WorldWideScience

Sample records for chevrel phase materials

  1. Chevrel phases: Past, present and future

    International Nuclear Information System (INIS)

    Highlights: • Chevrel phase are reviewed. • Some of the most important families are described. • Crystal structure and synthesis are recalled. • Potential applications are mentioned: batteries, catalysis, thermopower, etc. • Vortex lattices, granularity, current densities, anisotropy, unconventional superconductivity, universal scaling. - Abstract: The ternary molybdenum chalcogenides MxMo6X8 (X = chalcogen), known as Chevrel phases, constitute an outstanding family of materials presenting numerous and spectacular properties. More than 100 examples of these compounds have been synthesized thanks to their versatile crystal structure. Numerous variants are found, from the binary material formed just by the molybdenum clusters Mo6X8 leaving a three-dimensional lattice where the third element M can be inserted, up to a condensation of clusters giving rise to a monodimensional material. The great interest in these compounds, discovered more than 40 years ago, came from their superconducting critical temperature and upper critical fields (15 K for the former, 50 Tesla at 4.2 K for the latter), both being reasonably high values at the time of their discovery thus opening enormous hopes for their use in the fabrication of magnets. Other fundamental features are found, such as the coexistence of magnetic order with the superconducting state. These features are still of interest for the scientific community, but other potential applications are now foreseen, such as their use in batteries, catalysis and thermopower technology. We recall herein some basic characteristic of Chevrel-phases, mentioning several important families, their crystal structure and mode of elaboration. This contribution being focused on the superconducting properties, we put an accent on some fundamental aspects, such as the structural and electronic transitions, the vortex lattice, their granular behavior, critical current densities, upper field and anisotropy, to finally discuss the so

  2. Hydrodesulfurization catalysis by Chevrel phase compounds

    Science.gov (United States)

    McCarty, Kevin F.; Schrader, Glenn L.

    1985-12-24

    A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

  3. Preparation methods and parameters for the optimization of superconducting and mechanical properties of Chevrel phase wires

    International Nuclear Information System (INIS)

    The Chevrel phase compounds based on SnMo6S8, PbMo6S8 and Pb1,2-xSnxMo6S8 were prepared using HIP-prereacted, partly HIP-prereacted starting materials or unreacted powder mixtures. The application of various powder metallurgical methods for fabricating improved superconducting monofilamentary wires supplied an enhancement of the critical current densities up to the highest presently known values of Jc (4,2 K)=2.108 Am-2 and Jc (1,8 K)=3,5.108 Am-2. This is mainly due to an improved flux pinning behavior which correlates with the average grain diameter of the Chevrel phase material. A considerable reduction of the necessary reaction time and a correlated reduction of the grain growth were observed as a consequence of the significant diminuation of the impurity content (O2, C) in the samples. Using microstructural investigations by means of Auger electron spectroscopy, inhomogeneities in the Chevrel phase compounds could be specified. The results of these analysis indicate future possibilities for improving the performance of Chevrel phase wires. The wire configuration developed in this work is oriented towards technical application. The Chevrel phase is enclosed in a Ta or Nb barrier material separating it from a stabilizing Cu section which is in turn enclosed by a stainless steel jacket for mechanical stabilization, thus yielding a fully stable superconducting wire. (orig.)

  4. Chevrel phases superconductive and ultrafine powders synthesis and characterization

    International Nuclear Information System (INIS)

    This work deals with the Chevrel phases superconductive and ultrafine powders synthesis and characterization. The first part of this study presents some new way of synthesis (precipitation, coprecipitation) of Chevrel phases precursors powders (PbS, SnS, MoS2) and their characterizations (X-ray fluorescence analysis, ICP mass spectroscopy, scanning electron microscopy, transmission electron microscopy and laser granulometry). These new synthesis methods lead to quasi spherical morphology grains and very weak size grains (0.2 to 0.5 μm) whereas the chemical preparation from the solid state elements gives very different morphology grains (small plates) with a size of 1 to 20 μm. In the second part is shown the interest of the binary Mo6 S8 as precursor in the synthesis of ternary superconductive phases (Li, Ni, Cu, Pb). The last part presents the formation reaction of the phase PbMo6 S8 and its main chemical and physical properties. Thus some calorimetric measures associated with X-ray diffraction analysis have been realized and have allowed to understand the different reactions occurring during the PbMo6S8 synthesis. (O.L.). 100 refs., figs., tabs

  5. Electronic structure of Chevrel-phase high-critical-field superconductors

    DEFF Research Database (Denmark)

    Andersen, Ole Krogh; Klose, W.; Nohl, H.

    1978-01-01

    Using muffin-tin orbitals and the atomic-sphere approximation, we have studied the band structures of Chevrel-phase molybdenum chalcogenides, MmMo6X8-x. Generally, these compounds exist for a broad variety of elements, M=Pb,Sn,Ag,Cu and X=S,Se,Te. m may be between 0 and 2, depending on the elemen...

  6. Investigation of the structure of the Nb barrier of Chevrel phase composite

    International Nuclear Information System (INIS)

    In the process of elaboration of composite superconducting wires bases on the Chevrel phases compound SnMo6S8, a niobium barrier should be introduced between the stabilizer (Cu) and the superconductor to prevent Cu diffusion which degrades the critical properties. During subsequent heat treatments Sn diffusion in the Nb barrier arises and many Nb-Sn phases are formed. We studied extensively the structure of the Nb barrier by the AC susceptibility and identified the Nb-Sn resulting phases

  7. Chevrel Phase Grain Flocculated Films Linked by Chemical Cross-Linking

    Science.gov (United States)

    Obara, Kozo; Ogushi, Tetuya

    1984-08-01

    A new method of forming superconducting grain flocculated films is presented. Chevrel phase compounds are used as superconducting grains, and these are combined with organic barriers. The barriers are formed by catalytic reaction on the grain surface, and are useful for Chevrel phase compound Josephson junctions. The grain flocculated film is composed of Josephson coupled grains. The importance of the orthokinetic flocculation and the mechanical syneresis for the flocculation process is shown. The temperature dependence of dV/dI is measured from 300 K to 4.2 K, and the magnetic field dependence of dV/dI is measured up to 1 kG. Below Tc, the I-V curve shows current steps up to n{=}3, with a voltage interval of approximately 45 mV. These current steps are proof that at least twenty junctions connected in series act coherently.

  8. Express and low-cost microwave synthesis of the ternary Chevrel phase Cu2Mo6S8 for application in rechargeable magnesium batteries

    Science.gov (United States)

    Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo; Monconduit, Laure; Berthelot, Romain

    2016-10-01

    The ternary Chevrel phase Cu2Mo6S8 was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu2Mo6S8 could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo6S8 was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperature solid-state routes.

  9. Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yingwen; Luo, Langli; Zhong, Li; Chen, Junzheng; Li, Bin; Wang, Wei; Mao, Scott X.; Wang, Chong M.; Sprenkle, Vincent L.; Li, Guosheng; Liu, Jun

    2016-05-16

    We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.

  10. Electrochemical determination of the diffusion coefficient of cations into Chevrel phase-based electrochemical transfer junction by potential step chronoamperometry and impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Seghir, S.; Stein, N. [Institut Jean Lamour - Electrochimie des Materiaux, Nancy-Universite, Universite Paul Verlaine Metz, CNRS, 1 Bd. Arago, F-57078 Metz (France); Boulanger, C., E-mail: clotilde.boulanger@univ-metz.f [Institut Jean Lamour - Electrochimie des Materiaux, Nancy-Universite, Universite Paul Verlaine Metz, CNRS, 1 Bd. Arago, F-57078 Metz (France); Lecuire, J.-M. [Institut Jean Lamour - Electrochimie des Materiaux, Nancy-Universite, Universite Paul Verlaine Metz, CNRS, 1 Bd. Arago, F-57078 Metz (France)

    2011-02-15

    The molybdenum chalcogenides Mo{sub 6}X{sub 8} (X = S, Se) offer the possibility of intercalation/de-intercalation processes by chemical or electrochemical way. Besides the different applications of so-called Chevrel phases, we have proposed an electrochemical transfer junction for selective recovery of metallic cations in the perspective of recycling of industrial liquid mineral wastes. Thus, the knowledge of the diffusion properties of cations in the Chevrel phases is essential. Here we report on the electrochemical determination of diffusion coefficients of Co{sup 2+}, Ni{sup 2+}, Fe{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Mn{sup 2+} and Cu{sup 2+} for Mo{sub 6}S{sub 8} and Mo{sub 6}Se{sub 8} matrices. Experiments were realized on samples with compactness of 50% and 96-98%. They point out that the lower compactness is unfavorable to the mobility of the cobalt ions. From potential step chronoamperometry and electrochemical impedance spectroscopy, the diffusion coefficients were found around 10{sup -9} cm{sup 2} s{sup -1}, even 10{sup -6} cm{sup 2} s{sup -1} for copper. These results confirm the high mobility of transition metal ions in studied phases and complete the data for Co, Fe or Mn-Mo{sub 6}S{sub 8} system and Mn-Mo{sub 6}Se{sub 8} system. For the sulfide phase, the following sequence for D-tilde is observed Ni < Co < Fe < Cd < Zn < Mn << Cu and can be explained in regards with structural considerations and repulsion effects for copper.

  11. Comparing electrochemical performance of transition metal silicate cathodes and chevrel phase Mo6S8 in the analogous rechargeable Mg-ion battery system

    Science.gov (United States)

    Chen, Xinzhi; Bleken, Francesca L.; Løvvik, Ole Martin; Vullum-Bruer, Fride

    2016-07-01

    Polyanion based silicate materials, MgMSiO4 (M = Fe, Mn, Co), previously reported to be promising cathode materials for Mg-ion batteries, have been re-examined. Both the sol-gel and molten salt methods are employed to synthesize MgMSiO4 composites. Mo6S8 is synthesized by a molten salt method combined with Cu leaching and investigated in the equivalent electrochemical system as a bench mark. Electrochemical measurements for Mo6S8 performed using the 2nd generation electrolyte show similar results to those reported in literature. Electrochemical performance of the silicate materials on the other hand, do not show the promising results previously reported. A thorough study of these published results are presented here, and compared to the current experimental data on the same material system. It appears that there are certain inconsistencies in the published results which cannot be explained. To further corroborate the present experimental results, atomic-scale calculations from first principles are performed, demonstrating that diffusion barriers are very high for Mg diffusion in MgMSiO4. In conclusion, MgMSiO4 (M = Fe, Mn, Co) olivine materials do not seem to be such good candidates for cathode materials in Mg-ion batteries as previously reported.

  12. Synthesis, structure, and characterization of n-ligated Mo[sub 6]S[sub 8]L[sub 6] cluster complexes. Molecular precursors to Chevrel phases

    Energy Technology Data Exchange (ETDEWEB)

    Hilsenbeck, S.J.; Young, V.G. Jr.; McCarley, R.E. (Iowa State Univ., Ames, IA (United States))

    1994-04-27

    A modified method has been developed for the synthesis of the Mo[sub 6]S[sub 8] cluster unit in one step from Mo[sub 6]Cl[sub 12] via reaction with NaSH and NaOBu in refluxing n-BuOH-pyridine. The ligand-deficient Na[sub 2x]Mo[sub 6]S[sub 8+x](py)[sub y] (1) serves as a convenient starting material for the preparation of the amine complexes Mo[sub 6]S[sub 8]L[sub 6], with L = pyridine (2), pyrrolidine (4), and piperidine (5). Although propylamine readily dissolves the ligand-deficient starting material, only amorphous Mo[sub 6]S[sub 8](PrNH[sub 2])[sub 6-x] (3) could be isolated. However, the latter acts as a facile reactant for the preparation of the other complexes by ligand substitution. Crystallographic data for the complexes are as follows: Mo[sub 6]S[sub 8](py)[sub 6][center dot]2py (2), cubic, Pa[bar 3], a = 16.994(2) [angstrom], Z = 4, R = 0.0381, R[sub w] = 0.0351; Mo[sub 6]S[sub 8](pyrr)[sub 6][center dot]pyrr (4), tetragonal, I4[sub 1]/a, a = 29.933(4) [angstrom], c = 23.697(8) [angstrom], Z = 16, R = 0.0675, wR2 = 0.2036; Mo[sub 6]S[sub 8](pip)[sub 6][center dot]7pip, (5), tetragonal, in the IR at 380 [+-] 5 cm[sup [minus]1] and in the Raman at 414 [+-] 4 cm[sup [minus]1], assigned as predominantly Mo-S stretching modes. XP spectra give characteristic binding energies at 227.7 [+-] 0.1 (Mo 3d[sub 5/2]), 230.8 [+-] 0.1 (Mo 3d[sub 3/2]), 225.1 [+-] 0.3 (S 2s), 160.6 [+-] 0.1 (S 2p[sub 3/2]), and 161.8 [+-] 0.1 (S 2p[sub 1/2]) eV. Mo-Mo and Mo-S bond distances show little variation among the complexes, with average values of 2.647 and 2.454 [angstrom], respectively. The average Mo-N bond distance, 2.297 [angstrom], indicates rather weak bonding of these N-donor ligands.

  13. Electronic structure, spin polarization and high critical fields in Chevrel compounds

    Science.gov (United States)

    Jarlborg, T.; Freeman, A. J.

    1982-05-01

    Results are presented of an extensive theoretical study of the origin of high field superconductivity and/or magnetism in a number of Chevrel phase ternary compounds, MMo 6X 8 (with M=Sn, Eu, Gd and X=S and/or Se) based on self-consistent linear muffin-tin orbital (LMTO) energy band calculations using the local density approach (Hedin et al. exchange correlation) for the paramagnetic structures and local spin density formalism (Gunnarsson and Lundqvist) for the ferromagnetic structures. All electrons and all 15 atoms/cell are included with the core electrons (including the 4f's) recalculated in each iteration in a fully relativistic representation and the conduction electrons treated semirelativistically (all relativistic terms except spin-orbit). Superconductivity is found to be due to the high Mo d-band density of states (DOS) at E F resulting from the unusual large charge transfer of Mo electrons to the chalcogen sites. There is also a large charge transfer from the metal site to the cluster (≈2 electrons in Sn and Eu) giving essentially no occupied conduction bands, for example, at the Eu site and a divalent ion isomer shift in very good agreement with the experiments of Dunlap et al. The conduction-electron DOS at the Eu site is found to be reduced by an order of magnitude from its metallic state value - in close agreement with their spin - lattice relaxation rate measurements. This low conduction-electron DOS yields very weak coupling of the 4f electrons to the conduction electrons and only a very weak Ruderman-Kittel-Kasuya-Yosida magnetic interaction showing why all the Chevrel rare-earth compounds - except Ce and Eu - are superconducting despite their having large local magnetic moments. The unusually high upper critical fields, Hc 2, in these materials is found to be due to the unusully flat energy bands near F F. The ferromagnetic (spin polarized) results for the Eu- and Gd-compounds show a net small but positive magnetic moment on the metal site and a

  14. Nanoscale phase change memory materials.

    Science.gov (United States)

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-01

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  15. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  16. Research on microcapsules of phase change materials

    Institute of Scientific and Technical Information of China (English)

    DAI Xia; SHEN Xiaodong

    2006-01-01

    Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule technology of phase change materials and its main functions and the structural composition, preparation methods and characterization technology of microcapsule of phase change materials. The microcapsule of phase change materials is small in size and its temperature remains unchanged during the process of heat absorption and heat release. It is of great value in research and application prospect due to these characteristics.

  17. Nuclear Concrete Materials Database Phase I Development

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Naus, Dan J [ORNL

    2012-05-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  18. Heat transfer in multi-phase materials

    CERN Document Server

    Öchsner, Andreas

    2011-01-01

    This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).

  19. Phase Change Materials for Thermal Energy Storage

    OpenAIRE

    Stiebra, L; Cabulis, U; Knite, M

    2014-01-01

    Phase change materials (PCMs) for thermal energy storage (TES) have become an important subject of research in recent years. Using PCMs for thermal energy storage provides a solution to increase the efficiency of the storage and use of energy in many domestic and industrial sectors. Phase change TES systems offer a number of advantages over other systems (e.g. chemical storage systems): particularly small temperature distance between the storage and retrieval cycles, small unit sizes and lo...

  20. NMR study of the influence of iodine substitution in the Chevrel compounds Mo6Te8-xIx and Mo6Se8-xIx

    International Nuclear Information System (INIS)

    We have obtained the 125Te and 77Se nuclear magnetic resonance spectra of the Chevrel type compounds Mo6Te8-xIx (x=0,1,2) at room temperature and Mo6Se8-xIx (x=0,0.5,1.0,1.5,2.0) over the temperature range 70-300 K, in order to study the effect of I doping in these materials. The spectra consisted of the superposition of two separate anisotropic Knight shifts corresponding to the two different crystallographic sites of the Se and Te nuclei within their respective compounds. The distinction between the two lines became more blurred with the increase of the iodine concentration. Analysis of the results tends to favor the supposition that in the case of the Se compound, the iodine favors the replacement of the Se ternary sites, although some temperature dependence on the choice of site was discerned. In the case of the Te compounds, the experimental evidence showed that even for x=2, both the ternary and the non-ternery sites were occupied. An abrupt change in the NMR parameters for Mo6Se8 near T=100 K was found

  1. Dynamic failure in two-phase materials

    Science.gov (United States)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-01

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parent materials. In this work, we present results on three different polycrystalline materials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces on void nucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the overall two-phase material.

  2. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  3. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge2Sb2Te5. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing, profilometry

  4. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  5. Nano composite phase change materials microcapsules

    Science.gov (United States)

    Song, Qingwen

    MicroPCMs with nano composite structures (NC-MicroPCMs) have been systematically studied. NC-MicroPCMs were fabricated by the in situ polymerization and addition of silver NPs into core-shell structures. A full factorial experiment was designed, including three factors of core/shell, molar ratio of formaldehyde/melamine and NPs addition. 12 MicroPCMs samples were prepared. The encapsulated efficiency is approximately 80% to 90%. The structural/morphological features of the NC-MicroPCMs were evaluated. The size was in a range of 3.4 mu m to 4.0 mu m. The coarse appearance is attributed to NPs and NPs are distributed on the surface, within the shell and core. The NC-MicroPCMs contain new chemical components and molecular groups, due to the formation of chemical bonds after the pretreatment of NPs. Extra X-ray diffraction peaks of silver were found indicating silver nano-particles were formed into an integral structure with the core/shell structure by means of chemical bonds and physical linkages. Extra functionalities were found, including: (1) enhancement of IR radiation properties; (2) depression of super-cooling, and (3) increase of thermal stabilities. The effects of SERS (Surface Enhanced Raman Spectroscopy) arising from the silver nano-particles were observed. The Raman scattering intensity was magnified more than 100 times. These effects were also exhibited in macroscopic level in the fabric coatings as enhanced IR radiation properties were detected by the "Fabric Infrared Radiation Management Tester" (FRMT). "Degree of Crystallinity" (DOC) was measured and found the three factors have a strong influence on it. DOC is closely related to thermal stability and MicroPCMs with a higher DOC show better temperature resistance. The thermal regulating effects of the MicroPCMs coatings were studied. A "plateau regions" was detected around the temperature of phase change, showing the function of PCMs. Addition of silver nano-particles to the MicroPCMs has a positive

  6. Energy efficiency of buildings with phase-change materials

    Directory of Open Access Journals (Sweden)

    Lukić Predrag

    2012-01-01

    Full Text Available The construction of energy efficient buildings using innovative building materials such as phase change materials, in addition to improving indoor comfort, energy savings and costs, can be achieved by increasing their market value. Because of its ability to absorb and release energy at predictable temperatures, phase change materials are effective in controlling and maintaining the thermal environment in the building. The use of phase changing materials, materials stored latent energy storage is an effective form of heat. [Projekat Ministarstva nauke Republike Srbije, br. TR36016: Experimental and theoretical investigation of frames and plates with semi-rigid connections from the view of the second order theory and stability analysis

  7. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  8. Stress-Induced Phase Transformation in Incompressible Materials and Stability of Multi-Phase Deformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stress-induced phase transformation in incompressible materials and the interfacial stability of multi-phase deformation were studied. The existence of multi-phase deformation was determined through exploring whether the material would lose the strong ellipticity at some deformation gradient.Then, according to the stability criterion which is based on a quasi-static approach, the stability of the multi-phase deformation in incompressible materials was investigated by studying the growth/decay behaviour of the interface in the undeformed configuration when it is perturbed. At last, the way to define multi-phase deformation in incompressible materials was concluded and testified by a corresponding numerical example.

  9. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  10. A New Kind of Shape-stabilized Phase Change Materials

    Institute of Scientific and Technical Information of China (English)

    XIAO Liguang; DING Rui; SUN Hao; WANG Fujun

    2011-01-01

    Based on the lowest melting point and Schroeder's theoretical calculation formula, nanomodified organic composite phase change materials (PCMs) were prepared. The phase transition temperature and the latent heat of the materials were 24 ℃ and 172 J/g, respectively. A new shape-stabilized phase change materials were prepared, using high density polyethylene as supporting material. The PCM kept the shape when temperature was higher than melting point. Thus, it can directly contact with heat transfer media. The structure,morphology and thermal behavior of PCM were analyzed by FTIR, SEM and DSC.

  11. Phase stress measurements in composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Akiniwa, Yoshiaki; Tanaka, Keisuke [Nagoya Univ. (Japan). School of Engineering

    1997-06-01

    Using an aluminum alloy composite containing 20 wt.% of SiC powder and an aluminum alloy itself, a phase stress under monoaxial tensile load was tested using x-ray and neutron methods, to compare both of them. For specimens, a 20 vol.% SiC powder reinforced aluminum alloy and an aluminum alloy itself were used. As a result, the following results could be obtained. Young`s modulus and Poisson ratio of the aluminum alloy itself using x-ray method were E=74.5 GPa and {nu}=0.312, respectively, and those using neutron method were E=75.3 GPa and {nu}=0.384, respectively. A relationship between loading stress and lattice strain of the aluminum alloy itself using neutron method was possible to approximate linearly by containing macroscopic plastic deformation region. The lattice strain of each phase in the composite increased proportionally with loading stress in its elastic region, but when remarkably increasing plastic deformation, the lattice strain decreased proportionally in aluminum phase and increased in SiC phase. (G.K.)

  12. Thermal Mass Behaviour of Concrete Panels Incorporating Phase Change Materials

    OpenAIRE

    Niall, Dervilla; West, Roger; MCCORMACK, SARAH; Kinnane, Oliver

    2016-01-01

    Phase Change Materials (PCM) have been incorporated into a range of building envelope materials with varied success. This study investigates two different methods of combining concrete and phase change materials to form PCM/concrete composite panels. The first method involves adding microencapsulated paraffin to fresh concrete during the mixing process. The second method involves vacuum impregnating butyl stearate into lightweight aggregate which is then included in the concrete mix design. T...

  13. Development of Latent Heat Storage Phase Change Material Containing Plaster

    OpenAIRE

    Bajare, Diana; Janis KAZJONOVS; Aleksandrs KORJAKINS

    2016-01-01

    This paper reviews the development of latent heat storage Phase Change Material (PCM) containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another adva...

  14. Phase Change Materials in concrete floors. Part 1; Phase Change Materials in betonvloeren. Deel 1

    Energy Technology Data Exchange (ETDEWEB)

    Entrop, A.G. [Duurzaam Bouwen, Universiteit Twente, Enschede (Netherlands); Reinders, A.H.M.E. [Energie Efficient Ontwerpen, Technische Universiteit Delft TUD, Delft (Netherlands)

    2012-07-15

    Results of research on an innovative use of Phase Change Materials (PCMs) in concrete floors are discussed. The PCMs store thermal solar energy. Temperatures of four concrete floors in closed environments were monitored. A reduction of maximum floor temperatures was achieved up to 16 {+-}2% and an increase of minimum temperatures up to 7 {+-}3%. An integral design is needed in which the thermal resistance of the building shell, the sensible heat capacity of the building and the latent heat capacity of PCMs are considered simultaneously. [Dutch] Er is een experiment uitgevoerd met vier betonnen vloeren in een semi-adiabatische omgeving. Twee vloeren bevatten PCMs en, ter referentie, twee vloeren geen PCMs. De opstelling moest op schaal een woning voorstellen met een raam op het zuiden. De omgevingscondities en de temperatuurontwikkelingen in de vloeren en boxen werden gemonitord. Het experiment moest aantonen in hoeverre PCMs kunnen worden gebruikt voor het passief verwarmen van Nederlandse woningen.

  15. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    Science.gov (United States)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  16. Nonminimum Phase Behavior of Laser Material Processing

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Weerkamp, N.P.; Meijer, J.; Postma, S.

    2001-01-01

    Optical sensors are increasingly applied in laser material processing to monitor and control the lasermaterial interaction zone. Dynamic models, relating the sensor signals (e.g. as temperature or molten area) to the process inputs (e.g. laser power or beam velocity), provide the basis for the desig

  17. Phase field modeling of microstructure evolution in nuclear materials

    International Nuclear Information System (INIS)

    The paper presents two examples of phase field modeling of microstructure evolution of materials used in nuclear power industry. In the first example, an elasto-plastic phase field model was developed to predict hydrogen diffusion, hydride precipitation and fracture in zirconium at crack and notch tips. In the second example, some preliminary results of our current research on void lattice formation in irradiated materials will be given

  18. The phase field technique for modeling multiphase materials

    Science.gov (United States)

    Singer-Loginova, I.; Singer, H. M.

    2008-10-01

    This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

  19. Three-phase fracturing in granular material

    Science.gov (United States)

    Campbell, James; Sandnes, Bjornar

    2015-04-01

    There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.

  20. Gas-phase exposure history derived from material-phase concentration profiles

    Science.gov (United States)

    Morrison, G. C.; Little, J. C.; Xu, Y.; Rao, M.; Enke, D.

    Non-reactive gas-phase pollutants such as benzene diffuse into indoor furnishings and leave behind a unique material-phase concentration profile that serves as a record of the past gas-phase indoor concentrations. The inverse problem to be solved is the diffusion equation in a slab such as vinyl flooring. Using knowledge of the present material-phase concentration profile in the slab, we seek to determine the historical material-phase concentration at the surface exposed to indoor air, and hence the historical gas-phase concentration, which can be used directly to determine exposure. The problem as posed has a unique solution that may be solved using a variety of approaches. We use a trained artificial neural network (ANN) to derive solutions for hypothetical exposure scenarios. The ANN results show that it is possible to estimate the intensity and timing of past exposures from the material-phase concentration profile in a building material. The overall method is limited by (1) the resolution of techniques for measuring spatial material-phase concentration profiles, (2) how far back in time we seek to determine exposure and (3) the representational power of the ANN solution. For example, we estimate that this technique can estimate exposure to phenol up to 0.5 y in the past from analyses of vinyl flooring.

  1. Modeling the Reactions of Energetic Materials in the Condensed Phase

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L E; Manaa, M R; Lewis, J P

    2003-12-03

    High explosive (HE) materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Although the history of HE materials is long, condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary in efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In addition, understanding the reaction mechanisms has important ramifications in disposing of such materials safely and cheaply, as there exist vast stockpiles of HE materials with corresponding contamination of earth and groundwater at these sites, as well as a military testing sites The ability to model chemical reaction processes in condensed phase energetic materials is rapidly progressing. Chemical equilibrium modeling is a mature technique with some limitations. Progress in this area continues, but is hampered by a lack of knowledge of condensed phase reaction mechanisms and rates. Atomistic modeling is much more computationally intensive, and is currently limited to very short time scales. Nonetheless, this methodology promises to yield the first reliable insights into the condensed phase processes responsible for high explosive detonation. Further work is necessary to extend the timescales involved in atomistic simulations. Recent work in implementing thermostat methods appropriate to shocks may promise to overcome some of these difficulties. Most current work on energetic material reactivity assumes that electronically adiabatic processes dominate. The role of excited states is becoming clearer, however. These states are not accessible in perfect

  2. Unconventional phase field simulations of transforming materials with evolving microstructures

    Institute of Scientific and Technical Information of China (English)

    Jiang-Yu Li; Chi-Hou Lei; Liang-Jun Li; Yi-Chung Shu; Yun-Ya Liu

    2012-01-01

    Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications,and an unconventional phase field approach based on the characteristic functions of transforming variants has been developed to simulate the formation and evolution of their microstructures.This approach is advantageous in its explicit material symmetry and energy well structure,minimal number of material coefficients,and easiness in coupling multiple physical processes and order parameters,and has been applied successfully to study the microstructures and macroscopic properties of shape memory alloys,ferroelectrics,ferromagnetic shape memory alloys,and multiferroic magnetoelectric crystals and films with increased complexity.In this topical review,the formulation of this unconventional phase field approach will be introduced in details,and its applications to various transforming materials will be discussed.Some examples of specific microstructures will also be presented.

  3. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  4. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  5. Lightweight Phase-Change Material For Solar Power

    Science.gov (United States)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  6. Optimization of a phase change material wallboard for building use

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Frederic; Virgone, Joseph [Thermal Sciences Center of Lyon, CNRS, UMR 5008, INSA de Lyon, Universite Lyon 1, Bat Freyssinet, 40 Rue des Arts, 69621 Villeurbanne Cedex (France); Noel, Jean [Free-lance Scientific Software Developer, 15 Place Carnot, 69002 Lyon (France)

    2008-08-15

    In construction, the use of phase change materials (PCM) allows the storage/release of energy from the solar radiation and/or internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes it possible to improve thermal comfort and reduce energy consumption. A wallboard composed of a new PCM material is investigated in this paper to enhance the thermal behavior of a lightweight internal partition wall. The paper focuses on the optimization of phase change material thickness. The in-house software CODYMUR is used to optimize the PCM wallboard by the means of numerical simulations. The results show that an optimal PCM thickness exists. The optimal PCM thickness value is then calculated for use in construction. (author)

  7. Temperature reduction due to the application of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Conrad; Kornadt, Oliver [Department of Building Physics, Bauhaus-University Weimar, Coudraystrasse 11a, 99423 Weimar (Germany); Ostry, Milan [Faculty of Civil Engineering, Brno University of Technology, Department of Building Structures, Veveri 95, 602 00 Brno (Czech Republic)

    2008-07-01

    Overheating is a major problem in many modern buildings due to the utilization of lightweight constructions with low heat storing capacity. A possible answer to this problem is the emplacement of phase change materials (PCM), thereby increasing the thermal mass of a building. These materials change their state of aggregation within a defined temperature range. Useful PCM for buildings show a phase transition from solid to liquid and vice versa. The thermal mass of the materials is increased by the latent heat. A modified gypsum plaster and a salt mixture were chosen as two materials for the study of their impact on room temperature reduction. For realistic investigations, test rooms were erected where measurements were carried out under different conditions such as temporary air change, alternate internal heat gains or clouding. The experimental data was finally reproduced by dint of a mathematical model. (author)

  8. Materials research for passive solar systems: solid-state phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Webb, J.D.; Burrows, R.W.; McFadden, J.D.O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C/sub 5/H/sub 12/O/sub 4/), pentaglycerinve (C/sub 5/H/sub 12/O/sub 3/), and neopentyl glycol (C/sub 5/H/sub 12/O/sub 2/). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature betweeen 25/sup 0/C and 188/sup 0/C, and have latent heats of transformation between 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier. Nevertheless, a higher cost of the phase-change materials (approx. =$0.70 per pound) is likely to limit their applicability in passive solar systems unless their performance can be significantly improved through further research.

  9. A Gibbs Formulation for Reactive Materials with Phase Change

    Science.gov (United States)

    Stewart, D. Scott

    2015-11-01

    A large class of applications have pure, condensed phase constituents that come into contact, chemically react and simultaneously undergo phase change. Phase change in a given molecular material has often been considered to be separate from chemical reaction. Continuum modelers of phase change often use a phase field model whereby an indicator function is allowed to change from one value to another in regions of phase change, governed by evolutionary (Ginzburg-Landau) equations, whereas classic chemical kinetics literally count species concentrations and derive kinetics evolution equations based on species mass transport. We argue the latter is fundamental and is the same as the former, if all species, phase or chemical are treated as distinct chemical species. We pose a self-consistent continuum, thermo-mechanical model to account for significant energetic quantities with correct molecular and continuum limits in the mixture. A single stress tensor, and a single temperature is assumed for the mixture with specified Gibbs potentials for all relevant species, and interaction energies. We discuss recent examples of complex reactive material modeling, drawn from thermitic and propellant combustion that use this new model. DSS supported by DTRA, ONR and AFOSR.

  10. Phase change materials and the perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  11. Phase matching using an isotropic nonlinear optical material

    Science.gov (United States)

    Fiore, A.; Berger, V.; Rosencher, E.; Bravetti, P.; Nagle, J.

    1998-01-01

    Frequency conversion in nonlinear optical crystals, is an effective means of generating coherent light at frequencies where lasers perform poorly or are unavailable. For efficient conversion, it is necessary to compensate for optical dispersion, which results in different phase velocities for light of different frequencies. In anisotropic birefringent crystals such as LiNbO3 or KH2PO4 (`KDP'), phase matching can be achieved between electromagnetic waves having different polarizations. But this is not possible for optically isotropic materials, and as a result, cubic materials such as GaAs (which otherwise have attractive nonlinear optical properties) have been little exploited for frequency conversion applications. Quasi-phase-matching schemes,, which have achieved considerable success in LiNbO3 (ref. 4), provide a route to circumventing this problem,, but the difficulty of producing the required pattern of nonlinear properties in isotropic materials, particularly semiconductors, has limited the practical utility of such approaches. Here we demonstrate a different route to phase matching - based on a concept proposed by Van der Ziel 22 years ago - which exploits the artificial birefringence of multilayer composites of GaAs and oxidised AlAs. As GaAs is the material of choice for semiconductor lasers, such optical sources could be integrated in the core of frequency converters based on these composite structures.

  12. Orientation relationship representation in two-phase material

    OpenAIRE

    A. Góral; Jura, J.

    2008-01-01

    Purpose: Orientation characteristics determination, especially orientation relationship, in two-phase materialsis important in predicting the material properties. The possible orientation relationship representations werepresented and discussed in the paper.Design/methodology/approach: Mathematical formalisms of the quantitative texture and microtextureanalysis were applied.Findings: Various orientation characteristics, especially orientation relationship representation may be used inthe quan...

  13. Preparation of Firefighting Hood for Cooling For Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Shu Hwa Lin

    2016-10-01

    Full Text Available There are two types of Phase Change Materials (PCMs which have been developed and adopted in textiles: heat (energy released and cool (energy absorbed. This paper discusses current PCM applications and explores future applications in firefighting gear. Phase change materials are considered latent heat storage units because as they change phase from solid to liquid, liquid to gas and vice versa, energy in the form of heat is absorbed or released. The goal of PCM textiles is to create reusable energy to maintain body temperature, as well as to optimize the performance of protective wear such as hoods. When the wearer’s body temperature increases or decreases, the PCMs applied to the fabric will change state helping to regulate the wearer’s body temperature by providing warmth or cooling. Maintaining a stable body temperature can improve working conditions and comfort.

  14. Preparation of Firefighting Hood for Cooling for Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Shu Hwa Lin

    2016-10-01

    Full Text Available There are two types of Phase Change Materials (PCMs which have been developed and adopted in textiles: heat (energy released and cool (energy absorbed. This paper discusses current PCM applications and explores future applications in firefighting gear. Phase change materials are considered latent heat storage units because as they change phase from solid to liquid, liquid to gas and vice versa, energy in the form of heat is absorbed or released. The goal of PCM textiles is to create reusable energy to maintain body temperature, as well as to optimize the performance of protective wear such as hoods. When the wearer’s body temperature increases or decreases, the PCMs applied to the fabric will change state helping to regulate the wearer’s body temperature by providing warmth or cooling. Maintaining a stable body temperature can improve working conditions and comfort.

  15. Round-Robin Test of Paraffin Phase-Change Material

    Science.gov (United States)

    Vidi, S.; Mehling, H.; Hemberger, F.; Haussmann, Th.; Laube, A.

    2015-11-01

    A round-robin test between three institutes was performed on a paraffin phase-change material (PCM) in the context of the German quality association for phase-change materials. The aim of the quality association is to define quality and test specifications for PCMs and to award certificates for successfully tested materials. To ensure the reproducibility and comparability of the measurements performed at different institutes using different measuring methods, a round-robin test was performed. The sample was unknown. The four methods used by the three participating institutes in the round-robin test were differential scanning calorimetry, Calvet calorimetry and three-layer calorimetry. Additionally, T-history measurements were made. The aim of the measurements was the determination of the enthalpy as a function of temperature. The results achieved following defined test specifications are in excellent agreement.

  16. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  17. Piezoelectric properties of rhombohedral ferroelectric materials with phase transition

    Science.gov (United States)

    Zhao, Xiaofang; Soh, A. K.

    2015-12-01

    The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau-Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.

  18. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  19. Kinetic Processes Crystal Growth, Diffusion, and Phase Transformations in Materials

    CERN Document Server

    Jackson, Kenneth A

    2004-01-01

    The formation of solids is governed by kinetic processes, which are closely related to the macroscopic behaviour of the resulting materials. With the main focus on ease of understanding, the author begins with the basic processes at the atomic level to illustrate their connections to material properties. Diffusion processes during crystal growth and phase transformations are examined in detail. Since the underlying mathematics are very complex, approximation methods typically used in practice are the prime choice of approach. Apart from metals and alloys, the book places special emphasis on th

  20. Investigating materials formation with liquid-phase and cryogenic TEM

    Science.gov (United States)

    de Yoreo, J. J.; N. A. J. M., Sommerdijk

    2016-08-01

    The recent advent of liquid-phase transmission electron microscopy (TEM) and advances in cryogenic TEM are transforming our understanding of the physical and chemical mechanisms underlying the formation of materials in synthetic, biological and geochemical systems. These techniques have been applied to study the dynamic processes of nucleation, self-assembly, crystal growth and coarsening for metallic and semiconductor nanoparticles, (bio)minerals, electrochemical systems, macromolecular complexes, and organic and inorganic self-assembling systems. New instrumentation and methodologies that are currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  1. Characterization of Sodium Nitrate as Phase Change Material

    Science.gov (United States)

    Bauer, Thomas; Laing, Doerte; Tamme, Rainer

    2012-01-01

    In this article the results of material investigations of sodium nitrate (NaNO3) with a melting temperature of 306 °C as a phase change material (PCM) are presented. The thermal stability was examined by kinetic experiments and longduration oven tests. In these experiments the nitrite formation was monitored. Although some nitrite formation in the melt was detected, results show that the thermal stability of NaNO3 is sufficient for PCM applications. Various measurements of thermophysical properties of NaNO3 are reported. These properties include the thermal diffusivity by the laser-flash, the thermal conductivity by the transient hot wire, and the heat capacity by the differential scanning calorimeter method. The current measurements and literature values are compared. In this article comprehensive temperature-dependent thermophysical values of the density, heat capacity, thermal diffusivity, and thermal conductivity in the liquid and solid phases are reported.

  2. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  3. Investigation of composite materials using SLM-based phase retrieval.

    Science.gov (United States)

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2013-07-01

    We present a robust method to inspect a typical composite material constructed of carbon fiber reinforced plastic (CFRP). It is based on optical surface contouring using the spatial light modulator (SLM)-based phase retrieval technique. The method utilizes multiple intensity observations of the wave field, diffracted by the investigated object, captured at different planes along the optical axis to recover the phase information across the object plane. The SLM-based system allows for the recording of the required consecutive intensity measurements in various propagation states across a common recording plane. This overcomes the mechanical shifting of a camera sensor required within the capturing process. In contrast to existing phase retrieval approaches, the measuring time is considerably reduced, since the switching time of the SLM is less than 50 ms. This enables nondestructive testing under thermal load. Experimental results are presented that demonstrate the approach can be used to assess structural properties of technical components made from CFRP.

  4. Investigation of composite materials using SLM-based phase retrieval.

    Science.gov (United States)

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2013-07-01

    We present a robust method to inspect a typical composite material constructed of carbon fiber reinforced plastic (CFRP). It is based on optical surface contouring using the spatial light modulator (SLM)-based phase retrieval technique. The method utilizes multiple intensity observations of the wave field, diffracted by the investigated object, captured at different planes along the optical axis to recover the phase information across the object plane. The SLM-based system allows for the recording of the required consecutive intensity measurements in various propagation states across a common recording plane. This overcomes the mechanical shifting of a camera sensor required within the capturing process. In contrast to existing phase retrieval approaches, the measuring time is considerably reduced, since the switching time of the SLM is less than 50 ms. This enables nondestructive testing under thermal load. Experimental results are presented that demonstrate the approach can be used to assess structural properties of technical components made from CFRP. PMID:23811877

  5. Scalability of Phase Change Materials in Nanostructure Template

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available The scalability of In2Se3, one of the phase change materials, is investigated. By depositing the material onto a nanopatterned substrate, individual In2Se3 nanoclusters are confined in the nanosize pits with well-defined shape and dimension permitting the systematic study of the ultimate scaling limit of its use as a phase change memory element. In2Se3 of progressively smaller volume is heated inside a transmission electron microscope operating in diffraction mode. The volume at which the amorphous-crystalline transition can no longer be observed is taken as the ultimate scaling limit, which is approximately 5 nm3 for In2Se3. The physics for the existence of scaling limit is discussed. Using phase change memory elements in memory hierarchy is believed to reduce its energy consumption because they consume zero leakage power in memory cells. Therefore, the phase change memory applications are of great importance in terms of energy saving.

  6. Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited].

    Science.gov (United States)

    Edwards, Chris; Zhou, Renjie; Hwang, Suk-Won; McKeown, Steven J; Wang, Kaiyuan; Bhaduri, Basanta; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Rogers, John A; Goddard, Lynford L; Popescu, Gabriel

    2014-09-20

    Quantitative phase imaging (QPI) utilizes the fact that the phase of an imaging field is much more sensitive than its amplitude. As fields from the source interact with the specimen, local variations in the phase front are produced, which provide structural information about the sample and can be used to reconstruct its topography with nanometer accuracy. QPI techniques do not require staining or coating of the specimen and are therefore nondestructive. Diffraction phase microscopy (DPM) combines many of the best attributes of current QPI methods; its compact configuration uses a common-path off-axis geometry which realizes the benefits of both low noise and single-shot imaging. This unique collection of features enables the DPM system to monitor, at the nanoscale, a wide variety of phenomena in their natural environments. Over the past decade, QPI techniques have become ubiquitous in biological studies and a recent effort has been made to extend QPI to materials science applications. We briefly review several recent studies which include real-time monitoring of wet etching, photochemical etching, surface wetting and evaporation, dissolution of biodegradable electronic materials, and the expansion and deformation of thin-films. We also discuss recent advances in semiconductor wafer defect detection using QPI.

  7. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  8. Phase classification by mean shift clustering of multispectral materials images.

    Science.gov (United States)

    Martins, Diego Schmaedech; Josa, Victor M Galván; Castellano, Gustavo; da Costa, José A T Borges

    2013-10-01

    A mean-shift clustering (MSC) algorithm is introduced as a valuable alternative to perform materials phase classification from multispectral images. As opposed to other multivariate statistical techniques, such as factor analysis or principal component analysis (PCA), clustering techniques directly assign a class label to each pixel, so that their outputs are phase segmented images, i.e., there is no need for an additional segmentation algorithm. On the other hand, as compared to other clustering procedures and classification methods, such as segmentation by thresholding of multiple spectral components, MSC has the advantages of not requiring previous knowledge of the number of data clusters and not assuming any shape for these clusters, i.e., neither the number nor the composition of the phases must be previously known. This makes MSC a particularly useful tool for exploratory research, assisting phase identification of unknown samples. Visualization and interpretation of the results are also simplified, since the information content of the output image does not depend on the particular choice of the content of the color channels.We applied MSC to the analysis of two sets of X-ray maps acquired in scanning electron microscopes equipped with energy-dispersive detection systems. Our results indicate that MSC is capable of detecting additional phases, not clearly identified through PCA or multiple thresholding, with a very low empirical reject rate.

