and/ or potassium fed chickpea and barley plants grown under water and non-water stress conditions

    International Nuclear Information System (INIS)

    A pot experiment was conducted to study the effects of silicon (Si) and/or potassium (K) on dry matter yield, nitrogen uptake and carbon isotope discrimination Δ 13C in water stressed (FC1) and well watered (FC2) chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200) and one fertilizer rate of K were used. The results showed that: In chickpeas, it was found, for most of the growth parameters, that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of most studied parameters. The Si100K+ (FC1) and Si50K+ (FC2) treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leaves dry matter in response to the solely added Si (Si50K- and Si100K-) is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE). Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be considered as an important element for the symbiotic performance of chickpea plants. It can be concluded that synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.In barley plants, solely added K or in combination with adequate rate of Si (Si100) were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing higher spike's N yield. Solely

  9. Spectrum of morphological mutations induced by separate and simultaneous application of gamma rays with GA3 in chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Three chickpea genotypes viz., Noor 91 (white), Punjab 91 (brown) and C 141 (black) were treated with 40, 50 and 60 Kr doses of gamma irradiation separately and post mutagenically with gibberellic acid (GA3) to create genetic variability. M2 progenies of these treatments were raised from M1 seeds in plant to family manner. The results indicated that induced mutability is governed by the genetic architecture of the material used. Various morphological mutations induced affecting plant height, growth habit, branching and stem structure, stem and foliage colour, leaf type, flowering and maturity, pod and seed type. There were differences between the genotypes and between the two types of treatments. Frequency of these mutants increased with gamma irradiation in Noor 91 and C 141 while, with GA3 it tended to increase in the three genotypes

  10. The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea.

    Science.gov (United States)

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Alekhya, Gottumukkala; Prakash, Bandikinda; Kudapa, Himabindu; Rathore, Abhishek; Varshney, Rajeev Kumar

    2015-01-01

    The physiological and molecular responses of five strains of Streptomyces sp. (CAI-17, CAI-68, CAI-78, KAI-26 and KAI-27), with their proven potential for charcoal rot disease control in sorghum and plant growth-promotion (PGP) in sorghum and rice, were studied to understand the mechanisms causing the beneficial effects. In this investigation, those five strains were evaluated for their PGP capabilities in chickpea in the 2012-13 and 2013-14 post-rainy seasons. All of the Streptomyces sp. strains exhibited enhanced nodule number, nodule weight, root weight and shoot weight at 30 days after sowing (DAS) and pod number, pod weight, leaf area, leaf weight and stem weight at 60 DAS in both seasons over the un-inoculated control. At crop maturity, the Streptomyces strains had enhanced stover yield, grain yield, total dry matter and seed number plant(-1) in both seasons over the un-inoculated control. In the rhizosphere, the Streptomyces sp. also significantly enhanced microbial biomass carbon, dehydrogenase activity, total nitrogen, available phosphorous and organic carbon in both seasons over the un-inoculated control. Of the five strains of Streptomyces sp., CAI-17, CAI-68 and CAI-78 were superior to KAI-26 and KAI-27 in terms of their effects on root and shoot development, nodule formation and crop productivity. Scanning electron microscopy (SEM) micrographs had revealed the success in colonization of the chickpea roots by all five strains. Quantitative real-time PCR (qRT-PCR) analysis of selected PGP genes of actinomycetes revealed the selective up-regulation of indole-3-acetic acid (IAA)-related and siderophore-related genes by CAI-68 and of β-1,3-glucanase genes by KAI-26. PMID:25646153

  11. Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Calasso, Maria; Campanella, Daniela; De Angelis, Maria; Gobbetti, Marco

    2014-06-16

    This study aimed at investigating the addition of legume (chickpea, lentil and bean) flours to wheat flour bread. Type I sourdough containing legumes or wheat-legume flours were prepared and propagated (back slopped) in laboratory, according to traditional protocols that are routinely used for making typical Italian breads. Based on kinetic of acidification and culture-dependent data, the wheat-legume sourdough was further characterized and selected for bread making. As determined by RAPD-PCR and partial sequencing of 16S rDNA gene analyses, lactic acid bacteria in wheat-legume sourdough included Lactobacillus plantarum, Lactobacillus sanfranciscensis, Leuconostoc mesenteroides, Lactobacillus fermentum, Weissella cibaria, Lactobacillus pentosus, Lactobacillus coryneformis, Lactobacillus rossiae, Lactobacillus brevis, Lactobacillus parabuchneri and Lactobacillus paraplantarum. Two breads containing 15% (w/w) of legume (chickpea, lentil and bean) flours were produced using selected wheat-legume sourdough (WLSB) and traditional wheat sourdough (WSB). Compared to wheat yeasted bread (WYB), the level of total free amino acids (FAA) was higher in WSB and WLSB. Phytase and antioxidant activities were the highest in WLSB. Compared to bread WYB, the addition of legume flours decreased the in vitro protein digestibility (IVPD) (WYB versus WSB). However, the dough fermentation with WSLB favored an increase of IVPD. According to the levels of carbohydrates, dietary fibers and resistant starch, WSB and WLSB showed lower values of hydrolysis index (HI) compared to WYB. As showed by texture and image analyses and sensory evaluation of breads, a good acceptability was found for WSB and, especially, WLSB breads. PMID:24794619

  12. Correlation between differential drought tolerability of two contrasting drought-responsive chickpea cultivars and differential expression of a subset of CaNAC genes under normal and dehydration conditions

    OpenAIRE

    Nguyen, Kien Huu; Van Ha, Chien; Watanabe, Yasuko; Tran, Uyen Thi; Nasr Esfahani, Maryam; Nguyen, Dong; Tran, Lam-Son Phan

    2015-01-01

    Drought causes detrimental effect to growth and productivity of many plants, including crops. NAC transcription factors have been reported to play important role in drought tolerance. In this study, we assessed the expression profiles of 19 dehydration-responsive CaNAC genes in roots and leaves of two contrasting drought-responsive chickpea varieties treated with water (control) and dehydration to examine the correlation between the differential expression levels of the CaNAC genes and the di...

  13. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L..

    Directory of Open Access Journals (Sweden)

    Mahendar Thudi

    Full Text Available Chickpea (Cicer arietinum L. is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR markers from bacterial artificial chromosome (BAC-end sequences (BESs and diversity arrays technology (DArT markers, and to construct a high-density genetic map based on recombinant inbred line (RIL population ICC 4958 (C. arietinum×PI 489777 (C. reticulatum. A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/. The number of markers per linkage group ranged from 68 (LG 8 to 218 (LG 3 with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes.

  14. Investigation the Effects of Different Doses Organic Fertilizers and Phosphate Solubilizing Bacterias on Yield and Nutrient Contents in Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Ferit SÖNMEZ

    2015-07-01

    Full Text Available The study was conducted to determine the effect of phosphate solubilizing bacteria (N2; Bacillus megaterium M-3, TV-6I; Cellulosimicrobium cellulans, TV-34A; Hafnia Alve, TV-69E; Acetobacter pasteurianus and TV-83F; Bacillus cereus and organic fertilizer (0, 10 and 20 ton / ha on the seed yield and nutrient content of chickpea under field conditions in 2010 and 2011 growing seasons. Phosphate solubilizing bacteria used in this study were determined by the separate investigation conducted in chamber room by using ten phosphate solubilizing bacteria and organic fertilizer (control, %5,%10. The tiral were laid out with a factorial design in randomized complete block with three replications. In this study, plant height, primary branches, secondary branches and number of pods per plant, number of seeds per pod, grain yield and biological yield and nutrient content of stem and seed were determined. According to the results of the study bacteria applications increased significantly biological and seed yield. Bacteria applications without organic fertilizer increased nutrient contents of seed and steed except cupper content. In case of inoculation with organic fertilizer provided more increases in biological and seed yields. The highest seed yield were obtained from application of 20 ton/ha + N2 (Bacillus megaterium M-3 with 1020 kg/ha and 1793 kg/ha in 2010 and 2011 years, respectively. Bacteria without organic fertilizer application were more active in terms of phosphorus uptake in both years. 

  15. Contribution of applied and soil phosphorus and sulphur in chickpea (Cicer arietinum L.) as influenced by Fe and Rhizobium inoculation in a Typic haplustept

    International Nuclear Information System (INIS)

    In an experiment with a test crop of chickpea during rabi, 1999-2000 the influence of P, S and Fe on the uptake of P and S was assessed using isotopic tracers (32P and 35S). It was found that the dry matter production increased by the application of phosphorus at 60 kg P2O5 ha-1 in both with and without Rhizobium inoculation and the combined application of P and Fe produced higher dry matter of both shoot and roots with inoculation. An assessment of the radioassay of applied phosphate and sulphate showed lower values of per cent derived from fertilizer in respect of both P and S. However, the values of phosphorus derived from fertilizer (Pdff) were comparatively higher due to combined application of P, S and Fe and those for sulphur due to phosphorus and sulphur only. The contribution of phosphorus from soil was more due to combined application of phosphorus and sulphur against the inoculation treatment, whereas, the contribution of phosphorus from fertilizer was observed to be improved due to applied phosphorus and iron along with the inoculation. Contribution of soil source for sulphur uptake increased with the application of sulphur along with iron or phosphorus both with and without inoculation. (author)

  16. Agronomic Importance of First Development of Chickpea (Cicer arietinum L. Under Semi-arid Conditions: I. Effect of Powder Humic Acid

    Directory of Open Access Journals (Sweden)

    N. Bayraktar

    2012-01-01

    Full Text Available Due to slow growth and weakness of the first development of chickpea (Cicer arietinum L. plant could not combatted with weeds and easily get caught up by Ascochyta blight (Ascochyta rabiei (Pass Labr. disease; esp. under the late sowing and semi-arid conditions, due to effect of biotic and abiotic stress factors, significant yield losses could be arised. To be able to avoid from them is only possible to accelerate the first development of this crop. So, one of the best solutions is to use of “soil conditioner” chemical compounds such as HA at optimum dose. With this aim, it was established in order to find out the optimum dose range of HA. Three doses (D0 = 0 g, D1 = 100 g and D2 = 200 g, four varieties (V1 = Er–99, V2 = Gökçe, V3 = ILC-482 and V4 = Australia and five yield components (Plant Height (PH, First pod height (FPH, Number of Branches per Plant (NBP, Number of Pods per Plant (NPP and Number of seeds per pod (NSP were investigated. Obtained results are: Recommended (Optimum HA doses and interactions were ranged and found as (V4>V2=V3>V1; (D2>D0=D1; (D1xV4 for the PH and FPH, (D2xV3 for the NBP and (D1xV3 for the NPP, respectively. It was concluded that when the recommended HA dose applied, it was seen that the first development has been clearly accelerated and increased under the semi-arid conditions in terms of investigated traits and cultivars.

  17. Agronomic importance of first development of chickpea (Cicer arietinum L.) under semi-arid conditions: I. Effect of powder humic acid.

    Science.gov (United States)

    Ulukan, H; Bayraktar, N; Koçak, N

    2012-02-15

    Due to slow growth and weakness of the first development of chickpea (Cicer arietinum L.) plant could not combatted with weeds and easily get caught up by Ascochyta blight (Ascochyta rabiei (Pass) Labr.) disease; esp. under the late sowing and semi-arid conditions, due to effect of biotic and abiotic stress factors, significant yield losses could be arised. To be able to avoid from them is only possible to accelerate the first development of this crop. So, one of the best solutions is to use of "soil conditioner" chemical compounds such as HA at optimum dose. With this aim, it was established in order to find out the optimum dose range of HA. Three doses (D0 = 0 g, D1 = 100 g and D2 = 200 g), four varieties (V1 = Er-99, V2 = Gökçe, V3 = ILC-482 and V4 = Australia) and five yield components Plant Height (PH), First pod height (FPH), Number of Branches per Plant (NBP), Number of Pods per Plant (NPP) and Number of seeds per pod (NSP) were investigated. Obtained results are: Recommended (Optimum) HA doses and interactions were ranged and found as (V4 > V2 = V3 > V1); (D2 > D0 = D1); (D1 x V4) for the PH and FPH, (D2 x V3) for the NBP and (D1 x V3) for the NPP, respectively. It was concluded that when the recommended HA dose applied, it was seen that the first development has been clearly accelerated and increased under the semi-arid conditions in terms of investigated traits and cultivars. PMID:22816179

  18. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.)

    Science.gov (United States)

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Abd_Allah, Elsayed F.; Hashem, Abeer; Sarwat, Maryam; Anjum, Naser A.; Gucel, Salih

    2016-01-01

    This work examined the role of exogenously applied calcium (Ca; 50 mM) and potassium (K; 10 mM) (alone and in combination) in alleviating the negative effects of cadmium (Cd; 200 μM) on growth, biochemical attributes, secondary metabolites and yield of chickpea (Cicer arietinum L.). Cd stress significantly decreased the length and weight (fresh and dry) of shoot and root and yield attributes in terms of number of pods and seed yield (vs. control). Exhibition of decreases in chlorophyll (Chl) a, Chl b, and total Chl was also observed with Cd-exposure when compared to control. However, Cd-exposure led to an increase in the content of carotenoids. In contrast, the exogenous application of Ca and K individually as well as in combination minimized the extent of Cd-impact on previous traits. C. arietinum seedlings subjected to Cd treatment exhibited increased contents of organic solute (proline, Pro) and total protein; whereas, Ca and K-supplementation further enhanced the Pro and total protein content. Additionally, compared to control, Cd-exposure also caused elevation in the contents of oxidative stress markers (hydrogen peroxidase, H2O2; malondialdehyde, MDA) and in the activity of antioxidant defense enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR). Ca, K, and Ca + K supplementation caused further enhancements in the activity of these enzymes but significantly decreased contents of H2O2 and MDA, also that of Cd accumulation in shoot and root. The contents of total phenol, flavonoid and mineral elements (S, Mn, Mg, Ca and K) that were also suppressed in Cd stressed plants in both shoot and root were restored to appreciable levels with Ca- and K-supplementation. However, the combination of Ca + K supplementation was more effective in bringing the positive response as compared to individual effect of Ca and K on Cd-exposed C. arietinum. Overall, this investigation suggests that application of Ca and/or K can

  19. Allelopathic effects of aqueous and organic fractions of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea and wheat Efectos alelopáticos de fracciones acuosas y orgánicas de Euphorbia dracunculoides Lam. sobre la germinación y crecimiento de plántulas de garbanzo y trigo

    OpenAIRE

    Asif Tanveer; Muhammad Kamran Jabbar; Abdul Kahliq; Amar Matloob; Rana Nadeem Abbas; Muhammad Mansoor Javaid

    2012-01-01

    Identification of weed species with allelopathic potential and characterization of their adverse effects against associated crops is required for better understanding of weed-crop interactions. Phytotoxic activity of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea (Cicer arietinum L.) and wheat (Triticum aestivum L.) was investigated under controlled conditions. Two separate studies were done with each of four organic solvent fractions (n-hexane, chloroform, ethyl...

  20. KASTAMONU SARIMSAĞININ (Allium sativum L.) SELEKSİYON YOLUYLA ISLAHI VE SEÇİLEN KLONDA IŞINLAMA YOLUYLA MUTASYON YARATMA

    OpenAIRE

    BEŞİRLİ, Gülay

    2005-01-01

    Bu çalışma, Kastamonu sarımsağından, klon seleksiyonu yoluyla çeşit geliştirmek ve çeşit adayında ışınlama yoluyla genetik değişim yaratmak amacıyla yapılmıştır. Araştırma, 1995-2000 yılları arasında Yalova koşullarında yürütülmüştür. Üç yıllık seleksiyon çalışmasında toplam 3 163 klon incelenmiştir. Yapılan incelemeler sonucunda bitki boyu, yaprak açısı, yaprak sayısı, yaprak eni, baş çapı, baş yüksekliği, baş ağırlığı, kabuk sayısı, diş sayısı, diş ağırlığı ve iri diş oranı özellikleri yönü...

  1. Alterações químicas e nutricionais do grão-de-bico (Cicer arietinum L. cru irradiado e submetido à cocção Nutritional and chemical alteration of raw, irradiated and cooked chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Andréa Cristina Penati Ferreira

    2006-03-01

    Full Text Available O presente trabalho teve por objetivos analisar, em grãos não submetidos à irradiação, a composição centesimal e mineral, para verificar as alterações provocadas pela cocção. Em grãos crus e cozidos, não irradiados (controle e irradiados (doses de 2, 4, 6, 8 e 10 kGy, foram realizadas também as análises de: disponibilidade de ferro in vitro, digestibilidade da proteína in vitro e perfil de aminoácidos. Os resultados das análises dos minerais demonstraram que ocorreu diminuição significativa (pThe work objective was analyzing, in chickpea seeds not irradiated, the centesimal and mineral composition to verifying the alterations on the nutritional characteristics caused by the cooking process. Also were carried out analysis of the iron availability in vitro, protein digestibility in vitro and the profile of amino acids in the raw and cooked in the control and irradiated seeds (doses of 2, 4, 6, 8 and 10 kGy. The results of the mineral analysis showed that only phosphorus decrease significantly (p<0.05 with cooking process. At the centesimal composition, ash and carbohydrates available decreased significantly (p<0,05. In the control and in the doses of 4 and 6 kGy the cooking hasn't influenced the digestibility of the protein, but the treatments that received radiation doses of 2, 8 and 10 kGy were influenced. The cooked chickpea has shown better digestibility in higher doses of radiation although the treatments have shown low digestibility. The raw chickpea presented a better dialysis of iron in the control and in the doses 2 and 4 kGy and the cooked chickpea presented improvement according to the increase of radiation doses. In relation to essential amino acids, chickpea has presented an adequate nutritional value, except for methionine.

  2. Comparative study on the induction of defense related enzymes in two different cultivars of chickpea (Cicer arietinum L genotypes by salicylic acid, spermine and Fusarium oxysporum f. sp. ciceri

    Directory of Open Access Journals (Sweden)

    S. Raju

    2008-11-01

    Full Text Available Induction of some defense related enzymes and phenolics in roots and shoots of two different genotypes of chickpea cultivars which were susceptible (L550 and resistant (ICCV10 to wilt disease treated with salicylic acid, spermine (Spm, SA+Spm and Fusarium oxysporum f. sp. ciceri was investigated. Higher levels of polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, ß-1, 3-glucanase (PR-2 and phenolics were observed in roots and shoots of resistant cultivar than that of susceptible cultivar on treatment with elicitors and pathogen. However, no major changes were observed in susceptible cultivar after the treatments. ß-1, 3-glucanase is constitutively present and is further induced in roots and shoots of resistant cultivar by F. oxysporum f. sp. ciceri. No induction of ß-1, 3-glucanase was observed in susceptible cultivar. The structural changes during disease progression were observed by histochemical staining. However, the pathogen invasion was more in susceptible cultivar compared with resistant cultivar. Further, the invasion was restricted in roots of resistant cultivar treated with SA. These results suggest that induction of defense proteins and accumulation of phenolics might have contributed to restrict the invasion of F.oxysporum f. sp. ciceri, in resistant cultivar ICCV10.

  3. Crystal Structure of Mg(2+) Containing Hemopexin-Fold Protein from Kabuli Chana (Chickpea-White, CW-25) at 2.45 Å Resolution Reveals Its Metal Ion Transport Property.

    Science.gov (United States)

    Kumar, Suresh; Singh, Avinash; Yamini, Shavait; Dey, Sharmistha; Singh, T P

    2015-08-01

    Plant seeds contain a number of proteins which play important roles in the protection and the process of germination of seeds. We have isolated and purified a 25 kDa protein from Kabuli Chana (Cicer arietinum L., Chickpea-white, CW-25). The CW-25 protein was crystallized using 0.5 M magnesium acetate, 0.1 M sodium cacodylate and 20 % (w/v) polyethylene glycol 8000, pH 6.5. The crystals of CW-25 belonged to space group P3 with unit cell dimensions, a = b = 80.5 Å, and c = 69.2 Å. The structure of CW-25 was determined using molecular replacement method and refined to an R factor of 0.152. The buried surface area between two molecules was found to be approximately 653 Å(2) indicating the formation of a weak homodimer. The polypeptide chain of CW-25 adopted a hemopexin-fold with four-bladed β-propellers. The structure formed a central tunnel-like architecture. A magnesium ion was observed in the centre of the tunnel. It was located at distances varying between 2.3 and 2.7 Å from five oxygen atoms of which four were backbone oxygen atoms belonging to residues, Asn7, Asp65, Asp121 and Asp174 while the fifth oxygen atom, O(δ1) was from the side chain of Asn7. The approximate length of the tunnel was 30 Å. Furthermore, a series of carbonyl oxygen atoms were present along the internal face of the tunnel. The diameter of the tunnel varied from 4.6 to 6.2 Å. The diameter and chemical environment of the tunnel clearly indicated that it might be used for the transport of various metal ions across the molecule. PMID:26242869

  4. Abundancia y riqueza específica de pulgones (Hemiptera: Aphididae y sus parasitoides en diferentes genotipos y estados fenologicos del garbanzo Species richness and abundance of aphids (Hemiptera: Aphididae and their parasitoids in different genotypes and at different growth stages of chickpea

    Directory of Open Access Journals (Sweden)

    V. E. Mazzuferi

    2011-12-01

    Full Text Available Los áfidos son insectos perjudiciales tanto por la succión de savia como por la transmisión de enfermedades. Los objetivos de este trabajo fueron conocer las especies de áfidos y sus parasitoides presentes en diferentes genotipos de garbanzo, calcular la incidencia del parasitismo e informar sobre las fluctuaciones poblacionales de pulgones y parasitoides en relación a los estados fenológicos del cultivo. El estudio se realizó durante 2006 y 2007 en San Marcos Sierras (Córdoba. Se evaluaron siete líneas y dos cultivares sembrados en un diseño en bloques completamente aleatorizados con tres repeticiones. Cada 15 días se colectaron manualmente áfidos y "momias" presentes en 10 plantas seleccionadas al azar, de cada genotipo y bloque. Se determinaron 13 especies de áfidos. En 2006 se observó mayor abundancia y riqueza de especies que en 2007. Las especies numéricamente dominantes fueron: Acyrthosiphon pisum y A. kondoi. Solamente cinco especies colonizaron el cultivo. El cultivar Chañaritos presentó la mayor abundancia de insectos en los dos años agrícolas, y los genotipos M60 y M75 mostraron la mayor riqueza de especies. En ambos años, los pulgones estuvieron presentes durante la etapa reproductiva del cultivo. Se registraron tres especies de parasitoides y se estimó un 35% de parasitismo total.Aphids may damage plants by sucking plant juices or by transmitting diseases. The aim of this study was to obtain further information about aphid species and their parasitoids in different genotypes of chickpea, calculate the incidence of parasitism and report on fluctuating populations (from aphids and parasitoid in relation to plant phenology. The study was undertaken during 2006 and 2007 in San Marcos Sierras (Cordoba. Seven lines and two cultivars of chickpea were evaluated. Crop plots were planted following a completely randomized design block with 3 replicates. Every two weeks different developmental stages of aphids and "mummies

  5. Allelopathic effects of aqueous and organic fractions of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea and wheat Efectos alelopáticos de fracciones acuosas y orgánicas de Euphorbia dracunculoides Lam. sobre la germinación y crecimiento de plántulas de garbanzo y trigo

    Directory of Open Access Journals (Sweden)

    Asif Tanveer

    2012-12-01

    Full Text Available Identification of weed species with allelopathic potential and characterization of their adverse effects against associated crops is required for better understanding of weed-crop interactions. Phytotoxic activity of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea (Cicer arietinum L. and wheat (Triticum aestivum L. was investigated under controlled conditions. Two separate studies were done with each of four organic solvent fractions (n-hexane, chloroform, ethylacetate, 1-butanol and crude aqueous (1:10 and 1:20 whole plant fractions of E. dracunculoides using distilled water and 0.05% (v/v dimethyl sulfoxide (DMSO as control. Different aqueous and organic fractions of E. dracunculoides had a significant bearing on germination attributes and seedling growth that varied among tested species. The final germination percentage of wheat remained unaffected; nevertheless, root and shoot elongation and biomass accumulation in these parts were significantly retarded. Aqueous fractions appeared more phytotoxic than organic fractions and suppressed chickpea germination by 35-53%. These aqueous fractions also reduced root (64-75% and 33-34% and shoot (18-62% and 21% length and root (32-33% and 42-46% and shoot (7-32% and 80-84% dry weight of wheat and chickpea, respectively. Among organic fractions, n-hexane was more suppressive to test species. Chromatographic analysis revealed the presence of four phytotoxins, furoic, p-coumaric, syringic, and caffeic acids, in aqueous whole plant (1:10 fractions. This study determined the phytotoxic allelopathic activity of E. dracunculoides against wheat and chickpea.Se requiere la identificación de especies de malezas con potencial alelopático y la caracterización de sus efectos adversos en contra de los cultivos asociados para una mejor comprensión de las interacciones cultivos-malezas. Se investigó la actividad fitotóxica de Euphorbia dracunculoides Lam. en la germinación y

  6. Induction of resistance in chickpea (Cicer arietinum L. against Ascochyta rabiei by applying chemicals and plant extracts Inducción de resistencia en garbanzo (Cicer arietinum L. contra Ascochyta rabiei por la aplicación de productos químicos y extractos vegetales

    Directory of Open Access Journals (Sweden)

    M Usman Ghazanfar

    2011-03-01

    Full Text Available Since new fungicides are scarce in the market and because of environmental problems, researchers are now emphasizing other alternatives, such as the genetic potential of plants, resistance against pathogens, and the use of biotic and abiotic agents to develop induced or acquired resistance. We investigated the role of resistance-inducing substances (chemicals and plant extracts in three chickpea cvs. C-44, Pb-91, and Bittle-98 in field experiments against Ascochyta blight disease. These cultivars were selected on the basis of better yield potential shown in previous experiments. Aqueous solution of salicylic acid (SA at 0.5, 1.0, and 1.5 mM; acibenzolar-S-methyl (Bion®, ASM at 0.4, 0.8, and 1.2 mM; and KOH at 25, 50, and 75 mM were applied, whereas Azadirachta indica A. Juss., Datura metel L., and Allium sativum L. plant extracts were applied at 5, 10, and 15%. Disease reduction data was recorded at different intervals from 4 to 14 d after being induced and inoculated with the pathogen. Overall results revealed that significant disease reduction (79.3% was provided by ASM in the cv. C-44 at 1.2 mM compared with SA, whereas the least significant was KOH. Maximum disease reduction (43.5% against disease in the plant extracts was observed by applying A. indica leaf extract, but D. metel and A. sativum extracts were not effective. Our findings suggest that enhancing resistance before infecting chickpea plants could be an innovative control method for Ascochyta blight of chickpea.Debido a la escasez de nuevos fungicidas en el mercado y problemas ambientales, los investigadores están ahora enfatizando otras alternativas, tales como potencial genético de las plantas, resistencia contra patógenos y uso de agentes bióticos y abióticos para el desarrollo de resistencia inducida y adquirida. Investigamos el rol de sustancias inductoras de resistencia (químicos y extractos vegetales en tres cultivares de garbanzo ‘C-44’, ‘Pb-91’,

  7. Caracterização e hidrólise in vitro da globulina principal de grão-de-bico (Cicer arietinum L., var. IAC-Marrocos Characterization and in vitro tryptic hydrolysis of the major globulin from chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Valdir A. Neves

    2004-03-01

    Full Text Available No presente estudo procedeu-se ao isolamento e caracterização da fração globulina majoritária (11 S de grão-de-bico, var. IAC-Marrocos. A globulina majoritária extraída foi isolada por cromatografia de filtração em gel e de troca-iônica mostrando apenas uma banda de proteína na eletroforese em gel de poliacrilamida. A globulina majoritária, após passagem em coluna de Sephadex, revelou duas bandas protéicas de 55 e 52,5kDa e três bandas menores em gel de poliacrilamida dodecilsulfato de sódio. Na presença de 2-mercaptoetanol 6 polipeptídios na faixa de 18 a 42kDa foram revelados na eletroforese. A globulina isolada foi submetida à ação da tripsina e quimotripsina onde a forma nativa mostrou-se resistente à ação enzimática enquanto o aquecimento (96 e 121°C/15min não foi suficiente para aumentar a susceptibilidade à hidrólise, significativamente. Adição de NaCl 0,3M levou a um aumento da estabilidade estrutural com menor susceptibilidade à digestão proteolítica, fato em parte perdido com o aquecimento. As hidrólises foram acompanhadas por eletroforese em gel de poliacrilamida dodecilsulfato de sódio.The isolation and characterization of the major globulin fraction (11 S from Chickpea, vc IAC-Marrocos, were evaluated. The major globulin was extracted, isolated by gel filtration and ion-exchange chromatography showing only one protein band on PAGE. The globulin, after Sephadex elution, revealed two protein bands of 55 and 52.5kDa and three minor bands on SDS-PAGE. In the presence of 2-mercaptoethanol six polypeptides were revealed on SDS-PAGE in the range of 18 to 42kDa. The isolated native globulin shown to be resistant to trypsin and chymotrypsin however heating at 96 and 121ºC/15min was not sufficient to increase the hydrolysis significantly. The proteolytic susceptibility of the enzymes was reduced by 0.3M NaCl addition at the assay. The salt concentration was sufficient to stabilize the native protein

  8. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars

    NARCIS (Netherlands)

    Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y.

    2010-01-01

    Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to investigate the effect of drought stress on proline content, chlorophyll content, photosynthesis and transpiration, stomatal conductance and yield characteristics in three varieties of chickpe

  9. Estimation of induced secondary metabolites in chickpea tissues in response to elicitor preparation of seaweeds

    International Nuclear Information System (INIS)

    Disease response of plants in terms of induced browning and phytoalexin (induced secondary metabolites) production were recorded in the tissues of Cicer arietinum (Chick pea) treated with the High Molecular Crude Elicitor Preparations, HMWCEP 'Polysaccharides' of Hypnea musciformis (red algae), Padina tetrastromatica (brown algae) and Ulva lactulus (green algae). A UV-visible spectrophotometric method has been developed for the quantification of induced secondary metabolites with time. (author)

  10. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement

    Czech Academy of Sciences Publication Activity Database

    Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Doležel, Jaroslav; Cook, D.R.

    2013-01-01

    Roč. 31, č. 3 (2013), s. 240-246. ISSN 1087-0156 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511 Keywords : POPULATION-STRUCTURE * L. GENOME * ARABIDOPSIS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 39.080, year: 2013

  11. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  12. Morphological characterization and histopathology of Peronospora ciceris in chickpea (Cicer arietinum L.) leaves and seeds

    OpenAIRE

    Dagoberto Fierro-Corrales; Miguel Ángel Apodaca-Sánchez; José Alberto Quintero-Benítez; Santos Gerardo Leyva-Mir; Jorge Luis Flores-Sánchez; Juan Manuel Tovar-Pedraza

    2015-01-01

    El mildiu del garbanzo, es una de las enfermedades más destructivas que se ha encontrado esporádicamente en campos de garbanzo, localizados en los municipios de Salvador Alvarado y Guasave, Sinaloa, México. Los objetivos de este estudio fueron caracterizar morfológicamente a la especie de Peronospora, causante del mildiu del garbanzo; así como, describir los cambios histológicos que induce el patógeno en semillas y foliolos de garbanzo, con diferentes estados de infección (inicial, intermedia...

  13. Phytic acid and raffinose series oligosaccharides metabolism in developing chickpea seeds

    OpenAIRE

    Zhawar, Vikramjit Kaur; Kaur, Narinder; Gupta, Anil Kumar

    2011-01-01

    Phytic acid and raffinose series oligosaccharides (RFOs) have anti-nutritional properties where phytic acid chelates minerals and reduces their bioavailability to humans and other animals, and RFOs cause flatulence. Both phytic acid and RFOs cannot be digested by monogastric animals and are released as pollutant-wastes. Efforts are being made to reduce the contents of these factors without affecting the viability of seeds. This will require a thorough understanding of their metabolism in diff...