  9. Electric-field-assisted crystallisation in phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohary, Krisztian; Diosdado, Jorge A.V.; Ashwin, Peter; Wright, C. David [College of Engineering, Mathematics, and Physical Sciences, University of Exeter (United Kingdom)

    2012-10-15

    Phase-change materials are of intense research interest due mainly to their use in phase-change memory (PCM) devices that are emerging as a promising technology for future non-volatile, solid-state, electrical storage. Electrically driven transitions from the amorphous to the crystalline phase in such devices exhibit characteristic threshold switching. Several alternative electronic explanations for the origins of this characteristic behaviour have been put forward, for example Poole-Frenkel effects, delocalisation of tail states, field emission processes and space charge limited currents [for a full discussion, see Radielli et al., J. Appl. Phys. 103, 111101 (2008) and Simon et al., MRS Proc. 1251, H01-H011 (2010)]. However, an alternative to these conventional electronic models of threshold switching is based on electric field induced lowering of the system free energy, leading to the field induced nucleation of conducting crystal filaments. In this paper we investigate this alternative view. We present a detailed kinetics study of crystallisation in the presence of an electric field for the phase-change material Ge{sub 2}Sb{sub 2}Te{sub 5}. We derive quantitative crystallisation maps to show the effects of both temperature and electric field on crystallisation and we identify field ranges and parameter values where the electric field might play a significant role. Then we carry out physically realistic simulations of the threshold switching process in typical phase-change device structures, both with and without electric field dependent energy contributions to the system free energy. Our results show that threshold switching can be obtained by a mechanism driven purely by electric field induced nucleation, but the fields so required are large, of the order of 300 MV m{sup -1}, and significantly larger than the experimentally measured threshold fields. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Artefacts in geometric phase analysis of compound materials

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Jonathan J.P., E-mail: j.j.p.peters@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Beanland, Richard; Alexe, Marin [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Cockburn, John W.; Revin, Dmitry G.; Zhang, Shiyong Y. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Sanchez, Ana M., E-mail: a.m.sanchez@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)

    2015-10-15

    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. - Highlights: • GPA is shown to produce incorrect strains when applied to images of compound materials. • A mathematical description is laid out for why GPA can produce artefacts. • The artefact is demonstrated using experimental and simulated data. • A ‘rule’ is set to avoid this artefact in GPA.

  11. Study of Phase Change Materials Applied to CPV Receivers

    Directory of Open Access Journals (Sweden)

    Zun-Hao Shih

    2015-01-01

    Full Text Available There are lots of factors which can directly affect output efficiency of photovoltaic device. One of them is high temperature which would cause adverse effect to solar cell. When solar cell is operated in high temperature, the cell’s output efficiency will become low. Therefore, improving thermal spreading of solar cell is an important issue. In this study, we focused on finding new materials to enhance the thermal dispreading and keep the temperature of solar cell as low as possible. The new materials are different from conventional metal ones; they are called “phase change materials (PCMs” which are mainly applied to green buildings. We chose two kinds of PSMs to study their thermal dispreading ability and to compare them with traditional aluminum material. These two kinds of PCMs are wax and lauric acid. We made three aluminum-based cuboids as heat sinking units and two of them were designed with hollow space to fill in the PCMs. We applied electric forward bias on solar cells to simulate the heat contributed from the concentrated sunlight. Then we observed the thermal distribution of these three kinds of thermal spreading materials. Two levels of forward biases were chosen to test the samples and analyze the experiment results.

  12. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  13. Electronic transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  14. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  15. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  16. Research on phase-change material building mass applied in the air-conditioning field

    Institute of Scientific and Technical Information of China (English)

    YANQuanying

    2003-01-01

    Phase-change material building mass contains phase-change matenals. It can decrease air-conditioning load and indoor temperature fluctuations, and improve comfort degree in summer because of thermal storage property of phase-change material. Thereby, the scale, initial investment and operational cost of air-conditioning system decrease effectively. The indoor surroundings improve. In this paper, suitable phase-change material used in architecture and combination mode between phase change material and architectural material were studied. By considering the properties of materials, such as phase-change temperature, phase-change latent heat, thermal conductivity and expansion coefficient, phase-change materials were selected and evaluated. Combination mode between phase-change material and architectural material were provided. The influence of phase-change material structure on thermal performance in room and energy-saving effect were analyzed and compared with traditional structure without phase-change material. It is proved that phase-change material structure is feasible in the practical engineenng. These provide the basis for developing phase-change material building mass.

  17. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  18. Analysis of microencapsulated phase change material slurries and phase change material emulsions as heat transfer fluid and thermal storage material

    OpenAIRE

    Delgado Gracia, Mónica; Zalba Nonay, Belen; Lázaro Fernández, Ana

    2013-01-01

    La presente tesis doctoral trata el análisis de suspensiones y emulsiones de materiales de cambio de fase para su uso como fluido caloportador y material de almacenamiento térmico. El interés de la tesis nace de la actual conyuntura energética. Dentro de la línea de búsqueda de un modelo energético sostenible, el almacenamiento térmico de energía contribuye a la utilización eficiente de la energía. Las aplicaciones del almacenamiento térmico de energía mediante cambio de fase sólido-líquido s...

  19. Thermoelectric study of INSB secondary phase based nano composite materials

    Science.gov (United States)

    Zhu, Song

    In the past several decades there has been an intensive study in the field of thermoelectric study that is basically materials driven. As the simplest technology applicable in direct heat-electricity energy conversion, thermoelectricity utilizes the Seebeck effect to generate electricity from heat or conversely achieve the solid-state cooling via the Peltier effect. With many technical merits, thermoelectric devices can be used as spot-size generators or distributed refrigerators, however, their applications are restricted by the energy conversion efficiency, which is mainly determined by the figure of merit ZT of the thermoelectric materials that these devices are made of. A higher ZT (ZT=alpha2*sigma/kappa) entails a larger Seebeck coefficient (alpha), a higher electrical conductivity (sigma) and a lower thermal conductivity (kappa). However, it is challenging to simultaneously optimize these three material parameters because they are adversely correlated. To this end, a promising approach to answer this challenge is nano-compositing or microstructuring at multiple length scales. The numerous grain boundaries in nano-composite allow for significant reduction of lattice thermal conductivity via strong phonon scattering and as well an enhanced Seebeck coefficient via, carrier energy filtering effect. As the same grain boundaries also scatter carriers, a coherent interface between grains is needed to minimize the degradation of carrier mobilities. To this end,in-situ, instead of ex-situ, formation of nano-composite is preferred. It is noteworthy that electrical conductivity can be further enhanced by the injection of high-mobility carriers introduced by the secondary nano-phase. In view of the prevalent use of Antimony (Sb) in thermoelectric materials, Indium Antimonide (InSb) naturally becomes one of the most promising nano-inclusions since it possesses one of the largest carrier mobilities (˜7.8 m 2/V-s) in any semiconductors, while at the same time possesses a

  20. Phase-Field Crystal Modeling of Polycrystalline Materials

    Science.gov (United States)

    Adland, Ari Joel

    In this thesis, we use and further develop the phase-field crystal (PFC) method derived from classical density functional theory to investigate polycyrstalline materials. The PFC method resolves atomistic scale processes by tracking the evolution of the local time averaged crystal density field, thereby naturally describing dislocations and grian boundaries (GBs), but with a phenomenological incorporation of vacancy diffusion that accesses long diffusive time scales beyond the reach of MD simulations. We use the PFC method to investigate two technologically important classes of polycrystalline materials whose properties are strongly influenced by GB equilibrium and non-equilibrium properties. The first are structural polycyrstalline materials such as nickel based superalloys used for turbine blades. Those alloys can develop large defects known as "hot tears'' due to the lack of complete crystal cohesion and strain localization during the late stages of solidification. We investigate the equilibrium structure of symmetric tilt GBs at high homologous temperatures and identify a wide range of misorientation that leads to the formation of nanometer-thick intergranular films with liquid like properties. The phase transition character of this "GB premelting'' phenomenon is investigated through the quantitative computation of a disjoining thermodynamic potential in both pure materials and alloys, using body-centered-cubic Fe as a model system. The analysis of this potential sheds light on the physical origin of attractive and repulsive forces that promote and suppress crystal cohesion, respectively, and are found to be strongly affected by solute addition. Our equilibrium studies also reveal the existence of novel structural transitions of low angle GBs driven by the pairing of dislocations with both screw and edge character. Non-equilibrium PFC simulations in turn characterize the response of GBs to an applied shear stress, showing that intergranular liquid-like films

  1. Plastic phase change material and articles made therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Abhari, Ramin

    2016-04-19

    The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds are provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.

  2. Large area nuclear particle detectors using ET materials, phase 2

    Science.gov (United States)

    Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

    1990-01-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

  3. Enhancing the performance of BICPV systems using phase change materials

    Science.gov (United States)

    Sharma, Shivangi; Sellami, Nazmi; Tahir, Asif; Reddy, K. S.; Mallick, Tapas K.

    2015-09-01

    Building Integrated Concentrated Photovoltaic (BICPV) systems have three main benefits for integration into built environments, namely, (i) generating electricity at the point of use (ii) allowing light efficacy within the building envelope and (iii) providing thermal management. In this work, to maintain solar cell operating temperature and improve its performance, a phase change material (PCM) container has been designed, developed and integrated with the BICPV system. Using highly collimated continuous light source, an indoor experiment was performed. The absolute electrical power conversion efficiency for the module without PCM cooling resulted in 7.82% while using PCM increased it to 9.07%, thus showing a relative increase by 15.9% as compared to a non- PCM system. A maximum temperature reduction of 5.2°C was also observed when the BICPV module was integrated with PCM containment as compared to the BICPV system without any PCM containment.

  4. Cooling of mobile electronic devices using phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tan, F.L.; Tso, C.P. [Nanyang Technological University (Singapore). School of Mechanical and Production Engineering

    2004-02-01

    An experimental study is conducted on the cooling of mobile electronic devices, such as personal digital assistants (PDAs) and wearable computers, using a heat storage unit (HSU) filled with the phase change material (PCM) of n-eicosane inside the device. The high latent heat of n-eicosane in the HSU absorbs the heat dissipation from the chips and can maintain the chip temperature below the allowable service temperature of 50{sup o}C for 2 h of transient operations of the PDA. The heat dissipation of the chips inside a PDA and the orientation of the HSU are experimentally investigated in this paper. It was found that different orientation of the HSU inside the PDA could affect significantly the temperature distribution. (author)

  5. Force law in material media, hidden momentum and quantum phases

    Science.gov (United States)

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2016-06-01

    We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein-Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein-Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.

  6. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  7. Analysis of wallboard containing a phase change material

    Science.gov (United States)

    Tomlinson, J. J.; Heberle, D. P.

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, and to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application.

  8. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  9. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  10. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C

    2004-05-26

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high

  11. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  12. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  13. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  14. Contact resistance of TiW to phase change material in the amorphous and crystalline states

    NARCIS (Netherlands)

    Roy, D.; Zandt, in 't M.A.A.; Wolters, R.A.M.; Timmering, C.E.; Klootwijk, J.H.

    2009-01-01

    Electrical characterisation of metal to Phase Change Material (PCM) contacts is necessary for optimum power transfer during switching of a Phase Change Random Access Memory (PCRAM) cell. In this article, titanium tungsten (Ti0.3W0.7) to two phase change materials; doped-Sb2Te and Ge2Sb2Te5 are chara

  15. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Science.gov (United States)

    2010-07-01

    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL...

  16. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... on a finite-element discretization of the base cell. The optimization problem is solved using sequential linear programming. To benchmark the design method we first consider two-phase designs. Our optimal two-phase microstructures are in fine agreement with rigorous bounds and the so-called Vigdergauz...

  17. Ductile-Phase-Toughened Tungsten for Plasma-Facing Materials

    Science.gov (United States)

    Cunningham, Kevin Hawkins

    A variety of processing approaches were employed to fabricate ductile-phase-toughened (DPT) tungsten (W) composites. Mechanical testing and analytical modeling were used to guide composite development. This work provides a basis for further development of W composites to be used in structural divertor components of future fusion reactors. W wire was tested in tension, showing significant ductility and strength. Coatings of copper (Cu) or tungsten carbide (WC) were applied to the W wire via electrodeposition and carburization, respectively. Composites were fabricated using spark plasma sintering (SPS) to consolidate W powders together with each type of coated W wire. DPT behavior, e.g. crack arrest and crack bridging, was not observed in three-point bend testing of the sintered composites. A laminate was fabricated by hot pressing W and Cu foils together with W wires, and subsequently tested in tension. This laminate was bonded via hot pressing to thick W plate as a reinforcing layer, and the composite was tested in three-point bending. Crack arrest was observed along with some fiber pullout, but significant transverse cracking in the W plate confounded further fracture toughness analysis. The fracture toughness of thin W plate was measured in three-point bending. W plates were brazed with Cu foils to form a laminate. Crack arrest and crack bridging were observed in three-point bend tests of the laminate, and fracture resistance curves were successfully calculated for this DPT composite. An analytical model of crack bridging was developed using the basis described by Chao in previous work by the group. The model uses the specimen geometry, matrix properties, and the stress-displacement function of a ductile reinforcement ("bridging law") to calculate the fracture resistance curve (R-curve) and load-displacement curve (P-D curve) for any test specimen geometry. The code was also implemented to estimate the bridging law of an arbitrary composite using R-curve data

  18. Micromechanics and constitutive models for soft active materials with phase evolution

    Science.gov (United States)

    Wang, Binglian

    Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.

  19. The use of lipids as phase change materials for thermal energy storage

    Science.gov (United States)

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  20. Deuterium absorption and material phase characteristics of Zr2Fe

    International Nuclear Information System (INIS)

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr2Fe phase with secondary phases of ZrFe2, Zr5FeSn, α-Zr, and Zr6Fe3O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350 degrees C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3x10-4 Pa). However, at higher activation temperature (500 degrees C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500 degrees C. The P-C-T data over the full range of deuterium loading and at temperatures of 350 degrees C and below is described by: K0e-(ΔHα/RT)=PD2q2/(q*-q)2 where ΔHα and K0 have values of 101.8 kJ·mole-1 and 3.24x10-8Pa-1, and q* is 15.998 kPa·L-1·g-1. At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D2 from the gas phase. XRD suggests these reactions to be: 2 Zr2FeDx → x ZrD2 + x/3 ZrFe2 + (2 - 2/3x) Zr2Fe and Zr2FeDx + (2 -1/2x) D2 → ZrD2 + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  1. Topological phases in two-dimensional materials: a review

    Science.gov (United States)

    Ren, Yafei; Qiao, Zhenhua; Niu, Qian

    2016-06-01

    Topological phases with insulating bulk and gapless surface or edge modes have attracted intensive attention because of their fundamental physics implications and potential applications in dissipationless electronics and spintronics. In this review, we mainly focus on recent progress in the engineering of topologically nontrivial phases (such as {{{Z}}2} topological insulators, quantum anomalous Hall effects, quantum valley Hall effects etc) in two-dimensional systems, including quantum wells, atomic crystal layers of elements from group III to group VII, and the transition metal compounds.

  2. Materials Information for Science and Technology (MIST): Project overview: Phase 1 and 2 and general considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grattidge, W.; Westbrook, J.; McCarthy, J.; Northrup, C. Jr.; Rumble, J. Jr.

    1986-11-01

    The National Bureau of Standards and the Department of Energy have embarked on a program to build a demonstration computerized materials data system called Materials Information for Science and Technology (MIST). This report documents the first two phases of the project. The emphasis of the first phase was on determining what information was needed and how it could impact user productivity. The second phase data from the Aerospace Metal Handbook on a set of alloys was digitized and incorporated in the system.

  3. Doped SbTe phase change material in memory cells

    NARCIS (Netherlands)

    Zandt, in ‘t M.A.A.; Jedema, F.J.; Gravesteijn, D.J.; Attenborough, K.; Wolters, R.A.M.

    2009-01-01

    Phase Change Random Access Memory (PCRAM) is investigated as replacement for Flash. The memory concept is based on switching a chalcogenide from the crystalline (low ohmic) to the amorphous (high ohmic) state and vice versa. Basically two memory cell concepts exist: the Ovonic Unified Memory (OUM) a

  4. Tunable ferroelectric meta-material phase shifter embedded inside low temperature co-fired ceramics (LTCC)

    Science.gov (United States)

    Tork, Hossam S.

    This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving

  5. Crack propagation in tough ductile materials. Phase I

    International Nuclear Information System (INIS)

    The report describes and presents the J-resistance curves obtained as a function of crack extension for two representative tough ductile materials namely ASTM516 grade 70 plate steel and SA106 grade B pipe steel. The results were obtained using the ASTM standard method for determining J-R curves, E24.08, 12th Draft, 25th July, 1985. Both compact tension and three point bend tests were employed for the plate steel tests; only compact tension specimens were used to evaluate the pipe steel. All tests were carried out under load control conditions using specimens of different thickness and cut from known orientations within the parent material

  6. Stowing of radioactive materials package during land transport. Third phase

    International Nuclear Information System (INIS)

    Phase 3 of this study is mainly experimental. The study is based on the work performed during 2 former studies: phase 1: definition and analysis of reference accidental conditions, and phase 2: selection of some reference accidents and computation of the deceleration forces. The main goal of the study is to draw up a reference document, giving some guidances for the stowing of packages on conveyances for land transportation. The third phase includes four frontal impact tests. The reference package used is a French IL-37 container weighing about 1.3 t. The first test was performed using a truck, loaded with two IL-37 containers and launched at a speed of 50 km/h against a fixed obstacle. The deceleration curve the behaviour of each package and the behaviour of stowing systems are compared with the theoretical results. Various measurements were made during the test: vehicle impact speed; vehicle deceleration, measured at different points on the frame, package deceleration, displacement of attachment points. The impact was filmed from different angles. The second test was performed in the same impact conditions but with a waggon instead of a truck, and loaded with one container. The front of the waggon was equipped with special shock absorbers to obtain the same deceleration as recorded during the truck impact (first test). In the third test the stowing systems were reinforced by a nylon one in order to obtain information of stowing systems of that type and to increase the energy absorption capacity. In the fourth test in addition to being stowed the package was also chocked. The results obtained have shown that it is possible to maintain a package on a truck platform even during a severe frontal impact

  7. A universal preconditioner for simulating condensed phase materials

    Science.gov (United States)

    Packwood, David; Kermode, James; Mones, Letif; Bernstein, Noam; Woolley, John; Gould, Nicholas; Ortner, Christoph; Csányi, Gábor

    2016-04-01

    We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.

  8. Studies on a Heat Storage Container with Phase Change Material

    Science.gov (United States)

    Toyoda, Naoki; Watanabe, Koji; Watanabe, Mituo; Yanadori, Michio

    This paper deals with the heat transfer characteristics when a phase change medium discharges the storing energy to a finned tube in a heat storage container. In this experiments, the phase change medium is Calcium Chloride Hexahydrate (CaCl26H2O)with fusion temperature 28°C. The following results are obtained. 1. In solidification process of the medium, the heat discharge quantity to a finned tube is greater than that to a single tube, However, the heat dischage quantity of the finned tube does not increase inproportion to the surface area of the fin. 2. The fin effect of the finned tube decreases as the increase of the accumulative heat discharge quantity rate. 3. This reason lies in the fact that the thermal resistance of the finned tube is greater than that of the single tube. Especially, in the range of the large values of the accumulative heat discharge quantity rate, it is consiberable that the themal resistanse increases so that the ratio of the dead space of the heat transfer area increases at the contact parts of the fins and the tube.

  9. Photonic non-volatile memories using phase change materials

    CERN Document Server

    Pernice, Wolfram

    2012-01-01

    We propose an all-photonic, non-volatile memory and processing element based on phase-change thin-films deposited onto nanophotonic waveguides. Using photonic microring resonators partially covered with Ge2Sb2Te5 (GST) multi-level memory operation in integrated photonic circuits can be achieved. GST provides a dramatic change in refractive index upon transition from the amorphous to crystalline state, which is exploited to reversibly control both the extinction ratio and resonance wavelength of the microcavity with an additional gating port in analogy to optical transistors. Our analysis shows excellent sensitivity to the degree of crystallization inside the GST, thus providing the basis for non-von Neuman neuromorphic computing.

  10. Thermophysical properties and behavioral characteristics of phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, S

    1977-01-01

    The primary and near-term objective of the project is to compile a handbook of compounds and mixtures that melt in the range of 90 to 250/sup 0/C and which are suitable for isothermal heat storage. Organic compounds have been screened according to bulk price, thermal stability, and safety. Compounds were selected for further consideration if they cost less than $1.10/kg and if encyclopedia articles or handbooks indicated that they were reasonably stable chemically and were not toxic or otherwise hazardous. Of seven compounds thus selected, four (urea, phthalimide, adipic acid, phthalic anhydride) have been examined by DSC and other methods. The differential scanning calorimeter was used with two fairly well-characterized PCM's to test its applicability for rapidly evaluating thermal decomposition and supercooling. With Na/sub 2/SO/sub 4/ . 10H/sub 2/O, DSC data indicated (a) decrease in heat of transition with thermal cycling, and (b) considerable supercooling; with 3 to 6 percent borax added, supercooling was greatly lessened but not entirely eliminated. Measurements with paraffin wax showed that this material does not supercool nor does it degrade in thermal performance with cycling. The DSC results with these two materials confirmed (and extended) thermal performance characteristics obtained by other means. However, studies of supercooling in urea and in phthalimide suggested that DSC techniques may magnify the extent of supercooling at elevated temperatures.

  11. Materials Design of Microstructure in Grain Boundary and Second Phase Particles

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects:grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.

  12. In-line phase contrast for weakly absorbing materials with a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Zhang Di; Li Zheng; Huang Zhi-Feng; Yu Ai-Min; Sha Wei

    2006-01-01

    For weakly absorbing materials, image contrast can be enhanced by phase contrast in formation. The effectiveness of the in-line phase contrast technique relies on its ability to record intensity data which contain information on the x-ray's phase shift. Four kinds of approaches to the relationship between intensity distribution and phase shift are reviewed and discussed. A micro-focal x-ray source with high geometrical magnification is used to acquire phase contrast images. A great improvement on image quality is shown and geometrical parameters are modified for comparison between different imaging positions.

  13. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen; Lingling, Xu; Hongbo, Shang; Zhibin, Zhang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m. (author)

  14. Phase transitions of materials studied by synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron radiation is an excellent tool for studies of structural phase transitions. Among others it enables to follow the transition as a function of the parameter inducing the transition (e.g. pressure, temperature) and time. The latter possibility is due to the short recording times resulting from the high intensity of S.R. For these studies simultaneous recording of the whole diffraction pattern is of great importance. This is achieved either by using a monochromatic beam and a position sensitive detector (PSD) or by using X-ray energy dispersive diffraction (XED). The first method is described only briefly because of its analogy to the conventional method. In the XED method one uses a polychromatic 'white' incident beam, a fixed scattering angle and an energy dispersive detector. The main characteristics of the method is the simultaneous recording of the whole diffraction pattern and the fixed scattering angle. The XED method is discussed in some detail. (orig.) With 2 tabs., 15 figs., 23 refs

  15. From rice husk to high performance shape stabilized phase change materials for thermal energy storage

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Latibari, Sara Tahan; Rosen, Marc A.;

    2016-01-01

    and a sodium hydroxide activation procedure. Palmitic acid as a phase change material was impregnated into the porous carbon by a vacuum impregnation technique. Graphene nanoplatelets (GNPs) were employed as an additive for thermal conductivity enhancement of the SSPCMs. The attained composites exhibited...... and excellent reversibility. The prepared SSPCMs with enhanced heat transfer and phase change properties provide a beneficial option for building energy conservation and solar energy applications owing to the low cost of raw materials and the simple synthetic technique....

  16. Phase separation between conductive and insulative materials induced by the electric field.

    Science.gov (United States)

    Nagamine, Yuko

    2016-07-01

    To demonstrate that phase separation is a main mechanism of pattern formation for one of the spatiotemporal patterns emerging in the Ag and Sb electrodeposition system, I performed numerical simulations to model the mixed system of conductive and insulative materials under a steady electric field. For such a dissipative system, I derived the extended Cahn-Hilliard equation using Onsager's variational principle. My results demonstrate that conductive and insulative materials phase separate spatially under the constant-current mode. PMID:27575064

  17. Accurate switching intensities and length scales in quasi-phase-matched materials

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, Torben Winther; Corney, Joel Frederick

    2001-01-01

    We consider unseeded typeI second-harmonic generation in quasi-phase-matched quadratic nonlinear materials and derive an accurate analytical expression for the evolution of the average intensity. The intensity- dependent nonlinear phase mismatch that is due to the cubic nonlinearity induced...

  18. Effect of microencapsulated phase change material in sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Castellon, Cecilia; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Navarro, Maria E.; Fernandez, Ana I. [Departamento de Ciencias de los Materiales e Ingenieria Metalurgica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Lazaro, Ana; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' ' Agustin de Betancourt,' ' Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-10-15

    Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results. (author)

  19. Dynamics of formation of particles of the condensed carbon phase at shock compression of organic materials

    CERN Document Server

    Fedotov, M G; Luckjanchikov, L A; Lyakhov, N Z; Sharafutdinov, M R; Sheromov, M A; Ten, K A; Titov, V M; Tolochko, B P; Zubkov, P I

    2001-01-01

    Results of the SR study of the density behavior and dynamics of formation of condensed carbon particles at expansion of shock waves in organic materials and some low-sensitive explosives as well as at shock loading of ultra-dispersed diamonds are presented. Appearance of particles of the condensed carbon phase was observed in carbon-rich organic materials.

  20. Microstructure-property relationships in digitally generated three-dimensional, two-phase, liquid phase sintered materials

    Science.gov (United States)

    Lee, Sukbin

    In studying microstructure-property relationships, it is of great interest to reveal the effect of individual microstructural parameters on the properties of the materials in all three dimensions. However, it is not easy to obtain experimentally samples in which the individual microstructural features are independently controlled. Even though one can prepare such samples, conventional materials characterization is based on the data obtained from two-dimensional plane sections of the samples. Since many problems related to the properties of materials are three-dimensional in nature, conventional two-dimensional characterization is not always sufficient to describe the microstructure quantitatively. Also, many property experiments are destructive and therefore one needs to repeat the process many times to map the properties as a function of the microstructural parameters. Considerable effort has been made to reconstruct three-dimensional microstructures using serial sectioning in recent years in order to determine three-dimensional microstructural features of two-phase composite materials directly. While this approach yields three-dimensional data on the size, shape, and spatial correlation of particles, it demands difficult and time-consuming steps. Thus, numerical reconstruction or synthesis methods can contribute significantly to modeling three-dimensional microstructures, especially two-phase composite microstructures for this project. One objective of this project is to introduce a procedure for generating three-dimensional digital microstructures representing two-phase composite materials containing isotropically coarsened particles in the surrounding matrix phase. In order to achieve the goal, a three-dimensional, Q-state Monte Carlo Potts model of isotropic particle coarsening in a system with full wetting of particles by matrix is introduced to investigate the coarsening kinetics and microstructures associated with this process. By imposing the condition of

  1. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    Directory of Open Access Journals (Sweden)

    Sheridan C. Mayo

    2012-05-01

    Full Text Available X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  2. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    We show how composites with extremal or unusual thermal expansion coefficients can be designed using a numerical topology optimization method. The composites are composed of two different material phases and void. The optimization method is illustrated by designing materials having maximum thermal...... expansion, zero thermal expansion, and negative thermal expansion. Assuming linear elasticity, it is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion coefficients and void. We also show...... that there is no mechanistic relationship between negative thermal expansion and negative Poisson's ratio....

  3. First order magneto-structural transition in functional magnetic materials: phase-coexistence and metastability

    Indian Academy of Sciences (India)

    S B Roy; M K Chattopadhyay; M A Manekar; K J S Sokhey; P Chaddah

    2006-11-01

    First order magneto-structural transition plays an important role in the functionality of various magnetic materials of current interest like manganese oxide systems showing colossal magnetoresistance, Gd5(Ge, Si)4 alloys showing giant magnetocaloric effects and magnetic shape memory alloys. The key features of this magneto-structural transition are phase-coexistence and metastability. This generality is highlighted with experimental results obtained in a particular class of materials. A generalized framework of disorder influenced first order phase transition is introduced to understand the interesting experimental results which have some bearing on the functionality of the concerned materials.

  4. Phase Change Materials (PCMs) for energy storage in architecture. Use with the Magic Box prototype

    OpenAIRE

    Bedoya Frutos, C.; Higueras García, E.; Acha Román, C.; Neila González, F. J.

    2008-01-01

    The article shows an energy-accumulation system in change of phase materials, designed for a prototype dwelling used for building two bioclimatic and self-sufficient buildings. These bulidings have been built in Madrid, Washington and Beijing. The characteristics of these materials, the construction systems into which these materials were incorporated, its comparative valuation with sensitive accumulation systems, and the results of the building monitorization are included.El artículo mu...

  5. Summary of workshop on high temperature materials based on Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy jointly sponsored the Workshop on High Temperature Materials Based on Laves Phases in conjunction with the Tenth Annual Conference on Fossil Energy Materials held at the Radisson Summit Hill Hotel in Knoxville, Tennessee on May 14-16, 1996. The objective of this workshop was to review the current status and to address critical issues in the development of new-generation high-temperature structural materials based on Laves phases. The one-day workshop included two sessions of overview presentations and a session of discussion on critical scientific and technological issues. The Laves phases represent an abundant class of intermetallic alloys with possible high-temperature structural applications. Laves phases form at or near the AB{sub 2} composition, and there are over 360 binary Laves phases. The ability of these alloys to dissolve considerable amounts of ternary alloying additions provides over 900 combined binary and ternary Laves phases. Many Laves phases have unique properties which make them attractive for high-temperature structural use. At half their homologous temperature, they retain >0.85 of their ambient yield strength, which is higher than all other intermetallics. Many of the Laves phases also have high melting temperatures, excellent creep properties, reasonably low densities, and for alloys containing Cr, Al, Si or Be, good oxidation resistance. Despite these useful properties, the tendency for low-temperature brittleness has limited the potential application of this large class of alloys.

  6. Combinatorial material synthesis applied to Ge-Sb-Te based phase change materials

    OpenAIRE

    Wöltgens, Han-Willem

    2003-01-01

    The rapidly increasing net amount of digital information requires higher data- storage capacities and transfer rates. Consequently, there is a need for a continuous improvement of the media concept and design. Phase change recording technology offers attractive features for erasable data storage with high density. Digital information can be written, erased and re- written repetitively using optical techniques. They can be characterized by two stable physical structures that exhibit significan...

  7. Dead lithium phase investigation of Sn-Zn alloy as anode materials for lithium ion battery

    Institute of Scientific and Technical Information of China (English)

    HUANG ZhaoWen; HU SheJun; HOU XianHua; RU Qiang; YU HongWen; ZHAO LingZhi; LI WeiShan

    2009-01-01

    In this work, based on First-principle plane wave pseudo-potential method, we have carried out an in-depth study on the possible dead lithium phase of Sn-Zn alloy as anode materials for lithium ion batteries. Through investigation, we found that the phases LixSn4Zn4(x = 2, 4, 6, 8) contributed to reversible capacity, while the phases LixSn4Zns-(x-4)(x = 4.74, 7.72) led to capacity loss due to high formation energy, namely, they were the dead lithium phases during the charge/discharge process. And we come up with a new idea that stable lithium alloy phase with high lithiation formation energy (dead lithium phase) can also result in high loss of active lithium ion, besides the traditional expression that the formation of solid electrolyte interface film leads to high capacity loss.

  8. Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [Department of Chemical Engineering, Tsinghua University, Beijing (China); Zhang, Yan; Zhang, Qingwu [Department of Chemical Engineering, China University of Mining and Technology, Beijing (China); Wang, Xin; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China)

    2009-10-15

    Microcapsules for thermal energy storage and heat-transfer enhancement have attracted great attention. Microencapsulation of n-tetradecane with different shell materials was carried out by phase separation method in this paper. Acrylonitrile-styrene copolymer (AS), acrylonitrile-styrene-butadiene copolymer (ABS) and polycarbonate (PC) were used as the shell materials. The structures, morphologies and the thermal capacities of the microcapsules were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The ternary phase diagrams showed the potential encapsulation capabilities of the three shell materials. The effects of the shell/core ratio and the molecular weight of the shell material on the encapsulation efficiency and the thermal capacity of the microcapsules were also discussed. Microcapsules with melting enthalpy > 100 J/g, encapsulation efficiency 66-75%, particle size<1 {mu}m were obtained for all three shell materials. (author)

  9. Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer

    Institute of Scientific and Technical Information of China (English)

    Ibrahim A. Abbas

    2015-01-01

    The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials (FGM) (i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach. The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.

  10. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    Science.gov (United States)

    Kocer, Hasan

    2015-01-01

    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  11. Sol-gel composite material characteristics caused by different dielectric constant sol-gel phases

    Science.gov (United States)

    Kimoto, Keisuke; Matsumoto, Makoto; Kaneko, Tsukasa; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers prepared by a sol-gel composite method have been investigated in the field of nondestructive testing (NDT). Sol-gel composite materials could be ideal piezoelectric materials for ultrasonic transducer applications in the NDT field, and a new sol-gel composite with desirable characteristics has been developed. Three kinds of sol-gel composite materials composed of different dielectric constant sol-gel phases, Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BiT), and BaTiO3 (BT), and the same piezoelectric powder phase, PbTiO3 (PT), were fabricated and their properties were compared quantitatively. As a result, the PT/BT, sol-gel composite with the highest dielectric constant sol-gel phase showed the highest d 33 and signal strength. In addition, only PT/BT was successfully poled by room-temperature corona poling with reasonable signal strength.

  12. The solidification of two-phase heterogeneous materials: Theory versus experiment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; KIM Tongbeum; LU TianJian

    2009-01-01

    The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ε), ε=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.

  13. Nanocasting of Periodic Mesoporous Materials as an Effective Strategy to Prepare Mixed Phases of Titania

    Directory of Open Access Journals (Sweden)

    Luther Mahoney

    2015-12-01

    Full Text Available Mesoporous titanium dioxide materials were prepared using a nanocasting technique involving silica SBA-15 as the hard-template. At an optimal loading of titanium precursor, the hexagonal periodic array of pores in SBA-15 was retained. The phases of titanium dioxide could be easily varied by the number of impregnation cycles and the nature of titanium alkoxide employed. Low number of impregnation cycles produced mixed phases of anatase and TiO2(B. The mesoporous TiO2 materials were tested for solar hydrogen production, and the material consisting of 98% anatase and 2% TiO2(B exhibited the highest yield of hydrogen from the photocatalytic splitting of water. The periodicity of the pores was an important factor that influenced the photocatalytic activity. This study indicates that mixed phases of titania containing ordered array of pores can be prepared by using the nanocasting strategy.

  14. Interrelation of material microstructure, ultrasonic factors, and fracture toughness of two phase titanium alloy

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1982-01-01

    The pivotal role of an alpha-beta phase microstructure in governing fracture toughness in a titanium alloy, Ti-662, is demonstrated. The interrelation of microstructure and fracture toughness is demonstrated using ultrasonic measurement techniques originally developed for nondestructive evaluation and material property characterization. It is shown that the findings determined from ultrasonic measurements agree with conclusions based on metallurgical, metallographic, and fractographic observations concerning the importance of alpha-beta morphology in controlling fracture toughness in two phase titanium alloys.

  15. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.

    Science.gov (United States)

    Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip

    2012-05-01

    Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption. PMID:21668029

  16. Homogeneous phase W–Ge–Te material with improved overall phase-change properties for future nonvolatile memory

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted - Abstract: Homogeneous phase W–Ge–Te material has been proposed and investigated for phase-change memory (PCM) applications. The crystallization temperature of GeTe is markedly improved by introducing W atoms. In the W–Ge–Te material, W atoms bonding to Ge and Te atoms serve as substitutional impurities. During the crystallization process, the diffusion of Ge and Te atoms is restricted by W atoms that have larger atomic mass, which further leads to more uniform crystallization of the material. W atoms serve as nucleation centers and attract the surrounding Ge and Te atoms, quickly building crystal grains. W0.1(GeTe)0.9 film has a 10-year data retention temperature of 225 °C and an ultrafast crystallization time of 3 ns. Specifically, W0.1(GeTe)0.9 film can withstand the Pb-free solder reflow temperature (260 °C) for 4.6 × 104 s. A voltage pulse of as little of 10 ns long can realize reversible operations for W0.1(GeTe)0.9-based PCM devices. In addition, good endurance (5 × 105 cycles) has also been obtained for the cell

  17. Characterization of a lime-pozzolan plaster containing phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Pavlíková, Milena; Pavlík, Zbyšek; Trník, Anton; Pokorný, Jaroslav; Černý, Robert [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)

    2015-03-10

    A PCM (Phase Change Material) modified lime-pozzolan plaster for improvement of thermal energy storage of building envelopes is studied in the paper. The investigated plaster is composed of lime hydrate, pozzolan admixture based on metakaolin and mudstone, silica sand, water and paraffin wax encapsulated in polymer capsule. The reference plaster without PCM application is studied as well. The analyzed materials are characterized by bulk density, matrix density, total open porosity, compressive strength and pore size distribution. The temperature of phase change, heat of fusion and crystallization are studied using DSC (Difference Scanning Calorimetry) analysis performed in air atmosphere. In order to get information on materials hygrothermal performance, determination of thermal and hygric properties is done in laboratory conditions. Experimental data reveal a substantial improvement of heat storage capacity of PCM-modified plaster as compared to the reference material without PCM.

  18. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yutang; Kang, Huiying; Wang, Weilong; Liu, Hong; Gao, Xuenong [The Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

    2010-12-15

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic. (author)

  19. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yutang, E-mail: ppytfang@scut.edu.c [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou 510640 (China); Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou 510640 (China)

    2010-12-15

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  20. Nano-scale spinning detonation in a condensed phase energetic material

    International Nuclear Information System (INIS)

    A single-headed spinning detonation wave is observed in molecular dynamics simulations of a condensed phase detonation of an energetic material confined to a round tube. The EM is modeled using a modified AB reactive empirical bond order (REBO) potential. The simulated spinning detonation is similar to those observed in the gas phase. However, in addition to the incident, oblique, and transverse shock waves well known from gas-phase spinning detonations, a contact shock wave generated by a contact discontinuity is uncovered in our MD simulations.

  1. A Review On Free Cooling Through Heat Pipe by Using Phase Change Materials

    Directory of Open Access Journals (Sweden)

    A.S.Futane ,

    2011-06-01

    Full Text Available Thermal energy storage is renewable source of energy to develop energy storage system, which minimize environmental impact such as ozone depletion and global warming. Thermal energy can be stored as latent heat which is latter use when substance changes from one phase to another phase by either freezing or melting. Now a days need of refrigeration and air conditioning has been increased, which can be achieved by free cooling, for this various substances are use, depending upon required temperature. Phase change materials are one of the substances having low temperature of melting and solidification.

  2. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  3. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    Science.gov (United States)

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J.

    2016-05-01

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  4. Intergranular and inter-phased boundaries in the materials; Joints intergranulaires et interphases dans les materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, A. [Electricite de France, Dept. CIMA, 77 - Moret sur Loing (France); Backhaus-Ricoult, M. [Centre d' Etudes de Chimie metallurgique, 94 - Vitry-sur-Seine (France); Bayle-Guillemaud, P. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)] [and others

    2000-07-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  5. RIMS International Conference : Mathematical Challenges in a New Phase of Materials Science

    CERN Document Server

    Kotani, Motoko

    2016-01-01

    This volume comprises eight papers delivered at the RIMS International Conference "Mathematical Challenges in a New Phase of Materials Science", Kyoto, August 4–8, 2014. The contributions address subjects in defect dynamics, negatively curved carbon crystal, topological analysis of di-block copolymers, persistence modules, and fracture dynamics. These papers highlight the strong interaction between mathematics and materials science and also reflect the activity of WPI-AIMR at Tohoku University, in which collaborations between mathematicians and experimentalists are actively ongoing.

  6. Nanoscale Phase Immiscibility in High-ZT Bulk Lead Telluride Thermoelectric Materials

    Science.gov (United States)

    Girard, Steven Neal

    Renewable energy initiatives have increased interest in thermoelectric materials as an option for inexpensive and environmentally friendly waste heat-to-power generation. Unfortunately, low efficiencies have limited their wide-scale utilization. This work describes the synthesis and characterization of bulk nanostructured thermoelectric materials wherein natural phase immiscibility is manipulated to selectively generate nanoscale inclusions of a second phase that improve their efficiency through reductions in lattice thermal conductivity. The PbTe-PbS system exhibits natural phase separation by nucleation and growth or spinodal decomposition phase transformations depending on composition and temperature treatment. Through rapid quenching, nearly ideal solid solution alloys of PbTe-PbS are observed by powder X-ray diffraction. However, characterization by solid-state NMR and IR reflectivity show that solid solutions are obtained for rapidly quenched samples within the nucleation and growth region of the phase diagram, but samples within the spinodal decomposition region exhibit very slight phase immiscibility. We report the temperatures of phase separation using high temperature powder X-ray diffraction. Microscopy reveals that phase separation in PbTe-PbS naturally produces nanoinclusions. A decrease in lattice thermal conductivity is observed as a result of the solid solution-to-nanostructured phase transformation in this materials system, increasing thermoelectric figure of merit. Sn addition to PbTe-PbS produces a pseudobinary system of PbTe-PbSnS 2. This materials system produces microscale lamellae that effectively reduce lattice thermal conductivity. Unfortunately, the PbSnS2 inclusions also scatter electrons, reducing electrical conductivity and producing only a minimal increase in thermoelectric figure of merit. We additionally investigate PbSnS2 as prepared through Bridgman crystal growth. PbTe-PbS doped with Na appears to increase the kinetic rate of

  7. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  8. Analysis of Phase Separation in High Performance PbTe–PbS Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Steven N. [Northwestern University; Schmidt-Rohr, Klaus [Ames Laboratory; Chasapis, Thomas C. [Northwestern University; Hatzikraniotis, Euripides [Aristotle University of Thessaloniki; Njegic, B. [Ames Laboratory; Levin, E. M. [Ames Laboratory; Rawal, A. [Ames Laboratory; Paraskevopoulos, Konstantios M. [Aristotle University of Thessaloniki; Kanatzidis, Mercouri G. [Northwestern University

    2013-02-11

    Phase immiscibility in PbTe–based thermoelectric materials is an effective means of top-down synthesis of nanostructured composites exhibiting low lattice thermal conductivities. PbTe1-x Sx thermoelectric materials can be synthesized as metastable solid solution alloys through rapid quenching. Subsequent post-annealing induces phase separation at the nanometer scale, producing nanostructures that increase phonon scattering and reduce lattice thermal conductivity. However, there has yet to be any study investigating in detail the local chemical structure of both the solid solution and nanostructured variants of this material system. Herein, quenched and annealed (i.e., solid solution and phase-separated) samples of PbTe–PbS are analyzed by in situ high-resolution synchrotron powder X-ray diffraction, solid-state 125Te nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy analysis. For high concentrations of PbS in PbTe, e.g., x >16%, NMR and IR analyses reveal that rapidly quenched samples exhibit incipient phase separation that is not detected by state-of-the-art synchrotron X-ray diffraction, providing an example of a PbTe thermoelectric “alloy” that is in fact phase inhomogeneous. Thermally-induced PbS phase separation in PbTe–PbS occurs close to 200 °C for all compositions studied, and the solubility of the PbS phase in PbTe at elevated temperatures >500 °C is reported. The findings of this study suggest that there may be a large number of thermoelectric alloy systems that are phase inhomogeneous or nanostructured despite adherence to Vegard's Law of alloys, highlighting the importance of careful chemical characterization to differentiate between thermoelectric alloys and composites.

  9. LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Fluss, M

    2008-12-19

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  10. Study of ZrO2 nanopowders based stearic acid phase change materials

    Institute of Scientific and Technical Information of China (English)

    Desheng Ai; Lizan Su; Zhe Gao; Changsheng Deng; Xiaming Dai

    2010-01-01

    ZrO2 nanopowders based stearic acid phase change materials(PCMs)were prepared by high-energy milling.The concept of heat capacity factor(HCF)was used to analyze the thermal properties of the materials.The heat storage property of PCMs,containing the same content of stearic acid(23% by mass)in the starting materials but synthesized by different technical processes,was investigated by using HCF.It was found that there were vast influences of different dispersants on the heat capacity.The samples prepared with chloroform provided the best heat storage ability in all samples tested.

  11. Micromechanical Analyses of Debonding and Matrix Cracking in Dual-Phase Materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Yang, Qingda

    2016-01-01

    Failure in elastic dual-phase materials under transverse tension is studied numerically. Cohesive zones represent failure along the interface and the augmented finite element method (A-FEM) is used for matrix cracking. Matrix cracks are formed at an angle of 55 deg - 60 deg relative to the loading...

  12. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating

    Science.gov (United States)

    Li, Yao; Duerloo, Karel-Alexander N.; Wauson, Kerry; Reed, Evan J.

    2016-01-01

    Dynamic control of conductivity and optical properties via atomic structure changes is of technological importance in information storage. Energy consumption considerations provide a driving force towards employing thin materials in devices. Monolayer transition metal dichalcogenides are nearly atomically thin materials that can exist in multiple crystal structures, each with distinct electrical properties. By developing new density functional-based methods, we discover that electrostatic gating device configurations have the potential to drive structural semiconductor-to-semimetal phase transitions in some monolayer transition metal dichalcogenides. Here we show that the semiconductor-to-semimetal phase transition in monolayer MoTe2 can be driven by a gate voltage of several volts with appropriate choice of dielectric. We find that the transition gate voltage can be reduced arbitrarily by alloying, for example, for MoxW1−xTe2 monolayers. Our findings identify a new physical mechanism, not existing in bulk materials, to dynamically control structural phase transitions in two-dimensional materials, enabling potential applications in phase-change electronic devices. PMID:26868916

  13. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    Science.gov (United States)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  14. Microscale Polymer Bottles Corked with a Phase-Change Material for Temperature-Controlled Release

    OpenAIRE

    Hyun, Dong Choon; Lu, Ping; Choi, Sang Il; Jeong, Unyong; Xia, Younan

    2013-01-01

    Keep your wine chilled! Microscale polymer bottles are loaded with dye molecules and then corked with a phase-change material (PCM). When temperature is raised beyond its melting point, the PCM quickly melt and trigger an instant release of the encapsulated dye. The release profiles can be manipulated by using a binary mixture of PCMs with different melting points.

  15. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...

  16. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating.

    Science.gov (United States)

    Li, Yao; Duerloo, Karel-Alexander N; Wauson, Kerry; Reed, Evan J

    2016-01-01

    Dynamic control of conductivity and optical properties via atomic structure changes is of technological importance in information storage. Energy consumption considerations provide a driving force towards employing thin materials in devices. Monolayer transition metal dichalcogenides are nearly atomically thin materials that can exist in multiple crystal structures, each with distinct electrical properties. By developing new density functional-based methods, we discover that electrostatic gating device configurations have the potential to drive structural semiconductor-to-semimetal phase transitions in some monolayer transition metal dichalcogenides. Here we show that the semiconductor-to-semimetal phase transition in monolayer MoTe2 can be driven by a gate voltage of several volts with appropriate choice of dielectric. We find that the transition gate voltage can be reduced arbitrarily by alloying, for example, for Mo(x)W(1-x)Te2 monolayers. Our findings identify a new physical mechanism, not existing in bulk materials, to dynamically control structural phase transitions in two-dimensional materials, enabling potential applications in phase-change electronic devices.

  17. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating

    Science.gov (United States)

    Li, Yao; Duerloo, Karel-Alexander N.; Wauson, Kerry; Reed, Evan J.

    2016-02-01

    Dynamic control of conductivity and optical properties via atomic structure changes is of technological importance in information storage. Energy consumption considerations provide a driving force towards employing thin materials in devices. Monolayer transition metal dichalcogenides are nearly atomically thin materials that can exist in multiple crystal structures, each with distinct electrical properties. By developing new density functional-based methods, we discover that electrostatic gating device configurations have the potential to drive structural semiconductor-to-semimetal phase transitions in some monolayer transition metal dichalcogenides. Here we show that the semiconductor-to-semimetal phase transition in monolayer MoTe2 can be driven by a gate voltage of several volts with appropriate choice of dielectric. We find that the transition gate voltage can be reduced arbitrarily by alloying, for example, for MoxW1-xTe2 monolayers. Our findings identify a new physical mechanism, not existing in bulk materials, to dynamically control structural phase transitions in two-dimensional materials, enabling potential applications in phase-change electronic devices.

  18. X-Ray Diffraction Phase Analyses for Granulated and Sintered Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Suminar Pratapa

    2007-11-01

    Full Text Available One basic problematic aspect in x-ray diffraction phase analysis is microabsorption effect which may arise from the size of the crystallite phases. Complication of the problem may intensify in sintered ceramic materials where milling of the samples is not simple. We report the Rietveld x-ray diffraction phase analysis of MgO-α-Al2O3 powder mixtures with phase content ratio of 1:1 by weight and MgO-Y2O3 sintered ceramic composites with Y2O3 contents of 10%, 20% and 30% by weight. The mixtures were pre-sintered at 1000°C for 2 hours and then milled while the composites were sintered at 1550°C for 3 hours. The phase composition analysis was done using Rietica, a non-commercial Rietveld method-based software. Relative and absolute phase compositions were examined and results showed that there was a significant amount of phase composition bias resulted from the examination. For the powder mixture, milling can reduce microabsorption effect and hence the calculation bias. For the ceramic composite where milling is almost impossible, additional of Y2O3 caused smaller crystallite size of MgO, so that composition bias is smaller in composites with higher Y2O3 content. A mathematical model is proposed to provide more acceptable phase composition results.

  19. Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material

    Science.gov (United States)

    Li, H.; Pei, J.; Shi, L. P.

    2016-10-01

    Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.

  20. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  1. High-field electrical transport in amorphous phase-change materials

    Science.gov (United States)

    Kaes, Matthias; Le Gallo, Manuel; Sebastian, Abu; Salinga, Martin; Krebs, Daniel

    2015-10-01

    Electrical transport in chalcogenide-based phase change materials is an active area of research owing to the prominent role played by these materials in the field of information technology. Here, we present transport measurements (IV curves) obtained on line-cells of as-deposited amorphous phase change materials (Ge2Sb2Te5, GeTe, Ag4In3Sb66Te27) over a wide voltage and temperature range (300 K to 160 K). The well defined geometry of our devices enables a description of the transport behavior in terms of conductivity vs. electric field. At higher temperatures (300 K ≥ T ≥ 220 K) and low to intermediate fields (F behavior quantitatively.

  2. Si1Sb2Te3 phase change material for chalcogenide random access memory

    Institute of Scientific and Technical Information of China (English)

    Zhang Ting; Song Zhi-Tang; Liu Bo; Liu Wei-Li; Feng Song-Lin; Chen Bomy

    2007-01-01

    This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory.Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase.The film holds a threshold current about 0.155 mA,which is smaller than the value 0.31 mA of Ge2Sb2Te5 film.Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at~180°C and changes to hexagonal structure at~270°C.Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method.Data retention of the films was characterized as well.

  3. High Temperature Phase Transitions in NaxCoO2 Materials

    Institute of Scientific and Technical Information of China (English)

    NIE Chang-Jiang; YANG Huai-Xin; SHI You-Guo; LI Jian-Qi

    2006-01-01

    Structural and thermal transitions in the materials with nominal compositions of NaxCoO2 (0.5≤x≤0.75) have been investigated from room temperature to 800 K. In-situ heating transmission electron microscopy observations revealed certain distinctive structural phase transitions commonly existing in this system. A superstructure hexagonal phase, proposed arising from partial Na ordering, appears in this system in a high temperature range. The structural model for the superstructure phase has been given. Measurements of thermogravimetry (TG) and differential thermal analysis (DTA) demonstrated that certain structural phase transitions appear around 430 K. NaxCoO2 is decomposed at a temperature higher than 600 K.

  4. Processing And Properties Of MAX Phases – Based Materials Using SHS Technique

    Directory of Open Access Journals (Sweden)

    Chlubny L.

    2015-06-01

    Full Text Available Authors present results of works on the interesting new group of advanced ceramics called MAX phases – Ti-based ternary carbides and nitrides. They have an original layered structure involved highly anisotropic properties laying between ceramics and metals, with high elastic modulus, low hardness, very high fracture toughness and high electrical and heat conductivity. Using Self-Propagating High-Temperature Synthesis (SHS in the combustion regime it is possible to prepare MAX phases-rich powders that can be used as the precursors for preparation of dense MAX polycrystals by presureless sintering or hot-pressing. Different novel Ti-based phases with layered structures, namely: Ti3AlC2 and Ti2AlC have been synthesized in a combustion regime. The possibility of controlling of combustion phenomena for obtaining near single-phase products is discussed in details as well as some of properties of the materials tested as structure and functional ceramics.

  5. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    Directory of Open Access Journals (Sweden)

    Ondrej Dyck

    2015-11-01

    Full Text Available Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. This paper outlines the application of two electron energy-loss spectroscopic (EELS imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM, is quantitatively mapped across a sample cross section. A complementary spectrum image capturing the carbon and sulfur core loss edges is compared with the plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.

  6. A hybrid phenomenological model for ferroelectroelastic ceramics. Part I: Single phased materials

    Science.gov (United States)

    Stark, S.; Neumeister, P.; Balke, H.

    2016-10-01

    In this part I of a two part series, a rate-independent hybrid phenomenological constitutive model applicable for single phased polycrystalline ferroelectroelastic ceramics is presented. The term "hybrid" refers to the fact that features from macroscopic phenomenological models and micro-electromechanical phenomenological models are combined. In particular, functional forms for a switching function and the Helmholtz free energy are assumed as in many macroscopic phenomenological models; and the volume fractions of domain variants are used to describe the internal material state, which is a key feature of micro-electromechanical phenomenological models. The approach described in this paper is an attempt to combine the advantages of macroscopic and micro-electromechanical material models. Its potential is demonstrated by comparison with experimental data for barium titanate. Finally, it is shown that the model for single phased materials cannot reproduce the material behavior of morphotropic PZT ceramics based on a realistic choice for the material parameters. This serves as a motivation for part II of the series, which deals with the modeling of morphotropic PZT ceramics taking into account the micro-structural specifics of these materials.

  7. A new analytical model for thermal stresses in multi-phase materials and lifetime prediction methods

    Institute of Scientific and Technical Information of China (English)

    Ladislav Ceniga

    2008-01-01

    Based on the fundamental equations of the mechanics of solid continuum, the paper employs an ana-lytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimen-sions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)-matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase mate-rials. As functions of the particle volume fraction v, the inter-particle distances d1, d2, d3 along three mutually per-pendicular axes, and the particle and envelope radii, R1 and Re, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep-resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials.

  8. Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage

    International Nuclear Information System (INIS)

    Three kinds of macro-encapsulated phase change materials (MacroPCMs) were fabricated, i.e., MacroPCMs with a single core–shell structure, MacroPCMs containing microencapsulated phase change materials (MicroPCMs), and composite macrocapsules of MicroPCMs/expanded graphite prepared by suspension-like polymerization followed by a piercing–solidifying incuber process. The morphology, microstructure, phase change property, as well as seal tightness were systematically characterized by field emission scanning electron microscope (FESEM), differential scanning calorimetry (DSC), and energy dispersive X-ray spectrometer (EDS). The core–shell structured macrocapsules exhibit a homogeneous thickness shell. The interface combination between MicroPCMs and polymer substrate was studied through the cross section micrograph of MacroPCMs containing MicroPCMs. The morphology and seal tightness of MacroPCMs fabricated with expanded graphite absorbing both PCMs and shell-forming monomers, enhanced significantly compared with that of PCMs alone. In addition, the effects of polymer substrate proportion between styrene-maleic anhydride copolymer and sodium alginate on the microstructure and performance of MacroPCMs were discussed as well. - Highlights: • MacroPCMs with single core–shell structure. • MacroPCMs containing acrylic-based copolymer MicroPCMs. • Phase change materials/expanded graphite composite macrocapsule

  9. A Super Cooled, Non-toxic, Non-flammable Phase Change Material Thermal Pack for Portable Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept development and test of a water-based, advanced Phase Change Material (PCM) heat sink is proposed. Utilizing a novel material choice for both an...

  10. A Super Cooled, Non-toxic, Non-flammable Phase Change Material Thermal Pack for Portable Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The continuation of concept development and test of a water-based, advanced Phase Change Material (PCM) heat sink is proposed. Utilizing a novel material choice for...

  11. Effect of water-ice phase change on thermal performance of building materials

    Science.gov (United States)

    Kočí, Václav; Černý, Robert

    2016-07-01

    The effect of water ice-phase change on thermal performance of integrated building material is investigated in this paper. As a characteristic construction, simple external wall made of aerated autoclaved concrete was assumed which was exposed to dynamic climatic condition of Šerák, Czech Republic. The computational modelling of hygrothermal performance was carried out using computer codes HEMOT and SIFEL that work on the basis of finite element method. The effect of phase change was taken into account by fixed-domain method, when experimentally determined effective specific heat capacity was used as a material parameter. It comprises also the effect of heat consumption and heat release that accompany the water-ice phase change. Comparing to the results with specific heat capacity, the effect of phase change on thermal performance could be quantified. The results showed that temperature fields can differ more than 6 °C. Additionally, the amount energy transported through the wall may be higher up to 4 %. This confirmed, that the effect water-ice phase change should be included in all the relevant energy calculations.

  12. Direct observation of titanium-centered octahedra in titanium-antimony-tellurium phase-change material.

    Science.gov (United States)

    Rao, Feng; Song, Zhitang; Cheng, Yan; Liu, Xiaosong; Xia, Mengjiao; Li, Wei; Ding, Keyuan; Feng, Xuefei; Zhu, Min; Feng, Songlin

    2015-11-27

    Phase-change memory based on Ti0.4Sb2Te3 material has one order of magnitude faster Set speed and as low as one-fifth of the Reset energy compared with the conventional Ge2Sb2Te5 based device. However, the phase-transition mechanism of the Ti0.4Sb2Te3 material remains inconclusive due to the lack of direct experimental evidence. Here we report a direct atom-by-atom chemical identification of titanium-centered octahedra in crystalline Ti0.4Sb2Te3 material with a state-of-the-art atomic mapping technology. Further, by using soft X-ray absorption spectroscopy and density function theory simulations, we identify in amorphous Ti0.4Sb2Te3 the titanium atoms preferably maintain the octahedral configuration. Our work may pave the way to more thorough understanding and tailoring of the nature of the Ti-Sb-Te material, for promoting the development of dynamic random access memory-like phase-change memory as an emerging storage-class memory to reform current memory hierarchy.

  13. Experimental investigation of performances of microcapsule phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Department of Material Science and Engineering, Nanjing University, Nanjing (China); Liu, X.; Wu, S. [Department of Physics, Nanjing University, Nanjing (China); Fang, G.

    2010-02-15

    Performances of microcapsule phase change material (MPCM) for thermal energy storage are investigated. The MPCM for thermal energy storage is prepared by a complex coacervation method with gelatin and acacia as wall materials and paraffin as core material in an emulsion system. A scanning electron microscope (SEM) was used to study the microstructure of the MPCM. In thermal analysis, a differential scanning calorimeter (DSC) was employed to determine the melting temperature, melting latent heat, solidification temperature, and solidification latent heat of the MPCM for thermal energy storage. The SEM micrograph indicates that the MPCM has been successfully synthesized and that the particle size of the MPCM is about 81 {mu}m. The DSC output results show that the melting temperature of the MPCM is 52.05 C, the melting latent heat is 141.03 kJ/kg, the solidification temperature is 59.68 C, and the solidification latent heat is 121.59 kJ/kg. The results prove that the MPCM for thermal energy storage has a larger phase change latent heat and suitable phase change temperature, so it can be considered as an efficient thermal energy storage material for heat utilizing systems. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. On the Inhibition of Linear Absorption in Opaque Materials Using Phase-Locked Harmonic Generation

    CERN Document Server

    Centini, Marco; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-01-01

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second and third harmonic generation in strongly absorbing materials, GaAs in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300nm generates 650nm and 435nm second and third harmonic pulses that propagate across a 450 micron-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress them with its dispersive properties.

  15. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  16. Characteristics of temporal- spatial parameters in quasi- solid-fluid phase transition of granular materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The quasi-solid-fluid phase transition of granular materials is closely related to the shear rate and solid concentration in addition to their intrinsic properties. The contact duration and the coordination number are two important temporal-spatial parameters to describe the granular interaction in phase transition. In this study, characteristics of the contact duration and the coordination number associated with the transition processes are determined using a 3D discrete element model under different shear rates and concentrations. The resulting macroscopic stress and strain-rate relations are discussed. The temporal and spatial parameters provide a linkage between the macroscopic constitutive law and inter- particle micromechanics.

  17. Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.

    Science.gov (United States)

    Gallais, Laurent; Monneret, Serge

    2016-07-15

    We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating. PMID:27420506

  18. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials.

    Science.gov (United States)

    Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2016-05-01

    A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials. PMID:27059403

  19. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    KAUST Repository

    Tipton, William W.

    2013-05-28

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase. © 2013 American Physical Society.

  20. Performance improvement of Sb2Te3 phase change material by Al doping

    International Nuclear Information System (INIS)

    Al doped Sb2Te3 material was proposed to improve the performance of phase-change memory. Crystallization temperature, activation energy, and electrical resistance of the Al doped Sb2Te3 films increase markedly with the increasing of Al concentration. The additional Al-Sb and Al-Te bonds enhance the amorphous thermal stability of the material. Al0.69Sb2Te3 material has a better data retention (10 years at 110 deg. C) than that of Ge2Sb2Te5 material (10 years at 87 deg. C). With a 100 ns width voltage pulse, SET and RESET voltages of 1.3 and 3.3 V are achieved for the Al0.69Sb2Te3 based device.

  1. Mathematical Modeling and Simulations of Phase Change Materials in Basic Orthogonal Coordinate Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, Daniel; Dutil, Yvan; Ben Salah, Nizar; Lassue, Stephane

    2010-09-15

    Energy storage components improve the energy efficiency of systems by reducing the mismatch between supply and demand. Phase change materials are attractive since they provide a high energy storage density at constant temperatures. Nevertheless, the incorporation of such materials in a particular application often calls for numerical analyses due to the non-linear nature of the problem. The review of the mathematical models will include selected results to enable one to start his/her research with an exhaustive overview of the subject. This overview also stresses the need to match experimental investigations with recent numerical analyses.

  2. Hardening in Two-Phase Materials. II. Plastic Strain and Mean Stress Hardening Rate

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1977-01-01

    The strain parameters which are relevant in a tensile experiment, are analysed and related to the geometry of deformation and to the mean stress of two-phase materials. The hardening rate of the mean stress with respect to plastic strain is found to be useful in comparison between experiments...... and theories, and it allows theories to be probed over a range of strains. Previous experiments on the fibre-reinforced material of copper-tungsten are analysed in relation to the geometry of deformation....

  3. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D{sup +})-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m{sup 2}, 20 dpa/year for Fe) in a volume of 500 cm{sup 3} for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  4. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    International Nuclear Information System (INIS)

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D+)-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m2, 20 dpa/year for Fe) in a volume of 500 cm3 for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  5. Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Seiyed Mohammad Javad Hosseini

    2013-01-01

    Full Text Available This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05 on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

  6. Preparation and characterization of phase change material for thermal energy storage in buildings

    Science.gov (United States)

    Lo, Tommy Y.

    2016-04-01

    The paper presents the developing of novel form-stable composite phase change material (PCM) by incorporation of paraffin into lightweight aggregate through vacuum impregnation. The macro-encapsulated Paraffin-lightweight aggregate is a chemical compatible, thermal stable and thermal reliable PCM material for thermal energy storage applications in buildings. The 28 days compressive strength of NWAC using PCM-LWA is 33 - 53 MPa, which has an opportunity for structural purpose. Scanning electronic microscopic images indicated the paraffin can be held inside the porous structure of the aggregate. Thermal performance test showed that the cement paste panel with composite PCM can reduce the indoor temperature.

  7. Application of charge-dissipation material in MEBES phase-shift mask fabrication

    Science.gov (United States)

    Tan, Zoilo C. H.; Sauer, Charles A.

    1994-12-01

    Several charge dissipation materials were evaluated for their ability to improve the overlay accuracy during phase shift mask (PSM) registered writing on a MEBES system. These included an organic conductive polymer and a number of thin inorganic films, which were applied above or below the resist on a coated mask. When used with the resists, all conductive materials evaluated were capable of providing adequate charge dissipation during registered writing. Overlay accuracy of mean + 3 sigma EQ 0.07 micrometers was obtained in both axes. The water-cast conductive polymer was found to be the easiest to use.

  8. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  9. Wettability in the liquid Cu-Ag alloy – fireproof material – gas phase system

    Directory of Open Access Journals (Sweden)

    G. Siwiec

    2013-07-01

    Full Text Available In the present paper, results of wettability studies on the liquid metal – fireproof material – gas phase system using copper and Cu-Ag alloys as well as typical fireproof materials, i.e. aluminium oxide, magnesium oxide and graphite, are presented. Contact angle measurements were conducted at 1 373–1 573 K by means of a high-temperature microscope coupled with a camera and a computer equipped with a program for recording and analysing images. For the measurements, the sessile drop method was used.

  10. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Directory of Open Access Journals (Sweden)

    Halúzová Dušana

    2015-06-01

    Full Text Available For many years Phase Change Materials (PCM have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called “twin-boxes”. The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  11. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials

    CERN Document Server

    Rudé, Miquel; Cetin, Arif E; Miller, Timothy A; Carrilero, Albert; Wall, Simon; de Abajo, F Javier García; Altug, Hatice; Pruneri, Valerio

    2015-01-01

    The phenomenon of extraordinary optical transmission {EOT} through arrays of nanoholes patterned in a metallic film has emerged as a promising tool for a wide range of applications, including photovoltaics, nonlinear optics, and sensing. Designs and methods enabling the dynamic tuning of the optical resonances of these structures are essential to build efficient optical devices, including modulators, switches, filters, and biosensors. However, the efficient combination of EOT and dynamic tuning remains a challenge, mainly because of the lack of materials that can induce modulation over a broad spectral range at high speeds. Here, we demonstrate tuneable resonance wavelength shifts as large as 385 nm - an order of magnitude higher than previously reported - through the combination of phase change materials {PCMs}, which exhibit dramatic variations in optical properties upon transitions between amorphous and crystalline phases, with properly designed subwavelength nanohole metallic arrays. We further find throu...

  12. Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials

    CERN Document Server

    Guichard, Stéphane; Bigot, Dimitri; Malet-Damour, Bruno; Libelle, Teddy; Boyer, Harry

    2015-01-01

    This paper deals with the empirical validation of a building thermal model using a phase change material (PCM) in a complex roof. A mathematical model dedicated to phase change materials based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase understanding of the thermal behavior of the whole building with PCM technologies. To empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model have been identified for optimization. The use of a generic optimization program called GenOpt coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons o...

  13. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    Science.gov (United States)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  14. Designing room-temperature multiferroic materials in a single-phase solid-solution film

    Science.gov (United States)

    Mao, H. J.; Song, C.; Cui, B.; Peng, J. J.; Li, F.; Xiao, L. R.; Pan, F.

    2016-09-01

    The search for multiferroic materials with simultaneous ferroelectric and ferromagnetic properties in a single phase at room temperature continues to be fuelled from the perspective of developing multifunctional devices. Here we design a single-phase multiferroic La0.67Sr0.33MnO3-BaTiO3 film, which possesses epitaxial single-crystal and solid-solution structure, high magnetic Curie temperature (~640 K) as well as switchable ferroelectric polarization. Moreover, a notable strain-mediated magnetoelectric coupling at room temperature in the way of modulating the magnetism with an external applied voltage is also observed. The synthetic solid-solution multiferroic film may open an extraordinary avenue for exploring a series of room-temperature multiferroic materials.

  15. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    DEFF Research Database (Denmark)

    Poppendieck, D.G.; Hubbard, H.F.; Weschler, Charles J.;

    2007-01-01

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction...... of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone...... at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged...

  16. High Temperature Phase Change Materials for Thermal Energy Storage Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J.; Glatzmaier, G. C.; Starace, A.; Turchi, C.; Ortega, J.

    2011-08-01

    To store thermal energy, sensible and latent heat storage materials are widely used. Latent heat thermal energy storage (TES) systems using phase change materials (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation. Molten salt PCM candidates for cascaded PCMs were evaluated for the temperatures near 320 degrees C, 350 degrees C, and 380 degrees C. These temperatures were selected to fill the 300 degrees C to 400 degrees C operating range typical for parabolic trough systems, that is, as one might employ in three-PCM cascaded thermal storage. Based on the results, the best candidate for temperatures near 320 degrees C was the molten salt KNO3-4.5wt%KCl. For the 350 degrees C and 380 degrees C temperatures, the evaluated molten salts are not good candidates because of the corrosiveness and the high vapor pressure of the chlorides.

  17. Heat Transfer Modeling of Phase Change Materials in Multiple Plates Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Alipanah

    2013-12-01

    Full Text Available Nowadays, given the increasing importance of energy sources, the possibility of energy storage in the heat exchangers through the Phase Change Materials (PCM and releasing it when needed have been extremely essential. This study seeks to model the domestic water heat system in which the paraffin is as the phase change material and it stores the solar energy. The behavior of a PCM plate was studied by writing the governing equations and solving them as the one-dimensional, implicit method and through numerical calculation of the method equations. Given the confirmed accuracy of performed modeling by the results of similar studies for the complete melting and solidification of PCM, the application of this system seems appropriate for the solar domestic water heaters.

  18. Using multi-shell phase change materials layers for cooling a lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Nasehi Ramin

    2016-01-01

    Full Text Available One of the cooling methods in engineering systems is usage of phase change materials. Phase change materials or PCMs, which have high latent heats, are usually used where high energy absorption in a constant temperature is required. This work presents a numerical analysis of PCMs effects on cooling Li-ion batteries and their decrease in temperature levels during intense discharge. In this study, three PCM shells with different thermo-physical specifications located around a battery pack is examined. The results of each possible arrangement are compared together and the best arrangement leading to the lowest battery temperature during discharge is identified. In addition, the recovery time for the system which is the time required for the PCMs to refreeze is investigated.

  19. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    OpenAIRE

    Yoon-Bok Seong; Jae-Han Lim

    2013-01-01

    Phase change materials (PCMs) have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC) energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each...

  20. Increasing thermal mass in lightweight dwellings using phase change materials – a literature review

    OpenAIRE

    Fraser, Minnie

    2009-01-01

    The number of houses of lightweight timber or steel frame construction being built over recent years has increased significantly. These buildings have low thermal mass and may be subject to large temperature fluctuations and particular overheating during the summer and this problem is set to get worse with the changing climate. Researchers have been investigating the use of PCMs (phase change materials) for improving thermal mass in lightweight buildings and found them to be effective. Howeve...

  1. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM)

    OpenAIRE

    Miqdam T. Chaichan; Hussein A Kazem

    2015-01-01

    This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temp...

  2. Fashion and function: challenges faced by textiles incorporated with phase change materials

    OpenAIRE

    Gao, Chuansi

    2014-01-01

    Designers focus on fashion and appearance, whereas safety and protection engineers and physiologists emphasize functions in terms of developing functional and protective clothing. Phase change materials (PCMs) have been used in textiles and clothing to achieve cooling or warming function. The objective of this paper was to compare effectiveness of PCM cooling or warming determined by critical factors. Cooling or warming effectiveness and duration were directly dependent on physical activity l...

  3. Influence of Phase Transition of Starting Materials on Growth of GaN Nanomaterials by CVD

    Institute of Scientific and Technical Information of China (English)

    ZHAO Mei; CHEN Xiao-Long; WANG Wen-Jun; ZHANG Zhi-Hua; XU Yan-Ping

    2007-01-01

    @@ Ground by mechanical ball milling under certain conditions,β-Ga2O3 powders can transit to ε-Ga2O3 ones. As starting materials, Ga2O3 powders treated by different methods are used to prepare GaN nanomaterials. It is found that the morphologies of GaN nanomaterials are quite different due to the phase transition of Ga2O3 from β-Ga2O3 to ε-Ga2O3.

  4. Latent heat storage with tubular-encapsulated phase change materials (PCMs)

    OpenAIRE

    Zhang, Huili; Degrève, Jan; Caceres, Gustavo; R. Segal; Pitie, Fred; Baeyens, Jan

    2014-01-01

    Heat capture and storage is important in both solar energy projects and in the recovery of waste heat from industrial processes. Whereas heat capture will mostly rely on the use of a heat carrier, the high efficiency heat storage needs to combine sensible and latent heat storage with phase change materials (PCMs) to provide a high energy density storage. The present paper briefly reviews energy developments and storage techniques, with special emphasis on thermal energy storage and the use of...

  5. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    OpenAIRE

    Mukhopadhyay, S.; Sun, J.; A. Subedi; Siegrist, T.; Singh, D.

    2016-01-01

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in...

  6. Field Testing of Low-Cost Bio-Based Phase Change Material

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

    2013-03-01

    A test wall built with phase change material (PCM)-enhanced loose-fill cavity insulation was monitored for a period of about a year in the warm-humid climate of Charleston, South Carolina. The test wall was divided into various sections, one of which contained only loose-fill insulation and served as a control for comparing and evaluating the wall sections with the PCM-enhanced insulation. This report summarizes the findings of the field test.

  7. Phase-change material-based nanoantennas with tunable radiation patterns.

    Science.gov (United States)

    Alaee, R; Albooyeh, M; Tretyakov, S; Rockstuhl, C

    2016-09-01

    We suggest a novel switchable plasmonic dipole nanoantenna operating at mid-infrared frequencies that exploits phase-change materials. We show that the induced dipole moments of a nanoantenna, where a germanium antimony telluride (Ge3Sb2Te6 or GST for short) nanopatch acts as a spacer between two coupled metallic nanopatches, can be controlled in a disruptive sense. By switching GST between its crystalline and amorphous phases, the nanoantenna can exhibit either an electric or a balanced magneto-electric dipole-like radiation. While the former radiation pattern is omnidirectional, the latter is directive. Based on this property exciting switching devices can be perceived, such as a metasurface whose functionality can be switched between an absorber and a reflector. The switching between stable amorphous and crystalline phases occurs on timescales of nanoseconds and can be achieved by an electrical or optical pulse. PMID:27607982

  8. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Harry Keo [Univ. of California, Davis, CA (United States)

    2008-07-11

    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed

  9. Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB)

    International Nuclear Information System (INIS)

    Highlights: • Phase change material boards (PCMBs) were simulated in building enclosures. • Energy and economic savings for these buildings were estimated. • The buildings were located in five cities with different climatic conditions. • The energy savings ratio was 100% when a cold energy source was used. • A mean electricity savings ratio of 13.1% was obtained. - Abstract: This paper presents energy and economic analyses related to the application of phase change materials boards (PCMBs) in building enclosures during the cooling season. A heat transfer model was developed, which was implemented via a computer program. Simulations were carried out using weather data files from five cities located in five different climate regions in China. Energy savings from using a natural cold source (e.g., outdoor air) and electricity savings from a reduction in electricity by air conditioning systems were evaluated. The energy savings ratio (ESR) and simple payback period (SPP) were used to assess the application of PCMBs in building enclosures. The selection of optimum phase transition temperatures for the PCMs for the various climates was made using indoor and outdoor air temperatures, as well as SPP. For space cooling purposes, it was suggested that phase transition temperatures should be at least 3 °C higher than the mean outdoor air temperature. Simple payback period suggested the possibility of the cost effective use of PCMBs in occupied buildings for moderate temperature climates

  10. Antioxidant-Based Phase-Change Thermal Interface Materials with High Thermal Stability

    Science.gov (United States)

    Aoyagi, Yasuhiro; Chung, D. D. L.

    2008-04-01

    This work provides phase-change thermal interface materials (TIMs) with high thermal stability and high heat of fusion. They are based on antioxidants mainly in the form of hydrocarbons with linear segments. The thermal stability is superior to paraffin wax and four commercial phase-change materials (PCMs). The use of 98.0 wt.% thiopropionate antioxidant (SUMILIZER TP-D) with 2.0 wt.% sterically half-hindered phenolic antioxidant (GA80) as the matrix and the use of 16 vol.% boron nitride particles as the solid component give a PCM with a 100°C lifetime indicator of 5.3 years, in contrast to 0.95 year or less for the commercial PCMs. The heat of fusion is much higher than those of commercial PCMs; the values for antioxidants with nonbranched molecular structures exceed that of wax; the value for one with a branched structure is slightly below that of wax. The phase-change properties are degraded by heating at 150°C much less than those of the commercial PCMs. The stability of the heat of fusion upon phase-change cycling is also superior. The viscosity is essentially unaffected by heating at 150°C. Commercial PCMs give slightly lower values of the thermal contact conductance for the case of rough (12 μm) mating surfaces, in spite of the lower values of the bond-line thickness.

  11. Numerical analysis of phase change materials for thermal control of power battery of high power dissipations

    Science.gov (United States)

    Xia, X.; Zhang, H. Y.; Deng, Y. C.

    2016-08-01

    Solid-fluid phase change materials have been of increasing interest in various applications due to their high latent heat with minimum volume change. In this work, numerical analysis of phase change materials is carried out for the purpose of thermal control of the cylindrical power battery cells for applications in electric vehicles. Uniform heat density is applied at the battery cell, which is surrounded by phase change material (PCM) of paraffin wax type and contained in a metal housing. A two-dimensional geometry model is considered due to the model symmetry. The effects of power densities, heat transfer coefficients and onset melting temperatures are examined for the battery temperature evolution. Temperature plateaus can be observed from the present numerical analysis for the pure PCM cases, with the temperature level depending on the power densities, heat transfer coefficients, and melting temperatures. In addition, the copper foam of high thermal conductivity is inserted into the copper foam to enhance the heat transfer. In the modeling, the local thermal non-equilibrium between the metal foam and the PCM is taken into account and the temperatures for the metal foam and PCM are obtained respectively.

  12. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management

    International Nuclear Information System (INIS)

    Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application

  13. Feasibility Research of Using Phase Change Materials to Reduce the Inner Temperature Rise of Mass Concrete

    Institute of Scientific and Technical Information of China (English)

    QIAN Chunxiang; GAO Guibo; HE Zhihai; LI Ruiyang

    2015-01-01

    In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition was measured. The effect of embedding phase change material (PCM) and replacing water with suspension of phase change material (SPCM) as cooling fluid were compared in the experiment. The cooling effect and the affecting factors were analyzed and calculated. The research results showed that the peak of inner temperature could be decreased obviously by the method of pre-embeding PCM in concrete, however, this method is only effective in the initial stage of cement hydration process. Besides, the volume of PCM is rather big and the PCM can not be used circularly, which means that this method can only be used under special condition and the feasibility is low. When SPCM was used as cooling lfuid, the interior temperature rise of mass concrete was reduced more effectively, and the temperature grads peak around the cooling pipe was also reduced. Besides, both the SPCM consumption amount and the circulation time were decreased, and most important is that the SPCM is recyclable. The technical and economical feasibility of using SPCM to reduce the inner temperature rise of mass concrete is high.

  14. The solidification of two-phase heterogeneous materials:Theory versus experiment

    Institute of Scientific and Technical Information of China (English)

    KIM; Tongbeum

    2009-01-01

    The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied.The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores.Experiments using distilled water simulating the aluminum melt to be solidified(frozen)were subsequently conducted to validate the analytical model for two selected porosities(ε),ε=0 and 0.5.Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification.The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores,as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.

  15. Thermal management of electronics using phase change material based pin fin heat sinks

    International Nuclear Information System (INIS)

    This paper reports the results of an experimental study carried out to explore the thermal characteristics of phase change material based heat sinks for electronic equipment cooling. The phase change material (PCM) used in this study is n – eicosane. All heat sinks used in the present study are made of aluminium with dimensions of 80 × 62 mm2 base with a height of 25 mm. Pin fins acts as the thermal conductivity enhancer (TCE) to improve the distribution of heat more uniformly as the thermal conductivity of the PCM is very low. A total of three different pin fin heat sink geometries with 33, 72 and 120 pin fins filled with phase change materials giving rise to 4%, 9% and 15% volume fractions of the TCE respectively were experimentally investigated. Baseline comparisons are done with a heat sink filled with PCM, without any fin. Studies are conducted for heat sinks on which a uniform heat load is applied at the bottom for the finned and unfinned cases. The effect of pin fins of different volume fractions with power levels ranging from 4 to 8 W corresponding to a heat flux range of 1. 59 to 3.17 kW/m2, was explored in this paper. The volume fraction of the PCM (PCM volume / (Total volume – fin volume)) is also varied as 0. 3, 0.6 and 1 to determine the effect of PCM volume on the overall performance of the electronic equipment.

  16. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  17. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    Science.gov (United States)

    Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor

  18. Numerical Model and Analysis of Peak Temperature Reduction in LiFePO4 Battery Packs Using Phase Change Materials

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials......Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials...

  19. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    Science.gov (United States)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  20. Materials information for science and technology (MIST): Project overview: Phases I and II and general considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grattidge, W.; Westbrook, J.; McCarthy, J.; Northrup, C. Jr.; Rumble, J. Jr.

    1986-01-01

    This report documents the initial phases of the Materials Information for Science and Technology (MIST) project jointly supported by the Department of Energy and the National Bureau of Standards. The purpose of MIST is to demonstrate the power and utility of computer access to materials property data. The initial goals include: to exercise the concept of a computer network of materials databases and to build a demonstration of such a system suitable for use as the core of operational systems in the future. Phases I and II are described in detail herein. In addition, a discussion is given of the expected usage of the system. The primary MIST prototype project is running on an IBM 3084 under STS at the Stanford University's Information Technology Services (ITS). Users can access the Stanford system via ARPANET, TELENET, and TYMNET, as well as via commercial telephone lines. For fastest response time and use of the full screen PRISM interface, direct connection using a 2400 baud modem with the MNP error-correcting protocol over standard telephone lines gives the best results - though slower speed connections and a line-oriented interface are also available. This report gives detailed plans regarding the properties to be enterend and the materials to be entered into the system.

  1. Investigating iron material strength during phase transitions using Rayleigh-Taylor growth measurements

    Science.gov (United States)

    Huntington, C. M.; Belof, J. L.; Blobaum, K. J. M.; Cavallo, R. M.; Kostinski, N.; Maddox, B. R.; May, M. J.; Plechaty, C.; Prisbrey, S. T.; Remington, B. A.; Rudd, R. E.; Swift, D. W.; Wallace, R. J.; Wilson, M. J.

    2015-06-01

    A solid-solid phase transition between the bcc (α) and hcp (ɛ) lattice structures in iron is known to occur as the material is compressed. When kept below its melting point, an effective increase in the macroscopic strength of the material accompanies this phase transition. Understanding the strength of iron throughout the deformation process is important for improving models of planetary structure, including interpretation of seismic measurements on Earth. To explore iron strength at high pressures and strain rates, we have performed experiments at the OMEGA laser. The laser drive produces a pressure near 1 Mbar on a thin Fe disk with a sinusoidal ripple pattern imposed on its face. The ripples seed the Rayleigh-Taylor (RT) instability, the growth of which is suppressed by the material strength of the sample. The ripple amplitude is diagnosed with x-ray radiography, and their growth is compared to values from simulations using different material strength models. This work will be compared to previous, similar experiments at 0.1 - 0.3 Mbar pressures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na- tional Laboratory under Contract DE-AC52-07NA27344.

  2. Diffusion-mediated nuclear spin phase decoherence in cylindrically porous materials

    Science.gov (United States)

    Knight, Michael J.; Kauppinen, Risto A.

    2016-08-01

    In NMR or MRI of complex materials, including biological tissues and porous materials, magnetic susceptibility differences within the material result in local magnetic field inhomogeneities, even if the applied magnetic field is homogeneous. Mobile nuclear spins move though the inhomogeneous field, by translational diffusion and other mechanisms, resulting in decoherence of nuclear spin phase more rapidly than transverse relaxation alone. The objective of this paper is to simulate this diffusion-mediated decoherence and demonstrate that it may substantially reduce coherence lifetimes of nuclear spin phase, in an anisotropic fashion. We do so using a model of cylindrical pores within an otherwise homogeneous material, and calculate the resulting magnetic field inhomogeneities. Our simulations show that diffusion-mediated decoherence in a system of parallel cylindrical pores is anisotropic, with coherence lifetime minimised when the array of cylindrical pores is perpendicular to B0. We also show that this anisotropy of coherence lifetime is reduced if the orientations of cylindrical pores are disordered within the system. In addition we characterise the dependence on B0, the magnetic susceptibility of the cylindrical pores relative to the surroundings, the diffusion coefficient and cylinder wall thickness. Our findings may aid in the interpretation of NMR and MRI relaxation data.

  3. Time-resolved lattice measurements of shock-induced phase transitions in polycrystalline materials

    Science.gov (United States)

    Milathianaki, Despina

    The response of materials under extreme temperature and pressure conditions is a topic of great significance because of its relevance in astrophysics, geophysics, and inertial confinement fusion. In recent years, environments exceeding several hundred gigapascals in pressure have been produced in the laboratory via laser-based dynamic loading techniques. Shock-loading is of particular interest as the shock provides a fiducial for measuring time-dependent processes in the lattice such as phase transitions. Time-resolved x-ray diffraction is the only technique that offers an insight into these shock-induced processes at the relevant spatial (atomic) and temporal scales. In this study, nanosecond resolution x-ray diffraction techniques were developed and implemented towards the study of shock-induced phase transitions in polycrystalline materials. More specifically, the capability of a focusing x-ray diffraction geometry in high-resolution in situ lattice measurements was demonstrated by probing shock-compressed Cu and amorphous metallic glass samples. In addition, simultaneous lattice and free surface velocity measurements of shock-compressed Mg in the ambient hexagonal close packed (hcp) and shock-induced body centered cubic (bcc) phases between 12 and 45 GPa were performed. These measurements revealed x-ray diffraction signals consistent with a compressed bcc lattice above a shock pressure of 26.2+/-1.3 GPa, thus capturing for the first time direct lattice evidence of a shock-induced hcp to bcc phase transition in Mg. Our measurement of the hcp-bcc phase boundary in Mg was found to be consistent with the calculated boundary from generalized pseudopotential theory in the pressure and temperature region intersected by the principal shock Hugoniot. Furthermore, the subnanosecond timescale of the phase transition implied by the shock-loading conditions was in agreement with the kinetics of a martensitic transformation. In conclusion, we report on the progress and

  4. A numerical study of latent thermal energy storage in a phase change material/carbon panel

    Science.gov (United States)

    Mekaddem, Najoua; Ali, Samia Ben; Mazioud, Atef; Hannachi, Ahmed

    2016-07-01

    To reduce the energetic dependence of building, it has become necessary to explore and develop new materials promoting energy conservation. Because of their high storage capacity, phase change materials (PCMs) are efficient to store thermal energy. In this paper, a 3D model was studied for simulation of energy storing cycles to predict the performances of PCM loaded panels. Carbon was used as supporting material for the PCM. The simulation was based on the enthalpy method using Ansys Fluent software. The panel was exposed to a daily heat flow including the effects of convection and radiation. The results show that the temperature decreased of approximately 2.5°C with a time shift about 2 hours. The steady state was reached after four cycles. Thus, after four cycles the PCM showed its effects on the temperature conditioning.