  14. Crystallization and preliminary X-ray characterization of a lectin from Cicer arietinum (chickpea)

    International Nuclear Information System (INIS)

    The crystallization and characterization of a lectin isolated and purified from C. arietinum and possessing complex sugar specificity is reported. The lectin isolated from mature seeds of Cicer arietinum (CAL) agglutinates pronase-treated rabbit and human erythrocytes and its haemagglutination activity is inhibited by fetuin and desialated fetuin but not by simple monosaccharides or oligosaccharides. The purified lectin is a dimer of molecular weight 43 000 Da composed of two identical subunits (MW 21 500), as confirmed by SDS–PAGE. The lectin has been crystallized using the hanging-drop vapour-diffusion method at 295 K over a well solution containing 0.2 M sodium acetate, 0.1 M sodium phosphate buffer pH 6.5 and 14%(w/v) polyethylene glycol 8000. The triangular prism-shaped crystals belong to space group R3 and have unit-cell parameters a = b = 81.2, c = 69.4 Å. The diffraction data are 93.8% complete to 2.3 Å Bragg spacing with an Rmerge of 0.103

  15. Crystallization and preliminary X-ray characterization of a lectin from Cicer arietinum (chickpea).

    Science.gov (United States)

    Katre, Uma V; Gaikwad, S M; Bhagyawant, S S; Deshpande, U D; Khan, M I; Suresh, C G

    2005-01-01

    The lectin isolated from mature seeds of Cicer arietinum (CAL) agglutinates pronase-treated rabbit and human erythrocytes and its haemagglutination activity is inhibited by fetuin and desialated fetuin but not by simple monosaccharides or oligosaccharides. The purified lectin is a dimer of molecular weight 43,000 Da composed of two identical subunits (MW 21,500), as confirmed by SDS-PAGE. The lectin has been crystallized using the hanging-drop vapour-diffusion method at 295 K over a well solution containing 0.2 M sodium acetate, 0.1 M sodium phosphate buffer pH 6.5 and 14%(w/v) polyethylene glycol 8000. The triangular prism-shaped crystals belong to space group R3 and have unit-cell parameters a = b = 81.2, c = 69.4 A. The diffraction data are 93.8% complete to 2.3 A Bragg spacing with an Rmerge of 0.103. PMID:16508116

  16. Crystallization and preliminary X-ray characterization of a lectin from Cicer arietinum (chickpea)

    Energy Technology Data Exchange (ETDEWEB)

    Katre, Uma V.; Gaikwad, S. M. [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 (India); Bhagyawant, S. S.; Deshpande, U. D. [School of Life Sciences, S. R. T. M. University, Nanded 431606 (India); Khan, M. I.; Suresh, C. G., E-mail: suresh@ems.ncl.res.in [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 (India)

    2005-01-01

    The crystallization and characterization of a lectin isolated and purified from C. arietinum and possessing complex sugar specificity is reported. The lectin isolated from mature seeds of Cicer arietinum (CAL) agglutinates pronase-treated rabbit and human erythrocytes and its haemagglutination activity is inhibited by fetuin and desialated fetuin but not by simple monosaccharides or oligosaccharides. The purified lectin is a dimer of molecular weight 43 000 Da composed of two identical subunits (MW 21 500), as confirmed by SDS–PAGE. The lectin has been crystallized using the hanging-drop vapour-diffusion method at 295 K over a well solution containing 0.2 M sodium acetate, 0.1 M sodium phosphate buffer pH 6.5 and 14%(w/v) polyethylene glycol 8000. The triangular prism-shaped crystals belong to space group R3 and have unit-cell parameters a = b = 81.2, c = 69.4 Å. The diffraction data are 93.8% complete to 2.3 Å Bragg spacing with an R{sub merge} of 0.103.

  17. 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S.A. [Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P. (India); Hayat, S. [Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P. (India)], E-mail: shayat@lycos.com; Ali, B.; Ahmad, A. [Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2008-01-15

    In the present experiment the seeds of Cicer arietinum (L.) cv. Uday were inoculated with specific Rhizobium grown in sandy loam soil and were allowed to grow for 15 days. At this stage, the seedlings were supplied with 0, 50, 100 or 150 {mu}M of cadmium in the form of cadmium chloride and sprayed with 0.01 {mu}M of 28-homobrassinolide (HBL) at 30-day stage. The data indicated that plant fresh and dry mass, number of nodules, their fresh and dry mass, leghemoglobin content, nitrogen and carbohydrate content in the nodules, leaf chlorophyll content, nitrate reductase and carbonic anhydrase activities decreased proportionately with the increasing concentrations of cadmium but the content of proline and the activities of catalase, peroxidase and superoxide dismutase increased. The ill effect, generated by cadmium, was overcome if the stressed plants were sprayed with HBL. - The cadmium toxicity can be overcome by the foliar application of 28-homobrassinolide.

  18. Effect of Soaking on Calcium, Phosphorus, Magnesium and Sodium Contents of Chickpea (Cicer aritinum L.)

    OpenAIRE

    Reza Mahdavi; Anita Kazem Shayan; Seyed Jamal Ghaemmaghami; Elnaz Faramarzi

    2012-01-01

    The aim of this study was to evaluate the effect of soaking on peas minerals. Raw peas were soaked for 8, 12 and 24 h in tap water. After drying and acid digestion, 70 samples in 4 groups of raw, 8, 12 and 24 h soaked and also soaking waters of all soaking hours, minerals were measured and compared. The result of present study showed that after 12 and 24 soaking hours, calcium content of peas and after 8, 12 and 24 h soaking time, magnesium and phosphorus content of samples were decreased and...

  19. Gluten-free spaghetti made with chickpea, unripe plantain, and maize flours: functional and chemical properties and starch digestibility

    Science.gov (United States)

    Gluten containing pasta has a primary role in human nutrition and is a traditional food that it is easy to store, cook and handle. The worldwide increased in genetically susceptible individuals to gluten and related cereal proteins, demand the development of gluten-free food products. The use of dif...

  20. A chickpea Kunitz trypsin inhibitor is located in cell wall of elongating seedling organs and vascular tissue.

    Science.gov (United States)

    Jiménez, Teresa; Martín, Ignacio; Labrador, Emilia; Dopico, Berta

    2007-06-01

    Kunitz proteinase inhibitors in legumes have mainly been described as defence and storage proteins. Here, we report a Kunitz trypsin inhibitor, encoded by the CaTPI-1 gene from Cicer arietinum. The transcription of this gene mainly occurs in seedling vegetative organs, and is affected by the light and growth stages. The recombinant TPI-1 protein expressed in E. coli was seen to be an efficient inhibitor of trypsin. After the generation of polyclonal antibodies against recombinant TPI-1 protein, the protein was located in the cell wall of elongating epicotyls and radicles by Western-blot experiments, in agreement with the transcription pattern. These results, together with the fact that both CaTPI-1 mRNA and protein levels decreased with epicotyl growth, suggest a possible role in the elongation of seedling epicotyls and radicles. Immunolocalization analyses of the TPI-1 protein indicated that it is abundant in the cell walls of both immature primary xylem cells and surrounding parenchyma cells. This location has led us to explore potential functions for TPI-1 protein in vascular tissue during seedling elongation. PMID:17226027

  1. Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes

    Czech Academy of Sciences Publication Activity Database

    Zatloukalová, Pavlína; Hřibová, Eva; Kubaláková, Marie; Suchánková, Pavla; Šimková, Hana; Adoración, C.; Kahl, G.; Millán, T.; Doležel, Jaroslav

    2011-01-01

    Roč. 19, č. 6 (2011), s. 729-739. ISSN 0967-3849 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : BAC-FISH * Chromosome isolation * Flow cytometric sorting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.087, year: 2011

  2. Acceptability and effectiveness of chickpea sesame-based ready-to-use therapeutic food in malnourished HIV-positive adults

    Directory of Open Access Journals (Sweden)

    Paluku Bahwere

    2009-03-01

    Full Text Available Paluku Bahwere, Kate Sadler, Steve CollinsValid International, Oxford, United KingdomObjective: A prospective descriptive study to assess acceptability and effectiveness of a locally made ready-to-use therapeutic food (RUTF in HIV-infected chronically sick adults (CSA with mid-upper-arm circumference (MUAC <210 mm or pitting edema. Methods: Sixty-three wasted AIDS adults were prescribed 500 g representing ~2600 kcal/day of locally made RUTF for three months and routine cotrimoxazole. Weight, height, MUAC, Karnofsky score and morbidity were measured at admission and at monthly intervals. The amount of RUTF intake and acceptability were assessed monthly.Results: Ninety-five percent (60/63 of the CSA that were invited to join the study agreed to participate. Mean daily intake in these 60 patients was 300 g/person/day (~1590 Kcal and 40 g of protein. Overall, 73.3% (44/60 gained weight, BMI, and MUAC. The median weight, MUAC and BMI gains after three months were 3.0 kg, 25.4 mm, and 1.1 kg/m2, respectively. The intervention improved the physical activity performance of participants and 78.3% (47/60 regained sufficient strength to walk to the nearest health facility. Mortality at three months was 18.3% (11/60.Conclusion: Locally made RUTF was acceptable to patients and was associated with a rapid weight gain and physical activity performance. The intervention is likely to be more cost effective than nutritional support using usual food-aid commodities.Keywords: ready-to-use therapeutic food, community-based intervention, adult, supplementation, HIV, Malawi

  3. Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea

    OpenAIRE

    Rahi, P.; Vyas, P.; Sharma, S.; Gulati, Ashu; Gulati, Arvind

    2009-01-01

    The ITS region sequence of a phosphate-solubilizing fungus isolated from the rhizosphere of tea growing in Kangra valley of Himachal Pradesh showed 96% identity with Discosia sp. strain HKUCC 6626 ITS 1, 5.8S rRNA gene and ITS 2 complete sequence, and 28S rRNA gene partial sequence. The fungus exhibited the multiple plant growth promoting attributes of solubilization of inorganic phosphate substrates, production of phytase and siderophores, and biosynthesis of indole acetic acid (IAA)-like au...

  4. Comparison of the nitrogen-15 and conventional methods to determine N2 fixing capacity of chickpea by rhizobium strains

    International Nuclear Information System (INIS)

    The N2 fixing capacity of 8 strains of rhizobium ciceri (45, 68, 51,620, 29,18,23 and 31) in association with two cicer cultivars (Akcin-91 and Izmir-92) was evaluated under growth room conditions as a preliminary screening prior to field experimentation. The ''1''5N isotope method (A-value) was used to quantify the % Ndfa and actual amounts of N2 fixed. In addition to this, other conventional methods (dry matter, N content, total N uptake, difference method and symbiotic effectiveness) were also investigated in the comparison. The results obtained show that 18 and 31 number of strains could be successfully used as inoculant both cultivar

  5. Adaptación y rendimiento de grano de diez cultivares de garbanzo (Cicer arietinum L en Barva de Heredia (ING

    Directory of Open Access Journals (Sweden)

    Marvin R. Rojas A.

    2016-03-01

    The result suggest that the location were the study was conducted has good agrecological conditions for growth yield of chickpeas. Also, average cooking time was similar to a sample of chickpeas from the local market.

  6. 7 CFR 1421.10 - Loan repayment rates.

    Science.gov (United States)

    2010-01-01

    ..., lentils, chickpeas, oilseeds, wool, mohair, and other crops as designated by CCC (other than peanuts, long..., sunflower seed and wheat; and (3) On a weekly basis regionally for dry peas, lentils, chickpeas, wool...

  7. 7 CFR 1421.5 - Eligible commodities.

    Science.gov (United States)

    2010-01-01

    ...) Barley, corn, grain sorghum, oats, peanuts, soybeans, oilseeds, wheat, dry peas, lentils, chickpeas, rice... Lentils for dry peas and lentils; and the U.S. Standards for Beans for chickpeas, whether or not...

  8. 7 CFR 1421.3 - Definitions.

    Science.gov (United States)

    2010-01-01

    ..., mohair, dry peas, lentils, chickpeas, and other crops designated by CCC. Loan deficiency payment (LDP... any crop of dry peas, lentils, and chickpeas as defined by CCC. Rice means, unless otherwise...

  9. EVALUACIÓN DE COLOR DEL GARBANZO (Cicer arietinum L.) POR MÉTODOS INSTRUMENTALES Y SENSORIALES

    OpenAIRE

    2010-01-01

    Chickpea is a well recognized source of vegetable protein, especially in underdeveloped areas of the world. Mexican chickpea is highly priced in the international market due to its desired quality. The Northwest of Mexico, especially Sonora and Sinaloa, are also recognized for the quality of chickpea, where a high percentage of the annual production is placed in the international market. Among the various characteristics of high-quality chickpea, color is one of the most important, since it i...

  10. Determining radio frequency heating uniformity of mixed beans during disinfestation treatments

    Science.gov (United States)

    Since chickpeas and lentils are difficulty to artificially infest with live insects for radio frequency (RF) treatment validation, black-eyed peas and mung beans were selected to infest with insects before mixing with chickpeas and lentils. Temperature difference between black-eyed pea and chickpea ...

  11. Baking Process in Oven and Microwave-oven in Sourdough Enriched with Chickpeas and Dietary Fiber of Prickly pear and Oats

    Directory of Open Access Journals (Sweden)

    Héctor Flores-Chávez

    2014-04-01

    Full Text Available The bread is a basic article dating from the Neolithic era, where it was baked in ovens outside. The first bread was prepared around the year 10.000 b. C. or what is 12.000 years in the past, where should be discovered by experiment with water and flour grains. This first bread was prepared on the basis of toasted seeds and water. The dough was formed and then warmed up on rocks. It was a kind of cake that, without a doubt, was welcomed by the first settlers of the land. The sample added whit oat an increase of crust in 21.25 to 49.25 % compared to the base. On the other hand, samples added whit prickle pear increase relative was 32.25 %. The combined treatment (Microwave (MW –convection oven, the best result is the samples with fiber oats, increased more than the negative control (51 to 63 % of difference; besides the employment of mucilage of prickle pear provides a green color to the final product.

  12. EFFECT OF DIFFERENT ORGANIC AMENDMENTS ON Fusarium oxysporum f.sp ciceri CAUSING CHICK PEA WILT

    OpenAIRE

    S.Ranjitha Rani; S.S.Mane

    2014-01-01

    Chickpea (Cicer arietinumL.) is one of the most important legumes grown in Asia. Though the area under this crop is more, the average yield per hectare is low because of several biotic and abiotic factors. Among them, the wilt caused by Fusarium oxysporumf.sp. ciceriis most destructive seed and soil borne disease. (Haware et al., 1986) which threatens successful cultivation of chickpea and causes severe losses in chickpea growing areas. (Grewal et al.,1974b and Singh et al.,1977.) The organic...

  13. European marketable grain legume seeds: Further insight into phenolic compounds profiles.

    Science.gov (United States)

    Magalhães, Sara C Q; Taveira, Marcos; Cabrita, Ana R J; Fonseca, António J M; Valentão, Patrícia; Andrade, Paula B

    2017-01-15

    Twenty-nine mature raw varieties of grain legume seeds (chickpeas, field peas, faba beans, common vetch and lupins) produced in Europe were investigated for their phenolic profile by means of high performance liquid chromatography coupled to diode array detection (HPLC-DAD). To the best of our knowledge, this study reported for the first time the phenolic composition of mature raw seeds of chickpea type Desi, field pea and common vetch. Phenolic acids were predominant compounds in chickpeas, field peas and common vetch compared to flavonoids, whereas the opposite was observed for lupin seeds. Yellow lupins presented the highest levels of total phenolic compounds followed by narrow-leafed lupins (in average 960 and 679mg/kg, dry basis, respectively), whereas Kabuli chickpeas got the lowest ones (in average 47mg/kg, dry basis). Principal component analysis revealed that flavones and total levels of phenolic compounds were responsible for nearly 51% of total data variability. PMID:27542465

  14. How Is Anemia Treated?

    Science.gov (United States)

    ... chickpeas Dried fruits, such as prunes, raisins, and apricots Prune juice Iron-fortified cereals and breads You ... leafy green vegetables like turnip greens and spinach. Medicines Your doctor may prescribe medicines to help your ...

  15. Comparative Evaluation of Functional Properties of Some Commonly Used Cereal and Legume Flours and Their Blends

    Directory of Open Access Journals (Sweden)

    Haq Nawaz

    2015-12-01

    Full Text Available Functional properties such as protein solubility, swelling capacity, water holding capacity, gelling ability, bulk density and foaming capacity of flours of some commonly used cereals and legume (wheat, refined wheat, maize and chickpea and their blends were studied. Blends of flours were prepared by mixing equal proportions of selected floors. Statistically significant difference  in studied functional properties except bulk density was observed among cereal flours and their blends. Chickpea flour was found to possess comparatively high water holding capacity, protein solubility index and swelling capacity. The functional properties of maize and wheat flours were found to be improved when blended with chickpea. Chickpea flour and its blends with cereal flours were found to possess good functional score and suggested as favorable candidates for use in the preparation of viscous foods and bakery products. The data provide guidelines regarding the improvement in functional properties of economically favorable cereal flours.

  16. Constipation - self-care

    Science.gov (United States)

    ... beans, chickpeas, soybeans, and lentils), peanuts, walnuts, and almonds will also add fiber to your diet. Other ... at bedtime. You can mix powder laxatives with milk or fruit juice to make them taste better. ...

  17. 7 CFR 1412.3 - Definitions.

    Science.gov (United States)

    2010-01-01

    ..., lentils, and dry edible peas: July 1-June 30; (3) Upland cotton, peanuts, and rice: August 1-July 31; and... crops mentioned in § 1412.48. Pulse crop means dry peas, lentils, small chickpeas, and large...

  18. Effect of gamma irradiation on cooking time and associated physicochemical properties of two legumes

    International Nuclear Information System (INIS)

    Effect of gamma irradiation (0.25-5.00 kGy) on physical properties (seed size and density), water uptake (swelling and hydration capacities and indices), cooking time and phytic acid content was studied for five varieties each of chickpea and mungbean. Up to 5 kgy irradiation had no significant effect on physical and water uptake properties of these legumes, but cooking time and phytic acid content were drastically reduced. Irradiation caused more reduction in cooking time of chickpea than of mungbeans

  19. Innovations in agronomy for food legumes. A review

    OpenAIRE

    Siddique, Kadambot H. M.; Johansen, Chris; Turner, Neil C.; Jeuffroy, Marie-Helene; Hashem, Abul; Dogan SAKAR; Gan, Yantai; Alghamdi, Salem S.

    2012-01-01

    Although there is increasing awareness of the importance of food legumes in human, animal and soil health, adoption of improved production technologies for food legume crops is not proceeding at the same pace as for cereal crops. Over the previous decade, the only food legumes to have shown significant production increases have been chickpea, lentil and faba bean in North America, chickpea in Australia, and faba bean in Europe. In smallholder farming in developing countries, production trends...

  20. Caracterização e hidrólise in vitro da globulina principal de grão-de-bico (Cicer arietinum L.), var. IAC-Marrocos Characterization and in vitro tryptic hydrolysis of the major globulin from chickpea (Cicer arietinum L.)

    OpenAIRE

    NEVES Valdir A.; Maraiza A. da Silva; LOURENÇO Euclides J.

    2004-01-01

    No presente estudo procedeu-se ao isolamento e caracterização da fração globulina majoritária (11 S) de grão-de-bico, var. IAC-Marrocos. A globulina majoritária extraída foi isolada por cromatografia de filtração em gel e de troca-iônica mostrando apenas uma banda de proteína na eletroforese em gel de poliacrilamida. A globulina majoritária, após passagem em coluna de Sephadex, revelou duas bandas protéicas de 55 e 52,5kDa e três bandas menores em gel de poliacrilamida dodecilsulfato de sódio...

  1. Modeling for Growth and Forecasting of Pulse Production in Bangladesh

    Directory of Open Access Journals (Sweden)

    Niaz Md. FarhatRahman

    2013-05-01

    Full Text Available The present study was carried out to estimate growth pattern and examine the best ARIMA model to efficiently forecasting pigeon pea, chickpea and field pea pulse production in Bangladesh. It appeared that the time series data for pigeon pea, chickpea and field pea were 1st order homogenous stationary. Two types of models namely Box-Jenkins type Autoregressive Integrated Moving Average (ARIMA and deterministic type growth models, are examined to identify the best forecasting models for pigeon pea, chickpea and field pea pulse production in Bangladesh. The study revealed that the best models were ARIMA (1, 1 and 1, ARIMA (0, 1 and 0 and ARIMA (1, 1 and 3 for pigeon pea, chickpea and field pea pulse production, respectively. Among the deterministic type growth models, the cubic model is best for pigeon pea, chickpea and field pea pulse production. The analysis indicated that short-term forecasts were more efficient for ARIMA models compared to the deterministic models. The production uncertainty of pulse could be minimized if production were forecasted well and necessary steps were taken against losses. The findings of this study would be more useful for policy makers, researchers as well as producers in order to forecast future national pulse production more accurately in the short run.

  2. Validation of multivariate screening methodology. Case study: detection of food fraud.

    Science.gov (United States)

    López, M Isabel; Colomer, Núria; Ruisánchez, Itziar; Callao, M Pilar

    2014-05-27

    Multivariate screening methods are increasingly being implemented but there is no worldwide harmonized criterion for their validation. This study contributes to establish protocols for validating these methodologies. We propose the following strategy: (1) Establish the multivariate classification model and use receiver operating characteristic (ROC) curves to optimize the significance level (α) for setting the model's boundaries. (2) Evaluate the performance parameter from the contingency table results and performance characteristic curves (PCC curves). The adulteration of hazelnut paste with almond paste and chickpea flour has been used as a case study. Samples were analyzed by infrared (IR) spectroscopy and the multivariate classification technique used was soft independent modeling of class analogies (SIMCA). The ROC study showed that the optimal α value for setting the SIMCA boundaries was 0.03 in both cases. The sensitivity value was 93%, specificity 100% for almond and 98% for chickpea, and efficiency 97% for almond and 93% for chickpea. PMID:24832991

  3. Development, characterization and evaluation of high energy biscuits for combating malnourishment among children in pakistan

    International Nuclear Information System (INIS)

    The study was conducted to prepare supplemented biscuits which could be used as nutritive snacks for malnourished children. Biscuits were prepared by supplementing chickpea and oat in patent flour (fine flour) with different ratio (5%, 10%, 15% and 20 %). Biscuits with no supplementation were kept as control treatment. Chemical and sensory evaluation of supplemented biscuits was carried out. An increase in nutritive values have been observed with an increase in supplementation level. Proximate analysis shows that T/sub 7/ and T/sub 8/ get the highest values for protein, zinc and iron. Results of all treatments were in acceptable range regarding sensory evaluation. These results indicate that biscuits can be successfully supplemented with chickpea and oat. According to sensory evaluation, biscuits containing 20% chickpea and 15% oat were found to be the best among all treatments and could be a potential composition for preparing high energy biscuits for malnourished areas of Pakistan. (author)

  4. Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven.

    Science.gov (United States)

    Ozkahraman, Betul Canan; Sumnu, Gulum; Sahin, Serpil

    2016-03-01

    The objective of this study was to compare the quality of legume cakes baked in microwave-infrared combination (MW-IR) oven with conventional oven. Legume cake formulations were developed by replacing 10 % wheat flour by lentil, chickpea and pea flour. As a control, wheat flour containing cakes were used. Weight loss, specific volume, texture, color, gelatinization degree, macro and micro-structure of cakes were investigated. MW-IR baked cakes had higher specific volume, weight loss and crust color change and lower hardness values than conventionally baked cakes. Larger pores were observed in MW-IR baked cakes according to scanning electron microscope (SEM) images. Pea flour giving the hardest structure, lowest specific volume and gelatinization degree was determined to be the least acceptable legume flour. On the other hand, lentil and chickpea flour containing cakes had the softest structure and highest specific volume showing that lentil and chickpea flour can be used to produce functional cakes. PMID:27570282

  5. Identification and Validation of Reference Genes and Their Impact on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species.

    Directory of Open Access Journals (Sweden)

    Dumbala Srinivas Reddy

    Full Text Available Quantitative Real-Time PCR (qPCR is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp. comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock, and five diverse tissues (leaf, root, flower, seedlings and seed. The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses.

  6. Identification and Validation of Reference Genes and Their Impact on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species.

    Science.gov (United States)

    Reddy, Dumbala Srinivas; Bhatnagar-Mathur, Pooja; Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar

    2016-01-01

    Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses. PMID:26863232

  7. Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies

    Indian Academy of Sciences (India)

    Rajeev K Varshney; Himabindu Kudapa; Manish Roorkiwal; Mahendar Thudi; Manish K Pandey; Rachit K Saxena; Siva K Chamarthi; Murali Mohan S; Nalini Mallikarjuna; Hari Upadhyaya; Pooran M Gaur; L Krishnamurthy; K B Saxena; Shyam N Nigam; Suresh Pande

    2012-11-01

    Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided > 10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these trait-associated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance to

  8. LEGUMES UTILISED IN TRADITIONAL FOODS IN IRAQ

    OpenAIRE

    Dalaram S. Ismael; Alena Vollmannová; Mária Timoracká; Ľuboš Harangozo

    2014-01-01

    Iraq is famous in the traditional food from legumes, especially chickpea, lentil, and beans are fresh and dry seeds and as well as for peas, beans and the seeds of faba, cowpea and chickpeas boiled with salt eaten in the form of Lablabe, or make soup from fresh cowpea, fresh faba bean, fresh fasoulia, as well as lentil soup (shorbat adas) and different kinds of salad. Turshi, pickled vegetables and fresh pea, fresh fasoulia in the cuisine of many Balkan and Middle East countries. It is a tr...

  9. Second-meal effects of pulses on blood glucose and subjective appetite following a standardized meal 2 h later.

    Science.gov (United States)

    Mollard, Rebecca C; Wong, Christina L; Luhovyy, Bohdan L; Cho, France; Anderson, G Harvey

    2014-07-01

    This study investigated whether pulses (chickpeas, yellow peas, navy beans, lentils) have an effect on blood glucose (BG) and appetite following a fixed-size meal 2 h later. Over the following 2 h, all pulses lowered BG area under the curve (AUC) and lentils reduced appetite AUC compared with white bread (p < 0.05). Following the meal, BG was lower after lentils and chickpeas at 150 and 165 min, and AUC was lower after lentils compared with white bread (p < 0.05). PMID:24797207

  10. Effect of gamma irradiation on cooking time and associated physiochemical properties of two legumes

    International Nuclear Information System (INIS)

    Effect of gamma irradiation (0.25-5.00 kGy) on physical properties (seed size and density), water uptake (swelling and hydration capacities and indices), cooking time and phytic acid content was studied for five varieties each of chickpea and mungbean. Up to 5 kGy irradiation had no significant effect on physical and water uptake properties of these legumes, but cooking time and phytic acid content were drastically reduces. Irradiation caused more reduction in cooking time of chickpea than of mungbeans

  11. Determining radio frequency heating uniformity in mixed beans for disinfestations

    Science.gov (United States)

    Our laboratory collaborates with USDA-ARS in Parlier, CA in developing thermal treatments based on radio frequency (RF) energy for insect control in legumes to meet postharvest phytosanitary regulations for international market. Our current study focuses on lentils and chickpeas that are two importa...

  12. Effect of radio frequency treatments on cowpea weevil adults

    Science.gov (United States)

    Dried pulses (chickpeas, lentils and dried peas) are valuable export commodities in the US Pacific Northwest. Postharvest infestation by stored product insect pests such as the cowpea weevil may cause importing countries to require phytosanitary treatments before shipment. Typically, chemical fumiga...

  13. Models and Analogues

    Science.gov (United States)

    Maloney, Jane; Curtis, Sheila

    2012-01-01

    How do teachers help children understand the difference between the structure of a flower and that of a root? Depending on the time of year this activity is quite easy. Get a bunch of flowers, germinate some chickpeas and raid the kitchen for carrots and beetroots--the children can experience the "real thing". But what if teachers want the…

  14. Alternaria blight

    Science.gov (United States)

    Alternaria blight of chickpea is caused by the fungal pathogen Alternaria alternata. The pathogen has wide host range, and affects all above ground parts of the plant. The disease occurs sporadically and occasionally could be economically important and causes significant damage. The pathogen can ...

  15. Functional analyses of the Diels-Alderase gene sol5 of Ascochyta rabiei and Alternaria solani indicate that the Solanapyrone phytotoxins are not required for pathogenicity

    Science.gov (United States)

    Ascochyta rabiei and Alternaria solani, the causal agents of Ascochyta blight of chickpea (Cicer arietinum) and early blight of potato (Solanum tuberosum), respectively, produce a set of phytotoxic compounds incuding solanapyrones A, B, and C. Although both the phytotoxicity of solanopyrones and the...

  16. Performance of Different Coating Batters and Frying Temperatures for Fried Fish Balls

    Directory of Open Access Journals (Sweden)

    Osman Kilincceker

    2011-01-01

    Full Text Available The effects of yellow lentil flour, chickpea flour and their mixtures as batters on deep-fried fish balls were evaluated in the present study. The pH levels, viscosities and adhesion degrees of the batters and yields, frying loss, penetrometer values, diameters, moisture, oil content and sensorial properties of fish balls were determined for the different mixtures and frying temperatures. Yellow lentil flour, chickpea flour and their mixtures increased the quality of the battered fish balls after frying. Yellow lentil flour increased the yield and moisture values and decreased the frying loss and penetrometer values during deep-frying. Chickpea flour had better sensory properties in comparison to the control and yellow lentil flour. Frying temperatures generally did not affect the quality criteria. Only, low temperatures decreased the moisture loss from the coated fish balls during deep-frying. In conclusion, yellow lentil flour and chickpea flour were suggested as the batter materials to be used on fish balls.

  17. In-vitro regeneration studies of an important legume, Cicer arietinum: Hurdles and future prospects

    Directory of Open Access Journals (Sweden)

    Pragati Kumari

    2015-06-01

    Full Text Available There are several economically important grain legumes including chickpea that play significant role in nutrition of the rural and urban poor in developing world. Plants are subjected to a large number of stresses that may interfere with the normal growth and development. The model legumes are being developed as experimental systems to study a number of key biological questions using molecular tools including genomics and proteomics. Most of the functional genomics approaches rely upon the highthroughput transformation system useful for studying various gene identification strategies. The difficulty to transform a plant varies from species to species in legumes. There is limited success in exchange of the desirable characters by the classical and modern breeding technologies, in important pulse crop chickpea and biotechnological tools like plant tissue culture and genetic transformation techniques have emerged as a potential supplement. The major bottleneck is requirement of an in vitro manipulation of leguminosae members and the availability of reproducible, efficient and better plant regeneration methods. The regeneration and transformation of legumes particularly chickpea suffers due to recalcitrant nature towards rooting and transplantation of the in vitro regenerated plants. This becomes a limiting factor for the application of this technology towards designated mandate of crop improvement programs. This article discusses the hurdles and strategies for transformation of legumes in general and chickpea in particular.

  18. Rheological and textural properties of pulse starch gels

    Science.gov (United States)

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  19. Principales maladies fongiques de trois légumineuses alimentaires dans la région du Kef (Tunisie)

    OpenAIRE

    Nasraoui, B.

    1991-01-01

    The most important fungal diseases of pulses in Kef area (Tunisia). Ascochyta disease and rust of faba beans, powdery mildew of peas and Ascochyta blight of chickpeas are the most important fungal diseases of these crops in the Kef area (North-West of Tunisia).

  20. Allelopathy in agroforestry systems: the effects of leaf extracts ofCupressus lusitanica and threeEucalyptus spp. on four Ethiopian crops

    DEFF Research Database (Denmark)

    Lisanework N.; Michelsen, Anders

    1993-01-01

    The potential allelopathic effect ofCupressus lusitanica, Eucalyptus globulus, E. camaldulensis andE. saligna on seed germination, radicle and seedling growth was investigated with four crops:Cicer arietinum (chickpea),Zea mays (maize),Pisum sativum (pea) andEragrostis tef (teff). Aqueous leaf...

  1. Method Development to Increase Protein Enrichment During Dry Fractionation of Starch-Rich Legumes

    NARCIS (Netherlands)

    Pelgrom, P.J.M.; Boom, R.M.; Schutyser, M.A.I.

    2015-01-01

    A facile method was developed to establish milling settings that optimally separate starch granules from protein bodies and cell wall fibres for starch-rich legumes. Optimal separation was obtained for pea, bean, lentil and chickpea when the particle size distribution curve of flour and isolated sta

  2. Rhizoctonia seed, seedling, and wet root rot

    Science.gov (United States)

    Wet root rot caused by Rhizoctonia solani Kühn can cause seed and seedling rot of both lentil and chickpea as well as many other agricultural crops worldwide. The pathogen is favored in cool, sandy soil with high organic matter under no-till or reduced-till soil management practices. Survival spor...

  3. Downy mildews

    Science.gov (United States)

    Downy mildew of chickpea and lentil is caused by species of Peronospora. The disease occurs in many parts of the world. All aerial parts of plants are susceptible. Main symptoms include white mycelial patches on the lower leaf surface, and chlorotic to yellow spots develop on the upper surface. Per...

  4. Species From the Heliothinae Complex (Lepidoptera: Noctuidae) in Tucumán, Argentina, an Update of Geographical Distribution of Helicoverpa armigera

    Science.gov (United States)

    Murúa, M. Gabriela; Cazado, Lucas E.; Casmuz, Augusto; Herrero, M. Inés; Villagrán, M. Elvira; Vera, Alejandro; Sosa-Gómez, Daniel R.; Gastaminza, Gerardo

    2016-01-01

    The Heliothinae complex in Argentina encompasses Helicoverpa gelotopoeon (Dyar), Helicoverpa zea (Boddie), Helicoverpa armigera (Hübner), and Chloridea virescens (Fabricius). In Tucumán, the native species H. gelotopoeon is one of the most voracious soybean pests and also affects cotton and chickpea, even more in soybean-chickpea succession cropping systems. Differentiation of the Heliothinae complex in the egg, larva, and pupa stages is difficult. Therefore, the observation of the adult wing pattern design and male genitalia is useful to differentiate species. The objective of this study was to identify the species of the Heliothinae complex, determine population fluctuations of the Heliothinae complex in soybean and chickpea crops using male moths collected in pheromone traps in Tucuman province, and update the geographical distribution of H. armigera in Argentina. The species found were H. gelotopoeon, H. armigera, H. zea, and C. virescens. Regardless of province, county, crop, and year, the predominant species was H. gelotopoeon. Considering the population dynamics of H. gelotopoeon and H. armigera in chickpea and soybean crops, H. gelotopoeon was the most abundant species in both crops, in all years sampled, and the differences registered were significant. On the other hand, according to the Sistema Nacional Argentino de Vigilancia y Monitoreo de Plagas (SINAVIMO) database and our collections, H. armigera was recorded in eight provinces and 20 counties of Argentina, and its larvae were found on soybean, chickpea, sunflower crops and spiny plumeless thistle (Carduus acanthoides). This is the first report of H. armigera in sunflower and spiny plumeless thistle in Argentina. PMID:27324588

  5. Gluten-free dough-making of specialty breads: Significance of blended starches, flours and additives on dough behaviour.