  5. Stability and corrosion testing of a high temperature phase change material for CSP applications

    Science.gov (United States)

    Liu, Ming; Bell, Stuart; Tay, Steven; Will, Geoffrey; Saman, Wasim; Bruno, Frank

    2016-05-01

    This paper presents the stability and corrosion testing results of a candidate high temperature phase change material (PCM) for potential use in concentrating solar power applications. The investigated PCM is a eutectic mixture of NaCl and Na2CO3 and both are low cost materials. This PCM has a melting temperature of 635 °C and a relatively high latent heat of fusion of 308.1 J/g. The testing was performed by means of an electric furnace subjected to 150 melt-freeze cycles between 600 °C and 650 °C. The results showed that this PCM candidate has no obvious decomposition up to 650 °C after 150 cycles and stainless steel 316 potentially can be used as the containment material under the minimized oxygen atmosphere.

  6. Phase field crystal study of nano-crack growth and branch in materials

    Science.gov (United States)

    Yingjun, Gao; Zhirong, Luo; Lilin, Huang; Hong, Mao; Chuanggao, Huang; Kui, Lin

    2016-06-01

    The phase field crystal (PFC) method is a new multiscale method, which can reproduce physical phenomena on an atomic level and on a diffusion time scale for the microstructure evolution of materials. The morphology of microcrack propagation and the branch of single crystal materials under tensile strain with a fixed grip condition are simulated by using PFC coupling with an external field method. The results show that microcrack propagation depends a lot on the applied strain. The crack starts to grow and branch when the strain reaches a critical value for biaxial tension. The temperature parameter may also have an effect on crack propagation and the branch. In order to indicate the connection between the PFC results and materials behavior, the energy balance approach is used to analyze the mechanism of crack extension, and also the critical value of the strain for crack extension is obtained. The simulated results are in good agreement with other simulation results and experimental results.

  7. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank

    International Nuclear Information System (INIS)

    Highlights: • Cold storage characteristics in latent and sensible heat storage mediums were studied. • Thermo-physical characterization of the phase change material was carried out. • A non-Newtonian shear thickening behavior of the phase change material was observed. • An energy storage enhancement (53%) was observed in the latent heat storage medium. - Abstract: In the present paper, the performance of a microencapsulated phase change material (in 45% w/w concentration) for low temperature thermal energy storage, suitable for air conditioning applications is studied. The results are compared to a sensible heat storage unit using water. Thermo-physical properties such as the specific heat, enthalpy variation, thermal conductivity and density are also experimentally determined. The non-Newtonian shear-thickening behavior of the phase change material slurry is quantified. Thermal energy performance is experimentally determined for a 100 l horizontal tank. The heat transfer between the heat transfer fluid and the phase change material was provided by a tube-bundle heat exchanger inside the tank. The results show that the amount of energy stored using the phase change material is 53% higher than for water after 10 h of charging, for the same storage tank volume. It was found that the heat transfer coefficient between the phase change material and the tube wall increases during the phase change temperature range, however it remains smaller than the values obtained for water

  8. A quaternary lead based perovskite structured materials with diffuse phase transition behavior

    International Nuclear Information System (INIS)

    Graphical abstract: (a) Curie–Weiss plot for the inverse of the relative dielectric permittivity and (b) log (1/ε − 1/εm) as function of log (T − Tm) for ceramics at 1 kHz. Highlights: ► Retaining phase pure structure with quaternary complex stoichiometric compositions. ► P–E loops with good saturation polarization (Ps ∼ 30.7 μC/cm2). ► Diffused relaxor phase transition behavior with γ estimated is ∼1.65. -- Abstract: A lead based quaternary compound composed of 0.25(PbZr0.52Ti0.48O3) + 0.25(PbFe0.5Ta0.5O3) + 0.25 (PbF0.67W0.33O3) + 0.25(PbFe0.5Nb0.5O3) – (PZT–PFT–PFW–PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature ∼261 K and other above ∼410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm–3 μm. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, Ps ∼ 30.68 μC/cm2) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT–PFT–PFW–PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/ε versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The compositional variation on the phase transition temperature, dielectric constant, and ferroelectric to paraelectric phase transitions are discussed.

  9. Heat Transfer Characteristics of Liquid-Gas Taylor Flows incorporating Microencapsulated Phase Change Materials

    Science.gov (United States)

    Howard, J. A.; Walsh, P. A.

    2014-07-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  10. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-04-15

    Purpose: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues. Methods: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n= 1 -{delta}+i {beta}. The real part of the refractive index, specifically the refractive index decrement ({delta}), over the energy range of 5-50 keV were determined using XOP software (version 2.3, European Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine {delta}. At each x-ray photon energy, the absolute percent difference in {delta} between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient {mu}, and hence {beta}, was considered to be best representative of that breast tissue. Results: Over the energy range of 5-50 keV, while the {delta} of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the {mu} of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the {delta} of BR10 and adipose tissue-equivalent material were within 1% of

  11. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage

    International Nuclear Information System (INIS)

    Highlights: • Review of organic phase change materials for thermal energy storage. • Review of the eutectic mixtures of organic PCMs. • Review of the techniques of PCM encapsulations and enhancing the thermal conductivity. • Applications of low and medium temperature organic PCMs are listed in detail. • Recommendations are made for future applications of organic PCMs. - Abstract: Thermal energy storage as sensible or latent heat is an efficient way to conserve the waste heat and excess energy available such as solar radiation. Storage of latent heat using organic phase change materials (PCMs) offers greater energy storage density over a marginal melting and freezing temperature difference in comparison to inorganic materials. These favorable characteristics of organic PCMs make them suitable in a wide range of applications. These materials and their eutectic mixtures have been successfully tested and implemented in many domestic and commercial applications such as, building, electronic devices, refrigeration and air-conditioning, solar air/water heating, textiles, automobiles, food, and space industries. This review focuses on three aspects: the materials, encapsulation and applications of organic PCMs, and provides an insight on the recent developments in applications of these materials. Organic PCMs have inherent characteristic of low thermal conductivity (0.15–0.35 W/m K), hence, a larger surface area is required to enhance the heat transfer rate. Therefore, attention is also given to the thermal conductivity enhancement of the materials, which helps to keep the area of the system to a minimum. Besides, various available techniques for material characterization have also been discussed. It has been found that a wide range of the applications of organic PCMs in buildings and other low and medium temperature solar energy applications are in abundant use but these materials are not yet popular among space applications and virtual data storage media. In

  12. Thermal analysis on organic phase change materials for heat storage applications

    Science.gov (United States)

    Lager, Daniel

    2016-07-01

    In this paper, methodologies based on thermal analysis to evaluate specific heat capacity, phase transition enthalpies, thermal cycling stability and thermal conductivity of organic phase change materials (PCMs) are discussed. Calibration routines for a disc type heat flow differential scanning calorimetry (hf-DSC) are compared and the applied heating rates are adapted due to the low thermal conductivity of the organic PCMs. An assessment of thermal conductivity measurements based on "Laser Flash Analysis" (LFA) and the "Transient Hot Bridge" method (THB) in solid and liquid state has been performed. It could be shown that a disc type hf-DSC is a useful method for measuring specific heat capacity, melting enthalpies and cycling stability of organic PCM if temperature and sensitivity calibration are adapted to the material and quantity to be measured. The LFA method shows repeatable and reproducible thermal diffusivity results in solid state and a high effort for sample preparation in comparison to THB in liquid state. Thermal conductivity results of the two applied methods show large deviations in liquid phase and have to be validated by further experiments.

  13. Numerical studies of integrated concrete with a solid-solid phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2007-07-01

    The thermal storage performance of concrete cement integrated with a hypothetical solid-solid phase change material (PCM) was investigated. The thermal storage material was exposed to solar radiation on a sunny winter day in Toronto. The effects of weight ratio of PCM to cement and the thickness of cement were studied. The integrated PCM cement compound was treated as a homogenous mixture with uniform physical and thermal properties. Finite element modelling (FEM) was used to determine the effective heat capacity method. Governing equations for the heat transfer process in the solid-liquid PCMs included Navier-Stokes equations; mass conservation equations; and the energy conservation equation. The energy equation was the only governing equation for the binary solid state PCMs. The enthalpy method was used to apply governing equations of PCMs over the whole fixed domain of interest. The total energy required for the phase change was determined using the enthalpy function. The simulations showed that PCMs can reduce the fluctuation of temperature. Temperature fluctuations on the upper surface varied mainly in amplitude and in time phase due to thermal storage effects. The total amount of solar gain increased when the PCM ratio increased. However, the effect of the PCM ratio on the amount of released energy became less apparent when the thickness of the PCM was increased. It was concluded that a 30 per cent PCM ratio contributed the maximum overall released energy after the radiation gain vanished. 8 refs., 3 tabs., 11 figs.

  14. Melting of a phase change material in a horizontal annulus with discrete heat sources

    Directory of Open Access Journals (Sweden)

    Mirzaei Hooshyar

    2015-01-01

    Full Text Available Phase change materials have found many industrial applications such as cooling of electronic devices and thermal energy storage. This paper investigates numerically the melting process of a phase change material in a two-dimensional horizontal annulus with different arrangements of two discrete heat sources. The sources are positioned on the inner cylinder of the annulus and assumed as constant-temperature boundary conditions. The remaining portion of the inner cylinder wall as well as the outer cylinder wall is considered to be insulated. The emphasis is mainly on the effects of the arrangement of the heat source pair on the fluid flow and heat transfer features. The governing equations are solved on a non-uniform O type mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid and liquid interface. The results are obtained at Ra=104 and presented in terms of streamlines, isotherms, melting phase front, liquid fraction and dimensionless heat flux. It is observed that, depending on the arrangement of heat sources, the liquid fraction increases both linearly and non-linearly with time but will slow down at the end of the melting process. It can also be concluded that proper arrangement of discrete heat sources has the great potential in improving the energy storage system. For instance, the arrangement C3 where the heat sources are located on the bottom part of the inner cylinder wall can expedite the melting process as compared to the other arrangements.

  15. Phase-contrast imaging using ultrafast x-rays in laser-shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Workman, Jonathan B [Los Alamos National Laboratory; Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk [Los Alamos National Laboratory; Gautier, Donald C [Los Alamos National Laboratory; Montgomery, David S [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory

    2010-01-01

    High-energy x-rays, > 10-keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in Inertial Confinement Fusion (ICF) and High-Energy Density Physics (HEDP). These same x-rays can also be applied to measurements of low-density materials inside high-density hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200-TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17-keV produced from 2-ps, 100-J laser interactions with a 12-micron molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1-mm thick polystyrene target using 2-ns, 250-J, 532-nm laser drive with phase plates. X-ray images of shocks compare well to 1-D hydro calculations, HELIOS-CR.

  16. CONTACT MATERIALS FOR GaSb AND InSb: A PHASE DIAGRAM APPROACH

    Institute of Scientific and Technical Information of China (English)

    K.W. Richter; H. Ipser

    2002-01-01

    The development of well defined and thermally stable ohmic contacts for Ⅲ- Ⅴ semi-conductors like InSb and GaSb is still a challenging problem in semiconductor devicetechnology. As device processing usually includes the exposure to elevated tempera-tures, interface reactions often occur during metallization and further heat treatment.It is thus important to understand the respective phase equilibria of the involved el-ements. From the thermodynamic point of view, binary and ternary compounds inequilibrium with the respective compound semiconductor would be the best choice forcontact materials as these contacts will be stable even after long exposure to elevatedtemperatures. These possible candidates for contact materials may be directly obtainedfrom the phase diagrams.During the last years we investigated several phase diagrams of transition metals withGaSb and InSb. Experimental results in the systems Ga-Ni-Sb, Ga-Pd-Sb, Ga-Pt-Sb,In-Ni-Sb and In-Pd-Sb are summarized and are discussed in the context of contactchemistry.

  17. Deuterium absorption and material phase characteristics of SAES St 198 Zr-Fe Alloy

    International Nuclear Information System (INIS)

    This document reports deuterium absorption and material phase characteristics of SAES St 198 Zr-Fe Alloy (76.5% Zr). Scanning electron microscope images of polished surfaces, electron probe microanalysis, and x-ray powder diffractometry indicated the presence of a primary Zr2Fe phase with secondary phases of ZrFe2, Zr5FeSn, α-Zr, and Zr6Fe3O. A statistically designed experiment to determine the effects of temperature, time, and vacuum quality on activation of St 198 revealed that, when activated at low temperature (350C), deuterium absorption rate was slower when the vacuum quality was poor (2.5 Pa vs. 3 x 10-4 Pa). However, at higher activation temperature (500C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200 to 500C. The P-C-T data over the full range of deuterium loading and at temperatures of 350C and below is described an expression. At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D2 from the gas phase. X-ray diffraction and other data suggest these reactions to be: 2 Zr2FeDx → xZrD2 + x/3 ZrFe2 + (2 - 2/3x) Zr2Fe and Zr2FeDx + (2 - 1/2x) D2 → 2 ZrD2 + Fe, where 0 2Fe formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction

  18. Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P E; Kaufman, L; Fluss, M J

    2008-11-10

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  19. Enhanced reversibility and unusual microstructure of a phase-transforming material.

    Science.gov (United States)

    Song, Yintao; Chen, Xian; Dabade, Vivekanand; Shield, Thomas W; James, Richard D

    2013-10-01

    Materials undergoing reversible solid-to-solid martensitic phase transformations are desirable for applications in medical sensors and actuators, eco-friendly refrigerators and energy conversion devices. The ability to pass back and forth through the phase transformation many times without degradation of properties (termed 'reversibility') is critical for these applications. Materials tuned to satisfy a certain geometric compatibility condition have been shown to exhibit high reversibility, measured by low hysteresis and small migration of transformation temperature under cycling. Recently, stronger compatibility conditions called the 'cofactor conditions' have been proposed theoretically to achieve even better reversibility. Here we report the enhanced reversibility and unusual microstructure of the first martensitic material, Zn45Au30Cu25, that closely satisfies the cofactor conditions. We observe four striking properties of this material. (1) Despite a transformation strain of 8%, the transformation temperature shifts less than 0.5 °C after more than 16,000 thermal cycles. For comparison, the transformation temperature of the ubiquitous NiTi alloy shifts up to 20 °C in the first 20 cycles. (2) The hysteresis remains approximately 2 °C during this cycling. For comparison, the hysteresis of the NiTi alloy is up to 70 °C (refs 9, 12). (3) The alloy exhibits an unusual riverine microstructure of martensite not seen in other martensites. (4) Unlike that of typical polycrystal martensites, its microstructure changes drastically in consecutive transformation cycles, whereas macroscopic properties such as transformation temperature and latent heat are nearly reproducible. These results promise a concrete strategy for seeking ultra-reliable martensitic materials.

  20. Geopolymer encapsulation of a chloride salt phase change material for high temperature thermal energy storage

    Science.gov (United States)

    Jacob, Rhys; Trout, Neil; Raud, Ralf; Clarke, Stephen; Steinberg, Theodore A.; Saman, Wasim; Bruno, Frank

    2016-05-01

    In an effort to reduce the cost and increase the material compatibility of encapsulated phase change materials (EPCMs) a new encapsulated system has been proposed. In the current study a molten salt eutectic of barium chloride (53% wt.), potassium chloride (28% wt.) and sodium chloride (19% wt.) has been identified as a promising candidate for low cost EPCM storage systems. The latent heat, melting point and thermal stability of the phase change material (PCM) was determined by DSC and was found to be in good agreement with results published in the literature. To cope with the corrosive nature of the PCM, it was decided that a fly-ash based geopolymer met the thermal and economic constraints for encapsulation. The thermal stability of the geopolymer shell was also tested with several formulations proving to form a stable shell for the chosen PCM at 200°C and/or 600°C. Lastly several capsules of the geopolymer shell with a chloride PCM were fabricated using a variety of methods with several samples remaining stable after exposure to 600°C testing.

  1. Effect of DMMP on the pyrolysis products of polyurethane foam materials in the gaseous phase

    Science.gov (United States)

    Liu, W.; Li, F.; Ge, X. G.; Zhang, Z. J.; He, J.; Gao, N.

    2016-07-01

    Dimethyl methylphosphonate (DMMP) has been used as a flame retardant containing phosphorus to decrease the flammability of the polyurethane foam material (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results show that LOI values of all PUF/DMMP samples are higher than that of the neat PUF sample and the LOI value of the samples increases with both DMMP concentration and the %P value. Thermal analysis indicates that flame retardant PUF shows a dominant condensed flame retardant activity during combustion. Thermogravimetric analysis-infrared spectrometry (TG-FTIR) has been used to study the influence of DMMP on the pyrolysis products in the gaseous phase during the thermal degradation of the PUF sample. Fourier transform infrared spectrometry (FTIR) spectra of the PUF sample at the maximum evolution rates and the generated trends of water and the products containing -NCO have been examined to obtain more information about the pyrolysis product evolutions of the samples at high temperature. These results reveal that although DMMP could improve the thermal stability of PUF samples through the formation of the residual char layer between fire and the decomposed materials, the influence of DMMP on the gaseous phase can be also observed during the thermal degradation process of materials.

  2. Materials and other needs for advanced phase change memory (Presentation Recording)

    Science.gov (United States)

    Sosa, Norma E.

    2015-09-01

    Phase change memory (PCM), with its long history, may now hold its brightest promise to date. This bright future is being fueled by the "push" from big data. PCM is a non-volatile memory technology used to create solid-state random access memory devices that operate based the resistance properties of materials. Employing the electrical resistance differences-as opposed to differences in charge stored-between the amorphous and crystalline phases of the material, PCM can store bits, namely one's and zero's. Indeed, owing to the method of storage, PCM can in fact be designed to hold multiple bits thus leading to a high-density technology twice the storage density and less than half the cost of DRAM, the main kind found in typical personal computers. It has been long known that PCM can fill a need gap that spans 3 decades in performance from DRAM to solid state drive (NAND Flash). Furthermore, PCM devices can lead to performance and reliability improvements essential to enabling significant steps forward to supporting big data centric computing. This talk will focus on the science and challenges of aggressive scaling to realize the density needed, how this scaling challenge is intertwined with materials needs for endurance into the giga-cycles, and the associated forefront research aiming to realizing multi-level functionality into these nanoscale programmable resistor devices.

  3. Role of Activation Energy in Resistance Drift of Amorphous Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Martin eWimmer

    2014-12-01

    Full Text Available The time evolution of the resistance of amorphous thin films of the phase change materials Ge2Sb2Te5, GeTe and AgIn-Sb2Te is measured during annealing at T=80°C. The annealing process is interrupted by several fast temperature dips to determine the changing temperature dependence of the resistance. This procedure enables us to identify to what extent the resistance increase over time can be traced back to an increase in activation energy EA or to a rise of the prefactor R*. We observe that, depending on the material, the dominating contribution to the increase in resistance during annealing can be either a change in activation energy (Ge2Sb2Te5 or a change in prefactor (AgIn-Sb2Te. In the case of GeTe, both contribute about equally. We conclude that any phenomenological model for the resistance drift in amorphous phase change materials that is based on the increase of one parameter alone (e.g. the activation energy cannot claim general validity.

  4. Experimental and Numerical Investigations of Thermal Ignition of a Phase Changing Energetic Material

    Directory of Open Access Journals (Sweden)

    Priyanka Shukla

    2016-04-01

    Full Text Available Fortuitous exposure to high temperatures initiates reaction in energetic materials and possibilities of such event are of great concern in terms of the safe and controlled usage of explosive devices. Experimental and numerical investigations on time to explosion and location of ignition of a phase changing polymer bonded explosive material (80 per cent RDX and 20 per cent binder, contained in a metallic confinement subjected to controlled temperature build-up on its surface, are presented. An experimental setup was developed in which the polymer bonded explosive material filled in a cylindrical confinement was provided with a precise control of surface heating rate. Temperature at various radial locations was monitored till ignition. A computational model for solving two dimensional unsteady heat transfer with phase change and heat generation due to multi-step chemical reaction was developed. This model was implemented using a custom field function in the framework of a finite volume method based standard commercial solver. Numerical study could simulate the transient heat conduction, the melting pattern of the explosive within the charge and also the thermal runaway. Computed values of temperature evolution at various radial locations and the time to ignition were closely agreeing with those measured in experiment. Results are helpful both in predicting the possibility of thermal ignition during accidents as well as for the design of safety systems.

  5. Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

    Science.gov (United States)

    Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; Hanks, Byron W.; Foulk, James W.; Battaile, Corbett C.

    2016-05-01

    The mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FE meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.

  6. Multi-phase flow effect on SRM nozzle flow field and thermal protection materials

    Institute of Scientific and Technical Information of China (English)

    SHAFQAT Wahab; XIE Kan; LIU Yu

    2009-01-01

    Multi-phase flow effect generated from the combustion of aluminum based com-posite propellant was performed on the thermal protection material of solid rocket motor (SRM) nozzle. Injection of alumina (Al2O3) particles from 5% to 10% was tried on SRM nozzle flow field to see the influence of multiphase flow on heat transfer computations. A coupled, time resolved CFD (computational fluid dynamics) approach was adopted to solve the conjugate problem of multi-phase fluid flow and heat transfer in the solid rocket motor nozzle. The governing equations are discretized by using the finite volume method. Spalart-Allmaras (S-A) turbulence model was employed. The computation was executed on the dif-ferent models selected for the analysis to validate the temperature variation in the throat in-serts and baking material of SRM nozzle. Comparison for temperatures variations were also carried out at different expansion ratios of nozzle. This paper also characterized the advanced SRM nozzle composites material for their high thermo stability and their high thermo me-chanical capabilities to make it more reliable simpler and lighter.

  7. Analysis of thermal energy storage material with change-of-phase volumetric effects

    Science.gov (United States)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    NASA's Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase Thermal Energy Storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 Phase Change Material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in three stages considering 1-D, 2-D, and 3-D canister geometries, respectively. The 1-D model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM natural convection. For the second stage, successful numerical techniques used in the 1-D phase change model are extended to a 2-D (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.

  8. Review of the use of phase change materials (PCMs in buildings with reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Pons, O.

    2014-09-01

    Full Text Available Phase change materials are capable of storing and releasing energy in the form of heat in determined temperature ranges, so to increase a building’s thermal inertia, stabilize its indoor temperatures and reduce its energetic demand. Therefore, if we used these materials we could have more energetically efficient buildings. Nevertheless, are these materials most appropriate to be used in buildings? Could the incorporation of phase change materials in buildings with concrete structures be generalized? This article aims to carry out a review of these phase change materials from construction professionals’ points of view, study their applications for buildings with reinforced concrete structures and the key points for these applications, draw conclusions and provide recommendations useful for all professionals within the sector who are considering the application of these materials.Los materiales de cambio de fase son capaces de almacenar y liberar energía en forma de calor en un determinando rango de temperaturas, y así aumentar la inercia térmica de un edificio, estabilizar las temperaturas en el interior y reducir la demanda energética. En consecuencia, si utilizáramos estos materiales podríamos tener un parque de edificios más eficientes energéticamente. No obstante, ¿estos materiales son apropiados para usarse en edificios? ¿Se podría generalizar la incorporación de materiales de cambio de fase en edificios con estructuras de hormigón? Este artículo tiene como objetivos hacer una revisión del estado del arte de estos materiales de cambio de fase desde el punto de vista de los profesionales de la construcción, estudiar las aplicaciones en edificios con estructuras de hormigón armado y los puntos clave para estas aplicaciones, extraer conclusiones y recomendaciones útiles para los profesionales del sector que se planteen la utilización de estos materiales.

  9. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    Science.gov (United States)

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-04-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

  10. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel.

    Science.gov (United States)

    Gordon, Lyle M; Cohen, Michael J; MacRenaris, Keith W; Pasteris, Jill D; Seda, Takele; Joester, Derk

    2015-02-13

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg(2+), F(-), and CO3(2-). However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg(2+) is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  11. Ferromagnetism modulation by phase change in Mn-doped GeTe chalcogenide magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Adam Abdalla Elbashir [Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan (China); Wuhan National Laboratory for Optoelectronics, Wuhan (China); Alneelain University, Faculty of Science and Technology, Khartoum (Sudan); Cheng, Xiaomin; Guan, Xiawei; Miao, Xiangshui [Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan (China); Wuhan National Laboratory for Optoelectronics, Wuhan (China)

    2014-12-15

    In this work, an effective method to modulate the ferromagnetic properties of Mn-doped GeTe chalcogenide-based phase change materials is presented. The microstructure of the phase change magnetic material Ge{sub 1-x} Mn{sub x} Te thin films was studied. The X-ray diffraction results demonstrate that the as-deposited films are amorphous, and the crystalline films are formed after annealing at 350 C for 10 min. Crystallographic structure investigation shows the existence of some secondary magnetic phases. The lattice parameters of Ge{sub 1-x} Mn{sub x} Te (x = 0.04, 0.12 and 0.15) thin films are found to be slightly different with changes of Mn compositions. The structural analysis clearly indicates that all the films have a stable rhombohedral face-centered cubic polycrystalline structure. The magnetic properties of the amorphous and crystalline Ge{sub 0.96}Mn{sub 0.04}Te were investigated. The measurements of magnetization (M) as a function of the magnetic field (H) show that both amorphous and crystalline phases of Ge{sub 0.96}Mn{sub 0.04}Te thin film are ferromagnetic and there is drastic variation between amorphous and crystalline states. The temperature (T) dependence of magnetizations at zero field cooling (ZFC) and field cooling (FC) conditions of the crystalline Ge{sub 0.96}Mn{sub 0.04}Te thin film under different applied magnetic fields were performed. The measured data at 100 and 300 Oe applied magnetic fields show large bifurcations in the ZFC and FC curves while on the 5,000 Oe magnetic field there is no deviation. (orig.)

  12. Integration of environmental indicators in the optimization of industrial energy management using phase change materials

    International Nuclear Information System (INIS)

    Highlights: • Phase change materials are a feasible option for energy management. • Net Zero Environmental Metrics Times is defined as an environmental payback time. • Coal, heavy fuel and lignite scenarios show a time around one year. • The potassium nitrate application provides the highest environmental values. - Abstract: This work addresses the potential environmental effects of thermal energy storage using the life cycle assessment to perform an optimal system framework. The study assesses the recovery of waste thermal energy at medium temperatures through the application of phase change materials and the recovered heat use in other industrial processes avoiding the heat production from fossil fuel. To this end, twenty different situations were analysed in terms of energy and environmentally combining four thermal energy storage systems varying the type of phase change material incorporated (potassium nitrate, potassium hydroxide, potassium carbonate/sodium carbonate/lithium carbonate and lithium hydroxide/potassium hydroxide) which were defined as cases and five scenarios were the heat can be released based on the type of fossil fuel consumed (coal, heavy fuel, light fuel, lignite and natural gas). Moreover, a net zero environmental metric time parameter was calculated to assess the time period in which the environmental impacts associated to the thermal energy system were equal to the avoided impacts by the use of the heat recovered. Values that were lower than the thermal energy system lifetime were obtained in more than 40% of the total study situations. Finally, an additional analysis was performed to identify the most significant parameters for the further development of a mathematical model to predict the net zero environmental metric time

  13. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    Science.gov (United States)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  14. Heat Pump With a Condenser Including Solid-Liquid Phase Change Material

    OpenAIRE

    Maaraoui, Samer; Clodic, Denis; Dalicieux, Pascal

    2012-01-01

    The growing usage of heat pumps increases the global electricity demand. During winter, the external temperature peak is at noon whereas electricity peak is at the end of the afternoon. Latent heat storage can be used to benefit from the time lag between these two periods. In this application phase change material (PCM) is integrated in the condenser of an air-to-air heat pump. The condensing temperature is used to melt down the PCM at noon. Then, during electricity peak load, the compressor ...

  15. First-principles computation of mantle materials in crystalline and amorphous phases

    Science.gov (United States)

    Karki, Bijaya B.

    2015-03-01

    First-principles methods based on density functional theory are used extensively in the investigation of the behavior and properties of mantle materials over broad ranges of pressure, temperature, and composition that are relevant. A review of computational results reported during the last couple of decades shows that essentially all properties including structure, phase transition, equation of state, thermodynamics, elasticity, alloying, conductivity, defects, interfaces, diffusivity, viscosity, and melting have been calculated from first principles. Using MgO, the second most abundant oxide of Earth's mantle, as a primary example and considering many other mantle materials in their crystalline and amorphous phases, we have found that most properties are strongly pressure dependent, sometimes varying non-monotonically and anomalously, with the effects of temperature being systematically suppressed with compression. The overall agreement with the available experimental data is excellent; it is remarkable that the early-calculated results such as shear wave velocities of two key phases, MgO and MgSiO3 perovskite, were subsequently reproduced by experimentation covering almost the entire mantle pressure regime. As covered in some detail, the defect formation and migration enthalpies of key mantle materials increase with pressure. The predicted trend is that partial MgO Schottky defects are energetically most favorable in Mg-silicates but their formation enthalpies are high. So, the diffusion in the mantle is likely to be in the extrinsic regime. Preliminary results on MgO and forsterite hint that the grain boundaries can accommodate point defects (including impurities) and enhance diffusion rates at all pressures. The structures are highly distorted in the close vicinity of the defects and at the interface with excess space. Recent simulations of MgO-SiO2 binary and other silicate melts have found that the melt self-diffusion and viscosity vary by several orders of

  16. Analysis of Phase Change Material in Glazing Systems in Future Zero-Energy-Buildings

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Heiselberg, Per; Jensen, Rasmus Lund

    2016-01-01

    the thermal storage capacity of the glazed facade by using phase change material (PCM), in the glazing cavity, reduces the cooling demand. When wanting to use this technology under colder weather conditions, the pane can potentially reduce the heat loss of the pane thereby minimizing energy demand for heating.......When designing glazed constructions, this often results in thermally light constructions, with a low time constant. In order for these buildings to improve the redistribution of loads between night and day, solutions such as active slabs and exposed concrete cores are often used. However...

  17. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Brian

    2013-12-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the

  18. Equivalent circuit for VO2 phase change material film in reconfigurable frequency selective surfaces

    International Nuclear Information System (INIS)

    We developed equivalent circuits of phase change materials based on vanadium dioxide (VO2) thin films. These circuits are used to model VO2 thin films for reconfigurable frequency selective surfaces (FSSs). This is important as it provides a way for designing complex structures. A reconfigurable FSS filter using VO2 ON/OFF switches is designed demonstrating −60 dB isolation between the states. This filter is used to provide the transmission and reflection responses of the FSS in the frequency range of 0.1–0.6 THz. The comparison between equivalent circuit and full-wave simulation shows excellent agreement

  19. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    Science.gov (United States)

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  20. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na, the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  1. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    International Nuclear Information System (INIS)

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m2, 20 dpa/y in Fe, in a volume of 500 cm3 and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  2. Impact-induced tensile waves in a kind of phase-transforming materials

    CERN Document Server

    Huang, Shou-Jun

    2010-01-01

    This paper concerns the global propagation of impact-induced tensile waves in a kind of phase-transforming materials. It is well-known that the governing system of partial differential equations is hyperbolic-elliptic and the initial-boundary value problem is not well-posed at all levels of loading. By making use of fully nonlinear stress-strain curve to model this material, Dai and Kong succeeded in constructing a physical solution of the above initial-boundary value problem. For the impact of intermediate range, they assumed that $\\beta<3\\alpha$ in the stress-response function for simplicity. In this paper, we revisit the impact problem and consider the propagation of impact-induced tensile waves for all values of the parameters $\\alpha$ and $\\beta$. The physical solutions for all levels of loading are obtained completely.

  3. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m{sup 2}, 20 dpa/y in Fe, in a volume of 500 cm{sup 3} and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  4. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    Science.gov (United States)

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete. PMID:25133259

  5. Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures

    Directory of Open Access Journals (Sweden)

    Won-Chang Choi

    2014-01-01

    Full Text Available This paper presents experimental results that can be applied to select a possible phase change material (PCM, such as a latent heat material (LHM, to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH2·8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  6. Design of a Protection Thermal Energy Storage Using Phase Change Material Coupled to a Solar Receiver

    Science.gov (United States)

    Verdier, D.; Falcoz, Q.; Ferrière, A.

    2014-12-01

    Thermal Energy Storage (TES) is the key for a stable electricity production in future Concentrated Solar Power (CSP) plants. This work presents a study on the thermal protection of the central receiver of CSP plant using a tower which is subject to considerable thermal stresses in case of cloudy events. The very high temperatures, 800 °C at design point, impose the use of special materials which are able to resist at high temperature and high mechanical constraints and high level of concentrated solar flux. In this paper we investigate a TES coupling a metallic matrix drilled with tubes of Phase Change Material (PCM) in order to store a large amount of thermal energy and release it in a short time. A numerical model is developed to optimize the arrangement of tubes into the TES. Then a methodology is given, based from the need in terms of thermal capacity, in order to help the choice of the geometry.

  7. Diffusion, Thermal Properties and Chemical Compatibilities of Select MAX Phases with Materials For Advanced Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michel [Drexel Univ., Philadelphia, PA (United States); Bentzel, Grady [Drexel Univ., Philadelphia, PA (United States); Tallman, Darin J. [Drexel Univ., Philadelphia, PA (United States); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-04

    The demands of Gen IV nuclear power plants for long service life under neutron irradiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ ºC) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the chemical compatibility of select MAX with potential materials that are important for nuclear energy, as well as, to measure the thermal transport properties as a function of neutron irradiation. The chemical counterparts chosen for this work are: pyrolytic carbon, SiC, U, Pd, FLiBe, Pb-Bi and Na; the latter 3 in the molten state. The thermal conductivities and heat capacities of non-irradiated MAX phases will be measured.

  8. Preparation of shape-stabilized phase change materials as temperature-adjusting powder

    Institute of Scientific and Technical Information of China (English)

    MIAO Chunyan; L(U) Gang; YAO Youwei; TANG Guoyi; WENG Duan

    2007-01-01

    The shape-stabilized phase change materials (PCMs)composed of paraffin wax and silica were prepared in O/W emulsion with cetyl trimethylamine bromide as emulsifier and n-pentanol as assist emulsifier.The paraffin wax(with melting temperature of 29℃,crystallizing temperature of 26℃ and latent heat of 142 J/g)served as latent heat storage material and the silica as supporting material,which prevented the leakage of the melted paraffin wax.Silica supporting material was formed in situ via hydrolysis and condensation from low-cost sodium silicate solution with chlorhydric acid and ammonium bicarbonate as neutralizing agent.The thermogravimetry(TG)curves show that the composite has a thermal stability superior to that of paraffin wax and that the content of paraffin wax in the composite is 65wt%.The maximum latent heat and its relevant melting point of composite are 95 J/g and 30℃,respectively.

  9. A programmable high voltage electrical switching analyzer for I-V characterization of phase change materials

    International Nuclear Information System (INIS)

    Ovonic Phase-Change Materials have found a renewed interest in the recent times owing to their applications in Non-Volatile Random Access Memories. In the present work, a cost-effective high voltage electrical switching analyzer has been developed to enable investigations on the I-V characteristics and electrical switching of bulk solids, which are necessary for identifying suitable materials for memory and other applications such as power control. The developed set up mainly consists of a PC based programmable High Voltage DC Power Supply which acts as an excitation source and a high speed Digital Storage Oscilloscope. For flexible control options, a Graphical User Interface has also been developed using LabVIEW-6i to control the excitation source through the analog outputs of a data acquisition card. Options are made in the system to sweep the output voltage from 45 to 1750 V or the output current in the range 0-45 mA with resolutions of 1.5 V and 5 or 50 μA at variable rates. I-V characteristics and switching behavior of the sample material are instantaneously acquired on the storage oscilloscope and transferred to PC for post processing. The system can be used to investigate a broad range of materials and some typical results are presented to illustrate the capability of the system developed. The closed-loop stability of the system has also been confirmed by frequency response plots

  10. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Tahara, Ai; Imaizumi, Motohiro; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2003-10-15

    Synthetic polymer filaments have been introduced as the support material in packed capillary gas chromatography (GC). The filaments of the heat-resistant polymers, Zylon, Kevlar, Nomex, and Technora, were longitudinally packed into a short fused-silica capillary, followed by the conventional coating process for open-tubular GC columns. The separation of several test mixtures such as n-alkylbenzenes and n-alkanes was carried out with these polymer-coated fiber-packed capillary columns. With the coating by various polymeric materials on the surface of these filaments, the retentivity was significantly improved over the parent fiber-packed column (without polymer coating) as well as a conventional open-tubular capillary of the same length. The results demonstrated a good combination of Zylon as the support and poly(dimethylsiloxane)-based materials as the coating liquid-phase for the successful GC separation of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while successful applications for other separations such as poly(ethylene glycol) coating for the separation of alcohols were also obtained. From the results it has been suggested that the selectivity of the fiber-packed column could be tuned by selecting different coating materials, indicating the promising possibility for a novel usage of fine fibrous polymers as the support material that can be combined with newly synthesized coating materials specially designed for particular separations. Taking advantage of good thermal stability of the fibers, the column temperature could be elevated to higher than 350 degrees C with the combination of a short metallic capillary.

  11. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Tahara, Ai; Imaizumi, Motohiro; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2003-10-15

    Synthetic polymer filaments have been introduced as the support material in packed capillary gas chromatography (GC). The filaments of the heat-resistant polymers, Zylon, Kevlar, Nomex, and Technora, were longitudinally packed into a short fused-silica capillary, followed by the conventional coating process for open-tubular GC columns. The separation of several test mixtures such as n-alkylbenzenes and n-alkanes was carried out with these polymer-coated fiber-packed capillary columns. With the coating by various polymeric materials on the surface of these filaments, the retentivity was significantly improved over the parent fiber-packed column (without polymer coating) as well as a conventional open-tubular capillary of the same length. The results demonstrated a good combination of Zylon as the support and poly(dimethylsiloxane)-based materials as the coating liquid-phase for the successful GC separation of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while successful applications for other separations such as poly(ethylene glycol) coating for the separation of alcohols were also obtained. From the results it has been suggested that the selectivity of the fiber-packed column could be tuned by selecting different coating materials, indicating the promising possibility for a novel usage of fine fibrous polymers as the support material that can be combined with newly synthesized coating materials specially designed for particular separations. Taking advantage of good thermal stability of the fibers, the column temperature could be elevated to higher than 350 degrees C with the combination of a short metallic capillary. PMID:14710834

  12. Influence of deformation on structural-phase state of weld material in St3 steel

    International Nuclear Information System (INIS)

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample

  13. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  14. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  15. Influence of deformation on structural-phase state of weld material in St3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander, E-mail: galvas.kem@gmail.ru; Ababkov, Nicolay, E-mail: n.ababkov@rambler.ru; Ozhiganov, Yevgeniy, E-mail: zhigan84@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); LLC “Kuzbass Center of Welding and Control”, 33/2, Lenin Str., 650055, Kemerovo (Russian Federation); Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Zboykova, Nadezhda, E-mail: tezaurusn@gmail.com; Koneva, Nina, E-mail: koneva@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample.

  16. Phase inversion of particle-stabilized materials from foams to dry water

    Science.gov (United States)

    Binks, Bernard P.; Murakami, Ryo

    2006-11-01

    Small particles attached to liquid surfaces arise in many products and processes, including crude-oil emulsions and food foams and in flotation, and there is a revival of interest in studying their behaviour. Colloidal particles of suitable wettability adsorb strongly to liquid-liquid and liquid-vapour interfaces, and can be sole stabilizers of emulsions and foams, respectively. New materials, including colloidosomes, anisotropic particles and porous solids, have been prepared by assembling particles at such interfaces. Phase inversion of particle-stabilized emulsions from oil in water to water in oil can be achieved either by variation of the particle hydrophobicity (transitional) or by variation of the oil/water ratio (catastrophic). Here we describe the phase inversion of particle-stabilized air-water systems, from air-in-water foams to water-in-air powders and vice versa. This inversion can be driven either by a progressive change in silica-particle hydrophobicity at constant air/water ratio or by changing the air/water ratio at fixed particle wettability, and has not been observed in the corresponding systems stabilized by surfactants. The simplicity of the work is that this novel inversion is achieved in a single system. The resultant materials in which either air or water become encapsulated have potential applications in the food, pharmaceutical and cosmetics industries.

  17. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  18. Geometry and Material Scaling on Two Phase Natural Circulation Flow for K-HERMES-HALF Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Ha, Kwang Soon; Kim, Sang Baik; Hong, Seong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Heo, Sun [KHNP Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)

    2011-05-15

    As part of a study on two-phase natural circulation mass flow rate between the outer reactor vessel and vessel insulation in the reactor cavity under the IVR (In-Vessel corium retention) through the ERVC (External Reactor Vessel Cooling) in APR1400, K-HERMES-HALF experiment (Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow) had performed at KAERI. This large-scale experiment using a half-height and half-sector model of the APR1400 uses the non-heating method of the air injection. For this reason, it is necessary to evaluate the geometry scaling on full height and full sector and a material scaling between air-water and steam-water two phase natural circulation flow for an application of the experimental results to an actual APR1400. In the geometry scaling, two cases, such as a half height and half sector and a full height and full sector, had performed by using RELAP5/MOD3 computer code. In the material scaling, two cases, such as an air injection and a steam injection, had performed to compare the air injection experimental results with the steam injection case

  19. OCV Hysteresis in Li-Ion Batteries including Two-Phase Transition Materials

    Directory of Open Access Journals (Sweden)

    Michael A. Roscher

    2011-01-01

    Full Text Available The relation between batteries' state of charge (SOC and open-circuit voltage (OCV is a specific feature of electrochemical energy storage devices. Especially NiMH batteries are well known to exhibit OCV hysteresis, and also several kinds of lithium-ion batteries show OCV hysteresis, which can be critical for reliable state estimation issues. Electrode potential hysteresis is known to result from thermodynamical entropic effects, mechanical stress, and microscopic distortions within the active electrode materials which perform a two-phase transition during lithium insertion/extraction. Hence, some Li-ion cells including two-phase transition active materials show pronounced hysteresis referring to their open-circuit voltage. This work points out how macroscopic effects, that is, diffusion limitations, superimpose the latte- mentioned microscopic mechanisms and lead to a shrinkage of OCV hysteresis, if cells are loaded with high current rates. To validate the mentioned interaction, Li-ion cells' state of charge is adjusted to 50% with various current rates, beginning from the fully charged and the discharged state, respectively. As a pronounced difference remains between the OCV after charge and discharge adjustment, obviously the hysteresis vanishes as the target SOC is adjusted with very high current rate.

  20. Investigating heterogeneous nucleation in peritectic materials via the phase-field method

    International Nuclear Information System (INIS)

    Here we propose a phase-field approach to investigate the influence of convection on peritectic growth as well as the heterogeneous nucleation kinetics of peritectic systems. For this purpose we derive a phase-field model for peritectic growth taking into account fluid flow in the melt, which is convergent to the underlying sharp interface problem in the thin interface limit (Karma and Rappel 1996 Phys. Rev. E 53 R3017). Moreover, we employ our new phase-field model to study the heterogeneous nucleation kinetics of peritectic material systems. Our approach is based on a similar approach towards homogeneous nucleation in Granasy et al (2003 Interface and Transport Dynamics (Springer Lecture Notes in Computational Science and Engineering vol 32) ed Emmerich et al (Berlin: Springer) p 190). We applied our model successfully to extend the nucleation rate predicted by classical nucleation theory for an additional morphological term relevant for peritectic growth. Further applications to understand the mechanisms and consequences of heterogeneous nucleation kinetics in more detail are discussed

  1. Heat Transfer of Heat Sinking Vest with Phase-change Material

    Institute of Scientific and Technical Information of China (English)

    QIU Yifen; JIANG Nan; WU Wei; ZHANG Guangwei; XIAO Baoliang

    2011-01-01

    To investigate thermal protection effects of heat sinking vest with phase-change material (PCM),human thermoregulation model is introduced,and a thermal mathematical model of heat transfer with phase change has been developed with the enthalpy method.The uniform energy equation is constructed for the whole domain,and the equation is implicitly discreted by control volume and finite difference method.Then the enthalpy in each node is solved by using chasing method to calculate the tridiagonal equations,and the inner surface temperature of PCM could be obtained.According to the human thermoregulation model of heat sinking vest,the dynamic temperature distribution and sweat of the body are solved.Calculation results indicate that the change of core temperature matches the experimental result,and the sweat difference is small.This thermal mathematical model of heat transfer with phase change is credible and appropriate.Through comparing the dynamic temperature distribution and sweat of the body wearing heat sinking vest to results of the body not wearing this clothing,it is evident that wearing heat sinking vest can reduce the body heat load significantly.

  2. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase.

    Directory of Open Access Journals (Sweden)

    Mi Young Seo

    Full Text Available A procentriole is assembled next to the mother centriole during S phase and remains associated until M phase. After functioning as a spindle pole during mitosis, the mother centriole and procentriole are separated at the end of mitosis. A close association of the centriole pair is regarded as an intrinsic block to the centriole reduplication. Therefore, deregulation of this process may cause a problem in the centriole number control, resulting in increased genomic instability. Despite its importance for faithful centriole duplication, the mechanism of centriole separation is not fully understood yet. Here, we report that centriole pairs are prematurely separated in cells whose cell cycle is arrested at M phase by STLC. Dispersal of the pericentriolar material (PCM was accompanied. This phenomenon was independent of the separase activity but needed the PLK1 activity. Nocodazole effectively inhibited centriole scattering in STLC-treated cells, possibly by reducing the microtubule pulling force around centrosomes. Inhibition of PLK1 also reduced the premature separation of centrioles and the PCM dispersal as well. These results revealed the importance of PCM integrity in centriole association. Therefore, we propose that PCM disassembly is one of the driving forces for centriole separation during mitotic exit.

  3. Sink efficiency calculation of dislocations in irradiated materials by phase-field modelling

    International Nuclear Information System (INIS)

    The aim of this work is to develop a modelling technique for diffusion of crystallographic migrating defects in irradiated metals and absorption by sinks to better predict the microstructural evolution in those materials.The phase field technique is well suited for this problem, since it naturally takes into account the elastic effects of dislocations on point defect diffusion in the most complex cases. The phase field model presented in this work has been adapted to simulate the generation of defects by irradiation and their absorption by the dislocation cores by means of a new order parameter associated to the sink morphology. The method has first been validated in different reference cases by comparing the sink strengths obtained numerically with analytical solutions available in the literature. Then, the method has been applied to dislocations with different orientations in zirconium, taking into account the anisotropic properties of the crystal and point defects, obtained by state-of-the-art atomic calculations.The results show that the shape anisotropy of the point defects promotes the vacancy absorption by basal loops, which is consistent with the experimentally observed zirconium growth under irradiation. Finally, the rigorous investigation of the dislocation loop case proves that phase field simulations give more accurate results than analytical solutions in realistic loop density ranges. (author)

  4. Encapsulation of Phase Change Materials Using Layer-by-Layer Assembled Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Qiangying Yi

    2015-01-01

    Full Text Available Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride (PDADMAC and Poly(4-styrenesulfonic acid sodium salt (PSS were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA or sodium dodecyl sulfate (SDS as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass, and good thermal stability after cycles of thermal treatments.

  5. Optimization of a class of latent thermal energy storage systems with multiple phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M. [Lawrence Livermore National Lab., CA (United States); Nakamura, H. [Daido Inst. of Tech., Nagoya (Japan). Dept. of Mechanical Engineering; Reistad, G.M. [Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering; Martinez-Frias, J. [Centro de Ingenieria y Desarollo Industrial, Queretaro (Mexico)

    1998-02-01

    This paper presents an analysis of a class of latent thermal energy storage (LTES) system. The analysis is based on a simplified model that allows the system performance to be evaluated in terms of a small set of parameters, while still retaining the main thermodynamic aspects associated with their operation. This analysis therefore permits the broad-based application potential of these systems to be viewed. The paper also discusses the applicability of the model to practical systems. This paper analyzes LTES with multiple energy storage cells and multiple phase-change materials (PCMs). The most general case of infinite energy storage cells and PCMs is solved, for the charge process only, as well as for the overall charge-discharge process. The results yield the optimum phase change temperature, expressed as a continuous function of position along the LTES. The method is equally applicable to the case of a finite number of storage cells. An example of the application of the method to this case is also included. The results show the optimum phase change temperatures for each of the problems being considered, along with the corresponding optimum exergetic efficiencies. The solutions to the optimization problems are surprisingly simple to express, considering the difficulty of the problems, and indicate the potential advantages of using LTES with multiple PCMs.

  6. Consequences of ionic and covalent bonding in Ge-Sb-Te phase change materials

    Science.gov (United States)

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David

    Structural transformation of Ge2Sb2Te5 has attracted a great deal of research as it involves two states (crystalline and amorphous) that are stable at ambient temperature but with remarkably different physical properties, in particular, very different optical constants. The differences in physical properties in these states have been explained in terms of resonant bonding that has been generalized to the description of covalent systems with high symmetry structures such as benzene and graphite. However, given the local lattice distortions noted from both experimental and theoretical investigations, it is clear that the meaning of ``resonant bonding'' in GST is very different from that in graphite or benzene and the precise nature of bonding in this phase has not been fully established. In this talk, based on our first-principles calculations, we show that there is a strong competition between ionic and covalent bonding in the cubic phase, and establish a link between the origins of phase change memory properties and giant responses of piezoelectric materials.

  7. Theoretical analysis on phase behaviour of a liquid crystalline material - effect of molecular motions

    Science.gov (United States)

    Lakshmi Praveen, P.; Ojha, Durga P.

    2012-01-01

    Molecular structure, and phase behaviour of 2-Cyano-N-[4-(4-n-pentyloxybenzoyloxy)-benzylidene] aniline (CPBBA) has been reported with respect to translational and orientational motions. The atomic net charge and dipole moment components at each atomic centre have been evaluated using the complete neglect differential overlap (CNDO/2) method. The modified Rayleigh-Schrodinger perturbation theory along with multicentered-multipole expansion method has been employed to evaluate the long-range intermolecular interactions, while a ‘6-exp’ potential function has been assumed for short-range interactions. The interaction energy values obtained through these computations have been used as input to calculate the configurational probability at room temperature (300 K), and nematic-isotropic transition temperature (396.5 K). On the basis of stacking, in-plane, and terminal interaction energy calculations, all possible geometrical arrangements between the molecular pairs have been considered. Molecular arrangements inside a bulk of materials have been discussed in terms of their relative order. Further, translational rigidity parameter has been estimated as a function of temperature to understand the phase behaviour of the compound. The present model is helpful to understand the effect of molecular motions on ordering, and phase behaviour of the mesogenic compounds.

  8. Designing dual phase sensing materials from polyaniline filled styrene–isoprene–styrene composites

    Energy Technology Data Exchange (ETDEWEB)

    Sadasivuni, Kishor Kumar, E-mail: kishor_kumars@yahoo.com [Centre for Advanced Materials, Qatar University, Doha (Qatar); Ponnamma, Deepalekshmi [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Kasak, Peter; Krupa, Igor; Ali S A Al-Maadeed, Mariam [Centre for Advanced Materials, Qatar University, Doha (Qatar)

    2014-10-15

    The demand for developing oil detectors is ever increasing since the cleanup and recovery from oil spill usually take long time. Here we propose oil sensors made of polyaniline (PANI) filled poly(styrene–isoprene–styrene) (SIS) block copolymer composite films with good uniformity and dispersion. The changes in resistivity of the samples in presence of both oil and water media reveal the good sensing ability of SIS–PANI films towards oil in water (dual phase). The morphology and chemical composition of the developed products are characterized by scanning electron microscopy and Fourier transformation infrared spectroscopy. Swelling studies are performed to correlate the sensing response to the structural variations and based on it a mechanism is derived for the dual phase sensing. Contact angle measurements confirm the behavior further. The thermal properties and crystallinity of the composites are also addressed by the thermogravimetric and differential scanning calorimetric studies. The developed oil sensor material is able to withstand extreme temperature condition as well. - Highlights: • We model a dual phase sensor capable of detecting oil in water. • A mechanism is proposed to correlate sensing with diffusion. • In situ polymerization helps in the uniform distribution of filler. • Polymer composite sensor could be used as stickers on oil pipelines.

  9. Modelling of phase change materials in the Toronto SUI net zero energy house using TRNSYS

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, O.; Fung, A.; Zhang, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    In the context of building applications, phase change materials (PCM), can be defined as any heat storage material that can absorb a large amount of thermal energy while undergoing a change in phase, such as from a solid to a liquid phase. The incorporation of PCM into the building envelope can enhance occupant comfort through the reduction of indoor temperature fluctuations. It has also been shown to cause a decrease in the overall energy consumption associated with the heating and cooling of buildings. This paper extended the analysis of the impact of using PCM, which has traditionally focused on homes of ordinary construction, to incorporate low to zero energy homes using a model of the Toronto net zero energy house developed in TRNSYS. The paper provided a description of the TRNSYS model/methodology, with reference to the wall layer used in the net zero energy house, and model of the layout of the net zero energy house in TRYNSYS. The TRYNSYS/type 204 PCM component was also presented along with the simulation results in terms of the temperature profile of the third floor of the net zero energy house on a typical winter day with varying PCM concentrations; the temperature profile of the third floor of the net zero energy house on a typical summer day with varying PCM concentrations; yearly heating/cooling load requirements of the net zero energy house for a variety of thermal mass used; temperature profile of the third floor of the net zero energy house on a typical summer day when PCM and concrete slab was used; yearly temperature profile of the third floor of the net zero energy house, illustrating the impact of using PCM; and the yearly heating/cooling load of the net zero energy house as the concentration of PCM was varied. It was concluded that the use of building integrated PCM can reduce temperature fluctuations considerably in the summer but only slightly in the winter. 16 refs., 1 tab., 8 figs.

  10. Mineralogical composition and phase-to-phase relationships in natural hydraulic lime and/or natural cement - raw materials and burnt products revealed by scanning electron microscopy

    Science.gov (United States)

    Kozlovcev, Petr; Přikryl, Richard; Racek, Martin; Přikrylová, Jiřina

    2016-04-01

    In contrast to modern process of production of cement clinker, traditional burning of natural hydraulic lime below sintering temperature relied on the formation of new phases from ion migration between neighbouring mineral grains composing raw material. The importance of the mineralogical composition and spatial distribution of rock-forming minerals in impure limestones used as a raw material for natural hydraulic lime presents not well explored issue in the scientific literature. To fill this gap, the recent study focuses in detailed analysis of experimentally burnt impure limestones (mostly from Barrandian area, Bohemian Massif). The phase changes were documented by optical microscopy, X-ray diffraction, and scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS) coupled with x-ray elemental mapping. The latest allowed for visualization of distribution of elements within raw materials and burnt products. SEM/EDS study brought valuable data on the presence of transitional and/or minor phases, which were poorly detectable by other methods.

  11. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    Science.gov (United States)

    Siegert, K. S.; Lange, F. R. L.; Sittner, E. R.; Volker, H.; Schlockermann, C.; Siegrist, T.; Wuttig, M.

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  12. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    International Nuclear Information System (INIS)

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  13. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    Science.gov (United States)

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. PMID:25471006

  14. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    International Nuclear Information System (INIS)

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge–Sb–Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials. (key issues review)

  15. LOW ACTIVATION JOINING OF SIC/SIC COMPOSITES FOR FUSION APPLICATIONS: MODELING DUAL-PHASE MICROSTRUCTURES AND DISSIMILAR MATERIAL JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Ferraris, M.; Katoh, Y.

    2016-03-31

    Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.

  16. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    Science.gov (United States)

    Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan

    2011-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.

  17. Phase Change Materials (PCMs for energy storage in architecture. Use with the Magic Box prototype

    Directory of Open Access Journals (Sweden)

    Bedoya Frutos, C.

    2008-09-01

    Full Text Available The article shows an energy-accumulation system in change of phase materials, designed for a prototype dwelling used for building two bioclimatic and self-sufficient buildings. These bulidings have been built in Madrid, Washington and Beijing. The characteristics of these materials, the construction systems into which these materials were incorporated, its comparative valuation with sensitive accumulation systems, and the results of the building monitorization are included.El artículo muestra un sistema de acumulación de energía en Materiales de Cambio de Fase diseñado para un prototipo de vivienda con el que se han construido dos edificios bioclimáticos y autosuficientes. Estos edificios se han realizado en Madrid, Washington y Pekín. Se incluyen las características de estos materiales, de los sistemas constructivos donde se integraron, su valoración comparativa con los sistemas de acumulación sensibles y los resultados de la monitorización del edificio.

  18. Dye-doped PQ-PMMA phase holographic materials for DFB lasing

    International Nuclear Information System (INIS)

    Phase holographic materials based on phenanthrenquinone (PQ) in poly(methylmethacrylate) (PMMA) matrices additionally doped with laser dyes (LD) have been developed and investigated. It was found that the holographic properties of the dye-doped materials are almost the same as that of pure PQ-PMMA. In particular, the amplification of the holographic gratings due to post-exposure diffusion was demonstrated. An amplitude of the refractive index modulation of about 3 × 10−3 was achieved for the enhanced gratings with periods in the range of 0.3–30 μm. Homogeneous distribution of PQ and LD in the enhanced gratings was found by means of a microscope–spectrometer. Such doped volume gratings can be used for different optical and photonic applications. As one possible application of the gratings distributed feedback lasing was tested. A narrow-band second-order laser emission has been demonstrated in 18 μm thick volume gratings based on optimized PQ-PMMA materials doped with pyrromethene laser dyes. (paper)

  19. Thermophysical and Mechanical Properties of Hardened Cement Paste with Microencapsulated Phase Change Materials for Energy Storage

    Directory of Open Access Journals (Sweden)

    Hongzhi Cui

    2014-12-01

    Full Text Available In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35–36 °C, 55–56 °C and 72–74 °C decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55–56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.

  20. Binding Materials of Dehydrated Phases of Waste Hardened Cement Paste and Pozzolanic Admixture

    Institute of Scientific and Technical Information of China (English)

    LU Linnu; HE Yongjia; HU Shuguang

    2009-01-01

    Fly ash (FA) and ground granulated blast-furnace slag (GGBFS) were added to improve the performances of regenerated binding materials (RBM) which refer to dehydrated phases with rebinding ability of waste hardened cement paste. Flowability tests, compressive strength tests,SEM, TG-DSC, and non-evaporable water content tests were employed to study the performances of the combined binding materials and the interactions between RBM, FA, and GGBFS. Results show that adding FA or GGBFS can improve the workability of RBM paste, and GGBFS has positive effects on strength of RBM. Pozzolanic reactions happen between RBM, FA, and GGBFS. And the activation effect of RBM to FA and GGBFS is superior to that of P.O grade-32.5 cement, especially at earlier ages, because of the high reactive f-CaO existing in RBM. On the advantages of the synergetic effects of RBM and pozzolanic admixtures such as FA and GGBFS, new combined binding materials can be prepared by blending them together.

  1. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  2. Processing and characterization of phase boundaries in ceramic and metallic materials

    Science.gov (United States)

    Zeng, Liang

    The goal of this dissertation work was to explore and describe advanced characterization of novel materials processing. These characterizations were carried out using scanning and transmission electron microscopy (SEM and TEM), and X-ray diffraction techniques. The materials studied included ceramics and metallic materials. The first part of this dissertation focuses on the processing, and the resulting interfacial microstructure of ceramics joined using spin-on interlayers. SEM, TEM, and indentation tests were used to investigate the interfacial microstructural and mechanical property evolution of polycrystalline zirconia bonded to glass ceramic MaCor(TM), and polycrystalline alumina to single crystal alumina. Interlayer assisted specimens were joined using a thin amorphous silica interlayer. This interlayer was produced by spin coating an organic based silica bond material precursor and curing at 200°C, followed by joining in a microwave cavity or conventional electric furnace. Experimental results indicate that in the joining of the zirconia and MaCor(TM) no significant interfacial microstructural and mechanical property differences developed between materials joined either with or without interlayers, due to the glassy nature of MaCor(TM). The bond interface was non-planar, as a result of the strong wetting of MaCor(TM) and silica and dissolution of the zirconia. However, without the aid of a silica interlayer, sapphire and 98% polycrystalline alumina failed to join under the experimental conditions under this study. A variety of interfacial morphologies have been observed, including amorphous regions, fine crystalline alumina, and intimate contact between the sapphire and polycrystalline alumina. In addition, the evolution of the joining process from the initial sputter-cure to the final joining state and joining mechanisms were characterized. The second part of this dissertation focused on the effects of working and heat treatment on microstructure, texture

  3. On consistent micromechanical estimation of macroscopic elastic energy, coherence energy and phase transformation strains for SMA materials

    Science.gov (United States)

    Ziółkowski, Andrzej

    2016-09-01

    An apparatus of micromechanics is used to isolate the key ingredients entering macroscopic Gibbs free energy function of a shape memory alloy (SMA) material. A new self-equilibrated eigenstrains influence moduli (SEIM) method is developed for consistent estimation of effective (macroscopic) thermostatic properties of solid materials, which in microscale can be regarded as amalgams of n-phase linear thermoelastic component materials with eigenstrains. The SEIM satisfy the self-consistency conditions, following from elastic reciprocity (Betti) theorem. The method allowed expressing macroscopic coherency energy and elastic complementary energy terms present in the general form of macroscopic Gibbs free energy of SMA materials in the form of semilinear and semiquadratic functions of the phase composition. Consistent SEIM estimates of elastic complementary energy, coherency energy and phase transformation strains corresponding to classical Reuss and Voigt conjectures are explicitly specified. The Voigt explicit relations served as inspiration for working out an original engineering practice-oriented semiexperimental SEIM estimates. They are especially conveniently applicable for an isotropic aggregate (composite) composed of a mixture of n isotropic phases. Using experimental data for NiTi alloy and adopting conjecture that it can be treated as an isotropic aggregate of two isotropic phases, it is shown that the NiTi coherency energy and macroscopic phase strain are practically not influenced by the difference in values of austenite and martensite elastic constants. It is shown that existence of nonzero fluctuating part of phase microeigenstrains field is responsible for building up of so-called stored energy of coherency, which is accumulated in pure martensitic phase after full completion of phase transition. Experimental data for NiTi alloy show that the stored coherency energy cannot be neglected as it considerably influences the characteristic phase transition

  4. Phase field model for optimization of multi-material structural topology in two and three dimensions

    Science.gov (United States)

    Zhou, Shiwei

    The Optimization of Structural Topology (OST) is a breakthrough in product design because it can optimize size, shape and topology synchronously under different physical constraints. It has promising applications in industry ranging from automobile and aerospace engineering to micro electromechanical system. This dissertation first substitutes the nonlinear diffusion method for filter process in the optimization of structural topology. Filtering has been a major technique used in a homogenization-based method for topology optimization of structures. It plays a key role in regularizing the basic problem into a well-behaved setting. But it has a drawback of smoothing effect around the boundary of material domain. A diffusion technique is presented here as a variational approach to the regularization of the topology optimization problem. A nonlinear or anisotropic diffusion process not only leads to a suitable problem regularization but also exhibits strong "edge"-preserving characteristics. Thus, it shows that the use of the nonlinear diffusions brings desirable effects of boundary preservation and even enhancement of lower-dimensional features such as flow-like structures. The proposed diffusion techniques have a close relationship with the diffusion methods and the phase-field methods of the fields of materials and digital image processing. Then this dissertation introduces a gradient flow in the norm of H-1 for the problem of multi-material structural topology optimization in 2/3D with a generalized Cahn-Hilliard (C-H) model with elasticity. Unlike the traditional C-H model applied to spinodal separation which only has bulk energy and interface energy, the generalized model couples the macroscopic elastic energy (mean compliance) into the total free energy. As a result, the grain morphology is not random islands or zigzag web-like objects but regular truss or bar structure. Although disturbed by elastic energy, the C-H system still keeps its two most important

  5. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Science.gov (United States)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  6. Thermal cycling test of few selected inorganic and organic phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Anant; Sawhney, R.L. [Thermal Energy Storage Laboratory, School of Energy and Environmental Studies, Devi Ahilya University, Takshashila Campus, Indore 452001, M.P. (India); Buddhi, D. [Green Hi-Tech Energy Pvt. Ltd., Bari Brahmmana, Adda Sarore, Jammu 180011, Jammu and Kashmir (India)

    2008-12-15

    Thermal cycling tests were performed to check the stability in thermal energy storage systems on some selected organic and inorganic phase change materials (PCMs). The possibility of using these PCMs in thermal energy storage systems were examined on the basis of thermal, chemical and kinetic criteria. Organic and inorganic PCMs were selected to check their thermal stability. Inorganic PCMs were not found suitable after some cycles while thermal cycling for organic PCMs were undertaken up to 1000 thermal cycles and has shown a gradual change in melting temperature and latent heat of fusion. The PCMs were then checked with differential scanning calorimeter (DSC) for their latent heat storage capacity and melting temperature change. (author)

  7. A Numerical Algorithm for the Solution of a Phase-Field Model of Polycrystalline Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, M R; Fattebert, J; Wickett, M E; Belak, J F; Turchi, P A

    2008-12-04

    We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.

  8. Formation and phase separation during the smelting of sulfide raw materials

    Science.gov (United States)

    Tarasov, A. V.; Paretsky, V. M.

    2009-10-01

    This paper discusses the most recent developments made at the Gintsvetmet Institute in technologies and equipment for single-stage autogenous smelting of copper sulfide raw materials to produce white metal and blister copper. In particular, the oxygen-flame smelting process and separation of highly basic calcium-containing slags are considered. This technology includes the oxygen-flame smelting process (KFP Process) to produce highly basic self-disintegrating ferrite-calcium slags with their subsequent flotation to recover copper. Also included is a sparging smelting process (FBP Process) to produce combined slags subjected to decopperizing inside the same furnace. Results of special investigations of the slag structure obtained in the KFP and FBP processes and substantiating selection of their chemical and phase composition are presented. These processes meet stringent requirements for advanced technologies with respect to energy conservation and environmental safety with different scales of production and within a wide range of specific conditions of particular operations.

  9. The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Álvarez

    2013-08-01

    Full Text Available The aim of this paper is to research new thermally-efficient concrete walls, analyzing the mechanical behavior of a self-compacting concrete to manufacture an uncoated solid structural panel, with the incorporation of a micro-encapsulated phase change material as additive. Different dosages are tested and mechanical properties of the product obtained from the molding of concrete specimens are evaluated, testing mechanical compressive strength, slump flow, and density. The results reveal the optimum percentage of additive in the mixture that enables compliance with the technical specifications required by the product to be manufactured. A test is also performed for measuring the thermal conductivity for the optimal sample obtained and it evidences the reduction thereof.

  10. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  11. Phase change material solidification in a finned cylindrical shell thermal energy storage: An approximate analytical approach

    Directory of Open Access Journals (Sweden)

    Mosaffa Amirhossein

    2013-01-01

    Full Text Available Results are reported of an investigation of the solidification of a phase change material (PCM in a cylindrical shell thermal energy storage with radial internal fins. An approximate analytical solution is presented for two cases. In case 1, the inner wall is kept at a constant temperature and, in case 2, a constant heat flux is imposed on the inner wall. In both cases, the outer wall is insulated. The results are compared to those for a numerical approach based on an enthalpy method. The results show that the analytical model satisfactory estimates the solid-liquid interface. In addition, a comparative study is reported of the solidified fraction of encapsulated PCM for different geometric configurations of finned storage having the same volume and surface area of heat transfer.

  12. A numerical model for thermal energy storage systems utilising encapsulated phase change materials

    Science.gov (United States)

    Jacob, Rhys; Saman, Wasim; Bruno, Frank

    2016-05-01

    In an effort to reduce the cost of thermal energy storage for concentrated solar power plants, a thermocline storage concept was investigated. Two systems were investigated being a sensible-only and an encapsulated phase change system. Both systems have the potential to reduce the storage tank volume and/or reduce the cost of the filler material, thereby reducing the cost of the system when compared to current two-tank molten salt systems. The objective of the current paper is to create a numerical model capable of designing and simulating the aforementioned thermocline storage concepts in the open source programming language known as Python. The results of the current study are compared to previous numerical results and are found to be in good agreement.

  13. Flow frictional characteristics of microencapsulated phase change material suspensions flowing through rectangular minichannels

    Institute of Scientific and Technical Information of China (English)

    RAO Yu; Frank Dammel; Peter Stephan; LIN Guiping

    2006-01-01

    An experimental investigation was conducted on the laminar flow frictional characteristics of suspensions with microencapsulated phase change material (MEPCM) in water flowing through rectangular copper minichannels. The MEPCM was provided at an average particle size of 4.97 μm, and was mixed with distilled water to form suspensions with various mass concentrations ranging from 0 to 20%. The experiment was performed to explore the effect of MEPCM mass concentration on friction factor and pressure drop in the minichannels. The Reynolds number ranged from 200 to 2000 to provide laminar and transitional flows. It was found that the experimental data for the suspensions with 0 and 5% concentration agree well with the existing theoretical data for an incompressible, fully developed, laminar Newtonian flow. For the suspensions with mass concentrations higher than 10%, there is an obvious increase in friction factor and pressure drop in comparison with laminar Newtonian flow.

  14. Dynamic thermal behavior of building using phase change materials for latent heat storage

    Directory of Open Access Journals (Sweden)

    Selka Ghouti

    2015-01-01

    Full Text Available This study presents a two-dimensional model with a real size home composed of two-storey (ground and first floor spaces separated by a slab, enveloped by a wall with rectangular section containing phase change material (PCM in order to minimize energy consumption in the buildings. The main objective of the PCM-wall system is to decrease the temperature change from outdoor space before it reaches the indoor space during the daytime. The numerical approach uses effective heat capacity Ceff model with realistic outdoor climatic conditions of Tlemcen city, Algeria. The numerical results showed that by using PCM in wall as energy storage components may reduce the room temperature by about 6 to 7°C of temperature depending on the floor level (first floor spaces or ground floor spaces.

  15. Simulation and experimental study of thermal performance of a building roof with a phase change material (PCM)

    Indian Academy of Sciences (India)

    A Mannivannan; M T Jaffarsathiq Ali

    2015-12-01

    Latent heat storage in a phase change material (PCM) is very attractive because of its high-energy storage density and its isothermal behaviour during the phase change process. Low thermal conductivity of the walls and roof reduces the heat gain at a steady state condition. Chloride hexahydrate (CaCl26H2O) as a phase change material (PCM) for a room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. Building concrete roof with vertical cylindrical hole of 0.5 $\\times$ 0.5 m and array of 3 $\\times$ 3 filled with phase change material (PCM) was considered for analysis. A detailed thermal analysis was carried by both simulation and experimental study. Results showed that this type of PCM room can decrease the indoor air temperature fluctuation by a maximum of 4°C.

  16. Energy and economic analysis of a building air-conditioner with a phase change material (PCM)

    International Nuclear Information System (INIS)

    Highlights: • Phase change material of Rubitherm20 was applied with the air-conditioner under the climate of Thailand. • PCM was used to reduce cooling load and electrical power of the air-conditioner. • Mathematical model of the packed ball bed of PCM was presented to predict the thermal performance. - Abstract: In this study, a concept of using phase change material (PCM) for improving cooling efficiency of an air-conditioner had been presented under Thailand climate. Rubitherm20 (RT-20) was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. For the experiment, 2 TR of R-134a air-conditioner was chosen to test a pack bed of PCM balls with thickness 40 cm. The pressure drops of the air flowing through the bed were considered with and without a set of by-pass tubes along the height of the storage bed. The mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that pressure drops of the bed with and without bypass tubes were nearly the same results. Thus, PCM ball pack bed using RT-20 without bypass tubes was used to improve the cooling efficiency of the air-conditioner. The experimental result of the modified unit was compared and verified with the mathematical model, which agreed quite well with the simulation result. Finally, the model was used to analyze the economic result, which found that the electrical consumption of the modified air-conditioner could be decreased around 3.09 kW h/d. The saving cost from the PCM bed could be 9.10% of 170.03 USD/y and the payback period was around 4.15 y

  17. Thermochromic complex compounds in phase change materials. Possible application in an agricultural greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, M.; Nikolic, R.; Savovic, J. [Institute of Nuclear Sciences `Vinca`, Belgrade (Yugoslavia); Gadzuric, S.; Zsigrai, I. [Faculty of Sciences, University of Novi Sad, Novi Sad (Yugoslavia)

    1998-02-27

    The possibility to combine two physico-chemical phenomena is studied in this work in order to attain simultaneous control of temperature and light intensity in a greenhouse: (a) isothermal heat storage in phase change materials and (b) thermochromic behavior of complex compounds dissolved in the phase change materials. Two binary mixtures melting near the ambient temperature were studied: (a) 0.925 Ca(NO{sub 3}){sub 2}{center_dot}4.06 H{sub 2}0+0.075 CaCl{sub 2}{center_dot}6.11 H{sub 2}O melting at 35.6C and (b) 0.9 CH{sub 3}CONH{sub 2}+0.1 Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O, melting at 27.7C. The melting temperature, the enthalpy of fusion and the heat capacity of both mixtures were determined from DSC measurements. Both mixtures showed to be suitable solvents for the formation of consecutive cobalt(II) chloride complexes. The compositions of the complex compounds were adjusted in each mixture so that the absorption spectra in visible spectral range exhibited low absorbance at the melting temperature and a pronounced increase of the absorbance and/or change of color with the increase of temperature in the range relevant for passive solar energy receivers. The combined latent heat storage and the outstanding reversible change of the optical properties of the dissolved complex compounds with temperature is proposed to be applied in solar heated agricultural greenhouses in areas with fluctuating climate conditions. The increase of absorbance with temperature acts as an auto-regulated shading protection from overheating

  18. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material

    International Nuclear Information System (INIS)

    Highlights: • Mushroom slices were dehydrated in a hybrid solar dryer. • Drying and dehydrated kinetics were adjusted with models. • Effective diffusivity, were estimated considering or not shrinkage. • Paraffin wax as a phase change material was used in an accumulator of solar energy. - Abstract: Mushrooms were dehydrated in a hybrid solar dryer provided with a solar panel of a total exposed surface of 10 m2, electric resistances and paraffin wax as a phase change material. Mushrooms were cut in 8 mm or 12 mm slices. At the outlet of the drying chamber the air was recycled (70% or 80%) and the air temperature was adjusted to 60 °C. At the outlet of the solar panel the air temperature rose up to 30 °C above the ambient temperature, depending on solar radiation level. The effective diffusivity, estimated by the Simplified Constant Diffusivity Model, considering or not shrinkage, fluctuated between 2.5 · 10−10 m2/s and 8.4 · 10−10 m2/s with R2 higher than 0.99, agreeing with values reported in literature. The empirical Page’s model resulted in a better adjustment, with R2 above 0.998. In all runs the dehydrated mushrooms showed a notorious darkening and shrinkage. Rehydration assays at 30 °C showed that in less than 30 min rehydrated mushrooms reached a moisture content of 1.91 (dry basis). Rehydrated mushrooms had a higher hardness compared with fresh mushrooms. The Simplified Constant Diffusivity Model and the Peleg’s model adjusted to the rehydration data with RMSE values below 0.080. Thermal efficiency fluctuated between 22% and 62%, while the efficiency of the accumulator panel varied between 10% and 21%. The accumulator allowed reducing the electric energy input

  19. A Phase-Conjugate-Mirror Inspired Approach for Building Cloaking Structures with Left-handed Materials.

    Science.gov (United States)

    Zheng, Guoan; Heng, Xin; Yang, Changhuei

    2009-01-01

    A phase conjugate mirror (PCM) has a remarkable property of cancellation the back-scattering wave of the lossless scatterers. The similarity of a phase conjugate mirror to the interface of a matched RHM (right-handed material) and a LHM (left-handed material) prompts us to explore the potentials of using the RHM-LHM structure to achieve the anti-scattering property of the PCM. In this paper, we present two such structures. The first one is a RHM-LHM cloaking structure with a lossless arbitrary-shape scatterer imbedded in the RHM and its left-handed duplicate imbedded in the matched LHM. It is shown that such a structure is transparent to the incident electromagnetic (EM) field. As a special case of this structure, we proposed an EM tunnel that allows EM waves to spatially transport to another location in space without significant distortion and reflection. The second one is an RHM-PEC (perfect electric conductor)-LHM cloaking structure, which is composed of a symmetric conducting shell embedded in the interface junction of an RHM and the matched LHM layer. Such a structure presents an anomalously small scattering cross-section to an incident propagating EM field, and the interior of the shell can be used to shield small objects (size comparable to the wavelength) from interrogation. We report the results of 2D finite-element-method (FEM) simulations that were performed to verify our idea, and discuss the unique properties of the proposed structures as well as their limitations.

  20. Performance of a window shutter with phase change material under summer Mediterranean climate conditions

    International Nuclear Information System (INIS)

    The building sector is the largest final end-use consumer of energy in the European Union. Substantial heat losses in buildings occur through glazing areas, so it is crucial to mitigate the energy transfer between through these areas. The use of phase change materials (PCMs) is presently a technology advanced solution to improve the energy performance of building elements, particularly with window blinds or shutter protections. This paper presents the results of an experimental campaign of a window shutter containing PCM during the summer season. The shutter prototype was applied in an outside cell test composed by two compartments (side by side) and oriented to South. It was monitored and analysed the indoor air temperatures, the outside weather conditions and the heat flux of the interior wall partition. During the experiment, the range of the external air temperature changes from 13 °C to 25 °C and the average solar radiation recorded is 237 W m−2 to 306 W m−2. The measured results shows that the compartment with the PCM window shutter can reveals thermal regulating capacity of the indoor temperature about 18%–22%. The maximum and minimum temperature peaks decreased 6% and 11%, respectively. Besides the improvement of the indoor temperatures, the compartment with PCM increased 45 min the time delay to achieve the minimum temperature peak and 60 min to attain the maximum temperature peak, compared to the reference compartment (without PCM). - Highlights: • Incorporation of phase change materials into window shutter. • Resourcing to PCMs as a thermal regulator of indoor temperature. • Analysis of the thermal energy storage system using PCMs. • Experimental campaign of a window shutter incorporating PCM

  1. A Preisach approach to modeling partial phase transitions in the first order magnetocaloric material MnFe(P,As)

    DEFF Research Database (Denmark)

    von Moos, Lars; Bahl, C.R.H.; Nielsen, Kaspar Kirstein;

    2014-01-01

    . Such materials are potential candidates for application in magnetic refrigeration devices. However, the first order materials often have adverse properties such as hysteresis, making actual performance troublesome to quantify, a subject not thoroughly studied within this field.Here we investigate the behavior...... of MnFe(P,As) under partial phase transitions, which is similar to what materials experience in actual magnetic refrigeration devices. Partial phase transition curves, in the absence of a magnetic field, are measured using calorimetry and the experimental results are compared to simulations...

  2. Relationship between magnetic Barkhausen noise and the stresses, the hardness and the phase content of ferromagnetic materials

    Institute of Scientific and Technical Information of China (English)

    QI Xin; HOU Zhi-ling; TIAN Jian-long

    2005-01-01

    Magnetic Barkhausen Noise (MBN) is a phenomenon of electromagnetic energy emission due to the movement of magnetic domain walls inside ferromagnetic materials when they are locally magnetized by an altercoil attached to the surface of the material being magnetized and the noise carries the message of the characteristics of the material such as stresses, hardness, phase content, etc. Based on the characteristic of the noise, research about the relationship between the welding stresses in the welding assembly and the noise, the fatigue damage of the plate structure and the noise, and the influence of heat treatment and the variation of phase content to the noise are carried out in this paper.

  3. POTENTIAL USE OF PHASE CHANGE MATERIALS IN GREENHOUSES HEATING: COMPARISON WITH A TRADITIONAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Claudio Caprara

    2009-09-01

    Full Text Available In order to use solar radiation as thermal energy source, heat storage equipments result necessary in each application where continuous supply is required, because of the natural unsteady intensity of radiation during the day. Thermal solar collectors are especially suitable for low temperature applications, since their efficiency decreases when an high inlet temperature of fluid flowing through them is established. On the other hand, low temperatures and low temperature gaps, above all, make very difficult to use traditional sensible heat storing units (water tanks, because of the very large amounts of material required. In this work, a traditional sensible heat storage system is compared with a latent heat storing unit based on phase change materials (PCMs. As a case study, a 840 m3 greenhouse heating application was considered with an inside constant temperature of 18°C. It is thought to be heated by using single layer plate thermal solar collectors as energy source. Inlet temperature of the collectors fluid (HTF was fixed at 35°C (little higher than melting temperature of PCMs and a constant flux of 12 l/m2 hour was established as technical usual value. At these conditions, 215m2 solar panels exposed surface resulted necessary. The sensible heat storage system considered here is a traditional water tank storing unit equipped with two pipe coils, respectively for heat exchanges with HTF from collectors and water flux for greenhouse heating. Available DT for heat exchange is estimated as the difference of minimum HTF temperature (in outlet from the collectors and the required water temperature for greenhouse heating. The latent heat storing unit is instead a series of copper rectangular plate shells which a phase change material is filled in (Na2SO4⋅10H2O. Heat transfer fluids flow through thin channels between adjacent plates, so that a large heat exchange available surface is achieved. The developed computational model (Labview software

  4. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift

    Science.gov (United States)

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-01

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K.During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05512a

  5. Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells

    Science.gov (United States)

    Haschke, Jan; Amkreutz, Daniel; Rech, Bernd

    2016-04-01

    Liquid phase crystallization has emerged as a novel approach to grow large grained polycrystalline silicon films on glass with high electronic quality. In recent years a lot of effort was conducted by different groups to determine and optimize suitable interlayer materials, enhance the crystallographic quality or to improve post crystallization treatments. In this paper, we give an overview on liquid phase crystallization and describe the necessary process steps and discuss their influence on the absorber properties. Available line sources are compared and different interlayer configurations are presented. Furthermore, we present one-dimensional numerical simulations of a rear junction device, considering silicon absorber thicknesses between 1 and 500 µm. We vary the front surface recombination velocity as well as doping density and minority carrier lifetime in the absorber. The simulations suggest that a higher absorber doping density is beneficial for layer thicknesses below 20 µm or when the minority carrier lifetime is short. Finally, we discuss possible routes for device optimization and propose a hybride cell structure to circumvent current limitations in device design.

  6. Coherent gigahertz phonons in Ge2Sb2Te5 phase-change materials

    Science.gov (United States)

    Hase, Muneaki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2015-12-01

    Using ≈ 40 fs ultrashort laser pulses, we investigate the picosecond acoustic response from a prototypical phase change material, thin Ge2Sb2Te5 (GST) films with various thicknesses. After excitation with a 1.53 eV-energy pulse with a fluence of ≈ 5 mJ cm-2, the time-resolved reflectivity change exhibits transient electronic response, followed by a combination of exponential-like strain and coherent acoustic phonons in the gigahertz (GHz) frequency range. The time-domain shape of the coherent acoustic pulse is well reproduced by the use of the strain model by Thomsen et al 1986 (Phys. Rev. B 34 4129). We found that the decay rate (the inverse of the relaxation time) of the acoustic phonon both in the amorphous and in the crystalline phases decreases as the film thickness increases. The thickness dependence of the acoustic phonon decay is well modeled based on both phonon-defect scattering and acoustic phonon attenuation at the GST/Si interface, and it is revealed that those scattering and attenuation are larger in crystalline GST films than those in amorphous GST films.

  7. Vacuum thermal switch made of phase transition materials considering thin film and substrate effects

    Science.gov (United States)

    Yang, Yue; Basu, Soumyadipta; Wang, Liping

    2015-06-01

    In the present study, we theoretically demonstrate a vacuum thermal switch based on near-field thermal radiation between phase transition materials, i.e., vanadium dioxide (VO2), whose phase changes from insulator to metal at 341 K. Strong coupling of surface phonon polaritons between two insulating VO2 plates significantly enhances the near-field heat flux, which on the other hand is greatly reduced when the VO2 emitter becomes metallic, resulting in strong thermal switching effect. Fluctuational electrodynamics incorporated with anisotropic wave propagation predicts more than 80% heat transfer reduction at sub-30-nm vacuum gaps and 50% at vacuum gap of 1 μm. Furthermore, the penetration depth inside the uniaxial VO2 insulator is studied at the vacuum gap of 50 nm, suggesting the possible impact of reduced VO2 thickness on the near-field thermal radiation with thin-film structures. By replacing the bulk VO2 receiver with a thin film of several tens of nanometers, the switching effect is further improved over a broad range of vacuum gaps from 10 nm to 1 μm. Finally, the effect of SiO2 substrate for the thin-film emitter or receiver is also considered to provide insights for future experimental demonstrations. By controlling heat flow with near-field radiative transport, the proposed vacuum thermal switch would find practical applications for energy dissipation in microelectronic devices and for the realization of thermal circuits.

  8. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    Science.gov (United States)

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG. PMID:26353580

  9. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material

    International Nuclear Information System (INIS)

    Highlights: ► A refrigeration system having low energy cost and producing no local greenhouse gas emission. ► A PCM is experimentally developed which is able to maintain the refrigerated truck at −18 °C. ► A TRNSYS model is developed to simulate the proposed refrigeration system. -- Abstract: An innovative refrigeration system incorporating phase change material (PCM) is proposed to maintain refrigerated trucks at the desired thermal conditions. The advantage of using PCM to maintain low temperatures is that a conventional refrigeration system does not have to be located on-board the vehicle. In addition, the system consumes less energy and produces much lower local greenhouse gas (GHG) emissions. The phase change thermal storage unit (PCTSU) is charged by a refrigeration unit located off the vehicle when stationary. The PCM is discharged and provides cooling when in service. A new PCM with a lower cost than currently available PCMs was developed, suitable for maintaining the refrigerated truck at a temperature of −18 °C. The PCM has a melting temperature of −26.7 °C and a latent heat of 154.4 kJ kg−1. A prototype system was constructed and test results proved that the proposed refrigeration system is feasible for mobile transport. An analysis shows that delivery of refrigerated products can be made with a PCM system having a weight comparable to that of an on board conventional refrigeration system with less than half of the energy cost.

  10. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    Science.gov (United States)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  11. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A thermal lattice Boltzmann model is developed for the melting process of phase change material (PCM) embedded in open-cell metal foams. Natural convection in the melt PCM is considered. Under the condition of local thermal non-equilibrium between the metal matrix and PCM, two evolution equations of temperature distribution function are pre-sented through selecting an equilibrium distribution function and a nonlinear source term properly. The enthalpy-based method is employed to copy with phase change problem. Melting process in a cavity of the metal foams is simulated using the present model. The melting front locations and the temperature distributions in the metal foams filled with PCM are obtained by the lattice Boltzmann method. The effects of the porosity and pore size on the melting are also investigated and discussed. The re-sults indicate that the effects of foam porosity play important roles in the overall heat transfer. For the lower porosity foams, the melting rate is comparatively greater than the higher porosity foams, due to greater heat conduction from metal foam with high heat conductivity. The foam pore size has a limited effect on the melting rate due to two counteracting effects between conduction and convection heat transfer.