    Science.gov (United States)

    Collar, Concha; Conte, Paola; Fadda, Costantino; Piga, Antonio

    2015-10-01

    The capability of different gluten-free (GF) basic formulations made of flour (rice, amaranth and chickpea) and starch (corn and cassava) blends, to make machinable and viscoelastic GF-doughs in absence/presence of single hydrocolloids (guar gum, locust bean and psyllium fibre), proteins (milk and egg white) and surfactants (neutral, anionic and vegetable oil) have been investigated. Macroscopic (high deformation) and macromolecular (small deformation) mechanical, viscometric (gelatinization, pasting, gelling) and thermal (gelatinization, melting, retrogradation) approaches were performed on the different matrices in order to (a) identify similarities and differences in GF-doughs in terms of a small number of rheological and thermal analytical parameters according to the formulations and (b) to assess single and interactive effects of basic ingredients and additives on GF-dough performance to achieve GF-flat breads. Larger values for the static and dynamic mechanical characteristics and higher viscometric profiles during both cooking and cooling corresponded to doughs formulated with guar gum and Psyllium fibre added to rice flour/starch and rice flour/corn starch/chickpea flour, while surfactant- and protein-formulated GF-doughs added to rice flour/starch/amaranth flour based GF-doughs exhibited intermediate and lower values for the mechanical parameters and poorer viscometric profiles. In addition, additive-free formulations exhibited higher values for the temperature of both gelatinization and retrogradation and lower enthalpies for the thermal transitions. Single addition of 10% of either chickpea flour or amaranth flour to rice flour/starch blends provided a large GF-dough hardening effect in presence of corn starch and an intermediate effect in presence of cassava starch (chickpea), and an intermediate reinforcement of GF-dough regardless the source of starch (amaranth). At macromolecular level, both chickpea and amaranth flours, singly added, determined

  6. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery.

    Science.gov (United States)

    Tiwari, Shalini; Lata, Charu; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-02-01

    Drought is one of the most important abiotic stresses that adversely affect plant growth and yield potential. However, some drought resistant rhizosphere competent bacteria are known to improve plant health and promote growth during abiotic stresses. Present study showed the role of Pseudomonas putida MTCC5279 (RA) in ameliorating drought stress on cv. BG-362 (desi) and cv. BG-1003 (kabuli) chickpea cultivars under in vitro and green house conditions. Polyethylene glycol-induced drought stress severely affected seed germination in both cultivars which was considerably improved on RA-inoculation. Drought stress significantly affected various growth parameters, water status, membrane integrity, osmolyte accumulation, ROS scavenging ability and stress-responsive gene expressions, which were positively modulated upon application of RA in both chickpea cultivars. Quantitative real-time (qRT)-PCR analysis showed differential expression of genes involved in transcription activation (DREB1A and NAC1), stress response (LEA and DHN), ROS scavenging (CAT, APX, GST), ethylene biosynthesis (ACO and ACS), salicylic acid (PR1) and jasmonate (MYC2) signalling in both chickpea cultivars exposed to drought stress and recovery in the presence or absence of RA. The observations imply that RA confers drought tolerance in chickpea by altering various physical, physiological and biochemical parameters, as well as by modulating differential expression of at least 11 stress-responsive genes. To the best of our knowledge, this is the first report on detailed analysis of plant growth promotion and stress alleviation in one month old desi and kabuli chickpea subjected to drought stress for 0, 1, 3 and 7 days and recovery in the presence of a PGPR. PMID:26744996

  7. Species From the Heliothinae Complex (Lepidoptera: Noctuidae) in Tucumán, Argentina, an Update of Geographical Distribution of Helicoverpa armigera.

    Science.gov (United States)

    Murúa, M Gabriela; Cazado, Lucas E; Casmuz, Augusto; Herrero, M Inés; Villagrán, M Elvira; Vera, Alejandro; Sosa-Gómez, Daniel R; Gastaminza, Gerardo

    2016-01-01

    The Heliothinae complex in Argentina encompasses Helicoverpa gelotopoeon (Dyar), Helicoverpa zea (Boddie), Helicoverpa armigera (Hübner), and Chloridea virescens (Fabricius). In Tucumán, the native species H. gelotopoeon is one of the most voracious soybean pests and also affects cotton and chickpea, even more in soybean-chickpea succession cropping systems. Differentiation of the Heliothinae complex in the egg, larva, and pupa stages is difficult. Therefore, the observation of the adult wing pattern design and male genitalia is useful to differentiate species. The objective of this study was to identify the species of the Heliothinae complex, determine population fluctuations of the Heliothinae complex in soybean and chickpea crops using male moths collected in pheromone traps in Tucuman province, and update the geographical distribution of H. armigera in Argentina. The species found were H. gelotopoeon, H. armigera, H. zea, and C. virescens. Regardless of province, county, crop, and year, the predominant species was H. gelotopoeon Considering the population dynamics of H. gelotopoeon and H. armigera in chickpea and soybean crops, H. gelotopoeon was the most abundant species in both crops, in all years sampled, and the differences registered were significant. On the other hand, according to the Sistema Nacional Argentino de Vigilancia y Monitoreo de Plagas (SINAVIMO) database and our collections, H. armigera was recorded in eight provinces and 20 counties of Argentina, and its larvae were found on soybean, chickpea, sunflower crops and spiny plumeless thistle (Carduus acanthoides). This is the first report of H. armigera in sunflower and spiny plumeless thistle in Argentina. PMID:27324588

  8. Criblage et performances agronomiques de 45 génotypes de pois chiche (Cicer arietinum L. soumis à un régime hydrique limité

    Directory of Open Access Journals (Sweden)

    Ben Mbarek K.

    2009-01-01

    Full Text Available Screening and agronomic performances of 45 chickpea genotypes (Cicer arietinum L. submitted to a limited hydrous pattern. In Tunisia, chickpea (Cicer arietinum L. is one of the most important legume grain crops. It is conducted during two periods of the year either as winter crop or as spring crop. The last type has the advantage to occupy the soil in a short period of time (February to June. However, it exposes plants to water stress. Consequently, vegetative development and grain yield are negatively affected in quantity and quality. In order to study plant reactions to drought conditions, 45 genotypes of chickpea (C. arietinum were tested in delayed spring culture under a water stressed treatment. A field trial was carried out in the region of Chott Mariem belonging to the semi-arid superior. The drought stress is established at the beginning of flowering stage and was accentuated during the grain filling and the seed maturity phases. To evaluate the chickpea genotypes stress tolerance, parameters related to the vegetative development, the seed yield, the water use efficiency and the thermal duration were measured. The analysis of the grain yield and its components revealed that there is a biological diversity among the genotypes tested. The 45 accessions can be divided into three groups. The first one is composed of ‘Kabuli’ chickpea genotypes which are sensitive to drought stress. They are not appropriate for spring crop in semi-arid regions. The second group is composed of genotypes, of which two are of ‘Dési’ type, that are tolerant to drought stress and can be recommended for a spring crop in the superior semi-arid zones. The last group of genotypes is moderately sensitive to drought stress. They can be led as spring crop in the semi-arid superior zones with complementary irrigations.

  9. The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal.

    Science.gov (United States)

    Mollard, R C; Zykus, A; Luhovyy, B L; Nunez, M F; Wong, C L; Anderson, G H

    2012-08-01

    Pulses are low glycaemic foods; however, their effect on satiation is unknown. The objective was to determine the effects of an ad libitum pulse meal on food intake (FI), appetite and blood glucose (BG) before and after a test meal (4 h later) and on FI at the test meal. Males (n 24, 22·8 kg/m2) received one of four treatments or control. The pulse treatments contained pasta and tomato sauce and 44 % of energy from: (1) chickpeas, (2) lentils, (3) navy beans or (4) yellow peas. The control was pasta and tomato sauce (pasta and sauce). FI (satiation) was measured at the treatment meal (0-20 min) and at an ad libitum pizza meal 4 h later. BG and appetite were measured from 0 to 340 min. At the treatment meal, lentils led to lower FI compared to chickpeas and pasta and sauce, whereas navy beans led to lower FI compared to chickpeas. Also, lentils led to lower cumulative FI compared to pasta and sauce. All pulses led to lower BG peak and cumulative area under the curve (AUC; 0-340 min); however, only chickpeas, lentils and navy beans reduced pre-pizza meal BG AUC (0-260 min) relative to pasta and sauce. Chickpeas led to lower post-pizza meal BG AUC (260-340 min) compared to navy beans and yellow peas. Consumption of pulses in a high-glycaemic meal contributes to earlier satiation, lower BG following the meal and after a later meal, but these effects are specific to pulse type and cannot be explained by their glycaemic properties alone. PMID:22054112

  10. Scenario of Entomological Research in Legume Crops in Nepal

    Directory of Open Access Journals (Sweden)

    Bishnu Prasad Neupane

    2015-09-01

    Full Text Available This review paper highlights scenario of entomological research in grain legumes in Nepal into headings of the monitoring, survey and surveillance, insect pest management, existing problem and future strategies. A survey study on yield loss assessment of chickpea due to Helicoverpa pod borer under field condition has been recorded up to 75% in the year 1996-1998 at Banke and Bardiya district. While monitored Helicoverpa armigera through pheromone trap, during the 2nd week of March, peak catches of 91 male moths were recorded at Rampur, while it was the maximum (42 male moths during the 3rd week of March. Synthetic pyrethroids, deltamethrin, fenvalerate and cypermethrin used at 0.01% concentration (a.i., were effective in controlling the chickpea pod borer, Helicoverpa armigera Hubner. Genotypes NCH-18, NCH -31, NCH-138 and ICC 3075 WR were found resistant. Ripcord 10%@0.05% was found to be superior and effective chemical insecticides to control stem fly and soybean hairy caterpillar. The late sowing date December, 10 showed significantly higher percentage of chickpea pod borer damage with lower grain yield. Inter crops combinations of Chickpea +wheat (2:1 ratio was found effective against Helicoverpa armigera damage (1.2% followed by chickpea+barley (2.36% and Chickpea+linseed (2:1 ratio (3.7%. Bakaino (Melia azederach L. was identified as the best indigenous pesticides to check the normal growth of hairy caterpillar (Spilarctia casigneta kollar under laboratory condition. Metarhizium anisopliae was found effective for the management of Helicoverpa armigera that caused maximum mortality (94.67%, infection (45.33% within 7.49 days (LT50. Similarly, Beauveria bassiana caused maximum mortality (98.67%, infection (80.00% with the least LT50 value (5 days. Crop sprayed with HaNPV had the lowest pod damage (0.3% and the highest in Racer (2.2%. This review work provided a lot of information to conduct entomological research activity conducted in grain

  11. A Novel Pectin Material: Extraction, Characterization and Gelling Properties

    Directory of Open Access Journals (Sweden)

    Agustin Rascón-Chu

    2010-09-01

    Full Text Available A novel pectin was acid extracted from chickpea husk (CHP. CHP presented a 67% (w/w of galacturonic acid, an intrinsic viscosity of 374 mL/g and a viscosimetric molecular weight of 110 kDa. Fourier transform infrared spectroscopy spectrum of CHP indicated a degree of esterification of about 10%. The CHP-calcium system formed ionic gels with a storage (G’ modulus of 40 Pa and gel set time (G’ > G’’ of 3 min at 1% (w/v, and a G’ of 131 Pa and gel set time of 1 min at 2% (w/v. The G’ of CHP gels was not greatly affected by temperature. The results attained suggest that chickpea husk can be a potential source of a gelling pectin material.

  12. Starches from non - conventional sources to improve the technological characteristics of pound cake

    Directory of Open Access Journals (Sweden)

    Eveline Lopes Almeida

    2013-11-01

    Full Text Available This study evaluated and compared the effect of the utilization of five different non-conventional starches (chickpea, common bean, Peruvian carrot, sweet potato and white bean and four different commercial starches (cassava, corn, potato and rice in pound cake. Common bean starch, followed by Peruvian carrot starch were the non-conventional starch sources that showed tendency to improve the technological quality of pound cake, mainly in relation to corn starch, the most common commercial source. With these sources, the batters presented lower specific gravity and the cakes presented higher specific volume, lighter color, lower crumb moisture reduction during the storage period, and better texture attributes during all the cake shelf-life. Moreover, common bean starch provided higher scores in the cake sensory evaluation; especially for grain and texture attributes (moisture, tenderness and softness. Chickpea and white bean starches were more similar to corn starch in pound cake application.

  13. bio fertilizers and their effect on the microbial biomass in the rhizosphere of certain crops using nuclear techniques

    International Nuclear Information System (INIS)

    pot experiments were carried out with chickpea and wheat plants that cultivated in virgin sandy soil. the plants were inoculated with rhizobium and/or arbuscular mycorrhizae. nitrogen and phosphorus fertilizers were applied in three different levels. shoot dry matter accumulation, seeds and grains yields, nitrogen and phosphorus uptake were positively affected by inoculation and fertilization levels. N15-isotope dilution technique were used to determine the contribution of fertilizer,soil and atmospheric N uptake by shoot and seed or grain of both plants . soil microbial biomass C, N and P under chickpea and wheat at each treatment were investigated . Best results were mostly obtained in response to dual inoculation with highest experimental levels of N and P fertilizers

  14. A germination test: an easy approach to know the irradiation

    International Nuclear Information System (INIS)

    Food irradiation is an evolving preserving technique that provides a shield against the spoilage and might have a potential to ensure the food safety and security world wide. In the present study, feasibility to apply germination test to distinguish an un-irradiated and irradiated samples of wheat, maize, chickpea and black eye beans was checked. Samples were irradiated to the absorbed doses ranging from 0-10 kGy using Co-60 gamma irradiator and were germinated in plant growth chamber. Root and shoot lengths were measured at 7th day after gamma radiation treatment. In all the irradiated samples root and shoot lengths were decreased with the increase in radiation absorbed doses. The seeds irradiated to the absorbed doses more than 2 kGy were not germinated. Germination test proved as an easy and simple method to detect irradiation in wheat, maize, chickpea and black eye beans irradiated even at low absorbed doses. (author)

  15. Water Diffusion Coefficients of Selected Legumes Grown in Turkey As Affected by Temperature and Variety

    OpenAIRE

    SEYHAN-GÜRTAŞ, Ferda; AK, M. Mehmet; Evranuz, E. Özgül

    2001-01-01

    The kinetics of water absorption by chickpeas (Koçbaşı, Kuşbaşı), lentils (green Pul) and beans (Battal, Dermason, Horoz, Şeker) grown in Turkey were studied by a gravimetric method during soaking at 15, 25 and 40ºC to determine moisture diffusivity of these selected legumes. The water diffusion coefficients of the legumes were in the range 9.71x10-11 - 5.98x10-10 m2/s for the chickpeas, 3.53x10-10 - 1.33x10-9 m2/s for the lentils and 4.35x10-11 - 3.79x10-9 m2/s for the beans. An Arrhenius-t...

  16. Genetically Modified α-Amylase Inhibitor Peas Are Not Specifically Allergenic in Mice

    OpenAIRE

    Rui-Yun Lee; Daniela Reiner; Gerhard Dekan; Moore, Andrew E.; Higgins, T. J. V.; Epstein, Michelle M.

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity ...

  17. DEVELOPMENT AND PERFORMANCE EVALUATION OF TRACTOR FRONT MOUNTED PIGEON PEA STEM CUTTER

    OpenAIRE

    Atul R. Dange; S.K.Thakare

    2010-01-01

    Pigeon pea or tur (Cajanus cajan L. Mills.) is one of the important pulse crops of India and ranks second to chickpea in area and production. Traditionally the harvesting of pigeon pea is done manually by sickle, which demands considerable amount of labour, drudgery, time and cost to harvest, which reflects on total production cost of the crop. In view of this a tractor operated front mounted pigeon pea stem cutter was developed and being front mounted implement it facilitated better visibil...

  18. RHEOLOGICAL CHARACTERISTICS OF GLUTEN-FREE DOUGH

    OpenAIRE

    Iva Burešová; František Buňka; Stanislav Kráčmar

    2014-01-01

    Dynamic oscillation rheometry was used to determine the viscoelastic properties of gluten-free dough prepared from amaranth, chickpea, millet, corn, quinoa, buckwheat and rice flours. The viscoelastic properties was described by storage modulus G´, loss modulus G´´ and phase angle tg(δ). The relationship between viscoelastic properties of gluten-free dough and bread-making quality was evaluated. The results of this study indicated that dynamic oscillation rheometry may be used to differentiat...

  19. Growth, development, reproductive competence and adult behaviour of Spodoptera litura (Lepidoptera: Noctuidae) reared on different diets

    International Nuclear Information System (INIS)

    Spodoptera litura was reared on natural food (castor leaves, Ricinus communis) and on a several semi-synthetic diets using quasi mass rearing techniques. The effect of the different diets and rearing regimes on S. litura growth, development, reproductive competence and adult behaviour was measured. Spodoptera litura reared from a modified chickpea-based diet provided the greatest growth index and index of adequacy. These studies were conducted as a prerequisite for the evaluation of F1 sterility technique. (author)

  20. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    OpenAIRE

    2011-01-01

    Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L.), pea (Pisum sativum L.), chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control ...

  1. Food Allergy--Lessons from Asia

    OpenAIRE

    Lee, Bee Wah; Shek, Lynette Pei-Chi; Gerez, Irvin Francis A; Soh, Shu E.; Van Bever, Hugo P

    2008-01-01

    Objective This is a review on published data available on food allergy in East Asia and a discussion on the insights that it offers. Methods PubMed searches were made for terms food allergy and anaphylaxis, in combination with Asia. Results There is a paucity of population-based prevalence studies on food allergy in Asia. Certain unique food allergens, such as buckwheat, chestnuts, chickpeas, bird's nest, and royal jelly, which are consumed extensively by certain Asian populations have result...

  2. First and second meal effects of pulses on blood glucose, appetite, and food intake at a later meal.

    Science.gov (United States)

    Mollard, Rebecca C; Wong, Christina L; Luhovyy, Bohdan L; Anderson, G Harvey

    2011-10-01

    Pulses are low-glycemic appetite-suppressing foods, but it is not known whether these properties persist after being consumed as part of a meal and after a second meal. The objective of this study was to determine the effects of a fixed-size pulse meal on appetite and blood glucose (BG) before and after an ad libitum test meal (pizza) and on food intake (FI) at the test meal. Males (n = 25; 21.3 ± 0.5 years; 21.6 ± 0.3 kg·m(-2)) randomly consumed 4 isocaloric meals: chickpea; lentil; yellow split pea; and macaroni and cheese (control). Commercially available canned pulses provided 250 kcal, and were consumed with macaroni and tomato sauce. FI was measured at a pizza meal 260 min after consumption of the isocaloric meal. BG and appetite were measured from 0 to 340 min. The lentil and yellow pea, but not chickpea, treatments led to lower appetite ratings during the 260 min prepizza meal period, and less FI at the pizza meal, compared with macaroni and cheese (p pizza meal, BG was lower following the chickpea and lentil treatments, but not the yellow pea treatment (p < 0.05). Postpizza meal BG AUC was lower following the chickpea and lentil treatments than in the yellow pea treatment (p < 0.05). The beneficial effects of consuming a pulse meal on appetite, FI at a later meal, and the BG response to a later meal are dependent on pulse type. PMID:21957874

  3. Lead, Cadmium and Cobalt (Pb, Cd, and Co) Leaching of Glass-Clay Containers by pH Effect of Food

    OpenAIRE

    Juan Diego García-Paredes; María Teresa Sumaya-Martínez; José Roberto Villagómez-Ibarra; Eduardo Madrigal-Santillán; Morales-González, José A.; Clara Zúñiga-Pérez; Samuel Quintanar-Gómez; Carmen Valadez-Vega

    2011-01-01

    Recent studies have shown that handcrafted glass-clay containers are a health risk because they can be contaminated by heavy metals, which can be transferred to food, thus reaching the human body to potentially cause illness. Therefore, in the present work, we evaluate the leaching of lead, cadmium, and cobalt from glass-clay containers into two types of food: tomato sauce (salsa), and chickpea puree. The containers were obtained from four regions in the Mexican state of Hidalgo. Repetitive e...

  4. Ochratoxin A in several grains in Iran.

    Science.gov (United States)

    Beheshti, Hamed Reza; Asadi, Mohammad

    2013-01-01

    Ochratoxin A content in 100 grain and derived products were determined by high-performance liquid chromatography with immunoaffinity column clean-up and fluorometric detection. Ochratoxin A was detected in 32% of green gram, 13.3% of chickpea, 10% of lentil and 17.5% of wheat flour. Ochratoxin contamination was below the regulatory limits of the European Union and of Iran. Recovery was 97% and the limit of detection was 0.12 ng g⁻¹. PMID:24779905

  5. SOLUTION OF RESIDUE SUSPICION IN ORGANIC CUMIN AND ANISEED

    OpenAIRE

    Nemli, Yildiz; Kaynar, Ahmet; Kayandan, Akın; Er, Tülin

    2014-01-01

    BIRLIK produce and export mostly organic aniseed, cumin and fennel. Other than these products, the company also produce poppy seed, gorund oregano, thyme, sage, rosemary and chickpea in 7 different project areas. A research project is prepared beetween EU Agricultural Faculty Plant Protection Department and BIRLIK to solve the suspicions occured due to linuron and isoproturon herbicide metabolites formation in organic cumin and linuron formation in aniseed. This project was started in 2009 an...

  6. Mutation breeding newsletter. No. 41

    International Nuclear Information System (INIS)

    This newsletter contains short descriptions of research methods for the use of radiation to induce mutations and facilitate plant breeding. This method is used to develop species of plants that can survive in harsh climates and thus provide a food supply for humans and animals. Some of the mutants discussed include a salt tolerant barley, a disease resistant shrub, a cold tolerant chickpea, a highly productive Canavalia virosa and productive tomato. Refs, figs and tabs

  7. CHICK PEAS EFFICIENCY IN HENS FEEDING

    OpenAIRE

    Nikolaev S. I.; Karapetyan A. K.; Kornilova E. V.; Struk M. V.

    2015-01-01

    This article presents the results of the chick peas use instead of sunflower cake, in feeding young and adult livestock hens-layers of the cross "Hajseks brown". The researches were carried out in the JSC "Agrofirm Vostok" of the Nikolayevskiy district in the Volgograd region. The sunflower cake replacement with legumes - chickpeas as the part of the experimental animal fodder for young and adult livestock hens-layers had a positive influence on productivity, physiological state of the birds,...

  8. Effect of ingredients on rheological, nutritional and quality characteristics of fibre and protein enriched baked energy bars

    OpenAIRE

    Rawat, Neelam; Darappa, Indrani

    2014-01-01

    Effect of substitution of brown flour (BF) with fiber rich ingredient mixture, FRIM (banana flour, psyllium husk, partially defatted coconut flour and oats) and protein rich ingredient mixture, PRIM (chickpea flour, sesame, soya protein isolate and whey protein concentrate) at the levels of 25, 50 and 75 % on the rheological, nutritional and quality characteristics of baked energy bars (BEB) were studied. Use of increasing amount of FRIM increased farinograph water absorption and amylograph p...

  9. Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development

    OpenAIRE

    Singh, Vikash K.; Mukesh Jain

    2014-01-01

    Flower development is one of the major developmental processes that governs seed setting in angiosperms. However, little is known about the molecular mechanisms underlying flower development in legumes. Employing RNA-seq for various stages of flower development and few vegetative tissues in chickpea, we identified differentially expressed genes in flower tissues/stages in comparison to vegetative tissues, which are related to various biological processes and molecular functions during flower ...

  10. Isolation of Aspergillus flavus from stored food commodities and Thymus vulgaris (L.) essential oil used as a safe plant based preservative

    OpenAIRE

    Atul Kumar Singh; Chandrabhan Seniya; Shriram Prasad

    2009-01-01

    Grain samples of Cicer arietinum (Chickpea), Zea mays (Maize), Cajanus cajan (Pigeon pea), Hordeum vulgare (Barley), Oryza sativa (Rice) and Sorghum vulgare (Millet) were procured from various retailers of market were subjected to their mould profile. During mycoflora analysis, 1297 fungal isolates were recorded from the food commodities. The least number of fungal isolates (189) were detected from H. vulgare while highest (244) from Z. mays. The genus Aspergillus was found to be most dominan...

  11. Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes.

    Science.gov (United States)

    Fan, X H; Tang, C; Rengel, Z

    2002-09-01

    Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots. PMID:12234143

  12. Function-structure relationships of acetylated pea starches

    OpenAIRE

    J. Huang

    2006-01-01

    Cowpea, chickpea and yellow pea starches were studied and the results showed that their properties were strongly related to the chemical fine structures of the starches. Furthermore, granular starches were modified using two types of chemical acetylation reagents and then separated into different size fractions. The amount of introduced acetyl groups was found to depend on the size of the granules for the reaction with rapidly reacting reagent acetic acid anhydride, whereas the amount of intr...

  13. Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula

    OpenAIRE

    Kamphuis Lars G; Gao Lingling; Singh Karam B

    2012-01-01

    Abstract Background Cowpea aphid (CPA; Aphis craccivora) is the most important insect pest of cowpea and also causes significant yield losses in other legume crops including alfalfa, beans, chickpea, lentils, lupins and peanuts. In many of these crops there is no natural genetic resistance to this sap-sucking insect or resistance genes have been overcome by newly emerged CPA biotypes. Results In this study, we screened a subset of the Medicago truncatula core collection of the South Australia...

  14. Radio frequency treatments for insect disinfestation of dried legumes

    OpenAIRE

    J. A. Johnson; Wang, S.; Tang, J

    2010-01-01

    Dried legumes (chickpeas, green peas or lentils) are valuable export commodities in the US Pacific Northwest. A major problem in the marketing of these products is infestation by insect pests. Typically, chemical fumigants are used to disinfest product, but regulatory issues, insect resistance, environmental concerns and the increase of the organic market have forced the industry to explore non-chemical alternatives. One possible alternative is the use of radio frequency (RF) energy to rapidl...

  15. Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula

    OpenAIRE

    Kamphuis, Lars G.; Gao, Lingling; Singh, Karam B.

    2012-01-01

    Background Cowpea aphid (CPA; Aphis craccivora) is the most important insect pest of cowpea and also causes significant yield losses in other legume crops including alfalfa, beans, chickpea, lentils, lupins and peanuts. In many of these crops there is no natural genetic resistance to this sap-sucking insect or resistance genes have been overcome by newly emerged CPA biotypes. Results In this study, we screened a subset of the Medicago truncatula core collection of the South Australian Researc...

  16. Application of DNA comet assay for detection of radiation treatment of grams and pulses

    OpenAIRE

    Khan, Hasan M.; Ashfaq A Khan; Khan, Sanaullah

    2010-01-01

    Several types of whole pulses (green lentils, red lentils, yellow lentils, chickpeas, green peas, cowpeas and yellow peas) and grams (black grams, red grams and white grams) have been investigated for the identification of radiation treatment using microgel electrophoresis of single cells (DNA comet assay). Pulses and grams were exposed to the radiation doses of 0.5, 1.0 and 5 kGy covering the legalized commercial dose range for protection from insect/pest infestations. All irradiated samples...

  17. Biodosažitelné formy vybraných nutrientů v luštěninách

    OpenAIRE

    Landauf, Lukáš

    2015-01-01

    This thesis deals with the quantitative determination of bioaccessible contents of selected elements (Cu, Fe, Zn) in legumes: chickpeas, pea, lentil, soybean, bean. The UBM in-vitro test was used for the study of bioaccessible forms. This method simulates human digestion using synthetic gastric juices. Atomic absorption spectrometry was used for the determination of the total content of selected elements in legumes and their bioaccessible contents in gastric and gastro-intestinal human tract....

  18. Pulse Consumption, Satiety, and Weight Management1

    OpenAIRE

    McCrory, Megan A.; Hamaker, Bruce R.; Lovejoy, Jennifer C.; Eichelsdoerfer, Petra E.

    2010-01-01

    The prevalence of obesity has reached epidemic proportions, making finding effective solutions to reduce obesity a public health priority. One part of the solution could be for individuals to increase consumption of nonoilseed pulses (dry beans, peas, chickpeas, and lentils), because they have nutritional attributes thought to benefit weight control, including slowly digestible carbohydrates, high fiber and protein contents, and moderate energy density. Observational studies consistently show...

  19. Starches from non - conventional sources to improve the technological characteristics of pound cake

    OpenAIRE

    Eveline Lopes Almeida; André Luis Marangoni; Caroline Joy Steel

    2013-01-01

    This study evaluated and compared the effect of the utilization of five different non-conventional starches (chickpea, common bean, Peruvian carrot, sweet potato and white bean) and four different commercial starches (cassava, corn, potato and rice) in pound cake. Common bean starch, followed by Peruvian carrot starch were the non-conventional starch sources that showed tendency to improve the technological quality of pound cake, mainly in relation to corn starch, the most common commercial s...

  20. Evolution of rice and pulse varieties with improved quality through induced mutations. Part of a coordinated programme on the use of nuclear techniques for seed protein improvement

    International Nuclear Information System (INIS)

    Three mutant varieties, 16 hybrids of advanced generation, 6 recommended varieties and many local collections of rice in Bangladesh were screened for protein content. The 25 varieties or strains showed a variation of protein content between 8.9 - 11.7% and also wide ranges of variation in amylose content, starch-iodine-blue value and water absorption by grain. Amino acid compositions of some promising varieties were also investigated. 60 rice germplasms tested also showed a wide range of variation in protein content (6-13%) and variations of other seed characteristics. 3000 local collections showed a variation range of 5-13% protein content. Mutation breedings were carried out on chickpeas and lentils on a large scale. Dry seed was treated with 60Co gamma ray and mutants were detected, selected, particularly for high protein content, and evaluated in M2-M8 generations. Of the 10 selected mutant lines of each of the pulses, variations of various agronomic characters were observed. However, induced variation in protein content was only remarkable in chickpea. The most promising chickpea mutant showed 19% higher yield and 12% higher protein content than the mother variety, and was proposed to be released as a variety

  1. Incidence of Winter and Summer Diapause in Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae in Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    Deepak R. Jadhav

    2013-05-01

    Full Text Available The incidence of winter and summer diapause was studied by large-scale field samplings of larvae and pupae of the cotton bollworm, Helicoverpa armigera (Hüb conducted over a period of 13-years during winter and summer seasons in Andhra Pradesh, India. Induction of winter diapause was associated with cooler prevailing temperatures and shorter day lengths of 32°C during March-April resulting in greater adult emergence with the onset of the monsoon season during mid-June to early July. In summer, few alternate hosts are available for larvae to sustain by allowing local populations colonizing newly germinated host crops with the onset of the rainy season. In addition, the incidence of winter and summer diapause was higher in male pupae than females in the ratio of 4:1 and 3:1 (♂:♀, respectively. Diapause populations of H. armigera were most common in the cyclonic weather prevailed for several weeks during 1977-78 (15.11% and 1995-96 (17.64%. Under these conditions, an average of <4% and <6% of pupae entered winter and summer diapause, respectively and was associated with severe outbreaks of H. armigera in subsequent seasons. Higher populations of H. armigera on pigeonpea and chickpea entered winter diapause on pigeonpea and chickpea and summer diapause on irrigated maize, pigeonpea, chickpea and a common weed host, Datura metel.

  2. Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers.

    Directory of Open Access Journals (Sweden)

    Manish Roorkiwal

    Full Text Available To estimate genetic diversity within and between 10 interfertile Cicer species (94 genotypes from the primary, secondary and tertiary gene pool, we analysed 5,257 DArT markers and 651 KASPar SNP markers. Based on successful allele calling in the tertiary gene pool, 2,763 DArT and 624 SNP markers that are polymorphic between genotypes from the gene pools were analyzed further. STRUCTURE analyses were consistent with 3 cultivated populations, representing kabuli, desi and pea-shaped seed types, with substantial admixture among these groups, while two wild populations were observed using DArT markers. AMOVA was used to partition variance among hierarchical sets of landraces and wild species at both the geographical and species level, with 61% of the variation found between species, and 39% within species. Molecular variance among the wild species was high (39% compared to the variation present in cultivated material (10%. Observed heterozygosity was higher in wild species than the cultivated species for each linkage group. Our results support the Fertile Crescent both as the center of domestication and diversification of chickpea. The collection used in the present study covers all the three regions of historical chickpea cultivation, with the highest diversity in the Fertile Crescent region. Shared alleles between different gene pools suggest the possibility of gene flow among these species or incomplete lineage sorting and could indicate complicated patterns of divergence and fusion of wild chickpea taxa in the past.