  12. Cooling vests with phase change material packs: the effects of temperature gradient, mass and covering area.

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Holmer, Ingvar

    2010-05-01

    Phase change material (PCM) absorbs or releases latent heat when it changes phases, making thermal-regulated clothing possible. The objective of this study was to quantify the relationships between PCM cooling rate and temperature gradient, mass and covering area on a thermal manikin in a climatic chamber. Three melting temperatures (24, 28, 32 degrees C) of the PCMs, different mass, covering areas and two manikin temperatures (34 and 38 degrees C) were used. The results showed that the cooling rate of the PCM vests tested is positively correlated with the temperature gradient between the thermal manikin and the melting temperature of the PCMs. The required temperature gradient is suggested to be greater than 6 degrees C when PCM vests are used in hot climates. With the same temperature gradient, the cooling rate is mainly determined by the covering area. The duration of the cooling effect is dependent on PCM mass and the latent heat. STATEMENT OF RELEVANCE: The study of factors affecting the cooling rate of personal cooling equipment incorporated with PCM helps to understand cooling mechanisms. The results suggest climatic conditions, the required temperature gradient, PCM mass and covering area should be taken into account when choosing personal PCM cooling equipment. PMID:20432090

  13. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  14. An in situ heater for a phase-change-material-based actuation system

    International Nuclear Information System (INIS)

    This paper reports efforts to develop paraffin actuators that rely on a phase change to achieve actuation. While paraffin phase-change actuators have existed for some time, this work relies on heating the paraffin in situ, rather than using external heaters. Graphite is used to create an in situ heater that utilizes resistive heating as a voltage is applied across the graphite–paraffin wax mixture. The main motivation behind this work is to reduce the actuation time and power required. An added advantage of the developed in situ heater is the use of printed circuit board technology to fabricate the prototypes rapidly and in a cost-effective manner. A video microscope and IR camera are used to characterize the performance of the actuators built in this work. Different compositions of graphite in paraffin wax are used to measure the actuator performance characteristics such as actuation time, actuation height and power required. Both dc and a pulsed power input are used to test the prototypes. Comparison with a similar actuator that utilizes a thin film heater shows a 90% reduction in actuation time for similar power usage. The actuator developed as part of this work resulted in 0.577 mm dot height at 0.69 W power input in 6 s translating to ∼4 J/actuation for an actuator chamber of 2.82 µL. A new performance metric, 'effective actuation time (W s−1 mm−4)', is used to compare the performance of this technology with other phase-change-material-based actuators, and the actuator developed in this work is found to be 10 to 200 times better.

  15. High accuracy interface characterization of three phase material systems in three dimensions

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Hansen, Karin Vels; Larsen, Rasmus;

    2010-01-01

    by tomography schemes such as focused ion beam serial sectioning or micro-computed tomography. We present a high accuracy method of calculating two phase surface areas and triple phase length of triple phase systems from subvoxel accuracy segmentations of constituent phases. The method performs a three phase...

  16. Atomic structure and electronic properties of the SixSb100-x phase-change memory material

    DEFF Research Database (Denmark)

    Verma, Ashok K.; Modak, Paritosh; Svane, Axel;

    2011-01-01

    The electronic and structural properties of SixSb100-x (x∼16) materials are investigated using first-principles molecular dynamics simulations. Crystalline-liquid-amorphous phase transitions are examined and remarkable changes in the local structure around the Si atoms are found. The average Si...... coordination number 6 (3 long + 3 short Si-Sb bonds) of the crystalline phase changes to 4 (3 long Si-Sb + 1 short Si-Si bonds) by preserving three Si-Sb bonds in both the liquid and the amorphous phases. In the amorphous phase ∼90% of the Si atoms are fourfold coordinated compared to 40% in the liquid. The...

  17. Lauric and myristic acids eutectic mixture as phase change material for low-temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Keles, Sadat; Kaygusuz, Kamil [Karadeniz Technical Univ., Dept. of Chemistry, Trabzon (Turkey); Sari, Ahmet [Gaziosmanpasa Univ., Dept. of Chemistry, Tokat (Turkey)

    2005-07-01

    Lauric acid (m.p.: 42.6 deg C) and myristic acid (m.p.: 52.2 deg C) are phase change materials (PCM) having quite high melting points which can limit their use in low-temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of lauric acid (LA) and myristic acid (MA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 66.0 wt% LA forms a eutectic mixture having melting temperature of 34.2 deg C and the latent heat of fusion of 166.8 J g{sup -1} . This study also considers the experimental establishment of thermal characteristics of the eutectic PCM in a vertical concentric pipe-in-pipe heat storage system. Thermal performance of the PCM was evaluated with respect to the effect of inlet temperature and mass flow rate of the heat transfer fluid on those characteristics during the heat charging and discharging processes. The DSC thermal analysis and the experimental results indicate that the LA-MA eutectic PCM can be potential material for low-temperature solar energy storage applications in terms of its thermo-physical and thermal characteristics. (Author)

  18. The Possibility of Phase Change Materials (PCM Usage to Increase Efficiency of the Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Klugmann-Radziemska Ewa

    2014-01-01

    Full Text Available Solar energy is widely available, free and inexhaustible. Furthermore this source of energy is the most friendly to the environment. For direct conversion of solar energy into useful forms like of electricity and thermal energy, respectively photovoltaic cells and solar collectors are being used. Forecast indicate that the first one solution will soon have a significant part in meeting the global energy demand. Therefore it is highly important to increase their efficiency in the terms of providing better energy conversion conditions. It can be obtain by designing new devices or by modifications of existing ones. This article presents general issues of photovoltaic installations exposed to work in high temperatures and basic concepts about phase change materials (PCMs. The paper presents the possibility of PCM usage to receive heat from the photovoltaic module. Specially designed test stand, consisting of PV module covered with a layer of PCM has been build and tested. Current-voltage characteristics of the cell without PCM material and with a layer of PCM have been presented. Authors also describe the results of the electrical and thermal characteristic of a coupled PV-PCM system.

  19. Self Assembly of Mesoporous Materials in the Gas-Phase: An in situ SAD Study

    International Nuclear Information System (INIS)

    Full text: Evaporation induced self assembly (EISA) provides an attractive method for the synthesis of mesostructured materials. A fast and economically interesting process for the production of mesostructured particles is the spray-drying process of aerosol droplets, in which the mesophase formation proceeds within a few seconds, but still, a high degree of control on the nal mesostructure is possible by applying suitable process parameters. Besides the chemical composition, also the external conditions influencing the evaporation rate (e.g. temperature, relative humidity) have been identified as key parameters for the resulting structure of the mesophase. Most of the previous studies have been performed on the dried aerosol and provided information on the effect of such parameters on the nal structure or at the end of the evaporation chamber. For the in situ study, various setups were designed that enables the gas-phase measurements during the evaporation process. In an elongated evaporation vessel temperature gradients from a starting temperature (e.g. 50C) to nal temperatures up to 4000C can be applied within a few centimetres in the axial direction and provoke a fast evaporation of the volatile components of the ESIA process. X-ray measurements can be taken at steps along the temperature profile in the dryer tube and the self assembly process can be followed with SWAXS. This presentation should give an overview of the different experiments starting from the ex-situ deposition, in situ experiments of mesoporous materials and finally hierarchical assembly of more complex structures. (author)

  20. Dimethyl terephthalate (DMT) as a candidate phase change material for high temperature thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuecuekaltun, Engin [Advansa Sasa Polyester San, A.S., Adana (Turkey); Paksoy, Halime; Bilgin, Ramazan; Yuecebilgic, Guezide [Cukurova Univ., Adana (Turkey). Chemistry Dept.; Evliya, Hunay [Cukurova Univ., Adana (Turkey). Center for Environmental Research

    2010-07-01

    Thermal energy storage at elevated temperatures, particularly in the range of 120-250 C is of interest with a significant potential for industrial applications that use process steam at low or intermediate pressures. At given temperature range there are few studies on thermal energy storage materials and most of them are dedicated to sensible heat. In this study, Dimethyl Terephthalate - DMT (CAS No: 120-61-6) is investigated as a candidate phase change material (PCM) for high temperature thermal energy storage. DMT is a monomer commonly used in Polyethylene terephtalate industry and has reasonable cost and availability. The Differential Scanning Calorimetry (DSC) analysis and heating cooling curves show that DMT melts at 140-146 C within a narrow window. Supercooling that was detected in DSC results was not observed in the cooling curve measurements made with a larger sample. With a latent heat of 193 J/g, DMT is a candidate PCM for high temperature storage. Potential limitations such as, low thermal conductivity and sublimation needs further investigation. (orig.)

  1. 2006/07 Field Testing of Cellulose Fiber Insulation Enhanced with Phase Change Material

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Miller, William A [ORNL; Petrie, Thomas [ORNL; Childs, Phillip W [ORNL; Syed, Azam M [ORNL

    2008-12-01

    Most recent improvements in building envelope technologies suggest that in the near future, residences will be routinely constructed to operate with very low heating and cooling loads. In that light, the application of novel building materials containing active thermal components (e.g., phase change materials [PCMs,] sub-venting, radiant barriers, and integrated hydronic systems) is like a final step in achieving relatively significant heating and cooling energy savings from technological improvements in the building envelope. It is expected that optimized building envelope designs using PCMs for energy storage can effectively bring notable savings in energy consumption and reductions in peak hour power loads. During 2006/07, a research team at Oak Ridge National Laboratory (ORNL) performed a series of laboratory and field tests of several wall and roof assemblies using PCM-enhanced cellulose insulation. This report summarizes the test results from the perspective of energy performance. The ORNL team is working on both inorganic and organic PCMs; this report discusses only paraffinic PCMs. A limited economical analysis also is presented. PCMs have been tested as a thermal mass component in buildings for at least 40 years. Most of the research studies found that PCMs enhanced building energy performance. In the case of the application of organic PCMs, problems such as high initial cost and PCM leaking (surface sweating) have hampered widespread adoption. Paraffinic hydrocarbon PCMs generally performed well, with the exception that they increased the flammability of the building envelope.

  2. An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  3. Gypsum plasterboards enhanced with phase change materials: A fire safety assessment using experimental and computational techniques

    Directory of Open Access Journals (Sweden)

    Kolaitis Dionysios I.

    2013-11-01

    Full Text Available Phase Change Materials (PCM can be used for thermal energy storage, aiming to enhance building energy efficiency. Recently, gypsum plasterboards with incorporated paraffin-based PCM blends have become commercially available. In the high temperature environment developed during a fire, the paraffins, which exhibit relatively low boiling points, may evaporate and, escaping through the gypsum plasterboard's porous structure, emerge to the fire region, where they may ignite, thus adversely affecting the fire resistance characteristics of the building. Aiming to assess the fire safety behaviour of such building materials, an extensive experimental and computational analysis is performed. The fire behaviour and the main thermo-physical physical properties of PCM-enhanced gypsum plasterboards are investigated, using a variety of standard tests and devices (Scanning Electron Microscopy, Thermo Gravimetric Analysis, Cone Calorimeter. The obtained results are used to develop a dedicated numerical model, which is implemented in a CFD code. CFD simulations are validated using measurements obtained in a cone calorimeter. In addition, the CFD code is used to simulate an ISO 9705 room exposed to fire conditions, demonstrating that PCM addition may indeed adversely affect the fire safety of a gypsum plasterboard clad building.

  4. A programmable high voltage electrical switching analyzer for I-V characterization of phase change materials

    CERN Document Server

    Bhanu Prashanth, S B

    2007-01-01

    Ovonic Phase-Change Materials have found a renewed interest in the recent times owing to their applications in Non-Volatile Random Access Memories. In the present work, a cost-effective high voltage electrical switching analyzer has been developed to enable investigations on the I-V characteristics and electrical switching of bulk solids, which are necessary for identifying suitable materials for memory and other applications such as power control. The developed set up mainly consists of a PC based programmable High Voltage DC Power Supply which acts as an excitation source and a high speed Digital Storage Oscilloscope. For flexible control options, a Graphical User Interface has also been developed using LabVIEW-6i to control the excitation source through the analog outputs of a data acquisition card. Options are made in the system to sweep the output voltage from 45 to 1750 V or the output current in the range 0-45 mA with resolutions of 1.5 V & 5 or 50 μA at variable rates. I-V characteristics and swi...

  5. Heat transfer and thermal storage performance of an open thermosyphon type thermal storage unit with tubular phase change material canisters

    International Nuclear Information System (INIS)

    Highlights: • A novel open heat pipe thermal storage unit is design to improve its performance. • Mechanism of its operation is phase-change heat transfer. • Tubular canisters with phase change material were placed in thermal storage unit. • Experiment and analysis are carried out to investigate its operation properties. - Abstract: A novel open thermosyphon-type thermal storage unit is presented to improve design and performance of heat pipe type thermal storage unit. In the present study, tubular canisters filled with a solid–liquid phase change material are vertically placed in the middle of the thermal storage unit. The phase change material melts at 100 °C. Water is presented as the phase-change heat transfer medium of the thermal storage unit. The tubular canister is wrapped tightly with a layer of stainless steel mesh to increase the surface wettability. The heat transfer mechanism of charging/discharging is similar to that of the thermosyphon. Heat transfer between the heat resource or cold resource and the phase change material in this device occurs in the form of a cyclic phase change of the heat-transfer medium, which occurs on the surface of the copper tubes and has an extremely high heat-transfer coefficient. A series of experiments and theoretical analyses are carried out to investigate the properties of the thermal storage unit, including power distribution, start-up performance, and temperature difference between the phase change material and the surrounding vapor. The results show that the whole system has excellent heat-storage/heat-release performance

  6. Phase retarder based on one-dimensional photonic crystals composed of plasma and mu-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Basics, Air Force Early Warning Academy, Wuhan 430019 (China); Yi, Lin, E-mail: plasma@hust.edu.cn [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Xin-Guang [Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Physics, Huangshan University, Huangshan 245041 (China); Duan, Yong-Fa; Yang, Zhi-Zong [Department of Basics, Air Force Early Warning Academy, Wuhan 430019 (China)

    2015-01-15

    By using transfer matrix method, a systematic study on the properties of the reflection phase shifts and the reflection phase difference between TE and TM waves in a finite one-dimensional (1D) photonic crystal containing plasma and mu-negative materials is presented. It is found that the reflection phase difference between the two polarizations remains constant in a rather wide frequency range for a given incident angle. More specifically, the reflection phase difference increases gradually from 0 to π rad with the increase of the incident angle. That is to say, the finite 1D structure can serve as a broadband phase retarder. It is also evident that the working frequency range of the phase retarder can be adjusted by altering the plasma frequency and the thickness of the plasma layers without changing the structure of the photonic crystal.

  7. Chemical Complementarity between the Gas Phase of the Interstellar Medium and the Rocky Material of Our Planetary System

    CERN Document Server

    Wang, Haiyang

    2016-01-01

    We compare the elemental depletions in the gas phase of the interstellar medium (ISM) with the elemental depletions in the rocky material of our Solar System. Our analysis finds a high degree of chemical complementarity: elements depleted in the gas phase of the ISM are enriched in the rocky material of our Solar System, and vice versa. This chemical complementarity reveals the generic connections between interstellar dust and rocky planetary material. We use an inheritance model to explain the formation of primordial grains in the solar nebula. The primary dust grains inherited from the ISM, in combination with the secondary ones condensed from the solar nebula, constitute the primordial rocky material of our planetary system, from which terrestrial planets are formed through the effects of the progressive accretion and sublimation. The semi-major-axis-dependence of the chemical composition of rocky planetary material is also observed by comparing elemental depletions in the Earth, CI chondrites and other ty...

  8. Phase-contrast imaging with an x-ray grating interferometer in materials science using noncoherent synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia; Beckmann, Felix; Ogurreck, Malte; Riekehr, Stefan; Haibel, Astrid; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany); Donath, Tilman; David, Christian [Paul Scherrer Institute, Villigen PSI (Switzerland); Pfeiffer, Franz [Technische Universitaet Muenchen, Munich (Germany)

    2010-07-01

    Phase-contrast imaging with a hard X-ray grating interferometer is used to increase contrast for weak absorbing materials. It is a well established imaging method to visualize soft tissue in many medical and biological applications. Here we present the approach of using this method in the field of materials science, especially in imaging of new light-weight materials like magnesium and aluminium alloys. We show that more information from a single X-ray projection image can be gained by combining the different contrasts obtained by this imaging method simultaneously. This information can be used to optimize advanced joining techniques for such materials.

  9. Confined-Volume Effect on the Thermal Properties of Encapsulated Phase Change Materials for Thermal Energy Storage.

    Science.gov (United States)

    De Castro, Paula F; Ahmed, Adham; Shchukin, Dmitry G

    2016-03-18

    We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated.

  10. Preparation of Paraffin/γ-Al2O3Composites as Phase Change Energy Storage Materials%Preparation of Paraffin/γ-Al2O3 Composites as Phase Change Energy Storage Materials

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; MARuiying; MENG Xianglan; WANG Gang; FANG Xiangchen

    2011-01-01

    Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbingparaffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM) for thermal energy storage,and γ-Al2O3 acted as supporting materials.Characterizations were conducted to evaluate the energy storage performance of the composites,and differential scanning calorimeter results showed that the PCM-3 composite has melting latent heat of 112.9 kJ/kg with a melting temperature of 62.9 ℃.Due to strong capillary force and surface tension between paraffin and γ-Al2O3,the leakage of melted paraffin from the composites can be effectively prevented.Therefore,the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly.

  11. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model

    International Nuclear Information System (INIS)

    Highlights: • Expanded graphite can improve thermal conductivity of RT44HC by 20–60 times. • Thermal conductivity of PCM/EG composites keeps constant before/after melting. • Thermal conductivity of PCMs nearly doubled during phase changing. • Thermal conductivity of composite PCM increases with density and percentage of EG. • The simple model predicts thermal conductivity of EG-based composites accurately. - Abstract: This work studies factors that affect the thermal conductivity of an organic phase change material (PCM), RT44HC/expanded graphite (EG) composite, which include: EG mass fraction, composite PCM density and temperature. The increase of EG mass fraction and bulk density will both enhance thermal conductivity of composite PCMs, by up to 60 times. Thermal conductivity of RT44HC/EG composites remains independent on temperature outside the phase change range (40–45 °C), but nearly doubles during the phase change. The narrow temperature change during the phase change allows the maximum heat flux or minimum temperature for heat source if attaching PCMs to a first (constant temperature) or second (constant heat flux) thermal boundary. At last, a simple thermal conductivity model for EG-based composites is put forward, based on only two parameters: mass fraction of EG and bulk density of the composite. This model is validated with experiment data presented in this paper and in literature, showing this model has general applicability to any composite of EG and poor thermal conductive materials

  12. Epitaxial growth of Ge-Sb-Te based phase change materials

    International Nuclear Information System (INIS)

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb2Te3 thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb2Te3 to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  13. Epitaxial growth of Ge-Sb-Te based phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, Karthick

    2013-07-30

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb{sub 2}Te{sub 3} thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb{sub 2}Te{sub 3} to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  14. New graphite/salt materials for high temperature energy storage. Phase change properties study

    International Nuclear Information System (INIS)

    This work is a contribution to the study of new graphite/salt composites dedicated to high temperature energy storage (≥200 C). The aim is to analyse and to understand the influence of both graphite and composite microstructure on the phase change properties of salts. This PhD is carried out within the framework of two projects: DISTOR (European) and HTPSTOCK (French). The major contributions of this work are threefold: 1) An important database (solid-liquid phase change properties) is provided from the DSC analysis of six salts and the corresponding composites. 2) Rigorous modeling of salts melting in confined media in several geometries are proposed to understand why, during the first melting of the compression elaborated composites, problems of salt leakage are observed. These models show that the materials morphology is responsible for these phenomena: the graphite matrix restrains the volume expansion due to salt melting: salt melts under pressure, which leads to a melting on a large temperature range and to a loss of energy density. Sensitivity analysis of parameters (geometric and physic) shows that matrix rigidity modulus is the parameter on which it is necessary to act during the composites elaboration to blur this phenomenon. 3) Finally, this work proposes a thermodynamic formulation of both surface/interface phenomena and the presence of dissolved impurities being able to explain a melting point lowering. It seems that the melting point lowering observed (∼ 5 C) are mainly due to the presence of dissolved impurities (brought by graphite) in the liquid, along with an additional Gibbs-Thomson effect (∼ 1 C, related to the size of the clusters crystals). (author)

  15. Combined model of strain-induced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures

    CERN Document Server

    Garion, Cedric

    2003-01-01

    Ductile materials (like stainless steel or copper) show at cryogenic temperatures three principal phenomena: serrated yielding (discontinuous in terms of dsigma/depsilon), plastic strain-induced phase transformations and evolution of ductile damage. The present paper deals exclusively with the two latter cases. Thus, it is assumed that the plastic flow is perfectly smooth. Both in the case of damage evolution and for the gamma-alpha prime phase transformation, the principal mechanism is related to the formation of plastic strain fields. In the constitutive modeling of both phenomena, a crucial role is played by the accumulated plastic strain, expressed by the Odqvist parameter p. Following the general trends, both in the literature concerning the phase transformation and the ductile damage, it is assumed that the rate of transformation and the rate of damage are proportional to the accumulated plastic strain rate. The gamma-alpha prime phase transformation converts the initially homogenous material to a two-p...

  16. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    Science.gov (United States)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  17. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Fuensanta, Mónica, E-mail: monica.fuensanta@aidico.es [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Paiphansiri, Umaporn [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Romero-Sánchez, María Dolores, E-mail: md.romero@aidico.es [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Guillem, Celia; López-Buendía, Ángel M. [AIDICO, Technological Institute of Construction, Camí de Castella, 4, 03660 Novelda, Alicante (Spain); Landfester, Katharina [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2013-08-10

    Highlights: • A paraffin wax RT80 was encapsulated in styrene–butyl acrylate copolymer as polymer shell using miniemulsion polymerization process to obtain a novel nanoencapsulated PCM with 80 °C melting temperature. • Nano-PCMs have high compact structure, spherical morphology and thermal stability. • The nano-PCMs have potential applications as thermal energy storage materials. - Abstract: A novel nanoencapsulation of a paraffine type phase change material, RT80, in a styrene–butyl acrylate copolymer shell using the miniemulsion polymerization process was carried out. General characteristics of the RT80 nanoparticles in terms of thermal properties, morphology, chemical composition and particle size distribution were characterized by Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Dynamic Light Scattering (DLS). The influence of different monomers (styrene, butyl acrylate) and the surfactant/paraffin mass ratios on nanoparticles properties such as thermal capacity, particle size and morphology were systematically investigated. In all cases studied, encapsulation efficiency was close to 80 wt% with a particle size distribution between 52 and 112 nm and regular spherical shape and uniform structure. The amount of encapsulated paraffin achieved was comprised between 8 and 20%. Melting and crystallization heats were found to be approximately 5–25 J g{sup −1}, mainly depending on surfactant/paraffin mass ratio. Melting temperature of RT80 nanoparticles slightly decreased (1–7 °C) respect to the raw RT80. In addition, the encapsulated RT80 nanoparticles show thermal stability even after 200 thermal (heat-cooling) cycles.

  18. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition

    Science.gov (United States)

    Lei, T.; Engelbrecht, K.; Nielsen, K. K.; Neves Bez, H.; Bahl, C. R. H.

    2016-09-01

    Magnetocaloric materials (MCM) with a first order phase transition (FOPT) usually exhibit a large, although sharp, isothermal entropy change near their Curie temperature, compared to materials with a second order phase transition (SOPT). Experimental results of applying FOPT materials in recent magnetocaloric refrigerators (MCR) demonstrated the great potential for these materials, but a thorough study on the impact of the moderate adiabatic temperature change and strong temperature dependence of the magnetocaloric effect (MCE) is lacking. Besides, comparing active magnetic regenerators (AMR) using FOPT and SOPT materials is also of fundamental interest. We present modeling results of multi-layer AMRs using FOPT and SOPT materials based on a 1D numerical model. First the impact of isothermal entropy change, adiabatic temperature change and shape factor describing the temperature dependence of the MCE are quantified and analyzed by using artificially built magnetocaloric properties. Then, based on measured magnetocaloric properties of La(Fe,Mn,Si)13H y and Gd, an investigation on how to layer typical FOPT and SOPT materials with different temperature spans is carried out. Moreover, the sensitivity of variation in Curie temperature distribution for both groups of AMRs is investigated. Finally, a concept of mixing FOPT and SOPT materials is studied for improving the stability of layered AMRs with existing materials.

  19. Characterization of a backfill candidate material, IBECO-RWC-BF Baclo Project - Phase 3 Laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Lars-Erik; Sanden, Torbjoern; Dueck, Ann; Ohlsson, Lars (Clay Technology AB, Lund (Sweden))

    2010-01-15

    A backfill candidate material, IBECO-RWC-BF, which origin from Milos, Greece, has been investigated. The material was delivered both as granules and as pellets. The investigation described in this report aimed to characterize the material and evaluate if it can be used in a future repository. The following investigations have been done and are presented in this report: 1. Standard laboratory tests. Water content, liquid limit and swelling potential are examples on standard tests that have been performed. 2. Block manufacturing. The block compaction properties of the material have been determined. A first test was performed in laboratory but also tests in large scale have been performed. After finishing the test phase, 60 tons of blocks were manufactured at Hoeganaes Bjuf AB. The blocks will be used in large scale laboratory tests at Aespoe HRL. 3. Mechanical parameters. The compressibility of the material was investigated with oedometer tests (four tests) where the load was applied in steps after saturation. The evaluated oedometer modulus varied between 34.50 MPa. Tests were made to evaluate the elastic parameters of the material (E, nu). Altogether three tests were made on specimens with dry densities of about 1,710 kg/m3. The evaluated E-modulus and Poisson's ratio varied between 231-263 MPa and 0.16-0.19 respectively. The strength of the material, both the compressive strength and the tensile strength were measured on specimens compacted to different dry densities. The test results yielded a relation between density and the two types of strength. Furthermore, tests have been made in order to determine the compressibility of the unsaturated filling of pellets. Two tests were made where the pellets were loosely filled in a Proctor cylinder and then compressed at a constant rate of strain during continuously measurement of the applied load. 4. Swelling pressure and hydraulic conductivity. There is, as expected, a very clear influence of the dry density on the

  20. Simulation of a high temperature thermal energy storage system employing several families of phase-change storage material

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, G.A. [Mississippi State Univ., MS (United States)

    1989-03-01

    Previous work by the author entailed modeling of the Packed Bed Thermal Energy Storage System, utilizing Phase-Change Materials, and a performance evaluation of the system based on the Second Law of thermodynamics. A principal conclusion reached is that the use of a single family of phase-change storage material may not in fact produce a thermodynamically superior system relative to one utilizing sensible heat storage material. This prompted us to modify our model so that we could investigate whether or not a significantly improved performance may be achieved via the use of multiple families of phase-change materials instead. Other factors investigated in the present work include the effect on system performance due to the thermal mass of the containment vessel wall, varying temperature and mass flow rate of the flue gas entering the packed bed during the storage process, and thermal radiation which could be a significant factor at high temperature levels. The resulting model is intended to serve as an integral part of a real-time simulation of the application of a high temperature regenerator in a periodic brick plant. This paper describes the more comprehensive model of the high temperature thermal energy storage system and presents results indicating that improved system performance could be achieved via a judicious choice of multiple families of phase-change materials.

  1. Phase change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Bayes-Garcia, L.; Ventola, L.; Cordobilla, R.; Benages, R.; Calvet, T.; Cuevas-Diarte, M.A. [Departament de Cristal.lografia, Mineralogia i Diposits Minerals, Facultat de Geologia, Universitat de Barcelona, Marti i Franques s/n, E-08028 Barcelona (Spain)

    2010-07-15

    In this study, phase change materials (Rubitherm registered RT 27) microcapsules were successfully obtained by two different methods. The main difference between them remains on the shell composition, as they are composed of different coacervates (Sterilized Gelatine/Arabic Gum for the SG/AG method and Agar-Agar/Arabic Gum for the AA/AG method). Microcapsules were thermally characterized by thermo-optical microscopy and differential scanning calorimetry. Using scanning electron microscopy, their spherical morphology (sphericity factor of 0.94-0.95) and their particle size distribution were determined, obtaining an average diameter of 12 {mu}m for the SG/AG method and lower values for the AA/AG method, where nanocapsules were also observed (average diameter of 4.3 {mu}m for the microcapsules and 104 nm for the nanocapsules). The thermal stability determination was carried out by Thermogravimetric analyses (TG) and the results show a high decomposition temperature, although the process takes places in four steps for the two mentioned methods. Moreover, the microcapsules obtained by the AA/AG method decompose in a more gradual way, as in the TG results a double step, instead of one, is appreciable. On the whole, the prepared microencapsulated PCM are totally capable of developing their role in thermal energy storage. (author)

  2. Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons

    Science.gov (United States)

    Hase, Muneaki; Fons, Paul; Mitrofanov, Kirill; Kolobov, Alexander V.; Tominaga, Junji

    2015-09-01

    Multicomponent chalcogenides, such as quasi-binary GeTe-Sb2Te3 alloys, are widely used in optical data storage media in the form of rewritable optical discs. Ge2Sb2Te5 (GST) in particular has proven to be one of the best-performing materials, whose reliability allows more than 106 write-erase cycles. Despite these industrial applications, the fundamental kinetics of rapid phase change in GST remain controversial, and active debate continues over the ultimate speed limit. Here we explore ultrafast structural transformation in a photoexcited GST superlattice, where GeTe and Sb2Te3 are spatially separated, using coherent phonon spectroscopy with pump-pump-probe sequences. By analysing the coherent phonon spectra in different time regions, complex structural dynamics upon excitation are observed in the GST superlattice (but not in GST alloys), which can be described as the mixing of Ge sites from two different coordination environments. Our results suggest the possible applicability of GST superlattices for ultrafast switching devices.

  3. Thermal Charging Study of Compressed Expanded Natural Graphite/Phase Change Material Composites

    Energy Technology Data Exchange (ETDEWEB)

    Mallow, Anne M [ORNL; Abdelaziz, Omar [ORNL; Graham, Samuel [Georgia Institute of Technology, Atlanta

    2016-01-01

    The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latent heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.

  4. Experimental investigations on the cooling of a motorcycle helmet with phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Fok S.C.

    2011-01-01

    Full Text Available The thermal comfort of motorcycle helmet during hot weather is important as it can affect the physiological and psychological condition of the rider. This paper examines the use of phase change material (PCM to cool a motorcycle helmet and presents the experimental investigations on the influences of the simulated solar radiation, wind speed, and heat generation rate on the cooling system. The result shows that the PCM-cooled helmet is able to prolong the thermal comfort period compared to a normal helmet. The findings also indicate that the heat generation from the head is the predominant factor that will affect the PCM melting time. Simulated solar radiation and ram-air due to vehicle motion under adiabatic condition can have very little influences on the PCM melting time. The results suggested that the helmet usage time would be influenced by the amount of heat generated from the head. Some major design considerations based on these findings have been included. Although this investigation focuses on the cooling of a motorcyclist helmet, the findings would also be useful for the development of PCM-cooling systems in other applications.

  5. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Directory of Open Access Journals (Sweden)

    Lee Chusak, Jared Daiber, Ramesh Agarwal

    2012-01-01

    Full Text Available Using Computational Fluid Dynamics (CFD, four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a an all-air overhead system, (b a combined all-air overhead and hydronic radiant system (chilled ceiling, (c an all-air raised floor system (displacement ventilation, and (d a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room. Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  6. Increasing energy efficiency of HVAC systems of buildings using phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Chusak, Lee; Daiber, Jared; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2012-07-01

    Using Computational Fluid Dynamics (CFD), four different cooling systems used in contemporary office environments are modeled to compare energy consumption and thermal comfort levels. Incorporating convection and radiation technologies, full-scale models of an office room compare energy efficiency of (a) an all-air overhead system, (b) a combined all-air overhead and hydronic radiant system (chilled ceiling), (c) an all-air raised floor system (displacement ventilation), and (d) a combined displacement ventilation with a chilled ceiling. The computational domain for each model consists of one temperature varying wall (simulating the temperature of the exterior wall of the building during a 24-hour period) and adiabatic conditions for the remaining walls, floor, and ceiling (simulating interior walls of the room). Two sets of computations are conducted. The first set considers a glass window and plastic shade configuration for the exterior wall. The second set of computations includes a phase change material layer between the glass window and the plastic shade. Results show substantial energy savings can be accrued using the displacement ventilation and especially the displacement ventilation with a chilled ceiling over the conventional overhead mixing ventilation system. The results also show that the addition of a PCM layer to the exterior wall can significantly decrease the cooling energy requirements.

  7. An experimental and numerical simulation study of an active solar wall enhanced with phase change materials

    Directory of Open Access Journals (Sweden)

    Dionysios I. Kolaitis

    2015-06-01

    Full Text Available Solar walls can be used to increase the overall energy efficiency of a building. Phase Change Materials (PCM are capable of increasing the effective thermal mass of building elements, thus decreasing the overall energy consumption. Recently, the incorporation of PCM in a solar wall has been proposed, aiming to increase the total energy efficiency of the system. The main scope of this work is to investigate the thermal behaviour of a PCM-enhanced solar wall (PCMESW, using experimental and numerical simulation techniques. A prototype PCMESW is installed in a large-scale test facility and is exposed to dynamically changing climate conditions. A broad range of sensors, used to monitor the time-evolution of several important physical parameters, is employed to assess the dynamic response of the PCMESW. In addition, a Computational Fluid Dynamics tool is used to numerically investigate the thermal behaviour of the PCMESW prototype. Predictions of the developing flow- and thermal-field in the PCMESW’s air cavity are validated by means of comparison with the obtained measurements; in general, good levels of agreement are observed. Results of the numerical simulations may support the design optimization process of innovative PCMESW systems.  

  8. Determination of phthalates in food packing materials by electrokinetic chromatography with polymeric pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2016-01-01

    Polymeric pseudostationary phase (PSP), formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)), was used in electrokinetic chromatography (EKC) to separate 15 kinds of phthalates (PAEs). The organic solvent modifier is a key factor for the separation of PAEs. Without organic solvents, only four kinds of PAEs with smaller molecular weight could be separated in the running buffer containing 1% P(SMA-co-MAA). The other eleven kinds of PAEs with larger molecular weight could be separated within 25 min by adding 40% (v/v) methanol and 2% (v/v) 1-butanol in the running buffer. The linear ranges of 15 kinds of PAEs were between 2 and 200mg/L, and the limit of detection based on the ratio of signal to noise of 3 were between 1 and 3mg/L. The method was applied to determination of PAEs in 6 kinds of food packing materials. The recoveries were between 81% and 118% with the RSD less than 4%.

  9. Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers.

    Science.gov (United States)

    Zhu, Fang; Guo, Jiaming; Zeng, Feng; Fu, Ruowen; Wu, Dingcai; Luan, Tiangang; Tong, Yexiang; Lu, Tongbu; Ouyang, Gangfeng

    2010-12-10

    Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers. PMID:21074162

  10. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    Science.gov (United States)

    Lee, Steve A.; Leimkuehler, Thomas O.; Stephan, Ryan; Le, Hung V.

    2010-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PC1V1) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  11. Feasibility study on a novel cooling technique using a phase change material in an automotive engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-bum; Choi, Kyung-wook; Kim, Young-jin; Lee, Ki-hyung [Department of Mechanical Engineering, Hanyang University, 1271 Sa 1-dong, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea); Lee, Kwan-soo [Department of Mechanical Engineering, Hanyang University, 17 Hangdang-dong, Sungdong-gu, Seoul, 133-070 (Korea)

    2010-01-15

    The size of a cooling inventory is generally designed based on which size can endure the excessive heat load situations that occur sporadically. As a result, cooling systems are often too large for most normal driving modes. There have been numerous efforts to downsize the automotive engine cooling system using novel concepts and strategies. Efficient cooling in automobiles is beneficial in reducing harmful emissions as well as improving fuel economy. A simulation was conducted to validate the feasibility of using a novel cooling strategy that utilized the heat load averaging capabilities of a phase change material (PCM). Three prototypes were designed: full-size, down-sized, and a down-sized prototype with a heat accumulator containing the PCM inside. When the full-size of the cooling inventory was down-sized by 30%, this smaller design failed to dissipate the peak heat load and consequently led to a significant increase in the coolant temperature, around 25 C greater than that in the full-size system. However, the peak heat load was successfully averaged out in the down-sized system with a heat accumulator. This novel cooling concept will contribute to a substantial reduction in the cooling system in terms of volume and hangover. (author)

  12. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  13. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    Science.gov (United States)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  14. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

    Directory of Open Access Journals (Sweden)

    Jessica Giro-Paloma

    2015-12-01

    Full Text Available A method for preparing and characterizing microencapsulated phase change materials (MPCM was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample and Micronal® DS 5008 X (BASF samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS. Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES capacities were 111.73 J·g−1 and 99.3 J·g−1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E, load at maximum displacement (Pm, and displacement at maximum load (hm, concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC’s. This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC’s emission after 10 min of heating, however peaks intensity of VOC’s generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X.

  15. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  16. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    Science.gov (United States)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2015-06-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  17. Ultrafast optical response of the amorphous and crystalline states of the phase change material Ge2Sb2Te5

    Science.gov (United States)

    Miller, T. A.; Rudé, M.; Pruneri, V.; Wall, S.

    2016-07-01

    We examine the ultrafast optical response of the crystalline and amorphous phases of the phase change material Ge2Sb2Te5 (GST) below the phase transformation threshold. Simultaneous measurement of the transmissivity and reflectivity of thin film samples yields the time-dependent evolution of the dielectric function for both phases. We then identify how lattice motion and electronic excitation manifest in the dielectric response. The dielectric response of both phases is large but markedly different. At 800 nm, the changes in amorphous GST are well described by the Drude response of the generated photocarriers, whereas the crystalline phase is better described by the depopulation of resonant bonds. We find that the generated coherent phonons have a greater influence in the amorphous phase than the crystalline phase. Furthermore, coherent phonons do not influence resonant bonding. For fluences up to 50% of the transformation threshold, the structure does not exhibit bond softening in either phase, enabling large changes of the optical properties without structural modification.

  18. Improved measurement technique for the characterization of organic and inorganic phase change materials using the T-history method

    OpenAIRE

    Stankovic, S. B.; Kyriacou, P. A.

    2013-01-01

    In the past decade, the interest in phase change materials (PCMs) has grown significantly due to their ability to store large amounts of thermal energy in relatively small temperature intervals. Accurate knowledge of thermo-physical properties is a prerequisite for any reliable utilization of these materials. The T-history method is widely used for the investigation of PCM. This paper presents an improved measurement technique for the characterization of PCM using the T-history method. The su...

  19. Nano-Phase Powder Based Exothermic Braze Repair Technology For RCC Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II project will advance innovative, cost effective and reliable nano-phase exothermic RCC joining processes (ExoBrazeTM) in order to be able to reinforce...

  20. HEAT STORAGE SYSTEM WITH PHASE CHANGE MATERIALS IN COGENERATION UNITS: STUDY OF PRELIMINARY MODEL

    Directory of Open Access Journals (Sweden)

    Claudio Caprara

    2008-12-01

    Full Text Available The continuous increase in the mechanization of farm activities, the rise in fuel prices and the environmental aspects concerning gas emissions are the main driving forces behind efforts toward more effective use of renewable energy sources and cogeneration systems even in agricultural and cattle farms. Nevertheless these systems are still not very suitable for this purpose because of their little flexibility in following the changing energy demand as opposed to the extremely various farm load curves, both in daytime and during the year. In heat recovery systems, the available thermal energy supply is always linked to power production, thus it does not usually coincide in time with the heat demand. Hence some form of thermal energy storage (TES is necessary in order to reach the most effective utilization of the energy source. This study deals with the modelling of a packed bed latent heat TES unit, integrating a cogeneration system made up of a reciprocating engine. The TES unit contains phase change materials (PCMs filled in spherical capsules, which are packed in an insulated cylindrical storage tank. Water is used as heat transfer fluid (HTF to transfer heat from the tank to the final uses, and exhausts from the engine are used as thermal source. PCMs are considered especially for their large heat storage capacity and their isothermal behaviour during the phase change processes. Despite their high energy storage density, most of them have an unacceptably low thermal conductivity, hence PCMs encapsulation technique is adopted in order to improve heat transfer. The special modular configuration of heat exchange tubes and the possibility of changing water flow through them allow to obtain the right amount of thermal energy from the tank, according to the hourly demand of the day. The model permits to choose the electrical load of the engine, the dimensions of the tank and the spheres, thickness and diameter of heat exchanger and the nature of

  1. Modeling Temperature Development of Li-ion Battery Packs using Phase Change Materials (PCM) and Fluid Flow

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat generation and the impact of Phase Change Materials (PCMs) on the maximum temperature in LiFePO4 battery cells. The model is constructed by coupling a one-dimensional electro-chemical model with a two-dimensional thermal model and fluid...

  2. Verification and Validation of EnergyPlus Conduction Finite Difference and Phase Change Material Models for Opaque Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.; Booten, C.

    2012-07-01

    Phase change materials (PCMs) represent a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have the capability to simulate PCM but their accuracy has not been completely tested. This report summarizes NREL efforts to develop diagnostic tests cases to obtain accurate energy simulations when PCMs are modeled in residential buildings.

  3. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    Science.gov (United States)

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  4. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    Science.gov (United States)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    of these proposed eutectic alloys are too high for currently available DSG solar fields, for instance the Mg49-Zn51 alloy melts at 342°C requiring saturated steam pressures above 160 bar to charge the TES unit. Being aware of this, novel eutectic metallic alloys have been designed reducing the Tms to the range between 285°C and 330°C (79bar and 145bar of charging steam pressure respectively) with ΔHfs between 150 and 170 J/g, and thus achieving metallic Phase Change Materials (PCM) suitable for the available DSG technologies.

  5. Physical and mechanical characterization of gypsum boards containing phase change materials for latent heat storage

    Directory of Open Access Journals (Sweden)

    Oliver-Ramírez, A.

    2011-09-01

    Full Text Available This article describes the design and manufacture of a gypsum board which, despite its 45 % wt content of phase change materials, meets the minimum physical and mechanical requirements laid down in the legislation on gypsum plasters (Spanish and European standard UNE EN 13279 and Spanish specifications for gypsum acceptance, RY 85. Under this design, a one-metre square, 1.5-cm thick board contains 4.75 kg of PCM, much more than in any prior drylining (the maximum attained to date is 3 kg per m2. The mechanical and physical characteristics of this new composite were previously improved with two joint-action additives: polypropylene fibres and melamine formaldehyde as a dispersing agent. In the 20-30 ºC temperature range, a gypsum board 1.5 cm thick containing this percentage of PCMs can store five times more thermal energy than conventional plasterboard of the same thickness, and the same amount of energy as half-foot hollow brick masonry.

    En esta investigación se ha diseñado y fabricado un panel de escayola que incorpora un 45% en peso de material de cambio de fase, manteniendo las propiedades físicas y mecánicas exigidas en la normativa de aplicación para yesos de construcción (UNE EN 13279 y referencias a la RY 85. Así, un panel de 1,0 m2 y 1,5 cm de espesor, contiene 4,75 kg de PCM, cantidad muy superior a la conseguida hasta la fecha (3 kg/m2. Para ello se ha mejorado previamente sus prestaciones mecánicas y físicas mediante adiciones binarias: fibras de polipropileno y dispersión de melanina formaldehído. Este porcentaje es capaz de almacenar en 1,5 cm de espesor cinco veces la energía térmica de un panel de cartón yeso con el mismo espesor y la misma cantidad que una fábrica de 1/2 pie de ladrillo hueco, en el rango de temperaturas próximas a la de confort (20-30 ºC.

  6. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    Science.gov (United States)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  7. Theory and measurement of properties of two-phase materials in the plastic-viscous deformation range

    International Nuclear Information System (INIS)

    An extensive literature survey shows, that theoretical equations available are inadequate to predict the viscosity of suspensions without limitation of the concentration of the dispersed phase, the shape and orientation of the suspended particles. Based on physically derived and experimentally verified equations for the theoretical prediction of transport and/or field properties of solid two-phase materials with penetration structure, an attempt has been made to predict the viscosity of suspensions and the high temperature creep of two-phase solid materials with the aid of so-called structure parameters. The justification for the treatment of the problem in such a way is given by the consideration of the viscocity as a transport property and by the existing analogies between viscous and viscoplastic deformation. (orig./RW)

  8. Phase Change Materials: Technology Status and Potential Defence Applications (Review Papers

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2011-10-01

    Full Text Available Phase change materials (PCM are being utilised world over for energy storage and temperature smoothening applications. Defence Laboratory Jodhpur (DLJ has initiated a R&D programme to apply PCM in solving many heat related problems being faced by Indian forces during desert operations specially failure of mission-critical components. Under the programme, special organic PCM (Patent application no. 2258/DEL/2007 and low melting metal alloys have been developed well tuned to desert diurnal cycle. The PCM panels, when applied as an internal lining in buildings, structures and vehicles can moderate the extreme temperature within human tolerable range (below 40 °C without the use of any external power for cooling. The panels can also act as power saver in air conditioned buildings. A cool vest has also been developed with chargeable PCM packs to provide comfortable microenvironment to a soldier on field duty (below 30 °C for 2-3 hrs. To improve reliability of mission critical electronic instruments during desert operation, technology of absorptive PCM heat sinks is under development at DLJ. The special heat sink will absorb heat generated by component for critical mission (up to 1 hr independent of environment temperature and thus ensure smooth functioning of critical components even in extreme hot conditions. In present paper status of PCM technology world over has been reviewed along with the brief account of research on PCM at DLJ.Defence Science Journal, 2011, 61(6, pp.576-582, DOI:http://dx.doi.org/10.14429/dsj.61.363

  9. Modeling and simulation of a phase change material system for improving summer comfort in domestic residence

    International Nuclear Information System (INIS)

    Highlights: • Modeling of a PCM/air ventilation system. • Sizing of PCM system units. • Simulation in TRNSYS of the system connected to a house and enhancement of the summer comfort. - Abstract: In the current context of thermal improvement in the building sector, research of new solutions to integrate to the retrofitting process is an essential step in the way of saving energy. With the purpose of maintaining or improving the summer comfort after a retrofitting in a residential building, Phase Change Materials (PCM) could be used to bring enough inertia to use the freshness of night for cooling during the warmest hour in the day. Passive solutions of PCM integration have demonstrated their limited benefits. Using PCM in the way proposed in this article goes through the design of a PCM/air system able to store latent heat. This unit is coupled to the ventilation system to ensure that the heat transfers between the ventilated air and the PCM stock are forced convection and then higher than the ones with natural convection. The fusion and solidification temperature for the PCM needs to be carefully chosen to allow the latent heat storage. To analyze the behavior of such a system in a retrofitted house with the climate of 4 different French cities, simulations in different configurations have been carried out. According to these climates, we analyze the necessary conditions for the improvement of efficiency of PCM use. Also, the appropriate PCM melting temperature range is defined with corresponding existing PCM characteristics. After, optimal thickness is obtained considering the diurnal temperature evolutions. The TRNSYS software runs the modeled house, coupled with Matlab for the PCM/air system model. The number of units of such a system can be changed and adapted to the different climates. Results are expressed in terms of percentage of the time when the indoor operative temperature reaches a certain level. Comparisons are made with classical systems without

  10. Application of phase-change materials in passive solar systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sliwkowski, J.

    1979-01-01

    The Institute of Energy Conversion of the University of Delaware has designed and constructed a modular, hybrid passive solar energy collection and storage unit called the Thermal Wall Panel. The Thermal Wall Panel uses the concept of energy storage in phase change materials combined with direct solar gain. In the winter of 1977-78, the Thermal Wall Panel was tested at Solar One, the Institute's solar house and laboratory. The key results and conclusions from this testing and analysis program include the following: (1) Based on measurements, a Thermal Wall Panel with movable nighttime insulation (R = 6.80) between the storage components and the outside can retain and deliver as heat an average of 45 percent of the sun's energy which falls on it during the day. (2) Based on calculations, a 120 square foot wall can provide about 25 percent of the heating needs of a 1100 square foot house. Analysis indicates that when the Thermal Wall Panel (R = 6.00 nighttime insulation) is combined with other direct gain passive solar energy systems as large, south-facing windows, 56 percent of a home's heating needs can be provided. (3) A Thermal Wall Panel can be installed into a typical home in the Mid-Atlantic Region for an incremental cost of from $6 to $8 per square foot beyond the cost of the normal wall and pay for itself in 5 to 9 years at 1978 energy costs. Also, the Thermal Wall Panel does not require any additional foundation support. (4) A computer model has been developed for the Thermal Wall Panel which shows good agreement with predicted and measured performance. Based on these results, it is recommended that full-scale testing of the system be initiated at multiple sites in the Mid-Atlantic Region.

  11. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    Science.gov (United States)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  12. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Highlights: • Paraffin/polyurethane composite as form-stable phase change material was prepared by bulk polymerization. • Paraffin/polyurethane composite possesses typical character of dual phase transition. • Total latent heat of n-eicosane/PUPCM is as high as 141.2 J/g. • Maximum encapsulation ratio for n-octadecane/PUPCM composites is 25% w/w. - Abstract: Polyurethane phase change material (PUPCM) has been demonstrated to be effective solid–solid phase change material for thermal energy storage. However, the high cost and complex process on preparation of PUPCMs with high enthalpy and broad phase transition temperature range can prohibit industrial-scale applications. In this work, a series of novel form-stable paraffin/PUPCMs composites (n-octadecane/PUPCM, n-eicosane/PUPCM and paraffin wax/PUPCM) with high enthalpy and broad phase transition temperature range (20–65 °C) were directly synthesized via bulk polymerization. The composites were prepared at different mass fractions of n-octadecane (10, 20, 25, 30% w/w). The results indicated that the maximum encapsulation ratio for n-octadecane/PUPCM10000 composites was around 25% w/w. The chemical structure and crystalline properties of these composites were characterized by Fourier transform infrared spectroscopy (FT-IR), polarizing optical microscopy (POM), wide-angle X-ray diffraction (WAXD). Thermal properties and thermal reliability of the composites were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). From DSC analysis, the composites showed a typical dual phase change temperature. The enthalpy for the composite with 25% w/w n-eicosane was as high as 141.2 J/g. TGA analysis indicated that the composites degraded at considerably high temperatures. The process of preparation of PUPCMs and their composites was very simple, inexpensive, environmental friendly and easy to process into desired shapes, which could find the promising applications in solar

  13. Numerical analysis of melting of nano-enhanced phase change material in latent heat thermal energy storage system

    Directory of Open Access Journals (Sweden)

    Kashani Sina

    2014-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials exhibit enhanced thermal conductivity in comparison to the base material. Calculation is performed for nanoparticle volume fraction from 0 to 0.08. In this study rectangular and cylindrical containers are modeled numerically and the effect of containers dimensions and nano particle volume fraction are studied. It has been found that the rectangular container requires half of the melting time as for the cylindrical container of the same volume and the same heat transfer area and also, higher nano particle volume fraction result in a larger solid fraction. The increase of the heat release rate of the nanoparticle-enhanced phase change materials shows its great potential for diverse thermal energy storage application.

  14. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    Energy Technology Data Exchange (ETDEWEB)

    Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar

    2008-03-31

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.

  15. Broadband Phonon Scattering in PbTe-based Materials Driven Near the Peierls Phase Transition by Strain or Alloying

    Science.gov (United States)

    Savic, Ivana; Murphy, Ronan; Murray, Eamonn; Fahy, Stephen

    Efficient thermoelectric energy conversion is highly desirable as 60% of the consumed energy is wasted as heat. Low lattice thermal conductivity is one of the key factors leading to high thermoelectric efficiency of a material. However, the major obstacle in the design of such materials is the difficulty in efficiently scattering phonons across the frequency spectrum. Using first principles calculations, we predict that driving PbTe materials close to a Peierls-like phase transition could be a powerful strategy to solve this problem. We illustrate this concept by applying tensile [001] strain to PbTe and its alloys with another rock-salt IV-VI material, PbSe; and by alloying PbTe with a IV-VI Peierls-distorted material, GeTe. This induces extremely soft optical modes, which increase acoustic-optical phonon coupling and decrease phonon lifetimes at all frequencies. We show that PbTe, Pb(Se,Te) and (Pb,Ge)Te alloys driven near the phase transition in the described manner could have the lattice thermal conductivity considerably lower than that of PbTe. The proposed concept may open new opportunities for the development of more efficient thermoelectric materials. This work was supported by Science Foundation Ireland and the Marie-Curie Action COFUND under Starting Investigator Research Grant 11/SIRG/E2113.

  16. Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material

    International Nuclear Information System (INIS)

    Highlights: • The NaNO3/SiO2 composite was prepared as shape-stabilized PCM by sol–gel process. • The composite had good thermal energy storage and release ability. • The latent heat was increased with the increase of the roasting temperature. - Abstract: A sodium nitrate (NaNO3)/silica (SiO2) composite was prepared as a shape-stabilized phase change material by a sol–gel procedure. In this composite, NaNO3 acted as the phase change material and SiO2 was used as the supporting material. The maximal weight percentage of NaNO3 in the composite was determined to be 60 wt.%. The chemical composition, morphology, structure and thermal properties were investigated by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC) and Laser thermal conductivity meter. The DSC results indicated that the enthalpies of melting and freezing of the NaNO3/SiO2 (60 wt.% NaNO3) composite were 108 kJ/kg and 110 kJ/kg, and the corresponding temperatures of the phase transition were 302 °C and 300 °C, respectively. In the temperature range of lower than 500 °C the phase change enthalpy of the composite was increased with the increase of the roasting temperature

  17. Asymmetric induced cubic nonlinearities in homogeneous and quasi-phase-matched quadratic materials: signature and importance

    DEFF Research Database (Denmark)

    Bang, Ole; Corney, Joel Frederick

    2001-01-01

    In continuous-wave operation asymmetric induced nonlinearities induce an intensity-dependent phase mismatch that implies a nonzero so-called separatrix intensity, the crossing of which changes the one-period phase shift of the fundamental by Pi , with obvious use in switching applications.We deri...

  18. A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage

    International Nuclear Information System (INIS)

    Graphical abstract: Cyclic stability of the eutectic mixture of galactitol and D-mannitol. - Highlights: • A eutectic mixture of galactitol/mannitol was studied as a phase change material. • The eutectic mixture featured a low melting point and a high heat of fusion. • The eutectic mixture showed high cyclic and chemical stability under an atmosphere of nitrogen. • The subcooling of the eutectic mixture was improved by adding nucleating agents. - Abstract: The thermophysical properties of mixtures of galactitol and mannitol were examined via differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) analysis. The aforementioned sugars were found to form a eutectic mixture at a 30:70 molar ratio of galactitol and manntitol, and displayed a melting point of 153 °C while maintaining a high latent heat of fusion (ΔHfus = 292 J g−1). The XRD data revealed that the eutectic mixture contained the α, β, and δ forms of mannitol with the δ form being the major component. By varying the temperature ramp rates utilized in the DSC measurements from 0.5 °C min−1 to 20 °C min−1, the heat of crystallization as well as the crystallization temperature increased (c.f., ΔHcrys: 64 J g−1 → 197 J g−1; Tc: 68 °C → 105 °C). In addition, the temperature and the enthalpy of crystallization were also improved by up to 34% through the addition of small quantities (up to 0.5 wt%) of nucleating agents, such as graphite powder or silver iodide. After 100 heating/cooling cycles under an atmosphere of nitrogen, the heat of fusion of the eutectic mixture decreased by only 4% with no change in the melting point, and the mixture appeared to be chemically stable according to a Fourier transform infrared (FT-IR) spectroscopic analysis. Collectively, these data indicate that the eutectic mixture exhibits excellent cyclic stability under ambient atmospheres and offers potential for use in thermal energy storage applications

  19. Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement.

    Science.gov (United States)

    Sinha-Ray, Sumit; Sinha-Ray, Suman; Sriram, Hari; Yarin, Alexander L

    2014-02-01

    This work explores the potential of nano-encapsulated phase change materials (PCMs) in applications related to microelectronics cooling. PCMs (wax or meso-erythritol) were encapsulated in carbon nanotubes (CNTs) by a method of self-sustained diffusion at room temperature and pressure. These nano-encapsulated wax nanoparticles alone allowed heat removal over a relatively wide range of temperatures (different waxes have melting temperatures in the range 40-80 °C). On the other hand, nano-encapsulated meso-erythritol nanoparticles allowed heat removal in the range 118-120 °C. The combination of these two PCMs (wax and meso-erythritol) could extend the temperature range to 40-120 °C, when both types of nanoparticles (wax and meso-erythritol intercalated) would be suspended in the same carrier fluid (an oil). The nanoparticles possess a short response time of the order of 10(-7) s. Such nano-encapsulation can also prevent the PCM from sticking to the wall. In this work, experiments with wax-intercalated CNTs, stable aqueous suspensions of CNTs with concentrations up to 3 wt% with and without nano-encapsulated wax were prepared using a surfactant sodium dodecyl benzene sulfonate (NaDDBS). These suspensions were pumped through two channels of 603 μm or 1803 μm in diameter subjected to a constant heat flux at the wall. It was found that the presence of the surfactant in CNT suspensions results in a pseudo-slip at the channel wall which enhances the flow rate at a fixed pressure drop. When aqueous solutions of the surfactant were employed (with no CNTs added), the enhanced convection alone was responsible for a ~2 °C reduction in temperature in comparison with pure water flows. When CNTs with nano-encapsulated wax were added, an additional ~1.90 °C reduction in temperature due to the PCM fusion was observed when using 3 wt% CNT suspensions. In addition, suspensions of meso-erythritol-intercalated CNTs in alpha-olefin oil were used as coolants in flows through the

  20. Experimental Conditions to Obtain Photopolymerization Induced Phase Separation Process in Liquid Crystal-Photopolymer Composite Materials under Laser Exposure

    Directory of Open Access Journals (Sweden)

    Manuel Ortuño

    2014-01-01

    Full Text Available We analyze the experimental conditions necessary to obtain a photopolymerization induced phase separation process inside liquid crystal-photopolymer composite materials. Composites stored for 24 hours perform poorly in hologram recording but a good result is obtained if they are used recently prepared. We use a procedure combining heat and sonication to disarrange the liquid crystal structures formed during storage of the composite. We also propose incoherent light treatment after recording the hologram in order to evaluate if the phase separation evolved correctly during hologram recording.

  1. Application of phase equilibria and chemical thermodynamics to the preparation, farbiration, and performance of advanced fast reactor fuel materials

    International Nuclear Information System (INIS)

    Described are some phase equilibria and chemical thermodynamics of systems relevant to the production and operation of the so-called ''advanced'' fast breeder reactor fuels. The systems discussed include UPu carbides, nitrides, oxycarbides and carbonitrides. Some examples of the application of these phase equilibria to the preparation, fabrication and behaviour of the materials in temperature gradients appropriate to reactor conditions are presented. Finally, aspects of the complex four and five component, U-C-O-N and U-Pu-C-O-N systems are discussed, a detailed knowledge of which is required for an analysis of advanced fuel behaviour

  2. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  3. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    many emerging buildings. The new concrete deck with microencapsulated PCM is the standard deck on which one more layer with PCM concrete was added and at the same time the latent heat storage was introduced to the construction. The challenge to simulate the performance of the new deck with PCM concrete......The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used in...... or the building with such a deck is that the thermal properties of such a new material are not yet well defined. The results presented in the paper include models in which PCM concrete material properties such as thermal conductivity and specific heat capacity were theoretically calculated using...

  4. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    OpenAIRE

    Sheridan C. Mayo; Stevenson, Andrew W.; Stephen W. Wilkins

    2012-01-01

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image ...

  5. Influence of packing material and method on the efficiency of liquid phase water-hydrogen isotope exchange

    International Nuclear Information System (INIS)

    The influence of packing material in the countercurrent catalytic column on the efficiency of liquid phase water-hydrogen isotope exchange is studied. Stainless steel triangle spring packing demonstrates best performance among the tested three hydrophilic packing materials. Pretreatment of the stainless steel packing lowers the height of a mass transfer unit (HTU) by about 50%. The effectiveness of a catalytic column for water-hydrogen isotope exchange is proved to be higher when the column is packed in layers with hydrophilic packing and hydrophobic catalyst in the volume ratio 1:4

  6. Stress engineering for the design of morphotropic phase boundary in piezoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomoya, E-mail: ohno@mail.kitami-it.ac.jp [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)

    2015-06-30

    Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.

  7. Near-infrared nano-spectroscopy and emission energy control of semiconductor quantum dots using a phase-change material

    International Nuclear Information System (INIS)

    We have proposed a method to achieve near-field imaging spectroscopy of single semiconductor quantum dots with high sensitivity by using an optical mask layer of a phase-change material. Sequential formation and elimination of an amorphous aperture allows imaging spectroscopy with high spatial resolution and high collection efficiency. We present numerical simulation and experimental result that show the effectiveness of this technique. Inspired by this optical mask effect, a new approach which can precisely control the emission energy of semiconductor quantum dots has been proposed. This method uses the volume expansion of a phase change material upon amorphization, which allows reversible emission energy tuning of quantum dots. A photoluminescence spectroscopy of single quantum dots and simulation were conducted to demonstrate and further explore the feasibility of this method

  8. INTERACTION OF A SCREW DISLOCATION WITH AN INTERFACIAL EDGE CRACK IN A TWO-PHASE PIEZOELECTRIC MATERIAL

    Institute of Scientific and Technical Information of China (English)

    LIU Jinxi; LIU Ai; JIANG Zhiqing

    2004-01-01

    The interaction of a screw dislocation with an interfacial edge crack in a two-phase piezoelectric medium is investigated. Closed-form solutions of the elastic and electrical fields induced by the screw dislocation are derived using the conformal mapping method in conjunction with the image principle. Based on the electroelastic fields derived, the stress and electric displacement intensity factors, the image force acting on the dislocation are given explicitly. We find that the stress and electric displacement intensity factors depend on the effective electroelastic material constants. In the case where one of two phases is purely elastic, the stress intensity factor and image force are plotted to illustrate the influences of electromechanical coupling effect, the position of the dislocation and the material properties on the interaction mechanism.

  9. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  10. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    Science.gov (United States)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  11. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material

    OpenAIRE

    Kotaro Makino; Yuta Saito; Paul Fons; Kolobov, Alexander V.; Takashi Nakano; Junji Tominaga; Muneaki Hase

    2016-01-01

    Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is para...

  12. Abnormal operando structural behavior of sodium battery material: influence of dynamic on phase diagram of NaxFePO4

    OpenAIRE

    Gaubicher, Joël; Boucher, Florent; Moreau, Philippe; Cuisinier, Marine; Soudan, Patrick; Elkaïm, Erik; Guyomard, Dominique

    2013-01-01

    This study conveys striking findings regarding the operando structural behavior of the Na/FePO4 system during a charge and discharge cycle. From Rietveld refinements of synchrotron operando X-Ray diffraction data, it appears that the active material presents large, non-stoichiometric domains while undergoing structural phase transformation. The corresponding extended limits of solubility are characterized by continuous variations in the metrics that mirror the entry of Na occupancy values int...

  13. Environmental mining plan of the construction materials industry in Cartagena, Phase 1 Diagnostic. Vol.1 and Vol.2(Annex)

    International Nuclear Information System (INIS)

    INGEOMINAS carried out this project in the cities of Cartagena, Bucaramanga, Cali and Bogota, in two phases: Phase 1 (Diagnostic) and Phase II (Formulation of Handling Plan). The phase 1 that here is described, it upgrades the knowledge of the extractive industry of the construction materials for the city of Cartagena, through bibliographical revision and field work, carried out in 50 quarries that supply from these materials to the city. This study, besides the economic and legal handling, identifies technical aspects related with the geology, the mining and the environmental situation. In accordance with their likeness, geologic, morphological and of exploitation (extraction methods and mining development), the quarries met in five groups: Exploitations on calcareous deposits of the La Popa Formation, exploitations on clay deposits of the La Popa Formation, exploitations on detritus deposits of half grain to thick (La Popa-Arenosa Formation; Pendales Conglomerate and Rotinet Formation) and exploitation of calcareous of the Arroyo de Piedra Formation. The extraction of these materials is characterized by its low degree of development technician, lack of planning mining, lack of appropriate infrastructure that allows a better development of the sector, is also evident the control lack on the part of the entities in charge of the handling of this industry. These factors added to a demand every time in increase of these materials, they have taken to a progressive deterioration in the landscape, increase of the noise and particles in the air and in the waters. The low control in this activity has generated the proliferation of informal exploitations that they find in this activity a way of subsistence

  14. Acoustic waves in multifractional gas mixture with the inclusion of different materials and dimensions without Phase Transformations

    International Nuclear Information System (INIS)

    The propagation of acoustic waves in mixtures of gas and particle fractions of different materials and sizes is studied. A mathematical model is presented, the dispersion equation is obtained, dispersion curves are calculated. The influence of the particle size and the parameters of the dispersed phase for multifractional gas mixture with ice particles, aluminum and sand on dissipation and dispersion of sound waves is analyzed. A comparison with experiment is conducted

  15. Phase identification of high strength RS-SiC materials by simulation and Rietveld analysis of powder neutron diffraction

    International Nuclear Information System (INIS)

    The phase identification of reaction sintered silicon carbide (RS-SiC) ceramic matrix composite using powder neutron diffraction is reports and discussed. The Rietveld method was utilized in analyzing the whole range of diffraction pattern of this RS-SiC powder, especially in recognizing and distinguishing the hexagonal crystal structure such as SiC-6H, SiC-4H, rhombohedral crystal structure, SiC-15R with cubic crystal structure such as SiC-3C peaks from the overlapped peaks. The SiC-6H and SiC-3C reinforcement phase and Si matrix phase have been found and confirmed exist in these RS-SiC materials. (Author)

  16. Evaluation of recriticality behavior in the material-relocation phase for Japan sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    As the most promising concept of sodium-cooled fast reactors, the Japan Atomic Energy Agency has selected the advanced loop-type fast reactor, so-called Japan sodium-cooled fast reactor (JSFR). Through the evaluation of event progressions during hypothetical core-disruptive accident (CDA) under the design extension condition, a CDA scenario for JSFR has been evaluated. It has already been demonstrated that in-vessel retention (IVR) against CDA could be achieved by taking adequate design measures under best estimate conditions. The whole sequence of CDA scenario for JSFR was categorized into four phases according to the progress of core-disruption status. In the third phase, so-called material-relocation phase, the accident events would progress in the subcritical state. However, if the uncertainties about the molten state of core remnant and their discharge behavior outward from core are conservatively superposed, the disrupted core may lead up to recriticality. In the present study, the factors leading to recriticality in the material-relocation phase were investigated using the phenomenological diagrams, and the recriticality behaviors were evaluated through parametric analyses using SIMMER-III/IV codes. The results of parametric analyses suggested that a significant mechanical energy leading to the boundary failure of reactor vessel would not be released even assuming recriticality due to the uncertainties about molten state and discharge behavior. Through the present evaluation of the hypothetical recriticality event, the CDA scenario for JSFR could obtain further robustness from the viewpoint of achieving IVR. (author)

  17. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey.

    Science.gov (United States)

    He, Juan; Song, Lixin; Chen, Si; Li, Yuanyuan; Wei, Hongliang; Zhao, Dongxin; Gu, Keren; Zhang, Shusheng

    2015-11-15

    A novel restricted access materials (RAM) combined to molecularly imprinted polymers (MIPs), using malathion as template molecule and glycidilmethacrylate (GMA) as pro-hydrophilic co-monomer, were prepared for the first time. RAM-MIPs with hydrophilic external layer were characterized by scanning electron microscopy and recognition and selectivity properties were compared with the restricted access materials-non-molecularly imprinted polymers (RAM-NIPs) and unmodified MIPs. RAM-MIPs were used as the adsorbent enclosed in solid phase extraction column and several important extraction parameters were comprehensively optimized to evaluate the extraction performance. Under the optimum extraction conditions, RAM-MIPs exhibited comparable or even higher selectivity with greater extraction capacity toward six kinds of organophosphorus pesticides (including malathion, ethoprophos, phorate, terbufos, dimethoate, and fenamiphos) compared with the MIPs and commercial solid phase extraction columns. The RAM-MIPs solid phase extraction coupled with gas chromatography was successfully applied to simultaneously determine six kinds of organophosphorus pesticides from honey sample. The new established method showed good linearity in the range of 0.01-1.0 μg mL(-1), low limits of detection (0.0005-0.0019 μg mL(-1)), acceptable reproducibility (RSD, 2.26-4.81%, n = 6), and satisfactory relative recoveries (90.9-97.6%). It was demonstrated that RAM-MIPs solid phase extraction with excellent selectivity and restricted access function was a simple, rapid, selective, and effective sample pretreatment method.

  18. Using the Analytic Hierarchy Process to Prioritize and Select Phase Change Materials for Comfort Application in Buildings

    Directory of Open Access Journals (Sweden)

    Socaciu Lavinia Gabriela

    2014-03-01

    Full Text Available Phase change materials (PCMs selection and prioritization for comfort application in buildings have a significant contribution to the improvement of latent heat storage systems. PCMs have a relatively large thermal energy storage capacity in a temperature range close to their switch point. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. Thermal energy storage systems using PCMs as storage medium offer advantages such as: high heat storage capacity and store/release thermal energy at a nearly constant temperature, relative low weight, small unit size and isothermal behaviour during charging and discharging when compared to the sensible thermal energy storage. PCMs are valuable only in the range of temperature close to their phase change point, since their main thermal energy storage capacity depend on their mass and on their latent heat of fusion. Selection of the proper PCMs is a challenging task because there are lots of different materials with different characteristics. In this research paper the principles and techniques of the Analytic Hierarchy Process (AHP are presented, discussed and applied in order to prioritize and select the proper PCMs for comfort application in buildings. The AHP method is used for solving complex decisional problems and allows the decision maker to take the most suitable decisions for the problem studied. The results obtained reveal that the AHP method can be successfully applied when we want to choose a PCM for comfort application in buildings.

  19. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  20. Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system

    Institute of Scientific and Technical Information of China (English)

    CHERALATHAN M.; VELRAJ R.; RENGANARAYANAN S.

    2006-01-01

    This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES)system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.

  1. 方腔内合金相变材料的熔化过程%Phase Change Process of Alloy Phase Change Material in a Rectangular

    Institute of Scientific and Technical Information of China (English)

    郭茶秀; 陈俊

    2015-01-01

    The melting process of alloy phase change material in a rectangular under temperature difference is simulated by CFD software. The simulation model is verified by the experimental result. The impacts of the natural convection on the solid-liquid interface, the temperature and the circulation speed in the melting process are analyzed. The results show that the phase change material in rectangular should to be heated from the two sides and the bottom in order to reduce heat transfer resistance and get a faster melting speed.%本文利用CFD软件对方腔内合金相变材料在温差作用下的熔化过程进行了数值模拟研究.通过与试验结果的比较,验证了本文采用的模型和算法的正确性.同时,详细研究了熔化过程中合金相变材料的固?液界面、温度及环流速度的变化规律.结果表明,为了减小传热热阻,加快合金的熔化速度,从方腔的侧面和底面加热相变材料时熔化效果最好.

  2. Crystal structure of the binder phase in a model HfC-TiC-Ni material

    International Nuclear Information System (INIS)

    The crystal structure of the binder phase in a model HfC-TiC-Ni sample produced by hot pressing is investigated. The nature of the binder depends on the amount of Hf and Ti that remains in solution with Ni after cooling. Four different crystal structures are identified by analysis of electron diffraction patterns obtained using transmission electron microscopy techniques and the composition of the phases determined by energy dispersive X-ray spectrometry. Three of the phases are cubic; Ni, Ni3(Ti,Hf) and Ni23(Ti,Hf)6 with lattice parameters of 3.52 ± 0.05, 3.52 ± 0.03 and 10.70 ± 0.40 A, respectively. The hexagonal phase is an intermetallic Ni3Ti phase, with lattice parameters of a = b = 5.00 ± 0.20 A and c = 8.16 ± 0.20 A. The crystal structures are confirmed by simulations of the electron diffraction patterns using JEMS software

  3. Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets

    Science.gov (United States)

    Fang, Hailiang; Kontos, Sofia; Ångström, Jonas; Cedervall, Johan; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2016-05-01

    The metastable tetragonal τ-phase has been directly obtained from casting Mn0.54Al0.46 and (Mn0.55Al0.45)100C2 using the drop synthesis method. The as-casted samples were ball milled to decrease the particle size and relaxed at 500 °C for 1 h. The phase composition, crystallographic parameters, magnetic properties and microstructure were systematically studied. The results reveal that the τ-phase could be directly obtained from drop synthesis. The highest Ms of 117 emu/g was achieved in the (Mn0.55Al0.45)100C2 where the τ-phase was stabilized by doping with carbon. Carbon doping increased the c/a ratio of the τ-phase as it occupies specific interstitial positions (½, ½, 0) in the structure. Furthermore, ball milling increases the coercivity (Hc) at the expense of a decrease in magnetic saturation (Ms). The increase in coercivity is explained by a decrease of grain size in conjunction with domain wall pinning due to defects introduced during the ball milling process.

  4. A route to possible civil engineering materials: the case of high-pressure phases of lime

    OpenAIRE

    A. Bouibes; Zaoui, A.

    2015-01-01

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa...

  5. On grain growth kinetics in two-phase polycrystalline materials through Monte Carlo simulation

    Indian Academy of Sciences (India)

    K R Phaneesh; Anirudh Bhat; Gautam Mukherjee; K T Kashyap

    2013-08-01

    Monte Carlo Potts model simulation was carried out on a 2D square lattice for various surface fractions of second phase particles for over 50,000 iterations. The observations are in good agreement with known theoretical and experimental results with respect to both growth kinetics as well as grain size distribution. Further, the average grain size and the largest grain size were computed for various surface fractions which have indicated normal grain growth and microstructure homogeneity. The surface fraction of the second phase particles interacting with the grain boundaries (), hitherto not computed through the simulation route, is shown to vary inversely as the average grain size due to Zener pinning.

  6. Vanadium doped Sb2Te3 material with modified crystallization mechanism for phase-change memory application

    Science.gov (United States)

    Ji, Xinglong; Wu, Liangcai; Cao, Liangliang; Zhu, Min; Rao, Feng; Zheng, Yonghui; Zhou, Wangyang; Song, Zhitang; Feng, Songlin

    2015-06-01

    In this paper, V0.21Sb2Te3 (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb2Te3 and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted in the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7 × 10 4 cycles makes VST a promising candidate for phase-change memory applications.

  7. Radiation damage of the construction materials, Phase I, Part II specializations

    International Nuclear Information System (INIS)

    This document contains three reports about the visits and training of the experts involved in VISA-2 project to Saclay. All the documents include technical description about methods for fabrication and testing the materials under different irradiation conditions

  8. Strain, nano-phase separation, multi-scale structures and function of advanced materials

    OpenAIRE

    Billinge, S. J. L.

    2002-01-01

    Recent atomic pair distribution function results from our group from manganites and cuprate systems are reviewed in light of the presence of multi-scale structures. These structures have a profound effect on the material properties

  9. Improved thermal stability of N-doped Sb materials for high-speed phase change memory application

    Science.gov (United States)

    Hu, Yifeng; Zhu, Xiaoqin; Zou, Hua; Zhang, Jianhao; Yuan, Li; Xue, Jianzhong; Sui, Yongxing; Wu, Weihua; Song, Sannian; Song, Zhitang

    2016-05-01

    Compared with pure Sb, N-doped Sb material was proved to be a promising candidate for the phase change memory (PCM) use because of its higher crystallization temperature (˜250 °C), larger crystallization activation energy (3.53 eV), and better data retention ability (166 °C for 10 years). N-doping also broadened the band gap and refined grain size. The reversible resistance transition could be achieved by an electric pulse as short as 8 ns for the PCM cell based on N-doped Sb material. A lower operation power consumption (the energy for RESET operation 2.2 × 10-12 J) was obtained. In addition, N-doped Sb material showed a good endurance of 1.8 × 105 cycles.

  10. Study of the composition and gas-phase release characteristics of salt material extracted from MSW ash particles using STA

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming; Koukios, E.G.

    2007-01-01

    The ash material generated from the MSW incineration contains large amounts of alkali metals, heavy metals, chlorine and sulfur mainly deposited as inorganic salts and/or oxides on the surface of the Si-rich ash particles. In this work, the composition and gas-phase release characteristics of salt...... material extracted from MSW ash particles using a six-stage leaching process is studied using simultaneous thermal analysis (STA). The produced results provide useful information regarding the composition of the salt material and its melting behavior that is considered to play an important role to...... deposition and corrosion problems at MSW incinerators. The results may be used to model the deposition process and to the better understanding of the corrosion process during MSW incineration....

  11. Preparation of urea-formaldehyde paraffin microcapsules modified by carboxymethyl cellulose as a potential phase change material

    Institute of Scientific and Technical Information of China (English)

    Zhan-hua Huang; Xin Yu; Wei Li; Shou-xin Liu

    2015-01-01

    We prepared spherical microcapsules modified by carboxymethyl cellulose (CMC) with urea-formalde-hyde (UF) resin as a shell material with a two-step process by in situ polymerization, and characterized the micro-cosmic features, chemical structure, and thermal perfor-mance of the microcapsules by SEM, FTIR, DSC, and TGA. We studied the effects of different experimental parameters of curing pH, the amounts of the emulsifier and emulsion speed. The CMC-UF microcapsules had good heat resistance and stability. The enthalpy of CMC-UF microcapsules reached 50.33 J g-1. Therefore, CMC-UF resin can be used as a potential wall material of phase change materials.

  12. Surface Characterization of Some Novel Bonded Phase Packing Materials for HPLC Columns Using MAS-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jude Abia

    2015-03-01

    Full Text Available Information on the surface properties of three novel chemically bonded phase packing materials for High performance liquid chromatography (HPLC were obtained using spectra obtained by solid state cross-polarization (CP magic-angle spinning (MAS nuclear magnetic resonance (NMR spectroscopic experiments for the 29Si, and 13C nuclei. These packing materials were: Cogent bidentate C18 bonded to type-C silica, hybrid packing materials XTerra MS C18, and XBridge Prep. C18. The spectra obtained using cross-polarization magic angle spinning (CP-MAS on the Cogent bidentate C18 bonded to type-C silica show the surface to be densely populated with hydride groups (Si-H, with a relative surface coverage exceeding 80%. The hybrid packing materials XTerra and XBridge gave spectra that reveal the silicon atoms to be bonded to organic moieties embedded in the molecular structure of these materials with over 90% of the alkyl silicon atoms found within the completely condensed silicon environments. The hydrolytic stability of these materials were investigated in acidic aqueous solutions at pHs of 7.0 and 3.0, and it was found that while the samples of XTerra and XBridge were not affected by hydrolysis at this pH range, the sample of Cogent lost a significant proportion of its Si-H groups after five days of treatment in acidic aqueous solution.

  13. Equilibrium Between Phases of Matter: Supplemental Text for Materials Science and High-Pressure Geophysics

    NARCIS (Netherlands)

    Jacobs, M.H.G.; Oonk, H.A.J.

    2012-01-01

    The Second Volume of Equilibrium between Phases of Matter, when compared with the First Volume, by H.A.J. Oonk and M.T. Calvet, published in 2008, amounts to an extension of subjects, and a deepening of understanding. In the first three sections of the text an extension is given of the theory on iso

  14. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik;

    2015-01-01

    below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...

  15. The use of Spark Plasma Sintering to fabricate a two-phase material from blended aluminium alloy scrap and gas atomized powder

    OpenAIRE

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Duflou, Joost

    2015-01-01

    Recently innovative solid state / 'meltless' recycling techniques have been developed and proposed for the consolidation of aluminium alloy scrap, aiming both at energy and material savings by eliminating the melting step. In this context, a powder metallurgy route is examined as a solid state recycling technique for the fabrication of a two-phase material via Spark Plasma Sintering. By mixing aluminium atomized powder and machining chips of the same alloy, a two-phase material was produced, ...

  16. Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material

    International Nuclear Information System (INIS)

    This work focuses on the preparation of AC (activated carbon) through a physical activation method using peat soil as a precursor, followed by the use of the AC as an inorganic framework for the preparation of SPCM (shape-stabilized phase change material). The SPCM, composed of n-octadecane as the core and AC pores as a framework, was fabricated by a simple impregnation method, with the mass fraction of n-octadecane varying from 10 to 90 wt.%. The AC has a specific surface area of 893 m2 g−1 and an average pore size of 22 Å. The field emission scanning electron microscope images and nitrogen gas adsorption-desorption isotherms shows that the n-octadecane was actually encapsulated into the AC pores. The melting and freezing temperatures of the composite PCM (phase change material) were 30.9 °C and 24.1 °C, respectively, and its corresponding latent heat values were 95.4 Jg−1 and 99.6 Jg−1, respectively. The composite shows a good thermal reliability, even after 1000 melting/freezing cycles. The present research provided a new SPCM material for thermal energy storage as well as some new insights into the design of composite PCM by tailoring the pore structure of AC derived from peat soil, a natural resource. - Highlights: • Activated carbon from peat soil was used as framework. • n-Octadecane/activated carbon composite was fabricated by impregnation method. • The thermal property could be tailor by adjusting pore size of activated carbon. • The shape-stabilized PCM (phase change material) have the potential to be used for thermal energy storage

  17. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Highlights: • Introducing novel form-stable PCM of stearic acid (SA)/carbon nanospheres (CNSs). • The highest stabilized SA content is 83 wt% in the SA/CNS composites. • Increasing thermal conductivity of composite phase change material with high amount of latent heat. - Abstract: Stearic acid (SA) is one of the main phase change materials (PCMs) for medium temperature thermal energy storage systems. In order to stabilize the shape and enhance the thermal conductivity of SA, the effects of adding carbon nanospheres (CNSs) as a carbon nanofiller were examined experimentally. The maximum mass fraction of SA retained in CNSs was found as 80 wt% without the leakage of SA in a melted state, even when it was heated over the melting point of SA. The dropping point test shows that there was clearly no liquid leakage through the phase change process at the operating temperature range of the composite PCMs. The thermal stability and thermal properties of composite PCMs were investigated with a thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC), respectively. The thermal conductivity of the SA/CNS composite was determined by the laser flash method. The thermal conductivity at 35 °C increased about 105% for the highest loading of CNS (50 wt%). The thermal cycling test proved that form-stable composite PCMs had good thermal reliability and chemical durability after 1000 cycles of melting and freezing, which is advantageous for latent heat thermal energy storage (LHTES)

  18. Thermal characteristic reliability of fatty acid binary mixtures as phase change materials (PCMs) for thermal energy storage applications

    International Nuclear Information System (INIS)

    The thermal characteristic reliability of two binary mixtures of fatty acid, myristic acid/palmitic acid/sodium myristate (MA/PA/SM) and myristic acid/palmitic acid/sodium palmitate (MA/PA/SP), were investigated using a thermal cycling test setup for 0, 1000, 2000, 3000, and 3600 heating/cooling cycles. The changes in thermal properties and chemical bonding of both eutectic PCMs were measured using Differential Scanning Calorimetric (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) analyzer, respectively. MA/PA/SM and MA/PA/SP eutectic mixtures shows only minor changes in phase transition temperature (Tm, Ts) and in latent heat of fusion (ΔHf). Moreover, the chemical bonding structures of these eutectic PCMs show no degradation and the thermal performance of those PCMs shows a good stability after 3600 thermal cycles. Therefore, it is found that the thermal characteristic stability of prepared MA/PA/SM and MA/PA/SP eutectic mixtures were acceptable for long term performance and economic feasibilities used as a phase change material (PCM) for thermal energy storage (TES) application. - Highlights: • The MA/PA/SM and MA/PA/SP were used as eutectic phase change materials (PCM). • Thermal reliability of eutectic PCMs evaluated using a thermal cycling test. • MA/PA/SP has a great thermal characteristic than MA/PA/SM after 3600 thermal cycles. • The eutectic PCMs did not show change of appearance after 3600 thermal cycles

  19. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Junbing [School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou (China); Huang, Jin, E-mail: huangjiner@126.com [School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou (China); Zhu, Panpan; Wang, Changhong [School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou (China); Li, Xinxi [School of Materials and Energy, Guangdong University of Technology, 510006 Guangzhou (China); Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing (China)

    2014-07-01

    Highlights: • The expanded graphite enhanced thermal conductivity coefficient greatly. • The aqueous solution method adopting ultrasonic was utilized to disperse EG. • The combination of composite was physical without chemical reaction. • The reduction on total latent heat was slight after the adding EG. - Abstract: The binary nitrate salts/expanded graphite (EG) composite phase change material (PCM) were prepared via adding different mass rate of EG to binary nitrate salts consisting of NaNO{sub 3} and KNO{sub 3} (6:4) by aqueous solution method adopting ultrasonic. The morphology and chemical composition of EG and the composite PCM were characterized and investigated by X-ray diffraction (XRD), scan electron microscope (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), respectively. Laser thermal conductivity instrument and differential scanning calorimeter (DSC) were employed to measure thermo physical properties. Drawing the conclusion from investigation, that EG had enhanced thermal conductivity coefficient which largely increased to 4.884 W/(m K) and reduced total latent heat by mostly 11.0%. The morphology and phase structure results indicated that EG were well dispersed into and physically combined with molten salts. In general, the prepared composite PCM could be a suitable phase change material for thermal energy storage.

  20. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material

    International Nuclear Information System (INIS)

    Highlights: • The expanded graphite enhanced thermal conductivity coefficient greatly. • The aqueous solution method adopting ultrasonic was utilized to disperse EG. • The combination of composite was physical without chemical reaction. • The reduction on total latent heat was slight after the adding EG. - Abstract: The binary nitrate salts/expanded graphite (EG) composite phase change material (PCM) were prepared via adding different mass rate of EG to binary nitrate salts consisting of NaNO3 and KNO3 (6:4) by aqueous solution method adopting ultrasonic. The morphology and chemical composition of EG and the composite PCM were characterized and investigated by X-ray diffraction (XRD), scan electron microscope (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), respectively. Laser thermal conductivity instrument and differential scanning calorimeter (DSC) were employed to measure thermo physical properties. Drawing the conclusion from investigation, that EG had enhanced thermal conductivity coefficient which largely increased to 4.884 W/(m K) and reduced total latent heat by mostly 11.0%. The morphology and phase structure results indicated that EG were well dispersed into and physically combined with molten salts. In general, the prepared composite PCM could be a suitable phase change material for thermal energy storage

  1. Diffuse Interface Methods for Multiple Phase Materials: An Energetic Variational Approach

    CERN Document Server

    Brannick, J; Qian, T; Sun, H

    2014-01-01

    In this paper, we introduce a diffuse interface model for describing the dynamics of mixtures involving multiple (two or more) phases. The coupled hydrodynamical system is derived through an energetic variational approach. The total energy of the system includes the kinetic energy and the mixing (interfacial) energies. The least action principle (or the principle of virtual work) is applied to derive the conservative part of the dynamics, with a focus on the reversible part of the stress tensor arising from the mixing energies. The dissipative part of the dynamics is then introduced through a dissipation function in the energy law, in line with the Onsager principle of least energy dissipation. The final system, formed by a set of coupled time-dependent partial differential equations, reflects a balance among various conservative and dissipative forces and governs the evolution of velocity and phase fields. To demonstrate the applicability of the proposed model, a few two-dimensional simulations have been car...