  3. BIOACTIVE COMPOUNDS IN COMMONLY UTILIZED LEGUME CULTIVARS FROM IRAQ

    Directory of Open Access Journals (Sweden)

    Dalaram S. Ismael

    2013-02-01

    Full Text Available Total polyphenol content as well as total antioxidant capacity in three chickpea, four fababean and four lentil cultivars from regions of Iraq with different environmental growth conditions were investigated in the work. The total polyphenol content (TP was estimated using Folin-Ciocalteau assay and the total antioxidant capacity (TAC of legume extracts was measured using the DPPH spectrophotometrically. The obtained results confirmed that the polyphenols content in the tested legume cultivars was influenced by locality. From tested legumes the highest polyphenol content was measured in fababean (1220 – 6286 mg GAE.kg-1. In lentil (2351 – 3011 mgGAE.kg-1 the average TP value was slightly lower (by 1,6%, while in chickpea (549 – 978 mg GAE.kg-1 it was dramatically (by 71,5% lower in comparison to fababean. The similar trend was observed at values of TAC. The highest average TAC value was determined in fababean (15.2 – 25.6% DPPH, in lentil (14.2 – 28.9% DPPH the TAC value was by 2% and in chickpea (1.9 – 4.5% DPPH by 83,6% lower in comparison to fababean. Only in lentil a statistically strong correlation (P-value 2.391E-06; R = 0.802 was found. Our results confirmed that legumes can be a good source of bioactive compounds in the human nutrition.

  4. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.

    Science.gov (United States)

    Wang, Xiaojuan; Tang, Caixian; Severi, Julia; Butterly, Clayton R; Baldock, Jeff A

    2016-08-01

    Effects of rhizosphere properties on the rhizosphere priming effect (RPE) are unknown. This study aimed to link species variation in RPE with plant traits and rhizosphere properties. Four C3 species (chickpea, Cicer arietinum; field pea, Pisum sativum; wheat, Triticum aestivum; and white lupin, Lupinus albus) differing in soil acidification and root exudation, were grown in a C4 soil. The CO2 released from soil was trapped using a newly developed NaOH-trapping system. White lupin and wheat showed greater positive RPEs, in contrast to the negative RPE produced by chickpea. The greatest RPE of white lupin was in line with its capacity to release root exudates, whereas the negative RPE of chickpea was attributed to its great ability to acidify rhizosphere soil. The enhanced RPE of field pea at maturity might result from high nitrogen deposition and release of structural root carbon components following root senescence. Root biomass and length played a minor role in the species variation in RPE. Rhizosphere acidification was shown to be an important factor affecting the magnitude and direction of RPE. Future studies on RPE modelling and mechanistic understanding of the processes that regulate RPE should consider the effect of rhizosphere pH. PMID:27101777

  5. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.

    Science.gov (United States)

    Luo, Jie; Qi, Shihua; Gu, X W Sophie; Wang, Jinji; Xie, Xianming

    2016-05-01

    Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas. PMID:26846211

  6. Adaptive Potential for the Invasion of Novel Host Plants in the Bean Weevil: Patterns of the Reproductive Behavior in Populations That Used Different Host Plants

    Directory of Open Access Journals (Sweden)

    Dragana Milanović

    2007-01-01

    Full Text Available The goal of this work was to examine interpopulation patterns in the reproductive behavior of populations of bean weevil (Acanthoscelides obtectus Say; Coleoptera: Bruchidae that had different levels of specialization on their native host plant – the bean (Phaseolus vulgaris L., as well as on a novel host plant – the chickpea (Cicer arietinum Thorn. The obtained pattern of interpopulation mating behavior seemed exactly as if the males on chickpea had evolved a specific odor and/or a courtship ritual that females of populationson bean found repulsive. Unlike females, the males of bean populations seemed to be willing to mate with females from the population on chickpea equally as with their own females. Such an asymmetric pattern of reproductive isolation between populations ofa species has been often considered an initial phase of a process of speciation. Thus, our results could be a good starting point for further, thorough examination of both the role of the level of host specialization in females and the role of biochemical characteristics of male pheromone (and/or their cuticular hydrocarbones in the evolution of pre-reproductive isolation between insect populations.As the results of this study, together those of previous studies on A. obtectus, suggest great evolutionary potential for invasions of and fast specialization on novel host plants, they could provide valuable information for the development of long-term strategiesunder the programmes of Integrated Pest Management.

  7. Effects legumes, Fallow and wheat on subsequent wheat production in Central Anatolia

    International Nuclear Information System (INIS)

    In order to determine the Nsub2-fixation capacities of lentil, vetch, chickpea and fodderpea in a legume-wheat rotation by using the A-value method of N15 technique, and to assess the amount of carry-over of N to wheat from the previous legume as well as water contribution of fallow, wheat and legumes to the following wheat under rainfed Central Anatolia conditions field experiments were conducted in 1992 and 1993 at three different provinces using completely randomized block design with 5 replications. Results we obtained showed that %Ndff values among legumesdid not differ significantly neither within or between locations. Legumesvaried significantly (P<0.05) in their %Ndfa values at each location and highest values of %Ndfa were obtained at Eskisehir. In general, %Ndfa varied from59-84, and 36-85 for chickpea,lentils and vetchs. The evaluation of the yield and N data obtained in 1993 indicated that lentil (winter or summer) -wheat rotation at Ankara and Eskisehir conditions and chickpea-wheat rotation at Konya conditions should be prefered, due to the higher seed and total yields, higher N yields and higher %NUE values obtained from these rotations in comparison to the others. In order to estimate the carry-over of nitrogen from legumes to the succeeding wheat crop, % nitrogen derived from unknown (%Ndfu) were also calculated. Highest amount of carry-over from the legumesto the succeeding wheat were 31.1 kgN/ha from summer lentil at Ankara; 16.9 kgN/ha from summer lentil at Eskisehir; and 8.0 kgN/ha from chickpea at Konya. These results obtined showed that a lentil-wheat rotation at Ankara and Eskisehir and a chickpea-wheat rotation at Konya. Mean while, the evaluation of the soil and WUE data at both Eskisehir and Ankara indicated that winter lentil-wheat rotation should be prefered in these areas due to more efficient use of water by wheat crop after this rotation system

  8. Host preference of the bean weevil Zabrotes subfasciatus

    Institute of Scientific and Technical Information of China (English)

    Isabel Ribeiro do Valle Teixeira; Angel Roberto Barchuk; Fernando Sérgio Zucoloto

    2008-01-01

    It is largely known that the range of an insect diet is mostly determined by oviposition behavior, mainly in species with endophytic larvae such as Zabrotes subfasciatus.However, the proximate factors determining host choice and the subsequent steps leading to the expansion or reduction of the host number and occasional host shifts are largelyun known. We analyzed various factors determining host preference of Z. subfasciatus through the evaluation of: (i) oviposition preference of a wild population of Z. subfasciatus on the usual host (bean) and unusual hosts (lentil, chickpea and soy), and the performance of the offspring; (ii) artificial selection for increasing preference for hosts initially less frequently chosen; (iii) comparison of oviposition behavior between two different popula-tions (reared for~30 generations in beans or chickpeas, respectively); (iv) oviposition timing on usual and unusual hosts; and (v) identification of preference hierarchies. We found that when using unusual hosts, there is no correlation between performance and preference and that the preference hierarchy changes only slightly when the population passes through several generations on the less frequently accepted host. We also found a positive response to artificial selection for increasing oviposition on the less preferred host; however, when the host-choice experiment involved two varieties of the usual host, the response was faster than when the choice involved usual and unusual hosts. Finally, beetles reared on an unusual host (chickpea) for 26 generations showed similar good fitness on both usual and unusual hosts,indicating that the use of a new host does not necessarily result in the loss of performance on the original host. Nevertheless, this population showed lower fitness on the usual host than that of the original population, suggesting an underlying partial trade-off phenomenon which may contribute to a broadening of diet of this insect species.

  9. The acute effect of commercially available pulse powders on postprandial glycaemic response in healthy young men.

    Science.gov (United States)

    Anderson, G Harvey; Liu, Yudan; Smith, Christopher E; Liu, Ting Ting; Nunez, Maria Fernanda; Mollard, Rebecca C; Luhovyy, Bohdan L

    2014-12-28

    Whole pulses (beans, peas, chickpeas and lentils) elicit low postprandial blood glucose (BG) responses in adults; however, their consumption in North America is low. One potential strategy to increase the dietary intake of pulses is the utilisation of commercial pulse powders in food products; however, it is unclear whether they retain the biological benefits observed with whole pulses. Therefore, the present study examined the effects of commercially prepared pulse powders on BG response before and after a subsequent meal in healthy young men. Overall, three randomised, within-subject experiments were conducted. In each experiment, participants received whole, puréed and powdered pulses (navy beans in Expt 1; lentils in Expt 2; chickpeas in Expt 3) and whole-wheat flour as the control. All treatments were controlled for available carbohydrate content. A fixed-energy pizza meal (50·2 kJ/kg body weight) was provided at 120 min. BG concentration was measured before (0-120 min) and after (140-200 min) the pizza meal. BG concentration peaked at 30 min in all experiments, and pulse forms did not predict their effect on BG response. Compared with the whole-wheat flour control, navy bean treatments lowered peak BG concentrations (Expt 1, Plentil (Expt 2, P= 0.008) and chickpea (Expt 3, P= 0.002) treatments over 120 min. Processing pulses to powdered form does not eliminate the benefits of whole pulses on BG response, lending support to the use of pulse powders as value-added food ingredients to moderate postprandial glycaemic response. PMID:25327223

  10. Genetic Relationship in Cicer Sp. Expose Evidence for Geneflow between the Cultigen and Its Wild Progenitor.

    Science.gov (United States)

    van Oss, Ruth; Abbo, Shahal; Eshed, Ravit; Sherman, Amir; Coyne, Clarice J; Vandemark, George J; Zhang, Hong-Bin; Peleg, Zvi

    2015-01-01

    There is a debate concerning mono- or poly-phyletic origins of the Near Eastern crops. In parallel, some authors claim that domestication was not possible within the natural range of the wild progenitors due to wild alleles flow into the nascent crops. Here we address both, the mono- or poly-phyletic origins and the domestications within or without the natural range of the progenitor, debates in order to understand the relationship between domesticated chickpea (Cicer arietinum L.) and its wild progenitor (C. reticulatum Ladizinsky) with special emphasis on its domestication centre in southeastern Turkey. A set of 103 chickpea cultivars and landraces from the major growing regions alongside wild accessions (C. reticulatum, C. echinospermum P.H Davis and C. bijugum K.H. Rech) sampled across the natural distribution range in eastern Turkey were genotyped with 194 SNPs markers. The genetic affinities between and within the studied taxa were assessed. The analysis suggests a mono-phyletic origin of the cultigen, with several wild accession as likely members of the wild stock of the cultigen. Clear separation between the wild and domesticated germplasm was apparent, with negligible level of admixture. A single C. reticulatum accession shows morphological and allelic signatures of admixture, a likely result of introgression. No evidence of geneflow from the wild into domesticated germplasm was found. The traditional farming systems of southeaster Turkey are characterized by occurrence of sympatric wild progenitor-domesticated forms of chickpea (and likewise cereals and other grain legumes). Therefore, both the authentic crop landraces and the wild populations native to the area are a unique genetic resource. Our results grant support to the notion of domestication within the natural distribution range of the wild progenitor, suggesting that the Neolithic domesticators were fully capable of selecting the desired phenotypes even when facing rare wild

  11. Effects of alternative legume seeds on Barbaresca lamb meat quality

    Directory of Open Access Journals (Sweden)

    P. Pennisi

    2011-03-01

    Full Text Available In recent years a renewed interest towards the use of local legume seeds in animal nutrition was raising in Mediterranean areas. Conventional feedstuffs such as maize and soybean and animal by-products, the former widely diffused as genetically modified organisms (GMO and the latter related to “mad cow disease” produced significative changes in public perceptions, justifying a dramatic increase of the use of alternative protein and energy sources such as legume seeds (peas, faba beans, chickpeas (Hanbury et al., 2000...

  12. The physicochemical properties of legume protein isolates and their ability to stabilize oil-in-water emulsions with and without genipin

    OpenAIRE

    Johnston, Stuart P.; Nickerson, Michael T.; Low, Nicholas H.

    2014-01-01

    The physicochemical and emulsifying properties of legume protein isolates prepared from chickpea (CPI), faba bean (FPI), lentil (LPI) and soy (SPI) were investigated in the presence and absence of genipin. Solubility was highest for CPI (~94 %), followed by LPI (~90 %), FPI (~85 %) and SPI (~50 %). Surface characteristics revealed similar zeta potentials (~ − 47 mV) for CPI, LPI and FPI, but lower for SPI (~ − 44 mV). Contrastingly, surface hydrophobicity was greatest for CPI (~137 arbitrary ...

  13. INFLUENCE OF NATURAL ADDITIVES ON PROTEIN COMPLEX OF BREAD

    Directory of Open Access Journals (Sweden)

    Dana Urminská

    2010-11-01

    Full Text Available The study focuses on researching the influence of natural additives on certain technological characteristics of mixtures used for bread production, more particularly the influence of N substances in used raw material on selected qualitative parameters of bread. The blends for bread production to be analysed were prepared by mixing wheat flour with an addition of oat, buckwheat, lentil and chickpea wholegrain flour in different portions (10, 20, 30, 40 and 50 %. The experiment showed that the addition of natural additives worsened the protein complex of the blends used in bread production (worsening also qualitative parameters known as product volume. The loaves prepared with an addition of buckwheat, oat, lentil and chickpea were evaluated to be of a lesser quality from a technological viewpoint when compared with pure wheat loaves. The lower content of gluten forming proteins and the generally changed protein composition of blends due to additives caused a lower percentage of wet gluten content, its lower extensibility and swelling capacity. The sedimentation value (Zeleny index decreased proportionally with the increase of addition until the level was unsatisfactory for raw material intended for bakery purposes. The N content in experimental loaves was higher than in the reference loaves and it increased according to the selected additive and its portion in the blend (more with the addition of lentil and chickpea, less in case of buckwheat and oat which is considered as positive from a nutritional point of view. But from the technological point of view the additives did not show any positive influence and caused a lower loaf bread volume. The most significant decrease of the loaf bread volume was found with the addition of 50 % of buckwheat (- 45.6 %. Better results were obtained with a lower portion of the additive: loaf with an addition of 30 % of chickpea (volume decreased by 12.8 % > loaf with an addition of 30 % of lentil (volume

  14. Glycemic index: effect of food storage under low temperature

    OpenAIRE

    Marina Cassab Carreira; Franco Maria Lajolo; Elizabete Wenzel de Menezes

    2004-01-01

    This study was carried out to evaluate the influence of food storage under low temperature (-20ºC) and the resistant starch formation, both on the glycemic index (GI). The GI of only cooked and cooked and stored foods under -20ºC for 30 days was evaluated in short-term tests with humans. Significant increase on the RS content was evidenced for all the stored foods. The food storage resulted in a significant decrease on the GI of beans and chick-peas; the GI of pasta remained the same and the ...

  15. Effects of Marketing Loans on U.S. Dry Peas and Lentils: Supply Response and World Trade

    OpenAIRE

    Lin, William W.; Lucier, Gary

    2008-01-01

    The 2002 Farm Act required USDA to implement marketing loans for the 2002-07 crops of dry peas, lentils, and small chickpeas. This provision led to expanded acreage for dry peas and lentils, crops analyzed in this study. The analysis found that marketing loans played a role in expansion for dry peas in 2003-05 and for lentils in 2003. For dry peas and lentils, marketing loans contributed to acreage expansion in North Dakota and Montana. Simulation model results suggest that marketing loans ha...

  16. Marketing Assistance Loans, Loan Deficiency Payments and Marketing Loan Gains for Minor Oilseed and Pulse Crops

    OpenAIRE

    Johnson, James B.

    2003-01-01

    Marketing assistance loans are available to Montana producers of minor oilseed and pulse crops. The USDA differentiates county-level loan rates from national rates for minor oilseeds and dry peas . County-level lentil and small chickpea loan rates for all pertinent counties throughout the United States are differentiated at the multi-state, regional level from the national loan rates. Montana county-level rates for the 2003 crop year are shown in Appendix A: Figures 1 through 7 for canola, cr...

  17. Acid-Base Buffering Properties of Five Legumes and Selected Food in vitro

    OpenAIRE

    Maher M. Al-Dabbas; Khalid Al-Ismail; Ruba A. Taleb; Salam Ibrahim

    2010-01-01

    Problem statement: in vitro acid-Buffering Capacity (BC) values of 5% (dry matter) aqueous homogenized suspension of five legumes (broad bean, lentils, chickpea, kidney bean and lupine) and of selected antacid home preparations (cow's milk, almond, peanut, licorice, carob and lettuce stem) were investigated within and among samples from their respective initial pH until pH was decreased to 1.5. BC was the highest for cow's milk, carob, licorice and lettuce stem (BC values 1.65-1.97), intermed...

  18. Transfer of {sup 40}K, {sup 238}U, {sup 210}Pb, and {sup 210}Po from soil to plant in various locations in south of Syria

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.S. [Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic)], E-mail: scientific1@aec.org.sy; Al-Akel, B.; Nashawani, A.; Amin, Y.; Khalifa, K.H.; Al-Ain, F. [Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic)

    2008-02-15

    Transfer factors of {sup 40}K, {sup 238}U, {sup 210}Pb, and {sup 210}Po from soil to some agriculture crops in various locations in south of Syria (Dara'a and Assuwaydaa districts) have been determined. Soil and vegetable crops (green pepper, cucumber, tomato, and eggplant), legumes crops (lentil, chickpea, and broad bean), fruit trees (apple, grape, and olives) and cereals (barley and wheat) were collected and analyzed for {sup 238}U, {sup 210}Pb, and {sup 210}Po. The results have shown that higher transfer factors (calculated as Bq kg{sup -1} dry wt. plant material per Bq kg{sup -1} dry wt. soil) for {sup 210}Po, {sup 210}Pb and {sup 238}U were observed in vegetable leaves than fruits and cereals leaves; the highest values of transfer factor (TF) for {sup 238}U were found to be 0.1 for straw of chickpea. Transfer factors for {sup 210}Po varied between 2.8 x 10{sup -2} and 2 in fruits of eggplant and grain of barley, respectively. In addition, several parameters affecting transfer factors of the radionuclides were evaluated. The results can be considered as base values for TF of natural radionuclides in the region.

  19. Feasibility of integrating radiation-induced F1 sterility and biological control for population suppression of the pink bollworm, Pectinophora gossypiella, in Pakistan

    International Nuclear Information System (INIS)

    Substitution of casein and wheat germ with locally available ingredients (chickpea flour, soybean flour, wheat husk and sawdust) in the specified casein-wheat germ diet affected various biological parameters of pink bollworm (PBW), Pectinophora gossypiella. The diet containing chickpea flour performed significantly better and is more economical than the other diets tested. The highest PBW field populations were recorded in the month of October when large numbers of fruiting bodies were present in the cotton. Field behavioural observations revealed that mating and other sexual activities of treated and native moths varied significantly with time of night and peak activity was during 03:00-04:00 hours. Male moths treated with 100 Gy as mature pupae responded well to gossyplure baited traps. The attraction of male moths to irradiated virgin females decreased significantly with increasing doses of radiation. Male moths responded more readily to virgin untreated females than to irradiated females. Field-cage studies demonstrated that irradiated moths (100 Gy) released at a 50:1 treated to normal ratio at three week intervals reduced larval infestations inside the cages to subeconomic level. Studies suggested that there is a great potential for integrating the egg parasitoid, Trichogramma chilonis, with the sterile insect technique to control cotton bollworms. (author)

  20. Comparative study of the growth parameters of legumes grown in fipronil-stressed soils

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2011-06-01

    Full Text Available In modern agronomy, insecticides of the diverse chemical families are repeatedly used to control various plant growth limiting insect pests and to improve plant productivity. However, the intensive application of these plant protecting agrochemicals results in their accumulation in soils in substantial concentration and deteriorates the soil fertility. Previous studies concerning the effect of insecticides are commonly confined to a specific legume and reports about the concurrent impact of any specific insecticide on more than one legume in parallel are rare. The present study was therefore, designed to assess the effect of insecticide fipronil simultaneously on common food legumes (chickpea, pea, lentil and green gram. In this study, fipronil displayed a varying degree of toxicity to the tested legumes. The highest toxicity of fipronil was observed in the shoot dry biomass, leghaemoglobin and chlorophyll content, and the seed protein in chickpea, nodule numbers and nodule biomass in pea, root dry biomass and shoot N in green gram, and nodule biomass, root N, root P, shoot P, and seed yield in lentil. Generally, the most toxic effect of fipronil was observed on the growth parameters of lentil plants.

  1. Determination of Physical Properties of Some Agricultural Grains

    Directory of Open Access Journals (Sweden)

    S. Gürsoy

    2010-08-01

    Full Text Available In this study, for the purpose of determining physical and aerodynamic properties, some varieties of wheat, barley, chickpea and lentil were used. The length, width, thickness, geometric mean diameter, equivalent sphere diam eter, sphericity, seed mass, bulk density, true density, projected area, terminal velocity, drag coefficient of each grain variety were determined. The theoretical terminal velocities of those grains were calculated by using equations corrected with the shape factor. For all the grains, theoretical terminal velocities were lower than the experimental values. The average experimental terminal velocity was found to be in the range of 7.52 to 8.14 m/s for wheat varieties, 7.04 to 7.07 m /s for barley varieties, 7.72 to 7.78 m/s for lentil varieties and 11.15 to 12.01 m/s for chickpea varieties. The drag coefficients of seeds according to projected areas in different positions and equivalent spheres were calculated. The drag coefficient in the position of the lowest projected area for all the grain varieties was higher than that in the other position.

  2. Lentils (Lens culinaris L.), a rich source of folates.

    Science.gov (United States)

    Sen Gupta, Debjyoti; Thavarajah, Dil; Knutson, Phil; Thavarajah, Pushparajah; McGee, Rebecca J; Coyne, Clarice J; Kumar, Shiv

    2013-08-14

    The potential for genetic biofortification of U.S.-grown lentils ( Lens culinaris L.) with bioavailable folate has not been widely studied. The objectives of this study were (1) to determine the folate concentration of 10 commercial lentil cultivars grown in Minot and McLean counties, North Dakota, USA, in 2010 and 2011, (2) to determine the genotype (G) × environmental (E) interactions for folate concentration in lentil cultivars, and (3) to compare the folate concentration of other pulses [field peas ( Pisum sativum L.) and chickpea ( Cicer arietinum L.)] grown in the United States. Folate concentration in lentil cultivars ranged from 216 to 290 μg/100 g with a mean of 255 μg/100 g. In addition, lentil showed higher folate concentration compared to chickpea (42-125 μg/100 g), yellow field pea (41-55 μg/100 g), and green field pea (50-202 μg/100 g). A 100 g serving of lentils could provide a significant amount of the recommended daily allowance of dietary folates (54-73%) for adults. A significant year × location interaction on lentil folate concentration was observed; this indicates that possible location sourcing may be required for future lentil folate research. PMID:23865478

  3. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents.

    Science.gov (United States)

    Xu, B J; Chang, S K C

    2007-03-01

    The objective of this study was to investigate how 6 commonly used solvent systems affected the yields of phenolic substances and the antioxidant capacity of extracts from 8 major classes of food legumes. Several antioxidant-related phytochemical compositions, namely, total phenolic content (TPC), total flavonoids content (TFC), and condensed tannins content (CTC), were investigated. In addition, antioxidant activities were tested using 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging, ferric-reducing antioxidant power (FRAP), and the oxygen radical absorbance capacity (ORAC). The results showed that the 50% acetone extracts exhibited the highest TPC for yellow pea, green pea, chickpea, and yellow soybean. Acidic 70% acetone (+0.5% acetic acid) extracts exhibited the highest TPC, TFC, and FRAP values for black bean, lentil, black soybean, and red kidney bean. The 80% acetone extracts exhibited the highest TFC, CTC, and DPPH-free radical scavenging activity for yellow pea, green pea, chickpea, and yellow soybean. The 70% ethanol extracts exhibited the greatest ORAC value for all selected legumes. These results indicated that solvents with different polarity had significant effects on total phenolic contents, extracted components, and antioxidant activities. High correlations between phenolic compositions and antioxidant activities of legume extracts were observed. The information is of interest to the nutraceutical food/ingredient industries since legumes are a rich source of antioxidants. PMID:17995858

  4. Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods.

    Science.gov (United States)

    Chitra, U; Singh, U; Rao, P V

    1996-06-01

    The objective of this project was to determine the effect of various types of processing on selected nutrition related parameters of commonly consumed Indian pulses and soybean. Germination reduced the phytic acid content of chickpea and pigeonpea seeds by over 60%, and that of mung bean, urd bean, and soybean by about 40%. Fermentation reduced phytic acid contents by 26-39% in all these legumes with the exception of pigeonpea in which it was reduced by more than 50%. Autoclaving and roasting were more effective in reducing phytic acid in chickpea and pigeonpea than in urd bean, mung bean, and soybean. Germination and fermentation greatly increased the in vitro protein digestibility (IVPD). IVPD was only slightly increased by roasting and autoclaving of all legumes. Germination and fermentation also remarkably decreased the total dietary fiber (TDF) in all legumes. Autoclaving and roasting resulted in slight increases in TDF values. All the processing treatments had little effect on calcium, magnesium and iron contents. PMID:8983057

  5. Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants.

    Science.gov (United States)

    Gaind, Sunita; Pandey, Alok Kumar; Lata

    2005-01-01

    The comparative decomposition of chickpea residue, and chopped and unchopped wheat straw was investigated in pits for 120 days. Microbial biomass, humus, C/N ratio, pH, Electrical conductivity (EC), dehydrogenase, alkaline phosphatase, cellulase, xylanase, total phenol and soluble protein were determined to assess their response to the addition of inorganic nitrogen and mixed fungal inoculum of Aspergillus nidulans, Phanerochaete chrysosporium and Trichoderma viride. The evaluation of physico-chemical parameters (organic matter, organic carbon, N, C/N, pH, EC, microbial biomass) revealed that by supplementing unchopped wheat straw with 1% urea and mixed fungal inoculum, a lowest C/N ratio of 10.7, lowest biomass of 9.54 and highest humus content of 13% can be achieved within 3 months. Germination of Lepidium sativum (cress seeds) showed a germination index >60%, in this treatment. The enzyme assay for dehydrogenase indicated highest microbial activity in uninoculated treatments compared to fungal inoculated counterparts, in the second month sampling (active phase of composting). However, cellulase and xylanase activity showed an upward trend during curing phase of composting. Chickpea residue compost, though resulted in a C/N ratio of 17.3, but its germination index was less than 60%. The rapid quality tests conducted for H2S, NH3, NO3 and starch confirmed the stability and maturity of finished compost prepared from wheat straw through microbial inoculants. PMID:16028202

  6. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA).

    Science.gov (United States)

    Coda, Rossana; Rizzello, Carlo Giuseppe; Gobbetti, Marco

    2010-02-28

    Lactobacillus plantarum C48 and Lactococcus lactis subsp. lactis PU1, previously selected for the biosynthesis of gamma-aminobutyric acid (GABA), were used for sourdough fermentation of cereal, pseudo-cereal and leguminous flours. Chickpea, amaranth, quinoa and buckwheat were the flours most suitable to be enriched of GABA. The parameters of sourdough fermentation were optimized. Addition of 0.1mM pyridoxal phosphate, dough yield of 160, inoculum of 5 x 10(7)CFU/g of starter bacteria and fermentation for 24h at 30 degrees C were found to be the optimal conditions. A blend of buckwheat, amaranth, chickpea and quinoa flours (ratio 1:1:5.3:1) was selected and fermented with baker's yeast (non-conventional flour bread, NCB) or with Lb. plantarum C48 sourdough (non-conventional flour sourdough bread, NCSB) and compared to baker's yeast started wheat flour bread (WFB). NCSB had the highest concentration of free amino acids and GABA (ca. 4467 and 504 mg/kg, respectively). The concentration of phenolic compounds and antioxidant activity of NCSB bread was the highest, as well as the rate of in vitro starch hydrolysis was the lowest. Texture analysis showed that sourdough fermentation enhances several characteristics of NCSB with respect to NCB, thus approaching the features of WFB. Sensory analysis showed that sourdough fermentation allowed to get good palatability and overall taste appreciation. PMID:20071045

  7. Quantifying below-ground nitrogen of legumes: Optimizing procedures for 15N shoot-labelling

    International Nuclear Information System (INIS)

    Quantifying below-ground nitrogen (N) of legumes is fundamental to understanding their effects on soil mineral N fertility and on the N economies of following or companion crops in legume-based rotations. Methodologies based on 15N-labelling of whole plants with subsequent measurement of 15N in recovered plant parts and in the root-zone soil have proved promising. We report four glasshouse experiments with objectives to develop appropriate protocols for in situ 15N labelling of four pulses, faba bean (Vicia faba), chickpea (Cicer arietinum), mung bean (Vigna radiata) and pigeon pea (Cajanus cajan). Treatments included 15N-urea concentration, feeding technique, leaflet/petiole position, and frequency of feeding. Nitrogen-15-labelling via the leaf-flap was best for faba bean, mung and pigeon pea, whilst petiole feeding was best for chickpea, in all cases using 0.2-mL volumes of 0.5% urea (98 atom% 15N excess). The implications of uneven enrichment of the nodulated roots because of effects of the 15N-depleted nodules when calculating root-derived N in soil are discussed. (author)

  8. Determination of 106Ru, 134/137Cs, and 241Am concentrations and Action Level in the Foodstuffs Consumed by Inhabitants of Iraq

    Directory of Open Access Journals (Sweden)

    *H. N. Majeed

    2013-03-01

    Full Text Available The specific activity concentrations of (106Ru, 134/137Cs, and 241Am nuclides in 40 imported foodstuffs which collected randomly in January 2012 from all Iraqi cities markets were studied. The rang of specific activity concentrations of 106Ru varies from (37.930±6.16 Bq kg-1 (S No. :17: Turkey Kidney bean to 99.735±9.99 Bq kg-1 (S No.:32: Egypt Broad bean, with average value 71.667±8.47 Bq kg-1. For 134Cs varies from 0.200±0.45 Bq kg-1 (S No. :19 : Ukraine Chick-pea to 2.365±1.54 Bq kg-1 (S No. :33 : Peru Broad bean with average value (0.988±0.99 Bq kg-1.The activity concentrations of 137Cs varies from 0.164±0.40 Bq kg-1 (S No.:19 : Ukraine Chick-pea to 5.291±2.30 Bq kg-1 ( S No.: 39: Uzbekistan Mung bean with average value 1.460±1.21, then for 241Am the activity concentrations varies from 0.029±0.17 Bq kg-1 (S No.:23 : Iran Chick-pea to 1.248±1.12 Bq kg-1 (S No.:40: Canada Green peas with average value 0.399±0.63. All the values were less than the World average concentrations [15,17]. The high contributor for 106Ru, 134/137Cs, and 241Am radionuclides were in Broad bean and other foodstuffs (which contained Brown grit, White grit, Mung bean and Green peas as a 12%, Broad bean as 14%, corn as a 19% and other foodstuffs with 15% respectively The lowest contributor of 106Ru, 134/137Cs, and 241Am radionuclides in the studied foodstuffs were 6% in cowpea, 7% in semolina, 5% in lentil and 4% in lentil respectively. The action level of the 106Ru, 134/137Cs, and 241Am radionuclide’s for three age groups have been calculated and the foodstuffs were within the range permitted and free of any radiation and thus there was no seriousness in dealing with.