  2. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang

    2014-12-10

    © 2014 American Chemical Society. The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular

  3. Surface etching mechanism of carbon-doped Ge2Sb2Te5 phase change material in fluorocarbon plasma

    Science.gov (United States)

    Shen, Lanlan; Song, Sannian; Song, Zhitang; Li, Le; Guo, Tianqi; Cheng, Yan; Lv, Shilong; Wu, Liangcai; Liu, Bo; Feng, Songlin

    2016-09-01

    Recently, carbon-doped Ge2Sb2Te5 (CGST) phase change material has been widely researched for being highly promising material for future phase change memory application. In this paper, the reactive-ion etching of CGST film in CF4/Ar plasma is studied. Compared with GST, the etch rate of CGST is relatively lower due to the existence of carbon which reduce the concentration of F or CF x reactive radicals. It was found that Argon plays an important role in defining the sidewall edge acuity. Compared with GST, more physical bombardment is required to obtain vertical sidewall of CGST. The effect of fluorocarbon gas on the damage of the etched CGST film was also investigated. A Ge- and Sb-deficient layer with tens of nanometers was observed by TEM combining with XPS analysis. The reaction between fluorocarbon plasma and CGST is mainly dominated by the diffusion and consumption of reactive fluorine radicals through the fluorocarbon layer into the CGST substrate material. The formation of damage layer is mainly caused by strong chemical reactivity, low volatility of reaction compounds and weak ion bombardment.

  4. Radiation damage of the construction materials, Phase I, Part I- Radiation damage of the construction steels

    International Nuclear Information System (INIS)

    The objective of this task was testing the mechanical properties of stainless steels having different grain size. Being an important material used mainly for reactor vessel construction stainless steel will be exposed to neutron flux in the RA reactor for testing

  5. Evaluation of alternative phase change materials for energy storage in solar dynamic applications

    Science.gov (United States)

    Crane, R. A.; Dustin, M. O.

    1988-01-01

    The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.

  6. Solar combi system with phase-change materials; CoSyPCM. Combi-systeme avec materiaux a changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Citherlet, S.; Bony, J.

    2007-02-15

    Within the framework of Task 32 of the Solar Heating and Cooling Programme of the International Energy Agency (IEA) we studied the potential of using Phase Change Material (PCM) in a solar combi system in the form of modules placed in a storage tank. The goal was to analyze the potential of latent heat storage in a water tank of a solar installation, in order to increase the performance or to reduce the storage volume. This report describes the methodology used and the results obtained during the analysis of the heat storage potential by latent heat. The following stages were carried out: (i) Development of a simulation model: As no reliable numerical model exists, we developed a dynamic model to simulate PCM modules of various PCM types and shapes. This simulation model takes into account the hysteresis, the subcooling as well as the internal convection of the PCM in a liquid phase. This model was implemented in an existing TRNSYS Type(60). (ii) Laboratory measurements: In order to validate the digital model we tested various configurations and different types of PCM to check the agreement between simulations and experimental results. This step was focused on the time-dependent temperature distribution in the PCM and in the storage tank in order to validate the numerical model. (iii) Solar combi system: The potential relevance of the PCM was tested by using a solar combi system (Arpege) both with and without PCM. An energy balance was established on the basis of a seven days uninterrupted use of Arpege in various conditions (meteorological conditions and domestic hot water draw-off). Following the validation of the numerical model, annual simulations were carried out. (iv) Environmental impacts: A life cycle analysis of this solar combi system both with and without PCM was carried out. This analysis takes into account materials of the Arpege installation, the PCM and its container, as well as auxiliary energy used. (author)

  7. Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties

    Directory of Open Access Journals (Sweden)

    Jörg Neugebauer

    2012-10-01

    Full Text Available We present a scale-bridging approach for modeling the integral elasticresponse of polycrystalline composite that is based on a multi-disciplinary combination of(i parameter-free first-principles calculations of thermodynamic phase stability andsingle-crystal elastic stiffness; and (ii homogenization schemes developed forpolycrystalline aggregates and composites. The modeling is used as a theory-guidedbottom-up materials design strategy and applied to Ti-Nb alloys as promising candidatesfor biomedical implant applications. The theoretical results (i show an excellent agreementwith experimental data and (ii reveal a decisive influence of the multi-phase character ofthe polycrystalline composites on their integral elastic properties. The study shows thatthe results based on the density functional theory calculations at the atomistic level canbe directly used for predictions at the macroscopic scale, effectively scale-jumping severalorders of magnitude without using any empirical parameters.

  8. Numerical Simulation for Effects of Microcapsuled Phase Change Material (mpcm) Distribution on Heat and Moisture Transfer in Porous Textiles

    Science.gov (United States)

    Li, Fengzhi

    In recent years, the use of phase change materials (PCM) to improve heat and moisture transfer properties of clothing has gained considerable attention. The PCM distribution in the clothing impacts heat and moisture transfer properties of the clothing significantly. For describing the mechanisms of heat and moisture transfer in clothing with PCM and investigating the effect of the PCM distribution, a new dynamic model of coupled heat and moisture transfer in porous textiles with PCM was developed. The effect of water content on physical parameters of textiles and heat transfer with phase change in the PCM microcapsules were considered in the model. Meanwhile, the numerical predictions were compared with experimental data, and good agreement was observed between the two, indicating that the model was satisfactory. Also the effects of the PCM distribution on heat transfer in the textiles-PCM microcapsule composites were investigated by using the model.

  9. Si2Sb2Te5 phase change material studied by an atomic force microscope nano-tip

    Institute of Scientific and Technical Information of China (English)

    Liu Yanbo; Zhang Ting; Niu Xiaoming; Song Zhitang; Min Guoquan; Zhang Jing; Zhou Weimin; Wan Yongzhong; Zhang Jianping; Li Xiaoli; Feng Songlin

    2009-01-01

    The Si2Sb2Te5 phase change material has been studied by applying a nano-tip (30 nm in diameter) on an atomic force microscopy system. Memory switching from a high resistance state to a low resistance state has been achieved, with a resistance change of about 1000 times. In a typical Ⅰ-Ⅴ curve, the current increases significantly after the voltage exceeds~4.3 V. The phase transformation of a Si2Sb2Te5 film was studied in situ by means of in situ X-ray diffraction and temperature dependent resistance measurements. The thermal stability of Si2Sb2Te5 and Ge2Sb2Te5 was characterized and compared as well.

  10. Existence and regularity of solutions of a phase field model for solidification with convection of pure materials in two dimensions

    Directory of Open Access Journals (Sweden)

    Jose Luiz Boldrini

    2003-11-01

    Full Text Available We study the existence and regularity of weak solutions of a phase field type model for pure material solidification in presence of natural convection. We assume that the non-stationary solidification process occurs in a two dimensional bounded domain. The governing equations of the model are the phase field equation coupled with a nonlinear heat equation and a modified Navier-Stokes equation. These equations include buoyancy forces modelled by Boussinesq approximation and a Carman-Koseny term to model the flow in mushy regions. Since these modified Navier-Stokes equations only hold in the non-solid regions, which are not known a priori, we have a free boundary-value problem.

  11. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Fang Guiyin, E-mail: gyfang@nju.edu.cn [Department of Physics, Nanjing University, Hankou Road 22, Nanjing, Jiangsu 210093 (China); Li Hui [Department of Material Science and Engineering, Nanjing University, Nanjing 210093 (China); Liu Xu [Department of Physics, Nanjing University, Hankou Road 22, Nanjing, Jiangsu 210093 (China)

    2010-08-01

    Form-stable lauric acid (LA)/silicon dioxide (SiO{sub 2}) composite phase change materials were prepared using sol-gel methods. The LA was used as the phase change material for thermal energy storage, with the SiO{sub 2} acting as the supporting material. The structural analysis of these form-stable LA/SiO{sub 2} composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR). The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the LA was well dispersed in the porous network of SiO{sub 2}. The DSC results indicated that the melting latent heat of the form-stable composite phase change material is 117.21 kJ kg{sup -1} when the mass percentage of the LA in the SiO{sub 2} is 64.8%. The results of the TGA showed that these materials have good thermal stability. The form-stable composite phase change materials can be used for thermal energy storage in waste heat recovery and solar heating systems.

  12. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Form-stable lauric acid (LA)/silicon dioxide (SiO2) composite phase change materials were prepared using sol-gel methods. The LA was used as the phase change material for thermal energy storage, with the SiO2 acting as the supporting material. The structural analysis of these form-stable LA/SiO2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR). The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the LA was well dispersed in the porous network of SiO2. The DSC results indicated that the melting latent heat of the form-stable composite phase change material is 117.21 kJ kg-1 when the mass percentage of the LA in the SiO2 is 64.8%. The results of the TGA showed that these materials have good thermal stability. The form-stable composite phase change materials can be used for thermal energy storage in waste heat recovery and solar heating systems.

  13. Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases

    Science.gov (United States)

    Jardani, A.; Revil, A.

    2015-08-01

    A new approach of seismoelectric imaging has been recently proposed to detect saturation fronts in which seismic waves are focused in the subsurface to scan its heterogeneous nature and determine saturation fronts. Such type of imaging requires however a complete modelling of the seismoelectric properties of porous media saturated by two immiscible fluid phases, one being usually electrically insulating (for instance water and oil). We combine an extension of Biot dynamic theory, valid for porous media containing two immiscible Newtonian fluids, with an extension of the electrokinetic theory based on the notion of effective volumetric charge densities dragged by the flow of each fluid phase. These effective charge densities can be related directly to the permeability and saturation of each fluid phase. The coupled partial differential equations are solved with the finite element method. We also derive analytically the transfer function connecting the macroscopic electrical field to the acceleration of the fast P wave (coseismic electrical field) and we study the influence of the water content on this coupling. We observe that the amplitude of the co-seismic electrical disturbance is very sensitive to the water content with an increase in amplitude with water saturation. We also investigate the seismoelectric conversions (interface effect) occurring at the water table. We show that the conversion response at the water table can be identifiable only when the saturation contrasts between the vadose and saturated zones are sharp enough. A relatively dry vadose zone represents the best condition to identify the water table through seismoelectric measurements. Indeed, in this case, the coseismic electrical disturbances are vanishingly small compared to the seismoelectric interface response.

  14. Optical nonlinearity and structural phase-transition observation of organic dye-doped polymer silica hybrid material.

    Science.gov (United States)

    Xu, L; Hou, Z; Liu, L; Xu, Z; Wang, W; Li, F; Ye, M

    1999-10-01

    The optical nonlinearity of organic dye-doped poly(methyl methacrylate) (PMMA)-silica-gel hybrid material was investigated by second-harmonic-generation measurement. We found that incorporation of in situ polymerized solgel precursors into the organic dye-doped PMMA significantly improved the nonlinear optical stability of the system. However, improvement of thermal stability occurred only when a sufficient amount of silica gel was incorporated. A structural phase transition from pure polymer to a hybrid system was found near a 10-mol.% silica-gel concentration. The optimum polymer/tetraethoxysilane molar ratio is 2:1 to 1:1. PMID:18079805

  15. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Brian [Touchstone Research Laboratory Ltd, Triadelphia, WV (United States)

    2014-03-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were

  16. PCM-enhanced building components an application of phase change materials in building envelopes and internal structures

    CERN Document Server

    Kosny, Jan

    2015-01-01

    Presenting an overview of the use of Phase Change Materials (PCMs) within buildings, this book discusses the performance of PCM-enhanced building envelopes. It reviews the most common PCMs suitable for building applications, and discusses PCM encapsulation and packaging methods. In addition to this, it examines a range of PCM-enhanced building products in the process of development as well as examples of whole-building-scale field demonstrations. Further chapters discuss experimental and theoretical analyses (including available software) to determine dynamic thermal and energy performance ch

  17. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  18. A route to possible civil engineering materials: the case of high-pressure phases of lime

    Science.gov (United States)

    Bouibes, A.; Zaoui, A.

    2015-07-01

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.

  19. Crystal structure and thermochemical properties of bis(1-octylammonium) tetrachlorochromate phase change materials

    Institute of Scientific and Technical Information of China (English)

    Lu Dong-Fei; Di You-Ying; He Dong-Hua

    2012-01-01

    A new crystalline complex (C8H17NH3)2CdCl4 (s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction.The crystal structure and composition of the complex are determined by single crystal X-ray diffraction,chemical analysis,and elementary analysis.It is triclinic,the space group is P-1 and Z =2.The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol-1 from crystallographic data.Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K.The temperature,molar enthalpy,and entropy of the phase transition for the complex are determined to be 307.3±0.15 K,10.15±0.23 kJ.mol-1 and 33.05±0.78 J.K-1.mo1-1 respectively for the endothermic peak.Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method.Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.

  20. A route to possible civil engineering materials: the case of high-pressure phases of lime.

    Science.gov (United States)

    Bouibes, A; Zaoui, A

    2015-07-23

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.

  1. Design, fabrication, and modeling of a two-phase thermosyphon experimental facility for fuels and materials irradiation

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory is currently investigating a two-phase thermosyphon experimental facility as a vehicle for irradiating advanced fuels and materials in the High Flux Isotope Reactor. The reactor's primary coolant will still serve as the ultimate heat sink for the facility, but it will be separated from the experiment by thick pressure vessel walls. As a closed system with no moving parts, any contamination events will be contained within the facility, with no release into the reactor primary coolant. The Thermosyphon Test Loop, a full-scale prototype of the proposed irradiation facility to be tested outside the reactor, will be complete in the spring of 2014. The purpose of this paper is to describe this new experimental facility, discuss the relevant operating characteristics, and present the results of the modeling that has been conducted so far to qualify the test loop and ultimately support fuels and materials irradiation experiments in the HFIR. (author)

  2. Correlation between microstructure, phase composition and mechanical properties of thermo-insulation bonding agents based on waste material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available Building composites - thermo-insulating and/or high-temperature resistant bonding agents in which fly ash, as potentially environmentally harmful waste material, is combined with ordinary and refractory cement is new option for reapplication of this waste material. In this study, investigated bonding agents were based on two types of fly ashes from coal combustion process and cements - ordinary Portland cement and highaluminate cement. Change of mineral phase composition of the composites with increasing temperature was analyzed by means of XRD method. Microstructural changes within investigated composites were investigated by means of scanning electron microscopy (SEM. Macro-performance - mechanical properties of the investigated bonding agents was finally correlated with its microstructure. The investigated bonding agents showed excellent compressive strength, while SEM and XRD analysis indicated its valuable refractory and thermo-insulation properties. [Projekat Ministarstva nauke Republike Srbije, br. 172057 i br. 45008

  3. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  4. Phoenix light - Heating and cooling with phase-change materials; Phoenix light: Heizen und Kuehlen mit PCM - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Haechler, E. [Suiselectra Ingenieurunternehmung AG, Basel (Switzerland); Schneider, B. [Hochschule Esslingen, University of Applied Sciences, Esslingen (Germany)

    2002-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the use of phase-change materials (PCM) in buildings in order to help provide cooling in summer and heating in winter. General information on PCM and its use in the automotive industry, clothing, heating systems and office materials as well as in the electronics industry is provided. The physical and chemical basics are discussed and examples of PCM use in practice are provided. Also, work done in research institutes is mentioned. PCM systems from various manufacturers are noted. The 'phoenix light' system concept is discussed. The 'comfort cooler' concept is introduced and laboratory measurements made at the University of Applied Sciences in Esslingen, Germany, are discussed. Further, measurements made at an installation in an existing building are presented and discussed. Knowledge gained and the optimisation of the system are discussed. Finally, proposals for further work to be done are noted.

  5. Liquid crystalline phase synthesis of nanoporous MnO2 thin film arrays as an electrode material for electrochemical capacitors

    International Nuclear Information System (INIS)

    Graphical abstract: Three-dimensional (3D) MnO2 thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO2 materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of −0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g−1 are achieved in 0.5 M Na2SO4 solution at a charge/discharge current density of 4 A g−1. Highlights: ► 3D MnO2 thin film arrays with nanoporous structure is fabricated for the first time. ► A maximum specific capacitance as high as 462 F g−1 is obtained. ► The 3D and nanoporous superarchitecture facilitate electrolyte penetration. -- Abstract: Three-dimensional (3D) MnO2 thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO2 materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of −0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g−1 are achieved in 0.5 M Na2SO4 solution at a charge/discharge current density of 4 A g−1.

  6. Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique

    Science.gov (United States)

    Barker, B. J.; Strand, L. D.

    1972-01-01

    A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.

  7. Technology for the storage of radioactive materials packagings during maritime transport. Phase 1

    International Nuclear Information System (INIS)

    Following the accident of the M/S Mont Louis on August 25, 1984 carrying UF6 cylinders, this report is a preliminary study of bibliographic data to help to define recommendations on packaging stowing for sea transport. Data on acceleration to take into account for normal or accidental transport conditions, safe areas on board that should be reserved for radioactive materials and accidents statistics are collected. Main information concerns: number of serious casualities or total losses to ships in European waters, accident causes, collision probability in function of mean distance between ships in the British Channel, selection of 8 reference accidents for future studies

  8. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials

    Science.gov (United States)

    Zalden, Peter; Shu, Michael J.; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W.; Wong, H.-S. Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M.

    2016-08-01

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26 . Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  9. Synthesis of Iron-Based Laves Phase Containing Praseodymium Magnetostrictive Materials

    Institute of Scientific and Technical Information of China (English)

    Liu Heyan; Dong Bin; Li Songtao; Meng Xiangxi; Gao Jianbo; Qu Jingping; Li Yangxian

    2007-01-01

    The synthesis and magnetostriction of PrxTb1-xFe2, PrxTb1-xFe2B0.2 and PrxTb1-x(Fe0.6Co0.4)2 alloys were investigated in this study. The addition of boron or cobalt atom in PrxTb1-xFe2 could effectively prevent the formation of non-cubic phases, and Pr concentration limit was successfully increased from 0.2 to 0.4. X-ray step scanning for the PrxTb1-xFe2B0.2 and PrxTb1-x(Fe0.6Co0.4)2 alloys showed that PrFe2 possessed a large spontaneous magnetostriction λ111.

  10. Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, R.

    1997-10-08

    Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 {micro}l injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few {micro}l of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

  11. Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings

    International Nuclear Information System (INIS)

    Highlights: • VO2 and PCM were combined in passive building application for the first time. • Synergetic performance of them is demonstrated in a full size room. • Synergetic application has a better performance than the solo ones. • The materials interact with each other in synergetic application. • ESI can be used to evaluate the performance of the synergetic application. - Abstract: One of the key methods to improve the energy saving performance of a building is to apply advanced materials or components to the building envelope. However, the two parts of a building’s envelope, the transparent one and the non-transparent one, are usually investigated individually by existing literature. In this study, vanadium dioxide (VO2) glazing, an advanced energy-efficient element applied to the transparent parts of the building envelope, and phase change material (PCM), a typical thermal storage material used to improve the non-transparent parts of the building envelope, were adopted simultaneously for the first time. The synergetic performance of VO2 glazing and PCM, demonstrated in a full-scale, lightweight, passive room, resulted in a significant improvement in the thermal comfort degree. The Energy Saving Index (ESI) is a simple and effective indicator that can be used to evaluate the passive application performance of a single energy-efficient material or component on a common standpoint. In this work, the index was broadened to evaluate the performance of more than one material, showing that ESI is feasible and favorable to analyze the coefficient application of several building materials and/or components. Using the ESI, the performance of the synergetic application was also compared with those of the sole materials, indicating that the synergetic application has a better performance during the cooling period. Furthermore the synergetic application involves an interplay rather than a simple combination of the energy-efficient materials. The application to

  12. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa

    2016-01-25

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  13. QCM gas phase detection with ceramic materials - VOCs and oil vapors

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A.; Dickert, Franz L. [University of Vienna, Department of Analytical Chemistry, Vienna (Austria)

    2011-06-15

    Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed. (orig.)

  14. Study of radiation stability of new poly-phase ash-ceramic materials

    International Nuclear Information System (INIS)

    Study of physico-mechanical and thermophysical properties of ash-ceramics after repeated irradiation by accelerated electrons beams under different regimes is carried out. Ash of Almaty Thermal Power Plant (Almatinskaya GREhS) and clay of Ajnabulak deposit serve as objects of testing . Samples after preliminary drying have been burnt in electric crucible furnace at maximum temperature 1100 deg C. Samples with different densities (1100-1400 kg/m3) were got with help method of different rate of treatment and compressing of forming ash-clay mixture. Pressure strength for burnt samples made up 12.5-17.5 MPa. Examined samples irradiated a few times with following doses: 9.45·106; 27·106; 81·106 Gy. Thermophysical and physico-technical features of samples have been studied after each irradiation. Comparison of received results with data of non-irradiated samples shows, that evident changes in structure and properties of testing materials have been not observed. It is concluded, that new ash-ceramic materials have sufficient radiation stability

  15. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Herreweghe, Samuel van; Swennen, Rudy; Vandecasteele, Carlo; Cappuyns, Valerie

    2003-04-01

    Leaching experiments, a mineralogical survey and larger samples are preferred when arsenic is present as discrete mineral phases. - Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity.

  16. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples

    International Nuclear Information System (INIS)

    Leaching experiments, a mineralogical survey and larger samples are preferred when arsenic is present as discrete mineral phases. - Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity

  17. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material.

    Science.gov (United States)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W W; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors. PMID:27213955

  18. Numerical Study of Thermal Performance of Phase Change Material Energy Storage Floor in Solar Water Heating System

    Institute of Scientific and Technical Information of China (English)

    ZENG Ruo-lang; WANG Xin; ZHANG Yin-ping; DI Hong-fa; ZHANG Qun-li

    2009-01-01

    The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank velume even to cancel the tank,a novel structure of integrated water pipe floor heating system using shape-stabi-lized phase change materials (SSPCM) for thermal energy storage was developed.A numerical model was devel-oped to analyze the performance of SSPCM floor heating system under the intermittent heating condition,which was verified by our experimental data.The thermal performance of the heating system and the effects of various factors on it were analyzed numerically.The factors including phase transition temperature,heat of fusion,ther-real conductivity of SSPCM and thermal conductivity of the decoration material were analyzed.The results show that tm and kd are the most import influencing factors on the thermal performance of SSPCM floor heating sys-tem,since they determine the heat source temperature and thermal resistance between SSPCM plates and indoor air,respectively.Hm should be large to store enough thermal energy in the day time for nighttimes heating.The effects of KP can be ignored in this system.The SSPCM floor heating system has potential of making use of the daytime solar energy for heating at night efficiently in various climates when its structure is properly designed.

  19. Simulation and Experimental Study on Effect of Phase Change Material Thickness to Reduce Temperature of Photovoltaic Panel

    Science.gov (United States)

    Indartono, Y. S.; Prakoso, S. D.; Suwono, A.; Zaini, I. N.; Fernaldi, B.

    2015-09-01

    Solar energy is promising renewable energy which can be applied in Indonesia. Average solar radiation in the country is 4.8 kWh/day/m2. Weakness of silicon-based photovoltaic (PV) is efficiency reduction caused by temperature increase. Many attempts have been done to reduce PV temperature. In previous study, palm oil, which is widely available in Indonesia, is suitable to be used as phase change material (PCM) to reduce PV temperature. In this study, thickness of aluminium rectangular-tube containing phase change material oil is varied. The tube is placed at back part of PV. Numerical and experimental study was done to evaluate the effect of tube thickness to the temperature reduction of the PV. Variation of tube thickness used in the experiment is 50.8mm, 76.2 mm, 101.6 mm. Both studies show that increase of PCM thickness reduces PV temperature. Higher PCM thickness cause large reduction on PV temperature. Simulation result shows there is an optimum thickness of the PCM which is applied to the PV.

  20. Damage development, phase changes, transport properties, and freeze-thaw performance of cementitious materials exposed to chloride based salts

    Science.gov (United States)

    Farnam, Yaghoob

    Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical

  1. Low-Cost Bio-Based Phase Change Materials as an Energy Storage Medium in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Abhari, Mr. Ramin [Renewable Energy Group, Inc.; Shukla, Dr. Nitin [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston; Kosny, Dr. Jan [Fraunhofer USA, Center for Sustainable Energy Systems (CSE), Boston

    2015-01-01

    A promising approach to increasing the energy efficiency of buildings is the implementation of phase change material (PCM) in building envelope systems. Several studies have reported the energy saving potential of PCM in building envelopes. However, wide application of PCMs in building applications has been inhibited, in part, by their high cost. This article describes a novel paraffin product made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application, with the ultimate goal of commercializing a low-cost PCM platform. The low-cost PCM pellets were mixed with cellulose insulation, installed in external walls and field-tested under natural weatherization conditions for a period of several months. In addition, several PCM samples and PCM-cellulose samples were prepared under controlled conditions for laboratory-scale testing. The laboratory tests were performed to determine the phase change properties of PCM-enhanced cellulose insulation both at microscopic and macroscopic levels. This article presents the data and analysis from the exterior test wall and the laboratory-scale test data. PCM behavior is influenced by the weather and interior conditions, PCM phase change temperature and PCM distribution within the wall cavity, among other factors. Under optimal conditions, the field data showed up to 20% reduction in weekly heat transfer through an external wall due to the PCM compared to cellulose-only insulation.

  2. Influence of methanol on the phase behavior of nonionic fluorinated surfactant: relation to the structure of mesoporous silica materials.

    Science.gov (United States)

    Zimny, K; Blin, J L; Stébé, M J

    2009-02-15

    We have investigated the effect of methanol addition on the R(F)(8)(EO)(9) and R(F)(7)(EO)(8) surfactant-based systems. While upon the addition of methanol the L(1) micellar phase grows, the direct hexagonal (H(1)) and the lamellar (L(alpha)) liquid crystals progressively melt with the increase of alcohol content. Phase behavior and SAXS measurements proved that methanol molecules interact with the oxyethylene units of the surfactant. This involves a folding up of the hydrophobic chains in the liquid crystal phases. Moreover, for the R(F)(7)(EO)(8) surfactant, the cloud point curve is shifted to high temperatures upon addition of alcohol. Starting from these systems, we have prepared mesoporous materials. Results show that due to the hydrogen bonds between the alcohol and the EO groups, the hexagonal structure of the mesostructured silica obtained from R(F)(8)(EO)(9) is lost when the content of CH(3)OH is increased. In contrast, for the compounds prepared from the R(F)(7)(EO)(8)-based system, the pore ordering occurs in the presence of alcohol. This phenomenon has been related to the moving of the cloud point curve toward high temperatures with the addition of methanol. Our study reveals also that under our conditions the methanol released during the hydrolysis of the silica precursor does not affect the self-assembly mechanism in a positive or negative way. PMID:19058809

  3. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage

    Science.gov (United States)

    Chieruzzi, Manila; Miliozzi, Adio; Crescenzi, Tommaso; Torre, Luigi; Kenny, José M.

    2015-06-01

    In this study different nanofluids with phase change behavior were developed by mixing a molten salt base fluid (KNO3 selected as phase change material) with nanoparticles using the direct synthesis method. The thermal properties of the nanofluids obtained were investigated. Following the improvement in the specific heat achieved, these nanofluids can be used in concentrating solar plants with a reduction of storage material. The nanoparticles used (1.0 wt.%) were silica (SiO2), alumina (Al2O3), and a mix of silica-alumina (SiO2-Al2O3) with an average diameter of 7, 13, and 2-200 nm respectively. Each nanofluid was prepared in water solution, sonicated, and evaporated. Measurements of the thermophysical properties were performed by DSC analysis, and the dispersion of the nanoparticles was analyzed by SEM microscopy. The results obtained show that the addition of 1.0 wt.% of nanoparticles to the base salt increases the specific heat of about 5-10 % in solid phase and of 6 % in liquid phase. In particular, this research shows that the addition of silica nanoparticles has significant potential for enhancing the thermal storage characteristics of KNO3. The phase-change temperature of potassium nitrate was lowered up to 3 °C, and the latent heat was increased to 12 % with the addition of silica nanoparticles. These results deviated from the predictions of theoretical simple mixing model used. The stored heat as a function of temperature was evaluated for the base salt, and the nanofluids and the maximum values obtained were 229, 234, 242, and 266 J/g respectively. The maximum total gain (16 %) due to the introduction of the nanoparticles (calculated as the ratio between the total stored heat of the nanofluids and the base salt in the range of temperatures 260-390 °C) was also recorded with the introduction of silica. SEM and EDX analysis showed the presence of aggregates in all nanofluids: with silica nanoparticles they were homogenously present while with alumina and

  4. The capric-lauric acid and pentadecane combination as phase change material for cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Dimaano, M.N.R. [University of Santo Tomas, Manila (Philippines). Research Center for the Natural Sciences; Watanabe, Takayuki [Tokyo Inst. of Technology (Japan). Research Lab. for Nuclear Reactors

    2002-03-01

    The mixture of 65 mol% capric acid and 35 mol% lauric acid (C-L acid) is a potential latent heat storage material. However, its melting temperature of 18.0 {sup o}C is quite high for low-temperature thermal energy storage. Addition of pentadecane, with a melting point of 9.9 {sup o}C, is proposed. The thermal characteristics of the combination of the C-L acid with pentadecane (CL:P) in different volume ratio are investigated employing the DSC analysis. The actual thermal performance of each CL:P combination is further determined from their radial and axial temperature distribution employing a fabricated thermal storage capsule. The 90:10 CL:P combination manifests an improvement in the melting characteristic of the C-L acid.(author)

  5. β-Phase poly(vinylidene fluoride) films encouraged more homogeneous cell distribution and more significant deposition of fibronectin towards the cell–material interface compared to α-phase poly(vinylidene fluoride) films

    Energy Technology Data Exchange (ETDEWEB)

    Low, Y.K.A.; Zou, X. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Fang, Y.M. [School of Computer Engineering, Nanyang Technological University, N4 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, J.L. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Lin, W.S. [School of Computer Engineering, Nanyang Technological University, N4 50 Nanyang Avenue, Singapore 639798 (Singapore); Boey, F.Y.C. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, K.W., E-mail: kwng@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-01-01

    The piezoelectric response from β-phase poly(vinylidene fluoride) (PVDF) can potentially be exploited for biomedical application. We hypothesized that α and β-phase PVDF exert direct but different influence on cellular behavior. α- and β-phase PVDF films were synthesized through solution casting and characterized with FT-IR, XRD, AFM and PFM to ensure successful fabrication of α and β-phase PVDF films. Cellular evaluation with L929 mouse fibroblasts over one-week was conducted with AlamarBlue® metabolic assay and PicoGreen® proliferation assay. Immunostaining of fibronectin investigated the extent and distribution of extracellular matrix deposition. Image saliency analysis quantified differences in cellular distribution on the PVDF films. Our results showed that β-phase PVDF films with the largest area expressing piezoelectric effect elicited highest cell metabolic activity at day 3 of culture. Increased fibronectin adsorption towards the cell–material interface was shown on β-phase PVDF films. Image saliency analysis showed that fibroblasts on β-phase PVDF films were more homogeneously distributed than on α-phase PVDF films. Taken collectively, the different molecular packing of α and β-phase PVDF resulted in differing physical properties of films, which in turn induced differences in cellular behaviors. Further analysis of how α and β-phase PVDF may evoke specific cellular behavior to suit particular application will be intriguing. - Highlights: • β-Phase PVDF exhibited strongest piezoelectric effects compared to α-phase PVDF. • β-Phase PVDF induced more homogeneous cell distribution than α-phase PVDF. • β-Phase PVDF encouraged more fibronectin deposition at the cell–material interface.

  6. β-Phase poly(vinylidene fluoride) films encouraged more homogeneous cell distribution and more significant deposition of fibronectin towards the cell–material interface compared to α-phase poly(vinylidene fluoride) films

    International Nuclear Information System (INIS)

    The piezoelectric response from β-phase poly(vinylidene fluoride) (PVDF) can potentially be exploited for biomedical application. We hypothesized that α and β-phase PVDF exert direct but different influence on cellular behavior. α- and β-phase PVDF films were synthesized through solution casting and characterized with FT-IR, XRD, AFM and PFM to ensure successful fabrication of α and β-phase PVDF films. Cellular evaluation with L929 mouse fibroblasts over one-week was conducted with AlamarBlue® metabolic assay and PicoGreen® proliferation assay. Immunostaining of fibronectin investigated the extent and distribution of extracellular matrix deposition. Image saliency analysis quantified differences in cellular distribution on the PVDF films. Our results showed that β-phase PVDF films with the largest area expressing piezoelectric effect elicited highest cell metabolic activity at day 3 of culture. Increased fibronectin adsorption towards the cell–material interface was shown on β-phase PVDF films. Image saliency analysis showed that fibroblasts on β-phase PVDF films were more homogeneously distributed than on α-phase PVDF films. Taken collectively, the different molecular packing of α and β-phase PVDF resulted in differing physical properties of films, which in turn induced differences in cellular behaviors. Further analysis of how α and β-phase PVDF may evoke specific cellular behavior to suit particular application will be intriguing. - Highlights: • β-Phase PVDF exhibited strongest piezoelectric effects compared to α-phase PVDF. • β-Phase PVDF induced more homogeneous cell distribution than α-phase PVDF. • β-Phase PVDF encouraged more fibronectin deposition at the cell–material interface

  7. First Principles Based Simulation of Reaction-Induced Phase Transition in Hydrogen Storage and Other Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Qingfeng [Southern Illinois Univ., Carbondale, IL (United States)

    2014-08-31

    This major part of this proposal is simulating hydrogen interactions in the complex metal hydrides. Over the period of DOE BES support, key achievements include (i) Predicted TiAl3Hx as a precursor state for forming TiAl3 through analyzing the Ti-doped NaAlH4 and demonstrated its catalytic role for hydrogen release; (ii) Explored the possibility of forming similar complex structures with other 3d transition metals in NaAlH4 as well as the impact of such complex structures on hydrogen release/uptake; (iii) Demonstrated the role of TiAl3 in hydriding process; (iv) Predicted a new phase of NaAlH4 that links to Na3AlH6 using first-principles metadynamics; (v) Examined support effect on hydrogen release from supported/encapsulated NaAlH4; and (vi) Expanded research scope beyond hydrogen storage. The success of our research is documented by the peer-reviewed publications.

  8. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage

    International Nuclear Information System (INIS)

    Highlights: • Three new kinds of SSPCMs were synthesized with different skeleton materials. • The phase change properties and thermal stability of SSPCMs were investigated. • The maximum enthalpy in heating (cooling) process is 107.5 kJ/kg (102.9 kJ/kg). • The rigid groups and crosslinking structure of SSPCMs improve the thermal stability. • The SSPCMs could be applied in the temperature range of 30–70 °C. - Abstract: Three kinds of new polymeric SSPCMs with different crosslinking structures were synthesized and characterized for thermal energy storage. In the SSPCMs, three hexahydroxy compounds (sorbitol, dipentaerythritol and inositol) were individually employed as the molecular skeleton and polyethylene glycol (PEG) was used as the phase change functional chain. The molecular structure, crystalline properties, phase change behaviors, thermal reliability and stability of the synthesized SSPCMs were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetry (TG), respectively. The results show that the prepared SSPCMs possess high thermal energy storage density and an applicable temperature range of 30–70 °C, and the maximum phase change enthalpy in the heating and cooling process for the SSPCMs is 107.5 kJ/kg and 102.9 kJ/kg, respectively. The prepared SSPCMs have good reusability, excellent thermal reliability and stability from the heating-cooling thermal cycle test and TG curves. The resultant SSPCMs could be potentially applied in the areas of thermal energy storage and temperature-control

  9. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites

  10. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    Energy Technology Data Exchange (ETDEWEB)

    Vaikkinen, A. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kotiaho, T. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Kostiainen, R. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kauppila, T.J., E-mail: tiina.kauppila@helsinki.fi [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland)

    2010-12-03

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  11. Synthesis and processing of intelligent cost-effective structures phase II (SPICES II): smart materials aircraft applications evaluation

    Science.gov (United States)

    Dunne, James P.; Jacobs, Steven W.; Baumann, Erwin W.

    1998-06-01

    The second phase of the synthesis and processing of intelligent cost effective structures (SPICES II) program sought to identify high payoff areas for both naval and aerospace military systems and to evaluate military systems and to evaluate the benefits of smart materials incorporation based on their ability to redefine the mission scenario of the candidate platforms in their respective theaters of operation. The SPICES II consortium, consisting of The Boeing Company, Electric Boat Corporation, United Technologies Research Center, and Pennsylvania State University, surveyed the state-of-the-art in smart structures and evaluated potential applications to military aircraft, marine and propulsion systems components and missions. Eleven baseline platforms comprising a wide variety of missions were chosen for evaluation. Each platform was examined in its field of operation for areas which can be improved using smart materials insertion. Over 250 smart materials applications were proposed to enhance the platforms. The applications were examined and, when possible, quantitatively analyzed for their effect on mission performance. The applications were then ranked for payoff, risk, and time frame for development and demonstration. Details of the efforts made in the SPICES II program pertaining to smart structure applications on military and transport aircraft will be presented. A brief discussion of the core technologies will be followed by presentation of the criteria used in ranking each application. Thereafter, a selection of the higher ranking proposed concepts are presented in detail.

  12. High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading.

    Science.gov (United States)

    Hudspeth, M; Claus, B; Dubelman, S; Black, J; Mondal, A; Parab, N; Funnell, C; Hai, F; Qi, M L; Fezzaa, K; Luo, S N; Chen, W

    2013-02-01

    The successful process of amalgamating both the time-resolved imaging capabilities present at the Advanced Photon Source beamline 32ID-B and the proficiency of high-rate loading offered by the split Hopkinson or Kolsky compression/tension bar apparatus is discussed and verification of system effectiveness is expressed via dynamic experiments on various material systems. Single particle sand interaction along with glass cracking during dynamic compression, and fiber-epoxy interfacial failure, ligament-bone debonding, and single-crystal silicon fragmentation due to dynamic tension, were imaged with 0.5 μs temporal resolution and μm-level spatial resolution. Synchrotron x-ray phase contrast imaging of said material systems being loaded with the Kolsky bar apparatus demonstratively depicts the effectiveness of the novel union between these two powerful techniques, thereby allowing for in situ analysis of the interior of the material system during high-rate loading for a variety of applications. PMID:23464246

  13. Determination of phthalates released from paper packaging materials by solid-phase extraction-high-performance liquid chromatography.

    Science.gov (United States)

    Gao, Xin; Yang, Bofeng; Tang, Zhixu; Luo, Xin; Wang, Fengmei; Xu, Hui; Cai, Xue

    2014-01-01

    A solid phase extraction (SPE) high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of 10 phthalic acid esters (dimethyl phthalate, diethyl phthalate, dipropyl phthalate, benzylbutyl phthalate, diisobutyl phthalate, dicyclohexyl phthalate, diamyl phthalate, di-n-hexyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate) released from food paper packaging materials. The use of distilled water, 3% acetic acid (w/v), 10% ethanol (v/v) and 95% ethanol (v/v) instead of the different types of food simulated the migration of 10 phthalic acid esters from food paper packaging materials; the phthalic acid esters in four food simulants were enriched and purified by a C18 SPE column and nitrogen blowing, and quantified by HPLC with a diode array detector. The chromatographic conditions and extraction conditions were optimized and all 10 of the phthalate acid esters had a maximum absorbance at 224 nm. The method showed limitations of detection in the range of 6.0-23.8 ng/mL the correlation coefficients were greater than 0.9999 in all cases, recovery values ranged between 71.27 and 106.97% at spiking levels of 30, 60 and 90 ng/mL and relative standard deviation values ranged from 0.86 to 8.00%. The method was considered to be simple, fast and reliable for a study on the migration of these 10 phthalic acid esters from food paper packaging materials into food.

  14. Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

    Science.gov (United States)

    Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.

    2016-09-01

    The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.

  15. Synthesis of steel slag ceramics:chemical composition and crystalline phases of raw materials

    Institute of Scientific and Technical Information of China (English)

    Li-hua Zhao; Wei Wei; Hao Bai; Xu Zhang; Da-qiang Cang

    2015-01-01

    Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO–Al2O3–SiO2 and CaO–MgO–SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite,α-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.

  16. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tarhan, Sefa; Yardim, M. Hakan [Department of Farm Machinery, Faculty of Agriculture, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey); Sari, Ahmet [Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey)

    2006-09-15

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  17. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.

  18. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijiu; Meng, Duo [School of Civil Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-08-15

    This work is focused on the preparation and characterization of fatty acid eutectic/polymethyl methacrylate (PMMA) form-stable phase change material (PCM). Capric acid (CA), lauric acid (LA), myristic acid (MA) and stearic acid (SA) were selected to prepare binary fatty acid eutectic for the sake of decreasing the phase change temperature. Using the method of self-polymerization, CA-LA, CA-MA, CA-SA and LA-MA eutectics acting as the heat-absorbing materials and PMMA serving as the supporting material were compounded in the ratio of 50/50 wt.%. The relations between mass fraction of LA-MA eutectic and latent heat and compressive strength of LA-MA/PMMA composite were discussed, and the feasible maximum mass fraction of LA-MA eutectic was determined to be 70%. CA-LA/PMMA, CA-MA/PMMA, CA-SA/PMMA and LA-MA/PMMA composites were examined to investigate their potential application in building energy conservation. Scanning electron microscope and polarizing optical microscope observations showed that fatty acid eutectic was coated by PMMA thus the composite remained solid when the sample was heated above the melted point of the fatty acid. Fourier-transform infrared results indicated that fatty acid and PMMA had no chemical reaction and exhibited good compatibility with each other. According to the differential scanning calorimetry results, phase change temperatures of CA-LA/PMMA, CA-MA/PMMA, CA-SA/PMMA and LA-MA/PMMA composites were 21.11 C, 25.16 C, 26.38 C and 34.81 C and their latent heat values were determined to be 76.3 kJ/kg, 69.32 kJ/kg, 59.29 kJ/kg and 80.75 kJ/kg, respectively. Moreover, thermal stability and expansibility of the form-stable PCMs were characterized by thermogravimetric analysis and volume expansion coefficient respectively, and the results indicated that the composites were available for building energy conservation. (author)

  19. Experimental study of passive cooling of building facade using phase change materials to increase thermal comfort in buildings in hot humid areas

    Directory of Open Access Journals (Sweden)

    A. A. Madhumathi, B. M.C. Sundarraja

    2012-01-01

    Full Text Available Storage of cooler night temperatures using Phase Change Material (PCM energy storage technique, for cooling of ambient air during hot day times can be an alternate of current cooling techniques in building sector. This work presents the results of an experimental set-up to test energy saving potential of phase change materials with typical construction materials in building facade in Hot-Humid Climatic Regions in real conditions. The main objective of this research is to demonstrate experimentally that it is possible to improve the thermal comfort and reduce the energy consumption of a building without substantial increase in the weight of the construction materials with the inclusion of PCM. This research was conducted to study and evaluate the performance of the existing materials integrated with Organic PCM Polyethylene glycol (PEG E600. This research suggested that the heat gain is significantly reduced when the PCM is incorporated into the brick (conventional building material.

  20. PRELIMINARY PROGRESS IN THE DEVELOPMENT OF DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS: DUAL-PHASE FINITE ELEMENT DAMAGE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    2016-03-31

    The objective of this study is to develop a finite element continuum damage model suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system.