  9. Plant mutation research at akdeniz university

    International Nuclear Information System (INIS)

    Plant mutation research project at Akdeniz University aims at developing plant types and cultivars suited to environment friendly agriculture. Barley, chickpea and sesame are the main crops on which the mutation techniques are efficiently applied for practical breeding purposes and germplasm development for basic studies. The project originally started in 1984 with barley aiming at selecting proanthocyanidins-free mutants and other useful mutated traits such as genetic male-sterility, earliness, and short height. The barley mutants were successfully used in cross-breeding to generate transgressive variability and heterosis facilitated by genetic male sterile mutants as a tool. The barley mutant collection were also screened for physiological traits basically in terms of drought tolerance, i.e. yielding stability and capacity under dry-land, photosynthetic rate, salt tolerance, wax content, droplet contact angles, etc. A fast germinating ABA-insensitive mutant, Akdeniz-M-Q-54 was registered by Crop Science Society of America in 1998 as a useful tool for basic studies and a germplasm for drought tolerance with its faster growing habit. The second sub-project in chickpea, started in 1994, focuses on selecting mutants suited to winter growing such as cold tolerant and resistant to Aschochyta blight in order take advantage of winter rainfalls, mechanized harvesting, reducing soil erosion, more nitrogen fixation and more residues via fall-sowing of the crop. Certain mutants with improved cold tolerance and with acceptable seed size have already been confirmed in replicated trials of three years. Recently, we are interested in selecting root mutants in morphology and function in barley and chickpea as part of a Coordinated Research Program (CRP) by International Atomic Energy Agency (IAEA). Last but not least, sesame sub-project handed us over the first induced non shattering sesame mutants of the world in the frame of another IAEA CRP, showing the effectiveness of

  10. Transcriptome Sequencing of Lima Bean (Phaseolus lunatus to Identify Putative Positive Selection in Phaseolus and Legumes

    Directory of Open Access Journals (Sweden)

    Fengqi Li

    2015-07-01

    Full Text Available The identification of genes under positive selection is a central goal of evolutionary biology. Many legume species, including Phaseolus vulgaris (common bean and Phaseolus lunatus (lima bean, have important ecological and economic value. In this study, we sequenced and assembled the transcriptome of one Phaseolus species, lima bean. A comparison with the genomes of six other legume species, including the common bean, Medicago, lotus, soybean, chickpea, and pigeonpea, revealed 15 and 4 orthologous groups with signatures of positive selection among the two Phaseolus species and among the seven legume species, respectively. Characterization of these positively selected genes using Non redundant (nr annotation, gene ontology (GO classification, GO term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analyses revealed that these genes are mostly involved in thylakoids, photosynthesis and metabolism. This study identified genes that may be related to the divergence of the Phaseolus and legume species. These detected genes are particularly good candidates for subsequent functional studies.

  11. Effects of gamma irradiation on the shoot length of Cicer seeds

    International Nuclear Information System (INIS)

    The effects of radiation on the shoot and root lengths of germinated seedling of irradiated seeds of Cicer species, i.e. three kabuli types and four desi types of cultivated chickpea (Cicer arietinum Ladiz.) and 2 annual wild types (C. reticulatum Ladiz. and C. bijugum K.H. Rech.) were investigated. The seeds were irradiated with a 60Co gamma source using 0, 200, 300 and 400 Gy doses at 1.66 kGy h-1. At 200 Gy minor effects could be observed, but at 400 Gy an obvious depression of shoot length was observed. The kabuli types were more affected than the desi ones. The critical dose that prevented the shoot and root elongation varied among species and also ranged from genotypes to genotype within species

  12. Experimento utilizando grãos para explorar a calibração em análises químicas

    Directory of Open Access Journals (Sweden)

    Daniel Menezes Silvestre

    2014-01-01

    Full Text Available The conventional curriculum of Analytical Chemistry undergraduate courses emphasizes the introduction of techniques, methods and procedures used for instrumental analysis. All these concepts must be integrated into a sound conceptual framework to allow students to make appropriate decisions. Method calibration is one of the most critical parameters that has to be grasped since most analytical techniques depend on it for quantitative analysis. The conceptual understanding of calibration is not trivial for undergraduate students. External calibration is widely discussed during instrumental analysis courses. However, the understanding of the limitations of external calibration to correct some systematic errors is not directly derived from laboratory examples. The conceptual understanding of other calibration methods (standard addition, matrix matching, and internal standard is imperative. The aim of this work is to present a simple experiment using grains (beans, corn and chickpeas to explore different types of calibration methods.

  13. Field evaluations of N2 fixation by grain legumes in Pakistan

    International Nuclear Information System (INIS)

    Studies were undertaken with four legume species that are economically important in Pakistan, to gain an understanding of how host-genotype, rhizobial-strain, and environmental factors affect the root-nodule N2-fixing symbiosis of field-grown plants. Strong responses to inoculation were obtained with lentil (Lens culinaris) that showed significant host-genotype x rhizobial strain interaction. In contrast, only one of eight mung-bean (Vigna radiata) genotypes and none of five black-gram (V. mungo) genotypes responded positively to inoculation; however, negative effects of inoculation were cautionary that host-genotype x rhizobial strain interactions must nevertheless be considered. Trials with chickpea (Cicer arietinum) indicated that biomass, grain yield and total N may be used as indicators of the amount of N fixed for large screening trials in which employment of the 15N-dilution technique would be prohibitively expensive

  14. Long term effects of irrigation with petrochemical industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, O.; Inam, A.; Samiullah; Siddiqi, R.H. [Aligarh Muslim Univ. (India)

    1996-11-01

    Split plot designed field trials were conducted during 1988-1995 to study the long term effects of petrochemical industry wastewater on six crops and agricultural soils. It was observed that wastewater irrigation resulted in increased seed yield of all the crops selected, viz. wheat, triticale, chickpea, lentil and pigeonpea, except summer moong which showed a decrease in seed yield. Soil receiving the wastewater showed no significant changes in pH, total organic carbon, electrical conductivity, cation exchange capacity, micro- and macro-nutrients and SAR. Thus, it may be concluded that treated refinery wastewater met the irrigational quality requirements as its physico-chemical characteristics were within the permissible limits. The same could be said for the accumulation of heavy metals in the soil as well as in the grains making the latter safe for human consumption. 28 refs., 5 figs., 2 tabs.

  15. Analysis of various kinds of seeds for some trace elements using NAA

    International Nuclear Information System (INIS)

    instrumental neutron activation analysis technique (INAA) is used for nondestructive analysis of some seed samples of various kinds. most of these seeds are cultivated in egypt.the samples are collected from the egyptian market in different governors. the analyzed seeds are usually daily used in he egyptian kitchen . these seeds are: anise, cumin , coriander, caraway, white kidny-bean, lupine, lentil, chickpea (garbanzo), broad bean, peanut, almond, black cumin, and foenugreek. in some cases the seeds were analyzed without their husk and the husk(in shell or skin) is analyzed alone. the analyzed trace elements are : Ce, Co, Cr,Cs,Eu, Fe,Ni,Rb, Sb,Sc,Sr and Th. the standards used to assure quality control of the technique were : IAEA-155 and IAEA V-9

  16. Insect attack and nutritional losses in stored dried fruits

    International Nuclear Information System (INIS)

    Dried fruits and nuts were assessed for insect and nutritional losses, during 3-12 months storage, under controlled laboratory conditions. Losses were generally storage and commodity dependant. The insect progeny production and percent weight loss, caused by Tribolium castaneum (herbs), in all the commodities, varied from 10 - 120.75 and 0.78 -28.34, respectively. In nutritional aspect, colour, acidity and ascorbic acid decreased while reducing sugars increased during storage. The results based on all parameters showed that during 12 months storage, almond, groundnut, pine nut, walnut and chickpea suffered significantly higher P< 0.05) losses (9.01 - 28.34%) as compared to fig, apricot, date, raisin and mulberry (1.09 - 1.81%). (author)

  17. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi.

    Science.gov (United States)

    Sathiyabama, M; Parthasarathy, R

    2016-10-20

    The aim of the present study was to prepare Chitosan nanoparticles through biological method with high antifungal activities. Chitosan nanoparticles were prepared by the addition of anionic proteins isolated from Penicillium oxalicum culture to chitosan solutions. The formation of chitosan nanoparticles was preliminary confirmed by UV-vis spectrophotometric analysis. The physico-chemical properties of the chitosan nanoparticles were determined by size and zeta potential analysis, FTIR analysis, HRTEM and XRD pattern. The chitosan nanoparticles were evaluated for its potential to inhibit the growth of phytopathogens viz., Pyricularia grisea, Alternaria solani, Fusarium oxysporum. It is evident from our results that chitosan nanoparticles inhibit the growth of phytopathogens tested. Chitosan nanoparticle treated chickpea seeds showed positive morphological effects such as enhanced germination%, seed vigor index and vegetative biomass of seedlings. All these results indicate that chitosan nanoparticle can be used further under field condition to protect various crops from the devastating fungal pathogens as well as growth promoters. PMID:27474573

  18. Quality of low-fat meatballs containing Legume flours as extenders.

    Science.gov (United States)

    Serdaroğlu, Meltem; Yıldız-Turp, Gülen; Abrodímov, Kiyalbek

    2005-05-01

    Meatballs were extended with blackeye bean flour (BBF), chickpea flour (CF), lentil flour (LF) and rusk (R) at level of 10%. Raw and cooked meatballs were analyzed for moisture, fat, protein and ash content. Cooking properties and colour parameters were evaluated. BBF and LF resulted in greater cooking yield, fat retention and moisture retention values. Meatballs extended with LF were lighter than other samples. Meatballs formulated with BBF had the lowest reduction in diameter. Meatballs with BBF and CF had higher water holding capacity (WHC) than other treatment groups. All meatballs incorporating legume flours were tougher (lower penetration values) than the R treatment. According to sensory evaluation results all meatball treatments had high acceptability and received high scores (6.8 and above). Meatballs with BBF and CF had lower TBA values than meatballs with LF and R at 3rd month of frozen storage at -18°C. PMID:22063285

  19. Induced mutations for the improvement of grain legumes in South East Asia (1975)

    International Nuclear Information System (INIS)

    The report is divided into seven sections containing papers on the following subjects: regional cooperation for improving grain legume production in South-East Asia and the role of FAO in this connection; national reports on the production and consumption of grain legumes (mainly beans, soybeans, peas, peanuts) in various Asian countries (separate reports for Pakistan, India, Sri Lanka, Bangladesh, Burma, Philippines, Indonesia, Papua New Guinea, Taiwan, and Australia). Specific papers are presented on the following: modifications of field pea; chickpea breeding at ICRISAT; mutation breeding in winged bean; mutation breeding in improving groundnut cultivars; and the consumption of grain legumes in Singapore. Finally, some conclusions and recommendations adopted by the participants of the meeting are presented

  20. cost-benefit analysis of legumes irradiation processing in egypt

    International Nuclear Information System (INIS)

    This paper discusses the economics of legumes irradiation such as Chickpea,Lupin,Kidny Bean and broad and the effect of various parameters on unit processing costs. It provides a model for calculating specific unit processing costs by correlating known capital costs with annual operation cost an annual throughputs. We analysed the cost-benefit of the proposed grain irradiation facility. We took into account the cost of the capital investment, operation and other additional parameters and then estimated the unit processing cost. The investment criteria utilized for commercial evaluation were internal rate of return (I.I.R), pay back period (P.B.P), and average rate of return (A.R.R). The irradiation cost and the additional income are also discussed. The results of this analysis showed that the installation of an irradiation unit for legumes processing in Egypt would be economically feasible

  1. Impact of use of treated wastewater for irrigation on soil and quinoa crop in South of Morocco

    Science.gov (United States)

    El Youssfi, Lahcen; Choukr-Allah, Redouane; Zaafrani, Mina; Hirich, Aziz; Fahmi, Hasna; Abdelatif, Rami; Laajaj, Khadija; El Omari, Halima

    2015-04-01

    This work was conducted at the experimental station of the IAV Hassan II-CHA-Agadir in southwest Morocco between 2010 and 2012. It aimed the assessment of the effects of use of treated wastewater on soil properties and agronomic parameters by adopting crop rotation introducing quinoa (Chenopodium quinoa Willd.) as a new crop under semi-arid climate. Biomass production, yield, nutrient accumulation in leaves and the level of electrical conductivity and soil nitrate are the evaluated parameters during three growing seasons. Results show that quinoa has a performing behavior when it is preceded by fabae bean in term of water use efficiency; in addition, the recorded level of salt accumulation in the soil was the lowest in comparison with that of the combinations bean>quinoa and fallow>quinoa. Concerning growth and yield, it was found that growing quinoa after chickpea was more beneficial in terms of biomass productivity and yield. Keywords: Quinoa, soil, treated wastewater semi-arid

  2. Dicty_cDB: Contig-U15288-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available miqfy*nkhhyywvvllq*kkpildi*v*kqchilllyqmklql*lknikilfyyh*kiq isvl own update 2004. 6.23 Homology vs CSM-cDNA Query= Contig...ted Amino Acid sequence (All Frames) Frame A: kkkvk*kvkrvn****sqn*iikni*iinytlyiinneyecykskycqnlnegfdkfyfr f...za sativa Indic... 48 0.85 1 ( FE673251 ) mh1_0033_E07 Drought-stressed chickpea leave libr... 48 0.85 1 ( F...AM270309_54( AM270309 |pid:none) Aspergillus niger contig An14c001... 368 e-100 AM920428_660( AM920428 |pid:none) Peni...7 9e-43 AM269955_67( AM269955 |pid:none) Aspergillus niger contig An01c008... 174 6e-42 AC005966_12( AC00596

  3. Effect of ingredients on rheological, nutritional and quality characteristics of fibre and protein enriched baked energy bars.

    Science.gov (United States)

    Rawat, Neelam; Darappa, Indrani

    2015-05-01

    Effect of substitution of brown flour (BF) with fiber rich ingredient mixture, FRIM (banana flour, psyllium husk, partially defatted coconut flour and oats) and protein rich ingredient mixture, PRIM (chickpea flour, sesame, soya protein isolate and whey protein concentrate) at the levels of 25, 50 and 75 % on the rheological, nutritional and quality characteristics of baked energy bars (BEB) were studied. Use of increasing amount of FRIM increased farinograph water absorption and amylograph peak viscosity while PRIM decreased the aforementioned parameters. Addition of FRIM or PRIM increased the bar dough hardness and decreased cohesiveness and springiness. The overall quality score of BEB increased only up to the substitution of 50 % of BF with FRIM or PRIM. The BEB with 50 % FRIM and PRIM remained chemically stable during storage up to 3 months and showed 9 times increase in dietary fiber content and about 2 times increase in protein content respectively. PMID:25892802

  4. UAV-based high-throughput phenotyping in legume crops

    Science.gov (United States)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  5. Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development

    Directory of Open Access Journals (Sweden)

    Vikash K. Singh

    2014-12-01

    Full Text Available Flower development is one of the major developmental processes that governs seed setting in angiosperms. However, little is known about the molecular mechanisms underlying flower development in legumes. Employing RNA-seq for various stages of flower development and few vegetative tissues in chickpea, we identified differentially expressed genes in flower tissues/stages in comparison to vegetative tissues, which are related to various biological processes and molecular functions during flower development. Here, we provide details of experimental methods, RNA-seq data (available at Gene Expression Omnibus database under GSE42679 and analysis pipeline published by Singh and colleagues in the Plant Biotechnology Journal (Singh et al., 2013, along with additional analysis for discovery of genes involved in shoot apical meristem (SAM development. Our data provide a resource for exploring the complex molecular mechanisms underlying SAM and flower development and identification of gene targets for functional and applied genomics in legumes.

  6. Effect of dietary fiber in lowering serum glucose and body weight in sprague dawley rats

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Chohan

    2011-08-01

    Full Text Available Introduction:The present study evaluated the hypoglycemic perspectives and weight loss significance of dietary fiber. Dietary fiber was supplemented in commercial wheat flour (atta for the preparation of chapaties, a staple diet of South Asia. Male Sprague Dawley rats (n = 100 were randomly divided into 4 diet groups (n = 25 per group. The control group was fed basal diet that included commercial wheat flour chapati, cornstarch, corn oil, salt and vitamin mixture in such a way that 10% of the protein was available from the final diet. To the basal diet of other 3 groups, chapaties supplemented with 2% guar gum (GG 2%, 3% guar gum (GG 3% and 5% chickpea + 1% guar gum (CP5%+GG1% were added, respectively. All diets were fed to the rats for a period of 8 weeks to perceive the impact of respective compositions. Rats fed on CP 5% + GG1%, showed maximum glucose reduction (14.57% followed by GG 3% (11.64% and GG 2% (9.60% as compared to control diet. Likewise, rats fed on 3% GG showed maximum decline (7.90% in body weight. It was concluded that chapaties prepared from selected treatments provide an additional dietary fiber that could be supportive for diabetic and obese individuals.Results:The results indicated that addition of dietary fiber influenced the physical characteristics of chapati non-significantly. Maximum glucose concentration was found to be 112.50 mg/dL in control group followed by 101.70 and 99.41 mg/dL in groups fed on guar gum 2% and guar gum 3%, respectively. Lowest glucose concentration (96.11 mg/dL was observed in rats fed on the combination of chickpea 5 %+ guar gum 1%. Maximum serum protein concentration was found to be 6.39 g/dL in rats fed on combination of chickpea 5 % + guar gum 1% whilst the remaining three groups showed non significant variations with respect to each other. Means for serum Functional Foods in Health and Disease 2011; 8:261-278 protein were 6.33, 6.30 and 6.32 g/dL for control, guar gum 3%, and guar gum 2

  7. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Directory of Open Access Journals (Sweden)

    Giuseppe Restuccia

    2011-02-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  8. Energy use in legume cultivation in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ertekin, C.; Canakci, M.; Yaldiz, O. [Akdeniz Univ., Antalya (Turkey). Faculty of Agriculture, Dept. of Farm Machinery; Kulcu, R. [Suleyman Demirel Univ., Isparta (Turkey). Faculty of Agriculture, Dept. of Farm Machinery

    2010-07-01

    A study was conducted to analyze the energy required to produce different legumes in 11 different regions of Turkey. The objective was to improve energy efficiency. Data was collected for the production of dry bean, chickpea and soybean under rainfed and irrigated conditions, as well as for the production of lentil under rainfed conditions. The data was evaluated in terms of energy use efficiency, energy productivity and specific energy for different regions of Turkey. The main energy sources are human, diesel, fertilizer, seed, machine, chemicals and water. The main agricultural operations are seedbed preparation, seeding, fertilization, hoeing, irrigation, spraying, harvesting, threshing and transporting. The total energy input ranged between 3361.5 and 25229.7 MJ/ha. Based on product yields, the energy use efficiency varied between 0.96 and 4.32.

  9. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas.

    Science.gov (United States)

    Gulati, Arvind; Vyas, Pratibha; Rahi, Praveen; Kasana, Ramesh Chand

    2009-04-01

    A phosphate-solubilizing bacterial strain BIHB 723 isolated from the rhizosphere of Hippophae rhamnoides was identified as Acinetobacter rhizosphaerae on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of inorganic and organic phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, ammonia generation, and siderophore production. A significant increase in the growth of pea, chickpea, maize, and barley was recorded for inoculations under controlled conditions. Field testing with the pea also showed a significant increment in plant growth and yield. The rifampicin mutant of the bacterial strain effectively colonized the pea rhizosphere without adversely affecting the resident microbial populations. PMID:19137371

  10. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes.

    Science.gov (United States)

    Xu, Baojun; Chang, Sam K C

    2008-09-01

    The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (pyellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. PMID:26050159

  11. Application of DNA comet assay for detection of radiation treatment of grams and pulses.

    Science.gov (United States)

    Khan, Hasan M; Khan, Ashfaq A; Khan, Sanaullah

    2011-12-01

    Several types of whole pulses (green lentils, red lentils, yellow lentils, chickpeas, green peas, cowpeas and yellow peas) and grams (black grams, red grams and white grams) have been investigated for the identification of radiation treatment using microgel electrophoresis of single cells (DNA comet assay). Pulses and grams were exposed to the radiation doses of 0.5, 1.0 and 5 kGy covering the legalized commercial dose range for protection from insect/pest infestations. All irradiated samples showed comet like stretching of fragmented DNA toward anode, which is expected for irradiated samples. Unirradiated samples showed many intact cells/nuclei in form of round stains or with short faint tails, which is typical for unirradiated food samples. The study shows that DNA comet assay can be used as a rapid, inexpensive and highly effective screening test for the detection of radiation treatment of foods, like pulses and grams. PMID:23572810

  12. RHEOLOGICAL CHARACTERISTICS OF GLUTEN-FREE DOUGH

    Directory of Open Access Journals (Sweden)

    Iva Burešová

    2014-02-01

    Full Text Available Dynamic oscillation rheometry was used to determine the viscoelastic properties of gluten-free dough prepared from amaranth, chickpea, millet, corn, quinoa, buckwheat and rice flours. The viscoelastic properties was described by storage modulus G´, loss modulus G´´ and phase angle tg(δ. The relationship between viscoelastic properties of gluten-free dough and bread-making quality was evaluated. The results of this study indicated that dynamic oscillation rheometry may be used to differentiate the bread-making quality of gluten-free flour. Bread-making quality of gluten-free flour is the best characterised by curve slope of storage modulus G´and phase angle tg(δ while bread made from the flour with storage modulus and phase angle with non-linear slope in low deformation frequencies 0.01–0.10 Hz achieved the largest volume.

  13. Dicty_cDB: Contig-U01028-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available .41 5 ( DW342668 ) PP_LEc0011I23f Peach shoot Prunus persica cDNA cl... 44 0.41 2...ST Petromyzon marinus cD... 36 0.83 3 ( FE671020 ) mh1_0001_B06 Drought-stressed chickpea lea... ( AC115578 ) Dictyostelium discoideum chromosome 2 map complem... 36 0.073 4 ( FG833367 ) UCRVU04_CCNI15896_g1 Cowpea...L_259_95 Cotton fiber 0-10 day post anthesis Go... 34 1.8 3 ( DN135979 ) tam63c01.y2 Hydra_EST_HyEch...abase: 620,718,517 Effective search space: 233390162392 Effective search space used: 233390162392 Neighboring words thres

  14. Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere.

    Science.gov (United States)

    Ait Kaki, Asma; Kacem Chaouche, Noreddine; Dehimat, Laid; Milet, Asma; Youcef-Ali, Mounia; Ongena, Marc; Thonart, Philippe

    2013-12-01

    The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn't produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6-52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P officinalis and other crop systems. PMID:24426149

  15. THE POSSIBILITY OF LEGUMES PRODUCTION

    Directory of Open Access Journals (Sweden)

    Glinushkin A.P.

    2013-10-01

    Full Text Available Primary receptacles improve profitability legumes are limiting demonstrations and acts of plant diseases and pests. Pathogens are 25-50% lower yield of soybean, chickpea, beans, peas. Pests focally up to 87% of viable seeds sown reduce the number of plants per 1 ha. Only effective protection against disease and estimates of crop production can increase the average profitability of legume crops by 15-30%. Livestock is very important, but in the Southern Urals requires real support for its production with a positive balance (in the calculations with a deviation of 5%. The most important resource in our opinion may be a reduction in price of fodder. Thus, legumes are sought for animal protein. Soybeans, chickpeas, beans, peas universal culture and the possibility of their use in the food balance for a healthy diet of ordinary people engaged in recreational and other sports niche expands further improve the profitability of their production. Regulation of the balance of the distribution of food and feed produced grain legumes allows fine regulation of the cost of fodder for a particular type of livestock activities. Phytosanitary capabilities , the balance of influence of legumes on arable land, also requires a fine regulation of these processes. Obtaining long-term public support for this production is unlikely in the WTO because actual search for ways to improve the profitability of production of agricultural technologies. In our view, a comprehensive approach taking into account the capacity of local markets for crop production. Such activity can act as a guaranteed quality of agro-technology and animal products from local resources specific zonal conditions of production.

  16. Biological Control Against the Cowpea Weevil (Callosobruchus Chinensis L., Coleoptera: Bruchidae Using Essential Oils of Some Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Fatiha Righi Assia

    2014-07-01

    Full Text Available Chickpea (Cicer arietinum L. is a valuable foodstuff but unfortunately this legume is prone to insect attacks from the chick pea weevil (Callosobruchus chinensis L.. This serious pest damages the chickpea and causes decreases in the yield and in the nutritional quality. Biological control is being used to deal with this problem. We tried different doses of the essential oils of three new medicinal plants, namely Salvia verbenaca L., Scilla maritima L., and Artemisia herba-alba Asso to limit the damage of the chick pea weevil pest, and to protect consumer’s health. To determine the effect and efficiency of the oil, the tests were conducted using the different biological parameters of fertility, longevity, and fecundity, under controlled temperature and relative humidity (28°C and 75%. The effectiveness of organic oils was demonstrated. We tested these oils on the germination of seeds. The obtained results showed that the tested plant oils have a real organic insecticide effect. The essential oil of Artemisia proved most effective as a biocide; achieving a mortality rate of 100%. A significant reduction in longevity was observed under the effect of 30 μl of S. maritima (1.3 days and S. verbenaca (2.8, 4.6 days, respectively, for males and females compared to 8 and 15 days for the control. For fecundity, an inhibition of oviposition was obtained using 30 μl of Salvia and Scilla essential oils. The test on the seed germination using different essential oils, showed no damage to the germinating seeds. The germination rate was 99%. These findings suggest that the tested plants can be used as a bioinsecticide for control of the C. chinensis pest of stored products.

  17. Combining functional features of whole-grain barley and legumes for dietary reduction of cardiometabolic risk: a randomised cross-over intervention in mature women.

    Science.gov (United States)

    Tovar, Juscelino; Nilsson, Anne; Johansson, Maria; Björck, Inger

    2014-02-01

    The usefulness of dietary strategies against cardiometabolic risk is increasingly being acknowledged. Legumes and whole grains can modulate risk markers associated with cardiometabolic diseases, but their possible additive/synergistic actions are unknown. The objective of the present study was to assess, in healthy subjects, the effect of a diet including specific whole-grain barley products and legumes with prior favourable outcomes on cardiometabolic risk parameters in semi-acute studies. A total of forty-six overweight women (50-72 years, BMI 25-33 kg/m² and normal fasting glycaemia) participated in a randomised cross-over intervention comparing a diet rich in kernel-based barley products, brown beans and chickpeas (D1, diet 1 (functional diet)) with a control diet (D2, diet 2 (control diet)) of similar macronutrient composition but lacking legumes and barley. D1 included 86 g (as eaten)/d brown beans, 82 g/d chickpeas, 58 g/d whole-grain barley kernels and 216 g/d barley kernel bread. Both diets followed the Nordic Nutrition Recommendations, providing similar amounts of dietary fibre (D1: 46·9 g/d; D2: 43·5 g/d), with wheat-based products as the main fibre supplier in D2. Each diet was consumed for 4 weeks under weight-maintenance conditions. Both diets decreased serum total cholesterol, LDL-cholesterol and HDL-cholesterol levels, but D1 had a greater effect on total cholesterol and LDL-cholesterol levels (Prisk estimate (Prisk-associated biomarkers in a healthy cohort, showing potential preventive value beyond that of a nutritionally well-designed regimen. PMID:24063257

  18. Genetic divergence and biology of adaptation inCicer arietinum L.

    Science.gov (United States)

    Dani, R G; Murty, B R

    1985-07-01

    The role of 19 structural, developmental and biochemical traits in relation to specific adaptation was analysed in a set of 17 diverse lines with quantified adaptation, representing contemporary cultivars and land races of chickpea (Cicer arietinum L.), using multivariate analysis. Significant varietal variation was observed for most characters, particularly for the activity of the enzyme nitrate reductase (NR) and protein content in the plant. The distance analysis (D(2)-statistic) revealed that seed size and pod number and their associated attributes were important forces of divergence. The additional forces of divergence were NR activity at the flower initiation stage, yield components such as number of primary and secondary branches, and other features such as plant habit and duration of flowering. The principal component analysis revealed some similarities and also differences from the distance analysis. Leaf size, days to flower initiation, seed size and, to some extent, NR activity at flower initiation stage, were important in the first vector. Developmental traits such as chlorophyll depth, NR activity at the pod initiation and grain filling stages, and the percent protein content in the plant at flower initiation were important in the second vector. In general, the clustering pattern was not related to the geographical origin, seed colour, size of regression coefficient for yield, or deviation from linearity. The importance of the developmental and biochemical attributes in the divergence of cultivated chickpea, such as days to flower initiation, duration of flowering, NR activity and the rates of protein accumulation in developing seeds, and in adaptation, suggests the critical role of these attributes. NR activity at the flower initiation stage would appear to have a major role in the domestication of this crop and its intra-specific differentiation, as an increased seed size could not have been possible without better nutrient uptake and utilization

  19. Understanding the Impacts of Soil, Climate and Farming Practices on Soil Organic Carbon Sequestration: a Simulation Study in Australia

    Directory of Open Access Journals (Sweden)

    Cecile Marie Godde

    2016-05-01

    Full Text Available Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical and chemical properties. The review of literature pertaining to soil organic carbon (SOC dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate and farming practices on SOC. We undertook a modeling study with the APSIM (Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates and farming practices (crop rotations, and management within rotations, such as fertilization, tillage and residue management in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66%, 18% and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (Queensland on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O emissions and nitrate leaching in farming systems. The transposition of contrasting soils

  20. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.

    Science.gov (United States)

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in

  1. Effects of legumes, fallow and wheat on subsequent wheat production in Central Anatolia

    International Nuclear Information System (INIS)

    Nitrogen (N) and water are the main limiting factors for good wheat production in the Central Anatolia Region of Turkey. A traditional wheat-fallow cropping system is used by the majority of the farmers in the region. Inserting legumes in the rotation would, however, improve the soil fertility primarily through symbiotic N2-fixation. The main objectives of the present study were: a) to determine the N2-fixation capacity of lentil, vetch, chickpea and fodderpea in a legume-wheat rotation by using the A-value method of the 15N technique; b) to assess the amount of carry-over of N to wheat from the previous legume; c) to assess the water contribution of fallow, wheat and legumes to the following wheat under rainfed conditions by using 15N and neutron probe techniques. In order to achieve these goals field experiments were conducted in two years (1992 and 1993) at three different locations, Ankara, Eskishir and Konya. In 1992, for each experimental layout there were 7 treatments at each site consisting of 4 legume plots, 2 wheat plots and 1 fallow plot. Only the legume plots received labelled (15NH4)2SO4 fertilizer for their isotope sub-plots. In 1993, winter wheat (Gerek-79) was sown to all plots and the 15N labelled fertilizer was applied on the opposite sites of the 1992 experimental plots. These results make us to suggest a lentil-wheat rotation at Ankara and Eskisehir and a chickpea-wheat rotation at Konya. Meanwhile, the evaluation of the soil moisture balance at both Eskisehir and Ankara indicates that the winter lentil-wheat rotation should be preferred in these areas, due to more efficient use of water by the wheat crop after this rotation. 15 refs, 1 fig., 5 tabs

  2. Breeding of improved grain legume genotypes for Bangladesh through nuclear and conventional techniques

    International Nuclear Information System (INIS)

    Grain legumes are important in Bangladesh for human diet, as cattle feed, for cropping pattern and soil fertility. But their production has been steadily declining owing to severe competition from cereals. Development of improved genotypes is problematic because of the lack of adequate genetic variability in these legumes. Mutation breeding programmes on chickpea (Cicer arietinum L.), mungbean (Vigna radiata (L.) Wilczek) and blackgram (Vigna mungo (L.) Hepper) were therefore attempted in order to create adequate variability and later selection of mutans. Adaptability studies with exotic genotypes were also carried out. In chick-pea, one high yielding, high protein variety named Hyprosola, with 20% higher yield and 4% increased protein per unit seed weight, has been released from the gamma irradiated material. Three mutants and one exotic germplasm with higher yield and desirable agronomic characters are in advanced stages of development. Sodium azide treatment has resulted in isolation and development of genotypes with an increased number of pods/plant and higher seed yield. Gamma irradiation of mungbean has yielded mutants with 15-17% higher yield and resistance/tolerance to mungbean yellow mosaic virus (MYMV) and Cercospora leaf spot diseases. These are ready for release. Mutants with erect growth habit and synchrony in pod maturity were selected from the sodium azide treated population. Adaptation studies of the exotic and local germplasm have resulted in identification of genotypes suitable for growing during various seasons of the year. It has been possible to isolate and develop one blackgram mutant through irradiation with 15% higher seed yield and tolerance/resistance to Cercospora leaf spot disease and yellow mosaic virus (YMV). 41 refs, 1 fig., 17 tabs

  3. Genome Wide Identification of LIM Genes in Cicer arietinum and Response of Ca-2LIMs in Development, Hormone and Pathogenic Stress.

    Science.gov (United States)

    Srivastava, Vikas; Verma, Praveen Kumar

    2015-01-01

    The eukaryotic lineage-specific LIM protein (LIN11, ISL1, and MEC3) family play pivotal role in modulation of actin dynamics and transcriptional regulation. The systematic investigation of this family has not been carried in detail and rare in legumes. Current study involves the mining of Cicer arietinum genome for the genes coding for LIM domain proteins and displayed significant homology with LIM genes of other species. The analysis led to the identification of 15 members, which were positioned on chickpea chromosomes. The phylogenetic and motif analysis suggested their categorization into two sub-families i.e., Ca-2LIMs and Ca-DA1/DAR, which comprised of nine and six candidates, respectively. Further sub-categories of Ca-2LIMs were recognised as αLIM, βLIM, δLIM and γLIM. The LIM genes within their sub-families displayed conserved genomic and motif organization. The expression pattern of Ca-2LIMs across developmental and reproductive tissues demonstrated strong correlation with established consensus. The Ca-2LIM belongs to PLIM and GLIM (XLIM) was found highly expressed in floral tissue. Others showed ubiquitous expression pattern with their dominance in stem. Under hormonal and pathogenic conditions these LIMs were found to up-regulate during salicylic acid, abscisic acid and Ascochyta rabiei treatment or infection; and down-regulated in response to jasmonic acid treatment. The findings of this work, particularly in terms of modulation of LIM genes under biotic stress will open up the way to further explore and establish the role of chickpea LIMs in plant defense response. PMID:26418014

  4. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia

    Science.gov (United States)

    Godde, Cécile M.; Thorburn, Peter J.; Biggs, Jody S.; Meier, Elizabeth A.

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil–climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat–chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and

  5. Different pairs of male and female of Campoletis chlorideae (Hymenoptera: Ichneumonidae) parasitised the chick pea pod borer, Helicoverpa armigera (Lepidoptera: Noctuidae), in Myanmar

    International Nuclear Information System (INIS)

    In Myanmar, chickpea is of great importance not only for the export but also for local consumption. In 1999-2000, the total area of chickpea was 323,000 acres, with an annual production of 83,000 tons of which 352 metric tons were exported. Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) is a solitary larval parasitoid that parasitises the larvae of Helicoverpa armigera Huebner (Lepidoptera: Noctuidae) in Myanmar. H. armigera is the major insect pest causing damage to the chickpea crop and significantly reducing yields. The attack of pods seeds varies from 3 to 50%. Conservation of the parasitoid C. chlorideae is important to minimise damage by H. armigera during the reproductive stage of chickpea. Laboratory (potted plants) and field experiments were conducted at the Biological Control Laboratory, Paleik, Singaing Township during the 2002-2003 winter season. Results - Laboratory experiments: The number of C. chlorideae (2 pairs, 3 pairs, 4 pairs and 5 pairs / 30 larvae of H. armigera of 1st stage, 2nd stage, and 3rd stage) significantly and differently affected the survival of different stages of H. armigera larvae (p=0.0001 each R2 = 0.963, C. V 10.98) Replication effects of the experiment were not significant (p=0.1718). Different pairs of C. chlorideae significantly affected the mean survival of larvae H. armigera when the results of four different pairs of parasitoid C. chlorideae were compared (Tukey's studentized range test). The largest difference between the means was observed between 5 pairs and 2 pairs of parasitoids released and the smallest was between 4 and 3 pairs of parasitoids. The results from Tukey's studentised range test showed that 2 pairs of parasitoid C. chlorideae significantly affected the 30 larvae of H. armigera. Different pairs of the parasitoid C. chlorideae also significantly affected the mean parasitism when the results of three different stages of larvae of H. armigera were compared (Tukey's studentised test was used). The

  6. Neutral hydrolysable sugars, OC and N content across soil aggregate size fractions, as an effect of two different crop rotations

    Science.gov (United States)

    Angeletti, Carlo; Giannetta, Beatrice; Kölbl, Angelika; Monaci, Elga; Kögel-Knabner, Ingrid; Vischetti, Costantino

    2016-04-01

    This paper presents the results regarding the effects of two 13 years long crop rotations, on the composition of mineral associated neutral sugars, organic carbon (OC) and N concentration, across different aggregate size fractions. The two cropping sequences were characterized by different levels of N input from plant residues and tillage frequency. We also analysed the changes that occurred in soil organic matter (SOM) chemical composition following the cultivation in the two soils of winter wheat and chickpea on the same soils. The analysis of OC and N content across soil aggregate fractions allowed getting an insight into the role played by SOM chemical composition in the formation of organo-mineral associations, while neutral sugars composition provided information on mineral associated SOM origin and decomposition processes, as pentoses derive mostly from plant tissues and hexoses are prevalently of microbial origin. Soil samples were collected from two adjacent fields, from the 0-10 cm layer, in November 2011 (T0). For 13 years before the beginning of the experiment, one soil was cultivated mostly with alfalfa (ALF), while a conventional cereal-sunflower-legume rotation (CON) was carried out on the other. Winter wheat and chickpea were sown on the two soils during the following 2 growing seasons and the sampling was repeated after 18 months (T1). A combination of aggregates size and density fractionation was used to isolate OM associated with mineral particles in: macro-aggregates (>212 μm), micro-aggregates ( 63 μm) and silt and clay size particles (fucose, ribose, arabinose, xylose, mannose, galactose, glucose. OC and N contents were higher in ALF as compared to CON for every aggregate fraction, both at T0 and T1. During the 18-months cultivation experiment macro aggregates OC concentration increased in ALF while decreasing in CON. During the same period silt and clay size particles OC concentration decreased in ALF while increasing in CON. N content

  7. The observed evapotranspiration combining the energy and water balance for different land use under semiarid Mediterranean catchment

    Science.gov (United States)

    Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Masmoudi, Moncef; Prévot, Laurent; Ben Mechlia, Netij; Voltz, Marc; Albergel, Jean

    2014-05-01

    The Mediterranean semiarid cultivated catchments are affected by global and climate change and are characterized by very complex hydrological systems. The improvement of their management requires a best understanding of the hydrological processes and developing reliable means for characterizing the temporal dynamics of soil water balance in a spatially distributed manner. The main objective of this study is: i) to analyze the observed evapotranspiration in relation to natural drivers (i.e. rainfall and soil properties) and anthropogenic forcing (i.e. land use and crop successions), and ) ii to assess the differences in both energy and water balances. We focus on a hilly semiarid Mediterranean catchment devoted to rainfed agriculture, so-called the Kamech catchment, which is located in the Cap Bon Peninsula, north-eastern Tunisia. The site belongs to the OMERE observatory for environmental research and it is monitored for the different hydrological cycle components under influence of anthropogenic forcing. The analysis is based on in-situ data measured under the common cereals/legumes/pasture cropping systems within the Kamech catchment. Energy and water balance components and vegetation parameters were collected in different fields and during various crop growth cycles. The results showed the highly variable response of energy and water balances depending on soil types, land use, and climatic conditions. The annual rainfall is mainly converted into evapotranspiration during the growing cycle for different land uses. The runoff amounts, for most of the sites, correspond to less than 10% of the rainfall amount. The evapotransipration ratios differed significantly across site and season in relation to soil properties and cumulated rainfall. We observe large differences in soil water dynamics among the legumes (fababean and chickpea) and cereals (wheat, oat, and triticale). Soil water is larger for legume crops, despite substantial plant growth during winter

  8. Increasing crop production in rainfed dry areas by improved water and nutrient management

    International Nuclear Information System (INIS)

    The responses of three cropping sequences to two tillage and nutrient-management factors with a view to improved and sustained productivity of a rainfed farming system were tested at the Nuclear Institute for Food and Agriculture (NIFA) Research Station and farmers' fields from 1998 to 2002. The tillage treatment improved grain yield of wheat at the research station, but did not improve farmers' yields significantly. Fertilizer-N utilization by wheat was greater on farmers' fields (up to 42% of applied N) than at the research station (up to 33%). Grain yield of lentil was not influenced by tillage or nutrient level, but N accumulation in grain was significantly greater at the higher P level. Nitrogen fixation was also stimulated by higher P. The lentil crop obtained 82 to 96% of its N from fixation, up to 6% from applied fertilizer and up to 12% from soil. The amounts fixed varied from 42 to 91 kg/ha in different treatments. The chickpea crop obtained 52 to 64% of its N from fixation, up to 9% from applied fertilizer and up to 39% from soil. Carbon-13 discrimination values (δ) of straw, grain and root of wheat revealed no evidence of water stress at NIFA under tillage. On a farmer's field at Urmar, tillage induced some water deficit as reflected by less-negative δ values of straw. Applied P had no significant effect on moisture availability. Intercropping of wheat, lentil and chickpea was not productive. Lentil, a legume, had a significant positive effect on yield of subsequent wheat as compared to a wheat-wheat sequence, potentially providing additional income. The %N derived from fertilizer and %N utilization from residual 15N-labelled urea indicated that wheat utilized less than 1% of the N applied in the previous year. Water-use efficiency (WUE) in terms of wheat grain was improved (3.31 kg ha-1 mm-1) in the lentil-wheat sequence and tillage treatment at NIFA as compared to no-tillage and wheat-wheat sequence. The WUE of wheat grain indicated a good

  9. Purification, characterization and allergenicity assessment of 26kDa protein, a major allergen from Cicer arietinum.

    Science.gov (United States)

    Verma, Alok Kumar; Sharma, Akanksha; Kumar, Sandeep; Gupta, Rinkesh Kumar; Kumar, Dinesh; Gupta, Kriti; Giridhar, B H; Das, Mukul; Dwivedi, Premendra D

    2016-06-01

    Chickpea (CP), a legume of the family Fabaceae, is an important nutrient-rich food providing protein, essential amino acids, vitamins, dietary fibre, and minerals. Unfortunately, several IgE-binding proteins in CP have been detected that are responsible for allergic manifestations in sensitized population. Therefore, the prevalence of CP induced allergy prompted us towards purification, characterization and allergenicity assessment of a major ∼26kDa protein from chickpea crude protein extract (CP-CPE). Purification of CP 26kDa protein was done using a combination of fractionation and anion exchange chromatography. This protein was further characterized as "Chain A, crystal structure of a plant albumin" from Cicer arietinum with Mol wt 25.8kDa by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Further, allergenic potential of purified 25.8kDa protein was assessed using in vivo and in vitro model. Purified protein showed IgE-binding capacity with sensitized BALB/c mice and CP allergic patient's sera. Enhanced levels of specific and total IgE, MCP-1, MCPT-1, myeloperoxidase, histamine, prostaglandin D2, and cysteinyl leukotriene were found in sera of mice treated with CP ∼26kDa protein. Further, expressions of Th2 cytokines (i.e. IL-4, IL-5, IL-13), transcription factors (i.e. GATA-3, STAT-6, SOCS-3) and mast cell signaling proteins (Lyn, cFgr, Syk, PLC-γ2, PI-3K, PKC) were also found increased at mRNA and protein levels in the intestines of mice treated with CP ∼26kDa protein. In addition, enhanced release of β-hexosaminidase, histamine, cysteinyl leukotriene and prostaglandin D2 were observed in RBL2H3 cell line when treated (125μg) with CP 26kDa protein. Conclusively, in vivo and in vitro studies revealed the allergenic potential of purified CP 26kDa protein. Being a potential allergen, plant albumin may play a pivotal role in CP induced allergenicity. Current study will be helpful for better development of therapeutic approaches to

  10. Nucleopolyhedrovirus Introduction in Australia

    Institute of Scientific and Technical Information of China (English)

    Patrick Buerger; Caroline Hauxwell; David Murray

    2007-01-01

    Nucleopolyhedrovirus (NPV) has become an integral part of integrated pest management (IPM) in many Australian agricultural and horticultural crops. This is the culmination of years of work conducted by researchers at the Queensland Department of Primary Industries and Fisheries (QDPI&F) and Ag Biotech Australia Pty Ltd. In the early 1970's researchers at QDPI&F identified and isolated a virus in Helicoverpa armigera populations in the field. This NPV was extensively studied and shown to be highly specific to Helicoverpa and Heliothis species. Further work showed that when used appropriately the virus could be used effectively to manage these insects in crops such as sorghum, cotton, chickpea and sweet corn. A similar virus was first commercially produced in the USA in the 1970's. This product, Elcar(R), was introduced into Australia in the late 1970's by Shell Chemicals with limited success. A major factor contributing to the poor adoption of Elcar was the concurrent enormous success of the synthetic pyrethroids. The importance of integrated pest management was probably also not widely accepted at that time. Gradual development of insect resistance to synthetic pyrethroids and other synthetic insecticides in Australia and the increased awareness of the importance of IPM meant that researchers once again turned their attentions to environmentally friendly pest management tools such NPV and beneficial insects. In the 1990's a company called Rhone-Poulenc registered an NPV for use in Australian sorghum, chickpea and cotton. This product, Gemstar(R), was imported from the USA. In 2000 Ag Biotech Australia established an in-vivo production facility in Australia to produce commercial volumes of a product similar to the imported product. This product was branded, ViVUS(R), and was first registered and sold commercially in Australia in 2003. The initial production of ViVUS used a virus identical to the American product but replicating it in an Australian Helicoverpa

  11. Comparative effectiveness of different Rhizobium sp. for improving growth and yield of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Ijaz Mehboob, Zahir Ahmad Zahir, Muhammad Arshad, Muhammad Khalid

    2012-05-01

    Full Text Available During the last couple of decades, it has been demonstrated that rhizobia can associate with roots of non-legumes also without forming true nodules, and can promote their growth by using one or more of the direct or indirect mechanisms of actions. This work examines the growth and yield responses of maize to inoculation with different species of rhizobia, isolated from the root nodules of chickpea (Cicer arietinum L., lentil (Lens culinaris M. and mung bean (Vigna radiata L. in pots and fields. Twenty isolates of rhizobia were isolated from root nodules each of mung bean, lentil and chickpea and were screened under axenic conditions. On the basis of their promising performance under axenic conditions, nine most efficient isolates (three from each legume host were selected, characterized and further evaluated for their growth promoting activities by conducting pot and field experiments. Results of pot experiment revealed that maximum increase in grain yield, 1000 grain weight, N, P and K uptake (up to 47.89, 54.52, 73.46, 84.66 and 59.19% by CRI28, respectively, over un-inoculated control was produced by the isolate of Mesorhizobium ciceri. Whereas, maximum improvement in rest of the parameters was caused by the isolates of Rhizobium phaseoli (i.e. fresh biomass, straw yield and root length up to 36.30% by A18, 25.46% by S6 and 81.89% by A18, respectively over un-inoculated control. Rhizobium leguminosarum isolates came out to be the least effective among the species tested. Similarly, all the selected isolates improved the growth and yield attributing parameters in fields as well but with varying capacity compared with un-inoculated control. The selected isolates of Mesorhizobium ciceri and Rhizobium phaseoli again remained superior compared to the isolates of Rhizobium leguminosarum under field conditions. The results of this study imply that rhizobium species had potential to promote growth and yield of maize but this technology should be

  12. Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa.

    Science.gov (United States)

    Makkouk, Khaled M; Kumari, Safaa G

    2009-05-01

    Cool-season food legumes (faba bean, lentil, chickpea and pea) and cereals (bread and durum wheat and barley) are the most important and widely cultivated crops in West Asia and North Africa (WANA), where they are the main source of carbohydrates and protein for the majority of the population. Persistently transmitted aphid-borne viruses pose a significant limitation to legume and cereal production worldwide. Surveys conducted in many countries in WANA during the last three decades established that the most important of these viruses are: Faba bean necrotic yellows virus (FBNYV: genus Nanovirus; family Nanoviridae), Bean leafroll virus (BLRV: genus Luteovirus; family Luteoviridae), Beet western yellows virus (BWYV: genus Polerovirus; family Luteoviridae), Soybean dwarf virus (SbDV: genus Luteovirus; family Luteoviridae) and Chickpea chlorotic stunt virus (CpCSV: genus Polerovirus; family Luteoviridae) which affect legume crops, and Barley yellow dwarf virus-PAV (BYDV-PAV: genus Luteovirus; family Luteoviridae), Barley yellow dwarf virus-MAV (BYDV-MAV: genus Luteovirus; family Luteoviridae) and Cereal yellow dwarf virus-RPV (CYDV-RPV: genus Polerovirus; family Luteoviridae) which affect cereal crops. Loss in yield caused by these viruses is usually high when infection occurs early in the growing season. Many aphid vector species for the above-mentioned viruses are reported to be prevalent in the WANA region. In addition, in this region many wild species (annual or perennial) were found infected with these viruses and may play an important role in their ecology and spread. Fast spread of these diseases was always associated with high aphid vector populations and activity. Although virus disease management can be achieved by combining several control measures, development of resistant genotypes is undoubtedly one of the most appropriate control methods. Over the last three decades barley and wheat genotypes resistant to BYDV, faba bean genotypes resistant to BLRV, and

  13. Use of Industrial Waste and Bye-Products as a P Source for Improving Crop Production II. Effect of Source and Rate of P Application on Growth and P Uptake by Six Crop Species

    Directory of Open Access Journals (Sweden)

    S.M. Alam

    2001-01-01

    Full Text Available Pot experiments were conducted to compare DCP, an industrial bye-product, against standard fertilizer SSP for growth and P uptake behaviour and to evaluate the performance of DCP as a P fertilizer source for several crop species. Single superphosphate and DCP were applied @ 0, 22, 44, 88, and 176 mg P kg -1 to a loam soil (Lyallpur III series, typic ustocrept. The first crop series grown were wheat, lentil and chickpea while the second series contained sorghum, maize and mungbean and in third series bermuda grass, brassica and berseeem were used. After each crop harvest soil samples were drawn for P analysis and the same P rates from two sources were applied to respective pots. Plants were grown for various time periods before harvesting and P uptake was estimated. Rate of P application increased DMY and P uptake, but the P rate required for maximum DMY varied depending on crop requirements. Brassica, bermuda grass and mungbean were less responsive to applied P while berseem, maize and sorghum responded more to P application. The behaviour of the two sources for DMY and P uptake by the six crop species were mostly alike. However, for crops that responded more to P application, DCP proved similar or sometimes superior to SSP. The amount of residual P after each crop harvest was significantly higher in DCP as compared to SSP applied treatment.

  14. Use of Bio-Organic Fertilizers to Develop N Uptake Using 15N Technique

    International Nuclear Information System (INIS)

    Experimental work either in field scale or in green house conditions were conducted using 15N technique to evaluate the role of different bio fertilizers and different plant residues as organic amendments on enhancement of plant N nutrition. Nitrogen fixation by a symbiotic bacteria has been observed in greenhouse and field experiments under dry land cropping systems. Biological N2 fixation associated with crop residues (legumes or cereals) was investigated in pot experiments with wheat and chickpea cultivars. In these experiments, labelled wheat and rice straw were used as organic N sources in comparison with either 15N-labelled ammonium sulfate or ammonium nitrate as chemical nitrogen fertilizers. Rhizobium inoculation extended to be used with wheat gave the best results of N uptake and N2 fixation when combined with Azospirillum brasilense as heterotrophic diazotrophs. The nitrogen uptake by wheat plants was significantly increased by application of soybean residues and inoculation with Azospirillum brasilense. From the field trial we can conclude that soybean residue as enriched N material, and Azospirillum brasilense inoculation enhanced N yields of wheat cultivars grown in poor fertile sandy soil

  15. Identification and function of a polyketide synthase gene responsible for 1,8-dihydroxynaphthalene-melanin pigment biosynthesis in Ascochyta rabiei.

    Science.gov (United States)

    Akamatsu, Hajime O; Chilvers, Martin I; Stewart, Jane E; Peever, Tobin L

    2010-08-01

    Ascochyta rabiei produces and accumulates one of the well-known fungal polyketides, 1,8-dihydroxynaphthalene-melanin pigment (DHN-melanin), in asexual and sexual fruiting bodies. Degenerate PCR primers were used to isolate an ArPKS1 of A. rabiei encoding a polypeptide with high similarity to polyketide synthase (PKS) involved in biosynthesis of DHN-melanin in other ascomycetous fungi. Site-directed mutagenesis of ArPKS1 in A. rabiei generated melanin-deficient pycnidial mutants but caused no significant reduction of pathogenicity to chickpea. Pycnidiospores in ArPKS1-mutant pycnidia showed higher sensitivity to UV light exposure compared to pycnidiospores in melanized pycnidia of the wild-type progenitor isolate. Integration of an orthologous PKS1 gene from Bipolaris oryzae into the genome of the mutants complemented the dysfunctional ArPKS1 gene. This study demonstrated that A. rabiei uses a DHN-melanin pathway for pigmentation of pycnidia and this molecule may protect pycnidiospores from UV irradiation. PMID:20473673

  16. Insect disinfestation by irradiation: Feasibility and economic study, and organoleptic tests of the irradiated products

    International Nuclear Information System (INIS)

    Israel produces limited quantities of cereals and pulses, but imports important quantities for local consumption. Because of the warm and humid climate, these grains and pulses can be infested rapidly and serious losses are encountered at the wholesale, retail and consumer levels. A programme was established to facilitate the introduction and use of irradiation technology to reduce these losses. It was aimed at establishing the necessary technological, economic and consumer acceptance parameters. To accomplish these goals, the Ministry of Health was asked to grant clearances for radiation disinfestation of all cereals, pulses, coffee beans (and their products), cocoa beans (and their products), edible seeds and nuts at an average overall dose of 1 kGy. An economic feasibility study was performed and led to the conclusion that radiation disinfestation of agricultural products is economically feasible in Israel, but it will be necessary to obtain a demonstration irradiator capable of treating the quantities needed to implement irradiation technology. The initial technology implementation costs would be about US $30 per tonne, while later costs in a commercial facility will only be about US $8 per tonne. The costs of a 60Co facility and an electron irradiation facility are analysed. The results of organoleptic tests of irradiated wheat, popcorn, red bean and chickpea are given and discussed. (author). 14 refs, 2 tabs

  17. Box-Behnken design for extraction optimization, characterization and in vitro antioxidant activity of Cicer arietinum L. hull polysaccharides.

    Science.gov (United States)

    Ye, Zipeng; Wang, Wei; Yuan, Qingxia; Ye, Hong; Sun, Yi; Zhang, Hongcheng; Zeng, Xiaoxiong

    2016-08-20

    The optimal extraction conditions with a yield of 5.37±0.15% for extraction of polysaccharides from chickpea (Cicer arietinum L.) hull (CHPS) were determined as extraction temperature 99°C, extraction time 2.8h and ratio of water to raw material 24mL/g. Three fractions of CHPS-1, CHPS-2 and CHPS-3, with average molecular weight of 3.1×10(6), 1.5×10(6) and 7.8×10(5)Da, respectively, were obtained from crude CHPS by chromatography of DEAE Fast Flow and Sephadex G-100. CHPS-1 was composed of mannose, rhamnose, galactose, galacturonic acid, glucose and arabinose, CHPS-2 was composed of mannose, rhamnose, galacturonic acid, galactose, xylose and arabinose, CHPS-3 was composed of galacturonic acid, galactose and rhamnose. CHPS-3 showed the strongest reducing power and protective effect on H2O2-induced oxidative injury in PC12 cells and highest scavenging activities against DPPH and ABTS radicals, while CHPS-2 showed the highest scavenging activity against superoxide anion radical. PMID:27178941

  18. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR.

    Science.gov (United States)

    Tank, Neelam; Saraf, Meenu

    2009-04-01

    Phytoremediation i.e. the use of plants to adsorb, accumulate or detoxify contaminants is an emerging area of interest. A viable technology needs optimum biomass production in metal contaminated soil. Five strains of microbes were selected after testing their potential as plant growth promoters, on the basis of their phosphate solubilization ability, IAA, siderophore and HCN production and biocontrol potentials. They were examined for growth in synthetic medium supplemented with nickel and their MIC (2 mM) was determined. These isolates were also able to grow and produce siderophores in presence of heavy metals like Ni, Zn and Cd. A positive response of bacterial inoculants was observed in chickpea plants towards toxic effect of nickel present in soil at different concentration (0, 1 and 2 mM). Bacterial inoculants enhanced fresh and dry weight of plants even at 2 mM nickel concentration. Pot experiments indicated that presence of nickel at upto 1 mM enhanced plant growth compared to uninoculated nickel free plants. The accumulation of nickel/plant was just 50% in Pseudomonas inoculated plants as compared to uninoculated plants with 2 mM nickel concentration along with increased biomass. The results suggest the use of these PGPR to enhance plant growth in nickel-spiked land and remediate nickel from contaminated sites. PMID:18798171

  19. Purification and characterization of Locusta migratoria chymotrypsin.

    Science.gov (United States)

    Sakal, E; Applebaum, S W; Birk, Y

    1988-12-01

    A chymotrypsin-like enzyme (CTLE) was isolated from the digestive tract of the African migratory locust Locusta migratoria migratorioides by ion-exchange chromatography on diethylaminoethyl (DEAE) cellulose followed by affinity chromatography on phenylbutylamine (PBA) Sepharose. The purity and homogeneity of CTLE have been shown by SDS-PAGE and on cellulose acetate strips. The enzyme has a molecular weight of 24,000, determined by SDS-PAGE and on a Sephadex G-75 calibrated column. It has an isoelectric point of 10.1 and contains 0-1 half cystine residues. Sequence analysis of the first 20 N-terminal amino acids has shown 25% homology with bovine chymotrypsin and 40% homology with Vespa crabo and Vespa orientalis chymotrypsins and with Hypoderma lineatum trypsin. The optimal pH for enzyme activity and stability was in the range of 8.5-9.0. The Km and kcat values, determined on substrates for proteolytic, esterolytic and amidolytic activity, similar to those for bovine chymotrypsin. CTLE was inactivated by PMSF and TPCK indicating the involvement of serine and histidine in its active site. The enzyme was fully inhibited by the proteinaceous, double-headed, chymotrypsin-trypsin inhibitors BBI from soybeans and CI from chickpeas, by chicken ovomucoid (COM) and turkey ovomucoid (TOM), as well as by the Kunitz soybean trypsin inhibitor (STI) which hardly inhibits bovine chymotrypsin. Inhibition studies of CTLE with amino acid and peptide-chloromethylketones point towards the existence of an extended binding site. PMID:3246483

  20. Mutation breeding programmes for the genetic improvement of grain legumes and vegetable crops in Italy

    International Nuclear Information System (INIS)

    Mutation breeding programmes on grain legumes (pea, bean and chickpea) and vegetable crops (tomato and sweet pepper) have been developed over the past 20 years with the aim of inducing new genetic variability and selecting favourable mutants. For each species, the effectiveness of using different types of radiation and chemical mutagenic agents on the different ontogenetic stages of the plant has been extensively studied. Much attention has also been paid to M1 chimerism and to some chromosome rearrangements detected mainly after gamete irradiation. The possibility of inducing new genetic variability through mutagenesis associated with in vitro regeneration of tomato cotyledonary explants has also been investigated. A number of new pea varieties has been released: Esedra, Navona and Trevi from pollen irradiation, and Priamo, Paride and Pirro from seed treatment with gamma rays. In bean, the varieties Lisa P71, Montalbano and Mogano, the latter two resistant to the bean common mosaic virus and mutated for the colour of the seed coat, have been obtained after ethylmethanesulphonate seed treatment. In vegetable crops, advanced mutant lines have been utilized as parentals for the production of F1 hybrids. A new variety of tomato, Parteno, and the first F1 hybrid with a bs marker gene, Brown-1, have been released and marketed. (author). 22 refs, 1 fig., tab

  1. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes.

    Science.gov (United States)

    Boschin, Giovanna; Scigliuolo, Graziana Maria; Resta, Donatella; Arnoldi, Anna

    2014-02-15

    The objective of this investigation was to compare the angiotensin converting enzyme (ACE)-inhibitory activity of the hydrolysates obtained by pepsin digestion of proteins of some legumes, such as chickpea, common bean, lentil, lupin, pea, and soybean, by using the same experimental procedure. The ACE-inhibitory activity was measured by using the tripeptide hippuryl-histidyl-leucine (HHL), as model peptide, and HPLC-DAD, as analytical method. The peptide mixtures of all legumes were active, with soybean and lupin the most efficient, with IC50 values of 224 and 226 μg/ml, respectively. Considering the promising results obtained with lupin, and aiming to identify the protein(s) that release(s) the peptides responsible for the activity, the peptides obtained from the pepsin digestion of some industrial lupin protein isolates and purified protein fractions were tested. The most active mixture, showing an IC50 value of 138 μg/ml, was obtained hydrolysing a mixture of lupin α+β conglutin. PMID:24128446

  2. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida

    International Nuclear Information System (INIS)

    Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC

  3. Biocontrol potential of Trichoderma Sp. against plant pathogens

    Directory of Open Access Journals (Sweden)

    Anand S.

    2009-12-01

    Full Text Available Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore andanalyzed for their antagonistic potential against Sclerotium rolfsii and Fusarium ciceri. The potential ofbiocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were henceconducted using chickpea (Cicer argentums c.v. Annigeri as an experimental plant by the roll paper towelmethod. Overall the isolates T40, T35, T30 and T25 showed better antagonistic potential in addition toenhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plantpathogens has been implicated as a major cause of biocontrol activity (Inbar and Chet, 1995. In order tostudy the mechanism of biocontrol, ten better performing strains were plated on media, amended withcolloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day threeas well as day five. Production of endochitinase and exochitinase were assayed in liquid media usingcolloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinaseactivity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.

  4. Preparation of gluten free bread enriched with green mussel (Perna canaliculus) protein hydrolysates and characterization of peptides responsible for mussel flavour.

    Science.gov (United States)

    Vijaykrishnaraj, M; Roopa, B S; Prabhasankar, P

    2016-11-15

    Green mussel protein hydrolysates (GMPH) utilization for the enrichment of gluten-free bread followed by characterization of flavour peptides using chromatography and electronic nose techniques have been done. The degree of hydrolysis was carried out in each protease digest, and the higher degree of hydrolysis was observed in pepsin digestion. Gluten-free (GF) bread was formulated by using buckwheat flour (BWF), rice flour (RF) and chickpea flour (CPF) (70:20:10) and GMPH were added in the range of 0-20% in the GF bread for enrichment with GMPH. Radar plot of the electronic nose analysis showed that the sensors P30/2, T30/1 and T70/2 had a higher response to the GF bread and GMPH. Consequently, the peptide sequence was obtained manually by ESI-MS spectra of GMPH (KGYSSYICDK) and F-II (SSYCIVKICDK). Flavour quality was 97% discriminately comparable to the GMPH and F-II fractions. Mussel flavoured GF bread can be included in the celiac diet. PMID:27283688

  5. Application and opportunities of pulses in food system: a review.

    Science.gov (United States)

    Asif, Muhammad; Rooney, Lloyd W; Ali, Rashida; Riaz, Mian N

    2013-01-01

    Pulses are highly nutritious seeds of pod-bearing leguminous plants, specifically dry peas, lentils, and chickpeas. US farmers harvest about 2.6 million pounds of pulses every year but 75% of this is being exported internationally because of its increased consumption in the developing countries. In the current scenario, increasing costs of production, bad economy, and fluctuating food commodity prices have made a strong case for US producers to seek opportunities to increase domestic consumption of pulses through value-added products. Pulses are the richest sources of plant proteins and provide approximately 10% of the total dietary requirements of the proteins world over. Pulses are also high in dietary fibers and complex carbohydrates leading to low GI (glycemic index) foods. Pulses help to lower cholesterol and triglycerides as leguminous fibers are hypoglycosuria because of consisting more amylose than amylopectin. Pulses provide tremendous opportunities to be utilized in the processed foods such as bakery products, bread, pasta, snack foods, soups, cereal bar filing, tortillas, meat, etc. These show excellent opportunities in frozen dough foods either as added flour or as fillings. Pulses in view of their nutrient profile, seem to be ideal for inclusion in designing snack foods, baby, and sports foods. PMID:24007421

  6. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours.

    Science.gov (United States)

    Durazzo, Alessandra; Turfani, Valeria; Azzini, Elena; Maiani, Giuseppe; Carcea, Marina

    2013-10-15

    Total phenols (TPC) and antioxidant properties were determined in chick-pea, green and red lentils and sweet chestnut flours, in both aqueous-organic extracts and their residues, by the Folin Ciocalteau method and by the FRAP assay, respectively. Plant lignans were quantified in flours by means of HPLC. In addition, the FRAP of plant lignans (secoisolariciresinol, lariciresinol, isolariciresinol, pinoresinol, matairesinol), their mixture and enterolignans (enterodiol and enterolactone) were determined. In all flours, the highest TPC values were found in the residue. Specific and varietal significant differences were observed in all parameters. The highest TPC (737.32 and 1492.93mg/100gd.w.) and FRAP (140.32 and 101.25μmol/gd.w.) values were reached by green lentils in both aqueous-organic extract and residue, respectively. Sweet chestnuts had the highest total lignans (980.03μg/100gd.w.). It was also found that the plant lignans standards have a higher antioxidant activity than enterolignans standards and that matairesinol has the highest activity. PMID:23692751

  7. Seed priming with extracts of Acacia nilotica (L.) Willd. ex Delile and Sapindus mukorossi (L.) plant parts in the control of root rot fungi and growth of plants

    International Nuclear Information System (INIS)

    Seed priming with plant extracts and chemicals has been used as an important growth enhancement tool in crop plants. In this research, an attempt was made to understand the mechanism of various seed priming treatments on greenhouse-grown okra (Abelmoschus esculentus (L.) Moench.), sunflower (Helianthus annuus L.), peanut (Arachis hypogaea L.) and chickpea (Cicer arietinum L.) for the control of root infecting fungi like Rhizoctonia solani (Kn), Fusarium spp. and Macrophomina phaseolina (Tassi) Goid by plant parts extracts (stem, leaves and seeds) of Acacia nilotica (L.) Willd. ex Delile and Sapindus mukorossi (L) at different time intervals (5, 10, 20, 40 minutes). Results showed significant suppression of root rot fungi and significantly enhanced the growth parameters like shoot length, root length, shoot weight and root weight. Seed-priming with A. nilotica and S. mukorossi leaves extract for 10 minutes time interval was found to be effective for the control of root rot fungi and growth of all tested leguminous and non-leguminous plants. (author)

  8. A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes.

    Science.gov (United States)

    Jain, Deepti; Khandal, Hitaishi; Khurana, Jitendra Paul; Chattopadhyay, Debasis

    2016-01-01

    Pathogenesis related-10 (PR-10) proteins are present as multigene family in most of the higher plants. The role of PR-10 proteins in plant is poorly understood. A sequence analysis revealed that a large number of PR-10 proteins possess conserved motifs found in aldo/keto reductases (AKRs) of yeast and fungi. We took three PR-10 proteins, CaARP from chickpea, ABR17 from pea and the major pollen allergen Bet v1 from silver birch as examples and showed that these purified recombinant proteins possessed AKR activity using various cytotoxic aldehydes including methylglyoxal and malondialdehyde as substrates and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) as co-factor. Essential amino acids for this catalytic activity were identified by substitution with other amino acids. CaARP was able to discriminate between the reduced and oxidized forms of NADP independently of its catalytic activity and underwent structural change upon binding with NADPH. CaARP protein was preferentially localized in cytosol. When expressed in bacteria, yeast or plant, catalytically active variants of CaARP conferred tolerance to salinity, oxidative stress or cytotoxic aldehydes. CaARP-expressing plants showed lower lipid peroxidation product content in presence or absence of stress suggesting that the protein functions as a scavenger of cytotoxic aldehydes produced by metabolism and lipid peroxidation. Our result proposes a new biochemical property of a PR-10 protein. PMID:26577640

  9. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods.

    Science.gov (United States)

    Rhoades, J; Roller, S

    2000-01-01

    The objective of this study was to determine whether chitosan (poly-beta-1,4-glucosamine) and hydrolysates of chitosan can be used as novel preservatives in foods. Chitosan was hydrolyzed by using oxidative-reductive degradation, crude papaya latex, and lysozyme. Mild hydrolysis of chitosan resulted in improved microbial inactivation in saline and greater inhibition of growth of several spoilage yeasts in laboratory media, but highly degraded products of chitosan exhibited no antimicrobial activity. In pasteurized apple-elderflower juice stored at 7 degrees C, addition of 0.3 g of chitosan per liter eliminated yeasts entirely for the duration of the experiment (13 days), while the total counts and the lactic acid bacterial counts increased at a slower rate than they increased in the control. Addition of 0.3 or 1.0 g of chitosan per kg had no effect on the microbial flora of hummus, a chickpea dip; in the presence of 5.0 g of chitosan per kg, bacterial growth but not yeast growth was substantially reduced compared with growth in control dip stored at 7 degrees C for 6 days. Improved antimicrobial potency of chitosan hydrolysates like that observed in the saline and laboratory medium experiments was not observed in juice and dip experiments. We concluded that native chitosan has potential for use as a preservative in certain types of food but that the increase in antimicrobial activity that occurs following partial hydrolysis is too small to justify the extra processing involved. PMID:10618206

  10. Anti-flatulent Studies of Traditional Medicinal Plant Vitex negundo Linn. In Rats

    Directory of Open Access Journals (Sweden)

    Sukhbir Lal Khokra

    2014-10-01

    Full Text Available Vitex negundo is a shrub from Verbenaceae family and is traditionally used in treatment of various disease and disorders. Oil prepared with the juice of leaves of Vitex-negundo is reported to have very useful medicinal properties like wonderful cures of sloughing wounds and ulcers. In Ayurveda; roots of Vitex negundo is reported to have anti-flatulent properties. Philippines peoples used to make tea from fruits of this plant, which was considered very useful in relieving stomach gas which, we refer to flatulence. Here we studied the anti flatulent activity of different essential oils and extracts of Vitex negundo Linn. The standard drug used was simethicone (10 mg/10 g of flatulent diet, p.o., which inhibited gas production up to 90 % as compared to control. Addition of test drugs (essential oils/ethanolic extracts to the chickpea diet (5 % decreased the amount of gas production significantly up to 69% by root and leaves extracts while dry fruit oil inhibited gas formation to 81%. The anti-flatulent activity in this plant may due to combined effect of flavonoids and triterpenoids constituents. As the safety evaluation study indicates that Vitex negundo is well tolerated at very high doses without any toxic effects. Thus, Vitex negundo has a high potential for the development of modern medicine for the treatment of various diseases.

  11. Dicty_cDB: Contig-U16027-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 83 ) 39RDBRT_UP_003_H10_02APR2004_066 Brassica rapa 39... 92 6e-14 1 ( CD834783 ) BN45.043C07F011229 BN45 Brassica nap...RDBRG_UP_030_B01_23JUN2004_013 Brassica rapa 36... 90 2e-13 1 ( EE511337 ) 25RDBNM_UP_048_F05_04MAR2004_037 Brassica nap...) JKBNHS1_UP_013_B10_02JUL2004_078 Brassica napus J... 90 2e-13 1 ( CX270774 ) 39RDBRT_UP_014_B06_05APR2004_046 Brassica rapa...2676 ) 16ACDHDS_UP_013_D09_15OCT2004_073 Brassica napus ... 80 2e-10 1 ( CX269919 ) 39RDBRT_UP_004_D01_02APR2004_009 Brassica rapa...mh1_0029_A11 Drought-stressed chickpea leave libr... 78 9e-10 1 ( EX033857 ) BR018501 callus cDNA library KBCG Brassica rapa

  12. Preparation of Antioxidant Enzymatic Hydrolysates from Honeybee-Collected Pollen Using Plant Enzymes

    Directory of Open Access Journals (Sweden)

    Margarita D. Marinova

    2010-01-01

    Full Text Available Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate and proline iminopeptidase (0.03 U/g substrate from cabbage leaves (Brassica oleracea var. capitata, and aminopeptidase (0.2 U/g substrate from chick-pea cotyledons (Cicer arietinum L. were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH, total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20–28%, total phenolics (15.3–27.2 μg/mg sample powder, and proteins (162.7–242.8 μg/mg sample powder, respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42–46% inhibition. The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.

  13. Research work on mutation breeding in Egypt during the 1980s

    International Nuclear Information System (INIS)

    The research work carried out on mutation breeding in Egypt during the 1980s is summarized. Several mutations have been developed in bread wheat, maize, rice and barley. A higher yield, tolerance to salinity, shorter types and earliness were obtained after use of different mutagens and growth regulators. Great attention has been paid to the fababean and chickpea, particularly in improving their quality and quantity of protein, and their resistance to insect weevils such as Callosobruchus sp. Tolerance or resistance to broom rape has also been reported. Various grain legumes such as lentil, pea, cowpea, bean, fenugreek and lupin received some attention. Mutation work on fibre crops such as cotton, kenaf and flax has led to some promising results. Zero type, glandless and early maturing mutants were obtained in cotton, and early flowering, high yielding (fibre or oil) mutants in flax. Some attention has been given to oil crops such as sesame, rapeseed, peanuts, castorbean, sunflower and safflower, and several characters in sesame, including yield, earliness, the number of capsules per leaf axil and tolerance to some fungi, were obtained. Promising smooth mutations with different flower colours have been developed in safflower, and nodulation and tolerance to salinity have received some attention in peanuts and sunflower. High seed getting and earliness mutants were obtained in Egyptian clover. The results on sugarcane and sugarbeet still need to be confirmed, as well as those on tomato, potato, onion, Portulaca, citrus and medicinal plants. (author). 2 refs

  14. Development and evaluation of a nutritionally enhanced multigrain tortilla snack.

    Science.gov (United States)

    Islas-Rubio, Alma Rosa; de la Barca, Ana María Calderón; Molina-Jacott, Luis Enrique; Del Carmen Granados-Nevárez, María; Vasquez-Lara, Francisco

    2014-06-01

    An increased consumption of healthy foods to reduce chronic diseases risks is needed. We developed and evaluated a multigrain snack as a nutritive alternative to the highly consumed corn tortilla chips. Corn, wheat, and chickpea grains were boiled in 1% calcium oxide solution, steeped, washed, and ground before being mixed with soy protein isolate and oat flour to prepare the multigrain masa. Multigrain tortillas were moulded, baked, dried, and fried. Proximate composition, dietary fiber, protein quality, sensorial, and textural properties were evaluated. A commercial tortilla chip was used as control. The multigrain snack contained 153% more protein, 53% more dietary fiber, and 43 % less fat than commercial tortilla chips. Its lysine and isoleucine contents helped to increase the corrected-net protein utilization by 10%, while digestibility increased from 83.5 to 91.8% as compared to commercial tortilla chips. The mean breaking force was 6,082 g for the multigrain snack and 4,780 g for the commercial tortilla chips. The mean acceptability score for the multigrain snack was 12.1 (unstructured line scale 0-15 cm), and 82% of the panelists rated the snack as acceptable. In conclusion, a nutritionally enhanced multigrain tortilla snack was developed which provides significantly more dietary fiber and protein and less fat than traditional commercial corn tortilla chips, but with comparable appearance and high acceptability. PMID:24590456

  15. Agronomic and Economic Efficiency of Manure and Urea Fertilizers Use on Vertisols in Ethiopian Highlands

    Institute of Scientific and Technical Information of China (English)

    Teklu Erkossa; Hailemariam Teklewold

    2009-01-01

    Soil fertility depletion is among the major impediments to sustained agricultural productivity especially in the less developed countries because of limited application of fertilizers. Soil fertility maintenance requires a balanced application of inorganic and organic nutrient sources. This study was conducted on a Vertisol in Ethiopia to determine the optimum farm yard manure (M) and nitrogen (N) application rates for maximum return under cereal-pulse-cereal rotation system. The main and interaction effects of M and N significantly affected biomass, grain and straw yields of wheat (Triticum durum) and tef (Eragrostis tef), but the residual effect on chickpea (Cicer arietinum) was not significant. Application of 6 t M ha-1 and 30 kg N ha-1, gave the largest grain yield of both crops but a comparable result was obtained due to 3 t M ha-1 and 30 kg N ha-1. The economic analysis revealed that 6.85 t M ha-1 and 44 kg N ha-1 for wheat, and 4.53 t M ha-1 and 37 kg N ha-1 for tef were the economic optimum rates. The additional benefit obtained due to these rates was about 450 USD ha-1. Therefore,application of the economic optimum combination of both organic and inorganic sources of nitrogen is recommended for use on cereals in the cereal-legume-cereal rotation system.

  16. DEVELOPMENT AND PERFORMANCE EVALUATION OF TRACTOR FRONT MOUNTED PIGEON PEA STEM CUTTER

    Directory of Open Access Journals (Sweden)

    Atul R. Dange

    2010-07-01

    Full Text Available Pigeon pea or tur (Cajanus cajan L. Mills. is one of the important pulse crops of India and ranks second to chickpea in area and production. Traditionally the harvesting of pigeon pea is done manually by sickle, which demands considerable amount of labour, drudgery, time and cost to harvest, which reflects on total production cost of the crop. In view of this a tractor operated front mounted pigeon pea stem cutter was developed and being front mounted implement it facilitated better visibility and control to operator. The power was transmitted from pto to gear box. Arrangement of hydraulic cylinder and hydraulic motor was provided on the equipment to facilitate the height of cut and to rotate the conveyer belt. During comparative performance evaluation of developed equipment, the average cutting efficiency and field capacity was found 96.30 % and 0.176 ha/hr respectively. There was increase in fuel consumption and plant damage with increase in speed of operation. The average operation cost of newly developed tractor operated front mounted pigeon pea stem cutter was 64.71% less as compared with manual harvesting of pigeon pea crop. The time saved was almost 1/3rd to that of manual harvesting.

  17. Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein-maltodextrin microcapsule preparation.

    Science.gov (United States)

    Can Karaca, Asli; Low, Nicholas; Nickerson, Michael

    2013-05-29

    Flaxseed oil was microencapsulated employing a wall material matrix of either chickpea (CPI) or lentil protein isolate (LPI) and maltodextrin using a benchtop spray dryer. Effects of emulsion formulation (oil, protein and maltodextrin levels) and protein source (CPI vs LPI) on the physicochemical characteristics, oxidative stability, and release properties of the resulting capsules were investigated. Microcapsule formulations containing higher oil levels (20% oil, 20% protein, 60% maltodextrin) were found to have higher surface oil and lower encapsulation efficiencies. Overall, LPI-maltodextrin capsules gave higher flaxseed oil encapsulation efficiencies (∼88.0%) relative to CPI-maltodextrin matrices (∼86.3%). However, both designs were found to provide encapsulated flaxseed oil protection against oxidation over a 25 d room temperature storage study relative to free oil. Overall, ∼37.6% of encapsulated flaxseed oil was released after 2 h under simulated gastric fluid, followed by the release of an additional ∼46.6% over a 3 h period under simulated intestinal fluid conditions. PMID:23663097

  18. STRAIN DIFFERENCES IN TWO SPECIES OF CALLOSOBRUCHUS (COLEOPTERA: BRUCHIDAE DEVELOPING ON SEEDS OF COWPEA {VIGNA UNGUICULATA (L.} AND GREEN GRAM {V. RADIATA (L.}

    Directory of Open Access Journals (Sweden)

    PHIL DOBIE

    1991-01-01

    Full Text Available Ovipositional behaviour, development period, and density effect on adult survival of C. maculatus strains from Indonesia, Nigeria, and Yemen, and C. chinensis strains from Indonesia and Kenya on cowpea and green gram were studied at 20°C and 70% relative humidity. Variations on ovipositional behaviour were found among C. maculatus as well as among C. chinensis strains. Variations on developmental period were found only among C. maculatus strains. The developmental period of Callosobruchus spp. was shorter on green gram than that on cowpea. Density effect was remarkably found only on adult survival of C. maculatus Yemen strain. These results make useful contribution to the species biology, and have important implication if strains of these species are accidentally imported to countries, or when new legume crops are introduced. INTRODUCTION Beetles belonging to the family Bruchidae are the most important insect pests of stored legumes. Infestation by bruchids causes losses of weight, nutritional value and germination potential, and therefore the commercial value of the commodity may be reduced (Southgate 1978; Dick and Credland 1986. The most economically important and widespread bruchids species are the cowpea seed beetle, Callosobruchus maculatus (Fabricius, and the Adzuki bean beetle, C. chinensis (Linnaeus (Southgate 1978; TDRI 1984. The use of resistant varieties of cultivated legumes is one of the recommended control methods of bruchid infestations. Varietal resistance against Callosobruchus has been reported in cowpeas and chickpea (Dobie 1981; Raina 1971; Singh 1978.

  19. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis.

    Science.gov (United States)

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G

    1994-08-01

    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation. PMID:8037464

  20. Effect of radiation processing on antinutrients, in-vitro protein digestibility and protein efficiency ratio bioassay of legume seeds

    Energy Technology Data Exchange (ETDEWEB)

    El-Niely, Hania F.G. [Food Irradiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo (Egypt)]. E-mail: elniely@hotmail.com

    2007-06-15

    The effects of irradiation (dose levels of 5, 7.5 and 10 kGy) on nutritive characteristics of peas (Pisum satinum L), cowpeas (Vigna unguiculata L.Walp), lentils (Lens culinaris Med), kidneybeans (Phaseolus vulgaris L), and chickpeas (Cicer arietinum L) were examined. Analyses included proximate composition, levels of anti-nutrients (phytic acid, tannins), available lysine (AL), in vitro protein digestibility (IVPD), and protein efficiency ratio (PER) in the growing rat. The results showed that moisture, crude protein, crude fat, crude fiber, and ash were unchanged by the irradiation. Radiation processing significantly (p<0.05) reduced the levels of phytic acid (PA), tannins (TN), and AL. IVPD and PER were significantly enhanced in a dose-dependent manner, relative to unirradiated control samples, for all legumes. The data sets for each legume exhibited high correlation coefficients between radiation dose and PA, TN, AL, IVPD, and PER. These results demonstrate the benefits of irradiation on the nutritional properties of these legumes.

  1. Effect of radiation processing on antinutrients, in-vitro protein digestibility and protein efficiency ratio bioassay of legume seeds

    Science.gov (United States)

    El-Niely, Hania F. G.

    2007-06-01

    The effects of irradiation (dose levels of 5, 7.5 and 10 kGy) on nutritive characteristics of peas ( Pisum satinum L), cowpeas ( Vigna unguiculata L.Walp), lentils ( Lens culinaris Med), kidneybeans ( Phaseolus vulgaris L), and chickpeas ( Cicer arietinum L) were examined. Analyses included proximate composition, levels of anti-nutrients (phytic acid, tannins), available lysine (AL), in vitro protein digestibility (IVPD), and protein efficiency ratio (PER) in the growing rat. The results showed that moisture, crude protein, crude fat, crude fiber, and ash were unchanged by the irradiation. Radiation processing significantly ( p<0.05) reduced the levels of phytic acid (PA), tannins (TN), and AL. IVPD and PER were significantly enhanced in a dose-dependent manner, relative to unirradiated control samples, for all legumes. The data sets for each legume exhibited high correlation coefficients between radiation dose and PA, TN, AL, IVPD, and PER. These results demonstrate the benefits of irradiation on the nutritional properties of these legumes.

  2. Role of classical breeding in improvement of pulse crops

    Directory of Open Access Journals (Sweden)

    N. Nadarajan and Sanjeev Gupta

    2010-07-01

    Full Text Available Classical breeding of many crops has been instrumental for ensuring food security by developing new varieties that are higheryielding,resistant to pests and diseases, drought-resistant or regionally adapted to different environments and growingconditions. A total of 513 cultivars of different pulse crops including chickpea, pigeonpea, mungbean, urdbean, lentil, fieldpeaand rajmash were developed in India itself during last three decades. Adoption of high yielding varieties in early 1980'sincreased the average productivity of the country by 34 % now. Significant achievements have been made in developing shortduration cultivars in almost all pulse crops with incorporation of photo- thermo insensitivity. Genetic resistance for most of thediseases have been identified and incorporated in development of disease resistant cultivars. In fieldpea, a major breakthroughhas been made by developing dwarf and afila plant type which led to increase in yield by 30%. Although cultivar developmenthas traditionally emphasized improvement through pedigree selection, mass –pedigree method and backcross breeding,interspecific hybridization has also received much attention in 1980s. So far eight genotypes in different pulse crops have beendeveloped in the country using interspecific hybridization. In pigeonpea a trait cytoplasmic male sterility has been introducedthrough wild gene introgression. Using this, a hybrid GTH 1 in pigeonpea has been developed in India which has yielded 27%yield superiority than the traditional cultivars.

  3. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution

    Science.gov (United States)

    Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A.

    2015-08-01

    Water sorption isotherms of foodstuffs are very important in different areas of food science engineering such as for design, modeling and optimization of many processes. The equilibrium moisture content is an important parameter in models used to predict changes in the moisture content of a product during storage. A formulation of multilayer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics. Some physicochemical parameters related to the adsorption process were introduced in the analytical model expression. The data tabulated in literature of water adsorption at different temperatures on: chickpea seeds, lentil seeds, potato and on green peppers were described applying the most popular models applied in food science. We also extend the study to the newest proposed model. It is concluded that among studied models the proposed model seems to be the best for description of data in the whole range of relative humidity. By using our model, we were able to determine the thermodynamic functions. The measurement of desorption isotherms, in particular a gas over a solid porous, allows access to the distribution of pore size PSD.

  4. Induced mutations and marker assisted breeding approaches to crop improvement

    International Nuclear Information System (INIS)

    The crop improvement programme at the Nuclear Institute for Agriculture and Biology involves use of mutation breeding techniques, particularly for improving plant architecture, maturity, period and induction/incorporation of genes for biotic and abiotic tolerance in important food and fibre crops. Recent advances in molecular genetics offered us new techniques to elucidate differences at the molecular level in the mutated genes with the help of marker assisted breeding techniques, i.e. restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD). Efforts are therefore being made to incorporate salt tolerance in cultivated wheat and rice from their wild relatives through wide hybridization. Thirteen improved varieties of rice, cotton, mungbeam and chickpea have been developed using the mutation breeding technique and then released for commercial cultivation. These improved varieties have played a significant role in increasing agricultural production in the country. In addition, a wealth of genetic variability has been developed for use in the cross-breeding programmes, and a few varieties of cotton have been developed in Pakistan with an induced mutation as one of their parents. Marker assisted wide hybridization in rice has helped to monitor the flow of genetic material carrying salt tolerance from wild to cultivated species. In wheat, DNA fingerprinting has been attempted to differentiate salt tolerant line (hybrids) from their parents

  5. Induced Mutagenesis for Crop Improvement in Bulgaria

    International Nuclear Information System (INIS)

    Experimental mutagenesis has been investigated and applied in crop breeding in various Bulgarian agricultural research institutes during the last half century. In this paper some major accomplishments achieved in Bulgaria are highlighted. Both, physical mutagens (mainly gamma rays) and chemical mutagens (mainly EMS, NMU, NEU), have been used and their proper doses have been established. According to the information available to the author, there are more than 76 new cultivars developed using induced mutants in Bulgaria, namely: barley (5), wheat (5), durum wheat (9), maize (26), sunflower (3), lentil (4), bean (2), pea (1), chickpea and vetch (2), soybean (5), tomato (6), pepper (4), cotton (2), tobacco (2). Some of the mutant cultivars such as maize hybrid Kneja 509 and durum wheat cultivar Gergana have become leading cultivars occupying up to 50% of the growing area of the crop concerned. In durum wheat, mutant cultivars have not only covered almost all the growing areas but also doubled the yield in the past 30 years. The achievements in mutation breeding programmes have also had a significant impact on the progress of genetic research by elucidating the underlying mechanisms of induced mutations and the training of many young researchers and university students through their involvement in various research projects. A number of mutant lines with novel characteristics and mutant cultivars of economical importance together with relevant techniques used in the development and characterization of those mutant lines/cultivars are described in this paper. (author)

  6. Bioinformatics approaches for viral metagenomics in plants using short RNAs : model case of study and application to a Cicer arietinum population.

    Directory of Open Access Journals (Sweden)

    Walter ePirovano

    2015-01-01

    Full Text Available Over the past years deep sequencing experiments have opened novel doors to reconstruct viral populations in a high-throughput and cost-effective manner. Currently a substantial number of studies have been performed which employ Next Generation Sequencing (NGS techniques to either analyze known viruses by means of a reference-guided approach or to discover novel viruses using a de novo-based strategy. Taking advantage of the well-known Cymbidium ringspot virus we have carried out a comparison of different bioinformatics tools to reconstruct the viral genome based on 21-27 nt short (sRNA sequencing with the aim to identify the most efficient pipeline. The same approach was applied to a population of plants constituting an ancient variety of Cicer arietinum with red seeds. Among the discovered viruses, we describe the presence of a Tobamovirus referring to the Tomato mottle mosaic virus (NC_022230, which was not yet observed on C. arietinum nor revealed in Europe and a virod referring to Hop stunt viroid (NC_001351.1 never reported in chickpea. Notably, a reference sequence guided approach appeared the most efficient in such kind of investigation. Instead, the de novo assembly reached a non-appreciable coverage although the most prominent viral species could still be identified. Advantages and limitations of viral metagenomics analysis using sRNAs are discussed.

  7. Occurrence of Dinarmus basalis in Callosobruchus analis in stored soybean in São Paulo, Brazil Ocorrência de Dinarmus basalis (Rondani em Callosobruchus analis (F. em soja armazenada em São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Valmir Antonio Costa

    2007-06-01

    Full Text Available Callosobruchus analis (F. is considered an important pest in several countries in Africa, Asia and Oceania. It has been observed infesting seeds belonging to 15 Leguminosae genera, including peanut, bean, chickpea, pea, cowpea, and soybean. One of its main natural enemies is the parasitoid Dinarmus basalis (Rondani (Hymenoptera: Pteromalidae, whose control efficiency has already been demonstrated in several studies. This paper records the occurrence of C. analis and its parasitoid, D. basalis, in stored soybean of the state of São Paulo, Brazil.Callosobruchus analis (F. é uma praga de expressão econômica em diversos países da África, Ásia e Oceania. Já foi observado infestando sementes de espécies de leguminosas pertencentes a 15 gêneros, incluindo-se culturas como amendoim, grão-de-bico, feijão, ervilha, caupi e soja. Um de seus inimigos naturais mais importantes é o parasitóide Dinarmus basalis (Rondani (Hymenoptera: Pteromalidae, cuja eficiência de controle já foi demonstrada em vários estudos. Neste trabalho registra-se a ocorrência de C. analis e de seu parasitóide, D. basalis, em grãos armazenados de soja no estado de São Paulo.

  8. Effect of fly ash on VAM formation and growth response of pulse crops infested with Glomus aggregatum in sterile soil

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C.N.; Garampalli, H.R. [Gulbarga University, Gulbarga (India). Dept. of P.G. Studies and Research in Botany

    2002-07-01

    The effect of flyash amendment at 3 concentrations (10%, 20% and 30%) on the infectivity and efficacy of Glomus aggregatum was studied by conducting a pot culture experiment with sterile low fertile soil using pigeon pea (Cajanus cagan (L.) Millsp.) Cv. Maruti and Chick pea (Cicer ariteinum L.) Cv. Annigeri, the two pulse crop cultivars of this region. It is evident from the present investigation that the percent vesicular arbuscular mycorrhiza, VAM colonization in both the crops significantly decreased with the increase of flyash content in the soil. The formation of VAM fungal structures (vesicles and arbuscules) inside the host root was also found completely suppressed at higher concentrations of flyash. The effectiveness of G. aggregatum under the influence of flyash was found significantly affected as compared to control, when judged by the growth response of pigeon pea. However in chickpea VAM association could slightly increase the growth over its control. Flyash amendment alone also has shown positive influence on the growth of both the crops over their controls (without VAM association). This influence of flyash amendment together with the usefulness of VAM fungi, as bioremediation agents can be exploited suitably in reclamation of waste lands and soils overburdened with flyash. 40 refs., 3 tabs.

  9. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Akanksha, E-mail: bhuaks29@gmail.com [Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Jain, Akansha, E-mail: akansha007@rediffmail.com [Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Sarma, Birinchi K., E-mail: birinchi_ks@yahoo.com [Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005 (India); Abhilash, P.C., E-mail: pca.iesd@bhu.ac.in [Institute for Environment and Sustainable Development, Banaras Hindu University, Varanasi 221 005 (India); Singh, Harikesh B., E-mail: hbs1@rediffmail.com [Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005 (India)

    2013-05-15

    Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC.

  10. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack

    Directory of Open Access Journals (Sweden)

    Swapnil S. Patil

    2016-04-01

    Full Text Available Cereal food products are an important part of the human diet with wheat being the most commonly consumed cereal in many parts of the world. Extruded snack products are increasing in consumer interest due to their texture and ease of use. However, wheat based foods are rich in starch and are associated with high glycaemic impact products. Although legume materials are generally rich in fibre and protein and may be of high nutritive value, there is a paucity of research regarding their use in extruded snack food products. The aim of this study was to prepare wheat-based extrudates using four different legume flours: lentil, chickpea, green pea, and yellow pea flour. The effects of adding legumes to wheat-based snacks at different levels (0%, 5%, 10%, and 15% during extrusion were investigated in terms of protein digestibility. It was observed that fortification of snacks with legumes caused a slight increase in the protein content by 1%–1.5% w/w, and the extrusion technique increased the protein digestibility by 37%–62% w/v. The product developed by extrusion was found to be low in fat and moisture content.

  11. Comparative studies on the antioxidant activities of nine common food legumes against copper-induced human low-density lipoprotein oxidation in vitro.

    Science.gov (United States)

    Xu, B J; Yuan, S H; Chang, S K C

    2007-09-01

    Epidemiological studies demonstrated that the consumption of dietary antioxidant was associated with the prevention of atherosclerosis. The aim of this study was to investigate the antioxidant activities of the hydrophilic extracts from 9 selected legumes based on copper-induced human LDL oxidation model in vitro. The antioxidant activities were assessed on the basis of the formation of conjugated dienes (lag time of oxidation) and thiobarbituric acid reactive substances (TBARS) as the early and later stage markers of LDL oxidation. The results showed that the extracts of black beans (Phaseolus vulgaris L.), lentils (Lens culinaris), black soybeans (Glycine max), and red kidney beans (Phaseolus vulgaris L.) had significant (P yellow peas, green peas, chickpea, and yellow soybeans in both LDL-conjugated dienes assay and LDL-TBARS assay. Meanwhile, the antioxidant activities of these legumes against LDL-lipid peroxidation in the above assays were found to correlate very significantly (P < 0.01) with their phenolic substances, and DPPH radical scavenging activity and ORAC (oxygen radical absorbance capacity). These results suggest that consuming black beans, lentils, black soybeans, and red kidney beans may have potential in preventing the development of atherosclerosis from the perspective of inhibiting LDL oxidation. PMID:17995667

  12. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes.

    Science.gov (United States)

    Xu, B J; Yuan, S H; Chang, S K C

    2007-03-01

    The objective of this study was to characterize the phenolic compounds and antioxidant activities of U.S.-produced cool season legumes. A total of 33 cool season legume samples were selected. Some common beans and soybeans were included for comparisons. Total phenolic content (TPC), total flavonoid content (TFC), and condensed tannin content (CTC) were analyzed. Ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and oxygen radical absorbance capacity (ORAC) were used for analyzing antioxidant properties. Color of the legume flour and the seed coat was also analyzed. TPC, TFC, CTC, FRAP, DPPH, and ORAC values of legumes were significantly different not only between classes but also among samples within each class. Among cool season legume classes, lentils possessed the highest concentrations of the phenolic compounds and antioxidant activities. Colored common beans and black soybeans exhibited higher TPC, TFC, CTC, FRAP, DPPH, and ORAC values than those of yellow peas, green peas, and chickpeas. Antioxidant activities (FRAP, DPPH, and ORAC) were strongly correlated (r= 0.96, 0.94, and 0.89, respectively, P < 0.01) with TPC. TPC and ORAC were moderately correlated (P < 0.01) with either the seed hull surface color or the flour color. PMID:17995859

  13. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing.

    Science.gov (United States)

    Xu, Baojun; Chang, Sam K C

    2009-11-25

    The effects of four thermal processing methods (conventional boiling, conventional steaming, pressure boiling, and pressure steaming) on phytochemical profiles, antioxidant capacities, and antiproliferation properties of commonly consumed cool-season food legumes, including green pea, yellow pea, chickpea, and lentil, were investigated. Four groups of individual phenolic compounds, including phenolic acids, anthocyanins, and flavan-3-ols, as well as flavonols and flavones were quantified using HPLC, respectively. As compared to the original raw legumes, all processing methods caused significant (p<0.05) reduction in total phenolic content, procyanidin content, total saponin content, phytic acid content, chemical antioxidant capacities in terms of ferric reducing antioxidant power and peroxyl radical scavenging capacity, and cellular antioxidant activity as well as antiproliferation capacities of cool-season food legumes. Different cooking methods have varied effects on reducing total phenolics, saponins, phytic acids, and individual phenolic compounds. For all cool-season food legumes, steaming appeared to be a better cooking method than boiling in retaining antioxidants and phenolic components, whereas boiling appeared to be effective in reducing saponin and phytic acid contents. In the case of lentil, all thermal processing methods (except conventional steaming) caused significant (p<0.05) decreases in gallic, chlorogenic, p-coumaric, sinapic, subtotal benzoic, subtotal cinnamic acid, and total phenolic acid. All thermal processing methods caused significant (p<0.05) decreases in (+)-catechin and flavan-3-ols in each cool-season food legume. PMID:19873971

  14. Carbon Isotope Discrimination is not Correlated with Transpiration Efficiency in Three Cool-Season Grain Legumes (Pulses)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The carbon Isotope discrimination (δ13C) of leaves has been shown to be correlated with the transpiration efficiency of leaves in a wide range of species. This has led to δ13C being used in breeding programs to select for improved transpiration efficiency. The correlation between δ13C and transpiration efficiency was determined under well-watered conditions during the vegetative phase In six genotypes of lentil (Lens culinaris Medikus), six genotypes of chickpea (Cicer arietinum L.) and 10 cultivars of narrow-leafed lupin (Lupinus angustifolius L.). Biomass (dry matter) accumulation and water use (transpiration)varied among the genotypes in all three species and transpiration efficiency was 40% to 75% higher In the most efficient compared with the least efficient genotypes. However, δ13C and transpiration efficiency were not significantly correlated in any of the species. This suggests that the δ13C technique cannot be used In selection for transpiration efficiency in the three grain legumes (pulses) studied.

  15. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    Science.gov (United States)

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  16. Effect of Radiation Processing on Protein Quality of Certain Legumes

    International Nuclear Information System (INIS)

    The Effects of irradiation (dose levels of 5, 7.5 and 10 kGy) on nutritive characteristics of peas (Pisum satinum L), cow peas (Vigna unguiculata L.Walp), lentils (Lens culinaris Med), kidney beans (Phaseolus vulgaris L), and chickpeas (Cicer arietinurn L) were examined. Analyses included proximate composition, levels of anti-nutrients (phytic acid, tannins), available lysine (AL), in vitro protein digestibility (IVPD), and protein efficiency ratio (PER) in the growing rat. The results showed that moisture, crude protein, crude fat, crude fiber, and ash were unchanged by the irradiation. Radiation processing significantly (p<0.05) reduced the levels of phytic acid (PA), tannins (TN), and available lysine (AE). IVPD and PER were significantly enhanced in a dose-dependent manner, relative to unirradiated control samples, for all legumes. The data sets for each legume exhibited high correlation coefficients between radiation dose and PA, TN, AE, IVPD, and PER. These results demonstrate the benefits of irradiation on the nutritional properties of these legumes

  17. Effect of radiation processing on antinutrients, in-vitro protein digestibility and protein efficiency ratio bioassay of legume seeds

    International Nuclear Information System (INIS)

    The effects of irradiation (dose levels of 5, 7.5 and 10 kGy) on nutritive characteristics of peas (Pisum satinum L), cowpeas (Vigna unguiculata L.Walp), lentils (Lens culinaris Med), kidneybeans (Phaseolus vulgaris L), and chickpeas (Cicer arietinum L) were examined. Analyses included proximate composition, levels of anti-nutrients (phytic acid, tannins), available lysine (AL), in vitro protein digestibility (IVPD), and protein efficiency ratio (PER) in the growing rat. The results showed that moisture, crude protein, crude fat, crude fiber, and ash were unchanged by the irradiation. Radiation processing significantly (p<0.05) reduced the levels of phytic acid (PA), tannins (TN), and AL. IVPD and PER were significantly enhanced in a dose-dependent manner, relative to unirradiated control samples, for all legumes. The data sets for each legume exhibited high correlation coefficients between radiation dose and PA, TN, AL, IVPD, and PER. These results demonstrate the benefits of irradiation on the nutritional properties of these legumes

  18. Removal of 4-Nitrophenol from Water Using Ag–N–P-Tridoped TiO2 by Photocatalytic Oxidation Technique

    Science.gov (United States)

    Achamo, Temesgen; Yadav, O. P.

    2016-01-01

    Photocatalytic oxidation using semiconductor nanoparticles is an efficient, eco-friendly, and cost-effective process for the removal of organic pollutants, such as dyes, pesticides, phenols, and their derivatives in water. In the present study, nanosize Ag–N–P-tridoped titanium(IV) oxide (TiO2) was prepared by using sol–gel-synthesized Ag-doped TiO2 and soybean (Glycine max) or chickpea (Cicer arietinum) seeds as nonmetallic bioprecursors. As-synthesized photocatalysts were characterized using X-ray diffraction, Fourier transform infrared, and ultra violet (UV)–visible spectroscopic techniques. Average crystallite size of the studied photocatalysts was within 39–46 nm. Whereas doped Ag in TiO2 minimized the photogenerated electron–hole recombination, doped N and P extended its photoabsorption edge to visible region. Tridoping of Ag, N, and P in TiO2 exhibited synergetic effect toward enhancing its photocatalytic degradation of 4-nitrophenol (4-NP), separately, under UV and visible irradiations. At three hours, degradations of 4-NP over Ag–N–P-tridoped TiO2 under UV and visible radiations were 73.8 and 98.1%, respectively. PMID:27081309

  19. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects.

    Science.gov (United States)

    Pandey, Manish K; Roorkiwal, Manish; Singh, Vikas K; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  20. Detection of irradiated pulses by PSL method

    International Nuclear Information System (INIS)

    Photostimulated luminescence (PSL) as a screening method is very simple and rapid to detect irradiated foods but various disadvantages (light induced fading of PSL signal or response to clean foods with minerals insensitive to PSL measurement). In this study the characteristics of radiation induced PSL for 10 kinds of pulses (Chinese Soybean and Adzuki bean, Pinto bean, Cowpea, Green gram, Canadian Blue pea and Soybean, American Black-eyed pea and Chickpea, Red Kidney Bean) were investigated. The screening-PSL (s-PSL) cumulate counts of pulses significantly increased with irradiation dose up to 3 kGy. The s-PSL cumulate counts of irradiated pulses gradually decreased with increasing storage periods. The s-PSL cumulate counts of all pulse samples irradiated at a minimum dose of 0.5kGy exceeded considerably the upper screening threshold (5000 counts) regardless of storage period. Calibrated PSL (Cal-PSL) were obtained by re-irradiating the pulse samples with a gamma ray dose of 1 kGy and the PSL ratios (s-PSL/Cal-PSL) were calculated for normalization of sensitivity of the pulse samples. The PSL ratio at each irradiation dose was almost similar regardless of kind of pulses. (author)

  1. Moganite and quartz inclusions in the nano-structured Anatolian fire opals from Turkey

    Science.gov (United States)

    Hatipoğlu, Murat

    2009-05-01

    Red, orange, yellow and colorless chick-pea shaped Anatolian fire opals with massive translucent zoned inclusions, from the Kütahya-Şaphane-Yeni Karamanca region in Turkey, investigated using optical microscopy (gemmoscope and polarizing), X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), thermogravimetric spectroscopy (TGA), and thermoluminescent spectroscopy (TL). Hydrothermally deposited Anatolian fire opals are found as nodules within the shrinkage and dehydration cracks of rhyolitic lavas and siliceous cemented tuffs. Initially, the opal bearing zone and its surroundings were geologically mapped. Then, different colored fire opal samples were obtained from the field, and finally, tests were carried out on the representative samples to determine their texture, crystalline phases, crystallinity ratios, and the formation temperatures of the silica phases. The gemmoscope and polarizing microscope investigations show the presence of two different sized textures in Anatolian fire opals: a nano-sized matrix (opal-CT and opal-C) and micron-sized inclusions (moganite and quartz). The analyses of the XRD patterns of the Anatolian fire opals using a comparative matching technique show that there are two pseudo-crystalline and three crystalline silica phases in addition to the amorphous phase. The pseudo-crystalline phases are opal-CT and opal-C. The three crystalline phases are moganite, quartz, and also orthorhombic-silica inclusions. The analyses of the XRD patterns of Anatolian fire opals using the graphical modelling technique reveal that the crystallite sizes of the pseudo-crystalline phases are between 23 nm (red and colorless) and 27 nm (orange and yellow), and the crystallite sizes of the inclusions range between 125 and 600 nm (average 225 nm). Additionally, the amounts of tridymite present in the opal-CT are estimated to be 30-35% (for red), 45-50% (for orange and yellow), and 55-60% (for colorless). The SEM images

  2. Development of high yielding mutants in lentil

    International Nuclear Information System (INIS)

    Full text: Lentil (Lens culinaris Medik.) locally known as Masoor, is the second most important rabi pulse crop, after chickpea, in Pakistan. It is cultivated on an area of over 63,400 ha, which constitutes about 4.83% of the total area under pulses. The annual production of the crop is 28,200 tones with an average yield of 445 kg/ha. Yield at the national level is very low, about one-half of the world's yield, which is mainly due to non-availability of high yield potential genotypes. Keeping in view the importance of mutants in developing a large number of new varieties, an induced mutations programme was initiated at AEARC, Tandojam during 1987-88, to develop high yielding varieties in lentil. For this, seeds of two lentil varieties, 'Masoor-85' and 'ICARDA-8' had been irradiated with gamma-rays ranging from 100-600 Gy in NIAB, Faisalabad during 1990. Selections were made in M2 on the basis of earliness, plant height, branches/plant and 100 grain weight. After confirming these mutants in M3 they were promoted in station yield trials and studied continuously for three consecutive years (1993- 1995). Overall results revealed that these mutants have consistent improvement of earliness in flowering and maturity. Plant height also increased in all mutant lines except AEL 23/40/91 where reduction in this attribute was observed as compared to parent variety. Mutant lines AEL 49/20/91 and AEL 13/30/91 showed improvement in 100 grain weight. The improvement of some agronomic characters enhanced the yield of mutant lines in comparison to parent varieties (Masoor-85 and ICARDA-8). The diversity in yield over the respective parents was computed from 6.94 to 60.12%. From these encouraging results it is hoped that mutant lines like AEL 12/30/91 and AEL 49/20/91 may serve as potential lentil genotypes in future. (author)

  3. Fate of fertilizer nitrogen in soil under different cultivation, irrigation and fertilizer management practices

    International Nuclear Information System (INIS)

    Separate field experiments were conducted to evaluate the fate of fertilizer nitrogen and the contribution of residual N to the following crop for two different sequential cropping systems adapted to the growing conditions of Bangladesh in order to sustain high yield crop production. The results from 15N application study suggests that the maximum efficiency of N utilization for Aman rice, Boro rice and wheat was 33, 28 and 29% respectively. The corresponding total residual - N in 0-40 cm soil profile after each crop harvest were 12, 12 and 18% respectively. The nitrogen utilization rate of the crops averages 30%, residual N in 0-40 cm profile 14% and loss accounted for was 56%. Results from moisture regimes and depth of ploughing suggests that the average N utilization for Aman rice, wheat and Aus rice were 35, 22 and 41% for rainfed and 44, 36 and 48% for irrigated plots respectively. The corresponding total residual-N in 0-40 cm soil profile was 12% and loss accounted for was 55%. For the same under irrigated conditions, N utilization averages 43%, residual N in 0-40 cm profile 13% and loss accounted for was 44%. Results from plant recovery of residual fertilizer nitrogen revealed that the relative availability of the residual N to the following crop (Aman rice) were 17, 9 and 9% with respect to residual 15N present in 0-40 cm soil profile after preceding wheat, chickpea and lentil respectively. The data show that around 50% of the N applied is lost irrespective of the cropping pattern and the method of N treatment suggesting that further studies are needed to find ways by which these losses could be reduced so as to maximize N fertilizer use efficiency and to make rice based cropping systems more sustainable. (author). 5 refs, 3 tabs

  4. Acid-Base Buffering Properties of Five Legumes and Selected Food in vitro

    Directory of Open Access Journals (Sweden)

    Maher M. Al-Dabbas

    2010-01-01

    Full Text Available Problem statement: in vitro acid-Buffering Capacity (BC values of 5% (dry matter aqueous homogenized suspension of five legumes (broad bean, lentils, chickpea, kidney bean and lupine and of selected antacid home preparations (cow's milk, almond, peanut, licorice, carob and lettuce stem were investigated within and among samples from their respective initial pH until pH was decreased to 1.5. BC was the highest for cow's milk, carob, licorice and lettuce stem (BC values 1.65-1.97, intermediate for almond and peanut (BC values, 1.37-1.64 and the lowest for selected legumes (0.84-1.36. Approach: The purpose of this study was to measure in vitro the buffering capacity potential of legumes and other foods commonly used in Jordan as heartburn remedies to determine the ability of these products to de-acidify, neutralize acid, or increase pH levels of an acid and a base solution. Results: BC of the studied legumes showed positive and strong correlations, with protein, aspartic and glutamic amino acids contents (R = 0.95, 0.94, 0.89, respectively and relatively weak correlation with phosphorus content (R = 0.38. Conclusion/Recommendations: The differences in BC within and among studied samples were largely due to the differences in their chemical compositions. Protein, fiber, ash, organic acids and aspartic and glutamic acids contents and alkalinity of ashes showed significant BC, while high fat content in almond and peanut failed to show considerable BC.

  5. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.

    Science.gov (United States)

    Kaimoyo, Evans; Farag, Mohamed A; Sumner, Lloyd W; Wasmann, Catherine; Cuello, Joel L; VanEtten, Hans

    2008-01-01

    Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research. PMID:18331050

  6. Performance of Compton suppression system (CSS) and applicability in food matrices

    International Nuclear Information System (INIS)

    As a non-destructive and multi-element technique, with high-level metrological properties, instrumental neutron activation analysis (INAA) has an important role to determine chemical elements in food. However, its use may be limited when looking for mass fractions near the detection limits. The Compton scattering of higher energy gamma-rays raised the spectrum baseline thus impairing the determination of several elements. Therefore, the gamma-ray spectrometry with Compton suppression becomes an alternative for improving the performance of INAA, since it can reduce the uncertainty of measurements and the detection limits by increasing the proportion between photopeak area and baseline. Here the performance of a Compton suppression system set by Ortec, with 50% relative efficiency and 2.04 keV resolution (FWHM) for the 1,332 keV photopeak, was evaluated for food analysis. Samples of beans, chickpeas, lentils, peas, and rice were irradiated with neutrons and measured in the suppression system. Detection limits calculated from suppressed and unsuppressed spectra were compared. The suppression factor achieved by the system for 137Cs was 5.88 ± 0.11 (n = 20) in the plateau region (358 to 382 keV), which was stable along a 20 week period and similar to the data provided in literature for other systems. Amongst fifteen elements determined, the detection limits for Br, Co, La, Na, Sc, and Se were not improved by the use of Compton suppression. On the other hand, the variable improvement obtained for As, Ca, Cd, Cr, Fe, Hg, K, Rb, and Zn corroborated the idea that the performance of the Compton suppressor must be individually assessed for each type of sample. (author)

  7. Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress.

    Science.gov (United States)

    Khanna, Suruchi M; Taxak, Pooja Choudhary; Jain, Pradeep K; Saini, Raman; Srinivasan, R

    2014-08-01

    The specific activities and transcript levels of glycolytic enzymes were examined in shoots of chickpea (Cicer arietinum L.) cultivars, Pusa362 (drought tolerant) and SBD377 (drought sensitive), subjected to water-deficit stress 30 days after sowing. Water-deficit stress resulted in decrease in relative water content, chlorophyll content, plant dry weight, and NADP/NADPH ratio and increase in NAD/NADH ratio in both the cultivars. A successive decline in the specific activities of fructose-1,6-bisphosphate aldolase (aldolase), 3-phosphoglycerate kinase (PGK), and NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) and elevation in the specific activities of phosphoglycerate mutase (PGM) and triosephosphate isomerase (TPI) was observed in both the cultivars under stress as compared to their respective control plants. The specific activities of hexokinase, fructose-6-phosphate kinase (PFK), and NAD-GAPDH were least affected. The transcript levels of PGK and NADP-GAPDH decreased and that of glucose-6-phosphate isomerase (GPI), PGM, and PFK increased in response to water-deficit stress while water-deficit stress had no effect on the steady-state transcript levels of hexokinase, aldolase, TPI, and NAD-GAPDH. The results suggest that under water-deficit stress, the activities and transcript levels of most of the glycolytic enzymes are not significantly affected, except the increased activity and transcript level of PGM and decreased activities and transcript levels of PGK and NADP-GAPDH. Further, the glycolytic enzymes do not show much variation between the tolerant and sensitive cultivars under water deficit. PMID:25008554

  8. A survey of the nutritional and haemagglutination properties of legume seeds generally available in the UK.

    Science.gov (United States)

    Grant, G; More, L J; McKenzie, N H; Stewart, J C; Pusztai, A

    1983-09-01

    Eighty-five samples from fifteen different legume seed lines generally available in the UK were examined by measurements of their net protein utilization by rats and by haemagglutination tests with erythrocytes from a number of different animal species. From these results the seeds were classified into four broad groups. Group a seeds from most varieties of kidney (Phaseolus vulgaris), runner (Phaseolus coccineus) and tepary (Phaseolus acutifolius) beans showed high reactivity with all cell types and were also highly toxic. Group b, which contained seeds from lima or butter beans (Phaseolus lunatus) and winged bean (Psophocarpus tetragonolobus), agglutinated only human and pronase-treated rat erythrocytes. These seeds did not support proper growth of the rats although the animals survived the 10 d experimental period. Group c consisted of seeds from lentils (Lens culinaris), peas (Pisum sativum), chick-peas (Cicer arietinum), blackeyed peas (Vigna sinensis), pigeon peas (Cajanus cajan), mung beans (Phaseolus aureus), field or broad beans (Vicia faba) and aduki beans (Phaseolus angularis). These generally had low reactivity with all cells and were non-toxic. Group d, represented by soya (Glycine max) and pinto (Phaseolus vulgaris) beans, generally had low reactivity with all cells but caused growth depression at certain dietary concentrations. This growth depression was probably mainly due to antinutritional factors other than lectins. Lectins from group a seeds showed many structural and immunological similarities. However the subunit composition of the lectin from the tepary bean samples was different from that of the other bean lectins in this or any other groups. PMID:6615758

  9. Purification and characterization of trypsins from the digestive tract of Locusta migratoria.

    Science.gov (United States)

    Sakal, E; Applebaum, S W; Birk, Y

    1989-12-01

    Two trypsin-like enzymes were isolated from the digestive tract of the African migratory locust Locusta migratoria migratorioides. Primary purification was carried out on a DEAE-cellulose column, from which the two trypsins emerged in the anionic fraction. Further purification was achieved by affinity chromatography on a p-aminobenzamidine (PABA)-Sepharose column, which also separated the two trypsins (TLEAff.1. and TLEAff.2.), or by HPLC on an anion exchange column. The purity and homogeneity of the trypsins were demonstrated by electrophoresis of cellulose acetate strips and in polyacrylamide gels, with and without SDS. The molecular weights of TLEAff.1 and TLEAff.2, as determined by SDS-PAGE, were 17,000 and 24,000 respectively. The amino acid compositions of the locust trypsins were similar to those of trypsins from the digestive systems of other insects, which are characterized by the lack or low content of half cystines. The isoelectric points were 3.2 for TLEAff.1 and 3.5 fold for TLEAff.2. Since most of the locust trypsin comprised TLEAff.2, the latter served as the main object of this study. TLEAff.2 was unstable at low pH, differing in this respect from mammalian trypsins. The optimum activity was at pH 8.5-9.0. The Km and kcat, values were similar to those for bovine trypsin. Activation by substrate, a phenomenon in bovine trypsin, was also observed for TLEAff.2. The locust trypsin was full inhibited by the proteinaceous trypsin inhibitors Bowman-Birk (BBI) and Kunitz from soybeans, CI from chickpeas, chicken ovomucoid (COM), and turkey ovomucoid (TOM). It was inactivated by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-lysine chloromethyl ketone (TLCK), indicating the involvement of serine and histidine in the active site. PMID:2635697

  10. Studies on ready- to- eat Soybean Fortified Snack Food-Sorghum Sattu

    Directory of Open Access Journals (Sweden)

    Sumedha Deshpande, PC Bargale and M.K.Tripathi

    2013-05-01

    Full Text Available ‘Sattu’ is a roasted flour mixture of cereal and pulse combination and used as ‘ready -to-eat’ snack food in most parts of India. Owing to its high nutritional balance, long shelf life and excellent taste, sattu is also a popular supplement food especially in rural India. Efforts were made in present study to fortify soybean and sorghum with Bengal gram (Chickpea in various proportions to prepare nutritious and ready- to- eat snack. The selected grains were moisture conditioned to 30% level, roasted and powdered and then blended in different proportions so that an acceptable final product with maximum nutritional benefit and adequate shelf life was developed. Soybeans were blended in the range of 10 to 40% while sorghum was incorporated from 10 to 35% and the proportion of Bengal gram varied in the range of 40 to 70%. The products developed were analyzed for their proximate composition, shelf life and sensory evaluation. Results indicated that protein content of the developed products increased from 20 to 70% when compared to the conventional sorghum:Bengal gram sattu, while fat content increased by 21 to 121% depending upon the level of soybean fortification. Results of sensory evaluation showed that soy-sorghum-sattu fortified up to a level of 30% soybean well accepted. The Shelf life studies indicated that soy-sattu could safely be stored in metallic containers up to 60 days during summer and rainy seasons. The economic analysis revealed that production of soy-sorghum fortified sattu could be a profitable proposition at small scale (50kg/d pilot plant level.

  11. Development of Mutant Varieties of Crop Plants at NIAB and the Impact on Agricultural Production in Pakistan

    International Nuclear Information System (INIS)

    The Nuclear Institute for Agriculture and Biology is the prime institute of Pakistan Atomic Energy Commission in the agricultural sector. It began to function in 1969. The main objective of the institute is to conduct research in agricultural and biological problems, especially in those areas where nuclear techniques have an edge over conventional methods. The institute has been conducting research and development work related to crop improvement through mutation breeding. Mutation breeding involves the use of induced beneficial changes for practical plant breeding purposes both directly as well as indirectly. The main objectives have been to confer specific changes such as improvement of plant architecture, earliness in maturity, resistance against diseases and pests, and improved physiological characters, i.e. heat tolerance, cold tolerance, uniform maturity, photoperiod insensitivity etc., in the native well adapted crop varieties/exotic lines to make them more productive. The use of induced mutations for crop improvement has lead to the development of 24 improved varieties of different crops at NIAB which clearly indicates the potential of this technique. In addition, a wealth of genetic variability has been developed for use in the cross breeding programmes and a few varieties of cotton and chickpea have been developed in Pakistan by using induced mutants as one of the parents. These improved crop varieties in Pakistan have played a significant role in increasing agricultural production with positive impact on the economy of the country. The estimated additional income accounted by the selected varieties of NIAB was 1.744 billion US dollars up to 2005. (author)

  12. Magnetopriming - an alternate strategy for crop stress management of field crops

    International Nuclear Information System (INIS)

    Abiotic stresses are major deterrent to sustainable crop production worldwide. Seed germination and early seedling growth are considered as the most critical stages of plant growth under stress conditions. Maximising stress tolerance of crop species by breeding is an integral part of development of strategies for improving sustainable food production under stressed environment but the unprecedented rate at which stress is increasing vis-a-vis the time taken for development of a tolerant variety, necessitates exploring alternate strategies of crop stress management. Seed priming has emerged as a promising crop stress management technique that increases the speed of germination thus ensuring synchronized field emergence of the crop. Magnetopriming (exposure of seeds to magnetic field) is a non invasive physical stimulant used for improving seedling vigour that helps in establishment of crop stand under stress. In our experiments on maize; chickpea and wheat under water deficit and salinity, respectively, improved seed water absorption characteristics resulted in faster hydration of enzymes (amylases, protease and dehydrogenase) leading to early germination and enhanced vigour of seedlings under stress. Increased levels of hydrogen peroxide in faster germinating - magnetoprimed seeds, under both the growing conditions, suggested its role in oxidative signaling during seed germination process. An 'oxidative window' for reactive oxygen species ensured that faster germination rate in magnetoprimed seeds led to vigourous seedlings. Improved root system integrated with higher photosynthetic efficiency and efficient partitioning of Na+ increased yield from magnetoprimed seeds under salinity in controlled experiments. Magnetopriming can be effectively used as a pre-sowing treatment for mitigating adverse effects of water deficit and salinity at seed germination and early seedling growth. Unlike other conventional priming techniques it avoids seed hydration and

  13. Dietary Intake of Selected Common Vegetable Foods and their Total Carotenoids Determination

    Directory of Open Access Journals (Sweden)

    Jafar EL-Qudah

    2008-01-01

    Full Text Available Problem statement: Vitamin A Deficiency (VAD remains widespread in many countries including Jordan, mainly due to inadequate dietary intake of vitamin A and carotenoids. Approach: Few researches on carotenoid content in vegetables and fruits are carried out. Thus, the aim of this study was to evaluate the dietary intake of selected common foods among a sample of adult Jordanians, by using Food Frequency Questionnaire (FFQ and to analyze the carotenoid contents in selected vegetable foods by using UV spectrophotometry . Results: Among the total sample of 200 adults men and women, the consumption per person per week of rice was 21.1 serving, olive oil 20.9 serving, fresh carrot 13.6 serving, tomato 8.28 serving, mint 6.63 serving, chickpea 5.07 serving and parsley 5.03 serving. The total carotenoid contents were found in high concentrations in mint 25.2 mg 100 g-1, parsley 21.8 mg 100g-1, mallow 12.6 mg 100 g-1 and carrot 8.79 mg 100g-1. Zucchini, okra, tomato and green beans also contained appreciable amounts of carotenoids 3.38, 2.54, 2.19 and 1.97 mg 100 g-1, respectively. Eggplant had the lowest content of carotenoids 0.48 mg 100g-1. Conclusions: These finding could help the meal planning at a community level by including such high content of carotenoid vegetables in meals, which will lead to decrease the incidence of vitamin A deficiency disease. Further studies in this concern is highly recommended to solve such problem worldwide.

  14. Herbal Textual Research on Huihuidou (Semen Ciceris Arietini.)%回回豆的本草学考证

    Institute of Scientific and Technical Information of China (English)

    田春元

    2009-01-01

    [目的]考证回回豆在我国本草史上的起源及其沿革,以确定正品、排除伪品.[方法]考查古今文献记载并进行综合分析.[结果]历代本草所载回回豆尽管名称各异,但其功用和植物体特征与现代物种鹰嘴豆基本相符.[结论]回回豆来源于鹰嘴豆的种子,而非中所认为的"回回豆"、"胡豆"和"豌豆".%[Objective]The research aimed to confirm the genuine medicinal origin of Huihuidou and exclude counterfeits from its genuine goods by the textual research of its original plant and evolution in Chinese herbal history. [Method]Literature retrieval and analysis by synthesis were carried out. [Result]The medicinal function and plant characteristics of Huihuidou basically match up to the modern species Cicer arietinum L. (chickpea) though it has various names recorded in the past Chinese dynasties herbals. [Conclusion]The result of textual research of herbal medicine Huihuidou demonstrated that it is the seed of Cicer arietinum L., the representative species of the genus Cicer L. belonging to Papilionoidieae of Leguminosae, but not the "Huihuidou", "Hudou" and "Wandou" indicated by "Compendium of Materia Medica". The medicinal origin of Cicer arietinum L. is its seed called Huihuidou, namely Semen Ciceris Arietini.

  15. Effect of incorporating legume flour into semolina spaghetti on its cooking quality and glycaemic impact measured in vitro.

    Science.gov (United States)

    Chillo, Stefania; Monro, J A; Mishra, S; Henry, C J

    2010-03-01

    Spaghetti is a favoured carbohydrate source because of its low glycaemic impact. The protein quality of semolina spaghetti is not ideal, however, and could be improved by including legume flour. We investigated whether incorporating legume flour in spaghetti, to improve its nutritional value, would affect its cooking quality and glycaemic impact. Four types of spaghetti containing 10% of either mung bean, soya bean, red lentil or chickpea flour were made and compared with a spaghetti control made only of durum semolina. Cooking quality was determined as the optimal cooking time (OCT), cooking loss (CL), dry matter (DM), swelling index, colour, hardness and adhesiveness. The spaghetti samples with legume flour were similar to one another and to the control in values of OCT, DM, swelling index, colour, CL, hardness and adhesiveness. Glycaemic impact of the samples was measured in vitro as release of rapidly available carbohydrate and slowly available carbohydrate during pancreatic digestion. The glycaemic index (GI) of the spaghetti samples was estimated by calculation, using data obtained for a reference food of known GI (shredded wheat horizontal line an extrusion-cooked wheat-only product). The shredded wheat underwent rapid parabolic digestion, and the near linear phase during which most of the starch was digested was completed between 20 and 60 min digestion. In contrast, the digestion of spaghetti was much slower and progressed almost linearly to completion. All spaghetti samples, moreover, were similarly susceptible to digestion, and compared with the wheat reference were all significantly lower in terms of relative glycaemic impact. We conclude that the incorporation of 10% legume flour in spaghetti to improve its nutritional value does not affect its cooking quality or increase its glycaemic impact. PMID:20113187

  16. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Science.gov (United States)

    Westengen, Ola T; Jeppson, Simon; Guarino, Luigi

    2013-01-01

    Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat), Sorghum (sorghum), Pennisetum (pearl millet), Eleusine (finger millet), Cicer (chickpea) and Lens (lentil) exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth), Chenopodium (quinoa), Eragrostis (teff) and Abelmoschus (okra). In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity. PMID:23671707

  17. Mutation breeding in oilseeds and grain legumes in India: Accomplishments and socio-economic impact

    International Nuclear Information System (INIS)

    In India, oilseed and grain legume crops are important food components as they are major contributors for dietary oils and proteins. In order to generate genetic variability in these crops, mutation research using X-rays, gamma rays, fast and thermal neutrons is extensively carried out in several national institutes, state agricultural universities including Bhabha Atomic Research Centre (BARC), Mumbai since half a century. Besides cytogenetic studies, the era of direct mutants as crop varieties began in groundnut, mustard, pigeonpea and mungbean. Induction of modified traits and their incorporation in an ideal genotype was achieved by judicious use of induced mutation and hybridization techniques. So far about 100 mutant varieties in oilseeds and legumes have been released in India. Of these, BARC has developed 33 varieties by incorporating desirable traits like large seed, semi dwarf habit, high harvest index, better partitioning, fresh seed dormancy, yellow seed colour, drought tolerance, powdery mildew resistance, yellow mosaic virus resistance, bacterial pustule resistance. Many of the breeding programmes in national/state systems have been utilizing BARC varieties as parental materials/donors and developed several improved varieties. Several of these varieties have high patronage from the farming community and extensively grown in the country. Groundnut varieties have made considerable impact by giving record yields across the country. Further, mungbean varieties were also surging ahead by virtue of their resistance to yellow mosaic virus, Rhizoctonia root-rot and powdery mildew diseases with suitability to rice fallow situations. Blackgram variety TAU-1 has occupied maximum blackgram area in Maharashtra state. These crop varieties also facilitated farmers to develop newer cropping systems. Mutant varieties like Aruna of castor, Pusa 408 (Ajay), Pusa-413 (Atul), Pusa-417 (Girnar) of chickpea, Co-4, Maru Moth-1 of mothbean are among the important varieties of

  18. specific and unspecific responses of plants to cold and drought stress

    Indian Academy of Sciences (India)

    Erwin H Beck; Sebastian Fettig; Claudia Knake; Katja Hartig; Tribikram Bhattarai

    2007-04-01

    Different environmental stresses to a plant may result in similar responses at the cellular and molecular level. This is due to the fact that the impacts of the stressors trigger similar strains and downstream signal transduction chains. A good example for an unspecific response is the reaction to stressors which induce water deficiency e.g. drought, salinity and cold, especially frost. The stabilizing effect of liquid water on the membrane bilayer can be supported by compatible solutes and special proteins. At the metabolic level, osmotic adjustment by synthesis of low-molecular osmolytes (carbohydrates, betains, proline) can counteract cellular dehydration and turgor loss. Taking the example of Pinus sylvestris, changes at the level of membrane composition, and concomitantly of photosynthetic capacity during frost hardening is shown. Additionally the effect of photoperiod as measured via the phytochrome system and the effect of subfreezing temperatures on the incidence of frost hardening is discussed. Extremely hydrophilic proteins such as dehydrins are common products protecting not only the biomembranes in ripening seeds (late embryogenesis abundant proteins) but accumulate also in the shoots and roots during cold adaptation, especially in drought tolerant plants. Dehydrins are characterized by conserved amino acid motifs, called the K-, Y- or S-segments. Accumulation of dehydrins can be induced not only by drought, but also by cold, salinity, treatment with abscisic acid and methyl jasmonate. Positive effects of the overexpression of a wild chickpea (Cicer pinnatifidum) dehydrin in tobacco plants on the dehydration tolerance is shown. The presentation discusses the perception of cold and drought, the subsequent signal transduction and expression of genes and their products. Differences and similarities between the plant responses to both stressors are also discussed.

  19. Evaluation of high yielding mungbean mutants

    International Nuclear Information System (INIS)

    Mungbean is the second major (Vigna radiata (L.) Wilczek) pulse crop in Pakistan, after chickpea, and is the main pulse crop grown during the spring season in the province of Sindh. Its yield is very low (450 kg/ha) which is mainly due to the non-availability of pure seed of high yield potential genotypes. Keeping in view the importance of induced mutations in all field crops and particularly in the evolution of mungbean cultivars, an induced mutation programme was initiated at AEARC, Tandojam during 1985. Since then a large number of mutants have been developed and are at various stages of evaluation. Among them two mungbean mutants (AEM 6/20 and AEM 32/20) isolated from the treated population of a local cultivar '6601' with 200 Gy gamma-ray treatment gave very encouraging performance in station as well as zonal trials. On the basis of these results they were promoted in the National Trials, where they remained under evaluation for four years during spring as well as summer seasons. The pool data of four consecutive years of both seasons indicated that mutant lines AEM 32/20 and AEM 6/20 produced 1298 and 1246 kg/ha grain yield respectively as compared to the check variety 'NM 121-25' (1055 kg/ha) evolved at NIAB, Faisalabad through induced mutations. The seed yield increase over the check variety ranged from 18-23%. These two mungbean mutants have short stature combined with short duration and synchrony in maturity. Keeping in view the outstanding performance of these mutant lines, variety release proposals are being submitted to the Technical Sub-Committee for approval of varieties and techniques

  20. Deluges of Grandeur: Water, Territory, and Power on Northwest Mexico’s Río Mayo, 1880-1910

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Banister

    2011-02-01

    Full Text Available Northwest Mexico’s irrigation landscape, known today as El Distrito de Riego 038, or El Valle del Mayo, issues from historical struggles to build an official order out of a diverse world of signs, symbols, processes, places, and peoples. It is the ancestral home of the Yoreme (Mayo, an indigenous group for whom colonisation and agricultural development have meant the loss of autonomy and of the seasonal mobility required to subsist in an arid land. It is also the birthplace of President Álvaro Obregón, a one-time chickpea farmer who transformed late-19th century irrigation praxis into the laws and institutions of 20th century water management. Reshaping territory for the ends of centralising ('federalising' water resources has always proved exceedingly difficult in the Mayo. But this was particularly so in the beginning of the federalisation process, a time of aggressive modernisation under the direction of President Porfirio Díaz (1876-1910. Research on Mexican hydraulic politics and policy, with some important exceptions, has tended to focus on the scale and scope of centralisation. Scholars have paid less attention to the moments and places where water escapes officials’ otherwise ironclad grasp. This paper explores water governance (and state formation more broadly in the late 19th century, on the eve of Mexico’s 1910 Revolution, as an ongoing, ever-inchoate series of territorial claims and projects. Understanding the weaknesses and incompleteness of such projects offers critical insight into post-revolutionary and/or contemporary hydraulic politics.